UCLA

Posters

Title

Field Operational Sensor and Lab-on-a-Chip System for Marine Environmental Monitoring and Analysis

Permalink

https://escholarship.org/uc/item/48j2p2hm

Authors

Liu, Mike Sabet, Leyla Schnetzer, Astrid et al.

Publication Date

2009-05-12

S Center for Embedded Networked Sensing

Field Operational Sensor and Lab-on-a-Chip System for Marine Environmental Monitoring and Analysis

Mike Liu¹, Leyla Sabet², Beth A. Stauffer³, David Caron³, Chih-Ming Ho¹, Astrid Schnetzer³, Yu-Chong Tai² 1. CALTECh http://mems.caltech.edu/ 2. UCLA ho.seas.ucla.edu 3. USC www.usc.edu/dept/LAS/biosci/Caron lab/

Introduction: Sensitivity Improved Marine Biology Research Using Lab on a Chip

Motivation

- Elucidate cause of toxin production by algae
 - Pseudo Nitzschia, one type of algae that produces the toxin **Domoic Acid (DA):** When transferred through the food chain causes sickness and mortality in marine mammals and seabirds
- Chip based algal culture:
 - Culture a small number of algae and screen for factors inducing toxin production.
 - A combinatorial mixer that expose algae to different conditions at once.
 - Chip to trap a limited number of algae cells Single cell or group of
- Ultrasensitive detection of DA:
 - Algae cells are lysed and DA is extracted for detection
 - Current detection is limited to at least 100 algae cells.
 - By using the ultra sensitive sensor toxin from 10 and less algae will be studied.

Advantages of lab-on-chip systems

Batch fabricated, low cost, small sample volume.

- Automation and miniaturization.
- Can be integrated with wireless networks
- Enable multiple parallel experiments.
- Field deployable, disposable, sterile
- High sensitivity detector

Algae Culture on a Chip: Screening for Factors that Induce Toxin Production

- •Expedite research in marine biology using chip-based technology
- •Combinatorial mixer: expose algae to various condition at once
- •Culture chamber: contain and culture algae
- ·Single or group of cells
- •3-D microfluidic chip fabricated by multilayer parylene C surface micromachining process

Replace several culture experiments with a single chip

Device design

Fabricated 1 cm by 1 cm chip on silicon

Combinatorial mixer operated at 10 μL/min. The scale bar represents 1 mm

New chip on glass substrate

Culture chamber: contain cells using different trap geometries

1) Trapping cells using an array of posts

Low concentration (left) and high concentration (right) of PN

2) Trapping cells using integrated membrane

·Cells are trapped by membrane (polyester) •0.4 or 1 um pore size More efficient cell loading

Toxin Detection: Ultra Sensitive Detection Method to Monitor DA Concentration

With proper surface molecular modifications, we have developed a very sensitive electrochemical sensor for detecting both protein and RNA/DNA •Advantages of electrochemical sensor:

- 1-only simple micro electrodes are needed
- 2- No need for the expensive optical components or microscope.
- 3- Only 2 µlit of sample is needed.
- 4- easy current read-out, no need for optical signal survey across a surface.
- 5- small foot print and field deployable.

- 1. Immobilizing 4 µl of 5 µg/ml of Da-BSA on surface
- 2. adding 400X diluted Ab (0.25 µg/ml)
- 3. Adding 2 µl of different concentrations of Da
- 4. Read output current

•Current result:

Domoic Acid can be detected up to 10 pg/ml.

Optimize the assay for repeatability and sensitivity. Lyse Psuedo Nitzschia and extract DA. Detect DA from the extract.