
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Smart Frame Grabber : : A Hardware Accelerated Computer Vision Framework

Permalink
https://escholarship.org/uc/item/48h598vk

Author
Jacobsen, Matthew Daniel

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/48h598vk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Smart Frame Grabber: A Hardware Accelerated Computer Vision Framework

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Matthew Daniel Jacobsen

Committee in charge:

Professor Ryan Kastner, Chair
Professor Serge Belongie
Professor Yoav Freund
Professor Rajesh Gupta
Professor Truong Nguyen

2014

Copyright

Matthew Daniel Jacobsen, 2014

All rights reserved.

The Dissertation of Matthew Daniel Jacobsen is approved and is accept-

able in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2014

iii

DEDICATION

This work is dedicated to my family and friends who have supported me throughout my
studies. First and foremost, my wife Hayessa, who has put up with endless nights with
me at the computer. Also to my close friends Matt and Janet Dowling who have been a
constant source of reassurance and opportunity. To my oldest friend Sayf Alalusi and his
generous family, who have provided (among many things) an example of how to be.
Lastly, to my parents who made this possible.

iv

EPIGRAPH

Great minds discuss ideas;
average minds discuss events;

small minds discuss people.

Eleanor Roosevelt

Nothing is really work
unless you would rather
be doing something else.

J. M. Barrie

Have a good day!
Don’t forget to come home.

Ashton Jacobsen

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . x

List of Tables . xiv

Preface . xv

Acknowledgements . xvi

Vita . xviii

Abstract of the Dissertation . xx

Introduction . 1

Chapter 1 Smart Frame Grabber . 4
1.1 Motivation . 6
1.2 Communication Component . 7
1.3 Reusable Components . 9
1.4 Contributions . 11

1.4.1 Framework Contributions . 11
1.4.2 Application Contributions . 12

Part I Smart Frame Grabber Framework . 15

Chapter 2 RIFFA: A Reusable Integration Framework for FPGA Accelerators 16
2.1 Introduction . 16
2.2 Related Work . 18
2.3 RIFFA 1.0 . 19

2.3.1 Architecture . 19
2.4 RIFFA 2.0 . 28

2.4.1 Design . 28
2.4.2 Architecture . 35
2.4.3 Performance . 41

2.5 Conclusion . 45

vi

Part II Smart Frame Grabber Applications . 47

Chapter 3 FPGA Accelerated Skin Color Detection . 48
3.1 Introduction . 48
3.2 Design and Architecture . 49
3.3 Performance . 51
3.4 Conclusion . 52

Chapter 4 FPGA Coprocessor for Particle Filter Tracking 53
4.1 Introduction . 53
4.2 Algorithm . 54
4.3 Architecture . 55
4.4 Performance . 57
4.5 Conclusion . 58

Chapter 5 FPGA Accelerated Face Detection . 60
5.1 Introduction . 60
5.2 Algorithm . 61
5.3 Architecture . 62
5.4 Performance . 65
5.5 OpenCV Integration . 66

5.5.1 Performance . 67
5.6 Conclusion . 68

Chapter 6 FPGA-GPU-CPU Heterogenous Architecture for Real-time Cardiac
Physiological Optical Mapping . 69

6.1 Introduction . 69
6.2 Related Work . 72
6.3 Optical Mapping Algorithm . 73

6.3.1 Normalization . 73
6.3.2 Phase Correction Spatial Filter . 73
6.3.3 Phase Correction Algorithm . 75
6.3.4 Temporal Median Filter . 75

6.4 Application Partitioning . 76
6.5 Design and Implementation . 79

6.5.1 Overall System . 79
6.5.2 FPGA Design . 81
6.5.3 GPU Design . 81

6.6 Results and Analysis . 83
6.6.1 Experimental Setup . 83
6.6.2 Performance . 83
6.6.3 Accuracy . 85

6.7 Conclusion . 86

vii

Chapter 7 Hardware Accelerated Online Boosting for Multi-Target Tracking . 88
7.1 Introduction . 88
7.2 Related Work . 90
7.3 Algorithm . 90

7.3.1 Motion Model . 92
7.3.2 Search Strategy . 92
7.3.3 Appearance Model . 92

7.4 Tracking Application . 96
7.5 Hardware Design . 97

7.5.1 FPGA Design . 98
7.5.2 GPU Design . 104

7.6 Results And Analysis . 108
7.6.1 Software-only . 109
7.6.2 GPU . 109
7.6.3 FPGA . 110
7.6.4 Comparison . 111

7.7 Conclusion . 113

Chapter 8 Improving FPGA Accelerated Tracking with Multiple Online Trained
Classifiers . 114

8.1 Introduction . 114
8.2 Related work . 116
8.3 Algorithm . 117

8.3.1 Classifier Algorithm . 117
8.3.2 Main Algorithm . 120

8.4 FPGA-CPU design . 124
8.4.1 Evaluate stage . 125
8.4.2 Update stage . 129
8.4.3 Train stage . 129

8.5 Experimental results . 130
8.6 Conclusion . 134

Chapter 9 Future Directions . 135
9.1 Simple Compatible Interfaces . 135
9.2 Direct Device To Device Communication . 136
9.3 OpenCV Integration . 136

Appendices . 138

Appendix A RIFFA 1.0 . 139
A.1 Getting Started . 139
A.2 Hardware Interface . 145
A.3 Software API . 151

viii

Appendix B RIFFA 2.0 . 172
B.1 Getting Started . 172
B.2 Hardware Interface . 174
B.3 C/C++ API . 178

B.3.1 API . 180
B.4 Java API . 183

B.4.1 API . 186
B.5 Python API . 192

B.5.1 API . 195
B.6 Design Tips . 199
B.7 Design Guide - Avnet Xilinx S6LX150t - ISE . 200
B.8 Design Guide - Xilinx ML605 - ISE . 208
B.9 Design Guide - Xilinx VC707 - ISE . 216
B.10 Design Guide - Xilinx VC707 - Vivado . 223

Appendix C Reusable Components . 234
C.1 Image Scaler . 234
C.2 Frame Capture . 234
C.3 Sliding Window Framework . 236
C.4 Integral Image Conversion . 237
C.5 Pixel Color Space Conversion . 237
C.6 Arithmetic Operations . 238
C.7 Counting and Filtering . 239
C.8 Feature Extraction and Calculation . 239
C.9 Clock Domain Crossing . 240
C.10 Data Manipulation . 241
C.11 RAMs and FIFOs . 241
C.12 Skin Detector . 244

Bibliography . 245

ix

LIST OF FIGURES

Figure 2.1. Architecture of RIFFA 1.0 framework. Application acceleration
cores interface with the DMA Request and Central Notifier cores. 20

Figure 2.2. Example usage of RIFFA 1.0 from a user application. 22

Figure 2.3. Example usage of RIFFA from a user application. 24

Figure 2.4. RIFFA 2.0 software example in C. 33

Figure 2.5. RIFFA 2.0 hardware example in Verilog. 34

Figure 2.6. RIFFA 2.0 architecture. 36

Figure 2.7. Downstream transfer sequence diagram. 37

Figure 2.8. Upstream transfer sequence diagram. 39

Figure 2.9. Downstream transfer bandwidths as a function of transfer size.
Upstream bandwidths are nearly identical. 43

Figure 3.1. Alternating decision tree example. 50

Figure 3.2. Image frames of skin detector evaluating live video. 52

Figure 4.1. Tracker core architecture. The State Machine module interfaces
with the DMA Request and Central Notifier cores. Software on the
workstation initiates processing via interrupts. 56

Figure 5.1. Architecture of the VJ Detector core. The Request Handler module
interfaces with the Central Notifier and VJ Cascade cores. Software
on the workstation initiates processing via interrupts. 61

Figure 5.2. Cumulative percentage of candidate locations rejected after evalu-
ating cascade stages. Only first 10 stages shown. 63

Figure 5.3. Architecture of the VJ Cascade core. The detections from the first
few stages are saved as a binary bitmap by the Cascade Rejections
module. 64

Figure 5.4. Face detection times on VGA video. Speed up over equivalent
software only version is listed in parenthesis. 66

x

Figure 5.5. Pseudo code representation of modified OpenCV cascade detection
function. 67

Figure 5.6. Face detection times on VGA video in frames per second. 68

Figure 6.1. Image conditioning effect (left: the grayscale image of a random
frame, right: the waveform of a random pixel over time). (a) before
image conditioning. (b) after image conditioning. 70

Figure 6.2. Optical mapping algorithm. 74

Figure 6.3. FPGA-GPU heterogenous architecture. 80

Figure 6.4. The performance of the FPGA-GPU-CPU heterogenous implemen-
tation in comparison to the original Matlab, the OpenMP C++, and
the GPU only implementation. 84

Figure 6.5. Error of the output of the optical mapping image conditioning (blue
line) and error in repolarization analysis (red line). 85

Figure 7.1. A. Circular search region with radius s (left). B. Circular region
with radius r for positive examples and sampled annular region
with radii q and q′ for negative examples (right). 93

Figure 7.2. Performance of different tasks in the algorithm as a percentage of
total time. 97

Figure 7.3. High level architecture of FPGA design. 99

Figure 7.4. Root mean squared error of different bit widths for Haar rectangle
weights over test sequences. 104

Figure 7.5. Implementation of the feature extraction kernel. 105

Figure 7.6. Implementation of the feature update kernel. (a) Thread assignment;
(b) Sequential iteration data flow. 107

Figure 7.7. Performance of implementations. Speed up factors over the C++
implementation are shown above each bar. Y axis is logarithmic. . 108

Figure 7.8. Example tracking sequences (left to right). Multiple target tracking. 110

Figure 7.9. FPGA pipeline filling (top). GPU non-idle threads for feature cal-
culation kernel (bottom). Hatched region represents idle resources. 111

xi

Figure 8.1. Classifier scores during target appearance changes. Changes pro-
duce sharp drops in score and spikes in variance. 120

Figure 8.2. Plot of a classifier’s score over the X and Y dimensions. This
example shows a sharp peak and the next highest peak at least d
pixels away. 121

Figure 8.3. FPGA-CPU high level architecture. 123

Figure 8.4. Evaluate stage architecture. 126

Figure 8.5. Update stage (top) and Train stage (bottom) architectures. 130

Figure 8.6. Location errors on video sequence from several tracking publica-
tions. Error is the difference between predicted tracking location
and the ground truth, in pixels. Average pixel error over the entire
sequence is shown in parentheses. 131

Figure A.1. RIFFA 1.0 timing diagram for doorbells/interrupts. 146

Figure A.2. RIFFA 1.0 timing diagram for DMA transfer. 148

Figure A.3. RIFFA 1.0 timing diagram for FPGA buffer request. 148

Figure A.4. RIFFA 1.0 timing diagram for PC buffer request. 149

Figure A.5. RIFFA 1.0 timing diagram for SIMPBUS read. 150

Figure A.6. RIFFA 1.0 timing diagram for SIMPBUS write. 151

Figure B.1. RIFFA 2.0 timing diagram for receiving. 174

Figure B.2. RIFFA 2.0 timing diagram for sending. 177

Figure B.3. Xilinx Coregen wizard screen. 203

Figure B.4. Xilinx Coregen wizard screen. 204

Figure B.5. Xilinx Coregen wizard screen. 205

Figure B.6. Xilinx Coregen wizard screen. 206

Figure B.7. File tree listing. 207

Figure B.8. Xilinx Coregen wizard screen. 210

xii

Figure B.9. Xilinx Coregen wizard screen. 211

Figure B.10. Xilinx Coregen wizard screen. 212

Figure B.11. Xilinx Coregen wizard screen. 213

Figure B.12. Xilinx Coregen wizard screen. 214

Figure B.13. File tree listing. 215

Figure B.14. Xilinx Coregen wizard screen. 218

Figure B.15. Xilinx Coregen wizard screen. 219

Figure B.16. Xilinx Coregen wizard screen. 220

Figure B.17. Xilinx Coregen wizard screen. 221

Figure B.18. File tree listing. 222

Figure B.19. Xilinx Vivado screen. 225

Figure B.20. Xilinx Vivado IP Catalog wizard screen. 226

Figure B.21. Xilinx Vivado IP Catalog wizard screen. 227

Figure B.22. Xilinx Vivado IP Catalog wizard screen. 228

Figure B.23. Xilinx Vivado IP Catalog wizard dialog. 228

Figure B.24. Xilinx Vivado screen. 229

Figure B.25. Xilinx Vivado dialog. 229

Figure B.26. Xilinx Vivado screen. 230

Figure B.27. Xilinx Vivado dialog. 231

Figure B.28. Xilinx Vivado dialog. 232

Figure B.29. Xilinx Vivado screen. 233

xiii

LIST OF TABLES

Table 1.1. Platform characterization for CPUs, GPUs, and FPGAs. 5

Table 2.1. RIFFA 1.0 core software functions. 23

Table 2.2. RIFFA 1.0 key latencies and bandwidths. 27

Table 2.3. RIFFA 1.0 resource utilization. 28

Table 2.4. RIFFA 2.0 software (C/C++) interface. 29

Table 2.5. RIFFA 2.0 hardware interface. 32

Table 2.6. RIFFA 2.0 latencies. 42

Table 2.7. RIFFA 2.0 resource utilization. 44

Table 4.1. Tracker and related video core resource utilization. 58

Table 5.1. Face detector core resource utilization. 65

Table 6.1. Optical mapping algorithm partition decisions. 77

Table 7.1. FPGA design resource and VC707 utilization. 110

Table 8.1. FPGA design resource and VC707 utilization. 133

Table A.1. RIFFA 1.0 hardware interface. 147

Table A.2. RIFFA 1.0 SIMPBUS hardware interface. 150

Table B.1. RIFFA 2.0 hardware interface. 175

Table B.2. Maximum theoretical bandwidths for PCIe 1.0 and PCIe 2.0. 202

xiv

PREFACE

This dissertation is an original intellectual product of the author, Matthew Jacob-

sen. Research projects not specifically acknowledged as a collaboration are solely the

result of the dissertation author.

The work described in Chapter 6 is a collaboration with Pingfan Meng. Mr. Meng

was lead researcher on this project. The dissertation author’s chief contributions to the

project involve the FPGA design and communication framework.

The work described in Chapter 7 is a collaboration with Pingfan Meng and

Siddarth Sampangi. The dissertation author was lead researcher on this project. Mr.

Meng’s chief contribution is the GPU design. Mr. Sampangi’s chief contributions are

exploration in tracking methods and error quantization.

The work described in Chapter 8 is a collaboration with Siddarth Sampangi. The

dissertation author was lead researcher on this project. Mr. Sampangi’s contributions are

exploration in tracking methods.

xv

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Ryan Kastner for his support as the chair

of my committee and my research advisor. His guidance as an advisor and management

style have taught me that pursuing knowledge is not only rewarding, but enjoyable as

well.

I would also like to acknowledge Professor Yoav Freund for his support as my

initial research advisor and committee member. He was instrumental in starting my

graduate research career. Without his help, I would not have even begun my research.

Though not my advisor in any official capacity, I would like to thank committee

member Professor Truong Nguyen for his help with research projects and opportunities

throughout my academic pursuits. His pragmatic view of research has pushed me to

achieve results that I could never have imagined.

Chapter 2 contains material as it appears in Field-Programmable Custom Com-

puting Machines (FCCM), 2012. It also contains material as it appears in Field Pro-

grammable Logic and Applications (FPL), 2013. The dissertation author was the primary

investigator and author of these papers.

Chapter 6 contains material printed in Field-Programmable Technology (FPT),

2012. The chapter also contains material that was omitted from the publication due to

space constraints. The dissertation author was not the primary investigator on this paper,

but is a the second author.

Chapter 7 contains material printed in Field-Programmable Custom Computing

Machines (FCCM), 2014. The chapter also contains material that was omitted from the

publication due to space constraints. The dissertation author was the primary investigator

and author of this paper.

Chapter 8 contains material printed in Field Programmable Logic and Appli-

cations (FPL), 2014. The chapter also contains material that was omitted from the

xvi

publication due to space constraints. The dissertation author was the primary investigator

and author of this paper.

xvii

VITA

1997 Bachelor of Science, University of California, Berkeley

2007 Research Assistant, Department of Computer Science and Engineering
University of California, San Diego

2008–2011 Teaching Assistant, Department of Computer Science and Engineering
University of California, San Diego

2012 Master of Science, University of California, San Diego

2012–2014 Research Assistant, Department of Computer Science and Engineering
University of California, San Diego

2014 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

“Improving FPGA Accelerated Tracking with Multiple Online Trained Classifiers” Field
Programmable Logic and Applications (FPL), 2014 24th International Conference on,
2014

“Hardware Accelerated Novel Optical De Novo Assembly for Large-Scale Genomes”
Field Programmable Logic and Applications (FPL), 2014 24th International Conference
on, 2014

“FPGA Accelerated Online Boosting for Multi-Target Tracking” Field-Programmable
Custom Computing Machines (FCCM), 2014 22nd IEEE Annual International Sympo-
sium on, 11 May - 13 May 2014

“RIFFA 2.0: A reusable integration framework for FPGA accelerators” Field Pro-
grammable Logic and Applications (FPL), 2013 23rd International Conference on, 2013

“A hardware accelerated approach for imaging flow cytometry” Field Programmable
Logic and Applications (FPL), 2013 23rd International Conference on, 2013

“FPGA-GPU-CPU heterogeneous architecture for real-time cardiac physiological optical
mapping” Field-Programmable Technology (FPT), 2012 International Conference on.
IEEE, 2012

“RIFFA: A reusable integration framework for FPGA accelerators” Field-Programmable
Custom Computing Machines (FCCM), 2012 20th IEEE Annual International Sympo-

xviii

sium on, 29 April - 1 May 2012

“Detecting, tracking and interacting with people in a public space” In Proceedings of the
2009 international Conference on Multimodal interfaces, November 02 - 04, 2009

FIELDS OF STUDY

Major Field: Computer Science (Computer Vision, Hardware Acceleration)

Studies in Hardware Accelerated Systems
Professor Ryan Kastner

xix

ABSTRACT OF THE DISSERTATION

Smart Frame Grabber: A Hardware Accelerated Computer Vision Framework

by

Matthew Daniel Jacobsen

Doctor of Philosophy in Computer Science

University of California, San Diego, 2014

Professor Ryan Kastner, Chair

Real-time computer vision applications have difficult runtime constraints within

which to execute. Implementing on a CPU provides a baseline for performance. But

using custom parallel hardware such as graphics processing units (GPUs) and field

programmable gate arrays (FPGAs) represents a cost effective method to achieve greater

performance.

Greater performance can move an algorithm from non-real-time into the realm

of real-time. This opens numerous possibilities for interaction that did not exist before.

Tasks such as face detection can be used to set focus points in cameras if performed in

xx

real-time. Similarly, body part tracking can be used as input for consumer televisions or

video game systems when run in real-time.

Acceleration using heterogeneous hardware is attractive because algorithms

exhibit different models of computation at different stages of execution. Each platform

can be exploited to execute when most efficient. However, it can be difficult to combine

these platforms into a single application. This is due to the lack of reusable components

and communication abstractions for these devices.

This work describes a framework to lower the barrier for computer vision appli-

cation acceleration called the Smart Frame Grabber Framework. This framework is a

collection of reusable hardware acceleration components that are commonly used for

accelerating computer vision applications using CPUs and FPGAs. It allows applications

to be easily partitioned across multiple heterogenous compute devices. At the heart

of this framework is a communication and synchronization platform called RIFFA: A

Reusable Integration Framework for FPGA Accelerators.

Using the Smart Frame Grabber Framework, researchers can design and build a

hardware accelerated computer vision application in considerably less time and with less

upfront effort than it would take using existing vendor provided tools alone.

xxi

Introduction

Computer vision is the study of acquiring and analyzing images to produce

information for the purpose of decision making. Many applications of computer vision

have made their way into everyday life. Photo cameras perform face detection to assist

automatic focus. Photo organization softwares perform face recognition within their

managed collections. Home video game systems and even some televisions detect body

parts using cameras and track their locations to provide touch-free interfaces. Many more

applications exist in specialized fields such as autonomous vehicles, factory automation,

and defense. These applications enrich lives, improve productivity, and even help protect

us.

Although this field has seen many advances, there are limitations imposed by

the state of the hardware upon which computer vision algorithms would run. These

limitations divide the class of applications into two groups: online and offline. The

combination of hardware capabilities and algorithm complexity typically make this

distinction. Online applications execute quickly enough to produce results with some

small amount of latency, usually a few seconds or less. Offline applications have no

expectation of producing results quickly and can run for minutes, hours, or longer.

Within online applications, there is a subclass referred to as real-time. This

class has the stronger requirement of running several times a second. In the context

of human-computer-interaction applications, this requirement is often at least 10 times

per second. This is motivated by established human biological thresholds [48, 12]. For

1

2

industrial automation this requirement can be several thousand times a second. For

example, many factory production lines perform quality assurance on products as they

move on conveyers at high speeds.

Regardless of the actual rate, real-time applications run quickly enough to provide

decisions immediately. This immediacy makes it feasible to design systems with a

feedback loop for interaction. Because the entire loop can be run in real-time, tasks that

would be difficult, costly, or impossible to run offline can be achieved. For example,

defective products can be dropped from the production line for repair before they are

packaged and leave the factory. Similarly, humans can control input to a system sensitive

enough to play music [47].

It is the class of real-time computer vision applications that is the most interesting

from an interactive perspective. It is also the most challenging to run in real-time. Many

algorithms that would be useful in a host of real-time applications simply cannot run

fast enough on modern computers. Accelerating these algorithms using custom parallel

hardware is an often successful approach for achieving real-time performance. There is

however considerable effort required when using this approach. Many of the facilities

provided by computers and software are not available when using custom hardware. As

a result, most work in this area requires considerable investment in basic infrastructure

to even begin. Moreover, the completed designs are frequently not reusable across

applications. There is no common framework for hardware accelerating computer vision

applications.

This dissertation describes the results of my work to remedy this situation. It

describes the Smart Frame Grabber Framework, a computer vision acceleration frame-

work that allows applications to easily leverage CPUs, field programmable gate arrays

(FPGAs), and GPUs with minimal rework. This merges research from: vision, hardware

acceleration, and high performance computing. It reduces the barriers to entry for accel-

3

erating computer vision applications with custom hardware. Lastly, it allows researchers

and practitioners to focus on application logic instead of common functionality.

The rest of this document is organized as follows. Chapter 1 describes the Smart

Frame Grabber Framework in detail and provides motivation. Chapter 2 describes

our work in developing the RIFFA communications platform, a core component in

the Smart Frame Grabber Framework. Chapters 3, 4 and 5 describe early skin color

detection, tracking, and object detection applications built using the Smart Frame Grabber

Framework. Chapter 6 describes an optical mapping application cardiac physiology that

is partitioned across a CPU, GPU, and FPGA. It also leverages RIFFA and components

in the Smart Frame Grabber Framework. Chapter 7 describes and compares two designs

for hardware accelerated online boosting for tracking. One is a CPU-FPGA design, the

other is a CPU-GPU design. Chapter 8 describes an algorithmic improvement to online

boosting for tracking made only feasible because of the performance increase resulting

from acceleration. Future directions based on our work with the Smart Frame Grabber

Framework are provided in Chapter 9. Detailed descriptions of the Smart Frame Grabber

components (including RIFFA) are provided in the appendices.

Chapter 1

Smart Frame Grabber

The Smart Frame Grabber Framework is a collection of reusable hardware accel-

eration components that are commonly used for accelerating computer vision applications

using CPUs and FPGAs. Using this framework, researchers and practitioners can design

and build a hardware accelerated computer vision application that easily leverages multi-

ple heterogenous devices. In our work, we have used the framework to integrate CPUs,

FPGAs, and GPUs all within the same application in considerably less time and with less

upfront effort than it would take using existing vendor provided tools alone.

Algorithms exhibit different patterns of computation during execution. Some parts

are highly sequential, others are completely independent and amenable to parallelization.

Using multiple heterogenous devices allows each part to run on the device most efficient

at that type of computation.

Consider three of the most common computation platforms used. CPUs excel

at Von Neumann model sequential processing and rich programming abstractions and

libraries make it the easiest platform to program. GPUs can compute two to three

orders of magnitude faster than CPUs if there is sufficient independent data to process.

However, GPUs are more difficult to program due to their single instruction multiple

data (SIMD) execution model. Finally, FPGAs can be designed to emulate any circuit.

They often perform very well when configured as stream processors because data is

4

5

Table 1.1. Platform characterization for CPUs, GPUs, and FPGAs.

CPU FPGA GPU
Smart Frame

Grabber
Processing units: ˜4 ˜100 ˜1000 ˜1000
Cycle frequency: GHz MHz (low) MHz (high) GHz
Programming: High level Low level Medium level Low - high level
Reusable libs: Countless Few Few Countless
Dev. cycle: Short Long Short Short
Parallelism: Opportunistic Fine grain, dedicated Massive Massive, dedicated
Pipelining: Sporadic Fully Mostly Fully
Scheduler: Dynamic Custom Dynamic Custom
Memory: Unlimited Small Large Unlimited
Memory latency: Moderate Low High Low
Data access: Fetch Stream or fetch Fetch Stream or fetch
Data path: Fixed Custom Fixed Custom
Computation: MPMD MPMD SPMD MPMD
Resource growth: Slow Fast Moderate Fast
Reconfiguration: Compile time Run time Compile time Run time

manually scheduled and operations are typically executed by dedicated hardware. FPGA’s

drawback is also difficulty in programming, as compared to CPUs. Table 1.1 lists salient

characteristics of these platforms.

Each platform has its strengths and weaknesses. For application acceleration

purposes, it is ideal to leverage the strengths of all three platforms. This would allow

one application to take advantage of the best that each platform has to offer. This is

represented in the Smart Frame Grabber column of Table 1.1.

The difficulty in achieving this ideal is two fold. First, one must efficiently inte-

grate all the devices together in one application. For this task, efficiency is paramount.

Loose coupling with low bandwidth communication defeats the purpose of leveraging

each device for high performance computing. The second difficulty deals with program-

ming the devices themselves. FPGAs, for example, are difficult to program because of

their low level abstractions. However when designed well, they can be extremely powerful

devices. The Smart Frame Grabber Framework addresses both of these problems.

First consider application integration. Tight CPU-GPU integration has been

6

solved by the GPU software development kits provided by manufacturers, such as

NVIDIA’s CUDA SDK. However CPU-FPGA integration is not as easily accessible.

This was a problem that needed to be solved, and solved in a way that was reusable

and flexible enough to support multiple FPGA and mixed environment integration (e.g.

CPU-GPU-FPGA). The Smart Frame Grabber Framework solves this problem. It does so

while also allowing each device to be programmed independently. Any tool or language

can be used to program these devices. The framework does not impose a single language

or runtime environment as other solutions have. It integrates well with existing CPU

based runtime libraries so that it can take advantage of other frameworks like CUDA. This

helps preserve the performance characteristics of each platform and increases general

applicability.

The Smart Frame Grabber Framework also helps ease the difficulty of program-

ming these devices. In particular, FPGAs. It includes reusable components that are

commonly used to perform operations in computer vision applications. These operations

include: image scaling, sliding window pipelines, convolution templates, and a host

of flow control modules. These components target FPGAs because they are the most

challenging to program. Having a set of reusable computer vision oriented components

greatly reduces the time to design and build image processing logic in FPGAs.

1.1 Motivation

The idea for the Smart Frame Grabber originated after designing and building

several hardware accelerated vision applications. The first application was a skin color

detection application. It uses a boost trained decision tree to classify image pixels as

human skin. Software running on a CPU controls processing on an attached FPGA. The

FPGA captures video frames from a camera, classifies the pixels in a streaming fashion,

and renders the image with annotations to a monitor. The software provides parameters to

7

the FPGA, such as the classifier decision tree, and receives skin pixel counts for specified

regions. This application is used in a game that identifies when uncovered human body

parts (mostly hands and face) have entered specified regions.

The second application was also partitioned between a CPU and FPGA. It tracks

multiple targets in video. Video is captured on the FPGA, processed, and the target

locations are returned to the CPU. The software on the CPU updates the location and

target template using a particle filter search algorithm. The cost function for each location

is the sum of absolute difference between a template and the current window in the frame.

This application was used to track up to 6 independent targets in multiple scales at 60

frames per second.

The next project was a hardware accelerated face detection application, again

partitioned between a CPU and FPGA. By this point, it was clear that the model of com-

putation was very similar across all these applications. For each frame, each application

needed to capture video on the FPGA, transfer parameter data from the CPU to the FPGA,

extract features or process image data on the FPGA, and return results to the CPU. Each

application had a different set of common components that had been rebuilt several times.

Clearly starting each application from scratch was inefficient. Thus the idea of the Smart

Frame Grabber Framework was born.

1.2 Communication Component

The Smart Frame Grabber is built around a communications framework called

RIFFA: A reusable integration framework for FPGA accelerators. RIFFA provides high

bandwidth, low latency communication and synchronization between FPGA devices and

computers equipped with a PCI Express (PCIe) connection. It provides this via simple

software APIs and a FIFO hardware interface. The chief benefit of RIFFA is that it hides

the complexity of transferring data over PCIe behind simple interfaces while providing

8

efficient use of the PCIe link.

One of the most common bottlenecks in high performance computing is moving

data between computing devices. RIFFA is designed to be as efficient as possible while

still providing a high level abstraction for users. Latencies are on the order of 1 µs

and transfer bandwidths between the CPU and FPGA can achieve 3.6 GB/s, which is

90% of the theoretical maximum bandwidth for the PCIe link. RIFFA isn’t a substitute

for on chip or even off chip local RAM as PCIe latencies are much higher than when

accessing RAM. It is an interconnect between a host CPU and multiple FPGA devices so

that multiple devices can be used in a single application. The current version of RIFFA

supports FPGA devices from Xilinx and Altera.

RIFFA is also designed to be easily reusable. No refactoring, adjustments, or

adapting is necessary between projects. Even many hardware changes are automatically

accommodated. RIFFA is only dependent on the FPGA device family. It works like

a reusable black box component that performs scatter gather DMA transfers. Most

importantly, it does this without requiring the user learn and program a complex DMA

interface.

RIFFA is an open source project. It is freely available to researchers and for

non-commercial use. The open source nature of the project allows researchers to make

enhancements to the architecture as well as learn from a high performing DMA design.

As of this writing, RIFFA has been cited by 9 published works and has been used in

projects at 14 different universities in Europe, the United States, East Asia, and India.

Documentation for RIFFA is provided in Appendices A and B. This documenta-

tion is included to provide users with a single source for RIFFA related documentation.

9

1.3 Reusable Components

There is a general lack of libraries for FPGAs when it comes to vision processing.

Available solutions from vendors are often tied to expensive licenses or specific hardware.

Open source components are often buggy and sporadic in terms of coverage. Solutions

that leverage higher level constructs like OpenCL help alleviate this situation, but at the

expense of predefined interfaces and a rigid runtime environment.

The lack of reusable FPGA libraries is not just the result of a lack of attention.

Unlike CPU or GPU programming, there is no standard memory hierarchy. Therefore,

data access must be scheduled manually. For efficiency reasons, data is typically streamed

though a data path instead of stored in a large global memory and fetched out of order.

Formulating sequential operations with random access patterns to work in this streaming

manner can be complex and require considerable effort.

As an example, consider a common operation in vision processing, image resizing.

On the CPU and even on the GPU, one can simply define the function necessary for

bi-linear interpolation by addressing data in an array. To achieve the same on the FPGA,

data must be temporarily stored in local on chip memory buffers. The interpolation

function executes against local memory in a manually scheduled pipeline. At the same

time, new incoming data must be captured while interpolated data is outputted. Doing

these steps, while at the same time managing data flow control, is a daunting task.

Another reason FPGA libraries are not pervasive is because of the inherent

difficulty in composition. Unlike software on a CPU, combining multiple FPGA modules

requires care in order to meet execution timing requirements. This extra dimension forces

modules to define not only what must be computed, but also how. Commonly, modules

are defined to meet timing requirements when used in a specific context. But when

combined with other modules in a new context, may violate these requirements. This is

10

due to the physical limitations of having to route signals across an FPGA device.

Lastly, reusable FPGA libraries are difficult to come by because there is no

established common interface. Components are so diverse that trying to impose a

common interface is untenable. High level synthesis applications, such as Xilinx Vivado

HLS solve this problem by using FIFO buffers between discrete code blocks. This

decouples different parts of a pipeline and produces a common interface between them.

It is however inefficient and resource expensive to take this approach.

The reusable components in the Smart Frame Grabber Framework are provided

as a toolbox of modules that provide several operations related to computer vision

processing on FPGAs. They were developed for a specific project, but added to the

framework because of their applicability to other computer vision applications. They

have been written to support flow control and be used in pipelined processing. As a result,

these components can be used in conjunction with modules from other designs and help

reduce the amount of effort needed when building hardware accelerated computer vision

applications.

The components in the Smart Frame Grabber Framework include:

• frame capture

• image scaling

• integral image transform

• sliding window processing (convolution)

• mean and variance calculation

• normalized cross correlation calculation

• Haar feature calculation

11

• skin color detector and generator

• color space conversion

• data buffering and flow control related modules.

The details of each component is provided in Appendix C.

1.4 Contributions

The primary contributions of this work are enumerated below.

1.4.1 Framework Contributions

These contributions relate to the Smart Frame Grabber framework, it’s compo-

nents and design.

RIFFA Scatter Gather DMA Design

The RIFFA architecture is a high performing scatter gather DMA design over

PCIe. It is capable of achieving 90% theoretical link bandwidth. It supports multiple

FPGA device families and all PCIe Gen 2 configurations. It exposes a simple API in

software with bindings for C/C++, Java, and Python. On the hardware side data is read

and written to a FIFO interface. RIFFA supports multiple FPGAs per host CPU and can

easily integrate into existing hardware and software applications.

This work has been published and is described in Chapter 2.

RIFFA Open Source Software

This includes the HDL source code, Windows and Linux drivers, sample appli-

cations, installation packages, test cases, C/C++, Java, Python, and Matlab language

bindings, and various configurations required for producing a packaged installable frame-

work.

12

This work is available on the RIFFA website and is described in Chapter 2.

RIFFA Documentation

This includes documentation provided in this dissertation as well as the RIFFA

website. This is composed primarily of software API documentation, hardware interface

and timing diagrams, device setup and configuration guides, and best practice guidelines.

This work is available on the RIFFA website and is documented in Appendices A

and B.

Smart Frame Grabber Reusable Component Software

This includes the HDL source, test cases, and documentation (provided in this

dissertation and with the components).

This work documented is in Appendix C.

1.4.2 Application Contributions

These contributions are of accelerated computer vision applications that have

been made possible by using the Smart Frame Grabber framework.

FPGA Accelerated Skin Color Detection

This work accelerates evaluation of a boosted alternating decision tree classifier.

The classifier is trained to classify pixels as human skin colored. The FPGA captures

frames, evaluates the classifier, and counts skin colored pixels in runtime updated regions

of the frame. These values are provided to the CPU each frame at a rate of 60 frames per

second.

This is early work that helped contribute to the Smart Frame Grabber framework.

It is described in Chapter 3.

13

FPGA Coprocessor for Particle Filter Tracking

This work partitions a particle filter like tracking algorithm over a CPU and

FPGA. The FPGA captures video and evaluates a template based classifier for each target

location within the frame. Each location samples windows from a particle distribution

and returns the classification scores to the CPU. Up to 6 independent targets can be

tracked concurrently at 60 frames per second using only 25 - 40% of the CPU. This

represents a 30× speed up over a CPU only implementation.

This is early work that helped contribute to the Smart Frame Grabber framework.

It is described in Chapter 4.

FPGA Accelerated Face Detection

This is an application of accelerated face detection using the Viola and Jones

algorithm [58]. The application runs nearly all on the CPU, but image acquisition,

integral image conversion, and partial classifier evaluation is performed on the FPGA.

The partial evaluation results are used as a filter for the software evaluation cascade to

reduce workload. The FPGA acceleration is also integrated into the highly optimized

OpenCV software library. The acceleration provides a 3.16× speed up over software

only.

This is early work that helped contribute to the Smart Frame Grabber framework.

It is described in Chapter 5.

FPGA-GPU-CPU Heterogenous Architecture for Real-time Cardiac Physiological
Optical Mapping

This work accelerates an optical mapping application for cardiac physiology to

run in real-time. Real-time in this application is 1000 frames per second. The application

performs image normalization of photovoltaic optical flow video. The design leverages

stream processing on a FPGA, high bandwidth GPU processing, and CPU bookkeeping

14

within the same application. It is able the to process video in real-time at 1024 fps with

an end to end latency of 1.86 seconds. This represents a 273× speed up over a multi-core

CPU OpenMP implementation.

This work has been published and is described in Chapter 6.

FPGA and GPU Accelerated Implementations of Online Boosting for Tracking

This work accelerates an adaptive online boosted tracking algorithm [7] using a

GPU and a FPGA in two separate designs. Speed ups over the highly optimized software-

only C++ implementation are 2.7× for the GPU design and 68× for the FPGA design.

The FPGA design is capable of tracking 57 independent targets at 30 FPS. This is the

first FPGA and GPU accelerated implementations of online boosting for tracking. This

work also contributes an analysis of two hardware acceleration platforms and identifies

fundamental differences that contribute to performance disparities.

This work has been published and is described in Chapter 7.

Hardware Enabled Multiple Classifier Algorithm for Online Trained Tracking

This work describes a FPGA-CPU accelerated design for tracking objects through

appearance changes, using multiple online boosted classifiers. The work presents an

algorithm for learning a pool of pose-specific and tracking classifiers at runtime. It

also employs a novel method for comparing multiple classifier scores using a kurtosis

of the score distributions. Compared to a multi-threaded software-only CPU based

implementation, the accelerated implementation boasts a 30× speed up over a highly

optimized C++ implementation. This work performs at state of the art levels and shows

an improvement in accuracy over existing tracking algorithms.

This work is in submission and is described in Chapter 8.

Part I

Smart Frame Grabber Framework

15

Chapter 2

RIFFA: A Reusable Integration Frame-
work for FPGA Accelerators

2.1 Introduction

FPGAs and GPUs have become popular parallel computing platforms for appli-

cation acceleration. Both have been successfully applied to accelerate numerous vision

[42], physics [55], and other compute intensive applications [15]. They are even used

in heterogenous computing environments for high performance computing [57]. Both

hardware devices are capable of running highly parallel operations faster than their CPU

counterparts. However, many differences exist between the hardware platforms. The

focus of this paper is on the difference we feel is most critical to FPGAs continued

success in application acceleration; the ability for FPGAs to easily integrate with the

CPU workstation environment.

Workstation CPUs are still the dominate platform for most compute intensive ap-

plications. They are easy to program, offer considerable memory, many processing cores,

and support countless software libraries. GPUs are inherently part of this environment

as their primary purpose is to accelerate video rendering. The advent of OpenCL and

NVIDIA’s CUDA language and tool chains has made GPUs even easier to access for the

purposes of general application acceleration. The literature shows a surge of applications

16

17

accelerated by GPUs since these developments. In contrast, FPGAs have not seen as

much developments in accessibility.

FPGAs are flexible enough to emulate custom circuit designs and connect to

virtually any device. However, this flexibility also makes it challenging to connect to

virtually any device. The protocol standards that make other devices easily interoperable

must be included in the FPGA’s user design in order for it to interface with external

devices. This can be a large obstacle to overcome for application designers. In many

cases, implementing the interface logic can match or exceed the effort required for

implementing the application logic. As a result, many if not most, FPGA uses involve

standalone designs.

Our goal is to lower the barriers for application acceleration using FPGAs. To

that end, we introduce RIFFA: A reusable integration framework for FPGA accelerators.

RIFFA is an integration framework for connecting IP cores on an FPGA with software

running on a computer. The framework requires a PCIe bus enabled workstation and

a FPGA with a PCIe peripheral. RIFFA provides communication and synchronization

capabilities with a standard interface for both software and hardware. It is comprised of

Verilog IP cores, software libraries, and a device drivers. RIFFA is also open source so

that researchers can focus on implementing application logic instead of basic connectivity

interfaces.

In the sections that follow, we discuss previous work and existing solutions. We

also present a detailed description of the RIFFA 1.0 and RIFFA 2.0 designs, example uses,

and an analysis of the architecture and performance. This paper’s chief contributions are:

• An open source, reusable, integration framework for multi-family FPGAs and

workstations.

• An simplified hardware and software interface, offering high bandwidth, low

18

latency, and multi-FPGA support.

• A detailed design for PCIe based DMA bus mastering.

2.2 Related Work

RIFFA is not the first attempt to integrate FPGAs into traditional software en-

vironments. Many research applications exist that solve this problem. However, these

solutions are typically highly customized and do not port well to other projects without

considerable rework.

Industry offers many solutions for this situation. Impulse Accelerated Technolo-

gies, Pico Computing, Convey, Maxeler, and Xillybus all offer products that connect

software to FPGAs via a proprietary interface. Their solutions come with software,

cores, and some include their own languages, development environments, and tool chains.

Many of these solutions exist to drive the purchase of the vendor’s goods and services.

They are not open source solutions. Nor do they allow users to use their solutions with

off-the-shelf components. Moreover, they can be quite expensive. Especially compared

to the price of commodity hardware.

There are freely available solutions such as OpenCPI [35] and Microsoft Re-

search’s SIRC [25]. OpenCPI is the Open Component Portability Infrastructure project

designed to simplify heterogeneous computing. It supports CPUs, DSPs, FPGAs, and

other real time embedded devices. As a consequence of this broad support, the setup

and configuration of OpenCPI can be challenging. The interface is also overly complex

for what is needed for FPGA connectivity. SIRC, a Simple Interface for Reconfigurable

Computing, is a Microsoft Research project designed to connect C++ applications to

FPGA cores. It is also an open source solution and has been an inspiration for RIFFA.

But while SIRC is free, it is only supported on Windows. It also uses a Gigabit Ethernet

19

connection which limits the bandwidth between the host computer and the FPGA. RIFFA

uses a PCIe link which offers more scalable performance and is better suited to integrate

into workstation, supercomputing, and other high performance computing environments.

Lastly, there are a multitude of FPGA designs that include integrated CPUs. There

are also approaches to simplify and allow applications to make better use of FPGA cores

such as: Hthreads [51], HybridOS [43] and BORPH [10]. However these solutions utilize

custom operating system kernels and often only support CPUs running on the FPGA

fabric.

2.3 RIFFA 1.0

The initial version of RIFFA [38] is based on a set of components provided by

Xilinx. It relies on a PCIe Endpoint, a PCIe Bridge, and a DMA core available in Xilinx’s

Embedded Development Kit. It targets Virtex 5 and Virtex 6 devices and supports a

single FPGA per host PC.

2.3.1 Architecture

RIFFA 1.0 is a C software library and Linux device driver, on the workstation side,

and set of IP cores on the FPGA side. The two are connected via a PCIe bus connection.

A diagram of the RIFFA 1.0 architecture is displayed in Figure 2.1.

In designing RIFFA we sought to expose interfaces general enough for most

applications, to support high communication throughput with low latency, and to be

compatible with off the shelf workstations and FPGAs. For these reasons, we built

our framework to use a PCIe bus. PCIe buses are common in most workstations and

increasingly so in embedded systems. They offer high bandwidth connections with

extremely low latency. Many FPGA boards come equipped with PCIe connections and

chip makers are combining FPGAs with CPUs, connected by PCIe, in the same package

20

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&'()#*!

!!!+,-.!/0&!
!

,+1!,+1!,+1!

!
!
!
!
!
!
!
!
!

!!!2+34!/#($5!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!

!!2+34!
+,-.!

6*57#8*'!

9:4!
;.<0.&'!

,0&'#=!
,#$.!,0&'#=!
,#$.!,0&'#=!
,#$.!

9:4!
;.<0.&'!9:4!
;.<0.&'!

Interface to
custom cores

,.*'$(>!
?#)@.$!

9:4!
,#*'$#>>.$!

!!!+AB!/0&!
!

,C,DD!1&.$!4+-!
+,-.!5$8E.$! ,0&'#=!

&#FG($.!

Figure 2.1. Architecture of RIFFA 1.0 framework. Application acceleration cores
interface with the DMA Request and Central Notifier cores.

or on the same die1. We chose Linux because it is an open source platform with wide

adoption and well suited for high performance application execution. Our initial version

has targeted only Xilinx FPGAs. Future versions may include support for FPGAs from

other vendors.

Software Interface

On the software end, we developed a PCIe Linux device driver and a set of

software libraries. The device driver probes for the FPGA at boot time and assigns

addresses within the workstation’s PCIe address space for the PCIe Endpoint on the

FPGA. During this process kernel address space is reserved for communicating with the

FPGA. Once address space is assigned, the driver can access the PCIe Endpoint. In order

to enable access outside of the kernel, the driver creates a virtual device file in the dev

filesystem. This virtual device file can then be opened, read from, written to, or memory

mapped by any application in user space. In this way, we expose the FPGA to user space.

Accessing this virtual device file executes PCIe read or write transactions over the PCIe

bus. On the FPGA, the PCIe Endpoint services these requests by translating them to

1Intel ECx5C Series and Xilinx Zync platforms.

21

Processor Local Bus (PLB) requests via address translation. This gives applications on

the workstation the ability to access individual IP cores on the FPGA using file operations

or memory assignments.

To provide signaling of events, the driver establishes an interrupt channel between

the workstation and PCIe Endpoint on the FPGA. Received interrupt vectors identify

which IP core has signaled the interrupt. Our driver acknowledges interrupts and exposes

individual interrupts by creating a set of numbered virtual files in the proc filesystem.

When an application attempts to read or poll2 any of these files, the driver returns the

number of interrupts received from the corresponding IP core. If no interrupts have yet

been received, the driver sleeps the calling thread and wakes it up when the appropriate

interrupt is received. This design exposes many logically distinct interrupt channels

using the single PCIe device interrupt in a thread efficient manner. RIFFA currently

supports up to 16 interrupt channels. One drawback to this design is that interrupts must

be acknowledged by the driver before another interrupt vector can be sent by the FPGA.

We mitigate this problem by AND’ing pending interrupt requests on the FPGA so that a

single PCIe interrupt received on the workstation can trigger multiple logical interrupt

channels.

Even with a fast processor, we found that writing 32 bits of data at a time via PCIe

transactions is inefficient for sending more than a few words of data. Additionally, there is

no standard software facility for sending interrupts to PCIe devices from the workstation.

We therefore added DMA transfer support and workstation-to-FPGA interrupts (so called

“doorbells”) using PCIe write transactions. Software initiated writes to a controller IP core

signal the request for a DMA transfer and/or an interrupt to a specific IP core. This makes

it convenient for applications to have input data DMA transferred to the appropriate IP

core then have the core interrupt signaled. These IP core doorbells, manifest as line

2The poll operation is used for asynchronous I/O.

22

void main() {
fpga dev t fpgaDev;
int intFd, offset, value;

fpgaMapMemory(&fpgaDev);
intFd = fpgaInterruptOpen(IP CORE NUM);
...
fpgaWriteWord(fpgaDev.dmaMem, offset, value);
...
fpgaFireInterrupt(intFd);
fpgaInterruptWait(intFd);
...
value = fpgaReadWord(fpgaDev.dmaMem, offset);
...
fpgaInterruptClose(intFd);
fpgaUnmapMemory(&fpgaDev);

}

Figure 2.2. Example usage of RIFFA 1.0 from a user application.

pulses to the receiving IP cores.

Because utilizing this communication and event signaling framework would

require understanding of its implementation, we created a high level API for user appli-

cations. This library is written in C. Many of the core functions and their descriptions

are listed in Table 2.1. A use case example is shown as a call diagram in Figure 2.3.

This diagram illustrates the relationship between software function calls on the worksta-

tion and hardware signaling on the FPGA. A typical user application would initialize

the FPGA connection using f pgaMapMemory. Data can then be read and written or

DMA transferred using the provided functions. For each interrupt it wishes to wait for,

the application must call f pgaInterruptOpen. Calls to f pgaInterruptWait block the

calling thread until an interrupt is received. Because there are 16 separate channels,

multiple threads can wait on different channels without interference. No user level syn-

chronization primitives are needed. When no longer needed, the FPGA connection can

be closed using f pgaUnmapMemory and interrupt notifications can be terminated using

23

Table 2.1. RIFFA 1.0 core software functions.

Function Description
fpgaMapMemory Opens the FPGA virtual device file and maps

the PCIe address ranges into memory.
fpgaUnmapMemory Unmaps all memory mapped address and

closes the FPGA virtual device file.
fpgaInterruptOpen Gets the IP core interrupt file descriptor.
fpgaInterruptClose Releases the IP core interrupt file descriptor.
fpgaInterruptWait Causes the calling thread to wait until the

corresponding IP core fires an interrupt.
fpgaFireInterrupt Fires an interrupt to the specified IP core.
fpgaRequestDma Triggers a DMA transfer between the FPGA

and workstation memory.
fpgaReadWord Reads a 32 bit word from FPGA memory.
fpgaWriteWord Writes a 32 bit word to FPGA memory.

f pgaInterruptClose. All the communication details and kernel structures are hidden

from the user application. This example is listed in Figure 2.2. Additional APIs are being

developed to provide support for common application tasks.

One of the drawbacks of this design is that the kernel driver must be configured

with an address space large enough to support the maximum amount of contiguous

response data expected from any IP core. We currently set this to 8 MB for our example

applications, but plan to address this constraint in future versions.

Hardware Interface

The key hardware components in RIFFA are the PCIe Endpoint, DMA Controller,

Central Notifier, and DMA Request cores as pictured in Figure 2.1.

The PCIe Endpoint drives the PCIe slot on the FPGA board. It also functions as a

PLB to PCIe bridge so that address space can be mapped between the two buses. This IP

core is provided free of charge by Xilinx. It is configured with two 4 MB IPIF-to-PCIe

base address register (BAR) mappings and one 8 KB PCIe-to-IPIF BAR mapping. IP

interface (IPIF) refers to the PLB side of the PCIe bridge. The IPIF-to-PCIe BARs

24

So#ware	
 PCIe	
 driver	
 PCIe	
 Endpoint	
 Custom	
 core	
 	

or	
 BRAM	

Central	
 No=fier	

fpgaMapMemory() Open device file

fpgaUnmapMemory() Close device file

fpgaInterruptOpen() Open virtual proc file

fpgaInterruptClose() Close virtual proc file

fpgaWriteWord() Translate to PLB Write to core
Translate to PCIe

fpgaReadWord() Read from core

fpgaFireInterrupt() Signal Interrupt

Workstation FPGA

fpgaInterruptWait() Sleep thread
Start	
 task	

…	

Task	
 complete	

Wake thread

Wait	
 for	
 Interrupt	

Translate to PLB

Signal Interrupt Signal Interrupt
Signal Interrupt

Translate to PLB
Translate to PCIe

Figure 2.3. Example usage of RIFFA from a user application.

translate IP core accesses using PLB addresses to workstation PCIe memory accesses

using workstation PCIe addressing. The PCIe-to-IPIF BARs work in exactly the opposite

direction. These BARs support writing to the FPGA IP cores and receiving responses.

This core is also configured to send MSI style interrupts to the Linux device driver. Xilinx

provides the source for this core with its developer tools (a version of which is free). The

core we use in our designs is the Xilinx plbv46 pcie ver. 3.0.0.a.

The DMA Controller is also a Xilinx IP core with similar no-fee licensing. It

provides DMA transfer capabilities over the PLB bus. We configure this core to have

a FIFO depth of 48 along with a read and write PLB burst size of 16. This core fires

interrupts upon completion of DMA transfers. The core we use in our designs is the

xps central dma ver. 2.0.1.b. Xilinx also provides the source for this core.

25

The Central Notifier is the heart of the RIFFA framework. It aggregates interrupt

requests from IP cores and sends them to the PCIe Endpoint. It also handles DMA and

interrupt requests using PLB mapped registers. The register space is partitioned into

blocks which support DMA transfers and interrupts for the 16 possible IP core channels.

Writes to registers in each block initiate a DMA transfer by setting the source address,

destination address, transfer length, and interrupt flag. Upon receiving the length value,

the Central Notifier queues a DMA transfer request into a FIFO to be issued to the

DMA Controller. This reduces resources by requiring only one DMA Controller and

leverages PLB arbitration to avoid request collisions. After the DMA transfer is complete,

an interrupt/doorbell may be fired to the appropriate target (workstation or core) if the

interrupt flag was set. Interrupts/doorbells may also be initiated by setting the interrupt

flag and requesting a transfer length of zero.

The Central Notifier is also responsible for initializing the PCIe Endpoint. This

is accomplished by writing to PCIe Endpoint registers over the PLB. The IPIF-to-PCIe

BARs cannot be fully configured until the workstation boots and the Linux kernel assigns

an address range. This value may change between reboots. Thus after each boot the

driver transmits the kernel assigned address to the Central Notifier which then finishes

the IPIF-to-PCIe BAR configuration.

The interface to custom IP cores is comprised of doorbell in, interrupt out, and

DMA request/acknowledgment signals. The Central Notifier provides the interrupt

signals for up to 16 different applications. DMA signaling is handled by the DMA

Request core. This core exports a simplified set of signals for requesting DMA transfers

and receiving completion information using a simple assert and pulse interface. The

combined signals present an interface that simplifies the task of receiving events from

software and responding with data. All interface functionality is also accessible via

reads/writes from the PLB. Thus on-chip processors or any PLB master can make use of

26

RIFFA as well.

If a core requires parameter data, currently, it must allocate BRAM or memory

channel cores on the PLB. Software on the workstation can then write or DMA transfer

parameter data to the BRAM using the software interface. We intend to integrate support

for temporary parameter data into future versions of RIFFA.

Performance

High bandwidth and low latency are among the criteria for this communications

framework. We have profiled RIFFA running on Fedora 12 and Ubuntu 10.04 (Linux

kernels 2.6.31-32). The FPGA designs were implemented using ISE and XPS 11.5 on a

Xilinx ML506 board with a Virtex 5 XC5VSX50T running at 125 MHz. The ML506

board supports a single lane PCIe Gen 1 connection and was connected to a Dell Optiplex

745. The Dell has dual core Intel 2.4 GHz processors and 4 GB of RAM.

Latency times and bandwidths of key operations are listed in Table 2.2. Latencies

were measured using cycles counted on the FPGA. The interrupt latency is the time from

the FPGA signaling of an interrupt until the Linux device driver receives it. The read

latency measures the round trip time of a request from the workstation to BRAM and

the returned response (over the PCIe bus). Compared to the alternative freely available

framework [25], the round trip latency is 36 times faster. The time to resume a user thread

after it has been woken by an interrupt is the only latency that stands out. At 10.4 µs it

represents the longest delay and is wholly dependent on the Linux kernel implementation.

The bandwidth measurements are for a single direction transfer between BRAM

on the PLB and CPU main memory. We tested using DMA transfer sizes of 8 KB - 256

KB, by a factor of 2. The bandwidth in the direction of the FPGA to the workstation is

sustained at 72% of the theoretical maximum for a single lane PCIe Gen 1 channel. The

bandwidth is consistent across this range largely due to DMA pipeline depth. However

27

Table 2.2. RIFFA 1.0 key latencies and bandwidths.

Description Value
FPGA to PC interrupt time 3 µs ± 0.06
PC read from FPGA round trip time 1.8 µs ± 0.09
PC thread wake after interrupt time 10.4 µs ± 1.16
FPGA to PC bandwidth 181 MB/s ± 3.14
PC to FPGA bandwidth 25 MB/s ± 1.22
Theoretical max 1x PCIe Gen 1 bandwidth 250 MB/s

the bandwidth in the opposite direction is comparatively quite poor. We are currently

investigating this bottleneck.

Despite the relatively poor performance of the workstation to FPGA bandwidth,

we feel the PCIe based connection is superior to the Ethernet connection used in [25].

Newer FPGAs support additional PCIe lanes which will increase bandwidth further. Even

with a single lane, the maximum sustained transfer rate is 1.5 times higher than what is

possible over Gigabit Ethernet.

We did not test performance between off chip FPGA DRAM and CPU main

memory as there are many configuration variables that affect the performance of off chip

DRAM that do not affect the PCIe link.

Resource usage for RIFFA is listed in Table 2.3. By far the largest utilization

is from the PCIe Endpoint core. This high utilization is specific to the Virtex 5 family

of FPGAs. With newer Virtex 6 and Spartan 6 FPGAs, the slice register and slice LUT

utilization is considerably lower due to additional PCIe interface hard macros. Virtex 6

FPGAs use only 2505 slice registers and 3763 slice LUTs for the same core. Similarly,

the Spartan 6 family uses only 2208 slice registers and 2868 slice LUTs. This is consistent

with the trend of increasing PCIe adoption for FPGA connectivity.

28

Table 2.3. RIFFA 1.0 resource utilization.

Core Name Slice Slice BRAMs DSP48Es
Regs LUTs

Central Notifier 1051 1080 2 0
PCIe Endpoint 7899 8741 10 0
DMA Controller 577 782 0 0
DMA Request 245 215 0 0

2.4 RIFFA 2.0

The second generation of RIFFA, RIFFA 2.0 [39] is based only on the Xilinx

provided PCIe Endpoint. This core is used to drive the gigabit transceivers for the PCIe

link. It targets Spartan 6, Virtex 6, and 7 Series Xilinx devices and supports multiple

FPGA per host PC. There is no dependence on the Xilinx Embedded Development Kit.

Users can create designs using Xilinx ISE or Vivado Design Suites. It also represents a

significant improvement in bandwidth.

2.4.1 Design

RIFFA 2.0 is based on the concept of communication channels between software

threads on the CPU and user cores on the FPGA. A channel is similar to a network socket

in that it must first be opened, can be read and written, and then closed. However, unlike

a network socket, reads and writes can happen simultaneously (if using two threads).

Additionally, all writes must declare a length so the receiving side knows how much

to expect. Each channel is independent and thread safe. RIFFA 2.0 supports up to 12

channels. Up to 12 different user cores can be accessed directly by software threads on

the CPU. Designs with more than 12 cores can share channels.

Before a channel can be accessed, the FPGA must be opened. RIFFA 2.0 supports

multiple FPGAs per system (up to 5). Each is assigned an identifier on system start up.

Once opened, all channels on that FPGA can be accessed without any further initialization.

29

Data is read and written directly from and to the channel interface. On the FPGA side,

this manifests as a first word fall through (FWFT) style FIFO interface for each direction.

On the software side, function calls support sending and receiving data with byte arrays.

Memory/IO requests and software interrupts are used to communicate between

the workstation and FPGA. The FPGA exports a configuration space accessible from

an operating system device driver. The device driver accesses this address space when

prompted by user application function calls or when it receives an interrupt from the

FPGA. This model supports low latency communication in both directions. However,

only status and control data is sent using this model. Data transfer is accomplished with

Table 2.4. RIFFA 2.0 software (C/C++) interface.

Function Name & Description
int fpga list(fpga info list * list)
Populates the fpga info list pointer with info on all
FPGAs installed in the system.
fpga t * fpga open(int id)
Initializes the FPGA specified by id. Returns a pointer to a
fpga t struct or NULL.
void fpga close(fpga t * fpga)
Cleans up memory and resources for the specified FPGA.
int fpga send(fpga t * fpga, int chnl,

void * data, int len, int offset, int last
long timeout)

Sends len 4-byte words from data to FPGA channel chnl.
The FPGA channel will be sent len, offset, and last.
timeout defines how long to wait for the transfer. Returns
the number of 4-byte words sent.
int fpga recv(fpga t * fpga, int chnl,

void * data, int len, long timeout)
Receives up to len 4-byte words from the FPGA channel
chnl to the data buffer. The FPGA will specify an offset
for where in data to start storing received values. timeout
defines how long to wait for the transfer. Returns the number
of 4-byte words received.
void fpga reset(fpga t * fpga)
Resets the FPGA and all transfers across all channels.

30

large payload PCIe transactions issued by the FPGA. The FPGA acts as a bus master

DMA engine for both upstream and downstream transfers. In this way multiple FPGAs

can operate simultaneously in the same workstation with minimal system load.

The details of the PCIe protocol, device driver, DMA operation, and all hardware

addressing are hidden from both the software and hardware. This means some level of

flexibility is lost. For example, users cannot setup custom PCIe base address register

(BAR) address spaces and map them directly to a user core. Nor can they implement

quality of service policies for channels or PCIe transaction types. However, we feel any

loss is more than offset by the ease of programming and design.

To facilitate ease of use, RIFFA 2.0 has software bindings for C/C++, Java 1.4+,

and Python 2.7+. Both Windows and Linux platforms are supported. RIFFA 2.0’s cores

support Xilinx Spartan 6, Virtex 6, and 7 Series FPGAs with data bus widths of 32, 64,

and 128. All PCIe Gen 1 and Gen 2 configurations up to x8 lanes are supported.

In the next sections we describe the software interface, followed by the hardware

interface.

Software Interface

The interface for the original RIFFA release attempted to impose a call-and-return

style execution paradigm for user cores. RIFFA 2.0 does not impose such a model. As

a result, the interface on the software side supports just a few functions. The complete

RIFFA 2.0 software interface is listed in Table 2.4 (for the C/C++ languages). We omit

the Java and Python interfaces for brevity.

There are four primary functions in the API: open, close, send, and receive. The

API supports accessing individual FPGAs and individual channels on each FPGA. There

is also a function to list the RIFFA 2.0 capable FPGAs installed on the system. A reset

function is provided that programmatically triggers the FPGA channel reset signal. This

31

function can be useful when developing and debugging the software application. If

installed with debug flags turned on, the RIFFA 2.0 library and device driver provide

useful messages about transfer events. The messages will print to the operating system’s

kernel log.

There is only one function to send data and one to receive data. This is the

basic functionality and is intentionally kept as simple as possible. These function calls

are synchronous and block until the transfer has completed. Both take byte arrays as

parameters. The byte arrays contain the data to send or serve as the receptacle for

receiving data. In these functions, the offset parameter is used to specify where in the

byte array to start storing data. The last parameter is used to group multiple transfers.

Multiple transfers may be useful when the FPGA does not have sufficient memory to

store all of a computation result. Multiple partial transfers can be issued (with increasing

offsets for example) with the last parameter set to 0. The software thread won’t unblock

until last is set to 1, which would be set on the final transfer. FPGA cores must be

written to honor these uses of the offset and last parameters to achieve the same

behavior in the downstream direction. Lastly, the timeout parameter specifies how

many milliseconds to wait between communications during a transfer. Setting this value

will depend on the timing with which the user core presents data to the channel. Setting a

zero timeout value causes the software thread to wait for completion indefinitely.

Figure 2.4 shows an example C application. In this example, the software reads

data into a buffer, sends the data as payload to the FPGA, and then waits for a response.

The response is stored back into the same buffer and then processed. This example may

be trivial, but it represents the canonical use case.

32

Ta
bl

e
2.

5.
R

IF
FA

2.
0

ha
rd

w
ar

e
in

te
rf

ac
e.

Si
gn

al
N

am
e

I/
O

D
es

cr
ip

tio
n

C
H
N
L
R
X
C
L
K

O
C

lo
ck

to
re

ad
da

ta
fr

om
th

e
in

co
m

in
g

FI
FO

.
C
H
N
L
R
X

I
H

ig
h

si
gn

al
s

in
co

m
in

g
da

ta
tr

an
sa

ct
io

n.
St

ay
s

hi
gh

un
til

al
ld

at
a

is
in

th
e

FI
FO

.
C
H
N
L
R
X
A
C
K

O
Pu

ls
e

hi
gh

to
ac

kn
ow

le
dg

e
th

e
in

co
m

in
g

da
ta

tr
an

sa
ct

io
n.

C
H
N
L
R
X
L
A
S
T

I
H

ig
h

si
gn

al
s

th
is

is
th

e
la

st
re

ce
iv

e
tr

an
sa

ct
io

n
in

a
se

qu
en

ce
.

C
H
N
L
R
X
L
E
N
[
3
1
:
0
]

I
L

en
gt

h
of

re
ce

iv
e

tr
an

sa
ct

io
n

in
4-

by
te

w
or

ds
.

C
H
N
L
R
X
O
F
F
[
3
0
:
0
]

I
O

ff
se

ti
n

4-
by

te
w

or
ds

of
w

he
re

to
st

ar
ts

to
ri

ng
re

ce
iv

ed
da

ta
.

C
H
N
L
R
X
D
A
T
A
[
D
W
I
D
T
H
-
1
:
0
]

I
FI

FO
da

ta
po

rt
.

C
H
N
L
R
X
D
A
T
A
V
A
L
I
D

I
H

ig
h

if
th

e
da

ta
on

C
H

N
L

R
X

D
A

TA
is

va
lid

.
C
H
N
L
R
X
D
A
T
A
R
E
N

O
Pu

ls
e

hi
gh

to
co

ns
um

e
va

lu
e

fr
om

on
C

H
N

L
R

X
D

A
TA

.
C
H
N
L
T
X
C
L
K

O
C

lo
ck

to
w

ri
te

da
ta

to
th

e
ou

tg
oi

ng
FI

FO
.

C
H
N
L
T
X

O
H

ig
h

si
gn

al
s

ou
tg

oi
ng

da
ta

tr
an

sa
ct

io
n.

K
ee

p
hi

gh
un

til
al

ld
at

a
is

co
ns

um
ed

.
C
H
N
L
T
X
A
C
K

I
Pu

ls
ed

hi
gh

to
ac

kn
ow

le
dg

e
th

e
ou

tg
oi

ng
da

ta
tr

an
sa

ct
io

n.
C
H
N
L
T
X
L
A
S
T

O
H

ig
h

si
gn

al
s

th
is

is
th

e
la

st
se

nd
tr

an
sa

ct
io

n
in

a
se

qu
en

ce
.

C
H
N
L
T
X
L
E
N
[
3
1
:
0
]

O
L

en
gt

h
of

se
nd

tr
an

sa
ct

io
n

in
4-

by
te

w
or

ds
.

C
H
N
L
T
X
O
F
F
[
3
0
:
0
]

O
O

ff
se

ti
n

4-
by

te
w

or
ds

of
w

he
re

to
st

ar
ts

to
ri

ng
se

nt
da

ta
in

th
e

C
PU

th
re

ad
’s

re
ce

iv
e

bu
ff

er
.

C
H
N
L
T
X
D
A
T
A
[
D
W
I
D
T
H
-
1
:
0
]

O
FI

FO
da

ta
po

rt
.

C
H
N
L
T
X
D
A
T
A
V
A
L
I
D

O
H

ig
h

if
th

e
da

ta
on

C
H

N
L

T
X

D
A

TA
is

va
lid

.
C
H
N
L
T
X
D
A
T
A
R
E
N

I
H

ig
h

w
he

n
th

e
va

lu
e

on
C

H
N

L
T

X
D

A
TA

is
co

ns
um

ed
.

33

char buf[BUF SIZE];
int chnl = 0;
long t = 0; // Timeout
fpga t * fpga = fpga open(0);
int r = read data("filename", buf, BUF SIZE);
printf("Read %d bytes from file", r);
int s = fpga send(fpga, chnl, buf, BUF SIZE/4, 0, 1, t);
printf("Sent %d words to FPGA", s);
r = fpga recv(fpga, chnl, buf, BUF SIZE/4, t);
printf("Received %d words from FPGA", r);
// Process results ...
fpga close(fpga);

Figure 2.4. RIFFA 2.0 software example in C.

Hardware Interface

The interface on the hardware side is composed of two sets of signals; one for

receiving data and one for sending data. These signals are listed in Table 2.5. The ports

highlighted in red are used for handshaking. Those not highlighted are the FIFO ports

which provide first word fall through semantics. The value of DWIDTH is: 32, 64, or 128,

depending on the PCIe link configuration.

For upstream transactions, CHNL TX must be set high. It must be held high

until the channel pulses CHNL TX ACK high and all the transaction data is consumed.

CHNL TX LEN, CHNL TX OFF, and CHNL TX LAST must maintain valid values until the

CHNL TX ACK is pulsed. The CHNL TX DATA OFF value determines where data will start

being written in the thread’s receiving byte array. This is measured in 4-byte words.

As described in the Section 2.4.1, CHNL TX LAST must be 1 for the receiver thread to

unblock at the end of the transfer. Data values asserted on CHNL TX DATA are consumed

when both CHNL TX DATA VALID and CHNL TX DATA REN are high.

The handshaking ports are symmetric for both sets of signals. Thus, with down-

stream transactions, the user core must acknowledge the transaction and consume data

from the interface. Timing diagrams for these signals are available on the RIFFA 2.0

34

website: http://cseweb.ucsd.edu/˜mdjacobs.

Figure 2.5 shows a Verilog example matching the C example code from Figure 2.4.

In this example, the user core receives data from the software thread, counts the number

4-byte words received, and then returns the count.

Changes from RIFFA 1.0

RIFFA 2.0 is a complete rewrite of the original release. It supports Xilinx Spartan

6, Virtex 6, and 7 Series FPGAs with all PCIe Gen 1 and Gen 2 link configurations up

to x8 lanes. The original release is supported on only the Xilinx Virtex 5. RIFFA 1.0

parameter INC = DWIDTH/32;
assign CHNL RX ACK = (state == 1);
assign CHNL RX DATA REN=(state==2 || state==3);
assign CHNL TX = (state == 4 || state == 5);
assign CHNL TX LAST = 1;
assign CHNL TX LEN = 1;
assign CHNL TX OFF = 0;
assign CHNL TX DATA = count;
assign CHNL TX DATA VALID = (state == 5);
wire data read =

(CHNL RX DATA VALID & CHNL RX DATA REN);

always @ (posedge CLK)
case(state)
0: state <= (CHNL RX ? 1:0);
1: state <= 2;
2: state <= (!CHNL RX ? 3:2);
3: state <= (!CHNL RX DATA VALID ? 4:3);
4: state <= (CHNL TX ACK ? 5:4);
5: state <= (CHNL TX DATA REN ? 0:5);
endcase

always @ (posedge CLK)
if (state == 0)

count <= 0;
else

count <= (data read ? count+INC:count);

Figure 2.5. RIFFA 2.0 hardware example in Verilog.

35

also requires the use of a Xilinx PCIe PLB Bridge core, which has been deprecated. This

dependency limits RIFFA 1.0 to x1 lane PCIe Gen 1 configurations. Additionally, due to

bus protocol interactions with the PCIe PLB Bridge core, the maximum throughput for

upstream and downstream transfers is 181 MB/s and 25 MB/s respectively.

RIFFA 1.0 requires users to setup and use Processor Local Bus (PLB) addressing

to transfer data. The hardware interface exposes a set of DMA request signals that must

be managed by the user core. RIFFA 2.0 exposes no bus addressing or DMA transfer

request in the interface. Data is read and written directly from and to FWFT FIFO

interfaces on the hardware end. On the software end, data is read and written from and to

byte arrays. The software interface has also been significantly simplified.

RIFFA 1.0 supports only a single FPGA per system with C/C++ bindings for

Linux. Version 2.0 supports up to 5 FPGAs that can all be addressed simultaneously

from different threads. Moreover, version 2.0 has bindings for C/C++, Java 1.4+, and

Python 2.7+ on Linux and Windows. Lastly, RIFFA 2.0 is capable of saturating the PCIe

link for upstream and downstream transfers. RIFFA 1.0 is not able to achieve more than

73% utilization in the upstream direction or more than 10% in the downstream direction.

2.4.2 Architecture

On the FPGA, the RIFFA 2.0 architecture is a bus master DMA design connected

to a Xilinx Integrated Block for PCI Express (Xilinx PCIe Endpoint) core (see Figure 2.6).

The Xilinx PCIe Endpoint core drives the gigabit transceivers and exposes the PCIe

protocol on an AXI bus interface. The AXI bus must be driven using PCIe formatted data

packets. The RIFFA 2.0 Endpoint core drives this interface and exposes channels with

the RIFFA 2.0 hardware interface for user cores (described in Section 2.4.1). The RIFFA

2.0 Endpoint is driven by the interface clock; a clock derived from the PCIe reference

clock. This clock runs fast enough to saturate the PCIe link. User cores do not need to

36

XILINX	
 INTEGRATED	
 BLOCK	
 FOR	
 PCI	
 EXPRESS	

RIFFA	
 LIBRARY	

RIFFA	
 DRIVER	

PC	
 MEMORY	

USER	
 IP	
 CORE	

…

RX
ENGINE

RX
FIFO

TX
FIFO

CHANNEL

CHANNEL MUX

USER
APPLICATION

UP TO 12
CHANNELS

PCI EXPRESS
LINK

FPGA

PC

TX
ENGINE

RIFFA
ENDPOINT

CHANNEL CHANNEL CHANNEL

Figure 2.6. RIFFA 2.0 architecture.

use this clock for their CHNL TX CLK or CHNL RX CLK. Any clock can be used by the

user core.

User cores interface with RIFFA 2.0 via a Channel core. The Channel core is

written to handle asynchronous clock domains. It has FIFOs for receiving and sending

data respectively. To avoid stalling the PCIe link, downstream requests are only made

when sufficient space is available in the receive FIFO (RX). Similarly, PCIe upstream

transmission is not initiated until sufficient data exists in the sending FIFO (TX).

The RX Engine core is responsible for extracting and demultiplexing received

PCIe payload data. The TX Engine core is responsible for formatting payload data into

PCIe packets and multiplexing access to the PCIe link. Channel requests are processed

in the order they are made. Ties are broken by channel number. This policy prevents any

one channel from monopolizing the PCIe link.

The PCIe link configuration determines the width of the data bus. This width can

37

be 32, 64, or 128 bits wide. RIFFA 2.0 supports all three configurations by instantiating

different cores for each width. In simpler designs this might just be a parameter to

the HDL module. But different bus widths require different logic when extracting

and formatting PCIe data. For example, on the 32 bit interface, header packets can

be generated one 4-byte word per cycle. Only one 4-byte word can be sent per cycle.

However on the 128 bit interface, a single cycle might require formatting three header

packets and the first 32 bits of payload. This represents a difference in logic, not just bus

width.

On the workstation, the RIFFA 2.0 architecture is a combination of a kernel

device driver and a set of language bindings. The device driver is installed into the

operating system and is loaded at system startup. It handles registering all detected

Figure 2.7. Downstream transfer sequence diagram.

38

FPGAs configured with RIFFA 2.0 cores. Once registered, a set of memory buffers

are pre-allocated from kernel memory. These buffers will temporarily store data when

transferring between the workstation and FPGA. They are allocated so as to be accessible

via PCIe. This is sometimes referred to as bounce buffers or a DMA ring. Each buffer is

4 MB in size and the number of buffers allocated depends on how many channels are

configured on the FPGAs.

A user library provides language bindings for user applications to be able to call

into the driver. The user library exposes the software interface described in Section 2.4.1.

When an application makes a call into the user library, the thread enters the kernel driver

and moves data between the pre-allocated buffers. This is accomplished through the

ioctl function on Linux and with DeviceIoControl on Windows.

At runtime, a custom protocol is used between the kernel driver and the Endpoint

core. It communicates transfer events such as: when a new transfer is initiated, when

a new buffer is needed, or when a buffer is no longer needed. To reduce latency, the

protocol uses as few memory/IO PCIe transactions as possible. For example, only three

memory/IO writes are needed to to start a downstream transaction.

The Endpoint core sends status information to the workstation using an interrupt.

Interrupts spur the driver to read an interrupt vector from the mapped BAR configuration

space in the Endpoint. The vector contains events for all channels on the FPGA. Event

specifics such as lengths or offsets are read from the Endpoint configuration space in

separate memory/IO requests.

The workstation sends status information by writing directly to the Endpoint’s

configuration space. This can trigger the Endpoint to start transferring data. Data transfer

is accomplished using large payload PCIe transactions to maximize throughput. Once a

transfer starts, the only communication between the driver and Endpoint is to request new

buffers or release used buffers. Both the driver and the Endpoint keep track of how much

39

Figure 2.8. Upstream transfer sequence diagram.

data is to be transferred so that both are immediately aware of when the transfer ends.

Data Transfers

A sequence diagram for a downstream transfer is shown in Figure 2.7. The user

application calls the user library function fpga send. The thread enters the kernel driver

and acquires a pre-allocated buffer to use as a temporary store for the user data. On the

diagram, the user library and device driver are represented by the single node labeled

40

”RIFFA Library”. Once a buffer is acquired, data is copied into the buffer so it can be

accessed by the Endpoint core. A write to the Endpoint configuration space triggers a

new downstream transfer. The write contains the len, offset, and last parameters as

well as the address of the kernel buffer containing the data.

Data is read from the buffer into the channel over numerous PCIe transaction layer

packets (TLPs). If the data size exceeds a single buffer, the Endpoint core will signal to

the driver that it is ready for the next buffer. The driver will acquire another buffer, copy

data into the new buffer, and respond with the new buffer address. To improve transfer

performance, the Endpoint core will request the next buffer as soon as it recognizes it

will need it. This allows the transfer of data in the current buffer to overlap with the

filling of the next buffer. This process continues until all the data has been transferred.

The release of the last buffer by the Endpoint core signals the end of the transfer to the

driver. The driver then frees the last buffer and unblocks the user thread.

A similar sequence takes place for upstream transfers. See Figure 2.8. The key

differences are that the Endpoint core writes data to the kernel buffers and the driver

copies the data into the user provided byte array. Additionally, the user core, not the

software thread, is the initiator of upstream transfers. This means that data transfer can

begin before the user application calls fpga recv. When this happens, the driver will

use buffers to store received data until it runs out of buffers or until the user application

calls fpga recv. Once the thread enters the driver, data from the kernel buffers can be

copied into the user provided byte array.

Lastly, although the sequence diagrams in Figures 2.7 and 2.8 use the term

”allocate buffer”, no runtime allocation takes place. Kernel buffers are pre-allocated at

system start up to avoid delays from dynamic memory allocation. The term is meant to

describe the allocation of buffers from the pool.

41

2.4.3 Performance

We have tested RIFFA 2.0 on three different FPGA development boards with the

following configurations.

• AVNet Spartan 6 LX150T

PCIe x1 Gen 1 link, 32 bit wide data path, 62.5 MHz

• Xilinx ML605 with a Virtex 6 LX240T

PCIe x8 Gen 1 link, 64 bit wide data path, 250 MHz

• Xilinx VC707 with a Virtex 7 VX485T

PCIe x8 Gen 2 link, 128 bit wide data path, 250 MHz

RIFFA 2.0 has been installed on Linux kernels 2.6 and 3.1, as well as on Microsoft

Windows 7. Our experiments were run on a Linux workstation with quad 3.6 GHz Intel

i7 cores using a 12 channel RIFFA 2.0 FPGA design. The user core on each channel was

functionally similar to the module in Figure 2.5. The software was operationally similar

to the example listed in Figure 2.4.

Latency times of key operations are listed in Table 2.6. Latencies were measured

using cycles counted on the FPGA and are the same across all tested boards and configu-

rations. The interrupt latency is the time from the FPGA signaling of an interrupt until

the device driver receives it. The read latency measures the round trip time of a request

from the driver to the Endpoint core, and back. The time to resume a user thread after

it has been woken by an interrupt is the only value that stands out. At 10.4 µs it is the

longest delay and is wholly dependent on the operating system.

Bandwidths for downstream data transfers are shown in Figure 2.9. The figure

shows the bandwidth achieved as the transfer size varies for the three PCIe link configura-

tions. The solid horizontal bars mark the difference between the theoretical maximum for

the PCIe link and the maximum achievable bandwidth. PCIe Gen 1 and 2 employ 8 bit/10

42

bit encoding. This limits the maximum bandwidth achievable to 80% of the theoretical

maximum. Our experiments show that we are able to achieve this 80% maximum with

sufficiently large transfers on the 32 bit and 64 bit interfaces. The 128 bit interface peaks

at 76% utilization.

In Figure 2.9 you may notice the dip in bandwidths at the 4, 32, and 64 KB

transfer sizes for the 32 bit, 64 bit, and 128 bit interfaces respectively. This corresponds

to the receive buffer sizes in the Xilinx PCIe Endpoint cores. Looking at the 64 bit

interface, we see that bandwidth actually decreases when going from 16 KB transfers

to 32 KB transfers. The Xilinx PCIe Endpoint core for the Virtex 6 64 bit interface has

a 16 KB receive buffer. Transfers smaller than or equal to 16 KB can actually perform

better than transfers with payloads just over 16 KB because there is always buffer space

available at the smaller transfer sizes. This artifact becomes negligible when moving

larger amounts of data.

The bandwidth figure also shows a slight jump at the 4 MB transfer size for both

the 64 bit and 128 bit interfaces (the 32 bit interface is already saturated). This is due to

the size of the RIFFA 2.0 kernel buffer being 4 MB. Transfers larger than 4 MB require

more than one kernel buffer to hold the data. The time to copy the first 4 MB is seen in

the bandwidth curves. However, requests for subsequent 4 MB chunks overlap with the

transfer of data from the previous chunk. Thus the copy latency is hidden after the first

kernel buffer and bandwidth improves.

Table 2.6. RIFFA 2.0 latencies.

Description Value
FPGA to host interrupt time 3 µs ± 0.06
Host read from FPGA round trip time 1.8 µs ± 0.09
Host thread wake after interrupt time 10.4 µs ± 1.16

43

25

50

125

250

500

1,000

1,500
2,000

3,000
4,000

Transfer size

M
B

pe
r s

ec
on

d

RIFFA 2.0 Downstream Transfer Bandwidth

0

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

51
2M

B

1G
B

2G
B

x8 Gen 2 − 128 bit intf
x8 Gen 1 − 64 bit intf
x1 Gen 1 − 32 bit intf

Figure 2.9. Downstream transfer bandwidths as a function of transfer size. Upstream
bandwidths are nearly identical.

While not shown on Figure 2.9, RIFFA 1.0 was only able to achieve 24 MB/s

(10% of max) downstream bandwidth and 181 MB/s (73% of max) upstream bandwidth.

This was one of the strongest motivators for RIFFA 2.0.

Resource utilizations for a RIFFA 2.0 Endpoint with a single channel are listed in

Table 2.7. The cost for each additional channel is also listed. Resource values are from

the corresponding FPGA devices and configurations listed above. Wider data bus widths

require additional resources for storage and PCIe processing. Single channel designs

use less than 1% of the FPGA on all our devices. Even on our most resource limited

FPGA, a 12 channel design uses only 18% of the device. The utilizations listed do not

include resources used by the Xilinx PCIe Endpoint core. The Xilinx core utilization can

44

vary depending on the configuration values specified during generation. However, the

configuration with the highest resource utilization only uses 2237 Slice Registers, 1283

Slice LUTs and 4 BRAMs.

Factors Affecting Performance

Many factors go into attaining maximum throughput. There is enough confusion

on the topic that Xilinx has published a whitepaper [28]. The key components affecting

RIFFA 2.0 performance are: transfer size, maximum payload limits, completion credits

and receive buffers, user core clock frequency, and data copying.

As Figure 2.9 clearly illustrates, sending data in smaller transfer sizes reduces

effective throughput. There is overhead in setting up the transfer. Round trip commu-

nication between the Endpoint core and the device driver can take thousands of cycles.

During which time, the FPGA can be idle. It is therefore best to send data in as large a

transfer size as resources will allow to achieve maximum bandwidth.

When generating the Xilinx PCIe Endpoint core, it is beneficial to configure the

Xilinx Coregen Wizard to with the maximum values for payload size, read request size,

completion credits, and receive buffers.

The payload size defines the maximum payload for single upstream PCIe trans-

action. The read request size defines the same for the downstream direction. At system

Table 2.7. RIFFA 2.0 resource utilization.

RIFFA 2.0 Endpoint Slice Slice Block DSP
with 1 channel Reg LUT RAM 48e
32 bit Endpoint 1657 1814 4 0

addl. 32 bit channel 1092 1458 4 0
64 bit Endpoint 2465 2388 4 0

addl. 64 bit channel 1557 1795 4 0
128 bit Endpoint 3410 3474 8 0

addl. 128 bit channel 1870 2458 8 0

45

startup, the PCIe link will negotiate a rate that does not exceed these values. The larger

the payloads, the higher the bandwidth.

Completion credits and receive buffers are used in the PCIe Endpoint to hold

PCIe transaction headers and data. During downstream transfers, completion credits

limit the number of in-flight requests that can be made. Receive buffer size limits the

amount of data that can be temporarily held. RIFFA 2.0 respects these limits when issuing

downstream requests to avoid data corruption and loss. Higher limits provide greater

margins for moving data from the workstation to the user core at maximum bandwidth.

Speed of filling and draining the channel FIFOs is also a factor. The user core

can be clocked by any source. It need not be the same clock that drives the Endpoint.

However, to keep up with the data transfer rate of the Endpoint, it is best for the user

core to use the same clock frequency as is used by the Endpoint. Using the same clock is

ideal.

Lastly, end-to-end throughput performance can be diminished by excessive data

copying. Making a copy of a large buffer of data in software before sending it to the

FPGA takes time and can severely impact throughput. The RIFFA 2.0 software APIs

accept byte arrays as data transfer receptacles. Depending on the language bindings,

this may manifest as a pointer, reference, or object. However, the bindings have been

designed carefully to use data types that can be easily cast as memory address pointers

and be written or read contiguously.

2.5 Conclusion

We have presented RIFFA, a reusable integration framework for FPGA accel-

erators. RIFFA provides communication and synchronization for FPGA accelerated

applications using simple interfaces for hardware and software. It is an open source

framework that easily integrates software running on commodity CPUs with FPGA cores.

46

RIFFA 2.0 extends the original RIFFA project by supporting Xilinx FPGA families:

Spartan 6, Virtex 6, and 7 Series. It supports multiple FPGAs in a system, all PCIe link

configurations up to x8 for PCIe Gen 1 and 2, and considerably higher bandwidths. It

also supports Linux and Windows operating systems with software bindings for C/C++,

Java, and Python. We have also provided a detailed analysis of RIFFA 2.0 as a FPGA

bus master design and an analysis of its performance. Tests show that data transfers be-

tween hardware and software can saturate the PCIe link to achieve the highest bandwidth

possible. We hope that users will use RIFFA to further the growth of FPGA accelerated

applications. RIFFA can be downloaded from http://cseweb.ucsd.edu/˜mdjacobs.

Acknowledgment

This chapter contains material as it appears in Field-Programmable Custom

Computing Machines (FCCM), 2012. It also contains material as it appears in Field

Programmable Logic and Applications (FPL), 2013. The work described in this chapter

is a collaboration with Yoav Freund. The dissertation author was the primary investigator

and author of these papers.

Part II

Smart Frame Grabber Applications

47

Chapter 3

FPGA Accelerated Skin Color Detec-
tion

3.1 Introduction

Color detection is widely used in many computer vision applications. Tracking,

segmentation, and even object detection can be performed by classifying pixel color. For

some applications, specifying a fixed value or range of color in a color space provides

sufficient detection accuracy. However, changes in lighting can often defeat such simple

systems. Additionally, it can be difficult to identify the exact color values that match the

target without also including similar non-target colors.

For this class of problem, it is often useful to rely on statistical methods instead of

hand tuned heuristics. Machine learning algorithms can identify the correct colors given

a set of positive an negative examples with higher accuracy than a human. Moreover,

if the examples include varying lighting conditions the resulting detector can be more

robust.

This paper describes our work in building a real-time skin color detector. We have

adopted a machine learning approach for the task of skin color classification. Human

skin color has many natural variations. It also looks very similar to other colors found in

nature such as plant bark, wood, and sand. This makes it difficult to identify in real world

48

49

environments without also including non-skin pixels. Training a classifier with positive

and negative examples can help identify the boundaries between skin and non-skin colors.

Our work in skin color detection also has a real-time component. It must classify

all the pixels in each frame of video at camera rate with less than 100 µs of latency.

Skin color classification is just a piece of a larger human-computer interaction (HCI)

application. It therefore must execute with less latency than is tolerable for the entire

application. To achieve this goal, we accelerate the detection on a FPGA.

The rest of this paper is organized as follows. We discuss the design and archi-

tecture of our skin color detector in Section 3.2. This is followed by our experimental

results in Section 3.2. We close with conclusions.

3.2 Design and Architecture

Our application is partitioned between a CPU and a FPGA. The FPGA is responsi-

ble for capturing video frames from an attached camera, classifying each pixel at camera

rate, and outputting the detections to the CPU. The CPU receives pixel classification data

every frame and uses it to update the HCI application. The HCI application uses skin

color information to identify regions within the frame that are likely to contain a human

hand, head, or other uncovered body part.

We used the AdaBoost [27] algorithm to train our classifier, using only HSV

color space pixel values. To gather training data, we collected videos of humans in the

environments we expected to encounter during classification. Each video provided us

with several thousand examples of positive and negative pixels. To improve classifier

robustness, we included videos at different times of day. The natural lighting varies

throughout the day and has a significant effect on image color values.

Boosting provided us with an alternating decision tree full of HSV color space

features. Evaluating the alternating decision tree in software is trivial. However, evaluat-

50

Figure 3.1. Alternating decision tree example.

ing each pixel in a video frame on a computer will not meet our real-time requirements.

It therefore must run on the FPGA.

Implementing an alternating decision tree classifier in hardware is non-trivial.

Unlike a simple decision tree which traces a single path through the tree, alternating

decision trees can generate multiple parallel traces through a tree. This is because the

outcome of evaluating a tree node can lead to multiple child nodes, not just one. The

alternating decision tree example in Figure 3.1 shows how traversing the path labeled “y”

from node 2 leads to simultaneous evaluation of nodes 4 and 9.

Evaluating each path in sequence is too slow. We therefore evaluate the paths

in parallel, using a pipelined approach. Every cycle each node in the decision tree

is evaluated for the current pixel. This produces a bitmap of 0/1 values encoding the

true/false outcome of each node. Each node is only a numeric comparison to the HSV

pixel values so the FPGA only needs n comparators, where n is the number of nodes in

51

the tree. After the bitmap is generated, it is pushed through a pipeline that evaluates a

portion of the results and incrementally builds a classification score.

The classification score is constructed by conditionally updating an intermediate

score value every cycle. Because the node score values are known, the aggregate leaf

node scores can be calculate ahead of time. This means only the leaf nodes need to be

evaluated at each stage. The intermediate score is updated with the leaf node values only

if the path to the leaf node was actually traversed. To implement this conditional addition,

we simply use bit masks on the bitmap vector to identify if a path should be traversed.

This process effectively evaluates all possible paths in the tree over several cycles and

conditionally adds the leaf node values for each path to the score. At the final stage of

the pipeline, the score represents the collective score of every path that is traced by the

pixel value through the tree.

From a resource perspective this approach is very efficient. There is no pixel

buffering of any kind. The number of comparators required is O(n) and the number

of conditional adders is O(m) where n is the number of nodes in the tree and m is the

number of leaf nodes in the tree. Implementing the conditional aspect of addition is only

a bitwise AND operation over p bits, where p is the height of the tree. In practice this

uses very few FPGA resources and can be stretched over many stages to accommodate

clock frequency.

3.3 Performance

We implemented our algorithm on a Xilinx Virtex 5 ML506 development board.

The board was connected directly to a camera and also to a monitor. The camera

video was captured, classified, annotated, and then outputted to the attached monitor.

Annotations replaced skin colored pixels with bright green pixels. This was done to

easily identify the regions. The system was able to process 640×480 resolution video at

52

(a) (b)

Figure 3.2. Image frames of skin detector evaluating live video.

60 frames per second (camera rate) with no perceptible latency. Figures 3.2a and 3.2b

show annotated outputs of the detector running on live camera video.

Despite training in multiple environments with different lighting. The detector

still misses many pixels that are actual human skin. But the precision is reasonably

high at the low recall it provides. In practice this can be accommodated with a lower

application threshold for detected skin colored pixels.

3.4 Conclusion

We have described a FPGA accelerated skin color detector that uses an AdaBoost

trained alternating decision tree classifier. It classifies human skin colored pixels in VGA

resolution video at 60 frames per second with no perceptible latency. The design is

resource efficient and can be pipelined to support higher resolutions at faster clock rates.

Chapter 4

FPGA Coprocessor for Particle Filter
Tracking

4.1 Introduction

Realtime computer vision applications are latency sensitive and frequently re-

quire processing of high bandwidth data. To demonstrate the practicality of the RIFFA

framework [38], we chose to accelerate a particle filter tracking application using VGA

video to track multiple targets. Particle filters have been accelerated using FPGAs in

standalone [17, 5] and integrated [3] designs. Our implementation however, supports

tracking multiple targets at 60 Hz (camera rate).

Particle filters are a class of tracking algorithms based on Bayesian filtering [2].

Unlike the Kalman filter, particle filters can handle observation and dynamic models of

targets that are not strictly Gaussian. This is accomplished by sampling from a proposal

distribution because computing the Bayes optimal solution in closed form is not possible.

The particle filtering algorithm we chose to accelerate is based on the NormalHedge

online learning algorithm [14]. Unlike traditional particle filtering approaches, the

NormalHedge tracking algorithm does not require a generative model. Instead, particles

serve as a sequence of states that help explain the observations seen so far. States are

guaranteed to be within a bounded margin of the optimal state. Each particle is weighted

53

54

in proportional to how likely it represents the true state of the object being tracked.

This accelerated tracking application is a demonstrable end-to-end application

that uses FPGA acceleration to support multiple targets at 60 Hz. It is built using the

RIFFA framework and is partitioned across a CPU and FPGA. This represents the chief

contribution of this paper.

The rest of the paper describes in detail the architecture and performance of the

accelerated tracker application. The algorithm is described in 4.2. The architecture is

explained in Section 4.3. Experimental results can be found in Section 4.4. We conclude

with a discussion of future work in Section 4.5.

4.2 Algorithm

The algorithm is listed in Algorithm 1. It begins by registering the location of

the target to be tracked. In our system this is done manually, though nothing prevents

us from changing this to be automatic. Once located, a template of the target is saved

(i.e. the pixels representing a window containing the object). This template will be used

by the Loss function during tracking. Once registered the target (and its location) can be

tracked from frame to frame.

The algorithm follows the same pattern as particle filters, with some minor

changes. The Loss function compares the target template with pixels in the current

frame surrounding the particle. We calculate the loss as the sum of the L1 differences

between pixel values in the R, G, and B channels. The Resample function resamples only

particles with non-positive regret instead of all particles. Regret measures the amount of

aggregated loss sustained by that particle from the optimal location over time. Particles

are then reweighted according to a balancing constant, c. At each iteration, this constant

is found (using a binary search) such that it solves 1
N ∑

N
i=1 exp(

R2
i,t

2c) = exp. This will

bound the amount of error each particle can sustain. Lastly, the U pdateState behaves

55

Algorithm 1. NormalHedge Tracking Algorithm
1: A = {x1,1,x2,1, ...,xN,1}, xi,1 . Drawn randomly
2: Ri,0 = 0; wi,0 = 1/N ∀i

3: for t = 1, 2, ... do
4: li,t = Loss(xi,t) . Loss for each particle
5: lA,t = ∑

N
i=1 wi,t−1li,t . Average loss

6: Ri,t = (1−α)Ri,t−1 +(lA,t − li,t) . Update regrets
7: B = {i : Ri,t ≤ 0} . Bad particles
8: A = AnB . Remove bad
9: A = A∪Resample(A,B) . Resample

10: c = ComputeC(A)

11: wi,t ∝
Ri,t
c exp(

R2
i,t

2c) . Re-weight
12: xA,t = ∑

N
i=1 wi,txi,t . Estimate location

13: xi,t+1 = U pdateState(xi,t) ∀i . Update state
14: end for

the same as with most other particle filters by updating each particle according to its

dynamics model. Our dynamics model is a simple velocity based model.

4.3 Architecture

It may not be immediately clear from the algorithm, but the overwhelming

majority of time is spent calculating the loss values. Doing so requires comparing

hundreds of pixels for each particle. In most particle filtering algorithms, the number of

particles used determines the program’s run time. The more particles used however, the

better the tracking performance. In light of this, we partitioned the application so that the

repetitive, high bandwidth loss calculation was performed by cores on the FPGA. The

rest of the algorithm, involving data structure manipulation and search, was implemented

in software. This approach is much faster to implement when compared to building a

complete standalone design in hardware. It also exemplifies how using RIFFA can exploit

the strengths of both the FPGA and workstation platforms.

The architecture for the tracker is depicted in Figure 4.1. The algorithm runs in

software on the workstation. For each iteration of the algorithm, the software calls the

56

!!!"#$%&'#!
!
!
!
!
!
!

()*'#!
+,-'./!

(012!

345!
6789#7..'#!

4:1!
6789#7..'#!

3#$;!
+$#<%.'/!

=>?$9'!
"'@>.$9'!

6$.%).$9'!
A7//!

Mux

(012!

321!0'B)'/9! 6'89#$.!C7<D'#!

!!!+65'!()/!!
!E7#&/9$<78!

!
F7G;$#'!

Mux F9$9'!
2$%H,8'!

!
+A
(!
I)

/!
!

Figure 4.1. Tracker core architecture. The State Machine module interfaces with the
DMA Request and Central Notifier cores. Software on the workstation initiates processing
via interrupts.

Tracker core to calculate the Loss function. This requires writing function parameters to

BRAM and then interrupting the Tracker core. The Tracker core is driven by the video

clock and receives video data directly from the camera. When triggered, data entering

the core is processed and loss values are DMA transferred back to the workstation.

Additionally, output video is annotated with target tracking information and sent to the

DVI Controller. The processing runs as the pixels stream through the system in real

time. Once the response data has been received by the workstation, the Tracker core will

interrupt the waiting software thread to continue running the algorithm. The regret values

are updated, particles are resampled and reweighted, and a new location is estimated.

The Tracker core can operate at 4 different scales: 1, 2, 4, and 8. The processing

is coordinated by the State Machine module. When processing a frame, one line of video

data is buffered by the Buffer Pixels module. If the runtime parameters indicate the target

template should be updated, then the Update Template module uses the line pixels to

update the template. Otherwise, for each particle, the line of pixel data is compared to the

corresponding line in the stored template and a partial loss value is computed. Particles

can be located anywhere around the target location, so the Calculate Loss module must

57

determine which particles intersect with the saved line. The Tracker core must handle

the case where every particle intersects each line. After score calculation the line buffer

is overwritten with particle locations for the following line. In the next iteration, the

Buffer Pixels module will read the locations when saving new data, then pass the location

data to the Draw Particles module so it can annotate the outgoing video. A two line

FIFO buffer is used so that the line processing can overlap with the line saving. The line

processing must complete within a single line of video. Once all the lines are processed,

the State Machine module DMA transfers loss values to the workstation and notifies the

application via an interrupt.

In addition to the Tracker core, there are other cores that support video processing.

These cores handle the formatting of input from a VGA camera and format output video

for a DVI monitor. Additionally, a Frame Capture core is used to capture video frames so

the workstation can render video.

The Tracker core reads a number of software defined runtime parameters upon

each invocation. These include: the target’s x,y coordinate location in the video frame,

whether to update the template or calculate loss values, the video scale factor, the

maximum particle spread, the template size, and the number of particles. Additionally,

the x,y location of each particle is provided. The response data from the Tracker core

includes the video frame number and the loss values for each particle.

4.4 Performance

The software portion of the NormalHedge tracker is written in C and makes use

of multiple threads. We used the OpenCV library for rendering frames on the workstation.

The FPGA cores were implemented using ISE and XPS 11.5, on a Xilinx ML506 with a

Virtex 5 XC5VSX50T running at 125 MHz. We tested using a Dell Optiplex 745 with

dual core Intel 2.4 GHz processors and 4 GB of RAM.

58

Table 4.1. Tracker and related video core resource utilization.

Core Name Slice Slice BRAMs DSP48Es
Regs LUTs

Tracker 767 2607 1 2
VGA-DVI Controller 183 325 0 0
Frame Capture 144 205 1 0

We were able to fit 6 Tracker cores, the additional video processing cores, and

RIFFA on our Virtex 5. The Tracker core is able to process VGA (640x480) video at

over 400 frames per second. In our experiments we tested the system with live VGA data

at 60 Hz. This resulted in a 25.125 MHz video clock frequency. The resource utilizations

for the Tracker and video processing cores are listed in Table 4.1.

To test overall performance, we ran several experiments tracking individual hands,

fingers, etc. Each of the targets were tracked with 100 particles. We found the tracking to

perform adequately when the user was not trying to defeat the system. Normal movements

can be tracked, but are lost if the motion is too fast or the target is occluded. We found

that background colors in the template tend to confuse the algorithm when the target

moves to a location with a very different background color. The accelerated application

was able to track at the 60 Hz camera rate using only 25-40% of the workstation CPU

capacity. Unaccelerated, the application was only able to operate at 2 Hz, using 100%

of the CPUs. This represents a demonstrable 30x performance increase while using

just a fraction of the CPU processing power. A video of the tracker is available at

http://photobucket.com/submissionvideos.

4.5 Conclusion

We presented a FPGA accelerated application of tracking using the RIFFA frame-

work. The tracker uses a particle filter approach to search for targets in the input frame.

The system is capable of tracking 6 independent targets at a rate of 60 Hz. By using

59

RIFFA we can partition the application across the CPU and FPGA, leveraging both

platforms’ resources. This shows how this approach can improve performance to state of

the art levels.

Chapter 5

FPGA Accelerated Face Detection

5.1 Introduction

Face detection is a popular task to accelerate as it is frequently the first step in a

larger application. It is also difficult to perform in realtime at even modest resolutions.

We selected the well known Viola and Jones face detector [58] for acceleration due to its

wide spread use and robust performance. Prior work exists for Viola and Jones detectors

on FPGAs [61, 44]. Most are standalone designs and are not capable of running with

live video. Additionally, many only implement the basic feature calculation portion

of the algorithm and are not designed to function as a complete detector. Others still,

are complete, but don’t support detection at VGA resolutions or support multiple scale

detection. Implementing all required aspects of the algorithm to support a demonstrable

system can be challenging. Some research however, has been complete in this sense [18]

and we compare our work most closely to theirs.

This accelerated face detection application is a demonstrable end-to-end applica-

tion that uses FPGA acceleration to support realtime face detection. It is built using the

RIFFA framework and is partitioned across a CPU and FPGA. This represents the chief

contribution of this paper.

The rest of the paper describes in detail the architecture and performance of

60

61

!
!
!!"#!$%&%'&()!

$"*!
+(,&)(--%)!

"./!
+(,&)(--%)!

$)01!
$%&%'2(,3!*,&%4)0-!

*504%! M
ux

67/8!

!
9:
6!
;<

3!
!

"#!+03'0=%! +%,&)0-!>(2?%)!

*,&%4)0-!
*504%!@AB!

C)05%!+0D&<)%!

7%A<%3&!
E0,=-%)!

7.6!&(!
.)0F3'0-%!

!!!9+*%!6<3!!
!G()H3&02(,!

!
@(I10)%!

Figure 5.1. Architecture of the VJ Detector core. The Request Handler module interfaces
with the Central Notifier and VJ Cascade cores. Software on the workstation initiates
processing via interrupts.

the accelerated face detection application. The algorithm is described in 5.2. The

architecture is explained in Section 5.3. Experimental results can be found in Section 5.4.

We conclude with a discussion of future work in Section 5.6.

5.2 Algorithm

The Viola and Jones detection algorithm operates on grayscale data and uses

pairs and triples of adjacent rectangles as features. The sums of the pixel values in each

rectangle are weighted and summed to form a feature value. Feature values are extracted

from candidate locations within an image frame. The set of candidate locations is an

overlapping set of square regions, typically extracted at many scales. For each candidate

location, features are calculated sequentially according to a cascade. The cascade is an

ordering of features, grouped by efficacy, into stages such that the features in the earlier

stages have more discriminative power. For each stage in the cascade, the constituent

feature values are summed and compared against the stage threshold. Sums less than the

threshold indicate low likelihood of containing a face, and the candidate is abandoned.

Sums exceeding the threshold allow the candidate to continue to the next stage. If a

62

candidate exceeds the thresholds for all stages in the cascade, it is labeled as containing a

face.

Because summing pixel values is expensive, the algorithm converts grayscale

images into summed area tables called integral images. Pixel values in the integral image

represent the sum of grayscale values above and to the left of the same pixel in the

original image. This conversion enables feature values to be calculated in constant time.

An additional image is also generated, the integral image squared. This is similar to the

integral image, but is constructed using the square the the original pixel values. Using

both images, the intensity variance can be calculated to normalize images across different

lighting conditions.

All the features, weights, stages, and thresholds are learned using Boosting. The

order of features in the cascade is designed so that candidate locations that do not contain

a face are identified early in the cascade with as few features evaluated as possible. The

number of features in the cascade depends on the training, but is on the order of a few

thousand for detecting faces. The unscaled candidate location size for face detection is

typically 20x20 pixels.

5.3 Architecture

Partitioning the Viola and Jones algorithm is challenging because performing any

stage of the cascade requires building nearly all the functionality needed to perform the

entire cascade. As a result, most FPGA accelerations of this algorithm are implemented

completely on the FPGA. In our design, we implemented the entire detector cascade

in software and the first few stages of the cascade on the FPGA. The partial FPGA

cascade is a fully parallel design. This allows us to evaluate these stages at camera rate.

Performing only a few stages of the cascade is useful because the results can be used as a

filter for the full cascade, run in software. We used the trained face detector specification

63

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Cascade stages

Pe
rc

en
t r

ej
ec

te
d

Candidate windows rejected after each stage

Figure 5.2. Cumulative percentage of candidate locations rejected after evaluating
cascade stages. Only first 10 stages shown.

available in the OpenCV library as design parameters for both our software and hardware

implementations.

The primary motivation for our design is illustrated by the graph in Figure 5.2.

There are 22 stages and 2135 features in the entire cascade. But on average, we found that

87% of the candidate windows have been rejected by the end of stage 4. Only needing

to run the cascade on 13% of the frame can greatly improve the runtime performance.

Moreover, doing so only requires evaluating 79 features.

Diagrams of our hardware detector are shown in Figures 5.1 and 5.3. As with

the tracker application, the algorithm runs in software on the workstation. For each

iteration of the algorithm, the software requests frame data from the VJ Detector core.

The request parameters are transferred to BRAM, then the core is interrupted. The core

generates grayscale, integral image, and integral image squared frame data from the input

frame. The integral image and integral image squared frames are represented using 32

bit integers and IEEE 754 floats respectively. This data is saved to the workstation using

Frame Capture cores. The VJ Cascade is responsible for running feature extraction and

stage thresholding for the implemented cascade stages. The output of the VJ Cascade is

a bitmap. Each position represents a candidate location. If the value at a location is 1, the

candidate has been rejected. If the value is 0, the candidate must be evaluated further.

64

	

	

	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 VJ	
 Cascade	

	

	

	

	

Sliding	

Window	

Feature	
 Extractor	
 Feature	
 Extractor	
 Feature	
 Extractor	

BRAM	
 	

PL
B	

bu

s	

	

DMA	
 Request	

In
te
gr
al
	
 Im

ag
e	

Vi
de

o	

Sc
al
er
	

VJ	
 Detector	

Cascade	

RejecDons	

Calc.	
 Variance	

Figure 5.3. Architecture of the VJ Cascade core. The detections from the first few stages
are saved as a binary bitmap by the Cascade Rejections module.

The processing runs as the pixels stream through the system in real time. Thus by the

end of a frame all the response data has been DMA transferred to the workstation. The

response is comprised of an integral image frame, an integral image squared frame, and

a candidate rejection bitmap from each VJ Cascade core. Once the response data has

been received by the workstation, the algorithm is notified via an interrupt and the entire

cascade is run on the response data using the bitmaps as candidate filters.

The VJ Detector core is coordinated by the Request Handler module. It receives

runtime parameters for scale, video capture type, and detection locations. The response

data after each invocation are the video frame(s) and rejection bitmap(s). In addition to

capturing frame data, the core annotates output video with detection information.

The VJ Cascade core generates a rejection bitmap every video frame. The

Video Scaler module scales grayscale video according to the request value. It scales

by subsampling streaming video and supports 18 scales. The data is then converted

into integral image data and captured by the Sliding Window module. This module

stores pixels in BRAM line buffers and systolically shifts pixels across lines (BRAMs) to

produce a sliding window across the video frame. Each new pixel produces a new column

of video data. The columns are aggregated using registers to provide random access to

any pixel in the window. These registers are accessed by the Calc. Variance module

65

Table 5.1. Face detector core resource utilization.

Core Name Slice Slice BRAMs DSP48Es
Regs LUTs

VJ Detector 716 882 2 1
2-stage VJ Cascade 3529 7267 23 107
3-stage VJ Cascade 6248 12,698 23 195
4-stage VJ Cascade 9552 26,263 23 287
5-stage VJ Cascade 11,708 49,437 23 287

to calculate the variance for the current window. The Calc. Variance module performs

the same normalization as is done with the integral image and integral image squared

frames. The window registers are also accessed by each Feature Extractor module. They

calculate a new feature value each cycle, completely in parallel. The feature values are

then summed and compared to their stage thresholds in the Cascade Rejections module.

The outcome is saved to as a bitmap and DMA transferred it to the workstation.

5.4 Performance

The software portion of the face detector is written in C using multiple threads.

The FPGA cores were implemented on a Virtex 5 XC5VSX50T running at 125 MHz,

using ISE and XPS 11.5. Again we tested using a Dell Optiplex 745 with dual core Intel

2.4 GHz processors and 4 GB of RAM.

We fit two designs on our Virtex 5. One with a 3-stage VJ Cascade core and

one with dual 2-stage VJ Cascade cores. We also synthesized a design with quintuple

4-stage VJ Cascade cores for a Virtex 6 XC6VLX240T. Though the VJ Cascade core can

support VGA (640x480) video up to 120 Hz, our tests were run with live VGA video at

60 Hz. The resource utilizations for the face detector cores with various stages are listed

in Table 5.1.

Our experiments use the same 20x20 pixel candidate window size as the OpenCV

66

1 face 5 faces 27 faces
50

100

150

200

250

300

Image types

De
te

ct
io

n
tim

e
(m

s)

Face detection performance on VGA data

OpenCV:
3.85 fps

OpenCV + 3 stage core:
4.27 fps (1.11x)

Software:
5.01 fps

Software + dual 2 stage cores:
6.49 fps (1.3x)

Software + 3 stage core
6.99 fps (1.39x)

Software + quint 4 stage cores:
15.82 fps (3.16x)
Simulated

Figure 5.4. Face detection times on VGA video. Speed up over equivalent software only
version is listed in parenthesis.

implementation. A step size and scale factor of 1.2 was used. This corresponds to 888,634

candidate windows over 18 scales on VGA video. In all tests, the highest resolution

scales were accelerated. As the detection time can vary across images, we tested using

images with 1, 5, and 27 faces. The performance results are shown in Figure 5.4. We

were able to improve the detection frame rate over a software only version by 1.39×

using the single 3-stage VJ Cascade design on our Virtex 5. Using a Virtex 6 however,

our simulations project a 3.16× increase for a frame rate of 15.82 fps. Compared to

similar work, we feel this performs at state of the art levels.

5.5 OpenCV Integration

In addition to implementing our own face detector, we integrated the FPGA

accelerator into the OpenCV face detection library. OpenCV contains a highly optimized

implementation of the Viola and Jones detector. Much of their performance comes

from using a minimum step size of 2, adaptively skipping every other candidate location,

67

foreach (Window w in frame.windows) {
bitmap = bitmaps[w.scale];
if (bitmap != NULL) {

if (bitmap[w.position])
continue;

else
run_cascade_from_stage(n, regions, ii, iis);

}
else {

run_cascade_from_stage(0, regions, ii, iis);
}

}

Figure 5.5. Pseudo code representation of modified OpenCV cascade detection function.

skipping the lowest scale (original resolution), and filtering the image using edge detection

heuristics.

Updating the OpenCV classifier routines to make use of the rejection bitmaps

involved modifying the OpenCV function prototypes to accept a pointer to the bitmaps,

passing along the pointer as necessary, and in the appropriate function, evaluating the

value of the bitmap for the current candidate window before running the cascade. While

this did involve modifying existing OpenCV source (mostly cascadedetect.cpp),

it was the most efficient way to make use of the rejection bitmaps. A pseudo code

representation of the modification is presented in Figure 5.5.

5.5.1 Performance

Our experiments use the same 20x20 pixel candidate window size as the OpenCV

implementation and the same FPGA design as before. The performance results for the

OpenCV integrated experiments are shown in Figure 5.6. We were able to improve the

detection frame rate over the OpenCV software version by 1.1× using the single 3-stage

VJ Cascade design on our Virtex 5. Our device limited us to a single scale. However

we calculated a 4.1× increase for a frame rate of 15.82 fps on a Virtex 6 using 5 VJ

Cascades, each configured with 4-stage features.

68

1 5 27
0

2

4

6

8

10

12

14

16

Faces in frame

Fr
am

es
 p

er
 s

ec
on

d
(F

PS
)

Face Detection Rate

No acceleration
(1) Bitmap 3−stage
(5) Bitmaps 4−stage

Figure 5.6. Face detection times on VGA video in frames per second.

Because of the optimizations in the OpenCV implementation, adding the FPGA

rejection bitmap acceleration did not improve performance as much as in our software

implementation. However, to our knowledge, this work represents the first FPGA

accelerated face detector integrated into the OpenCV library.

5.6 Conclusion

We presented a FPGA accelerated application of face detection using the RIFFA

framework. The face detector is based on the Viola and Jones detector using Haar features.

The system is capable of demonstrating a 1.39× increase using a Virtex 5 FPGA over a

highly optimized CPU implementation. Our simulations project a 3.16× increase when

using a Virtex 6 FPGA. By using RIFFA we can partition the application across the CPU

and FPGA, leveraging both platforms’ resources. This shows how this approach can

improve performance to state of the art levels.

Chapter 6

FPGA-GPU-CPU Heterogenous Archi-
tecture for Real-time Cardiac Physio-
logical Optical Mapping

6.1 Introduction

Optical mapping technology has proven to be a useful tool to record and investi-

gate the electrical activities in the heart [37][49]. Unlike other cardio-electrophysiology

technologies, it does not physically interfere with the heart. It provides a dense spatial

electrical activity map of the entire heart surface. Each pixel acts as a probe on that

location of the heart. Variation in pixel intensity over time is proportional to the voltage

at that location. Thus a 100×100 resolution video is equivalent to 10,000 conventional

probes. This produces more accurate and comprehensive information than conventional

electrode technologies.

The process of optical mapping involves processing video data to extract biologi-

cal features such as depolarization, repolarization and activation time. The challenge in

this process is primarily in the image conditioning. Raw video data contains appreciable

sensor noise. Direct extraction of biological features from the raw data yields results too

inaccurate for most medical use. Therefore, the process includes an image conditioning

algorithm, which has been presented and validated by Sung et. al [56]. The effect of this

69

70

(a)

(b)

1 sec

1 sec

Figure 6.1. Image conditioning effect (left: the grayscale image of a random frame,
right: the waveform of a random pixel over time). (a) before image conditioning. (b)
after image conditioning.

image conditioning is shown in Figure 6.1.

Real-time optical mapping is useful and potentially necessary in a wide range of

applications. One domain is real-time closed loop control systems. This includes dynamic

clamp [11, 23], and the usage of tissue-level electrophysiological activity to prevent the

onset of arrhythmia [24, 33]. These systems offer the unique ability to understand the

heart dynamics by observing real-time stimulus/response mechanisms over a large area.

Another domain of applications is immediate experimental feedback. The ability to see

the optical mapping results during the experimental procedure can significantly reduce

both the duration of the experiment and the required number of experiments.

71

Achieving real-time optical mapping is computationally challenging. The input

data rate and the required accuracy for biological features results in a throughput on

the order of 10,000 fps. At such high throughput, a software implementation takes

39 mins to process just a second of data. Even a highly optimized GPU accelerated

implementation can only reach 578 fps. A FPGA-only implementation is also infeasible

due to the resources required for processing intermediate data arrays generated by the

optical mapping algorithm.

In this paper, we propose a real-time FPGA-GPU-CPU heterogenous architecture

for cardiac optical mapping that runs in real-time, capturing 100×100 pixels/frame at

1024 fps with only 1.86 seconds of end to end latency. Experimental parameters and data

are based on the experiments by Sung et. al [56]. Our design has been implemented on

an Intel workstation using an NVIDIA GPU and a Xilinx FPGA. The implementation is

a fully functioning end to end system that can work in an operating room with a suitable

camera.

The contributions of this paper are:

• A real-time optical mapping system using a FPGA-GPU-CPU heterogeneous

architecture.

• An optical mapping partitioning analysis for heterogeneous accelerators.

The rest of the paper is organized as follows. We discuss related work in Section

6.2. In Section 6.3, we describe the optical mapping algorithm in detail. We discuss

algorithm partitioning decisions in Section 6.4. We describe the design and implemen-

tation of the heterogenous architecture in Section 6.5. In Section 6.6, we present the

experimental results and accuracy of our implementation. In Section 6.7, we conclude.

72

6.2 Related Work

The optical mapping process involves three types of computations: spatiotemporal

image processing, spectral methods, and sliding-window filtering that can result in

performance challenges. A variety of approaches have been proposed to accelerate image

processing algorithms that have one or more of these computations. There are FPGA

and GPU accelerated approaches for real-time spatiotemporal image processing [13]

[50]. Govindaraju et. al have analyzed the GPU performance on spectral methods [29].

Pereira et. al have presented a study of accelerating spectral methods using FPGA and

GPU [52]. Many sliding-window filtering applications have been presented in the past

[26] [21]. None of the approaches described above combine all three of the computations

as in the optical mapping algorithm.

Several FPGA-GPU-CPU heterogeneous acceleration systems have been pro-

posed in recent years. Inta et. al have presented a general purpose FPGA-GPU-CPU

heterogeneous desktop PC in [36]. They reported that an implementation of a normalized

cross-correlation video matching algorithm using this heterogeneous system achieved

158 fps with 1024×768 pixels/frame. However, they ignored the throughput bottleneck

of the PCIe which is critical in real-time implementations. Bauer et. al have proposed

a real-time FPGA-GPU-CPU heterogeneous architecture for kernel SVM pedestrian

detection [8]. However, instead of having spatiotemporal image processing and spectral

methods (across frames), this application only has computations within individual frames.

We present a stage level algorithm partitioning according to the computational

characteristics and data throughput. To the best of our knowledge, the system presented

in this paper is the first implementation of a real-time optical mapping system on a

heterogenous architecture.

73

6.3 Optical Mapping Algorithm

Figure 6.2 (a) depicts an overview of the algorithm. Video data is provided by a

high frame rate camera. The input video data is zero score normalized to eliminate the

effects of varying background intensities. After normalization, there are two major noise

removing facilities: a phase correction spatial filter and a temporal median filter.

6.3.1 Normalization

Normalization is performed for each pixel in a temporal fashion, across frames.

In our experiments the input video arrives at 1024 fps. Normalization is performed on

each second of video, disjointly. To compute the normalization base value for pixel

location, we find the weighted mean of the largest three values in the temporal array. We

can then normalize each pixel in the frames using Equation 6.1 with the correspondent

normalization base value.

normed. pixel = 100
−(raw pixel−base val.)

base val.
(6.1)

6.3.2 Phase Correction Spatial Filter

The action potential is distributed as a waveform on the heart surface. Thus, if

we merely apply a Gaussian spatial filter on the video data, we will lose the critical depo-

larization properties (the sharp edges of the waveform in cardiac physiology). Therefore,

a phase correction algorithm needs to be applied to cause the pixels in the window to be

in phase before the Gaussian spatial filter.

The phase correction spatial filter operates as a sliding window function across

the entire frame, where each operation uses all frames across time (see Figure 6.2 (b)).

Figure 6.2 (c) illustrates an example 5×5 Gaussian filter.

74

In each phase correction filter:
5X5 pixels, 1024 frames

Frame T

Frame 2
Frame 1

rolling

Phase correction
filter window

5x5
Gaussian

Filter

phase corrected
frames

Phase correction algorithm

center
pixel

neighbor
pixel

interp.
ref.

array

interp.
target.
array

FFT. ->
 Conj. Mult.->

IFFT

Peak
Search

Interp.

Interp. decimate&
phase shift

phase
corrected
neighbor

pixel

Interpolation

FFT

Conj. Mult.

IFFT

Peak Search

Phase Shift

Spatial Gaussian Filter

Temporal Median Filter

Normalization

Phase
correction

spatial filter

Output image conditioned data

Input raw video

(a)

(b) (c)

(d)

filtered
pixel

Phase
correction
algorithm

Figure 6.2. Optical mapping algorithm. (a) Overview of the image conditioning algo-
rithm. (b) Visualization of the rolling spatial phase correction filter on the entire video
data. (c) Visualization of a phase correction spatial filter window. Arrows on the pixels
represent phase shifting (correction). (d) Visualization of the phase correction algorithm.

75

6.3.3 Phase Correction Algorithm

In order to correct the phases of the pixels, the phase difference must be computed

between the center pixel and all of its surrounding neighbors in the filter window. We

can calculate this difference using a bit of signal processing theory as presented by Sung

et. al [56].

This phase correction operation is illustrated graphically in Figure 6.2 (d). First,

the frame arrays are interpolated by a factor of 10 using an 81 tap FIR filter. This provides

a higher resolution for phase differences. Then pairs of temporal arrays are compared, the

center pixel array and a neighbor pixel array. The arrays are converted into the Fourier

domain by a FFT. After that, the neighbor FFT array is conjugated and multiplied with

the center FFT array. The result of the multiplication is converted back into time domain

by an IFFT. The index of the pulse in the IFFT array represents the phase difference.

After finding the phase difference, the interpolated neighbor array is shifted by the

relative position/time difference and down sampled by 10 to obtain the phase corrected

neighbor array. Usually, the phase correction algorithm requires two long input arrays to

obtain accurate phase difference result. In our implementation, the length of the input

arrays is chosen to be 1024 because this is an empirically good tradeoff between the

precision and runtime performance [56].

6.3.4 Temporal Median Filter

The temporal median filter is applied at the end to further remove noise after the

phase correction spatial filter. The temporal median filter replaces each pixel with the

median value of its temporal neighbors within a 7-element tap. After filtering, the image

is conditioned and ready for analysis.

76

6.4 Application Partitioning

Partitioning a high throughput video application requires careful analysis at design

time. Our initial design was to accelerate the software version of the algorithm developed

by Sung et. al [56] using a FPGA. However, the algorithm operates on a second’s worth

of captured data at a time. This became problematic for our FPGA as the phase correction

FFT would need to support a length of 32 K (1024 frames, interpolated to 10,240 frames,

then padded out to 32 K frames). A single FFT core of this size would consume nearly

all the resources of our FPGA. Piecewise execution of the FFT was considered, but was

quickly discarded in favor of using a GPU.

Using a GPU matched well with the large array and massively parallel operations.

But the frame interpolation and peak search computations are data flow barriers in the

algorithm. This causes poor GPU performance. This phenomenon is discussed in [46],

where a GPU implementation of the optical mapping algorithm achieves a rate about half

as fast as real-time.

We chose instead to design a heterogenous system with both a GPU and FPGA.

This allowed us to map the portions of the design that can benefit from deep pipelining

and small buffers to the FPGA. Steps requiring large buffers with massively parallel

operations leveraged the GPU. Finally, coordination, low throughput, and branching

dominated tasks were assigned to the CPU. Table 6.1 shows our partitioning decisions.

The granularity of our partition is based largely on the algorithm blocks, illustrated

in Figure 6.2(a). In addition to the inherent strengths of different hardware in our system,

the I/O bandwidth between portions of the algorithm drove many of our design decisions.

Limited bandwidth interconnects can make it challenging to quickly and efficiently

transfer data between the GPU, FPGA, and CPU. Thus, we attempted to move data as

little as possible while matching algorithmic blocks to the most appropriate device.

77

Ta
bl

e
6.

1.
O

pt
ic

al
m

ap
pi

ng
al

go
ri

th
m

pa
rt

iti
on

de
ci

si
on

s.
T

hr
ou

gh
pu

td
efi

ni
tio

ns
:<

25
M

B
/s

is
lo

w
;2

5
M

B
/s

-1
G

B
/s

is
hi

gh
;

an
d

>
1

G
B

/s
is

ul
tr

a
hi

gh
.T

he
sp

ec
ifi

c
ba

nd
w

id
th

s
fo

re
ac

h
co

m
pu

ta
tio

n
ca

n
be

fo
un

d
in

Fi
gu

re
6.

3
(a

).

In
te

rp
.

N
or

m
.

B
as

e
V

al
.

N
or

m
.

Pi
xe

ls
FF

T
C

on
j.

M
ul

t.
IF

FT

L
ea

n
Pe

ak
Se

ar
ch

R
el

at
iv

e
Ph

as
e

D
iff

.
Ph

as
e

Sh
if

t
Sp

at
ia

l
Fi

lte
r

Te
m

p.
Fi

lte
r

In
pu

t
B

an
dw

id
th

lo
w

lo
w

hi
gh

ul
tr

a
hi

gh
ul

tr
a

hi
gh

ul
tr

a
hi

gh
ul

tr
a

hi
gh

lo
w

hi
gh

lo
w

lo
w

O
ut

pu
t

B
an

dw
id

th
hi

gh
lo

w
hi

gh
ul

tr
a

hi
gh

ul
tr

a
hi

gh
ul

tr
a

hi
gh

lo
w

lo
w

lo
w

lo
w

lo
w

A
cc

el
er

at
or

A
llo

ca
tio

n
FP

G
A

G
PU

FP
G

A
G

PU
G

PU
G

PU
G

PU
C

PU
G

PU
G

PU
G

PU

78

Video is captured using the FPGA. The FPGA also performs frame interpolation

and normalization of base values. This decision was based on the fact that we can

pipeline the interpolation on the FPGA so that interpolated frames would be produced

concurrently with camera input.

Our FPGA-PCIe connection is limited to a single PCIe lane (bandwidth limit

of 250 MB/s). Thus we represented pixels using 8 bits of precision. However, the

normalization step uses 32 bit floating point numbers. To adapt, we decomposed the

normalization step into a calculation of base values and normalization of pixels. We

compute the the base values on the FPGA and reordered the algorithm to perform

normalization on the GPU. The reordered algorithm is equivalent to the original algorithm.

However, representing pixels with 8 bits introduces errors in the result. We demonstrate

that the error is tolerable in Section 6.6.3.

The FFT, conjugate multiplication, and IFFT computations run on the GPU.

Massive data parallelism in each butterfly stage of the FFT and IFFT improves core

occupancy on the GPU’s SIMD architecture.

Instead of calculating the relative positions between all pixels and their neighbors,

we calculate partial relative positions and use the fact that they are transitive between

pixel array pairs to optimize the process. It results in reducing redundant computation

by 5×. For I/O bandwidth reasons, we perform the peak search on the GPU, but chose

to allocate the relative phase difference conversion to the CPU. The phase difference

conversion is a low throughput and intensively branched process aiding the peak search.

We describe this optimization in Section 6.5.3.

The final processing steps are run on the GPU: phase shifting, 2D spatial Gaussian

filter, and temporal median filter. The GPU already has the interpolated frame data stored

in memory at this point, so it is the obvious location to shift the pixel arrays and perform

filtering.

79

6.5 Design and Implementation

6.5.1 Overall System

The architecture of the system is shown in Figure 6.3. It illustrates which portions

of the optical mapping algorithm run on which hardware. The shaded boxes encapsulate

computation groups. The architecture is designed to run continuously on a system with

constant camera input. Thus, it runs in a pipelined fashion. Group 1© runs in a pipelined

stage concurrently with groups 2©, 3© and 4© in a separate pipeline stage.

Camera data is captured by the FPGA at a rate of 1024 fps and up sampled

(interpolated) to 10,240 fps. Frames of interpolated data and normalization base values

are DMA transferred to the host workstation’s GPU over a PCIe connection. This

represents computation group 1©. The GPU normalizes the pixels then performs a

FFT, conjugate multiplication operation, and IFFT on arrays of pixels across frames

(temporally). The result of this spectral processing produces large 32 K length arrays

for each pixel location. The max value in each array is found using a max peak search

over all the data. The output of this group 2© is the relative position of the max values

in each array. These relative positions are used to calculate the absolute positioning for

each pixel array. This is performed on the CPU in group 3©. The CPU is used because

it is faster to transfer the data out of the GPU, iterate over it on the CPU and transfer it

back, than to utilize only a few cores on the GPU. Once calculated, the absolute positions

are sent back to the GPU where they are used to shift each array temporally. The arrays

are shifted and then down sampled back to 1024 fps. The rest of computation group 4©

consists of a 2D Gaussian filter and a temporal median filter to remove noise.

80

Interp.

FFT

Conj. Mult.

IFFT

Lean Peak
Search

Relative
Phase Diff.
Conversion

Phase Shift

Spatial Gaussian Filter

Temporal Median Filter

Interpolated data:
 95.4 MB/s

FFTed data:
 2.25 GB/s

Conj. Mult.
data:

 2.25 GB/s

IFFTed data:
 2.25 GB/s

Peaks:
 9 KB/s

Phase Diffs:
 225 KB/s

Phase Shifted data:
38.1 MB/s

Spatial Filtered data:
38.1 MB/s

Temporal Filtered data:
38.1 MB/s

Norm. Pixel

Norm.
Base Values

Cal.

Base values:
 9.8 KB/s

Interpolated &
Normalized data:

 381MB/s

DMA

DMA

DMA

DMA

FPGA GPU CPU

Raw
video:

 9.5 MB/s

①

②

③

④

(a)

(b)

FPGA

GPU

CPU

Video Capturing

①

②

③

④

Video Capturing

①

Video Capturing

①

②

③

④

Video Capturing

①

②

③

④

1 2 3 4 Time
(secs)

0

Camera

Figure 6.3. FPGA-GPU heterogenous architecture. (a) Algorithm execution diagram
with throughput analysis. (b) Computation groups running concurrently in the system.
Groups 1©, 2©, 3© and 4© are the shaded regions shown in (a).

81

6.5.2 FPGA Design

FPGA processing is performed in a streaming fashion. For temporal interpolation,

only 8 frames of video are buffered. This buffering is necessary for the FIR filter. The

most challenging aspect of the FPGA design is keeping the FIR filter pipeline full. The

pixel data arrives from the camera in a row major sequence, one frame at a time. The

FIR interpolation filter operates on a sequence of pixels across frames. Each interpolated

frame must be produced one pixel at a time, using the pixels from the previous frames.

This means filling the FIR filter with previous values for one pixel location, capturing

interpolated pixels for 10 cycles, then re-filling the pipeline with a temporal sequence for

another pixel location. Most of the time is spent filling and flushing the FIR filter (80 out

of every 90 cycles).

To avoid this inefficiency, we parallelized the FIR filter with 9 data paths and

staggered the inputs by 10 cycles. This allows the FIR filter to produce valid output every

cycle from one of the 9 data paths. The output is then used to calculate the normalization

base values and both are DMA transferred to the host workstation over a PCIe connection.

We used the RIFFA [38] framework to connect the FPGA to the host workstation (and

thus the GPU).

6.5.3 GPU Design

We designed each component on the GPU as an individual CUDA kernel. Kernels

use global memory for inter-kernel coordination and for I/O data transfer. Using multiple

computation dedicated kernels can improve performance over a single monolithic kernel.

The data access strategies and thread dimensions can vary from kernel to kernel to

more closely reflect the computation. This results in overall faster execution of all the

components.

In the design of each kernel, we fully parallelized each stage to obtain the highest

82

GPU core occupancy. We implemented the normalized pixel calculation, conjugate

multiplication, and phase shift using straight forward element-wise parallelism. The

spatial Gaussian filter and temporal median filter use window/tap-wise parallelism. We

used the cuFFT library provided by NVIDIA to implement the 32 K element FFT and

IFFT operations. The peak search is implemented as a CUDA reduction, which uses

memory access optimizations such as shared memory, registers, and contiguous memory

assignment.

The FFT, conjugate multiplication, IFFT, and peak search are the major com-

ponents of the algorithm on the GPU. Each requires ultra-high throughput and their

performance is directly related to the amount of data they must process. We were able

to reduce the throughput requirements for these computations, and thus improve perfor-

mance, with the aid of the CPU. To do so, we created two stages, a lean peak search and

a relative phase difference conversion (RPDC) to replace the original peak search stage.

The lean peak search only calculates the necessary peaks by the same reduction method

used in the original peak search stage. The RPDC converts the result of the lean peak

search stage to the full phase difference by using the fact that relative differences are

transitive. For example, we calculate the phase difference between pixel arrays a and b,

and between arrays b and c using lean peak search. Let these differences be tab and tbc

respectively. Then tac = tab− tbc. This optimization reduces the throughput in the FFT,

conjugated multiplication, IFFT and peak search by 5×. The RPDC is a low-throughput

computation, dominated by branching logic. This would execute with low efficiency on

the GPU’s SIMD architecture. We therefore implemented the relative phase conversion

stage on the CPU shown as 3© in Figure 6.3.

83

6.6 Results and Analysis

6.6.1 Experimental Setup

We use the same experimental parameters described by Sung et. al [56] to guide

our experiments. Input video is 100×100 resolution 8 bit grayscale video.

All our experiments are run on an Intel i7 quad-core 3.4 GHz workstation running

Ubuntu 10.04. The FPGA is connected to the workstation via x1 PCIe Gen1 connector.

We use a Xilinx ML506 development board with a Virtex 5 FPGA. All FPGA cores

were developed using Xilinx tools, ISE and XPS, version 13.3. The GPU is an NVIDIA

GTX590 with 1024 cores.

Our heterogenous design is controlled by a C++ program and compiled using

GCC 4.4 and CUDA Toolkit 4.2. The C++ program interfaces with the CUDA API and the

RIFFA API [38] to access the GPU and FPGA respectively. It provides simulated camera

to the FPGA and coordinates transferring data to and from the FPGA and CPU/GPU.

6.6.2 Performance

Our design can execute both stages (group 1© and groups 2©, 3©, and 4©) concur-

rently as stage one executes on the FPGA and stage two executes on GPU/CPU. Stage

one can process a second’s worth of video in 0.82 seconds, at a rate of 1248 fps. However

since the camera only delivers data at a rate of 1024 fps, the FPGA takes a full second to

complete stage one. Transfer time is masked by pipelined DMA transfers. Thus at the

end of one second, effectively all the data from stage one is in CPU memory. The GPU

executes all computations in stage two in 0.86 seconds. Because an entire second’s worth

of data must be processed in at a time in stage two, the total latency is 1.86 seconds from

the time the camera starts sending data until the time a full second’s worth of processed

data is available in CPU memory. This only affects latency. Both stages execute at,

84

0

200

400

600

800

1000

Original Matlab OpenMP CPU GPU only FPGA-GPU-CPU
heterogeneous

P
ro

ce
ss

in
g

R
at

e
(F

P
S)

3.66 FPS

578 FPS

1024 FPS

0.437 FPS

Figure 6.4. The performance of the FPGA-GPU-CPU heterogenous implementation in
comparison to the original Matlab, the OpenMP C++, and the GPU only implementation.

or faster than real-time. A video of our FPGA-GPU-CPU implementation working on

captured data can be found at: http://www.youtube.com/watch?v=EfvXenkiGAA.

We compare our performance against the original serial software implementation,

an optimized C++ multi-threaded software implementation, and an optimized GPU

implementation in Figure 6.4.

The original serial software implementation was designed and published by the

Sung et. al [56]. The authors did not provide execution times for a full second’s worth

of data. However, running the same software on our i7 workstation takes 39 mins for

one second’s worth of data. To attempt a more fair comparison that uses all the cores

of a modern workstation, we implemented an optimized C++ version (with the same

algorithm implemented on the heterogeneous system). This version uses the OpenMP

API to parallelize portions of the application across multiple cores. The optimized

C++ program also used direct access tables to avoid computation such as trigonometric

functions and the FFT output indices. This implementation took 4.6 mins to perform the

same task. This is equivalent to 3.66 fps. We feel that this is an appropriate baseline for a

software comparison. Our FPGA-GPU-CPU design runs 273× faster that an optimized

85

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

e
n

ta
ge

 o
f

P
ix

el
s

(%
)

Error (%)

Image
Conditioning

Error
Repolarization

Error

Figure 6.5. Error of the output of the optical mapping image conditioning (blue line)
and error in repolarization analysis (red line). For any point (x,y) on the curve, the x
represents the error in percentage scale while the y represents the percentage of pixels
whose errors are greater than x.

C++ software version.

An optimized GPU implementation is described fully in [46]. It represents months

of optimization tuning. It performed at a respectable rate of 578 fps. But it would have to

be nearly twice as fast to achieve real-time performance. Additionally, like all the other

implementations except the FPGA-GPU-CPU implementation, it would require the use

of a frame capture device to be used in any real world scenario. A detail often overlooked

when comparing performance.

6.6.3 Accuracy

As described in Section 6.4, the 8 bit representation of pixels (instead of 32 bit)

introduces errors to the result. Algorithmic parameters limit processing of pixel arrays to

those with values above 60 and with variance above 2. This limits the amount of error

any one pixel can incur to 0.83 % when using 8 bits instead of 32 and rounding to the

86

nearest integer. However the normalization base value may be arbitrarily close to to any

pixel value. Therefore, the normalized error for any pixel is unbounded. Indeed, this is

evident in Figure 6.5. Some of the pixel locations show relatively significant errors. For

example, about 13.8% of pixels have error greater than 10%. In practice however, we

show that this is not as significant to the medical analysis.

We applied the repolarization extraction algorithm described in [56] on both

the FPGA-GPU-CPU and baseline CPU implementation outputs. Figure 6.5 shows

the repolarization error. This error is significantly lower than the image conditioning

error. Only 2.6% of the repolarization analysis have error greater than 10%. This result

indicates that using an 8 bit representation of interpolated pixels only slightly impacts

biomedical features that would be extracted from the output.

6.7 Conclusion

We have addressed the challenge of real-time optical mapping for cardio-elec-

trophysiology and presented a heterogeneous FPGA-GPU-CPU architecture for use in

medical applications. Our design leverages the stream processing of a FPGA and the high

bandwidth computation of a GPU to process video in real-time at 1024 fps with an end

to end latency of 1.86 seconds. This represents a 273× speed up over a multi-core CPU

OpenMP implementation. We also described our partitioning decisions and discussed

how designs leveraging only a GPU or only a FPGA were insufficient to achieve real-time

performance.

Acknowledgment

This chapter contains material printed in Field-Programmable Technology (FPT),

2012. The chapter also contains material that was omitted from the publication due to

space constraints. The work described in this chapter is a collaboration with Pingfan

87

Meng. The dissertation author was not the primary investigator. The dissertation author

was the second author of this paper.

Chapter 7

Hardware Accelerated Online Boosting
for Multi-Target Tracking

7.1 Introduction

Robust object tracking is a critical component for many applications. Input and

gesture recognition for human-device interaction [9], autonomous vehicle systems [6],

and video surveillance [54] all require accurate tracking input. Many of these practical

applications require tracking multiple independent targets at once, with low latency,

several times a second. Tracking effectively translates high bandwidth sensor information

into a low bandwidth set of data points for higher level algorithms. This is a challenging

task because an object’s appearance can change over time. Small changes in lighting,

occlusions, deformations, or rotations can have a dramatic effect.

Boosting, as an approach, has been employed in machine learning applications

with considerable success. In the computer vision community, classifiers of boosted Haar

features are commonly used as face and object detectors [58]. Training these classifiers

is typically performed offline with many training examples over several rounds. This

approach is based on the idea that a large volume of training examples be collected and

used for training, a priori.

Research has shown that online boosting can be very effective for object tracking

88

89

[30, 7]. In contrast to traditional offline boosting, online boosting gathers examples at

runtime and trains a classifier incrementally. This approach provides training examples

from the current environment and can result in a more adaptive and accurate classifier.

Offline boosting models rely on a large number of examples to effectively cover the space

of possible representations. But online boosting approaches only need examples of the

current representation to build an effective model for the object being tracked. This can

reduce the number of examples needed for training and improve classifier accuracy at the

same time.

Online training allows the appearance model to adapt as the object changes. This

however, incurs additional computation. Performance requirements can be difficult to

meet when only evaluating a fixed classifier. Online boosted tracking algorithms must

evaluate and train the classifier under the same performance requirements.

In this paper, we consider the task of accelerating an online boosting based tracker

capable of tracking multiple independent targets. We evaluate the tracking algorithm

proposed by Babenko [7]. We propose and implement two hardware designs using a

GPU and a FPGA. These designs are compared against software-only implementations.

The main contributions are:

• A FPGA design for training and evaluating an online boosted tracking classifier.

• A GPU design for training and evaluating an online boosted tracking classifier.

• A comparison and analysis of the hardware accelerated designs.

We continue with a discussion of related work. Afterwards, an explanation of

the online boosting algorithm is provided. We discuss our tracking application and its

requirements. This is followed by descriptions of the hardware accelerated designs.

Experimental performance results and analysis follow. We close with conclusions.

90

7.2 Related Work

Much of the research in online boosting for tracking focuses on improving

the algorithms [30, 59, 7]. While there are numerous hardware accelerated tracking

applications, they focus on the evaluation of trained classifiers, not the training. Online

boosting requires evaluation and training to be completed at runtime. The complexity

and iterative dependency of training makes it difficult to parallelize. To our knowledge,

there are no hardware accelerated designs for online boosted tracking in the literature at

the time of this writing.

Accelerating boosted classifier training has been addressed by Lo [45]. They

present a FPGA based architecture to reduce the time to train Viola-Jones style classifiers.

They achieve a 14× speed up over a high end processor. This work is similar to our own,

but deals only with accelerating offline training.

Heinzle et al. describe their work to accelerate computational stereo camera

processing in [34]. Their design uses a FPGA, GPU and CPU to process the stereo data

in real time. Online boosted tracking is employed in their framework. However the

tracking is run on the CPU. The authors point out that their system would benefit from a

FPGA accelerated online boosting tracking implementation.

Coates et al. propose a GPU based accelerated system for robotic object detection

[20]. Their system uses a boosted classifier and stereo disparity maps for robotic sensing.

Evaluation of their classifier is performed on the GPU, but training is performed on a

cluster of CPUs.

7.3 Algorithm

The tracking algorithm we employ is proposed by Babenko [7]. It is an online

boosting algorithm for tracking based on MILBoost [59]. It was selected because of its

91

Algorithm 2. Tracking Algorithm
Input: New image frame at time t

1: Select a set of samples, cropped from frame
X s = {x|s > ‖l(x)− l∗t−1‖}

2: Calculate Haar feature values, f (x), for x ∈ X s

3: Use classifier, H(x) = ∑k hk(x), to classify samples X s

4: Set new location l∗t = l(argmaxx∈X s H(x))
5: Select positive and negative samples sets from frame

X1 = {x|r > ‖l(x)− l∗t−1‖}
X0 = {x|q≤ ‖l(x)− l∗t−1‖< q′}

6: Train classifier on positive and negative sets
H = Train(X1,X0)

robust appearance model. The algorithm consists of two steps: 1) find and update the

new target location, then 2) update the trained classifier.

For each new image frame, a region surrounding the last known location is

evaluated. Evaluation yields a new location. Then the region surrounding the new

location is used to to select positive and negative training examples. These examples are

used update the classifier which will be used for the next frame. This tracking flow is

illustrated in Algorithm 2.

The algorithm is a two pass algorithm in the sense that it must access the image

frame twice. First to search for the new location. Then again, after the new location is

found to gather training examples. The passes must take place sequentially. The second

pass cannot begin until the new location has been found. A sequential dependency exists

between image frames as well. The next frame cannot be evaluated until the classifier

has been trained from examples drawn from the current frame.

We continue with a detailed explanation by describing the three basic components

common to most tracking algorithms: the motion model, the search strategy, and the

appearance model.

92

7.3.1 Motion Model

The motion model assumes the object location at time t will be within a radius,

s, from the previous object location at time t− 1. It grants equal probability to each

possible location within radius s. If we denote each possible location as l(x) and the

object location l∗, then:

p(l∗t1 |l
∗
t0) ∝


1, if ‖l∗t1− l∗t0‖< s.

0, otherwise.
(7.1)

7.3.2 Search Strategy

As all possible locations within the search radius, s, are equally likely, Equa-

tion 7.1 implies a uniform search strategy. In our implementation, all the possible

locations within the radius are evaluated. The location, l(x), with the maximum classifica-

tion value is selected as the new object location, l∗. This greedy strategy lends itself well

to parallel execution as there is no data dependency between locations during evaluation.

More sophisticated algorithms such as particle filters have been used for online boosting

[60]. However particle filtering would introduce additional dependencies between data

locations.

7.3.3 Appearance Model

The basic idea of boosting is to combine several weak classifiers, h, into a strong

classifier, H. This is achieved by iteratively maximizing the log likelihood of the strong

classifier:

log L (Hk−1 +h). (7.2)

At each iteration, k, the existing strong classifier is combined with the next weak

93

Figure 7.1. A. Circular search region with radius s (left). B. Circular region with radius
r for positive examples and sampled annular region with radii q and q′ for negative
examples (right).

Algorithm 3. Appearance Model Training Algorithm
Input: Labeled positive and negative sets {X1,1},{X0,0} where Xi = {xi,1,xi,2, ...}

1: Calculate Haar feature values, f (x), for x ∈ X1, X0
2: Update parameters µ1, σ1, µ0, σ0 for all features
3: Calculate weak classifier predictions, hm(x), for all M weak classifiers, for all samples X1, X0
4: Initialize H1, j = 0, H0, j = 0 for all j in X1, X0

Select K best weak classifiers from pool of size M
5: for k = 1 to K do
6: for m = 1 to M do
7: pm

i, j = σ(Hi, j +hm(xi, j))
8: pm

i = 1−∏ j(1− pm
i, j))

9: L m = 1
|X1| log(1− pm

1)+ 1
|X0| log(pm

0)
10: end for
11: m∗ = argmaxm L m

12: hk← h∗m(x)
13: Hi, j = Hi, j +h∗k(x)
14: end for
Output: H(x) = ∑k hk(x)

classifier, h, that maximizes this quantity over the training data. Training data comes in

the form of examples, xi, with binary labels, yi ∈ {0,1}.

Instance (location) probability is measured as:

p(yi = 1|xi) = σ(H(x)) (7.3)

where σ(x) = 1
1+e−x , the sigmoid function. This is the probability that location xi is a

positive sample (represents the object).

94

The algorithm makes use of an additional technique called Multiple Instance

Learning [22] to improve classifier robustness. The idea is to group samples together into

sets (called bags) and train using the sets instead of the samples directly. The training data

has the form {(Xi,y1), ...,(Xn,yn)}, where Xi = {xi,1, ...,xi,m}. Set labels are negative

unless at least one sample in the set is a positive example. Then the set label is positive.

Each sample inherits its set label. In practice we use two sets: a positive set and a negative

set.

Using Multiple Instance Learning has two main benefits. It mitigates the problem

of correctly labeling samples as they are collected. It also provides a higher degree of

flexibility in finding the decision boundary during training.

The first benefit is achieved by defining the positive training set as all the samples

in a radius, r, around the newly found object location. This radius must be small enough

to avoid including invalid positive samples in the positive set. It must also be large

enough to provide a margin of error for the newly found object location. We define the

negative training set by selecting samples from an annular region between two radii,

q and q′, surrounding the newly found location. The outer radius q′ is larger than the

inner radius q. The inner radius is set appreciably larger than r to reduce the chance of

including any positive samples. See Figure 7.1 for an illustration of these regions.

The second benefit deals with the inherent ambiguity in selecting a positive

example from image data. Even when performed by a human, the best single positive

sample can be slightly incorrect (e.g. cropping an image by hand). Providing multiple

overlapping samples with positive labels can be a better solution. However, training

directly on these samples can confuse the classifier and reduce discriminative power.

To preserve accuracy and flexibility in finding the decision boundary, training is better

served when performed on the bags instead.

To train on the bags, the algorithm needs to be able to represent bag probability.

95

This is accomplished using the Noisy-OR model. It defines bag probability as:

p(yi = 1|Xi) = 1−∏
j
(1− p(yi = 1|xi, j)). (7.4)

This model has the property that if one of the samples has high probability, then the entire

bag will have high probability. When calculating likelihoods, the veracity of each instance

label is not important. Only the bag label matters. Combined with Equation 7.3, the

classifier can be trained using the log likelihood of bags instead of instances. Algorithm 3

lists the steps for the training algorithm.

The algorithm uses Haar-like features, similar to those used for face and object

detection [58]. A Haar feature is a collection of weighted rectangular regions defined

within a window. The rectangles define a region of the window over which to sum

pixel values. The summing is typically performed efficiently using an integral image.

The value of the feature, f (x) is the weighted sum of its rectangular regions. Haar-like

features differ from Haar features in that they have between two and six rectangles each,

and rectangles need not be adjacent. In the rest of the paper, we refer to these features

simply as Haar features.

At initialization, a pool of M Haar features are generated with random rectangle

coordinates and weights. During training, K of these features are selected and are used

as weak classifiers, h(x), to form the strong classifier, H(x) = ∑k hk(x). Each weak

classifier consists of a Haar feature and four additional parameters: µ1, σ1, µ0, σ0. These

additional parameters quantify the degree to which the feature represents the object being

tracked. They are updated during training as

µi = γµi +(1− γ)
1
n ∑

i|yi=i
f (xi, j) (7.5)

96

σi = γµi +(1− γ)
1
n ∑

i|yi=i
(f (xi, j)−µi)2 (7.6)

using positive and negative samples, xi, j.

At runtime, each weak classifier predicts the likelihood of a sample window, x

using the log odds ratio:

h(x) =
1

2σ1
(f (x)−µ1)2 + log(

1√
σ1

)

− 1
2σ0

(f (x)−µ0)2− log(
1√
σ0

).
(7.7)

This formula results in higher scores the closer a sample’s feature value is to the mean of

the positive examples.

7.4 Tracking Application

We demonstrate the hardware accelerated online boosting tracker via a human

computer interaction (HCI) application. The requirements are to track at least three

independent points at a rate of at least 30 frames per second (FPS). We selected 30 FPS

because it is the sampling rate of most consumer video cameras. We need at least three

independent tracking points so that we can track a human and two hands. Supporting

additional points will improve fidelity and robustness by tracking finger tips and other

body parts. In future applications, for example in autonomous vehicle settings, supporting

multiple points will be crucial.

The implementation must also evaluate each image frame at three different scales.

The current scale and one scale higher and lower than the current scale. This is to be able

to track objects as they move closer and further from the camera.

The algorithm was initially implemented on a PC using software. It was unable

97

1 2 3 4 5 6 7
0

10

20

30

40

50

60

Tasks

Pe
rc

en
ta

ge
 o

f t
ot

al
 ti

m
e

Tasks as a percentage of total runtime

Create integral image
Create search sample set
Classify search samples
Argmax classified search set
Create pos/neg sample set
Train: classify pos/neg samples
Train: update parameters
Train: select K best weak classifiers
Render frame

Figure 7.2. Performance of different tasks in the algorithm as a percentage of total time.

to meet the project goals. Profiling revealed the bottlenecks to be: creating the integral

image, evaluating samples in the search sample set, training the classifier, and rendering

the image. See Figure 7.2. To achieve the project goals and reduce the bottlenecks, we

evaluate the algorithm in parallel hardware.

7.5 Hardware Design

The hardware designs largely address the bottlenecks identified in Figure 7.2. We

focused on accelerating tasks labeled 1, 3, and 6. However, because rendering images is

not strictly required for the application, we did not explore acceleration for that task.

The largest amount of time (54.5%) is spent in training the classifier; specifically

in the nested loops starting on line 5 in Algorithm 3. This task is predominately sequential.

Each of the K outer loop iterations must wait for the previous iteration to complete so

that Hi, j is valid before starting the next iteration. The calculation of the log likelihoods

on lines 7 and 8 can be parallelized, but line 9 acts as a barrier which limits pipelining

opportunities. This represents the inherent data dependency in boosting applications. It

also represents the largest acceleration opportunity in our hardware designs.

98

7.5.1 FPGA Design

The FPGA design is partitioned between PC software and FPGA hardware. The

software is responsible for acquiring image frames, passing data to the FPGA, receiving

data from the FPGA, and keeping track of tracking state. PC-FPGA communication is

achieve using the RIFFA framework [39].

The algorithm initializes in software. A pool of Haar features is generated and

tracking parameters are initialized by selecting a subset for the initial classifier H. The

software also handles target registration. Tracking locations can be of any size. Input

images are scaled to fit a fixed hardware window size of 20×20.

For each new 8 bit grayscale image frame, a square region of the frame surround-

ing the current location is cropped and sent to the FPGA along with parameters. The

square region includes only the pixels falling within the sample radius s. The parameters

define the Haar features, weak classifiers, search radius, scaling factors, and inform the

FPGA which operations to perform. The FPGA design is illustrated in Figures 7.3a and

7.3b. The algorithmic flow and component details follow.

Update Location

Parameters and image data sent from the PC are received by the Main module on

the FPGA. The Main module coordinates running the three stage pipeline as pictured in

Figure 7.3a. In this invocation, only Stage 0 is run. Stage 0 streams frame data through

three parallel classification pipelines. Each classification pipeline scales the frame data

independently, converts the scaled data into integral image data, and runs it through a

systolic sliding window.

Classification Pipeline Image scaling is used to resize the input region so that the

tracked location fits within a 20×20 window. It is also used to enable evaluation at one

99

M
A

X

M
E

A
N

C

A
LC

U
LA

TI
O

N

W
E

A
K

C

LA
S

S
IF

IE
R

U
P

D
AT

E

FE
AT

U
R

E

PA
R

A
M

E
TE

R
S

H
P

O
S

H
N

E
G

LO
G

 L
IK

E
LI

H
O

O
D

C

A
LC

U
LA

TI
O

N

LO
G

 L
IK

E
LI

H
O

O
D

C

A
LC

U
LA

TI
O

N

H

O
S

T
P

C

R
E

C
V

 T
H

R
E

A
D

S

E
N

D
 T

H
R

E
A

D

S
TA

G
E

 0

M
A

IN

P
C

I E
X

P
R

E
S

S

LI
N

K

FP
G

A

P
C

S
TA

G
E

 1

S
TA

G
E

 2

P
IP

E
LI

N
E

D

FR
A

M
E

S

C
A

LE
R

IN
TE

G
R

A
L

IM
A

G
E

R
A

D
IA

L
FI

LT
E

R

H
A

A
R

C

A
LC

U
LA

TI
O

N

M
A

X

W
E

A
K

C

LA
S

S
IF

IE
R

S
LI

D
IN

G

W
IN

D
O

W

(a
)

W
E

A
K

C

LA
S

S
IF

IE
R

M

E
A

N

C
A

LC
U

LA
TI

O
N

U
P

D
AT

E

FE
AT

U
R

E

PA
R

A
M

E
TE

R
S

W
E

A
K

C

LA
S

S
IF

IE
R

H

O
S

T
P

C

R
E

C
V

 T
H

R
E

A
D

S

E
N

D
 T

H
R

E
A

D

S
TA

G
E

 0

M
A

IN

P
C

I E
X

P
R

E
S

S

LI
N

K

FP
G

A

P
C

S
TA

G
E

 1

S
TA

G
E

 2

P
IP

E
LI

N
E

D

H
P

O
S

M
A

X

LO
G

 L
IK

E
LI

H
O

O
D

C

A
LC

U
LA

TI
O

N

H
N

E
G

LO
G

 L
IK

E
LI

H
O

O
D

C

A
LC

U
LA

TI
O

N

FR
A

M
E

S

C
A

LE
R

IN
TE

G
R

A
L

IM
A

G
E

R
A

D
IA

L
FI

LT
E

R

H
A

A
R

C

A
LC

U
LA

TI
O

N

M
A

X

S
LI

D
IN

G

W
IN

D
O

W

(b
)

Fi
gu

re
7.

3.
H

ig
h

le
ve

la
rc

hi
te

ct
ur

e
of

FP
G

A
de

si
gn

.
Fi

gu
re

(a
)

sh
ow

s
th

e
m

od
ul

es
ac

tiv
e

du
ri

ng
lo

ca
tio

n
up

da
te

.
G

ra
ye

d
ou

t
m

od
ul

es
fr

om
St

ag
es

1
an

d
2

ar
e

in
ac

tiv
e

du
ri

ng
lo

ca
tio

n
up

da
te

.F
ig

ur
e

(b
)s

ho
w

s
th

e
ac

tiv
e

m
od

ul
es

du
ri

ng
cl

as
si

fie
rt

ra
in

in
g.

O
nl

y
on

e
cl

as
si

fic
at

io
n

pi
pe

lin
e

in
St

ag
e

0
is

ac
tiv

e
du

ri
ng

cl
as

si
fie

rt
ra

in
in

g.

100

scale above and below the current scale. Because the same input data stream is sent to all

three pipelines, the data must be large enough to accommodate the largest scaling factor.

This is calculated on the PC and the cropped region is set accordingly.

The scaling module uses block RAM (BRAM) to buffer lines of the cropped

image data. Four pixels are used to interpolate each output pixels at the correct scale. An

integral image is calculated on the scaled image. Only the 17 least significant bits of each

integral image pixel are kept. This has no affect on Haar feature calculation as higher

order bits will be subtracted away.

Integral image pixels are streamed to a sliding window architecture, similar to

that employed by Cho [19]. It is a systolic architecture where each new pixel generates

a new vertical column of pixels in the window. BRAMs buffer horizontal lines until a

full window has been buffered. A register array is used to maintain the current window

values so that any arrangement of pixels can be accessed each cycle.

The register window is accessed by six parallel Haar feature extractor modules.

This allows each classification pipeline to calculate one Haar feature every cycle. Haar

calculation involves summation and multiplication for the rectangle weights. In software,

the weight parameter is represented using a single precision float. To avoid the floating

point expense in hardware, we represent rectangle weights using 4 bits of precision. This

decision was arrived at empirically after evaluating several fixed bit width representations

for rectangle weight. See Figure 7.4. This yields Haar values at the same level of accuracy

as when using a single precision float.

Radial and annular filtering is accomplished by tracking window positions within

the cropped region. Windows meeting the radial criteria have all K Haar values calculated

in K cycles.

After the Haar features are calculated, they are streamed to the WeakClassifier

module which performs the calculations in Equation 7.7. The WeakClassifier calculates

101

values in a fully pipelined fashion. This produces a new value every cycle. The values

are summed to achieve a single value per window location. The maximum sum across all

three classification pipelines is returned to the PC along with the corresponding window

location and scale. The PC uses this data to update the target location.

We avoid division, square root, and logarithm operations in the WeakClassifier

module by precomputing these functions on the PC. This leaves only multiplication,

addition, and subtraction. While this can be performed efficiently using fixed point

arithmetic, we use floating point operator modules. This is done because the weak

classifier feature values take on a wide range of values. The algorithm’s ability to

discriminate between these values directly impacts its accuracy. Using fixed point

representation would require considerably more bits of precision.

Classifier Training

Training the classifier requires most of the same data needed for the update lo-

cation operation. However, this data path has data barriers imposed by the algorithm.

Training depends on the selected features from the previous iteration and thus cannot

overlap. Log likelihood values calculated in each training iteration require all the weak

classifier predictions to have been calculated. These weak classifier predictions cannot

be calculated until all the feature parameters have been updated. Finally, the feature

parameters cannot be updated until all the Haar values have been calculated. To accom-

modate these barriers, we split the data path into three Stages that can run concurrently

without data dependencies. Data generated between Stages are stored in FIFOs. This

data is generated in both sample major and feature major order, depending on the Stage.

Data sent to the intermediate FIFOs is stored according to how it will be accessed in

subsequent Stages.

As before, Stage 0 calculates Haar feature values for each sample location. These

102

are the Haar values represented in line 1 of Algorithm 3. In addition, the mean E(X) and

squared mean, E(X2) for each Haar feature are calculated incrementally as the values are

generated. Division is accomplished using floating point operators.

Stage 1 uses the saved Haar values, E(X), and E(X2) to update feature parameters

µ1, σ1, µ0, σ0 and calculate weak classifier prediction values for each sample location.

The feature parameters are updated according to Equations 7.5 and 7.6 and sent to the

PC. In doing so, E(X) is used to update µ in a straightforward manner. Unfortunately,

the variance term in Equation 7.6 is calculated with respect to the just updated µ value,

not E(X). Typically one would use the following definition to calculate this variance

term, var(X) = E(X2)− (E(X))2. But the variance term is actually a relative variance

value and µ 6= E(X). Fortunately, defining variance in terms of expected value provides a

solution that avoids (re)iterating over the Haar values. We calculate the relative variance

term in Equation 7.6 as:

E(X2)−2µE(X)+ µ
2. (7.8)

A proof of this relative variance representation follows:

Let X be a discrete random variable and µ be any real value. The variance of X relative

to µ can be expressed as:

relvar(X ,µ) = E(X2)−2µE(X)+ µ
2

103

Proof:

relvar(X ,µ) = ∑
x∈X

(x−µ)2 p(X = x)

= ∑
x

(x2−2µx+ µ
2)p(X = x)

= ∑
x

(x2−2µx)p(X = x)+ µ
2
∑
x

p(X = x)

= ∑
x

(x2−2µx)p(X = x)+ µ
2

= ∑
x

x2 p(X = x)−2µ ∑
x

xp(X = x)+ µ
2

= E(X2)−2µE(X)+ µ
2

After Stage 1 generates all the weak classifier prediction values, Stage 2 uses these

values to calculate the log likelihood for each feature. The log likelihood is calculated

using a pipeline of floating point operators. This preserves accuracy for the wide range of

resulting values with operations: exponential, division, and logarithm. Stage 2 iterates K

times, selecting the feature with the maximum log likelihood each time. The intermediate

classifier Hi, j is stored and updated each iteration.

Because of the data dependency between iterations, each iteration’s processing

cannot be parallelized. However, the log likelihood calculation is not data dependent.

In our design we parallelize this data path 8 times. Positive and negative samples are

calculated in their own set of parallel pipelines. Thus there are 16 parallel pipelines. This

factor was selected to balance the runtime between Stages. Stage 2 generates K numbers

in total, representing the selected top K weak classifiers hk in H. The selected features

are sent to the PC to update the definition of the trained classifier for the next frame.

104

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Float
0

1

2

3

4

5

6

Bit width of Rectangle Weight Coefficients

R
M

SE

Root Mean Squared Error vs. Bit Width

Figure 7.4. Root mean squared error of different bit widths for Haar rectangle weights
over test sequences.

7.5.2 GPU Design

The GPU design consists of two CUDA kernels, invoked from a C++ application.

The functions in these kernels were selected based on how amenable they are to GPU

execution. These kernels perform feature calculation and log likelihood calculation

respectively. The rest of the algorithm runs in software.

For each new 8 bit grayscale image frame, two additional scaled frames are

generated. Integral image representations of all three frames are calculated. Sample

locations surrounding the current location are then passed to the feature calculation

kernel along with the integral images, Haar, and feature parameters. The kernel performs

Haar feature extraction and weak classifier prediction on all specified samples as in lines

2-3 in Algorithm 2. It returns the location with the maximum prediction value.

Using the new location, the CPU samples two sets of positive and negative training

locations. It passes these locations to the feature calculation kernel. However, during this

invocation the kernel only calculates and returns Haar values for the specified samples.

These values are used by the CPU to update feature parameters as in Equations 7.5

and 7.6. Once updated, these parameters are sent to the feature calculation kernel. This

105

Feature Extraction Kernel

……

Thread
Block 0

Thread
Block 1

Thread
Block N-1 …

L0

F0

…

L1

F0

L2

F0

L3

F0

LX1-1

F0

LX1-1
FW-1

L: location
F: feature
X1: number of locations per
thread block
W: number of features
N: number of thread blocks
N=X/X1
X: number of locations

L0

FW/2-1

……

L1

FW/2-1

L2

FW/2-1

L3

FW/2-1

…
 …

X1*W1 threads:

Output: evaluation of X1
locations

Time

Compute Haar
feature value:

Reduction … … Shared Memory
… …

… …

Figure 7.5. Implementation of the feature extraction kernel.

invocation of the kernel is also different in that it only calculates weak classifier prediction

values. It returns nothing to the CPU, but keeps these values in GPU memory. These last

two invocations of the feature calculation kernel are in some sense executing the first half

and second half of the kernel respectively.

The prediction values are used by the log likelihood calculation kernel. This

kernel performs the calculations on lines 7-9 in Algorithm 3. It takes as input, a partially

boosted classifier on each invocation and returns log likelihood values for each feature.

Software sorts these values to find the next weak classifier h∗k . It updates the intermediate

classifier Hi, j and continues iterating. Figure 7.6(b) illustrates this arrangement.

106

Feature Calculation

The feature calculation kernel is designed to exploit the lack of data dependency

between sample locations. For X samples and W features, it utilizes X ×W CUDA

threads to compute values in parallel. Each CUDA thread computes a single feature value

for one location. To generate the prediction value for a sample, its feature values must be

summed. This is accomplished using a reduction.

The number of features limits the number of threads accessed by each reduction

in a thread block. In our design W = 50. As this is well below the maximum number of

threads in a thread block, the reduction only uses shared memory. No global memory

synchronization is needed and thread blocks can run independently. In order to maintain

high GPU streaming multiprocessor occupancy, the kernel processes multiple locations

on each thread block. Threads are aligned along the location index to achieve a sequential

addressing reduction. This keeps processing threads near each other and within the same

warp. Figure 7.5 illustrates the CUDA thread arrangement. After the all the feature

values are calculated, another reduction selects the maximum value across all samples.

Log Likelihood Calculation

The log likelihood kernel calculates log likelihood values for a single iteration

of the training loop as listed on line 5 of Algorithm 3. The kernel is designed to only

calculate values for a single iteration because of the dependency between iterations.

Iterating within the CUDA kernel would require a global synchronization of all threads

to implement the sorting operation. This is inefficient for the GPU and comparatively

slow. Therefore, the CPU sorts and selects features from the GPU kernel output between

invocations.

Within a single invocation, the kernel utilizes M× J parallel threads to calculate

the instance probabilities for M features across J training samples. This computation

107

Classifier Update Kernel

Thread
Block 0

Thread
Block 1

Thread
Block N-1 …

… …

2*J threads:

… … Shared Memory

Time

𝑝𝑖,𝑗
𝑚= σ(𝐻𝑖,𝑗 +

ℎ𝑚(𝑥𝑖,𝑗)) :

 (1− 𝑝𝑖,𝑗
𝑚)

𝑗

Reduction :

Output: likely hood array

N: number of blocks
N=M/2
M: number of features in
the feature pool
J: number of pos/neg
samples

(a)

Classifier Update Kernel (GPU)

Sort (CPU)

Select (CPU)

Iterate: 0 to K-1
K: number of
selected features

(b)

Positive and
negative feature

values

Updated H values

Likely hood values

Sorted likely hood array

Figure 7.6. Implementation of the feature update kernel. (a) Thread assignment; (b)
Sequential iteration data flow.

108

MATLAB C++ GPU FPGA
1

10

100

1,000

Implementations

Fr
am

es
 p

er
 s

ec
on

d

Implementation performance

1 location
3 locations

68x

68x

2.7x

2.7x

1x

1x

0.007x

30 FPS

Figure 7.7. Performance of implementations. Speed up factors over the C++ implemen-
tation are shown above each bar. Y axis is logarithmic.

is equivalent to line 7 of Algorithm 3. A reduction is used to compute the positive and

negative likelihoods as listed in line 8. This reduction is similar to the reduction in the

feature calculation kernel in that intermediate data is stored using shared memory. The

CUDA thread assignment is illustrated in Figure 7.6(a).

7.6 Results And Analysis

We tested all our implementations on the same PC, a 4 core Intel i7 3.6 GHz

system with 16 GB RAM, running Ubuntu 10.04. Except for the MATLAB implementa-

tion, we tested the implementations using C++ applications with O2 GCC optimizations.

640x480 resolution image frames were used. We used the OpenCV library for image

manipulation functions. For all experiments, the feature pool size was set to 250, with a

classifier size of 50. We set s to 35, r to 4, q to 6, and q′ to 8. Figure 7.8 shows some

tracking sequences from our experiments.

Figure 7.7 shows the performance of our implementations. Because many practi-

109

cal applications do not need to render the image frame, we did not include the time to

render in our measurements. Otherwise, time measurements for the performance reported

include the time for running the entire algorithm, not just the accelerated kernels. We

discuss kernel performance relative to overall performance in the sections below.

7.6.1 Software-only

We implemented the algorithm in software using Mathworks MATLAB and C++.

The MATLAB implementation is a single threaded implementation that uses MATLAB

APIs exclusively. It is capable of running the algorithm at 0.123 FPS. We did not attempt

to run the algorithm with multiple targets.

Our C++ implementation is a highly optimized, multi-threaded software imple-

mentation that makes use of Intel Integrated Performance Primitives vector instructions.

It also uses the OpenMP library to parallelize the application. This implementation

is based on a version provided by the authors of the algorithm [7]. It is capable of

running at 17 FPS while tracking a single target and at 7 FPS when tracking three targets

concurrently.

7.6.2 GPU

Our GPU implementation was written using the NVIDIA CUDA 5.0 SDK and

was run using a NVIDIA GeForce GTX 690. It runs at a base frequency of 910 MHz and

has 3072 CUDA cores. This design runs the algorithm partially in C++ and partially on

the GPU. The implementation is capable of running the tracking algorithm on a single

target at 47 FPS. When tracking three independent targets, the frame rate is 19 FPS.

When tested separately, the feature calculation kernel runs at 92 FPS. Similarly, the log

likelihood calculation kernel runs at 137 FPS (rate includes all 50 invocations) .

110

Table 7.1. FPGA design resource and VC707 utilization.

Slice Reg. Slice LUT BRAM DSP48E
187505 231971 224 304

31% 76% 22% 11%

Figure 7.8. Example tracking sequences (left to right). Multiple target tracking.

7.6.3 FPGA

The FPGA design was built using Xilinx Vivado 2013.3 in Verilog. High level

synthesis was not used. It was implemented on a Xilinx Virtex 7 VC707 development

board and run at 250 MHz. It has a x8 Gen 2 PCIe connection to the PC. Table 7.1 lists

the resource utilization of the entire design. Values between the FPGA implementation

and the software implementation differ by a maximum of 0.77% (on the log likelihood

calculation). This is due to the differences in floating point operators between the CPU

and FPGA and has no affect on the selection of features.

The FPGA implementation communicates with a C++ application. However,

as all the image processing is performed on the FPGA, the software only performs

bookkeeping functions. It is capable of tracking a single target at 1160 FPS, three targets

at 480 FPS, and 57 targets at 30 FPS. When tested separately, the invocations to find the

new location and to train the classifier run at 6635 FPS and 1383 FPS respectively.

111

7.6.4 Comparison

The GPU implementation runs 2.7× faster than the C++ implementation, whereas

the FPGA implementation does so 68× faster. The difference in performance between

the two stems from differences in their respective architectures. The FPGA design

is a pipelined hardware data path with dedicated operators to calculate values on on

manually scheduled data. This results in a substantial advantage over the massively

parallel automatically scheduled GPU execution.

In a GPU, each thread is configured to run a specific kernel on potentially multiple

data. This is efficient when there exists enough data to process. However as the data

becomes exhausted, threads sit idle waiting for the rest to complete. This is generally

unavoidable in applications. But the duration and amount of idle threads can have a

significant impact on performance. Data dependencies, barriers, branches, and reductions

can all contribute to idle threads. Both our kernels suffer from this behavior. The feature

extraction kernel suffers the most due to the Haar and prediction value sum reduction.

Figure 7.9 illustrates this graphically. During the Haar value sum, the number of active

threads decreases by half after each round of threads complete. Afterwards, the prediction

STAGE 0

Time

Time

O
cc

up
ie

d
Th

re
ad

s
P

ip
el

in
e

S
ta

ge
s

STAGE 1

STAGE 2

HAAR
RECT
CALC HAAR

RECT
SUM

HAAR
RECT
CALC

Figure 7.9. FPGA pipeline filling (top). GPU non-idle threads for feature calculation
kernel (bottom). Hatched region represents idle resources.

112

value sum underutilizes the GPU by only occupying a fraction of the available threads.

This underutilization cannot be solved by including more data from additional targets

because the design must accommodate a variable number of tracking targets. Thus each

thread must run to completion before acquiring new data from the next target. A design

that expected a specific number of tracking targets could mitigate this effect, but not

eliminate it.

On the FPGA, multiple targets are processed serially as with the GPU. However,

Stage modules are able to overlap in time. This contributes most significantly to the

better performance. The amount of idle time is limited to the fill and drain time for the

three Stage pipeline. Since each Stage’s runtime is on the order of microseconds, this idle

time is minimal. Additionally, the data path has been manually parallelized at bottlenecks

to keep each Stage’s runtime nearly the same. Lastly, the algorithm executes almost

completely on the FPGA. The CPU is only responsible for bookkeeping operations. The

GPU design requires more interactions with the CPU and relies on the CPU for some

image processing. This manifests in lower overall performance for the GPU design

despite respectably high individual kernel performance.

Unlike the GPU implementation, the performance of the FPGA design is depen-

dent on the size of the target being tracked. Larger crop regions will take more time to

transfer and more time to scale for the FPGA. In our experiments we tracked targets

from 20×20 to 40×40 pixels without any significant change in performance. However

in extreme cases, we expect this to have a measurable effect. The GPU implementation

accepts the entire frame as input. This incurs more transfer time overhead, but has the

added benefit of being shared between tracking targets.

Both implementations scale well with additional targets, and at nearly the same

rate. For the same period of time, the total number of tracked targets is higher at the

lower frame rate. The GPU implementation frame rate is however less than real time at

113

multiple points.

7.7 Conclusion

In this paper, we have addressed the task of accelerating an online boosting based

multi-target tracker. We have proposed and evaluated two hardware designs: a GPU

design and a FPGA design. Speed ups over the software-only C++ implementation are

2.7× for the GPU design and 68× for the FPGA design. The FPGA design is capable of

tracking 57 independent targets at 30 FPS. The FPGA design also leverages pipelining

and accelerates most of the algorithm which leads to better performance.

Acknowledgment

This chapter contains material printed in Field-Programmable Custom Computing

Machines (FCCM), 2014. The chapter also contains material that was omitted from the

publication due to space constraints. The work described in this chapter is a collaboration

with Siddarth Sampangi. The dissertation author was the primary investigator and author

of this paper.

Chapter 8

Improving FPGA Accelerated Track-
ing with Multiple Online Trained Clas-
sifiers

8.1 Introduction

Robust visual object tracking has improved considerably in recent years and is

becoming a widely used enabling technology. It empowers a host of applications in

fields such as: human computer interaction [9], autonomous vehicles [6], and video

surveillance [54]. Yet it is still an especially difficult task for computers as objects change

in appearance over time. Rotation, scaling, and using lighting insensitive color space

transformations can compensate for some changes in appearance. But rotations out of

plane, occlusions, and object deformation still present a problem for most algorithms.

Algorithms that learn an appearance model online have proven effective for robust

tracking [31, 7]. Instead of training offline with large volumes of examples, the approach

is to train online using a modest number of examples gathered at runtime. This approach

has the benefit of training with examples that match the current appearance. But it

requires additional online computation which can affect runtime performance.

Boosting for feature selection has been used with great success for detection

[58] and tracking [31]. Boosting is the process of combining many weak classifiers

114

115

into a single strong classifier that performs better in aggregate. Training examples are

used in an iterative process to identify the most discriminative weak classifiers. In the

tracking context, weak classifiers are image features. Online boosting for tracking is an

adaptation of boosting that fits the online training approach. Appearance model features

are boosted to generate a classifier that can detect an object as it currently appears. As

the object’s appearance changes, new examples are gathered, and the classifier is updated

accordingly.

Our contributions in this paper deal with online boosting for tracking. Tracking

has three main components: an appearance model which identifies the object, a dynamics

model which governs how the object moves, and a search strategy which defines where

to look for the object. We address the challenge of tracking visibly changing objects

through improvements in the appearance model. This work is based on our previous work

in FPGA accelerated online boosting [40]. We improve upon the single online boosted

tracker approach by using multiple classifiers learned at runtime. These classifiers are

trained to recognize specific poses of a target which helps maintain location accuracy.

To use multiple trackers effectively, we present a novel method for comparing classifier

scores. Lastly, we accelerate our algorithm using a FPGA. The additional computation

power from the FPGA allows the algorithm to evaluate and train up to 11 different

classifiers each frame at 60 frames per second (FPS). Compared to the original algorithm,

our work shows not only improvements in runtime performance, but in tracking accuracy

as well. The contributions of this paper are:

• An algorithm for learning a pool of pose-specific classifiers at runtime.

• A method for comparing multiple classifier scores.

• A FPGA-CPU design and implementation of our algorithm for robust tracking.

The rest of the paper is organized as follows. We discuss related work next. The

116

algorithm is described in Section 8.3. The FPGA design is presented in Section 8.4. This

is followed by experimental results in Section 8.5 and conclusions.

8.2 Related work

Research in object tracking frequently takes one of two directions. Research in

tracking algorithms and features often leads to improvements in accuracy. While research

in hardware acceleration often leads to improvements in runtime performance. In our

work, we provide an algorithm and FPGA accelerated design that leads to improvements

in both.

From an algorithmic perspective, our design uses an online boosting approach

for the appearance model similar to that employed by Viola [59]. It builds on the work

of Babenko [7] by using classifiers trained at runtime. Several other algorithms use this

adaptive approach [32, 31, 1] including the well known Predator algorithm by Kalal[41].

These algorithms attempt to learn a representation of the target object using a single clas-

sifier over time. This can be a successful approach for certain classes of objects that have

a limited number of visual representations. For deformable objects or objects that can

vary substantially in appearance, many classifiers do not have the expressiveness to learn

all representations. Our approach is unlike other adaptive appearance algorithms because

we employ multiple classifiers to handle changes in appearance. Our tracking classifiers

adapt to a short term appearance history. Our pose-specific classifiers detect previous

representations with high discriminative capability. Both classifiers are used to track

objects as they move and change in appearance. This approach requires incorporating the

multiple classifier predictions into a single algorithmic prediction.

From a hardware perspective, our work with online boosting is similar to that

contributed by Lo[45]. Lo proposes a method for accelerating boosted training for Viola-

Jones style detectors. They achieve a 14× speed up over a CPU. But their work is aimed

117

Algorithm 4. Classifier Tracking Algorithm
Input: New image frame at time t

1: Select a set of samples, cropped from frame,
X s = {x|s > ‖l(x)− l∗t−1‖}

2: Calculate Haar feature values, f (x), for x ∈ X s

3: Use classifier, H(x) = ∑k hk(x), to classify samples X s

4: Set new location l∗t = l(argmaxx∈X s H(x))
5: Select positive and negative samples sets from frame,

X1 = {x|r > ‖l(x)− l∗t−1‖}
X0 = {x|q≤ ‖l(x)− l∗t−1‖< q′}

6: Train classifier on positive and negative sets,
H = Train(X1,X0)

at accelerating traditional offline boosting. Other FPGA tracking accelerated work in

the field focuses mostly on accelerating classifier evaluation [4] or search methods [16].

Most are standalone designs that do not improve upon the accuracy of the algorithms

they accelerate. Moreover, to our knowledge, no other work accelerates online training

using dedicated hardware.

8.3 Algorithm

Our algorithm uses multiple concurrent classifiers each frame and merges their

outputs to select a new location.These classifiers follow an online boosting algorithm

proposed by Babenko [7].

8.3.1 Classifier Algorithm

Babenko’s algorithm is an online boosting algorithm for tracking which uses

Multiple Instance Learning [22]. It was selected because of its adaptive appearance

model. It uses a first order dynamics model for motion and uniform search strategy. The

algorithm consists of two steps: find the new target location, then update the trained

classifier. For each frame, the first step evaluates windows in a region surrounding the

last known target location (radius s). Evaluation yields a new location. Then the region

118

surrounding the new location is used to to select positive and negative training examples

(radii q and q′). These examples are used to incrementally train the classifier for the next

frame. This tracking flow is illustrated in Algorithm 4.

The algorithm uses a boosted collection of Haar-like features for the appearance

model. A Haar-like feature is a collection of two to six weighted rectangular regions

defined within a window.The rectangles define regions of the window over which to sum

pixel values. The rectangles need not be adjacent. We refer to these features simply as

Haar features in the rest of this paper.

Boosting is an approach which combines several weak classifiers, h, into a

strong classifier, H by iteratively maximizing the log likelihood of the strong classifier

log L (Hk−1 +h). At each iteration, k, the existing strong classifier is combined with the

next weak classifier, h, that maximizes this quantity over the training data.

At initialization, a pool of M Haar features are generated with random rectangle

coordinates and weights. During training, K of these features are selected and are used

as weak classifiers, h(x), to form the strong classifier, H(x) = ∑k hk(x). Each weak

classifier consists of a Haar feature and four additional parameters: µ1, σ1, µ0, σ0.

These parameters quantify the distribution of Haar scores, f (x), for positive and negative

examples respectively. They are updated during training using examples collected from

the current frame. At runtime, each weak classifier calculates the score of a sample

window, x, using the log odds ratio:

h(x) =
1

2σ0
(f (x)−µ0)2− log(

1√
σ0

)

− 1
2σ1

(f (x)−µ1)2 + log(
1√
σ1

).
(8.1)

This formula results in higher scores the closer a sample’s feature value is to the positive

mean and the further it is from the negative mean.

119

Algorithm 5. Main Tracking Algorithm
Input: New image frame at time t

1: Evaluate all classifiers at location
{X1,X2,X3,XPool}= Evaluate(T 1,T 2,T 3,Pool)

2: Calculate majority, x∗T = Ma jority(X1,X2,X3)
3: Calculate pose-specific classifier pool maximum,

x∗Pool = argmaxx∈XPool (Kurtosis(x)×Score(x))
4: Use maximum as location, l∗ = l(argmaxx∗T ,x∗Pool

Score(x))
5: Identify pool classifiers with detections,

D = {p ∈ Pool|ValidDetection(p)}
6: Update least used priority queue, Q = U pdateQueue(Q,D)
7: Start training a new pose-specific classifier if possible,
8: if Stable(X1,X2,X3) and Pnew == none then
9: Pnew = min(Q)

10: Pool = Pool∪Pnew

11: else if not DetectedEnough(Pnew) then
12: Pool = Pool \Pnew

13: Pnew = none
14: end if
15: Train classifiers, Train(T 1,T 2,T 3,D)

Each classifier employed by our algorithm uses a modified version of this tracking

algorithm. To improve tracking efficacy, we change the classifier’s scoring function to

only use the positive example distribution:

h(x) =− 1
2σ1

(f (x)−µ1)2. (8.2)

Positive training examples gathered across frames will likely have a similar distribution

because they are all sampled from the target’s location. However, negative examples

are drawn from multiple different locations in a frame and across frames. A single

normal distribution will model this distribution poorly and distort scores. In practice, we

confirmed that using our scoring function produced more reliable, more stable scores.

This does not mean negative examples are ignored. Negative examples are still used

during classifier training.

Each classifier is also modified to calculate normalized cross-correlation scores for

120

Figure 8.1. Classifier scores during target appearance changes. Changes produce sharp
drops in score and spikes in variance.

each window, in addition to Haar feature based scores. The normalized cross-correlation

is computed between a pixel template captured at runtime and each frame window in

the search region. Both Haar and normalized cross-correlation are used as independent

methods of locating the target object within the search region.

Lastly, each classifier calculates the mean and variance of scores across all

windows in the search region. It also returns the 128 highest scoring locations detected

in each frame, instead of just the maximum location.

8.3.2 Main Algorithm

Our algorithm is both motivated and enabled by FPGA acceleration. FPGA

acceleration provides runtime resources beyond a typical CPU based implementation.

These additional resources can be used to track multiple independent targets through

simple replication. They can also be used to improve tracking a single target. However,

combining the results of multiple classifiers is not as straightforward. Our algorithm uses

multiple classifiers per target in two different ways. It uses three adaptive classifiers for a

single target, and trains pose-specific classifiers to be evaluated concurrently each frame.

121

Figure 8.2. Plot of a classifier’s score over the X and Y dimensions. This example shows
a sharp peak and the next highest peak at least d pixels away. The variance normalized
difference between these two peaks is the kurtosis. Larger differences higher confidence
in the maximum location.

This flow is described in Algorithm 5.

Our algorithm uses three adaptive classifiers with a majority aggregation function.

These classifiers are evaluated and trained every frame. The majority location is the

new target location. Any adaptive tracking classifier that drifts over a threshold distance

away from this location is re-centered on the majority location. Using multiple classifiers

improves robustness because each classifier is able to track a different part of the target,

at a different scale, with different features. We found using the majority provided better

results over using the maximum because spurious, high scoring, incorrect maximal

locations from a single classifier do not influence the majority location.

Before using multiple classifiers, we attempted to mitigate target loss by using

more features with a single tracker. This approach showed improvement, but did not

reduce drift or target loss by any significant amount. The number of features that can fit

in a fixed sized sliding window are limited. Adding additional features per classifier has

a diminishing margin of return but reduces runtime performance linearly.

Our algorithm also learns pose-specific classifiers at runtime and evaluates them

122

concurrently with the adaptive tracking classifiers. Pose-specific classifiers are trained

to detect a specific representation of the target. The intuition is that a single tracking

classifier cannot effectively learn every representation of an object (imagine a vehicle

from different angles or a human hand performing gestures). Individual classifiers can

however learn a specific object pose with high discriminative ability. If such poses are

revisited in future frames, trained pose-specific classifiers can be used to recover from

tracking drift or even complete target loss.

Unlike the adaptive tracking classifiers, pose-specific classifiers are trained only

when the target appears in the same pose. We take an active learning approach to detect

these situations. For each frame, if the pose-specific classifier’s maximum scored location

and a normalized cross-correlation maximum location agree, the detection is valid and

the classifier is trained. Otherwise, no training takes place. Valid detections are used as

potential new target locations. The normalized cross-correlation is performed using a

template acquired on the first frame of training.

Creating a pose-specific classifier risks training on something other than the target.

This can happen when the current location has drifted or the target is lost. The algorithm

cannot detect drift or loss without supervision or feedback. Instead it waits until the

tracking classifiers are temporarily stable. Stable simply means the target is currently

being tracked (moving or not) with high confidence. Our algorithm identifies these times

using the current score, average score and variance. Times of instability are punctuated

by large drops in score, followed by a period of adaptation characterized by high variance

(see Figure 8.1). Constant training makes it impossible to learn a consistent mean, so a

decaying average mean is maintained, along with its variance. When the current score is

above the mean and the variance has decreased below a threshold, the tracking classifiers

are considered temporarily stable.

Only one pose-specific classifier is trained at a time. It is given a fixed number of

123

MEAN
CALCULATION

UPDATE
FEATURE

PARAMETERS

WEAK
CLASSIFIER

HOST PC

RECV THREAD SEND THREAD

STAGE 0

MAIN

PCI EXPRESS
LINK

FPGA

PC

STAGE 1 STAGE 2
PIPELINED

HPOS

MAX

LOG LIKELIHOOD
(FOR POS. EX.)

HNEG

LOG LIKELIHOOD
(FOR NEG. EX.)

FRAME
SCALER

INTEGRAL
IMAGE

RADIAL
FILTER

HAAR
CALCULATION

SLIDING
WINDOW

MAX

WEAK
CLASSIFIER

Figure 8.3. FPGA-CPU high level architecture. The FPGA design is composed of a
three stage pipeline: Evaluate, Update, and Train. The pipeline is controlled by a state
machine that also interfaces with software running on the host PC.

frames within which it must be trained a minimum number of times. If the pose does not

exist long enough, the classifier will not meet the minimum training threshold and it is

discarded. If it does meet the threshold, it is kept and added to a pool of concurrently

evaluated pose-specific classifiers. Each frame, all classifiers in the pool are evaluated at

the current location.

Each additional pose-specific classifier consumes runtime resources. For a given

performance level, only a fixed number can be evaluated at a time. But video sequences

may produce an unbounded number of new pose-specific classifiers. We therefore,

employ a least used eviction model to limit the number of classifiers evaluated each

frame. The most used classifiers are prioritized highest in a queue. The lowest in this

queue is replaced when a new classifier starts training. Detections by a classifier increases

124

its queue priority independent of other classifier detections.

Lastly, evaluating multiple pose-specific classifiers requires an aggregation func-

tion when multiple valid detections occur. Our algorithm uses the maximum classifier

score multiplied by its kurtosis. The kurtosis provides a measure of the score distribution’s

”peakedness”. The algorithm calculates kurtosis over the distribution as:

max{h(x)}−max{h(x)|d > ‖l(x)− l∗‖}
σh(x)

. (8.3)

This calculates the difference between the global maximum score and a local maximum

score, normalized by the standard deviation of all scores, σh(x). The local maximum score

is the largest score at least d pixels away from the location of the global maximum l∗.

The d pixel radius is selected to separate independent peaks. A small difference between

maximums suggests low confidence in the global maximum location, as the next highest

peak is also a good candidate. Figure 8.2 illustrates this measurement graphically with a

high confidence example.

8.4 FPGA-CPU design

The FPGA-CPU design is a partitioned application that accelerates boosted

classifier evaluation and classifier training. The tracking application runs in software on

the CPU. However, all of the feature extraction, evaluation, and training take place on the

FPGA. Only image cropping, rendering, and various bookkeeping tasks run on the CPU.

Each video frame is processed by the algorithm in two passes. The first pass

performs the target search by evaluating classifiers in a sliding window fashion over a

region of the frame. This search limits evaluation to windows within a runtime specified

radius of the last known location. The search is a dense evaluation of all possible

(overlapping) windows. After the search identifies the new target location, the classifiers

125

are retrained. This takes place during the second pass. Training examples are sampled

from the current frame at the newly identified target location. All windows in a small

radius at the new location are used as positive examples. Negative examples are sparsely

sampled from a distantly spaced annular region surrounding the new location. This

process is described in more detail in previous work [40].

The high level architecture of this design is illustrated in Figure 8.3. The CPU

communicates with the FPGA over a PCIe link using the RIFFA framework[39]. CPU

software invokes the IP cores on the FPGA with input data and receives the response as

output. The FPGA design consists primarily of a three stage pipeline. The Evaluate stage

evaluates trained classifiers on the video frame. The Update stage uses the output of the

Evaluate stage to update classifier parameters. These updated parameters provide the

basis for a new classifier. The Train stage selects which features, and thus which updated

parameters, are part of the new classifier.

8.4.1 Evaluate stage

The Evaluate stage is responsible for extracting Haar features, calculating clas-

sifier scores and normalized cross correlation on windows within the frame. The archi-

tecture of this stage is illustrated in Figure 8.4. Input frame pixels, an image template,

and other parameters are supplied via the PCIe link. Parameters and template pixels are

stored in Block RAM (BRAM). Frame pixels are processed as they are streamed through

the data path.

Input frame pixels are first rescaled to fit within a fixed size window in a sliding

window pipeline. In our previous work accelerating online boosting for tracking, we

used a 20×20 pixel window of registers. This size was selected based on numerous

other publications using similar sized sliding window designs. In practice however, we

found that many of the targets we tracked required considerable down sampling to fit

126

N
O

R
M

A
LI

ZE
D

C

R
O

S
S

C

O
R

R
E

LA
TI

O
N

IM
AG

E
SC

AL
ER

IN
TE

G
RA

L
IM

AG
E

IM
A

G
E

 S
LI

D
IN

G
 W

IN
D

O
W

IM
A

G
E

D

AT
A

TE
M

PL
AT

E
BR

AM

IN
TE

G
R

A
L

IM
A

G
E

 S
LI

D
IN

G
 W

IN
D

O
W

W
IN

D
OW

BR

AM

TE
M

P
LA

TE
 D

AT
A

✕

★

SU
M

SU
M

C
O

R
R

E
LA

TE

M
U

LT
IP

LY

A
D

D
E

R
 T

R
E

E

A
D

D
E

R
 T

R
E

E

÷

M
IN

 Q
U

E
U

E

W
IN

D
OW

BR

AM
S

H
A

A
R

 P
A

R
A

M
E

TE
R

 D
AT

A
C

A
LC

U
LA

TE
 H

A
A

R

H
 =

 W
×(

D
–B

–C
+A

)

A
D

D
E

R
 T

R
E

E

M
IN

 Q
U

E
U

E

S
C

O
R

E
S

SC

OR
IN

G

CL
AS

SI
FI

ER

PA
RA

M

BR
AM

M
EA

N
 &

VA

RI
AN

CE

H
A

A
R

 V
A

LU
E

S

H
A

A
R

 M
E

A
N

 &
 V

A
R

IA
N

C
E

C
LA

S
S

IF
IE

R
 P

A
R

A
M

E
TE

R
 D

AT
A

AN
N

UL
AR

RE

G
IO

N
 F

IL
TE

R
W

IN
D

O
W

P

O
S

IT
IO

N

VA
LI

D
?

H
AA

R
PA

RA
M

BR

AM
S

A
B

C

D

Fi
gu

re
8.

4.
Ev

al
ua

te
st

ag
e

ar
ch

ite
ct

ur
e.

In
pu

tp
ix

el
s

ar
e

sc
al

ed
an

d
th

en
co

nv
er

te
d

in
to

in
te

gr
al

im
ag

e
fo

rm
at

.T
w

o
pa

ra
lle

ls
lid

in
g

w
in

do
w

pi
pe

lin
es

ca
lc

ul
at

e
H

aa
ra

nd
N

C
C

va
lu

es
.H

aa
rv

al
ue

s
ar

e
sc

or
ed

ac
co

rd
in

g
to

w
ea

k
cl

as
si

fie
rp

ar
am

et
er

s.
Th

e
sc

or
e

m
ea

n
an

d
va

ri
an

ce
ar

e
ca

lc
ul

at
ed

in
cr

em
en

ta
lly

.
B

ot
h

th
e

sc
or

es
an

d
N

C
C

va
lu

es
ar

e
ad

de
d

to
a

pr
io

ri
ty

qu
eu

e.
T

he
pr

io
ri

ty
qu

eu
e

ca
pt

ur
es

th
e

to
p

12
8

m
ax

im
um

va
lu

es
ac

ro
ss

th
e

fr
am

e.
T

he
se

va
lu

es
ar

e
ou

tp
ut

te
d

as
th

e
re

su
lt.

127

in these dimensions. This resulted in loss of texture and detail in the image. Because

Haar features work best with high frequency texture and sharp edges, this introduced a

source of error for our calculations. We expect this is a common source of error for many

sliding window designs, yet it is often unaddressed in the literature. In this work we use

a 45×45 pixel window, backed by BRAM. Experiments with the two sizes confirmed an

improvement in tracking accuracy with the larger window size. Using BRAM instead

of registers requires multiple BRAM modules to maintain parallel access to the window

data. However an equivalent sized register backed window would exceed the look up

table (LUT) capacity of most commercially available FPGAs. This is due to the quadratic

growth of register and MUX usage with size.

The image scaler uses bilinear interpolation to scale. Four weighted pixels are

used to generate a single output pixel. This provides arbitrary precision output scaling.

The scaled pixel data is converted into integral image format and both streams are passed

to parallel sliding window buffers. During conversion, only the least significant 19 bits

of each integral image pixel are retained. This does not affect Haar feature calculation as

higher order bits will be subtracted away during calculation. The two sliding window

buffers move in unison to maintain the same window position across the frame. The

image sliding window provides data for normalized cross correlation (NCC) calculation.

The integral image sliding window does the same for Haar feature extraction and classifier

scoring. An annular region filter determines if the current window is within a circular

radius or annual region, for both calculations.

The sliding window buffers provide a new column of 45 pixels every cycle. For

both calculation data paths, each new column of pixel data is buffered into a BRAM with

a 45 pixel wide data port. After 45 cycles, an entire window has been buffered. Each

subsequent cycle provides a new column of pixels and results in a new window. Column

data is stored in circular manner in the window BRAMs.

128

For each newly buffered window, the NCC calculation processes the 45 saved

columns, one column of per cycle. It squares the column data and cross correlates it with

a column of template pixel data. Template data has the same dimensions as a window and

is accessed from a separate BRAM. This is done with 45 parallel modules. The results

are summed in adder trees and then added to separate running sums. It requires 45 cycles

to access all columns of the data and process a single window. The NCC values are then

streamed to a priority queue.

Concurrently, Haar feature values are computed in the feature scoring computation

data path. Six parallel modules access Haar rectangle coordinates from independent

window data and parameter BRAMs. This allows a new Haar value to be calculated each

cycle with up to six rectangles per feature. The Haar rectangles are weighted and summed

via an adder tree and the resultant Haar feature values are simultaneously outputted and

streamed to the Mean & Variance and the Scoring module. The design supports up to 64

Haar features during evaluation. We used 50 features in our experiments. Therefore, it

takes 50 cycles to calculate all the Haar features for each window.

The Mean & Variance module calculates and outputs the E(x) and E(x2) values

for each Haar feature across all windows. The Scoring module uses the Haar feature

values and classifier parameters to score each window according to Equation 8.2. These

window scores are then streamed to a priority queue. Both modules use floating point

operators to preserve precision over the wide range of values each output takes. The

algorithm is also sensitive to small changes in value. A fixed point data path with

sufficient accuracy to accommodate output values would require an unreasonably large

number of bits.

The priority queues for both data paths are minimum priority queues, 128 values

deep. They keep the NCC and score values in a partial sorted order. The minimum

value is always maintained. Values are paired with the window position to which they

129

correspond. New values are added to the queue as they are generated. After the queue

fills, the lowest value is removed to make room for the next new value. At the end of

processing all windows, the queues hold the top 128 maximum values. The queues are

then drained and outputted in increasing value order.

8.4.2 Update stage

The Update stage uses the the Haar feature means of the positive and negative

examples, calculated during the Evaluate stage, to update the current classifier parameters.

These new parameters define the weak classifiers that can be boosted during training into

the next classifier. After each parameter is updated, it is used to score the Haar feature

values from the Evaluate stage. This requires iterating over the Haar features in feature

major order instead of window major order as they were generated. Scoring performs

the same calculations as in the Evaluate stage, but uses the updated parameters. The

parameters are outputted and the window scores are stored for the Train stage. Figure 8.5

illustrates this process.

8.4.3 Train stage

The Train stage calculates the log likelihood of each positive and negative example

window using the scores from the Update stage. Log likelihoods for each weak classifier

are summed over examples. Then the weak classifier which contributes the minimum

negative log likelihood across all examples is added to the classifier. This is an iterative

process that evaluates 256 weak classifiers to select 50 for inclusion in the classifier. The

log likelihood calculation is performed by 16 parallel modules that operate on positive

and negative examples. This parallelization factor was selected to balance the runtime

between stages. Floating point operators are used for the exponentiation, logarithm,

and division in this calculation. After each iteration, the selected weak classifier id is

130

UPDATE
CLASSIFIER PARAMS

SCORES

SCORING

HAAR VALUES

HAAR MEAN
& VARIANCE

CLASSIFIER
PARAMETER

DATA

FEATURE
WEIGHTS

BRAM

FEATURE
LIKELIHOOD

MIN CLASSIFIER FEATURE IDS

CLASSIFIER
PARAMETERS

CLASSIFIER
PARAM
BRAM

Figure 8.5. Update stage (top) and Train stage (bottom) architectures. The Update stage
updates classifier parameters using the positive and negative examples. It also scores all
examples using the updated parameters. The Train stage uses the scored examples to
iteratively select the best weak classifiers.

outputted and the intermediate classifier is updated. Figure 8.5 illustrates the high level

architecture. Further details on the Train and the Update stages can be found in our

previous work [40].

8.5 Experimental results

The FPGA-CPU design is implemented in Verilog on a Xilinx Virtex 7 VC707

using Vivado 2013.3. It runs at a frequency of 250 MHz. It is connected to a 4 core

Intel i7 3.6 GHz system with 16 GB RAM via a x8 PCIe Gen 2 slot. The portion of the

algorithm running on the CPU is written in C++. The software primarily renders video

and performs bookkeeping tasks. Multiple threads are used to coordinate communication

with the FPGA. The FPGA design resource utilization is listed in Table 8.1

A software-only implementation of our algorithm was also written in C++ and

run on the same computer. It is multi-threaded with the OpenMP library and uses

Intel Integrated Primitives vector instructions. This highly optimized software-only

implementation can run a single tracker at 17 FPS. Our algorithm uses three trackers

131

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
02040608010
0

12
0

O
cc

lu
de

d
Fa

ce
 1

Fr
am

e

Location Error (px)

O

AB
 (4

4.
4)

Fr
ag

 (6
.8

)
Se

m
iB

oo
st

 (1
0.

4)
M

IL
Tr

ac
k

(3
0)

O
ur

s
(1

2.
5)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
02040608010
0

12
0

O
cc

lu
de

d
Fa

ce
 2

Fr
am

e

Location Error (px)

O

AB
 (2

2.
8)

Fr
ag

 (4
6.

2)
Se

m
iB

oo
st

 (3
2.

5)
M

IL
Tr

ac
k

(1
9.

6)
O

ur
s

(1
4.

8)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

02040608010
0

12
0

14
0

16
0

D
av

id
 In

do
or

Fr
am

e

Location Error (px)

O

AB
 (5

1.
5)

Fr
ag

 (4
6.

4)
Se

m
iB

oo
st

 (4
0.

5)
M

IL
Tr

ac
k

(2
1.

9)
O

ur
s

(1
2.

5)

0
20

0
40

0
60

0
80

0
10

00
12

00
02040608010
0

12
0

14
0

Sy
lv

es
te

r

Fr
am

e

Location Error (px)

O

AB
 (2

9.
9)

Fr
ag

 (1
1.

8)
Se

m
ib

oo
st

 (1
8.

7)
M

IL
Tr

ac
k

(1
1.

1)
O

ur
s

(1
9.

1)

0
50

10
0

15
0

20
0

25
0

30
0

02040608010
0

12
0

Fr
am

e

Location Error (px)

C
ok

e
C

an

O

AB
 (2

4.
4)

Fr
ag

 (5
9.

1)
Se

m
iB

oo
st

 (1
3.

2)
M

IL
Tr

ac
k

(2
0.

6)
O

ur
s

(1
1.

3)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

02040608010
0

12
0

14
0

Ti
ge

r2

Fr
am

e

Location Error (px)

O

AB
 (3

6.
2)

Fr
ag

 (3
3.

3)
Se

m
iB

oo
st

 (5
9.

5)
M

IL
Tr

ac
k

(1
7.

6)
O

ur
s

(1
9.

9)

Fi
gu

re
8.

6.
L

oc
at

io
n

er
ro

rs
on

vi
de

o
se

qu
en

ce
fr

om
se

ve
ra

lt
ra

ck
in

g
pu

bl
ic

at
io

ns
.

E
rr

or
is

th
e

di
ff

er
en

ce
be

tw
ee

n
pr

ed
ic

te
d

tr
ac

ki
ng

lo
ca

tio
n

an
d

th
e

gr
ou

nd
tr

ut
h,

in
pi

xe
ls

.A
ve

ra
ge

pi
xe

le
rr

or
ov

er
th

e
en

tir
e

se
qu

en
ce

is
sh

ow
n

in
pa

re
nt

he
se

s.
A

lg
or

ith
m

s
co

m
pa

re
d

in
cl

ud
e:

O
nl

in
e

A
da

bo
os

t(
O

A
B

)[
31

],
Fr

ag
Tr

ac
k

(F
ra

g)
[1

],
Se

m
i-

su
pe

rv
is

ed
O

nl
in

e
B

oo
st

in
g

(S
em

iB
oo

st
)[

32
],

an
d

M
IL

B
oo

st
Tr

ac
ke

r(
M

IL
Tr

ac
k)

[7
].

V
id

eo
so

ur
ce

s
ar

e:
O

cc
lu

de
d

Fa
ce

1
[1

],
O

cc
lu

de
d

Fa
ce

2
[7

],
D

av
id

In
do

or
[5

3]
,S

yl
ve

st
er

[5
3]

,C
ok

e
C

an
[7

],
an

d
Ti

ge
r2

[7
].

132

along with up to 7 additional classifiers each frame. When running the full algorithm, the

software-only implementation runs at 2 FPS. The FPGA-CPU implementation runs the

full algorithm with all trackers and classifiers at 60 FPS. This represents a 30× speed up

over the software-only version.

To evaluate the accuracy of the FPGA design, we tested the implementation

using a set of standard tracking videos from recent publications [1, 53, 7]. Tracker error

is measured in terms of distance (in pixels) between the center pixel and a manually

determined ground truth. The average pixel error for the entire sequence is provided in

parentheses. We compare our algorithm against that proposed by Babenko (MILTrack)

as well as several other state of the art algorithms. Figures 8.6[a-f] show the error plots.

The plots show that our algorithm performs very well on the Occluded Face,

David, and Coke Can video sequences. The Occluded Face sequences track a face

while it is repeatedly occluded and revealed. During occlusion, the tracking classifiers

inevitably update to track features on the occluding surface. Each time the face is revealed,

these classifiers drift off the face. The error plot shows this behavior is consistent across

all the tracking algorithms. However, our pose-specific classifiers detect the face location

as soon as it is revealed and quickly re-centers the tracker.

In the David video sequence, the target is again a face. But this face rotates in

and out of plane and the scene lighting changes considerably. Additionally, eyeglasses

are present at the beginning of the sequence and are later removed. Again, the tracking

classifiers perform well but are prone to drift and loss. Many different poses of the face

are learned during the sequence. This helps recover from loss several times, as illustrated

by the sharp drops in error.

The Coke Can video tracks a hand held can of soda as it is spun, rotated, moved

between different lighting conditions, and behind house plants. The rigid shape of the can

provides a good tracking feature for all the algorithms. Pose-specific classifiers quickly

133

Table 8.1. FPGA design resource and VC707 utilization.

Slice Reg. Slice LUT BRAM DSP48E
181541 135169 520 320

30% 45% 50% 11%

learn the few poses the target can take and provide quick recovery after occlusion or

temporary changes in appearance. This recovery improves the accuracy considerably

over the MILTrack algorithm.

In the Tiger2 video sequence, the performance is about the same as the MILTrack

algorithm. This sequence tracks a stuffed animal tiger as it’s moved in and around

plant foliage. The target is occluded quite a bit of the time by different plant leaves

and the motion is fast and erratic. As a result, no pose-specific classifiers are given the

opportunity to train. Even when the training threshold is reduced, the plant occlusion

makes it extremely difficult to detect similar poses in the sequence. Thus, the performance

of our algorithm is on par with MILTrack.

The Sylvester sequence exhibits target loss during tracking and highlights a

weakness in our algorithm. The Sylvester sequence tracks a stuffed cat as it is articulated

and flown around a room. The scene is cluttered and has extremely high lighting variation.

The motion is rapid, but there is occasionally enough stability for pose-specific classifiers

to train. This provides recovery several times in the sequence. However the back and

forth motion challenges the tracking classifiers. The majority aggregation function for

the tracking classifiers suppresses spurious high scoring incorrect detections. But this can

impose a lag when reacting to motion as the majority of the classifiers must agree to the

change. In this video sequence, this lag results in drift and then loss. It should be noted,

that a pose-specific classifier recovers from the target loss before the end of the sequence.

Across all but one of the video sequences, our algorithm performs equal to or

significantly better in terms of average accuracy. These sequences come from several

134

different tracking publications. They were selected based on the availability of results

from existing algorithms, not based on the performance of our algorithm. They are

difficult sequences representative of many appearance changing scenarios.

8.6 Conclusion

We have provided a FPGA-CPU accelerated design for tracking objects through

appearance changes, using multiple online boosted classifiers. The design accelerates

our algorithm for learning a pool of pose-specific and tracking classifiers at runtime. It

also employs a novel method for comparing multiple classifier scores using a kurtosis

of the score distributions. Compared to a multi-threaded software-only CPU based

implementation, it boasts a 30× speed up. Our algorithm performs at state of the art

levels and shows an improvement in accuracy over existing tracking algorithms.

Acknowledgment

This chapter contains material as it appears in Field Programmable Logic and

Applications (FPL), 2014. The work described in this chapter is a collaboration with

Siddarth Sampangi and Yoav Freund. The dissertation author was the primary investigator

and author of these papers.

Chapter 9

Future Directions

Using the Smart Frame Grabber Framework over several projects helped us refine

the details. There have been four releases of the RIFFA framework as of this writing. It

also gave us a perspective on computer vision application acceleration. Using FPGAs to

accelerate computer vision applications is still a difficult task undertaken by those who

are willing to invest considerable time and effort to learn the tools. Using frameworks

like the Smart Frame Grabber can alleviate some of this difficulty, but taking advantage

of heterogenous platforms can be made easier. Below we identify some future directions

for exploration.

9.1 Simple Compatible Interfaces

There is no common interface that one can put on every component. For example

a sliding window pipeline needs signaling that color space converter does not. However,

we found component reuse is best achieved by establishing simple, generally applica-

ble interfaces for each component. Erring on the side of simplicity encourages reuse.

Reducing the amount of understanding necessary to use a component greatly reduces

development time and problems due to misconfiguration.

On the surface, using simpler interfaces has a downside. It would seem that

one cannot configure the component as needed for every possible situation. Given the

135

136

complexity of most components we have seen, this must be a chief concern among

designers. However this can easily be solved by having a complex interface driven by an

adapter with a simple interface. This type of approach will not compromise performance

or flexility. Moreover, a ready-to-use simple component will be used more often than a

ready-to-configure component.

There has been a recent push by Xilinx to use the AXI bus specification as the

common interface for data on all of Xilinx’s IP cores. This is a promising direction as it

includes flow control and does not preclude the use of additional control signals.

9.2 Direct Device To Device Communication

RIFFA has made integration of CPUs, FPGAs, and GPUs an easy to achieve

prospect. There is demand however for direct device to device communication. For

high performing applications, using shared CPU memory as the method of passing data

between devices can be too slow. Allowing FPGAs and GPUs to send and receive data

directly can have a significant performance impact.

The PCIe architecture already supports this type of direct communication. How-

ever, it is not often exploited as most commercial uses of PCIe are for single device

accelerators.

9.3 OpenCV Integration

OpenCV is a popular software library for computer vision programming. It

supports multiple CPU architectures and implements many computer vision algorithms.

It has gradually been including support for GPU based acceleration. This is a good step

towards wider adoption of hardware accelerated applications. Including FPGA based

acceleration, perhaps via RIFFA, would be another great step. Doing so would require

establishing a common interface for input and output. But the rest of the pipeline would

137

be free for implementation. As many computer vision applications start with the OpenCV

libraries, extending it to include multiple device accelerators is a natural choice.

Appendices

138

Appendix A

RIFFA 1.0

A.1 Getting Started

The RIFFA distribution should be downloaded from the Downloads page on the

RIFFA website. After saving the distribution to disk, open it up and read the README.txt

and release notes. The distribution will contain RIFFA IP cores, the Linux kernel driver,

and a C/C++ user library. It will also contain example designs with IP cores and user

applications. You should look at the example designs to see how the system is configured.

The follow instructions are designed to help you integrate RIFFA into an existing design.

Xilinx instructions for PLB based systems:

1. Add the RIFFA distribution pcores into either your XPS global pcore repository or

into the pcores directory of your base system directory. You may need to restart

XPS for these changes to take affect.

2. Add a plbv46 pcie Xilinx PCIe Bridge core and xps central dma Xilinx DMA core

to your design.

3. Connect the master and slave ports of the xps central dma and plbv46 pcie to your

PLB system bus.

4. Configure the xps central dma with:

139

140

(a) The maximum FIFO depth (currently 48).

(b) The maximum read & write burst size (currently 16).

(c) Make sure it has a valid address on the system bus. This address will be used

in step 9.

5. Configure the plbv46 pcie with:

(a) A vendor id = 10EE (for Xilinx) and a device id appropriate to your FPGA

(the ML505 = 0505). These values will be used by the driver install below.

(b) The completion timeout should be checked.

(c) The PCIe capabilities register slot implemented should be checked.

(d) Configure 1 PCIe BAR, of size 213 = 8 KB. The address should be

0x80000000. This value will be used in step 8.

(e) Configure 6 IPIF BARs, of size 222 = 4 MB. The address of the first IPIF

BAR should be 0xA0000000. All the bars should follow and be adjacent (e.g.

the second IPIF BAR starts at 0xA0400000). The remote translation address

can be left at 0x00000000. These values will be assigned at boot time by the

PC. The starting address and size of IPIF BARs is used by the driver.

(f) Make sure the plbv46 pcie has a valid address on the system bus. Note, this

is separate from the BAR addresses. In the Address tab, this shows as the

C BASEADDR address for the plbv46 pcie. This value will be used in step

9.

6. Add a central notifier, a simbpus mst plbv46 adapter, and a

simpbus slv plbv46 adapter to the design.

7. Connect both adapter cores to the system bus and connect the SIMPBUS interfaces

on both adapter cores to the central notifier.

141

8. Configure the simpbus slv plbv46 adapter to have an address of 0x80000000 and

size of 8 KB. This must be the same address and size as in step 4. In truth, the

address can be anything, as long as it doesn’t conflict with any other core on the

system bus and is consistent with the value of the PCIe BAR.

9. Configure the central notifier with:

(a) Set the number of channels as desired. This enables the same number of

buses on the Bus Interfaces tab.

(b) Check the init bus box if you want to enable and connect an IP core to perform

system initialization using the SIMPBUS interface. Note, do not check this

box unless you do connect an IP core that will perform initialization.

(c) Set the DMA address to the value assigned in step 4.3.

(d) Set the PCIe Bridge address to the value assigned in step 5.6. This is the

C BASEADDR value of the plbv46 pcie component.

(e) Set the IPIF BAR length to 4 MB.

(f) Configure the SIMPBUS data width to the PLB data width.

10. Connect the remaining central notifier ports:

(a) SYS CLK should be connected to the clock used for the PLB bus.

(b) SYS RST should be connected to the system reset.

(c) INTR PCI should be connected to plbv46 pcie’s MSI request port.

(d) INTR DMA should be connected to the xps central dma’s IP2INTC Irpt

port.

You can now connect your custom IP core to the central notifier’s RIFFA channel

142

interface on the Bus Interfaces tab. An example IP core that uses the RIFFA channel

interface is provided in the examples directory of the RIFFA distribution.

The Linux driver must be installed before applications can access the FPGA. The

driver is located in the central notifier’s pcore directory, under sw/linux/driver. To build

and install the driver, you’ll need root/sudo privileges. The steps are below:

Ubuntu/Debian and Fedora instructions:

1. In a terminal, move into the sw/linux/driver directory.

2. Execute: sudo make setup

• This will ensure that your Linux system has the kernel headers that correspond

to the current version of the kernel you’re running. If you don’t have them

installed, this command will attempt to install them, typically into /usr/src.

You only ever need to run this once to ensure you have the kernel headers. If

you know you have them, you can skip this step.

3. Execute: make

• This will compile the driver against your kernel. You will probably receive

an error message indicating that you must specify variable value for VEN-

DOR ID and DEVICE ID. You may update the Makefile to includes these

values (see the top of the Makefile). Or you can pass them in via the com-

mand line (e.g. make VENDOR ID=10EE DEVICE ID=0506). These values

correspond to the PCIe header values configured in your PCIe endpoint (see

above). They must match or the OS will not load the driver when it detects

the FPGA’s PCIe endpoint.

4. Execute: sudo make install

143

• This will install the driver into the kernel to be automatically loaded at boot

time. You can uninstall the driver by executing: sudo make uninstall. This

will remove everything that was installed. If you want to manually load the

driver you can always execute: sudo make load. As of this writing however,

you’ll need to reboot the computer every time you download a new image to

your FPGA, so installing it usually the best choice.

5. Reboot.

• After rebooting, log in and check for evidence that the driver loaded by

executing: dmesg. If the driver loaded correctly you should see something

like the following:

[12.759709] FPGA PCIe endpoint name: 0000:02:00.00

[12.759735] BAR 0 address: d0000000

[12.759736] BAR 0 length: 8192

[12.759791] fpga 0000:02:00.0: irq 28 for MSI/MSI-X

[12.759819] MSI setup on irq 28

[12.761444] gDMABuffer 0: ffff880037400000 -> 0000000037400000

[12.763685] gDMABuffer 1: ffff8800bf800000 -> 00000000bf800000

[12.765908] gDMABuffer 2: ffff8800bf400000 -> 00000000bf400000

[12.768100] gDMABuffer 3: ffff8800bf000000 -> 00000000bf000000

[12.770268] gDMABuffer 4: ffff8800bec00000 -> 00000000bec00000

[12.772382] gDMABuffer 5: ffff8800be800000 -> 00000000be800000

• If you don’t see something like that, grep your /var/log/syslog for the term:

FPGA. Double check that you’ve set the same VENDOR ID and DEVICE ID

in your driver as you have in your PCIe endpoint configuration.

• You may also check the /dev directory to see if the fpga device was created.

It should be listed as /dev/fpga.

After you’ve synthesized your design, downloaded it onto your FPGA board,

installed the driver, and rebooted your computer. You’ll want to interact with the FPGA

144

from user software. You can find an example C application in the examples directory of

the RIFFA distribution. It is located in the sw/linux/testapp directory of the riffa example

pcore. You may want to use this example as a template or model for your own application.

Note that the fpga comm.c/fpga comm.h files in the sw/linux/testapp directory are the

same as those in the sw/linux/userlib directory of the central notifier pcore. The difference

between these directories is that the Makefile in the sw/linux/testapp directory is designed

to produce an executable whereas the Makefile in the sw/linux/userlib directory only

creates object files. You may want to study the fpga comm.h file as it contains the API

for accessing the FPGA.

The basic pattern for accessing the FPGA via the RIFFA userspace API is as

follows:

#define DATA_SIZE (8192)

int main(int argc, char* argv[]) {

fpga_dev * fpgaDev;

int recv, channel, timeout;

unsigned int arg0, arg1;

unsigned char data[DATA_SIZE];

timeout = 10*1000; // 10 secs.

channel = 0;

arg0 = (unsigned int)rand(); // Random

arg1 = (unsigned int)rand(); // values

// Initialize the FPGA & open the channel.

fpga_init(&fpgaDev);

fpga_channel_open(fpgaDev, channel, timeout);

// Send 2 arguments to the core on the channel,

145

// then send a ’start’ doorbell.

fpga_send_args(fpgaDev, channel, arg0, arg1, 2, 1);

// Receive the response data.

recv = fpga_recv_data(fpgaDev, channel, data, DATA_SIZE);

printf("Received data response, length: 0x%x\n", recv);

// Close the channel and free the device.

fpga_channel_close(fpgaDev, 0);

fpga_free(fpgaDev);

return 0;

}

In the example above, the statements in bold are the important statements. The

program first initializes the fpga dev pointer. Then opens a channel. It sends args to the

IP core on the channel and starts the core by sending a doorbell. The program then waits

for data to be returned on the channel. Up to 8 KB of data will be written to the data array.

Any additional data received will be discarded. The amount of data received will be

returned in the recv variable. The program then closes the channel and frees the fpga dev

memory. This example is fairly simple and meant to convey the usage model. All error

handling code has been removed to preserve clarity. Your program should examine the

return values for these functions and check for errors. The system log (or dmesg) can

show errors encountered in the driver as well.

A.2 Hardware Interface

The RIFFA channel has several ports that are used for signaling between the PC

and the FPGA. We’ve tried to keep it as simple and flexible as possible.

146

Figure A.1. RIFFA 1.0 timing diagram for doorbells/interrupts.

The RIFFA interface is a collection of ports for signaling data transfer, requesting

buffers, and signaling events. Table A.1 describes the ports. The input/output designations

are from the IP core’s perspective.

Timing diagrams for common scenarios follow (again from the perspective of a

connected IP core).

The timing diagram in Figure A.1 shows an IP core receiving a data transfer of

8 KB followed by a “start” doorbell signal (zero length). After some processing the IP

core issues an interrupt, signaling completion. If the INTERRUPT ERR port were high

when INTERRUPT was asserted, this would signal an error condition for the interrupt.

The INTERRUPT port must be asserted and held high until the INTERRUPT ACK

is pulsed. When a doorbell is received, the DOORBELL signal is pulsed at the same

time the DOORBELL LEN is valid. If the DOORBELL ERR port were high when the

DOORBELL port is pulsed, that would indicate an error condition for the doorbell. In

the following two cycles, the DOORBELL ARG port will output the “function call” style

32 bit arguments, arg0 then arg1. This pattern occurs every time a doorbell is received,

regardless of whether the length and arg values are non-zero. Note that the arg values

outputted are the last arg values specified by the PC. So they may be from previous

“function calls”.

Figure A.2 shows the timing for a DMA transfer from src addr to dst addr of

147

Ta
bl

e
A

.1
.R

IF
FA

1.
0

ha
rd

w
ar

e
in

te
rf

ac
e.

Si
gn

al
N

am
e

I/
O

D
es

cr
ip

tio
n

I
N
T
E
R
R
U
P
T

O
A

ss
er

th
ig

h
to

si
gn

al
an

in
te

rr
up

tt
o

th
e

PC
on

th
e

ch
an

ne
l.

I
N
T
E
R
R
U
P
T
E
R
R

O
A

ss
er

th
ig

h
to

si
gn

al
an

er
ro

rw
ith

th
e

in
te

rr
up

t.
O

nl
y

va
lid

/u
se

d
w

he
n

IN
T

E
R

R
U

PT
is

hi
gh

.
I
N
T
E
R
R
U
P
T
A
C
K

I
Pu

ls
ed

hi
gh

af
te

rt
he

IN
T

E
R

R
U

PT
ha

s
be

en
re

ce
iv

ed
.

D
O
O
R
B
E
L
L

I
Pu

ls
ed

hi
gh

w
he

n
PC

se
nd

s
a

do
or

be
ll

to
th

e
IP

co
re

.
D
O
O
R
B
E
L
L
E
R
R

I
If

hi
gh

w
he

n
D

O
O

R
B

E
L

L
is

pu
ls

ed
,i

nd
ic

at
es

an
er

ro
rs

ig
na

lw
ith

th
e

do
or

be
ll.

D
O
O
R
B
E
L
L
L
E
N

I
If

no
n-

ze
ro

,i
nd

ic
at

es
th

e
am

ou
nt

of
da

ta
re

ce
iv

ed
in

th
e

IP
co

re
’s

bu
ff

er
(f

ro
m

th
e

PC
).

D
O
O
R
B
E
L
L
A
R
G

I
C

on
ta

in
s

a
“f

un
ct

io
n

ca
ll”

st
yl

e
32

bi
ta

rg
um

en
to

fd
at

a.
A

ss
er

te
d

af
te

rD
O

O
R

B
E

L
L’

s
pu

ls
e.

D
M
A
R
E
Q

O
A

ss
er

th
ig

h
to

re
qu

es
ta

D
M

A
tr

an
sf

er
.

D
M
A
R
E
Q
A
C
K

I
Pu

ls
ed

hi
gh

w
he

n
D

M
A

re
qu

es
th

as
be

en
re

ce
iv

ed
.

D
M
A
S
R
C

O
T

he
sy

st
em

bu
s

st
ar

tin
g

ad
dr

es
s

of
th

e
tr

an
sf

er
so

ur
ce

.V
al

id
w

he
n

D
M

A
R

E
Q

is
as

se
rt

ed
.

D
M
A
D
S
T

O
T

he
sy

st
em

bu
s

st
ar

tin
g

ad
dr

es
s

of
th

e
tr

an
sf

er
de

st
.(

si
nk

).
V

al
id

w
he

n
D

M
A

R
E

Q
is

as
se

rt
ed

.
D
M
A
L
E
N

O
T

he
le

ng
th

of
th

e
tr

an
sf

er
in

by
te

s.
D
M
A
S
I
G

O
If

hi
gh

,t
he

PC
on

th
e

ch
an

ne
lw

ill
re

ce
iv

e
an

in
te

rr
up

ta
ft

er
th

e
tr

an
sf

er
co

m
pl

et
es

.O
nl

y
us

ed
w

he
n

D
M

A
R

E
Q

is
as

se
rt

ed
.

D
M
A
D
O
N
E

I
Pu

ls
ed

hi
gh

w
he

n
th

e
tr

an
sf

er
is

co
m

pl
et

e.
D
M
A
E
R
R

I
If

hi
gh

,i
nd

ic
at

es
an

er
ro

ri
n

th
e

tr
an

sf
er

.O
nl

y
us

ed
w

he
n

D
M

A
D

O
N

E
is

pu
ls

ed
.

B
U
F
R
E
Q

O
A

ss
er

th
ig

h
to

re
qu

es
ta

PC
bu

ff
er

.
B
U
F
R
E
Q
A
C
K

I
Pu

ls
ed

hi
gh

w
he

n
th

e
bu

ff
er

re
qu

es
th

as
be

en
re

ce
iv

ed
.

B
U
F
R
E
Q
A
D
D
R

I
PC

bu
ff

er
sy

st
em

bu
s

ad
dr

es
s.

B
U
F
R
E
Q
S
I
Z
E

I
PC

bu
ff

er
si

ze
in

po
w

er
s

of
2

(e
.g

.a
va

lu
e

of
10

m
ea

ns
210

=
10

24
by

te
s)

.
B
U
F
R
E
Q
R
D
Y

I
Pu

ls
ed

w
he

n
PC

bu
ff

er
in

fo
rm

at
io

n
is

re
ad

y
an

d
as

se
rt

ed
.

B
U
F
R
E
Q
E
R
R

I
If

hi
gh

,i
nd

ic
at

es
er

ro
ri

n
re

ce
iv

in
g

th
e

PC
bu

ff
er

in
fo

.U
se

d
w

he
n

B
U

F
R

E
Q

R
D

Y
is

pu
ls

ed
.

B
U
F
R
E
Q
D

I
Pu

ls
ed

hi
gh

w
he

n
a

bu
ff

er
is

re
qu

es
te

d
fr

om
th

e
IP

co
re

.
B
U
F
R
E
Q
D
A
D
D
R

O
IP

co
re

bu
ff

er
sy

st
em

bu
s

ad
dr

es
s.

B
U
F
R
E
Q
D
S
I
Z
E

O
IP

co
re

bu
ff

er
si

ze
in

po
w

er
s

of
2

(e
.g

.a
va

lu
e

of
10

m
ea

ns
210

=
10

24
by

te
s)

.
B
U
F
R
E
Q
D
R
D
Y

O
Pu

ls
e

hi
gh

w
he

n
th

e
IP

co
re

bu
ff

er
is

re
ad

y.
B
U
F
R
E
Q
D
E
R
R

O
If

hi
gh

,i
nd

ic
at

es
er

ro
ri

n
al

lo
ca

tin
g

th
e

IP
co

re
bu

ff
er

.U
se

d
w

he
n

B
U

F
R

E
Q

D
R

D
Y

is
pu

ls
ed

.

148

Figure A.2. RIFFA 1.0 timing diagram for DMA transfer.

Figure A.3. RIFFA 1.0 timing diagram for FPGA buffer request.

8 KB. The DMA SRC, DMA DST, DMA LEN, and DMA SIG ports must be valid

when the DMA REQ port is asserted. The DMA REQ port must be held high until the

DMA REQ ACK port is pulsed. The DMA SIG high means that after the transfer is

complete, the PC will receive an interrupt containing the length of the transferred data.

After the transfer is complete the DMA DONE port is pulsed. If there was an error

during the transfer, the DMA ERR signal would be high during the DMA DONE pulse.

The DMA ERR port is only valid when the DMA DONE is pulsed.

Figure A.3 shows the timing for a FPGA buffer request. When the PC transfers

data to the FPGA, it requests a FPGA buffer for the destination. This buffer is specified

by the IP core on the channel. The IP core must provide a system bus address and a

size in terms of powers of 2 (e.g. a value of 11 means 211 = 2048). Each request may

be satisfied by the same buffer or different buffers. This is left up to the IP core. In the

149

Figure A.4. RIFFA 1.0 timing diagram for PC buffer request.

example above the buffer is specified at address addr with a size of 2048 bytes. As seen

earlier, the transfer of data to this buffer (from the PC) will result in a doorbell with

the length of the bytes transferred (which will always be ≤ buffer size). Note that the

BUF REQD port will only be held high for 32 cycles. If the IP core does not provide a

response and pulse BUF REQ RDY within 32 cycles of BUF REQD going high, the PC

will receive an error condition.

The diagram in Figure A.4 shows the timing for a PC buffer request. When the

FPGA transfers data to the PC, it requests a PC buffer for the destination. This buffer is

specified by the PC thread on the channel. The PC must provide a system bus address and

a size in terms of powers of 2 (e.g. a value of 11 means 211 = 2048). Each request may

be satisfied by the same buffer or different buffers. This is determined by the available

buffers on the PC. In the example above, the PC buffer is specified at address addr with a

size of 2048 bytes. Similar to the transfer of data from the PC to the FPGA, when data is

received in the PC buffer, the PC will receive an interrupt with the length of the bytes

transferred (which will always be ≤ buffer size). The BUF REQ port must be held high

until the BUF REQ ACK. There is no bound on the number of cycles between when a

PC buffer is requested and when a response will be returned to the IP core. If the PC

does not provide a response and pulse BUF REQ RDY within a time frame required by

150

Table A.2. RIFFA 1.0 SIMPBUS hardware interface.

Signal Name I/O Description
SIMPBUS ADDR O Bus address.Should be as wide as the system bus address to

which it is connected (32, 64, etc.).
SIMPBUS WDATA O Data to be written to the bus.
SIMPBUS RDATA I Data read from the bus.
SIMPBUS BE O Byte enable for reading and writing from/to the bus.
SIMPBUS RNW O Read not write flag.
SIMPBUS START O Start (active high) level indicator. Must be held high until

SIMPBUS DONE is asserted.
SIMPBUS DONE I Done (active high) level indicator. Will be high for 1 cycle.
SIMPBUS ERR I Error (active high) level indicator. Will be high for 1 cycle.

Only valid when SIMPBUS DONE is high.

Figure A.5. RIFFA 1.0 timing diagram for SIMPBUS read.

the IP core, the IP core should issue an interrupt with an error condition.

The SIMPBUS interface is a simplified address bus protocol that allows com-

ponents to be ported between specific bus protocols (e.g. Xilinx PLB, AXI, etc.). This

interface is also used in the RIFFA framework. Table A.2 describes the ports. The

input/output designations correspond to the master arrangement. The slave arrangement

is inverted.

Timing diagrams common scenarios using the SIMPBUS interface follow.

In the diagram in Figure A.5 we see a read transaction. Note that the SIMP-

BUS START port is held high until the SIMPBUS DONE port is pulsed. If the SIMP-

151

Figure A.6. RIFFA 1.0 timing diagram for SIMPBUS write.

BUS ERR were high during the SIMPBUS DONE pulse, this would indicate an error

in reading. The SIMPBUS ADDR, SIMPBUS BE, and SIMPBUS RNW should all be

valid while the SIMPBUS START is held high. The SIMPBUS RDATA is only valid

during the SIMPBUS DONE pulse.

In the diagram in Figure A.6 we see a write transaction. Again, notice that

the SIMPBUS START port is held high until the SIMPBUS DONE port is pulsed. If

the SIMPBUS ERR were high during the SIMPBUS DONE pulse, this would indicate

an error in writing. The SIMPBUS ADDR, SIMPBUS BE, SIMPBUS RNW, and

SIMPBUS WDATA should all be valid while the SIMPBUS START is held high.

A.3 Software API

The interface to software is a C/C++ API. This is available to user applications

and works closely with the driver to provide an intuitive and flexible way to communicate

with IP cores. The API is based on the notion of channels. There are 16 independent

channels that can be established between user space software and the FPGA. Each

channel can be driven by a single thread. The channel thread could be reading data from

the FPGA, writing data to the FPGA, waiting for an interrupt or sending a doorbell. The

152

API is listed below:

int fpga_init(fpga_dev ** fpgaDev);

Initializes the FPGA memory/resources and updates the pointers in the

fpga_dev struct. Should be called before accessing the FPGA.

fpgaDev - Handle to fpga_dev structure to initialize.

Returns:

0 on success. On error, returns:

-1 if could not open the virtual device file (check errno for details

).

-ENOMEM if could not map the internal buffer memory to user space.

void fpga_free(fpga_dev * fpgaDev);

Cleans up memory/resources for the FPGA virtual files. Should be

called when done accessing the FPGA.

fpgaDev - Pointer to initialized fpga_dev structure.

Returns:

Nothing

unsigned int fpga_flip_endian(unsigned int val);

Flips an integer (32 bits) endian-ness.

val - Value to flip.

Returns:

153

Flipped unsigned int value.

int fpga_call_args_data(fpga_dev * fpgaDev, int channel, unsigned int

arg0, unsigned int arg1, int argc, unsigned char * senddata, int

sendlen, unsigned char * recvdata, int recvlen);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

arg0 - First ’function call’ style argument.

arg1 - Second ’function call’ style argument.

argc - Number of args to send.

senddata - Data array to send.

sendlen - Length of data in the senddata array to send.

recvdata - Data array to hold response data.

recvlen - Length of recvdata array.

Initiates a transfer of data and/or 4 byte arg values to the FPGA on

channel, channel. Any args will first be written. Then any

specified data will be written, possibly over several transfers.

After each transfer, the IP core connected to the channel will

receive a doorbell with the transfer length (in bytes). After the

final transfer, the IP core will receive a zero length doorbell

to signal a start. When the IP core has completed processing, any

return data will be transferred from the FPGA and copied into

the recvdata pointer.

Note: this call and return protocol is not enforced on the FPGA IP

core. So please be sure to design the IP core state machine

accordingly.

Up to argc args are sent and up to sendlen bytes from the senddata

pointer are transferred to the FPGA. Any return data, up to

recvlen, will be copied into the recvdata pointer. Therefore,

154

recvdata must accomodate at least recvlen bytes.

The endianness of sent and received data is not changed, but the

endianness of sent args is flipped.

Returns:

On success, returns the total number of received bytes. The amount of

bytes written to the recvdata pointer will be the minimum of the

return value and recvlen. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_call_args(fpga_dev * fpgaDev, int channel, unsigned int arg0

, unsigned int arg1, int argc, unsigned char * recvdata, int

recvlen);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

arg0 - First ’function call’ style argument.

arg1 - Second ’function call’ style argument.

argc - Number of args to send.

recvdata - Data array to hold response data.

recvlen - Length of recvdata array.

Initiates a transfer of 4 byte arg values to the FPGA on channel,

channel. Any args will first be written. Then the IP core will

155

receive a zero length doorbell to signal a start. When the IP

core has completed processing, any return data will be

transferred from the FPGA and copied into the recvdata pointer.

Note: this call and return protocol is not enforced on the FPGA IP

core. So please be sure to design the IP core state machine

accordingly.

Up to argc args are sent. Any return data, up to recvlen, will be

copied into the recvdata pointer. Therefore, recvdata must

accomodate at least recvlen bytes.

The endianness of received data is not changed, but the endianness of

sent args is flipped.

Returns:

On success, returns the total number of received bytes. The amount of

bytes written to the recvdata pointer will be the minimum of the

return value and recvlen. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_call_data(fpga_dev * fpgaDev, int channel, unsigned char *

senddata, int sendlen, unsigned char * recvdata, int recvlen);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

senddata - Data array to send.

156

sendlen - Length of data in the senddata array to send.

recvdata - Data array to hold response data.

recvlen - Length of recvdata array.

Initiates a transfer of data to the FPGA on channel, channel. Any

specified data will be written, possibly over several transfers.

After each transfer, the IP core connected to the channel will

receive a doorbell with the transfer length (in bytes). After the

final transfer, the IP core will receive a zero length doorbell

to signal a start. When the IP core has completed processing, any

return data will be transferred from the FPGA and copied into

the recvdata pointer.

Note: this call and return protocol is not enforced on the FPGA IP

core. So please be sure to design the IP core state machine

accordingly.

Up to sendlen bytes from the senddata pointer are transferred to the

FPGA. Any return data, up to recvlen, will be copied into the

recvdata pointer. Therefore, recvdata must accomodate at least

recvlen bytes.

The endianness of sent and received data is not changed.

Returns:

On success, returns the total number of received bytes. The amount of

bytes written to the recvdata pointer will be the minimum of the

return value and recvlen. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

157

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_call(fpga_dev * fpgaDev, int channel, unsigned char *

recvdata, int recvlen);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

recvdata - Data array to hold response data.

recvlen - Length of recvdata array.

Sends a zero length doorbell to signal a start. When the IP core has

completed processing, any return data will be transferred from

the FPGA and copied into the recvdata pointer.

Note: this call and return protocol is not enforced on the FPGA IP

core. So please be sure to design the IP core state machine

accordingly.

Any return data, up to recvlen, will be copied into the recvdata

pointer. Therefore, recvdata must accomodate at least recvlen

bytes.

The endianness of received data is not changed.

Returns:

On success, returns the total number of received bytes. The amount of

bytes written to the recvdata pointer will be the minimum of the

return value and recvlen. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

158

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_send_args_data(fpga_dev * fpgaDev, int channel, unsigned int

arg0, unsigned int arg1, int argc, unsigned char * senddata, int

sendlen, int start);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

arg0 - First ’function call’ style argument.

arg1 - Second ’function call’ style argument.

argc - Number of args to send.

senddata - Data array to send.

sendlen - Length of data in the senddata array to send.

start - If 1, a zero length doorbell will signal a start after the

transfer of data.

Writes 4 byte arg values and/or data to the FPGA on channel, channel.

Up to argc args will be written. After all the args have been

written, sendlen bytes from the senddata pointer will be written,

possibly over multiple transfers. After each transfer, the IP

core connected to the channel will receive a doorbell with the

transfer length (in bytes). If start == 1, then after the final

transfer, the IP core will receive a zero length doorbell to

signal start.

The endianness of sent data is not changed, but the endianness of

sent args is flipped.

Returns:

0 on success. On error, returns:

159

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_send_args(fpga_dev * fpgaDev, int channel, unsigned int arg0

, unsigned int arg1, int argc, int start);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

arg0 - First ’function call’ style argument.

arg1 - Second ’function call’ style argument.

argc - Number of args to send.

start - If 1, a zero length doorbell will signal a start after the

transfer of args.

Writes 4 byte arg values to the FPGA on channel, channel. Up to argc

args will be written. After all the args have been written, if

start == 1, the IP core connected to the channel will receive a

zero length doorbell to signal start.

The endianness of sent args is flipped.

Returns:

0 on success. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

160

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_send_data(fpga_dev * fpgaDev, int channel, unsigned char *

senddata, int sendlen, int start);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

senddata - Data array to send.

sendlen - Length of data in the senddata array to send.

start - If 1, a zero length doorbell will signal a start after the

transfer of data.

Writes data to the FPGA on channel, channel. All sendlen bytes from

the senddata pointer will be written (possibly over multiple

transfers). After each transfer, the IP core connected to the

channel will receive a doorbell with the transfer length (in

bytes). If start == 1, then after the final transfer, the IP core

will receive a zero length doorbell to signal start.

The endianness of sent data is not changed.

Returns:

0 on success. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

161

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_send_doorbell(fpga_dev * fpgaDev, int channel, int err);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

err - If 1, the doorbell will contain an error signal.

Sends a zero length doorbell to the IP core connected to the channel.

If err == 1, an error will be signaled along with the doorbell.

Returns:

0 on success. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_send_data_begin(fpga_dev * fpgaDev, int channel, unsigned

char * senddata, int sendlen, int start);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

senddata - Data array to send.

sendlen - Length of data in the senddata array to send.

162

start - If 1, a zero length doorbell will signal a start after the

transfer of data.

Spawns an internal thread to send data to the FPGA on channel,

channel, from the senddata pointer. Up to sendlen bytes will be

copied from the senddata pointer, possibly over multiple

transfers. After each transfer, the IP core connected to the

channel will receive a doorbell with the transfer length (in

bytes). If start == 1, then after the final transfer, the IP core

will receive a zero length doorbell to signal start. The

function fpga_send_data_end can be used to wait for completion

using the

same channel. This function will return immediately.

Returns:

0 on success. On error, returns:

-EACCES if the channel is not open.

-EAGAIN if an internal thread cannot be created.

int fpga_send_data_end(fpga_dev * fpgaDev, int channel);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

Waits for an internal thread created by the fpga_send_data_begin

function to send all data to the FPGA on channel, channel. This

function will block until all data on the channel is sent.

The endianness of received data is not changed.

Returns:

0 on success. On error, returns:

163

-EACCES if the channel is not open.

-EINVAL if the thread is not joinable.

-ESRCH if no send thread has been created for the channel.

-EDEADLK if deadlock was detected.

int fpga_recv_data(fpga_dev * fpgaDev, int channel, unsigned char *

recvdata, int recvlen);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

recvdata - Data array to hold response data.

recvlen - Length of recvdata array.

Reads data from the FPGA on channel, channel, to the recvdata pointer

. Up to recvlen bytes will be copied to the recvdata pointer (

possibly over multiple transfers). Therefore, recvdata must

accomodate at least recvlen bytes.

The endianness of received data is not changed.

Returns:

The number of bytes received on the channel. The number of bytes

written to the recvdata pointer will be the minimum of return

value and recvlen. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

164

int fpga_wait_interrupt(fpga_dev * fpgaDev, int channel);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

Waits for an interrupt to be received on the channel. Equivalent to

waiting for a zero length receive data interrupt.

Returns:

0 on success. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_recv_data_begin(fpga_dev * fpgaDev, int channel, unsigned

char * recvdata, int recvlen);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

recvdata - Data array to hold response data.

recvlen - Length of recvdata array.

Spawns an internal thread to receive data from the FPGA on channel,

channel, to the recvdata pointer. Up to recvlen bytes will be

copied to the recvdata pointer, possibly over multiple transfers.

165

Therefore, recvdata must accommodate at least recvlen bytes. The

function fpga_recv_data_end can be used to wait for completion

using the same channel. This function will return immediately.

Returns:

0 on success. On error, returns:

-EACCES if the channel is not open.

-EAGAIN if an internal thread cannot be created.

int fpga_recv_data_end(fpga_dev * fpgaDev, int channel);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

Waits for an internal thread created by the fpga_recv_data_begin

function to receive all data from the FPGA on channel, channel.

This function will block until all data on the channel is

received.

The endianness of received data is not changed.

Returns:

On success, the number of bytes actually received on the channel are

returned. The number of bytes written to the original recvdata

pointer will be the minimum of the returned value and the

original recvlen value (see the fpga_recv_data_begin function).

On error, returns:

-EACCES if the channel is not open.

-EINVAL if the thread is not joinable.

-ESRCH if no receive thread has been created for the channel.

-EDEADLK if deadlock was detected.

166

int fpga_config_read(fpga_dev * fpgaDev, int offset, unsigned int *

val);

fpgaDev - Pointer to initialized fpga_dev structure.

offset - Offset from the start of the configuration address space.

val - Pointer into which to copy the configuration value.

Reads the FPGA config space value specified at offset, offset, into

the val pointer. The value of offset specifies the number of

bytes from the start of the config address space. The offset

value must be word aligned. Note: this function accesses the FPGA

configuration address space, so you should know what

you’re doing when using this.

The endianness of read data is flipped.

Returns:

0 on success. On error, returns:

-EFAULT if wordoffset is not within the config space.

int fpga_config_write(fpga_dev * fpgaDev, int offset, unsigned int

val);

fpgaDev - Pointer to initialized fpga_dev structure.

offset - Offset from the start of the configuration address space.

val - Configuration value to write.

Writes the value of val to the FPGA config space at offset, offset.

The value of offset specifies the number of bytes from the start

of the config address space. The offset value must be word

aligned. Note: this function accesses the FPGA configuration

address space, so you should know what you’re doing when using

167

this.

The endianness of written data is flipped.

Returns:

0 on success. On error, returns:

-EFAULT if wordoffset is not within the config space.

int fpga_mem_copy(fpga_dev * fpgaDev, int channel, unsigned int

srcaddr, unsigned int dstaddr, unsigned int len, int doorbell,

int wait);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

srcaddr - Source start address from which data will be copied.

dstaddr - Destination start address to which data will be copied.

len - Length of data to copy, in bytes.

doorbell - If 1, sends a doorbell to the connected IP core on this

channel with the transfer length, after the transfer is complete.

wait - If 1, waits until the transfer is complete before returning.

Requests a transfer of data from srcaddr to dstaddr on the FPGA of

length len, using channel, channel. All len bytes will be copied

in a single transfer. After the transfer, if doorbell == 1, the

IP core connected to the channel will receive a doorbell with the

transfer length (in bytes). If wait == 1, this function will

wait until the transfer has completed before returning. Otherwise

, this function will return immediately after initiating the

transfer. Note: this function takes FPGA bus addresses and thus

assumes you know what you’re doing.

The endianness of copied data is not changed.

168

Returns:

0 on success. On error, returns:

-EACCES if the channel is not open.

-ETIMEDOUT if timeout is non-zero and expires before all data is

received.

-EREMOTEIO if the transfer sequence takes too long, data is lost/

dropped, or some other error is encountered during transfer.

-ERESTARTSYS if a signal interrupts the thread.

-ENOMEM if the driver runs out of buffers for data transfers.

-EFAULT if internal queues are exhausted or on bad address access.

int fpga_remote_buf_allocate(fpga_dev * fpgaDev, int channel, int *

size, unsigned int * addr);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

size - Pointer to buffer size.

addr - Pointer to buffer system bus address.

Requests a FPGA buffer be allocated. The address size and addr will

be specified on success. The addr will be a FPGA system bus

address and can be used with the fpga_mem_copy function.

Returns:

0 on success. On error, returns a non-zero value.

int fpga_internal_buf_allocate(fpga_dev * fpgaDev, int channel, int *

size, unsigned int * addr, unsigned char ** buf, int * bar, int

* segment);

fpgaDev - Pointer to initialized fpga_dev structure.

169

channel - Channel number over which to communicate.

size - Pointer to buffer size.

addr - Pointer to buffer system bus address.

buf - Handle to buffer location.

bar - Internal memory allocation identifier.

segment - Internal memory allocation identifier.

Requests an internal buffer be allocated. The addr, size, bar, buf,

and segment will be specified on success. The bar and segment are

needed to free the buffer after use. The addr is a FPGA bus

address and can be used with the fpga_mem_copy function. The buf

points to the buffer in user space and can be accessed directly.

Returns:

0 on success. On error, returns a non-zero value.

int fpga_internal_buf_free(fpga_dev * fpgaDev, int channel, int bar,

int segment);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

bar - Internal memory allocation identifier.

segment - Internal memory allocation identifier.

Frees the internal buffer so that it can be reused. The bar and

segment values are returned from the fpga_buf_allocate function

and specify the buffer.

Returns:

0 on success. On error, returns a non-zero value.

170

int fpga_channel_open(fpga_dev * fpgaDev, int channel, int timeout);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

timeout - Fail safe timeout for all function calls (so program does

not freeze waiting on FPGA).

Opens the specified channel. Valid channels are in the range [0,15].

The timeout value sets a threshold in ms for blocking for all

channel operations. It is meant to avoid infinite blocking in

case of errors. When the timeout is exceeded, the operation

returns a failure code. Timed-out functions will not reliably

return partial results or execute partial sends of any data. A

value of 0 indicates an indefinite wait (no timeout). Only non-

negative values are valid.

Returns:

0 on success. On error, returns:

-1 if could not open the virtual file (check errno for details).

void fpga_channel_close(fpga_dev * fpgaDev, int channel);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

Closes the specified channel and releases any internal resources.

Returns:

Nothing.

171

int fpga_channel_timeout(fpga_dev * fpgaDev, int channel, int timeout

);

fpgaDev - Pointer to initialized fpga_dev structure.

channel - Channel number over which to communicate.

timeout - Fail safe timeout for all function calls (so program does

not freeze waiting on FPGA).

Sets the channel timeout to the new value. The timeout value sets a

threshold in ms for blocking for all channel operations. It is

meant to avoid infinite blocking in case of errors. When the

timeout is exceeded, the operation returns a failure code. Timed-

out functions will not reliably return partial results or execute

partial sends of any data. A value of 0 indicates an indefinite

wait (no timeout). Only non-negative values are valid.

Returns:

0 on success. On error, returns a non-zero value.

Appendix B

RIFFA 2.0

B.1 Getting Started

The RIFFA 2.0 distribution contains the RIFFA source HDL, the RIFFA driver and

software bindings, an installation script, and examples for common FPGA development

boards. This website and the distribution should help you get started if you’re using one

of the FPGA boards we’ve tested. If you’re using a different board, you’ll need to adapt

the setup instructions accordingly.

There are only really 2 steps to get a basic RIFFA 2.0 design up and running.

Step 1: Install RIFFA on your system

Linux: Download the RIFFA 2.0 distribution. Build and install the kernel driver and

C/C++ library as:

sudo make setup

make

sudo make install

You’ll only need to run make setup once, as this simply attempts to install the

Linux kernel headers for your version of the Linux kernel. They won’t need updating

172

173

unless you upgrade your system kernel. Running make (or make debug) will build the

driver and C/C++ library. Using the make debug directive will output debug messages

in the kernel log. This can be very helpful when you’re developing your application.

After running make install, you’ll want to reboot to let the system find your RIFFA

2.0 design on the PCIe bus and let the OS load your driver.

You can install the Java and Python bindings by following the directions for those

binding in their respective directories within the RIFFA 2.0 distribution.

Windows: Download the RIFFA 2.0 distribution. Install the kernel driver and C/C++

library by running the setup.exe or setup dbg.exe installer (the debug installer outputs

additional debug messages to the Windows debug framework). After running the installer,

reboot to let the system find your RIFFA 2.0 design on the PCIe bus and let the OS load

your driver.

You can install the Java and Python bindings by following the directions for those

binding in their respective directories within the RIFFA 2.0 distribution.

Step 2: Create and build a RIFFA design for your FPGA. As described on the

architecture page, RIFFA 2.0 relies on a PCIe Endpoint core to drive the transceivers. We

have produced step by step guides to build a design:

• Design Guide - Avnet Xilinx S6LX150t - ISE in Appendix B.7

• Design Guide - Xilinx ML605 - ISE in Appendix B.8

• Design Guide - Xilinx VC707 - ISE in Appendix B.9

• Design Guide - Xilinx VC707 - Vivado in Appendix B.10

If you have a development board that is not covered by one of our guides, let us

know. We would be happy to test with a PCIe Endpoint core for that board and add it to

174

Figure B.1. RIFFA 2.0 timing diagram for receiving.

the list. However, we have decided not to support older FPGAs with legacy interfaces,

such as the Xilinx Virtex 5. If you need Virtex 5 support consider using RIFFA 1.0.

B.2 Hardware Interface

The RIFFA 2.0 channel has two sets of signals, one for receiving data (RX) and

one for sending data (TX). This version has simplified the interface to use a minimal

handshake and receive/send data using a FIFO with first word fall through semantics

(valid+read interface). The clocks used for receiving and sending can be asynchronous

from each other and from the PCIe interface (RIFFA clock). Table B.1 describes the

ports. The input/output designations are from your user core’s perspective (i.e. the core(s)

you write and connect to the RIFFA 2.0 channel).

Figure B.2 is a timing diagram for receiving data. The timing diagram shows

the RIFFA channel receiving a data transfer of 16 (4 byte) words (64 bytes). When

CHNL RX is high, CHNL RX LAST, CHNL RX LEN, and CHNL RX OFFwill all be valid.

In this example, CHNL RX LAST is high, indicating to the user core that there are no

other transactions following this one and that the user core can start processing the

received data as soon as the transaction completes. CHNL RX LAST may be set low

if multiple transactions will be initiated before the user core should start processing

175

Ta
bl

e
B

.1
.R

IF
FA

2.
0

ha
rd

w
ar

e
in

te
rf

ac
e.

T
he

va
lu

e
of

D
W

ID
T

H
w

ill
be

ei
th

er
32

,6
4,

or
12

8.

Si
gn

al
N

am
e

I/
O

D
es

cr
ip

tio
n

C
H
N
L
R
X
C
L
K

O
C

lo
ck

to
re

ad
da

ta
fr

om
th

e
in

co
m

in
g

FI
FO

.
C
H
N
L
R
X

I
H

ig
h

si
gn

al
s

in
co

m
in

g
da

ta
tr

an
sa

ct
io

n.
St

ay
s

hi
gh

un
til

al
ld

at
a

is
in

th
e

FI
FO

.
C
H
N
L
R
X
A
C
K

O
Pu

ls
e

hi
gh

to
ac

kn
ow

le
dg

e
th

e
in

co
m

in
g

da
ta

tr
an

sa
ct

io
n.

C
H
N
L
R
X
L
A
S
T

I
H

ig
h

si
gn

al
s

th
is

is
th

e
la

st
re

ce
iv

e
tr

an
sa

ct
io

n
in

a
se

qu
en

ce
.

C
H
N
L
R
X
L
E
N
[
3
1
:
0
]

I
L

en
gt

h
of

re
ce

iv
e

tr
an

sa
ct

io
n

in
4-

by
te

w
or

ds
.

C
H
N
L
R
X
O
F
F
[
3
0
:
0
]

I
O

ff
se

ti
n

4-
by

te
w

or
ds

of
w

he
re

to
st

ar
ts

to
ri

ng
re

ce
iv

ed
da

ta
.

C
H
N
L
R
X
D
A
T
A
[
D
W
I
D
T
H
-
1
:
0
]

I
FI

FO
da

ta
po

rt
.

C
H
N
L
R
X
D
A
T
A
V
A
L
I
D

I
H

ig
h

if
th

e
da

ta
on

C
H

N
L

R
X

D
A

TA
is

va
lid

.
C
H
N
L
R
X
D
A
T
A
R
E
N

O
Pu

ls
e

hi
gh

to
co

ns
um

e
va

lu
e

fr
om

on
C

H
N

L
R

X
D

A
TA

.
C
H
N
L
T
X
C
L
K

O
C

lo
ck

to
w

ri
te

da
ta

to
th

e
ou

tg
oi

ng
FI

FO
.

C
H
N
L
T
X

O
H

ig
h

si
gn

al
s

ou
tg

oi
ng

da
ta

tr
an

sa
ct

io
n.

K
ee

p
hi

gh
un

til
al

ld
at

a
is

co
ns

um
ed

.
C
H
N
L
T
X
A
C
K

I
Pu

ls
ed

hi
gh

to
ac

kn
ow

le
dg

e
th

e
ou

tg
oi

ng
da

ta
tr

an
sa

ct
io

n.
C
H
N
L
T
X
L
A
S
T

O
H

ig
h

si
gn

al
s

th
is

is
th

e
la

st
se

nd
tr

an
sa

ct
io

n
in

a
se

qu
en

ce
.

C
H
N
L
T
X
L
E
N
[
3
1
:
0
]

O
L

en
gt

h
of

se
nd

tr
an

sa
ct

io
n

in
4-

by
te

w
or

ds
.

C
H
N
L
T
X
O
F
F
[
3
0
:
0
]

O
O

ff
se

ti
n

4-
by

te
w

or
ds

of
w

he
re

to
st

ar
ts

to
ri

ng
se

nt
da

ta
in

th
e

C
PU

th
re

ad
’s

re
ce

iv
e

bu
ff

er
.

C
H
N
L
T
X
D
A
T
A
[
D
W
I
D
T
H
-
1
:
0
]

O
FI

FO
da

ta
po

rt
.

C
H
N
L
T
X
D
A
T
A
V
A
L
I
D

O
H

ig
h

if
th

e
da

ta
on

C
H

N
L

T
X

D
A

TA
is

va
lid

.
C
H
N
L
T
X
D
A
T
A
R
E
N

I
H

ig
h

w
he

n
th

e
va

lu
e

on
C

H
N

L
T

X
D

A
TA

is
co

ns
um

ed
.

176

received data. Of course, the user core will always need to read the data as it arrives,

even if CHNL RX LAST is low.

In the example CHNL RX OFF is 0. However, if the PC specified a value for

offset when it initiated the send, that value would be present on the CHNL RX OFF signal.

The 31 least significant bits of the 32 bit integer specified by the PC thread are transmitted

(due to packing constraints). The CHNL RX OFF signal is meant to be used in situations

where data is transferred in multiple sends and the user core needs to know where to

write the data (if, for example it is writing to BRAM or DRAM).

The user core must pulse the CHNL RX ACK signal high for at least one cy-

cle to acknowledge the receive transaction. The RIFFA channel will not recognize

that the transaction has been received until it receives a CHNL RX ACK pulse. Note

that data on CHNL RX DATA may begin to arrive before CHNL RX ACK is pulsed, but

the FIFO will never overflow. The combination of CHNL RX DATA VALID high and

CHNL RX DATA REN high consumes the data on CHNL RX DATA. New data will be

provided until the FIFO is drained. Note that the FIFO may drain completely before

all the data has been received. The CHNL RX signal will remain high until all data for

the transaction has been received into the FIFO. Note that CHNL RX may go low while

CHNL RX DATA VALID is still high. That means there is still data in the FIFO to be

read by the user core. Attempting to read (asserting CHNL RX DATA REN high) while

CHNL RX DATA VALID is low, will have no affect on the FIFO. The user core may

want to count the number of words received and compare against the value provided by

CHNL RX LEN to keep track of how much data is expected.

In the event of a transmission error, the amount of data received may be less than

the amount expected (advertised on CHNL RX LEN). It is the user core’s responsibility

to detect this discrepancy if important to the user core.

The diagram in Figure B.2 shows the RIFFA channel sending a data transfer of

177

Figure B.2. RIFFA 2.0 timing diagram for sending.

16 (4 byte) words (64 bytes). It’s nearly symmetric to the receive example. The user

core sets CHNL TX high and asserts values for CHNL TX LAST, CHNL TX LEN, and

CHNL TX OFF for the duration CHNL TX is high. CHNL TX must remain high until all

data has been consumed. RIFFA will expect to read CHNL TX LEN words from the user

core. Any more data provided may be consumed, but will be discarded. The user core

can provide less than CHNL TX LEN words and drop CHNL TX at any point. Dropping

CHNL TX indicates the end of the transaction. Whatever data was consumed before

CHNL TX was dropped will be sent and reported as received to the software thread.

As with the receive interface, setting CHNL TX LAST high will signal to the PC

thread to not wait for additional transactions (after this one). Setting CHNL TX OFF will

cause the transferred data to be written into the PC thread’s buffer starting CHNL TX OFF

4 bytes words from the beginning. This can be useful when sending multiple transactions

and needing to order them in the PC thread’s receive buffer. CHNL TX LEN defines the

length of the transaction in 4 byte words.

As the CHNL TX DATA bus can be 32 bits, 64 bits, or 128 bits wide, it may be

that the number of 32 bit words the user core wants to transfer is not an even multiple

of the bus width. In this case, CHNL TX DATA VALID must be high on the last cycle

CHNL TX DATA has at least 1 word to send. The channel will only send as many words

178

as is specified by CHNL TX LEN. So any additional data consumed, past the last word,

will be discarded.

After CHNL TX goes high, the RIFFA channel will pulse high the CHNL TX ACK

and begin to consume data on the CHNL TX DATA bus. When CHNL TX DATA VALID

is high and CHNL TX DATA REN is high, data on CHNL TX DATA will be consumed.

New data can be consumed every cycle. After all the data is consumed, CHNL TX can

be dropped. Keeping CHNL TX DATA VALID high while CHNL TX DATA REN is low

will have no effect.

B.3 C/C++ API

The software interface is provided by bindings for C/C++, Python, and Java. After

installation all bindings are available in their respective runtime environments. The API

is based on the notion of channels. RIFFA 2.0 can be configured to support between 1 -

12 independent channels. Each channel connects to an IP core and can be addressed by

specifying the channel number from the user application. The channels are independent

and thread safe. At most one thread should be used to access a single channel.

The C/C++ bindings are used by including the <riffa.h> header file and

linking with the -lriffa library. Belowis a complete example and an API listing.

#include <stdio.h>

#include <stdlib.h>

#include <riffa.h>

#define BUF_SIZE (1*1024*1024)

unsigned int buf[BUF_SIZE];

int main(int argc, char* argv[]) {

fpga_t * fpga;

179

int fid = 0; // FPGA id

int channel = 0; // FPGA channel

fpga = fpga_open(fid);

fpga_send(fpga, channel, (void *)buf, BUF_SIZE, 0, 1, 0);

fpga_recv(fpga, channel, (void *)buf, BUF_SIZE, 0);

fpga_close(fpga);

return 0;

}

This example first opens up FPGA with id 0. It then sends 4 MB of data (1

mega-words) to channel 0 with 0 destination offset, 0 timeout, and marks the transfer as

last. The IP core on channel 0 is designed to send back some data. So the next call is to

receive data from the same channel, up to 4 MB, with 0 timeout. Note a few things:

• We’re using the same buffer to send data and receive data. This is not required, it

just makes for a simpler example.

• The timeout is set to 0, which may hang the application if there’s a problem with

the IP core logic.

• In practice, you’d want to check the return values to see how much data was sent

and received. You’d also probably want some error handling.

Using gcc, this example can be compiled as:

gcc tester.c -lriffa

Using Microsoft Visual Studio, you’ll need to set your project configuration proper-

ties to find the riffa.h header file and add the import library as a dependency. Under

C/C++→ General→ Additional Include Directories, specify the path to the riffa.h

header file under. Under Linker→ Input→ Additional Dependencies, specify the path

180

to riffa.lib. Visual Studio should be able to find the riffa.lib without adding

an additional dependency path.

B.3.1 API

The API is provided in the listing below.

int fpga_list(fpga_info_list * list);

Populates the fpga_info_list pointer with all FPGAs registered in the

system. See riffa_driver.h for the fpga_info_list definition.

Returns 0 on success, a negative value on error.

list - Pointer to a fpga_info_list struct to populate.

Returns:

0 on success, a negative value on error.

fpga_t * fpga_open(int id);

Initializes the FPGA specified by id. On success, returns a pointer

to a fpga_t struct. On error, returns NULL. Each FPGA must be

opened before any channels can be accessed. Once opened, any

number of threads can use the fpga_t struct pointer.

id - Identifier for the FPGA (in single FPGA installations, this is

always 0).

Returns:

A fpga_t struct pointer or NULL.

void fpga_close(fpga_t * fpga);

181

Cleans up memory/resources for the FPGA specified by the descriptor (

pointer).

fpga - Pointer to fpga_t struct.

Returns:

Nothing.

int fpga_send(fpga_t * fpga, int chnl, void * data, int len, int

destoff, int last, long long timeout);

fpga - Pointer to fpga_t structure.

chnl - Channel number over which to communicate.

data - Pointer to array of data to send. Note that the data transfer

unit is a 32 bit word.

len - Length of data to send, in (32 bit) words. Thus a value of 4

means send 16 bytes.

destoff - Value sent to FPGA core to indicate where to start writing

this data. Only the least significant 31 bits are sent (not all

32).

last - If 1, this transfer is the last in a sequence of transfers. If

0, this transfer is not the last in a sequence of transfers (

more transfers to come).

timeout - Timeout value in ms. If 0, no timeout is specified.

Otherwise, the PC will wait up to timeout ms in between PC/FPGA

communications.

Sends len words (4 byte words) from data to FPGA channel chnl using

the fpga_t struct. The FPGA channel will be sent len, destoff,

and last. The value of destoff is used to support sending data

182

across multiple send transactions. Note that only the low 31 bits

of this unsigned int are sent. If last is 1, the channel should

interpret the end of this send as the end of a transaction. If

last is 0, the channel should wait for additional sends before

the end of the transaction. If timeout is non-zero, this call

will send data and wait up to timeout ms for the FPGA to respond

(between packets) before timing out. If timeout is zero, this

call may block indefinitely. Multiple threads sending on the same

channel may result in corrupt data or error. This function is

thread safe across channels. Returns the number of words sent.

Returns:

The number of words sent.

int fpga_recv(fpga_t * fpga, int chnl, void * data, int len, long

long timeout);

fpga - Pointer to fpga_t structure.

chnl - Channel number over which to communicate.

data - Pointer to buffer array where received data will be written.

len - Length of buffer array, in (32 bit) words. Thus a value of 4

means send 16 bytes.

timeout - Timeout value in ms. If 0, no timeout is specified.

Otherwise, the PC will wait up to timeout ms in between PC/FPGA

communications.

Receives data from the FPGA channel chnl to the data pointer, using

the fpga_t struct. The FPGA channel can send any amount of data,

so the data array should be large enough to accommodate. The len

parameter specifies the actual size of the data buffer in words

(4 byte words). The FPGA will specify an offset value which will

183

determine where received data will start being written. If the

amount of data plus the offset exceed the size of the data array,

then the additional data will be discarded. If timeout is non-

zero, this call will wait up to timeout ms for the FPGA to

respond (between packets) before timing out. If timeout is zero,

this call may block indefinitely. Multiple threads receiving on

the same channel may result in corrupt data or error. This

function is thread safe across channels. Returns the number of

words received to the data array.

Returns:

The number of words received to the data array.

void fpga_reset(fpga_t * fpga);

Resets the state of the FPGA and all transfers across all channels.

This is meant to be used as an alternative to rebooting if an

error occurs while sending/receiving. Calling this function while

other threads are sending or receiving will result in unexpected

behavior.

fpga - Pointer to fpga_t structure.

Returns:

Nothing.

B.4 Java API

The software interface is provided by bindings for C/C++, Python, and Java. After

installation all bindings are available in their respective runtime environments. The API

is based on the notion of channels. RIFFA 2.0 can be configured to support between 1 -

184

12 independent channels. Each channel connects to an IP core and can be addressed by

specifying the channel number from the user application. The channels are independent

and thread safe. At most one thread should be used to access a single channel.

The Java bindings are used by including the riffa.jar file in the classpath for

compiling and running. You will need Java 1.4 or greater. Below is a complete example

and an API listing.

import edu.ucsd.cs.riffa.*;

import java.nio.ByteBuffer;

public class MyApp {

private static final int BUF_SIZE = 1*1024*1024;

public void main(String[] args) throws Exception {

int fid = 0;

int channel = 0;

ByteBuffer buf = ByteBuffer.allocateDirect(BUF_SIZE);

Fpga fpga = Fpga.open(fid);

fpga.send(channel, buf, BUF_SIZE, 0, true, 0L);

fpga.recv(channel, buf, BUF_SIZE, 0L);

fpga.close();

}

}

This example first opens up the FPGA with id 0. It then sends 4 MB of data (1

mega-words) to channel 0 with 0 destination offset, 0 timeout, and marks the transfer as

last. The IP core on channel 0 is designed to send back some data. So the next call is to

receive data from the same channel, up to 4 MB, with 0 timeout. Note a few things:

• We’re using a java.nio.ByteBuffer, not a byte[]. ByteBuffer’s expose the underlying

185

byte[], which makes it easy for reading/writing. They also have methods to return

different java.nio.Buffer subclasses for different primitives (e.g. java.nio.IntBuffer

for int data). These methods do not copy the underlying data, they simply rein-

terpret it as an array of the specified primitive type. The different java.nio.Buffer

subclasses provide methods to access the underlying data as an array of primi-

tives (e.g. int[]). Avoiding unnecessary copying is crucial for maintaining high

performance.

• We’re using the same buffer to send data and receive data. This is not required, it

just makes for a simpler example.

• The timeout is set to 0. If there’s a problem with the IP core logic, a 0 timeout will

cause the program to wait forever.

• In practice, you’d want to check the return values to see how much data was sent

and received. You’d also probably want some error handling.

One more important note. Java uses network byte order, which is big endian. Most

workstations are little endian (i.e. Intel or AMD). VHDL and Verilog are also little

endian in that the left most bit is always the most significant. The ByteBuffer classes

will encode/decode numeric values in big endian format. This encoding only applies to

data in the ByteBuffer. Java primitives are handled correctly without any need for byte

swapping. For example:

ByteBuffer buf = ByteBuffer.allocateDirect(4);

IntBuffer ibuf = buf.asIntBuffer();

ibuf.put(0, 4);

int v = 4;

System.out.printf("%d - 0x%02x%02x%02x%02x\n", ibuf.get(0),

buf.get(3), buf.get(2), buf.get(1), buf.get(0));

186

System.out.printf("%d - 0x%02x%02x%02x%02x\n", v,

v&0xFF000000, v&0xFF0000, v&0xFF00, v&0xFF);

Prints the following:

4 - 0x04000000

4 - 0x00000004

The first output line is from the ByteBuffer and shows the big endian encoding. The

second is from the int and shows the little endian format. You’ll only need to consider

byte swapping when sending ByteBuffer payload data between the FPGA and the Java

program. Byte swapping is most effectively done in hardware on the send and receive

data ports.

The above example can be compiled as:

javac -cp riffa.jar MyApp.java

and run as:

java -cp riffa.jar:./ MyApp

B.4.1 API

The API is provided in the listing below.

edu.ucsd.cs.riffa

public class FpgaInfo

Value object to hold information about all the installed FPGA

accessible by RIFFA.

public int getNumFpgas()

Returns the number of RIFFA accessible FPGAs installed in the system.

187

Returns:

Number of RIFFA accessible FPGAs installed in the system.

public int getId(int pos)

Returns the FPGA id at position pos. This id is used to open the FPGA

on the Fpga’s open method.

Returns:

FPGA id at position pos.

public int getNumChannels(int pos)

Returns the number of RIFFA channels configured on the FPGA at

position pos.

Returns:

Number of RIFFA channels configured on the FPGA at position pos.

public String getName(int pos)

Returns the name of the FPGA at position pos. This is typically the

PCIe bus and slot number.

Returns:

Name of the FPGA at position pos.

public int getVendorId(int pos)

Returns the FPGA vendor id at position pos.

188

Returns:

The FPGA vendor id at position pos.

public int getDeviceId(int pos)

Returns the FPGA device id at position pos.

Returns:

The FPGA device id at position pos.

public class Fpga

Represents a FPGA accessible by RIFFA. The usage pattern is:

Fpga f = Fpga.open(...);

f.send(...);

f.recv(...);

f.close(...);

The static method list can be used to get a listing of the FPGAs

installed in the system and their ids. You’ll need the FPGA id to

pass to the open method. If only 1 FPGA is installed in the

system, it’s id will always be 0.

In the send and recv methods below use java.nio.ByteBuffer instead of

a byte[] to represent the data for sending and buffer for

receiving data. The java.nio.ByteBuffer class is used because the

underlying byte[] can easily be accessed. But more importantly,

it has methods to reinterpret the underlying byte[] into other

primitive array types (e.g. int[]) without copying the contents

of the array. Copying arrays (especially large arrays) will

reduce throughput considerably and is best to be avoided. Use the

189

allocateDirect method on ByteBuffer to create a new instance.

Then use one of the asXXXBufer methods to acquire the appropriate

java.nio.Buffer subclass. The example below illustrates this:

ByteBuffer bb = ByteBuffer.allocateDirect(NUM_INTS*4);

IntBuffer ib = bb.asIntBuffer();

for (i = 0; i < NUM_INTS; i++)

ib.put(i, ...)

Fpga f = Fpga.open(0);

fpga.send(0, bb, NUM_INTS, 0, true, 0L);

public static FpgaInfo list()

Populates and returns a FpgaInfo object with all FPGAs registered in

the system. Returns a FpgaInfo object on success. Returns null on

error.

Returns:

A FpgaInfo object on success or null.

public static Fpga open(int id)

Initializes the FPGA specified by id. On success, returns a Fpga

object. On error, returns null. Each FPGA must be opened before

any channels can be accessed. Once opened, any number of threads

can use the Fpga object.

id - Identifier for the FPGA (in single FPGA installations, this is

always 0).

Returns:

190

A Fpga object or null.

public void close()

Cleans up memory/resources for the FPGA represented by this instance.

Returns:

Nothing.

public int send(int chnl, java.nio.ByteBuffer data, int len, int

destoff, boolean last, long timeout)

chnl - Channel number over which to communicate.

data - java.nio.ByteBuffer holding the byte[] to send. Note that the

data transfer unit is a 32 bit word.

len - Length of data to send, in (32 bit) words. Thus a value of 4

means send 16 bytes.

destoff - Value sent to FPGA core to indicate where to start writing

this data. Only the least significant 31 bits are sent (not all

32).

last - If true, this transfer is the last in a sequence of transfers.

If false, this transfer is not the last in a sequence of

transfers (more transfers to come).

timeout - Timeout value in ms. If 0, no timeout is specified.

Otherwise, the PC will wait up to timeout ms in between PC/FPGA

communications.

Sends len words (4 byte words) from data to FPGA channel chnl on the

FPGA represented by this Fpga object. The FPGA channel will be

sent len, destoff, and last. The java.nio.ByteBuffer’s position

and limit are not read (or modified). To send a subset of data

191

from the buffer, set the position and use the slice method to

acquire a java.nio.ByteBuffer object that starts at the correct

location. The value of destoff is used to support sending data

across multiple send transactions. Note that only the low 31 bits

of this value are sent. If last is true the channel should

interpret the end of this send as the end of a transaction. If

last is false, the channel should wait for additional sends

before the end of the transaction. If timeout is non-zero, this

call will send data and wait up to timeout ms for the FPGA to

respond (between packets) before timing out. If timeout is zero,

this call may block indefinitely. Multiple threads sending on the

same channel may result in corrupt data or error. This function

is thread safe across channels. Returns the number of words sent.

Returns:

The number of words sent.

public int recv(int chnl, java.nio.ByteBuffer data, long timeout)

chnl - Channel number over which to communicate.

data - java.nio.ByteBuffer into which received data will be written.

timeout - Timeout value in ms. If 0, no timeout is specified.

Otherwise, the PC will wait up to timeout ms in between PC/FPGA

communications.

Receives data from the FPGA channel chnl to the java.nio.ByteBuffer

object, on the FPGA represented by this Fpga object. The FPGA

channel can send any amount of data, so the java.nio.ByteBuffer

should be large enough to accommodate. The FPGA will specify an

offset value which will determine where received data will start

being written. If the amount of data plus offset exceed the size

192

of the data array, then the additional data will be discarded.

The java.nio.ByteBuffer’s position and limit are not modified. If

timeout is non-zero, this call will wait up to timeout ms for

the FPGA to respond (between packets) before timing out. If

timeout is zero, this call may block indefinitely. Multiple

threads receiving on the same channel may result in corrupt data

or error. This function is thread safe across channels. Returns

the number of words received to the java.nio.ByteBuffer.

Returns:

The number of words received to the java.nio.ByteBuffer.

public void reset()

Resets the state of the FPGA and all channels. This is meant to be

used as an alternative to rebooting if an error occurs while

sending/receiving. Calling this function while other threads are

sending or receiving will result in unexpected behavior.

Returns:

Nothing.

B.5 Python API

The software interface is provided by bindings for C/C++, Python, and Java. After

installation all bindings are available in their respective runtime environments. The API

is based on the notion of channels. RIFFA 2.0 can be configured to support between 1 -

12 independent channels. Each channel connects to an IP core and can be addressed by

specifying the channel number from the user application. The channels are independent

and thread safe. At most one thread should be used to access a single channel.

193

The Python bindings are used by importing the riffa module. You will need

Python 2.7 or greater. Below are a couple of complete examples and an API listing.

import riffa

import array

fid = 0

channel = 0

data = array.array(’I’, range(100))

fd = riffa.fpga_open(fid)

riffa.fpga_send(fd, channel, data, 100, 0, True, 0)

riffa.fpga_recv(fd, channel, data, 0)

riffa.fpga_close(fd)

This example first opens up FPGA with id 0. It then sends 400 bytes of data (100

4-byte words) to channel 0 with 0 destination offset, 0 timeout, and marks the transfer as

last. The IP core on channel 0 is designed to send back some data. So the next call is to

receive data from the same channel, up to 400 bytes (that’s the size of the data array),

with 0 timeout. Note a few things:

• We’re using a array to hold our data. The array type supports the Python buffer

protocol interface which means a memoryview object can be created from it1. A

memoryview object exposes the underlying memory of the object implementing

the buffer protocol interface. This memory is read from and written to directly

without copying. Avoiding this copying preserves high performance. Therefore,

the fpga send and fpga recv functions only accept data objects that support

1The Python buffer protocol interface is a Python 3 design, however it has been back ported to
Python 2.7. So using version 2.7 should be fine. However, the Python array type was not completely
implemented in 2.7. As a result you cannot create a memoryview on a Python array in 2.7. To support
this type, we have exploited another method to support Python array types as data arguments in Python
2.7.

194

a memoryview. Python list and tuple do not support the buffer protocol

interface. So you’ll want to use array, numpy array or other types that do.

• The length of words sent is independent of the size of the supplied data object or

the size of each element in the data object. This is meant to force the programmer

to think about how many bytes each element uses in the data object because the

IP core designer will need to know how many and how to interpret that data.

• We’re using the same buffer to send data and receive data. This is not required, it

just makes for a simpler example.

• The timeout is set to 0. If there’s a problem with the IP core logic, a 0 timeout will

cause the program to wait forever.

• In practice, you’d want to check the return values to see how much data was sent

and received. You’d also probably want some error handling.

Another example is illustrated below that uses the numpy package.

import riffa

import numpy

fid = 0

channel = 0

data = numpy.array(range(100))

fd = riffa.fpga_open(fid)

riffa.fpga_send(fd, channel, data, 200, 0, True, 0)

riffa.fpga_recv(fd, channel, data, 0)

riffa.fpga_close(fd)

195

This example is nearly identical to the previous except that it uses a numpy array.

Since the numpy array stores values using 8 bytes per element, we changed the length

value to accommodate.

B.5.1 API

The API is provided in the listing below.

riffa.fpga_list()

Populates and returns a FpgaInfoList object with information on all

FPGAs registered in the system or None on error. Print the

FpgaInfoList object to see the information.

Returns:

A FpgaInfoList object on success, None on error.

riffa.fpga_open(id)

Initializes the FPGA specified by id. On success, returns an integer

descriptor for the FPGA. On error, returns None. Each FPGA must

be opened before any channels can be accessed. Once opened, any

number of threads can use the descriptor.

id - Identifier for the FPGA (in single FPGA installations, this is

always 0).

Returns:

An integer descriptor or None.

riffa.fpga_close(fd)

196

Cleans up memory/resources for the FPGA specified by the fd

descriptor.

fd - FPGA descriptor.

Returns:

Nothing.

riffa.fpga_send(fd, chnl, data, length, destoff, last, timeout)

fd - FPGA descriptor.

chnl - Channel number over which to communicate (0-11).

data - Object that implements the Python buffer protocol (i.e. can

create a memoryview from the object).

length - Length of data to send, in (32 bit) words. Thus a value of 4

means send 16 bytes. Not necessarily the number of elements from

data to send.

destoff - Value sent to FPGA core to indicate where to start writing

this data. Only the least significant 31 bits are sent (not all

32).

last - If True, this transfer is the last in a sequence of transfers.

If False, this transfer is not the last in a sequence of

transfers (more transfers to come).

timeout - Timeout value in ms. If 0, no timeout is specified.

Otherwise, the PC will wait up to timeout ms in between PC/FPGA

communications.

Sends length words (4 byte words) from data to FPGA channel chnl

using the fd descriptor. The data object must implement the

Python buffer protocol or an exception will be raised. Note that

Python array and numpy array both implement the protocol. The

197

FPGA channel will be sent length, destoff, and last. You can use

Python array slicing (e.g. [m:n] syntax) to create a new array

object to send a subset of data. Array slicing will not copy the

data on Python buffer protocol capable objects. The value of

destoff is used to support sending of data across multiple send

transactions. Note that only the low 31 bits of this value are

sent. If last is True, the channel should interpret the end of

this send as the end of a transaction. If last is False, the

channel should wait for additional sends before the end of the

transaction. If timeout is non-zero, this call will send data and

wait up to timeout ms for the FPGA to respond (between packets)

before timing out. If timeout is zero, this call may block

indefinitely. Multiple threads sending on the same channel may

result in corrupt data or error. This function is thread safe

across channels. Returns the number of words sent.

Returns:

The number of words sent.

riffa.fpga_recv(fd, chnl, data, timeout);

fd - FPGA descriptor.

chnl - Channel number over which to communicate (0-11).

data - Object that implements the Python buffer protocol (i.e. can

create a memoryview from the object).

timeout - Timeout value in ms. If 0, no timeout is specified.

Otherwise, the PC will wait up to timeout ms in between PC/FPGA

communications.

Receives data from the FPGA channel chnl to the data object, using

the fd descriptor. Just as with the fpga_send function, the data

198

object must implement the Python buffer protocol or an exception

will be raised. The FPGA channel can send any amount of data, so

the data array must be large enough to accommodate. The FPGA will

specify an offset value which will determine where received data

will start being written. If the amount of data plus offset

exceed the size of the data array, then the additional data will

be discarded. If timeout is non-zero, this call will wait up to

timeout ms for the FPGA to respond (between packets) before

timing out. If timeout is zero, this call may block indefinitely.

Multiple threads receiving on the same channel may result in

corrupt data or error. This function is thread safe across

channels. Returns the number of words received to the data array.

Returns:

The number of words received to the data array.

riffa.fpga_reset(fd);

Resets the state of the FPGA and all transfers across all channels.

This is meant to be used as an alternative to rebooting if an

error occurs while sending/receiving. Calling this function while

other threads are sending or receiving will result in unexpected

behavior.

fd - FPGA descriptor.

Returns:

Nothing.

199

B.6 Design Tips

When creating a design consider the following tips:

• Start with a simple design. Use the provided example IP core (chnl tester) on a

single channel design to make sure you’ve setup everything correctly. Then replace

the example IP core with your application. It is much easier knowing that RIFFA

is setup correctly before attempting to debug your entire design.

• Reboot after changing the FPGA design (i.e. after flashing via JTag). The operating

system needs to probe the PCIe device at boot time and reserve PCIe device space.

In theory, most operating systems support hot plugging PCIe devices. But we have

not be able to get this to work reliably ourselves.

• Check that your operating system recognizes the FPGA as a PCIe device after it

boots. This is the first thing to check. In Linux you can run lspci and look for

the FPGA in the list. You should see the FPGA listed as a PCI Memory device.

You can also check the kernel log, type dmesg to see if the RIFFA driver loaded

correctly. There should be entries in the log with the prefix “riffa”. In Windows

you can check the Device Manager. You should see the FPGA listed as a RIFFA

Device. If you’ve installed DgbView and configured it to capture boot information,

you should find entries in the log with the prefix “riffa”.

• Routing a design that makes timing constraints can be difficult when using multiple

RIFFA channels (4+). We have successfully implemented designs with all 12

channels on all our boards at all the data bit widths (32, 64, 128). We found that

using ISE’s Smart Explorer was necessary to find the correct set of options for

some designs.

200

• To achieve the highest bandwidth from the PC to your IP core (and vice versa),

you’ll want to drive the RIFFA channel with the PCIe interface clock. This is the

clock RIFFA uses to read/write data from the PCIe Endpoint. For high numbers

of lane links or 5.0 GT/s link speeds, this will often be 250 MHz. You don’t need

to run the rest of your design off this clock, but consider driving the RX and TX

channel ports using this clock so you can keep up with RIFFA.

• Follow the design suggestions and examples on the software bindings pages. The

examples shown avoid unnecessary copying of data (when possible).

• Avoid using Intel Z77 Ivy Bridge motherboards with RIFFA. This motherboard

architecture causes numerous problems with the Xilinx PCIe Endpoints.

• Monitor your kernel system log (or DbgView on Windows). This is where RIFFA

outputs debug information.

• Remember that VHDL and Verilog are compatible with little endian number

ordering. The C/C++ and Python bindings will use the system processor endianness

(which is also little endian for Intel/AMD). Java however encodes numbers in big

endian ordering. If using the Java bindings, data sent and received may need

byte swapping. The ByteBuffer classes will encode/decode numeric values in big

endian format. Byte swapping is most efficiently done on the FPGA as data is

being transferred.

B.7 Design Guide - Avnet Xilinx S6LX150t - ISE

This is a step by step guide to building a RIFFA 2.0 reference design for an Avnet

Xilinx Spartan-6 LX150t development board using ISE. Though it is likely that this guide

will work for other Spartan-6 based FPGA development boards.

201

RIFFA 2.0 provides a simple to use interface for communicating between a

workstation and FPGA cores. It uses a Xilinx PCIe Endpoint IP core to drive the

transceivers. The PCIe Endpoint core for Spartan 6 FPGAs is the Spartan 6 Integrated

Block for PCI Express. This core is licensed by the Xilinx End User License Agreement

and is provided with the Xilinx ISE Design suite with no additional charge. A prebuilt

design is provided and ready for download to your Avnet Xilinx Spartan-6 LX150t board.

Building your own RIFFA 2.0 design requires generating the PCIe Endpoint core and

then merging it with the RIFFA 2.0 source HDL.

To create a RIFFA 2.0 design with ISE:

1. Use Xilinx Coregen to generate the PCIe Endpoint core.

2. Combine the PCIe Endpoint core’s source HDL with the RIFFA 2.0 HDL.

3. Create a project in Xilinx ISE with the combined source HDL and.ucf.

4. Synthesize and implement.

Detailed instructions on how to do each step follow.

1. Use Xilinx Coregen to generate the PCIe Endpoint core. Use Coregen to generate

Verilog source for the Spartan 6 Integrated Block for PCI Express ver. 2.4. This is the

latest production version of the core at the time of this writing.

Start Coregen and make sure to set the project settings to generate Verilog code

for the XC6SLX150t-3FGG676. Use the Coregen wizard to generate the core. Unless

otherwise described, the default values on each wizard screen should be left as they are

presented.

On the first screen, pictured in Figure B.3, you will see that you have no selections

to make for lane width or link speed as this core only supports one lane at 2.5 GT/s.

This results in a 32 bit interface and a 62.5 MHz interface frequency clock. RIFFA 2.0

supports 32, 64, and 128 bit interfaces. You can use whatever interface frequency the

202

Table B.2. Maximum theoretical bandwidths for PCIe 1.0 and PCIe 2.0.

Gen1 (2.5 GT/s): Gen1 (2.5 GT/s):
x1 = 250 MB/s x1 = 500 MB/s
x2 = 500 MB/s x2 = 100 MB/s
x4 = 1000 MB/s x4 = 2000 MB/s
x8 = 2000 MB/s x8 = 4000 MB/s

options allow. We keep the default component name in our reference design. Table B.2

lists maximum theoretical bandwidths for PCIe 1.0 and PCIe 2.0.

On the next screen, pictured in Figure B.4, make sure only Bar0 is selected and is

set to a size of 1 KB. You will need to deselect Bar2.

On the next screen, pictured in Figure B.5, select Performance Level High.

Additionally, you will want to set the Max Payload Size to the maximum value offered.

These changes are not necessary for RIFFA 2.0 to function. They are required to achieve

maximum performance.

On this last screen, pictured in Figure B.6, select the development board that

you are using. If your development board is not in the list, you will need to know the

PCIe Block location for your part-package combination. Additional modifications to the

generated .ucf may also be necessary if your board is not in the list. As the Avnet Xilinx

Spartan-6 LX150t development board is not in the list, the RIFFA 2.0 reference design

comes with a configured .ucf file. Set the Reference Clock Frequency to 125 MHz. Then

complete the wizard and generate the core.

2. Combine the PCIe Endpoint core’s source HDL with the RIFFA 2.0 HDL. Core-

gen will produce a directory structure similar to what is pictured in Figure B.7. Once

completed, combine all the source HDL files from the source directory with the RIFFA

2.0 HDL files from the distribution into a new directory of your choosing. Also, into this

new directory, copy the top level and adapter module HDL files for this board from the

203

Figure B.3. Xilinx Coregen wizard screen.

204

Figure B.4. Xilinx Coregen wizard screen.

205

Figure B.5. Xilinx Coregen wizard screen.

206

Figure B.6. Xilinx Coregen wizard screen.

207

Figure B.7. File tree listing.

RIFFA 2.0 distribution. Lastly use the .ucf file from the RIFFA 2.0 distribution. Do not

use the top level module or .ucf from the example design directory as they do not have

the necessary modifications to work correctly.

3. Create a project in ISE with the combined HDL and.ucf. I expect you know how

to create a new project in ISE. So I won’t provide step by step instructions.

4. Synthesize and implement. At this point, if you attempt to synthesize you will

encounter an error: C NUM CHNL is not defined. This is intentional. It is done to

208

get you to open the RIFFA 2.0 adapter module file and edit it as needed. There are

instructions in that file. However, all you need to do is uncomment the line that defines

the C NUM CHNL parameter, set it to the number of channels you need (1-12), and you

should be able to implement the design completely.

The adapter module instantiates a chnl tester module for each channel. Sample

user application software in the RIFFA 2.0 distribution can be used to send and receive

data to/from the chnl tester modules. The chnl tester is meant to be an example. Your

design will need to replace the chnl tester modules with your own modules. You may

also need to modify the .ucf, top level, and RIFFA adapter modules to bring in additional

signals as dictated by your design.

B.8 Design Guide - Xilinx ML605 - ISE

This is a step by step guide to building a RIFFA 2.0 reference design for a Xilinx

Virtex-6 ML605 development board using ISE. Though it is likely that this guide will

work for other Virtex-6 based FPGA development boards.

RIFFA 2.0 provides a simple to use interface for communicating between a

workstation and FPGA cores. It uses a Xilinx PCIe Endpoint IP core to drive the

transceivers. The PCIe Endpoint core for Spartan 6 FPGAs is the Virtex 6 Integrated

Block for PCI Express. This core is licensed by the Xilinx End User License Agreement

and is provided with the Xilinx ISE Design suite with no additional charge. A prebuilt

design is provided and ready for download to your Xilinx ML605 board. Building your

own RIFFA 2.0 design requires generating the PCIe Endpoint core and then merging it

with the RIFFA 2.0 source HDL.

To create a RIFFA 2.0 design with ISE:

1. Use Xilinx Coregen to generate the PCIe Endpoint core.

2. Combine the PCIe Endpoint core’s source HDL with the RIFFA 2.0 HDL.

209

3. Create a project in Xilinx ISE with the combined source HDL and.ucf.

4. Synthesize and implement.

Detailed instructions on how to do each step follow.

1. Use Xilinx Coregen to generate the PCIe Endpoint core. Use Coregen to generate

Verilog source for the Virtex 6 Integrated Block for PCI Express ver. 2.5. This is the

latest production version of the core at the time of this writing.

Start Coregen and make sure to set the project settings to generate Verilog code

for the XC6VLX240t-1FFG1156. Use the Coregen wizard to generate the core. Unless

otherwise described, the default values on each wizard screen should be left as they are

presented.

On the first screen, pictured in Figure B.8, select the desired lane width and link

speed. RIFFA 2.0 supports a 32, 64, and 128 bit interface. So any lane width and link

speed selection you make will be supported. You can use any interface frequency the

options allow. We keep the default component name. Table B.2 lists maximum theoretical

bandwidths for PCIe 1.0 and PCIe 2.0.

On the next screen, pictured in Figure B.9, make sure only Bar0 is selected and is

set to a size of 1 KB. You will need to deselect Bar2.

On the next screen, pictured in Figure B.10, select Buffering Optimized for Bus

Mastering Applications and Performance Level High. Additionally, set the Max Payload

Size to the maximum value offered. These changes are not necessary for RIFFA 2.0 to

function. They are required to achieve maximum performance.

On the next screen, pictured in Figure B.11, select the development board that

you are using. If your board is not in the list, you will need to know the PCIe Block

location for your part-package combination. Additional modifications to the generated

.ucf may also be necessary if your board is not in the list.

210

Figure B.8. Xilinx Coregen wizard screen.

211

Figure B.9. Xilinx Coregen wizard screen.

212

Figure B.10. Xilinx Coregen wizard screen.

213

Figure B.11. Xilinx Coregen wizard screen.

214

Figure B.12. Xilinx Coregen wizard screen.

On this last screen, pictured in Figure B.12, set the Reference Clock Frequency

to 250 MHz. This is the recommended setting from Xilinx document XTP044. Then

complete the wizard and generate the core.

2. Combine the PCIe Endpoint core’s source HDL with the RIFFA 2.0 HDL. Core-

gen will produce a directory structure similar to what is pictured in Figure B.13. Once

completed, combine all the source HDL files from the source directory with the RIFFA

215

Figure B.13. File tree listing.

2.0 HDL files from the distribution into a new directory of your choosing. Also, into this

new directory, copy the top level and adapter module HDL files for this board from the

RIFFA 2.0 distribution. Lastly use the .ucf file from the RIFFA 2.0 distribution. Do not

use the top level module or .ucf from the example design directory as they do not have

the necessary modifications to work correctly.

3. Create a project in ISE with the combined HDL and.ucf. I expect you know how

to create a new project in ISE. So I won’t provide step by step instructions.

4. Synthesize and implement. At this point, if you attempt to synthesize you will

encounter an error: C NUM CHNL is not defined. This is intentional. It is done to

get you to open the RIFFA 2.0 adapter module file and edit it as needed. There are

216

instructions in that file. However, all you need to do is uncomment the line that defines

the C NUM CHNL parameter, set it to the number of channels you need (1-12), and you

should be able to implement the design completely.

The adapter module instantiates a chnl tester module for each channel. Sample

user application software in the RIFFA 2.0 distribution can be used to send and receive

data to/from the chnl tester modules. The chnl tester is meant to be an example. Your

design will need to replace the chnl tester modules with your own modules. You may

also need to modify the .ucf, top level, and RIFFA adapter modules to bring in additional

signals as dictated by your design.

B.9 Design Guide - Xilinx VC707 - ISE

This is a step by step guide to building a RIFFA 2.0 reference design for a Xilinx

Virtex-7 VC707 development board using ISE. Though it is likely that this guide will

work for other 7 Series based FPGA development boards.

RIFFA 2.0 provides a simple to use interface for communicating between a

workstation and FPGA cores. It uses a Xilinx PCIe Endpoint IP core to drive the

transceivers. The PCIe Endpoint core for 7 Series FPGAs is the 7 Series Integrated Block

for PCI Express. This core is licensed by the Xilinx End User License Agreement and is

provided with the Xilinx ISE Design suite with no additional charge. A prebuilt design

is provided and ready for download to your Xilinx VC707 board. Building your own

RIFFA 2.0 design requires generating the PCIe Endpoint core and then merging it with

the RIFFA 2.0 source HDL.

To create a RIFFA 2.0 design with ISE:

1. Use Xilinx Coregen to generate the PCIe Endpoint core.

2. Combine the PCIe Endpoint core’s source HDL with the RIFFA 2.0 HDL.

3. Create a project in Xilinx ISE with the combined source HDL and.ucf.

217

4. Synthesize and implement.

Detailed instructions on how to do each step follow.

1. Use Xilinx Coregen to generate the PCIe Endpoint core. Use Coregen to generate

Verilog source for the 7 Series Integrated Block for PCI Express ver. 1.8. This is the

latest production version of the core at the time of this writing.

Start Coregen and make sure to set the project settings to generate Verilog code

for the XC7VX485t-2FFG1761C. Use the Coregen wizard to generate the core. Unless

otherwise described, the default values on each wizard screen should be left as they are

presented.

On the first screen, pictured in Figure B.14, select the desired lane width and

link speed. RIFFA 2.0 supports a 32, 64, and 128 bit interface. So any lane width and

link speed selection you make will be supported. You can use any interface frequency

the options allow. We keep the default component name. Table B.2 lists maximum

theoretical bandwidths for PCIe 1.0 and PCIe 2.0.

On the next screen, pictured in Figure B.15, make sure only Bar0 is selected and

is set to a size of 1 KB.

On the next screen, pictured in Figure B.16, select Buffering Optimized for Bus

Mastering Applications and Performance Level High. Additionally, set the Max Payload

Size to the maximum value offered. These changes are not necessary for RIFFA 2.0 to

function. They are required to achieve maximum performance.

On this last screen, pictured in Figure B.17, select the development board that

you are using. If your board is not in the list, you will need to know the PCIe Block

location for your part-package combination. Additional modifications to the generated

.ucf may also be necessary if your board is not in the list. Then complete the wizard and

generate the core.

218

Figure B.14. Xilinx Coregen wizard screen.

219

Figure B.15. Xilinx Coregen wizard screen.

220

Figure B.16. Xilinx Coregen wizard screen.

221

Figure B.17. Xilinx Coregen wizard screen.

222

Figure B.18. File tree listing.

2. Combine the PCIe Endpoint core’s source HDL with the RIFFA 2.0 HDL. Core-

gen will produce a directory structure similar to what is pictured in Figure B.18. Once

completed, combine all the source HDL files from the source directory with the RIFFA

2.0 HDL files from the distribution into a new directory of your choosing. Also, into this

new directory, copy the top level and adapter module HDL files for this board from the

RIFFA 2.0 distribution. Lastly use the .ucf file from the RIFFA 2.0 distribution. Do not

use the top level module or .ucf from the example design directory as they do not have

the necessary modifications to work correctly.

3. Create a project in ISE with the combined HDL and.ucf. I expect you know how

to create a new project in ISE. So I won’t provide step by step instructions.

223

4. Synthesize and implement. At this point, if you attempt to synthesize you will

encounter an error: C NUM CHNL is not defined. This is intentional. It is done to

get you to open the RIFFA 2.0 adapter module file and edit it as needed. There are

instructions in that file. However, all you need to do is uncomment the line that defines

the C NUM CHNL parameter, set it to the number of channels you need (1-12), and you

should be able to implement the design completely.

The adapter module instantiates a chnl tester module for each channel. Sample

user application software in the RIFFA 2.0 distribution can be used to send and receive

data to/from the chnl tester modules. The chnl tester is meant to be an example. Your

design will need to replace the chnl tester modules with your own modules. You may

also need to modify the .ucf, top level, and RIFFA adapter modules to bring in additional

signals as dictated by your design.

B.10 Design Guide - Xilinx VC707 - Vivado

This is a step by step guide to building a RIFFA 2.0 reference design for a Xilinx

Virtex-7 VC707 development board using Vivado. Though it is likely that this guide will

work for other 7 Series based FPGA development boards.

RIFFA 2.0 provides a simple to use interface for communicating between a

workstation and FPGA cores. It uses a Xilinx PCIe Endpoint IP core to drive the

transceivers. The PCIe Endpoint core for 7 Series FPGAs is the 7 Series Integrated Block

for PCI Express. This core is licensed by the Xilinx End User License Agreement and

is provided with the Xilinx Vivado Design suite with no additional charge. A prebuilt

design is provided and ready for download to your Xilinx VC707 board. Building your

own RIFFA 2.0 design requires generating the PCIe Endpoint core and then merging it

with the RIFFA 2.0 source HDL.

To create a RIFFA 2.0 design with Vivado:

224

1. Create a project in Xilinx Vivado.

2. Use Vivado to generate the PCIe Endpoint core.

3. Add the RIFFA 2.0 HDL as design sources.

4. Synthesize and implement.

Detailed instructions on how to do each step follow.

1. Create a project in Xilinx Vivado. I expect you know how to create a new RTL

based project in Vivado for your development board. So I won’t provide step by step

instructions.

2. Use Vivado to generate the PCIe Endpoint core. Select IP Catalog and double

click on the 7 Series Integrated Block for PCI Express core. Version 2.1 is the latest

production version of the core at the time of this writing. Figure B.19 shows the Vivado

IDE. This will begin customization of the IP. Unless otherwise described, the default

values on each wizard screen should be left as they are presented.

On the first screen, pictured in Figure B.20, set the desired lane width and link

speed. RIFFA 2.0 supports a 32, 64, and 128 bit interface. So any lane width and

link speed selection you make will be supported. You can use any interface frequency

the options allow. The reference design expects the component name specified below.

Leave the reference clock frequency set to 100 MHz. Set the Xilinx Development Board

to VC707 and set Silicon Revision to GES and Production. Table B.2 lists maximum

theoretical bandwidths for PCIe 1.0 and PCIe 2.0.

On the next screen, pictured in Figure B.21, make sure only Bar0 is selected and

is set to a size of 1 KB.

On the next screen, pictured in Figure B.22, set Performance Level to High.

Additionally, set the Max Payload Size to the maximum value offered. These changes

225

Figure B.19. Xilinx Vivado screen.

are not necessary for RIFFA 2.0 to function. They are required to achieve maximum

performance.

Then complete the wizard and generate the core. When prompted with the dialog

pictured in Figure B.23, click Generate.

In Vivado you must open the IP Example Design before you can use the PCIe

Endpoint. This will create a new Vivado project with the PCIe Endpoint Example Design

and open another Vivado instance with this new project. See Figure B.24.

When prompted, specify a location of your choosing for the new Vivado project.

Figure B.25 illustrates this dialog.

3. Add the RIFFA 2.0 HDL as design sources. The Example Application Vivado

project will be your design project. Before adding the RIFFA 2.0 HDL files, you need to

remove the existing example application HDL files. Select the following files and remove

226

Figure B.20. Xilinx Vivado IP Catalog wizard screen.

227

Figure B.21. Xilinx Vivado IP Catalog wizard screen.

228

Figure B.22. Xilinx Vivado IP Catalog wizard screen.

Figure B.23. Xilinx Vivado IP Catalog wizard dialog.

229

Figure B.24. Xilinx Vivado screen.

Figure B.25. Xilinx Vivado dialog.

230

Figure B.26. Xilinx Vivado screen.

them from the project:

xilinx pcie 2 1 ep 7x.v

pcie app 7x.v

PIO.v

PIO EP.v

PIO EP MEM ACCESS.v

EP MEM.v

PIO RX ENGINE.v

PIO TO CTRL.v

PIO TX ENGINE.v

This is pictured in Figure B.26.

Then add the RIFFA 2.0 HDL files to your project using the dialog pictured in

231

Figure B.27. Xilinx Vivado dialog.

Figure B.27.

Be sure to add the following files from the board directory:

riffa top pcie 7x v2 1.v

riffa adapter pcie 7x v2 1.v.

Once all the files are added, be sure Copy sources into project is checked and click Finish

as pictured in Figure B.28.

4. Synthesize and implement. Before you can synthesize, you need to make modifi-

cations to the .xdc constraints file as per XTP207. This is pictured in Figure B.29. Add

the following constraints:

set_property IOSTANDARD LVCMOS18 [get_ports emcclk]

set_property LOC AP37 [get_ports emcclk]

set_property BITSTREAM.CONFIG.BPI_SYNC_MODE Type1 [current_design]

set_property BITSTREAM.CONFIG.EXTMASTERCCLK_EN div-1 [current_design]

232

Figure B.28. Xilinx Vivado dialog.

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]

At this point, if you attempt to synthesize you will encounter an error indicating

C NUM CHNL is not defined. This is intentional. It is done to get you to open the RIFFA

2.0 adapter module file and edit it as needed. There are instructions in that file. However,

all you need to do is uncomment the line that defines the C NUM CHNL parameter, set

it to the number of channels you need (1-12), and you should be able to implement the

design completely.

The adapter module instantiates a chnl tester module for each channel. Sample

user application software in the RIFFA 2.0 distribution can be used to send and receive

data to/from the chnl tester modules. The chnl tester is meant to be an example. Your

design will need to replace the chnl tester modules with your own modules. You may

also need to modify the .xdc, top level, and RIFFA adapter modules to bring in additional

signals as dictated by your design.

233

Figure B.29. Xilinx Vivado screen.

Appendix C

Reusable Components

The following is a listing and explanation of the reusable components in the

Smart Frame Grabber Framework.

C.1 Image Scaler

A streaming image scaler module that supports arbitrary precision scaling. It

provides support for bi-linear or nearest neighbor interpolation. This work was originally

the design of David Kronstein and licensed by the GNU Lesser General Public License.

However, it has been substantially reworked to support higher frequencies.

image scaler.v Scales streaming video up or down in resolution. Bilinear and nearest

neighbor modes are supported. Run-time adjustment of input and output resolution,

scaling factors, and scale type. Pipeline delay of 7 cycles. Output begins after 2 lines of

video have been acquired.

C.2 Frame Capture

Captures image frames at any resolution and rate. Makes the data available via a

FIFO.

234

235

frame capture.v Captures DVI video frame data and buffers a portion of it in a FIFO.

Users should pulse the CAPTURE port high (using the RD CLK) for each frame they

want captured. The first complete video frame will be captured after each CAPTURE

pulse. Pulses will not accrue. Only after a frame has completely rendered (i.e. during

VS), will additional pulses have an effect.

Captured frame data is made available on RD DATA via a FWFT asynchronous

FIFO. RD EMPTY will be high until valid data is available. The combination RD EN

and RD EMPTY will consume the data on RD DATA. EOF will be high for at least one

cycle between frames after the last bit of frame data has been read out via RD DATA.

Note that requesting the next frame may need to happen before the current frame has

been completely read out. VS will likely start before all the captured frame data has been

read out of the buffer. So take care not to miss the entire VS period reading out data if

continuous frame capture is needed.

If RD EMPTY goes high before before an entire frame’s worth of data has been

provided, it indicates a truncated frame. This is likely the result of an overflow, or of an

incomplete frame from the video source. Handle this as appropriate.

Also note that continuous capturing may result in the final frame being requested,

but not read (i.e. at the end of a continuous capture sequence). Between continuous

captures, users should assert RST for at least one cycle to clear out any buffered data

from any previous capture sequence.

line reverse.v Aggregates 24 bit data into a line (delimited by high DVI HS) and

output 24 bit data in the reverse order in which it was generated.

236

C.3 Sliding Window Framework

Provides the basic framework for sliding window style processing such as convo-

lution or feature extraction.

sliding window.v Saves image pixels in BRAM line buffers to support a vertical

scrolling horizontal slice of image pixels across an image. The slice can be at most

FLOOR(C LINE SIZE/C SHARE MULT) pixels wide and C WIN SIZE pixels high.

The slice supports a left-right sliding window of size C WIN SIZE x C WIN SIZE. Once

the end of a pixel line is reached, the window shifts down a line and begins scrolling left

to right again. When at least C WIN SIZE rows and columns have been buffered, the

sliding begins. On each new line, sliding is delayed until C WIN SIZE columns have

been buffered.

The ADDR A, ADDR B, and LINE OFF ports are used to request window

data. When ADDR VALID is high, these values must be valid. ADDR RECVD will

be pulsed high for every set of addresses read. The window values will be available

on ports DATA A and DATA B 2 cycles later. DATA VALID will also be high when

these ports have valid values. After the last set of addresses are acknowledged (by the

ADDR RECVD pulse), ADDR DONE should be pulsed high to signal the end of reading

(for the current window).

NOTE: to achieve maximum throughput, some knowledge of the organization of

data must be known by external modules. Window data is exposed through dual BRAM

read ports. Two ports from each BRAM can be read on every cycle. C NUM LINE

BRAMs will store the window data. Each BRAM stores C SHARE MULT image

lines. To access a pair of pixels on line n in the current window, use the (n MOD

C NUM LINE)th port pair. The address to assert on ports ADDR A and ADDR B

237

is the position of the pixel in the window line, [0, C WIN SIZE-1]. A line offset

is needed to distinguish which image line in the BRAM is the target. This value is

FLOOR(n/C NUM LINE), in the range [0, C SHARE MULT-1]. It should be asserted

on the LINE OFF port. For example, if C NUM LINE == 10, to read positions 3 and 10

on line 13, use the (0,1,2,...) 3rd set of address and data ports. Then assert ADDR A = 3,

ADDR B = 7, and LINE OFF = 1. To access the same positions on line 3 in the window

(instead of line 13), use the same ports and simply change LINE OFF to 0.

Input data is provided on the PX EOF, PX EOL, PX DE, and PX DATA ports.

When PX VALID is high, their values are valid. PX VALID must remain high until

PX RECVD is pulsed high to acknowledge the receipt. This also requests the next pixel.

PX EOL must be pulsed high for 1 cycle after every line. PX EOF must be pulsed high

for 1 cycle after all the lines (at the end of a frame). When PX DE is high, that indicates

PX DATA contains pixel information. PX DE must not be high when either PX EOL or

PX EOF are high.

C.4 Integral Image Conversion

Conversion support for integral images.

integral image.v Calculates integral image pixels from C PX WIDTH bit grayscale

pixels. Outputs a C II WIDTH bit integer after a 4 cycle delay (as indicated by DE OUT).

HS IN should go high for least one cycle between lines. VS IN should go high for at

least one cycle between frames.

C.5 Pixel Color Space Conversion

Color space conversion utilities.

238

rgb to gray.v Converts 24 bit RGB video to grayscale 8 bit video with a 3 cycle delay.

rgb to hsv.v Converts the input RGB data into output HSV data. The supplied address

follows the input pixel to output pixel.

C.6 Arithmetic Operations

Parameterized addition utilities to automatically build a pipelined adder tree. This

allows a function that sums multiple value per cycle to be spread out over many cycles.

binary adder tree.v Recursively builds a binary adder tree and returns the SUM. Each

level in tree is registered. The VALID OUT signal is a delayed version of the VALID IN

and corresponds to the calculation latency. Cycle delay will be clog2(C NUM OPS).

binary signed adder tree.v Recursively builds a signed binary adder tree and returns

the SUM. Each level in tree is registered. The VALID OUT signal is a delayed ver-

sion of the VALID IN and corresponds to the calculation latency. Cycle delay will be

clog2(C NUM OPS).

calc mean.v Calculates the mean and squared mean of the specified values. The values

are added to a running sum when VALID IN is high. When VAL DONE is high, the sums

are divided by the count and the MEAN and SQ MEAN are outputted with VALID OUT

high. RST must be asserted high between calculations. MEAN, and SQ MEAN are 32

bit IEEE 754 floats.

Note that to work properly the following must be true:

CYCLES BETWEEN VALID IN PULSES ¿ C ADD SUB DELAY + 3

239

C.7 Counting and Filtering

Counting and region identification routines for windows and pixels.

annular filter.v Creates an annular (ring) region based on the radii provided and

samples according to the sampling frequency within the annular region. The region is the

area ¡ RADIUS SQ OUTR and≥ RADIUS SQ INNR, as measured by the RADIUS SQ

port.

The C MAX SAMPLE FREQ should be set to a number that is the maximum

count between valid windows during which no sampling will take place. For example,

if C MAX SAMPLE FREQ == 256, then the sampling density must be no less than

1 every 256 valid windows (or 0.00390625). SAMPLE FREQ is the actual sampling

frequency.

pixel counter.v Counts pixels to output X,Y coordinates with the video data. Coordi-

nates start at zero and go to width - 1, and height -1.

C.8 Feature Extraction and Calculation

Cores that work with the sliding window framework to calculate features.

ncc parms and calc.v Stores image data and template data to calculate normalized

cross-correlation values on the image. The C WIN DIM x C WIN DIM template pixels

are cross-correlated with each C WIN DIM x C WIN DIM image window. The calcula-

tion is parallelized by a factor of C WIN DIM to provide a new value every C WIN DIM

cycles.

Template data is stored in a C WIN DIM x C PIXEL WIDTH bit wide BRAM,

C WIN DIM values deep. It is received one C WIN DIM x C PIXEL WIDTH bit

240

column per cycle. Image data is stored in a similar sized BRAM and received in a similar

way, one column per cycle. However, image data is stored in a circular fashion in the

BRAM.

haar calc.v Calculates Haar feature values using the specified coordinates and weights

on the specified window data (in WIN). C NUM RECTS rectangles will be calculated in

parallel on the window. The result is available on the VALUE port when VALID OUT is

high. Setting C NUM REG OUT STAGES to something other than 0 will register the

outputs of each rectangle sum. This will add delay and increase register usage, but can

improve timing and fmax by only adding 1 or 2 stages. C MAX COORD represents the

maximum coordinate within the window that will be accessed. C MAX COORD must

be less than or equal to C WIN DIM (if the coordinates are a subset, the mux’s will be

fewer).

The WIN window data must be organized in rows of pixels such that the top row

starts at address 0. Within each row, the pixels must be arranged so the newest pixel in

that row is on the left. For example, a 3x3 window at the upper left corner of the image

with pixel widths of 4 will look like:

WIN[11:00] = {PX(2,0), PX(1,0), PX(0,0)}

WIN[23:12] = {PX(2,1), PX(1,1), PX(0,1)}

WIN[35:24] = {PX(2,2), PX(1,2), PX(0,2)}

Here PX(x,y) corresponds to the pixel at coordinate x, y in the image. See slid-

ing window.v for further details.

C.9 Clock Domain Crossing

Utilities to help avoid metastability issues when crossing between clock domains.

241

syncff.v A back to back FF design to mitigate the metastable issues when dealing with

signaling between different frequency clocks (or asynchronous signals).

C.10 Data Manipulation

Data aggregation, distribution, and manipulation utilities.

pack 24 to 32.v Aggregates 24 bit data and outputs 32 bit word data. This is used to

pack data into a format easy to send via multiples of 32 bits.

distribute bytes.v Distributes bytes, C OUT BYTES at a time from a small cache.

Reads in C IN BYTES bytes at a time from a connected FWFT FIFO. C IN BYTES

must be an integer multiple of C OUT BYTES and C IN BYTES ≥ C OUT BYTES.

When FLUSH pulses high, this module will pulse FLUSHED after all the remaining

bytes in the FWFT FIFO are read and distributed (that is, as soon as INDATA EN goes

low after the FLUSH pulse). The module will not wait for more data to be made available

in the FWFT FIFO.

accumulate bytes.v Accumulates bytes, C IN BYTES at a time until C OUT BYTES

bytes have been collected. At which point, EMPTY will drop. NOTE: C OUT BYTES

MUST BE AN INTEGER MULTIPLE OF C IN BYTES AND C OUT BYTES ≥

C IN BYTES. When FLUSH is high, any data collected but not yet outputted will be

outputted on

C.11 RAMs and FIFOs

These modules infer RAM blocks and FIFO queues during FPGA synthesis.

242

ram 1clk 1rw.v An inferrable RAM module. Single clock, 1 read/write port. For

Xilinx, specify RAM STYLE=”BLOCK” or ”DISTRIBUTED” to use BRAM or LUT

memory.

Specify the width and depth as parameters.

ram 1clk 1rw 1r.v An inferrable RAM module. Single clock, 1 read/write port, 1 read

port. For Xilinx, specify RAM STYLE=”BLOCK” or ”DISTRIBUTED” to use BRAM

or LUT memory.

Specify the width and depth as parameters.

ram 1clk 1w 1r.v An inferrable RAM module. Single clock, 1 write port, 1 read port.

For Xilinx, specify RAM STYLE=”BLOCK” or ”DISTRIBUTED” to use BRAM or

LUT memory.

Specify the width and depth as parameters.

ram 1clk 2rw.v An inferrable RAM module. Single clock, 2 read/write ports. For

Xilinx, specify RAM STYLE=”BLOCK” or ”DISTRIBUTED” to use BRAM or LUT

memory.

Specify the width and depth as parameters.

ram 2clk 1w 1r.v An inferrable RAM module. Dual clocks, 1 write port, 1 read port.

For Xilinx, specify RAM STYLE=”BLOCK” or ”DISTRIBUTED” to use BRAM or

LUT memory.

Specify the width and depth as parameters.

ram 2clk 2rw.v An inferrable RAM module. Dual clocks, 2 read/write ports. For

Xilinx, specify RAM STYLE=”BLOCK” or ”DISTRIBUTED” to use BRAM or LUT

243

memory.

Specify the width and depth as parameters.

sync fifo.v A synchronous capable parameterized FIFO. With a traditional FIFOs, the

RD DATA will be valid one cycle following a RD EN assertion. EMPTY will remain

low until the cycle following the last RD EN assertion. Note, that EMPTY may actually

be high on the same cycle that RD DATA contains valid data.

Specify the width and depth as parameters.

sync fifo fwft.v A synchronous capable parameterized first word fall through FIFO.

As with all first word fall through FIFOs, the RD DATA will be valid when RD EMPTY

is low. Asserting RD EN will consume the current RD DATA value and cause the next

value (if it exists) to appear on RD DATA on the following cycle. Be sure to check if

RD EMPTY is low each cycle to determine if RD DATA is valid.

Specify the width and depth as parameters.

async fifo.v An asynchronous capable parameterized FIFO. With a traditional FIFOs,

the RD DATA will be valid one cycle following a RD EN assertion. EMPTY will remain

low until the cycle following the last RD EN assertion. Note, that EMPTY may actually

be high on the same cycle that RD DATA contains valid data.

Specify the width and depth as parameters.

async fifo fwft.v An asynchronous capable parameterized first word fall through FIFO.

As with all first word fall through FIFOs, the RD DATA will be valid when RD EMPTY

is low. Asserting RD EN will consume the current RD DATA value and cause the next

value (if it exists) to appear on RD DATA on the following cycle. Be sure to check if

RD EMPTY is low each cycle to determine if RD DATA is valid.

244

Specify the width and depth as parameters.

C.12 Skin Detector

A HSV based pixel classifier that uses a boost trained alternating decision tree

for evaluation.

SDHSVBuilder.java When run with a suitable alternating decision tree .xml file as

input, generates a skin detector hsv.v Verilog module that evaluates each pixel in a

pipelined fashion to classify. Parameterized to support the number of classification

operations to calculate per pipeline stage.

Bibliography

[1] Amit Adam, Ehud Rivlin, and Ilan Shimshoni. Robust fragments-based tracking
using the integral histogram. In CVPR, 2006.

[2] Andrieu, de Freitas, Doucet, and Jordan. An introduction to MCMC for machine
learning. MACHLEARN: Machine Learning, 50, 2003.

[3] Miguel Arias-Estrada and Eduardo Rodrı́guez-Palacios. An FPGA co-processor for
real-time visual tracking. Lecture Notes in Computer Science, 2438:710, 2002.

[4] Miguel Arias-Estrada and Eduardo Rodrı́guez-Palacios. An fpga co-processor for
real-time visual tracking. In Proceedings of the Reconfigurable Computing Is Going
Mainstream, 12th International Conference on Field-Programmable Logic and
Applications, FPL ’02, pages 710–719, London, UK, 2002. Springer-Verlag.

[5] Akshay Athalye, Miodrag Bolic, Sangjin Hong, and Petar M. Djuric. Generic
hardware architectures for sampling and resampling in particle filters. EURASIP J.
Adv. Sig. Proc, 2005(17):2888–2902, 2005.

[6] Shai Avidan. Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell,
26(8):1064–1072, 2004.

[7] Boris Babenko and Ming-Hsuan Yang Serge Belongie. Robust object tracking with
online multiple instance learning. TPAMI, 2011.

[8] Sebastian Bauer, Sebastian Kohler, Konrad Doll, and Ulrich Brunsmann. Fpga-gpu
architecture for kernel svm pedestrian detection. In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on,
pages 61–68. IEEE, 2010.

[9] Gary R. Bradski. Computer vision face tracking for use in a perceptual user interface.
Intel Technology Journal, 1998.

[10] R. Brodersen, A. Tkachenko, and H. Kwok-Hay So. A unified hardware/software
runtime environment for fpga-based reconfigurable computers using borph. In
CODES+ISSS ’06, 2006.

245

246

[11] R. J. Butera, C. G. Wilson, C. A. Delnegro, and J. C. Smith. A methodology
for achieving high-speed rates for artificial conductance injection in electrically
excitable biological cells. IEEE Trans Biomed Eng, 48(12):1460–1470, Dec 2001.

[12] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information visualizer, an
information workspace. In Proc. ACM Conf. Human Factors in Computing Systems,
CHI, pages 181–188. ACM, April 1991.

[13] Jeff Chase, Brent Nelson, John Bodily, Zhaoyi Wei, and Dah-Jye Lee. Real-time
optical flow calculations on fpga and gpu architectures: A comparison study. In
FCCM, pages 173–182, 2008.

[14] Kamalika Chaudhuri, Yoav Freund, and Daniel Hsu. Tracking using explanation-
based modeling. 2009.

[15] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach. Accelerating compute-
intensive applications with GPUs and FPGAs. In SASP, pages 101–107. IEEE,
2008.

[16] Jung Uk Cho, Seung Hun Jin, Xuan Dai Pham, Jae Wook Jeon, Jong Eun Byun, and
Hoon Kang. A real-time object tracking system using a particle filter. In Intelligent
Robots and Systems, 2006.

[17] Jung Uk Cho, Seunghun Jin, Xuan Dai Pham, and Jae Wook Jeon. Multiple
objects tracking circuit using particle filters with multiple features. In ICRA, pages
4639–4644. IEEE, 2007.

[18] Junguk Cho, Shahnam Mirzaei, Jason Oberg, and Ryan Kastner. Fpga-based face
detection system using haar classifiers. In Paul Chow and Peter Y. K. Cheung,
editors, FPGA, pages 103–112. ACM, 2009.

[19] Junguk Cho, Shahnam Mirzaei, Jason Oberg, and Ryan Kastner. Fpga-based face
detection system using haar classifiers. In FPGA, 2009.

[20] Adam Coates, Paul Baumstarck, Quoc V. Le, and Andrew Y. Ng. Scalable learning
for object detection with GPU hardware. In IROS, pages 4287–4293. IEEE, 2009.

[21] Ben Cope, Peter Y. K. Cheung, Wayne Luk, and Sarah Witt. Have GPUs made
FPGAs redundant in the field of video processing? In FPT, pages 111–118. IEEE,
2005.

[22] T. G Dietterich, R. H. Lathrop, and T. Lozano-Perez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial Intelligence, 89:31–71, 1997.

[23] A. D. Dorval, D. J. Christini, and J. A. White. Real-Time linux dynamic clamp: a
fast and flexible way to construct virtual ion channels in living cells. Ann Biomed
Eng, 29(10):897–907, Oct 2001.

247

[24] B. Echebarria and A. Karma. Spatiotemporal control of cardiac alternans. Chaos,
12(3):923–930, Sep 2002.

[25] Ken Eguro. SIRC: An extensible reconfigurable computing communication API.
In Ron Sass and Russell Tessier, editors, FCCM, pages 135–138. IEEE Computer
Society, 2010.

[26] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. A performance
and energy comparison of FPGAs, GPUs, and multicores for sliding-window
applications. In FPGA, pages 47–56. ACM, 2012.

[27] Yoav Freund, Robert Schapire, and N Abe. A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[28] Alex Goldhammer and John Ayer Jr. Understanding performance of pci express
systems. White Paper: Xilinx Virtex-4 and Virtex-5 FPGAs, 2008.

[29] Naga K. Govindaraju, Scott Larsen, Jim Gray, and Dinesh Manocha. Memory - A
memory model for scientific algorithms on graphics processors. In SC, page 89.
ACM Press, 2006.

[30] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting.
In BMVC, page I:47, 2006.

[31] Helmut Grabner, Michael Grabner, and Horst Bischof. Real-time tracking via
on-line boosting. In BMVC, volume 1, page 6, 2006.

[32] Helmut Grabner, Christian Leistner, and Horst Bischof. Semi-supervised on-line
boosting for robust tracking. In Computer Vision–ECCV. 2008.

[33] G. M. Hall and D. J. Gauthier. Experimental control of cardiac muscle alternans.
Phys. Rev. Lett., 88(19):198102, May 2002.

[34] Simon Heinzle, Pierre Greisen, David Gallup, Christine Chen, Daniel Saner,
Aljoscha Smolic, Andreas Burg, Wojciech Matusik, and Markus H. Gross. Compu-
tational stereo camera system with programmable control loop. ACM Trans. Graph,
30(4):94, 2011.

[35] John M III. Open component portability infrastructure (opencpi), 2009.

[36] Ra Inta, David John Bowman, and Susan M. Scott. The ”chimera”: An off-the-shelf
CPU/GPGPU/FPGA hybrid computing platform. Int. J. Reconfig. Comp, 2012.

[37] S. Iravanian and D. J. Christini. Optical mapping system with real-time control
capability. Am. J. Physiol. Heart Circ. Physiol., 293(4):H2605–2611, Oct 2007.

248

[38] Matthew Jacobsen, Yoav Freund, and Ryan Kastner. Riffa: A reusable integration
framework for fpga accelerators. In Field-Programmable Custom Computing
Machines (FCCM), 2012, pages 216–219. IEEE, 2012.

[39] Matthew Jacobsen and Ryan Kastner. Riffa 2.0: A reusable integration framework
for fpga accelerators. In FPL, 2013.

[40] Matthew Jacobsen, Pingfan Meng, Siddarth Sampangi, and Ryan Kastner. Fpga
accelerated online boosting for multi-target tracking. In Proceedings of the 2014
IEEE 22nd International Symposium on Field-Programmable Custom Computing
Machines. IEEE Computer Society, 2014.

[41] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection.
PAMI, 2012.

[42] R. Kalarot and J. Morris. Comparison of fpga and gpu implementations of real-time
stereo vision. In Computer Vision and Pattern Recognition Workshops (CVPRW),
2010 IEEE Computer Society Conference on, pages 9–15, June.

[43] John H. Kelm and Steven S. Lumetta. Hybridos: runtime support for reconfigurable
accelerators. In FPGA, pages 212–221, New York, NY, USA, 2008. ACM.

[44] H. C. Lai, M. Savvides, and T. H. Chen. Proposed FPGA hardware architecture for
high frame rate (> 100 fps) face detection using feature cascade classifiers. In
Biometrics: Theory, Applications, and Systems, pages 1–6, 2007.

[45] Charles Lo and Paul Chow. A high-performance architecture for training viola-jones
object detectors. In FPT. IEEE, 2012.

[46] Pingfan Meng, Ali Irturk, Ryan Kastner, Andrew McCulloch, Jeffrey Omens,
and Adam Wright. Gpu acceleration of optical mapping algorithm for cardiac
electrophysiology. In EMBC, Aug 2012.

[47] David Merrill. Head-tracking for gestural and continuous control of parameterized
audio effects. In Proceedings of the 2003 conference on New interfaces for musical
expression, pages 218–219. National University of Singapore, 2003.

[48] R. B. Miller. Response time in man-computer conversational transactions. FALL
JOINT COMPUTER CONF., pages 267–277, 1968.

[49] H. N. Pak, Y. B. Liu, H. Hayashi, Y. Okuyama, P. S. Chen, and S. F. Lin. Synchro-
nization of ventricular fibrillation with real-time feedback pacing: implication to
low-energy defibrillation. Am. J. Physiol. Heart Circ. Physiol., 285(6):H2704–2711,
Dec 2003.

249

[50] Karl Pauwels, Matteo Tomasi, Javier Diaz, Eduardo Ros, and Marc M. Van Hulle.
A comparison of fpga and gpu for real-time phase-based optical flow, stereo, and
local image features. IEEE Transactions on Computers, 61:999–1012, 2012.

[51] Wesley Peck, Erik K. Anderson, Jason Agron, Jim Stevens, Fabrice Baijot, and
David L. Andrews. Hthreads: A computational model for reconfigurable devices.
In FPL, pages 1–4. IEEE, 2006.

[52] Karl Pereira, Peter Athanas, Heshan Lin, and Wu Feng. Spectral method charac-
terization on FPGA and GPU accelerators. In ReConFig, pages 487–492. IEEE
Computer Society, 2011.

[53] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental
learning for robust visual tracking. IJCV, 2008.

[54] D. Snow, M. J. Jones, and P. Viola. Detecting pedestrians using patterns of motion
and appearance. In ICCV, 2003.

[55] R Spurzem, P Berczik, G Marcus, A Kugel, G Lienhart, I Berentzen, R Männer,
R Klessen, and R Banerjee. Accelerating astrophysical particle simulations with
programmable hardware (fpga and gpu). Computer Science-Research and Develop-
ment, 23(3), 2009.

[56] D. Sung, J. Somayajula-Jagai, P. Cosman, R. Mills, and A. D. McCulloch. Phase
shifting prior to spatial filtering enhances optical recordings of cardiac action
potential propagation. Ann Biomed Eng, 29(10):854–61, 2001.

[57] Kuen Hung Tsoi and Wayne Luk. Axel: a heterogeneous cluster with fpgas and
gpus. In Proceedings of the 18th annual ACM/SIGDA international symposium on
Field programmable gate arrays, pages 115–124. ACM, 2010.

[58] Paul A. Viola and Michael J. Jones. Robust real-time face detection. In ICCV, page
747, 2001.

[59] Paul A. Viola, John C. Platt, and Cha Zhang. Multiple instance boosting for object
detection. In NIPS, 2005.

[60] J. Y. Wang, X. L. Chen, and W. Gao. Online selecting discriminative tracking
features using particle filter. In CVPR, pages II: 1037–1042, 2005.

[61] Y. Wei, X. Bing, and C. Chareonsak. Fpga implementation of adaboost algorithm
for detection of face biometrics. In Biomedical Circuits and Systems, 2004 IEEE
International Workshop on, pages S1/6 – 17–20, 2004.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Smart Frame Grabber
	Motivation
	Communication Component
	Reusable Components
	Contributions
	Framework Contributions
	Application Contributions

	Smart Frame Grabber Framework
	RIFFA: A Reusable Integration Framework for FPGA Accelerators
	Introduction
	Related Work
	RIFFA 1.0
	Architecture

	RIFFA 2.0
	Design
	Architecture
	Performance

	Conclusion

	Smart Frame Grabber Applications
	FPGA Accelerated Skin Color Detection
	Introduction
	Design and Architecture
	Performance
	Conclusion

	FPGA Coprocessor for Particle Filter Tracking
	Introduction
	Algorithm
	Architecture
	Performance
	Conclusion

	FPGA Accelerated Face Detection
	Introduction
	Algorithm
	Architecture
	Performance
	OpenCV Integration
	Performance

	Conclusion

	FPGA-GPU-CPU Heterogenous Architecture for Real-time Cardiac Physiological Optical Mapping
	Introduction
	Related Work
	Optical Mapping Algorithm
	Normalization
	Phase Correction Spatial Filter
	Phase Correction Algorithm
	Temporal Median Filter

	Application Partitioning
	Design and Implementation
	Overall System
	FPGA Design
	GPU Design

	Results and Analysis
	Experimental Setup
	Performance
	Accuracy

	Conclusion

	Hardware Accelerated Online Boosting for Multi-Target Tracking
	Introduction
	Related Work
	Algorithm
	Motion Model
	Search Strategy
	Appearance Model

	Tracking Application
	Hardware Design
	FPGA Design
	GPU Design

	Results And Analysis
	Software-only
	GPU
	FPGA
	Comparison

	Conclusion

	Improving FPGA Accelerated Tracking with Multiple Online Trained Classifiers
	Introduction
	Related work
	Algorithm
	Classifier Algorithm
	Main Algorithm

	FPGA-CPU design
	Evaluate stage
	Update stage
	Train stage

	Experimental results
	Conclusion

	Future Directions
	Simple Compatible Interfaces
	Direct Device To Device Communication
	OpenCV Integration

	Appendices
	RIFFA 1.0
	Getting Started
	Hardware Interface
	Software API

	RIFFA 2.0
	Getting Started
	Hardware Interface
	C/C++ API
	API

	Java API
	API

	Python API
	API

	Design Tips
	Design Guide - Avnet Xilinx S6LX150t - ISE
	Design Guide - Xilinx ML605 - ISE
	Design Guide - Xilinx VC707 - ISE
	Design Guide - Xilinx VC707 - Vivado

	Reusable Components
	Image Scaler
	Frame Capture
	Sliding Window Framework
	Integral Image Conversion
	Pixel Color Space Conversion
	Arithmetic Operations
	Counting and Filtering
	Feature Extraction and Calculation
	Clock Domain Crossing
	Data Manipulation
	RAMs and FIFOs
	Skin Detector

	Bibliography

