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ABSTRACT OF THE DISSERTATION

Graphical Models in Financial Econometrics and Macroeconomic Forecasting

by

Ekaterina Seregina

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2021

Dr. Tae-Hwy Lee, Chairperson

This dissertation provides theoretical and practical guidance for the use of graphi-

cal models, a tool from machine learning and network theory, in financial econometrics and

macroeconomic forecasting.

Chapter 1 gives a short introduction to the challenges, methods and findings stud-

ied in Chapter 2 to Chapter 4.

Chapter 2 studies a framework to estimate a high-dimensional inverse covariance

(precision) matrix for a portfolio allocation problem. I integrate two competing streams of

literature, graphical models and factor models, to develop a technique, Factor Graphical

Lasso (FGL), that combines the benefits of both aforementioned approaches. I prove consis-

tency of FGL for estimating precision matrix, portfolio weights and risk exposure for three

formulations of the optimal portfolio allocation. FGL-based portfolios are shown to exhibit

superior performance over several prominent competitors in the empirical application for

the S&P500 constituents.

vi



Chapter 3 develops a methodology to construct sparse portfolios in high dimen-

sions. Motivated by a stylized fact that portfolios based on holding all assets fail to generate

positive return during economic downturns, I hypothesize that holding sparse portfolios is

the key to hedging during recessions. Given unrealistic assumptions imposed by the existing

allocation techniques, I develop a strategy for constructing sparse portfolios that could be

used as a hedging vehicle during economic downturns. I establish consistency properties of

the optimal sparse allocations and provide guidance regarding the distribution of portfolio

weights. I also examine the merit of sparse portfolios during different market scenarios and

show their robustness to recession periods.

Motivated by the stylized fact that forecasters often use common sets of informa-

tion and hence they tend to make common mistakes, Chapter 4 proposes a new approach to

forecast combinations that separates unique errors from the common errors. I call the pro-

posed algorithm Factor Graphical Model (FGM) and show that it overcomes the challenge

of recovering the structure of precision matrix under the factor structure. I prove consis-

tency of forecast combination weights and the Mean Squared Forecast Error estimated using

FGM. An empirical application to forecasting macroeconomic series in big data environment

demonstrates the merits of FGM.

vii



Contents

List of Figures xi

List of Tables xiii

List of Algorithms xiv

1 Introduction 1

2 Optimal Portfolio Using Factor Graphical Lasso 4
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Optimal Portfolio Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Factor Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 The FGL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Convergence of Unknown Factors and Loadings . . . . . . . . . . . . 24
2.4.4 Convergence of Precision Matrix Estimator and Portfolio Weights by

FGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.5 Implications on Portfolio Risk Exposure . . . . . . . . . . . . . . . . 28
2.4.6 Generalization: Sub-Gaussian and Elliptical Distributions . . . . . . 29

2.5 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendices 47

viii



3 Sparse Portfolios 82
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Sparse Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 Sparse De-Biased Portfolio . . . . . . . . . . . . . . . . . . . . . . . 95
3.2.2 Sparse Portfolio Using Post-Lasso . . . . . . . . . . . . . . . . . . . 99

3.3 Factor Nodewise Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.1 Nodewise Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.3.2 Factor Nodewise Regression . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Factor Investing is Allowed . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.5 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.5.2 Asymptotic Properties of Non-Sparse Portfolio Weights . . . . . . . 112
3.5.3 Asymptotic Properties of De-Biased Portfolio Weights . . . . . . . . 114
3.5.4 Asymptotic Properties of Post-Lasso Portfolio Weights . . . . . . . . 116

3.6 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.7 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.7.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.7.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendices 135

4 Learning from Forecast Errors: A New Approach to Forecast Combina-
tions 145
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2 Graphical Models for Forecast Errors . . . . . . . . . . . . . . . . . . . . . . 149

4.2.1 Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.2.2 Nodewise Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3 Approximate Factor Models for Forecast Errors . . . . . . . . . . . . . . . . 155
4.4 Factor Graphical Models for Forecast Errors . . . . . . . . . . . . . . . . . . 159

4.4.1 The Choice of the Tuning Parameters for FGM . . . . . . . . . . . . 164
4.5 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.2 Convergence of Forecast Combination Weights and MSFE . . . . . . 170

4.6 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.6.1 Consistent Estimation of forecast combination weights based on FGM 173
4.6.2 Comparing Performance of forecast combinations based on FGM . . 178

4.7 Application of FGM for Macroeconomic Forecasting . . . . . . . . . . . . . 180
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.9 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.9.1 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

ix



4.9.2 Proof of Theorem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Appendices 189

Bibliography 193

x



List of Figures

2.1 Averaged errors of the estimators of Θ for Case 2 on logarithmic
scale: p = 3 · T 0.85, K = 2(log T )0.5, sT = O(T 0.05). . . . . . . . . . . . . . 35

2.2 Averaged errors of the estimators of wGMV (left) and wMRC (right)
for Case 2 on logarithmic scale: p = 3 · T 0.85, K = 2(log T )0.5, sT =
O(T 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Averaged errors of the estimators of ΦGMV (left) and ΦMRC (right)
for Case 2 on logarithmic scale: p = 3 · T 0.85, K = 2(log T )0.5, sT =
O(T 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.B.1Averaged empirical errors (solid lines) and theoretical rates of
convergence (dashed lines) on logarithmic scale: p = T 0.85, K =
2(log T )0.5, sT = O(T 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.B.2Averaged errors of the estimators of Θ for Case 1 on logarithmic
scale: p = T 0.85, K = 2(log T )0.5, sT = O(T 0.05). . . . . . . . . . . . . . . . 72

2.B.3Averaged errors of the estimators of wGMV (left) and wMRC (right)
for Case 1 on logarithmic scale: p = T 0.85, K = 2(log T )0.5, sT = O(T 0.05). 73

2.B.4Averaged errors of the estimators of ΦGMV (left) and ΦMRC (right)
for Case 1 on logarithmic scale: p = T 0.85, K = 2(log T )0.5, sT = O(T 0.05). 73

2.B.5Averaged errors of the estimators of Θ on logarithmic scale: p =
T 0.85, K = 2(log T )0.5, ν = 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.B.6Averaged errors of the estimators of wGMV (left) and wMRC (right)
on logarithmic scale: p = T 0.85, K = 2(log T )0.5, ν = 4.2. . . . . . . . . . 75

2.B.7Log ratios (base 2) of the averaged errors of the FGL and the

Robust FGL estimators of Θ: log2

( |||Θ̂−Θ|||
2

|||Θ̂R−Θ|||
2

)
(left), log2

( |||Θ̂−Θ|||
1

|||Θ̂R−Θ|||
1

)
(right): p = T 0.85, K = 2(log T )0.5. . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1 The ratio of non-sparse and sparse portfolio utilities averaged over
the test window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.2 Stocks selected by Post-Lasso strategy from Table 3.1.1: August,
2019 (left) and May, 2020 (right) . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.1Averaged errors of the estimators of wMRC for Case 1 on logarith-
mic scale (left): p = T 0.85, K = 3 and for Case 2 on logarithmic scale
(right): p = 3 · T 0.85, K = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xi



3.6.2 Elliptical Distribution (ν = 4.2): Averaged errors of the estimators
of wMRC for Case 1 on logarithmic scale (left): p = T 0.85, K = 3 and
for Case 2 on logarithmic scale (right): p = 3 · T 0.85, K = 3. . . . . . . . . . 122

4.3.1 The European Central Bank’s (ECB) Survey of Professional Fore-
casters (SPF). Each circle denotes the forecast of each professional fore-
caster in the SPF for the quarterly 1-year-ahead forecasts of Euro-area real
GDP growth, year-on-year percentage change. Actual series is the blue line.
Source: European Central Bank. . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4.1Heatmap and histogram of population partial correlations. T =
1000, p = 50, q = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.4.2Heatmap and histogram of sample partial correlations estimated
using GLASSO with no factors. T = 1000, p = 50, q = 2, q̂ = 0. . . . . 161

4.4.3Heatmap and histogram of sample partial correlations estimated
using Factor GLASSO with 1 statistical factor. T = 1000, p = 50,
q = 2, q̂ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.4.4Heatmap and histogram of sample partial correlations estimated
using Factor GLASSO with 2 statistical factors. T = 1000, p = 50,
q = 2, q̂ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.4.5Heatmap and histogram of sample partial correlations estimated
using Factor GLASSO with 3 statistical factors. T = 1000, p = 50,
q = 2, q̂ = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.6.1Averaged errors of the estimators of Θ on logarithmic scale (base
2). p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05). . . . . . . . . . . . . . . . . 176

4.6.2Averaged errors of the estimator of w (base 2) on logarithmic scale.
p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05). . . . . . . . . . . . . . . . . . . 177

4.6.3 Plots of the MSFE over the sample size T . c1 = 0 (left), c1 = 0.75
(right), c2 = 0.9, N = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q =
5, ρ = 0.9, ϕ = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.A.1Plots of the MSFE over the number of predictors N . c1 = 0.75, c2 =
0.9,
T = 800, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ = 0.9, ϕ = 0.8. . . 190

4.A.2Plots of the MSFE over the values of c2. c1 = 0.75, c2 ∈ {0.6, 0.7, 0.8, 0.9},
T = 800, N = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ =
0.9, ϕ = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.A.3Plots of the MSFE over the values of ϕ. c1 = 0.75, c2 = 0.8, T = 800,
N = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ = 0.9, ϕ ∈
{0, 0.1, . . . , 0.9}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.A.4Plots of the MSFE over the values of ρ. c1 = 0.75, c2 = 0.8, T = 800,
N = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ ∈ {0, 0.1, . . . , 0.9}, ϕ =
0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.A.5Plots of the MSFE over the values of q. c1 = 0.75, c2 = 0.9, T = 800,
N = 100, r = 5, σξ = 1, L = 12, K = 0, p = 13, q ∈ {0, 1, . . . , 10}, ρ =
0.9, ϕ = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

xii

https://www.ecb.europa.eu/stats/ecb_surveys/survey_of_professional_forecasters/html/index.en.html


List of Tables

2.1 Daily portfolio returns, risk, Sharpe Ratio (SR) and turnover. . . . . . . . . 41
2.2 Cumulative excess return (CER) and risk of portfolios using daily data. . . 45
2.B.1Sensitivity of portfolio weights and risk exposure when the gap between the

diverging and bounded eigenvalues decreases: (T, p) = (300, 300). . . . . . . 78
2.B.2Sensitivity of portfolio weights and risk exposure when the gap between the

diverging and bounded eigenvalues decreases: (T, p) = (300, 400). . . . . . . 79
2.C.1Monthly portfolio returns, risk, Sharpe Ratio (SR) and turnover. . . . . . . 81
3.1.1 Performance of non-sparse and sparse portfolios: return (×100), risk (×100)

and Sharpe Ratio over the training period (left), CER (×100) and risk (×100)
over two sub-periods (right). Weights are estimated using the standard
Global Minimum Variance formula. . . . . . . . . . . . . . . . . . . . . . . . 87

3.7.1 Monthly portfolio returns, risk, Sharpe Ratio and turnover. . . . . . . . . . 127
3.7.2 Sparse portfolio (FMB is used for de-biasing): monthly portfolio returns,

risk, Sharpe Ratio and turnover. . . . . . . . . . . . . . . . . . . . . . . . . 129
3.7.3 Cumulative excess return (CER) and risk of non-sparse portfolios using

monthly data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.7.4 Cumulative excess return (CER) and risk of sparse portfolios using monthly

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.7.1 Prediction of Monthly Macroeconomic Variables. The numbers are MSFEs

with the smallest MSFE in each row in bold font. h indicates the forecast
horizon, EW stands for the “Equal-Weighted” forecast, GLASSO and MB
are the models that do not use the factor structure in the forecast errors. . 183

xiii



List of Algorithms

1 Graphical Lasso [65], adapted . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Factor Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Sparse Portfolio Using Post-Lasso . . . . . . . . . . . . . . . . . . . . . . . . 100
4 Nodewise Regression by [108] (MB) . . . . . . . . . . . . . . . . . . . . . . . 103
5 Factor Nodewise Regression by [108] (FMB) . . . . . . . . . . . . . . . . . . 106
6 Factor Investing Using FMB . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7 Graphical Lasso ( [65]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8 Nodewise regression by [108] (MB) . . . . . . . . . . . . . . . . . . . . . . . 154
9 Factor Graphical Lasso (Factor GLASSO) . . . . . . . . . . . . . . . . . . . 162
10 Factor nodewise regression [108] (Factor MB) . . . . . . . . . . . . . . . . . 163

xiv



Chapter 1

Introduction

This dissertation provides theoretical and practical guidance for the use of graphi-

cal models, a tool from machine learning and network theory, in financial econometrics and

macroeconomic forecasting.

One can model a system as a network of interactions between its entities. The

challenge in such modeling is the presence of unknown underlying structure of the variables

within the system. We can make use of the data (system observations) to extract informa-

tion on the interactions between variables. This is known as network inference or graphical

model selection ( [134]). Graphical modeling has gained popularity due to the availability of

increasing number of variables and observations. Nonetheless, strict sparsity assumptions

inherent to structure estimation using graphical models render such approach impractical

for many economic problems, including asset allocation and forecast combinations. The

goal of this dissertation it to build a bridge between graphical models and latent variable

network inference.

1



Chapter 2 develops a new precision matrix estimator for portfolio allocation prob-

lem, Factor Graphical Lasso (FGL), that integrates two competing streams of literature,

graphical models and factor models. The root cause why factor models and graphical mod-

els are treated separately is the sparsity assumption on the precision matrix made in the

latter. However, when asset returns have common factors, the precision matrix cannot be

sparse because all pairs of assets are partially correlated conditional on other assets through

the common factors ( [87]). FGL approach developed in Chapter 2 provides a framework

that allows to use graphical models under the factor structure. In addition, I extend the

theoretical results of POET ( [53]) to allow the number of factors to grow with the num-

ber of assets. FGL-based portfolios are shown to consistently estimate precision matrix,

portfolio weights and risk exposure. An empirical application uses daily and monthly data

for the constituents of the S&P500 to demonstrate that FGL outperforms equal-weighted

portfolio, index portfolio and several other prominent covariance and precision estimators.

Chapter 3 develops a methodology to construct sparse portfolios in high dimen-

sions. Constructing non-sparse portfolios in high dimensions has been the main focus of the

existing research on asset management for a long time. In particular, many papers focus

on developing an improved covariance or precision estimator to achieve desirable statistical

properties of portfolio weights. In contrast, the literature on constructing sparse portfolios

is scarce: it is limited to a low-dimensional framework and lacks theoretical analysis of the

resulting sparse allocations. This chapter fills this gap and proposes a new approach to con-

struct sparse portfolios in high dimensions for three formulations of the optimal portfolio

allocation. From the theoretical perspective, I establish consistency of sparse weight esti-

2



mators and provide guidance regarding their distribution. From the empirical perspective,

I examine the merit of sparse portfolios during different market scenarios. I find that in

contrast to non-sparse counterparts, my strategy is robust recessions and can be used as a

hedging vehicle during such times.

Chapter 4 develops a new approach for estimating optimal forecast combination

weights when forecast errors admit approximate factor structure. The latter is motivated

by the fact that the forecasters use the same set of public information to make forecasts,

hence, they tend to make common mistakes. For example, in the European Central Bank’s

Survey of Professional forecasters of Euro-area real GDP growth, the forecasters tend to

jointly understate or overstate GDP growth. I provide a simple framework, Factor Graphi-

cal Model (FGM), to learn from analyzing forecast errors: I separate unique errors from the

common errors to improve the accuracy of the combined forecast. I demonstrate that FGM

overcomes the challenge of recovering the structure of precision matrix under the factor

structure. From the theoretical perspective, I prove consistency of forecast combination

weights and the Mean Squared Forecast Error estimated using FGM. An empirical applica-

tion to forecasting macroeconomic series in big data environment shows that incorporating

the factor structure of the forecast errors into the graphical models improves the perfor-

mance of a combined forecast over forecast combination using equal weights and graphical

models without factors.

3



Chapter 2

Optimal Portfolio Using Factor

Graphical Lasso

Abstract

1 Graphical models are a powerful tool to estimate a high-dimensional inverse covari-

ance (precision) matrix, which has been applied for a portfolio allocation problem.

The assumption made by these models is a sparsity of the precision matrix. How-

ever, when stock returns are driven by common factors, such assumption does not

hold. We address this limitation and develop a framework, Factor Graphical Lasso

(FGL), which integrates graphical models with the factor structure in the context

1This paper is co-authored with Dr. Tae-Hwy Lee and is circulated under the name “Optimal Portfolio
Using Factor Graphical Lasso”.
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of portfolio allocation by decomposing a precision matrix into low-rank and sparse

components. Our theoretical results and simulations show that FGL consistently

estimates the portfolio weights and risk exposure and also that FGL is robust to

heavy-tailed distributions which makes our method suitable for financial applica-

tions. FGL-based portfolios are shown to exhibit superior performance over several

prominent competitors including equal-weighted and Index portfolios in the empir-

ical application for the S&P500 constituents.

2.1 Introduction

Estimating the inverse covariance matrix, or precision matrix, of excess stock

returns is crucial for constructing weights of financial assets in the portfolio and estimating

the out-of-sample Sharpe Ratio. In high-dimensional setting, when the number of assets,

p, is greater than or equal to the sample size, T , using an estimator of covariance matrix

for obtaining portfolio weights leads to the Markowitz’ curse: a higher number of assets

increases correlation between the investments, which calls for a more diversified portfolio,

and yet unstable corner solutions for weights become more likely. The reason behind this

curse is the need to invert a high-dimensional covariance matrix to obtain the optimal

weights from the quadratic optimization problem: when p ≥ T , the condition number of

the covariance matrix (i.e., the absolute value of the ratio between maximal and minimal

eigenvalues of the covariance matrix) is high. Hence, the inverted covariance matrix yields

an unstable estimator of the precision matrix. To circumvent this issue one can estimate

precision matrix directly, rather than inverting covariance matrix.
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Graphical models were shown to provide consistent estimates of the precision ma-

trix ( [23, 65, 108]). [68] estimated a sparse precision matrix for portfolio hedging using

graphical models. They found out that their portfolio achieves significant out-of-sample risk

reduction and higher return, as compared to the portfolios based on equal weights, shrunk

covariance matrix, industry factor models, and no-short-sale constraints. [4] used Graphical

Lasso ( [65]) to estimate a sparse covariance matrix for the Markowitz mean-variance portfo-

lio problem to improve covariance estimation in terms of lower realized portfolio risk. [110]

conducted an empirical study that applies Graphical Lasso for the estimation of covari-

ance for the portfolio allocation. Their empirical findings suggest that portfolios that use

Graphical Lasso for covariance estimation enjoy lower risk and higher returns compared

to the empirical covariance matrix. They show that the results are robust to missing ob-

servations. [110] also construct a financial network using the estimated precision matrix to

explore the relationship between the companies and show how the constructed network helps

to make investment decisions. [24] use the nodewise-regression method of [108] to establish

consistency of the estimated variance, weights and risk of high-dimensional financial port-

folio. Their empirical application demonstrates that the precision matrix estimator based

on the nodewise-regression outperforms the principal orthogonal complement thresholding

estimator (POET) ( [53]) and linear shrinkage ( [91]). [20] use constrained ℓ1-minimization

for inverse matrix estimation (Clime) of the precision matrix ( [23]) to develop a consistent

estimator of the minimum variance for high-dimensional global minimum-variance port-

folio. It is important to note that all the aforementioned methods impose some sparsity

assumption on the precision matrix of excess returns.
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An alternative strategy to handle high-dimensional setting uses factor models to

acknowledge common variation in the stock prices, which was documented in many em-

pirical studies (see [26] among many others). A common approach decomposes covariance

matrix of excess returns into low-rank and sparse parts, the latter is further regularized

since, after the common factors are accounted for, the remaining covariance matrix of the

idiosyncratic components is still high-dimensional ( [52, 53, 56]). This stream of literature,

however, focuses on the estimation of a covariance matrix. The accuracy of precision ma-

trices obtained from inverting the factor-based covariance matrix was investigated by [1],

but they did not study a high-dimensional case. Factor models are generally treated as

competitors to graphical models: as an example, [24] find evidence of superior performance

of nodewise-regression estimator of precision matrix over a factor-based estimator POET

( [53]) in terms of the out-of-sample Sharpe Ratio and risk of financial portfolio. The root

cause why factor models and graphical models are treated separately is the sparsity assump-

tion on the precision matrix made in the latter. Specifically, as pointed out in [87], when

asset returns have common factors, the precision matrix cannot be sparse because all pairs

of assets are partially correlated conditional on other assets through the common factors.

One attempt to integrate factor modeling and high-dimensional precision estimation was

made by [56] (Section 5.2): the authors referred to such class of models as “conditional

graphical models”. However, this was not the main focus of their paper which concentrated

on covariance estimation through elliptical factor models. As [56] pointed out, “though

substantial amount of efforts have been made to understand the graphical model, little has

been done for estimating conditional graphical model, which is more general and realistic”.
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Concretely, to the best of our knowledge there are no studies that examine theoretical

and empirical performance of graphical models integrated with the factor structure in the

context of portfolio allocation.

In this paper we fill this gap and develop a new conditional precision matrix esti-

mator for the excess returns under the approximate factor model that combines the benefits

of graphical models and factor structure. We call our algorithm the Factor Graphical Lasso

(FGL). We use a factor model to remove the co-movements induced by the factors, and

then we apply the Weighted Graphical Lasso for the estimation of the precision matrix of

the idiosyncratic terms. We prove consistency of FGL in the spectral and ℓ1 matrix norms.

In addition, we prove consistency of the estimated portfolio weights and risk exposure for

three formulations of the optimal portfolio allocation.

Our empirical application uses daily and monthly data for the constituents of the

S&P500: we demonstrate that FGL outperforms equal-weighted portfolio, index portfolio,

portfolios based on other estimators of precision matrix (Clime, [23]) and covariance matrix,

including POET ( [53]) and the shrinkage estimators adjusted to allow for the factor struc-

ture ( [91], [94]), in terms of the out-of-sample Sharpe Ratio. Furthermore, we find strong

empirical evidence that relaxing the constraint that portfolio weights sum up to one leads

to a large increase in the out-of-sample Sharpe Ratio, which, to the best of our knowledge,

has not been previously well-studied in the empirical finance literature.

From the theoretical perspective, our paper makes several important contribu-

tions to the existing literature on graphical models and factor models. First, to the best of

out knowledge, there are no equivalent theoretical results that establish consistency of the
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portfolio weights and risk exposure in a high-dimensional setting without assuming sparsity

on the covariance or precision matrix of stock returns. Second, we extend the theoretical

results of POET ( [53]) to allow the number of factors to grow with the number of assets.

Concretely, we establish uniform consistency for the factors and factor loadings estimated

using PCA. Third, we are not aware of any other papers that provide convergence results for

estimating a high-dimensional precision matrix using the Weighted Graphical Lasso under

the approximate factor model with unobserved factors. Furthermore, all theoretical results

established in this paper hold for a wide range of distributions: Sub-Gaussian family (in-

cluding Gaussian) and elliptical family. Our simulations demonstrate that FGL is robust

to very heavy-tailed distributions, which makes our method suitable for the financial ap-

plications. Finally, we demonstrate that in contrast to POET, the success of the proposed

method does not heavily depend on the factor pervasiveness assumption: FGL is robust to

the scenarios when the gap between the diverging and bounded eigenvalues decreases.

This paper is organized as follows: Section 2 reviews the basics of the Markowitz

mean-variance portfolio theory. Section 3 provides a brief summary of the graphical models

and introduces the Factor Graphical Lasso. Section 4 contains theoretical results and Sec-

tion 5 validates these results using simulations. Section 6 provides empirical application.

Section 7 concludes.

Notation

For the convenience of the reader, we summarize the notation to be used through-

out the paper. Let Sp denote the set of all p× p symmetric matrices, and S++
p denotes the

set of all p×p positive definite matrices. For any matrix C, its (i, j)-th element is denoted as
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cij . Given a vector u ∈ Rd and parameter a ∈ [1,∞), let ∥u∥a denote ℓa-norm. Given a ma-

trix U ∈ Sp, let Λmax(U) ≡ Λ1(U) ≥ Λ2(U) ≥ . . . ≥ Λmin(U) ≡ Λp(U) be the eigenvalues

of U, and eigK(U) ∈ RK×p denote the first K ≤ p normalized eigenvectors corresponding to

Λ1(U), . . . ,ΛK(U). Given parameters a, b ∈ [1,∞), let |||U|||a,b ≡ max∥y∥a=1∥Uy∥b denote

the induced matrix-operator norm. The special cases are |||U|||1 ≡ max1≤j≤N
∑N

i=1|ui,j |

for the ℓ1/ℓ1-operator norm; the operator norm (ℓ2-matrix norm) |||U|||22 ≡ Λmax(UU′) is

equal to the maximal singular value of U; |||U|||∞ ≡ max1≤j≤N
∑N

i=1|uj,i| for the ℓ∞/ℓ∞-

operator norm. Finally, ∥U∥max ≡ maxi,j |ui,j | denotes the element-wise maximum, and

|||U|||2F ≡
∑

i,j u
2
i,j denotes the Frobenius matrix norm.

2.2 Optimal Portfolio Allocation

The importance of the minimum-variance portfolio introduced by [105] as a risk-

management tool has been studied by many researchers. In this section we review the

basics of Markowitz mean-variance portfolio theory and provide several formulations of the

optimal portfolio allocation.

Suppose we observe p assets (indexed by i) over T period of time (indexed by t).

Let rt = (r1t, r2t, . . . , rpt)
′ ∼ D(m,Σ) be a p × 1 vector of excess returns drawn from a

distribution D, where m and Σ are the unconditional mean and covariance matrix of the

returns. The goal of the Markowitz theory is to choose asset weights in a portfolio optimally.

We will study two optimization problems: the well-known Markowitz weight-constrained

(MWC) optimization problem, and the Markowitz risk-constrained (MRC) optimization

with relaxing the constraint on portfolio weights.
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The first optimization problem searches for asset weights such that the portfolio

achieves a desired expected rate of return with minimum risk, under the restriction that

all weights sum up to one. This can be formulated as the following quadratic optimization

problem:

min
w

1

2
w′Σw, s.t. w′ι = 1 and m′w ≥ µ (2.1)

where w is a p× 1 vector of asset weights in the portfolio, ι is a p× 1 vector of ones, and

µ is a desired expected rate of portfolio return. Let Θ ≡ Σ−1 be the precision matrix.

If m′w > µ, then the solution to (2.1) yields the global minimum-variance (GMV)

portfolio weights wGMV :

wGMV = (ι′Θι)−1Θι. (2.2)

If m′w = µ, the solution to (2.1) is a well-known two-fund separation theorem

introduced by [133]:

wMWC = (1− a1)wGMV + a1wM , (2.3)

wM = (ι′Θm)−1Θm, (2.4)

a1 =
µ(m′Θι)(ι′Θι)− (m′Θι)2

(m′Θm)(ι′Θι)− (m′Θι)2
, (2.5)

where wMWC denotes the portfolio allocation with the constraint that the weights need to

sum up to one and wM captures all mean-related market information.
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The MRC problem has the same objective as in (2.1), but portfolio weights are

not required to sum up to one:

min
w

1

2
w′Σw, s.t. m′w ≥ µ. (2.6)

It can be easily shown that the solution to (2.6) is:

w∗
1 =

µΘm

m′Θm
. (2.7)

Alternatively, instead of searching for a portfolio with a specified desired expected rate of

return, one can maximize expected portfolio return given a maximum risk-tolerance level:

max
w

w′m, s.t. w′Σw ≤ σ2. (2.8)

In this case, the solution to (2.8) yields:

w∗
2 =

σ2

w′m
Θm =

σ2

µ
Θm. (2.9)

To get the second equality in (2.9) we use the definition of µ from (2.6). It follows that if

µ = σ
√
θ, where θ ≡ m′Θm is the squared Sharpe Ratio of the portfolio, then the solution

to (2.6) and (2.8) admits the following expression:

wMRC =
σ√

m′Θm
Θm =

σ√
θ
α, (2.10)
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where α ≡ Θm. Equation (2.10) tells us that once an investor specifies the desired return,

µ, and maximum risk-tolerance level, σ, this pins down the Sharpe Ratio of the portfolio

which makes the optimization problems of minimizing risk in (2.6) and maximizing expected

return of the portfolio in (2.8) identical.

This brings us to three alternative portfolio allocations commonly used in the exist-

ing literature: Global Minimum-Variance portfolio in (2.2), Markowitz Weight-Constrained

portfolio in (2.3) and Markowitz Maximum-Risk-Constrained portfolio in (2.10). It is clear

that all formulations require an estimate of the precision matrix Θ.

2.3 Factor Graphical Lasso

In this section we introduce a framework for estimating precision matrix for the

aforementioned financial portfolios which accounts for the fact that the returns follow ap-

proximate factor structure.

The arbitrage pricing theory (APT), developed by [119], postulates that the ex-

pected returns on securities should be related to their covariance with the common com-

ponents or factors only. The goal of the APT is to model the tendency of asset returns to

move together via factor decomposition. Assume that the return generating process (rt)

follows a K-factor model:

rt︸︷︷︸
p×1

= B ft︸︷︷︸
K×1

+ εt, t = 1, . . . , T (2.11)

where ft = (f1t, . . . , fKt)
′ are the factors, B is a p × K matrix of factor loadings, and εt

is the idiosyncratic component that cannot be explained by the common factors. Factors
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in (2.11) can be either observable, such as in [46, 47], or can be estimated using statistical

factor models. Unobservable factors and loadings are usually estimated by the principal

component analysis (PCA), as studied in [5, 6, 35, 126]. Strict factor structure assumes

that the idiosyncratic disturbances, εt, are uncorrelated with each other, whereas approxi-

mate factor structure allows correlation of the idiosyncratic disturbances (see [5,28] among

others).

In this subsection we examine how to solve the Markowitz mean-variance portfolio

allocation problems using factor structure in the returns. We also develop Factor Graphical

Lasso that uses the estimated common factors to obtain a sparse precision matrix of the

idiosyncratic component. The resulting estimator is used to obtain the precision of the

asset returns necessary to form portfolio weights. In this paper our main interest lies in

establishing asymptotic properties of the estimators of precision matrix, portfolio weights

and risk-exposure for the high-dimensional case. We assume that the number of common

factors, K = Kp,T → ∞ as p → ∞, or T → ∞, or both p, T → ∞, but we require that

max{K/p,K/T} → 0 as p, T → ∞.

Our setup is similar to the one studied in [53]: we consider a spiked covariance

model when the first K principal eigenvalues of Σ are growing with p, while the remaining

p−K eigenvalues are bounded and grow slower than p.

Rewrite equation (2.11) in matrix form:

R︸︷︷︸
p×T

= B︸︷︷︸
p×K

F+E. (2.12)
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Recall that the factors and loadings in (2.12) are estimated by solving the following min-

imization problem: (B̂, F̂) = argminB,F∥R−BF∥2F s.t. 1
T FF

′ = IK , B′B is diagonal.

The constraints are needed to identify the factors ( [56]). It was shown ( [126]) that

F̂ =
√
T eigK(R′R) and B̂ = T−1RF̂′. Given F̂, B̂, define Ê = R− B̂F̂. Let Σε = T−1EE′

and Σf = T−1FF′ be covariance matrices of the idiosyncratic components and factors, and

let Θε = Σ−1
ε and Θf = Σ−1

f be their inverses. Given a sample of the estimated resid-

uals {ε̂t = rt − B̂f̂t}Tt=1 and the estimated factors {f̂t}Tt=1, let Σ̂ε = (1/T )
∑T

t=1 ε̂tε̂
′
t and

Σ̂f = (1/T )
∑T

t=1 f̂tf̂
′
t be the sample counterparts of the covariance matrices.

Since our interest is in constructing portfolio weights, our goal is to estimate a

precision matrix of the excess returns. We impose a sparsity assumption on the precision

matrix of the idiosyncratic errors, Θε, which is obtained using the estimated residuals after

removing the co-movements induced by the factors (see [11,18,87]).

Let Wε be an estimate of Σε. Also, let D̂
2
ε ≡ diag(Wε). To induce sparsity in the

estimation of precision matrix of the idiosyncratic errors Θε, we use the following penalized

Bregman divergence with the Weighted Graphical Lasso penalty:

Θ̂ε,λ = arg min
Θ∈S++

p

trace(WεΘε)− log det(Θε) + λ
∑
i ̸=j

d̂ε,iid̂ε,jj |θε,ij |. (2.13)

The subscript λ in Θ̂ε,λ means that the solution of the optimization problem in

(2.13) will depend upon the choice of the tuning parameter. More details are provided

in Section 4 that establishes sparsity requirements that guarantee convergence of (2.13),

and Section 5 that describes how to choose the shrinkage intensity in practice. In order

to simplify notation, we will omit the subscript λ. To solve (2.13) we use the procedure
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based on the weighted Graphical Lasso which was first proposed in [65] and further studied

in [106] and [76] among others. Define the following partitions of Wε, Σ̂ε and Θε:

Wε =


Wε,11︸ ︷︷ ︸

(p−1)×(p−1)

wε,12︸ ︷︷ ︸
(p−1)×1

w′
ε,12 wε,22

 , Σ̂ε =


Σ̂ε,11︸ ︷︷ ︸

(p−1)×(p−1)

σ̂ε,12︸ ︷︷ ︸
(p−1)×1

σ̂′
ε,12 σ̂ε,22

 ,Θε =


Θε,11︸ ︷︷ ︸

(p−1)×(p−1)

θε,12︸︷︷︸
(p−1)×1

θ′
ε,12 θε,22

 .

(2.14)

Let β ≡ −θε,12/θε,22. The idea of GLASSO is to set Wε = Σ̂ε + λI in (2.13) and combine

the gradient of (2.13) with the formula for partitioned inverses to obtain the following

ℓ1-regularized quadratic program

β̂ = arg min
β∈Rp−1

{1
2
β′Wε,11β − β′σ̂ε,12 + λ∥β∥1

}
. (2.15)

As shown by [65], (2.15) can be viewed as a LASSO regression, where the LASSO estimates

are functions of the inner products of Wε,11 and σ̂ε,12. Hence, (2.13) is equivalent to p

coupled LASSO problems. Once we obtain β̂, we can estimate the entries Θε using the

formula for partitioned inverses. The procedure to obtain sparse Θε is summarized in

Algorithm 1.
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Algorithm 1: Graphical Lasso [65], adapted

1: Initialize Wε = Σ̂ε + λI. The diagonal of Wε remains the same in what follows.

2: Repeat for j = 1, . . . , p, 1, . . . , p, . . . until convergence:

• Partition Wε into part 1: all but the j-th row and column, and part 2: the j-th

row and column.

• Solve the score equations using the cyclical coordinate descent: Wε,11β− σ̂ε,12 +

λ · Sign(β) = 0. This gives a (p− 1)× 1 vector solution β̂.

• Update ŵε,12 = Wε,11β̂.

3: In the final cycle (for i = 1, . . . , p) solve for 1

θ̂22
= wε,22 − β̂′ŵε,12 and θ̂12 = −θ̂22β̂.

As was shown in [65] and the follow-up paper by [106], the estimator produced

by Graphical Lasso is guaranteed to be positive definite. Note that the original algorithm

developed by [65] is not suitable under the factor structure, therefore, a separate treatment

of the statistical properties of the precision matrix estimator in Algorithm 1 is provided in

Section 4. Algorithm 1 involves the tuning parameter λ, the procedure on how to choose

the shrinkage intensity coefficient is described in more detail in Subsection 5.1.

Having estimated factors, factor loadings and precision matrix of the idiosyncratic

components, we combine them using Sherman-Morrison-Woodbury formula to estimate the

final precision matrix of excess returns:

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε. (2.16)
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We call the procedure described above Factor Graphical Lasso (FGL), and summarize it in

Algorithm 2.

Algorithm 2: Factor Graphical Lasso

1: (FM) Estimate f̂t and b̂i (Theorem 1). Get ε̂t = rt − B̂f̂t, Σ̂ε, Σ̂f and Θ̂f = Σ̂−1
f .

2: (GL) Use Algorithm 1 to get Θ̂ε. (Theorem 2)

3: (FGL) Use Θ̂ε, Θ̂f and b̂i from Steps 1-2 to get Θ̂ in Equation (2.16). (Theorem 3)

4: Use Θ̂ to get ŵξ, ξ ∈ {GMV, MWC, MRC}. (Theorem 4)

5: Use Σ̂ = Θ̂−1 and ŵξ to get portfolio exposure ŵ
′
ξΣ̂ŵξ. (Theorem 5)

As we pointed out when discussing Algorithm 1, the estimator produced by Graph-

ical Lasso in general and FGL in particular is guaranteed to be positive definite. We have

verified it in the simulations and the empirical application. In Section 4, consistency prop-

erties of estimators are established for the factors and loadings (Theorem 1), the precision

matrix of ε (Theorem 2), the precision matrix Θ (Theorem 3), portfolio weights (Theorem

4), and the portfolio risk exposure (Theorem 5) as indicated in Algorithm 2. We can use

Θ̂ obtained from (2.16) using Step 4 of Algorithm 2 to estimate portfolio weights in (2.2),

(2.3) and (2.10):

Remark 1 In practice, the number of common factors, K, is unknown and needs to be

estimated. One of the standard and commonly used approaches is to determine K in a

data-driven way ( [6,85]). As an example, in their paper [53] adopt the approach from [6].

However, all of the aforementioned papers deal with a fixed number of factors. Therefore, we

need to adopt a different criteria since K is allowed to grow in our setup. For this reason,
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we use the methodology by [99]: let bi,K and ft,K denote K × 1 vectors of loadings and

factors when K needs to be estimated, and BK is a p×K matrix of stacked bi,K . Define

V (K) = min
BK ,FK

1

pT

p∑
i=1

T∑
t=1

(
rit −

1√
K

b′
i,Kft,K

)2
, (2.17)

where the minimum is taken over 1 ≤ K ≤ Kmax, subject to normalization B′
KBK/p = IK .

Hence, F̄′
K =

√
KR′BK/p. Define F̂′

K = F̄′
K(F̄KF̄′

K/T )
1/2, which is a rescaled estimator

of the factors that is used to determine the number of factors when K grows with the sample

size. We then apply the following procedure described in [99] to estimate K:

K̂ = arg min
1≤K≤Kmax

ln(V (K, F̂K)) +Kg(p, T ), (2.18)

where 1 ≤ K ≤ Kmax = o(min{p1/17, T 1/16}) and g(p, T ) is a penalty function of (p, T )

such that (i) Kmax · g(p, T ) → 0 and (ii) C−1
p,T,Kmax

· g(p, T ) → ∞ with Cp,T,Kmax =

OP

(
max

[
K3

max√
p , K

5/2
max√
T

])
. The choice of the penalty function is similar to [6]. Through-

out the paper we let K̂ be the solution to (2.18).

2.4 Asymptotic Properties

In this section we first provide a brief review of the terminology used in the liter-

ature on graphical models and the approaches to estimate a precision matrix. After that

we establish consistency of the Factor Graphical Lasso in Algorithm 2. We also study con-

sistency of the estimators of weights in (2.2), (2.3) and (2.10) and the implications on the

out-of sample Sharpe Ratio.
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The review of the Gaussian graphical models is based on [71] and [16]. A graph

consists of a set of vertices (nodes) and a set of edges (arcs) that join some pairs of the

vertices. In graphical models, each vertex represents a random variable, and the graph

visualizes the joint distribution of the entire set of random variables. The edges in a graph

are parameterized by potentials (values) that encode the strength of the conditional depen-

dence between the random variables at the corresponding vertices. Sparse graphs have a

relatively small number of edges. Among the main challenges in working with the graphical

models are choosing the structure of the graph (model selection) and estimation of the edge

parameters from the data.

Let A ∈ Sp. Define the following set for j = 1, . . . , p:

Dj(A) ≡ {i : Aij ̸= 0, i ̸= j}, dj(A) ≡ card(Dj(A)), d(A) ≡ max
j=1,...,p

dj(A), (2.19)

where dj(A) is the number of edges adjacent to the vertex j (i.e., the degree of vertex j),

and d(A) measures the maximum vertex degree. Define S(A) ≡
⋃p

j=1Dj(A) to be the

overall off-diagonal sparsity pattern, and s(A) ≡
∑p

j=1 dj(A) is the overall number of edges

contained in the graph. Note that card(S(A)) ≤ s(A): when s(A) = p(p− 1)/2 this would

give a fully connected graph.
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2.4.1 Assumptions

We now list the assumptions on the model (2.11):

(A.1) (Spiked covariance model) As p→ ∞, Λ1(Σ) > Λ2(Σ) > . . . > ΛK(Σ) ≫ ΛK+1(Σ) ≥

. . . ≥ Λp(Σ) ≥ 0, where Λj(Σ) = O(p) for j ≤ K, while the non-spiked eigenvalues are

bounded, Λj(Σ) = o(p) for j > K.

(A.2) (Pervasive factors) There exists a positive definite K ×K matrix B̆ such that∣∣∣∣∣∣∣∣∣p−1B′B− B̆
∣∣∣∣∣∣∣∣∣

2
→ 0 and Λmin(B̆)−1 = O(1) as p→ ∞.

(A.3) (a) {εt, ft}t≥1 is strictly stationary. Also, E[εit] = E[εitfit] = 0 ∀i ≤ p, j ≤ K and

t ≤ T .

(b) There are constants c1, c2 > 0 such that Λmin(Σε) > c1, |||Σε|||1 < c2 and

mini≤p,j≤pvar(εitεjt) > c1.

(c) There are r1, r2 > 0 and b1, b2 > 0 such that for any s > 0, i ≤ p, j ≤ K,

Pr (|εit| > s) ≤ exp{−(s/b1)
r1}, Pr (|fjt| > s) ≤ exp{−(s/b2)

r2}.

We also impose the strong mixing condition. Let F0
−∞ and F∞

T denote the σ-

algebras that are generated by {(ft, εt) : t ≤ 0} and {(ft, εt) : t ≥ T} respectively. Define

the mixing coefficient

α(T ) = sup
A∈F0

−∞,B∈F∞
T

|PrAPrB − PrAB|. (2.20)
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(A.4) (Strong mixing) There exists r3 > 0 such that 3r−1
1 + 1.5r−1

2 + 3r−1
3 > 1, and C > 0

satisfying, for all T ∈ Z+, α(T ) ≤ exp(−CT r3).

(A.5) (Regularity conditions) There exists M > 0 such that, for all i ≤ p, t ≤ T and s ≤ T ,

such that:

(a) ∥bi∥max < M

(b) E
[
p−1/2{ε′sεt − E[ε′sεt]}

]4
< M and

(c) E
[∥∥p−1/2

∑p
i=1 biεit

∥∥4] < K2M .

Some comments regarding the aforementioned assumptions are in order. Assumptions

(A.1)-(A.4) are the same as in [53], and assumption (A.5) is modified to account for

the increasing number of factors. Assumption (A.1) divides the eigenvalues into the di-

verging and bounded ones. Without loss of generality, we assume that K largest eigenvalues

have multiplicity of 1. The assumption of a spiked covariance model is common in the lit-

erature on approximate factor models. However, we note that the model studied in this

paper can be characterized as a “very spiked model”. In other words, the gap between

the first K eigenvalues and the rest is increasing with p. As pointed out by [56], (A.1) is

typically satisfied by the factor model with pervasive factors, which brings us to Assump-

tion (A.2): the factors impact a non-vanishing proportion of individual time-series. At

the end of section 5 we explore the sensitivity of portfolios constructed using FGL when

the pervasiveness assumption is relaxed, that is, when the gap between the diverging and

bounded eigenvalues decreases. Assumption (A.3)(a) is slightly stronger than in [5], since

it requires strict stationarity and non-correlation between {εt} and {ft} to simplify technical

calculations. In (A.3)(b) we require |||Σε|||1 < c2 instead of λmax(Σε) = O(1) to estimate
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K consistently. When K is known, as in [52,87], this condition can be relaxed. (A.3)(c) re-

quires exponential-type tails to apply the large deviation theory to (1/T )
∑T

t=1 εitεjt−σu,ij

and (1/T )
∑T

t=1 fjtuit. However, in Subsection 4.6 we discuss the extension of our results

to the setting with elliptical distribution family which is more appropriate for financial ap-

plications. Specifically, we discuss the appropriate modifications to the initial estimator of

the covariance matrix of returns such that the bounds derived in this paper continue to

hold. (A.4)-(A.5) are technical conditions which are needed to consistently estimate the

common factors and loadings. The conditions (A.5)(a-b) are weaker than those in [5] since

our goal is to estimate a precision matrix, and (A.5)(c) differs from [5] and [7] in that the

number of factors is assumed to slowly grow with p.

In addition, the following structural assumption on the population quantities is

imposed:

(B.1) ∥Σ∥max = O(1), ∥B∥max = O(1), and ∥m∥∞ = O(1).

The sparsity of Θε is controlled by the deterministic sequences sT and dT : s(Θε) = Op(sT )

for some sequence sT ∈ (0,∞), T = 1, 2, . . ., and d(Θε) = Op(dT ) for some sequence

dT ∈ (0,∞), T = 1, 2, . . .. We will impose restrictions on the growth rates of sT and dT .

Note that assumptions on dT are weaker since they are always satisfied when sT = dT .

However, dT can generally be smaller than sT . In contrast to [53] we do not impose sparsity

on the covariance matrix of the idiosyncratic component, instead, it is more realistic and

relevant for error quantification in portfolio analysis to impose conditional sparsity on the

precision matrix after the common factors are accounted for.
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2.4.2 The FGL Procedure

Recall the definition of the Weighted Graphical Lasso estimator in (2.13) for the

precision matrix of the idiosyncratic components. Also, recall that to estimate Θ we used

equation (2.16). Therefore, in order to obtain the FGL estimator Θ̂ we take the following

steps: (1): estimate unknown factors and factor loadings to get an estimator of Σε. (2):

use Σ̂ε to get an estimator of Θε in (2.13). (3): use Θ̂ε together with the estimators

of factors and factor loadings from Step 1 to obtain the final precision matrix estimator

Θ̂, portfolio weight estimator ŵξ, and risk exposure estimator Φ̂ξ = ŵ′
ξΘ̂

−1ŵξ where

ξ ∈ {GMV, MWC, MRC}.

Subsection 4.3 examines the theoretical foundations of the first step, and Subsec-

tions 4.4-4.5 are devoted to steps 2 and 3.

2.4.3 Convergence of Unknown Factors and Loadings

As pointed out in [5] and [53], K×1-dimensional factor loadings {bi}pi=1, which are

the rows of the factor loadings matrix B, and K × 1-dimensional common factors {ft}Tt=1,

which are the columns of F, are not separately identifiable. Concretely, for anyK×K matrix

H such that H′H = IK , Bft = BH′Hft, therefore, we cannot identify the tuple (B, ft) from

(BH′,Hft). Let K̂ ∈ {1, . . . ,Kmax} denote the estimated number of factors, where Kmax

is allowed to increase at a slower speed than min{p, T} such that Kmax = o(min{p1/3, T})

(see [99] for the discussion about the rate).

Define V to be a K̂ × K̂ diagonal matrix of the first K̂ largest eigenvalues of

the sample covariance matrix in decreasing order. Further, define a K̂ × K̂ matrix H =
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(1/T )V−1F̂′FB′B. For t ≤ T , Hft = T−1V−1F̂′(Bf1, . . . ,BfT )
′Bft, which depends only on

the data V−1F̂′ and an identifiable part of parameters {Bft}Tt=1. Hence, Hft does not have

an identifiability problem regardless of the imposed identifiability condition.

Let γ−1 = 3r−1
1 + 1.5r−1

2 + r−1
3 + 1. The following theorem is an extension of the

results in [53] for the case when the number of factors is unknown and is allowed to grow.

Proofs of all the theorems are in section 2.A.

Theorem 1 Suppose that Kmax = o(min{p1/3, T}), K3 log p = o(T γ/6), KT = o(p2)

and Assumptions (A.1)-(A.5) and (B.1) hold. Let ω1T ≡ K3/2
√
log p/T + K/

√
p and

ω2T ≡ K/
√
T +KT 1/4/

√
p. Then maxi≤p

∥∥∥b̂i −Hbi

∥∥∥ = OP (ω1T ) and maxt≤T

∥∥∥f̂t −Hft

∥∥∥ =

OP (ω2T ).

The conditions K3 log p = o(T γ/6), KT = o(p2) are similar to [53], the difference arises due

to the fact that we do not fix K, hence, in addition to the factor loadings, there are KT fac-

tors to estimate. Therefore, the number of parameters introduced by the unknown growing

factors should not be “too large”, such that we can consistently estimate them uniformly.

The growth rate of the number of factors is controlled by Kmax = o(min{p1/3, T}).

The bounds derived in Theorem 1 help us establish the convergence properties of

the estimated idiosyncratic covariance, Σ̂ε, and precision matrix Θ̂ε which are presented in

the next theorem:
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Theorem 2 Let ω3T ≡ K2
√

log p/T + K3/
√
p. Under the assumptions of Theorem 1

and with λ ≍ ω3T (where λ is the tuning parameter in (2.13)), the estimator Σ̂ε obtained

by estimating factor model in (2.12) satisfies
∥∥∥Σ̂ε −Σε

∥∥∥
max

= OP (ω3T ). Let ϱT be a se-

quence of positive-valued random variables such that ϱ−1
T ω3T

p−→ 0. If sTϱT
p−→ 0, then∣∣∣∣∣∣∣∣∣Θ̂ε −Θε

∣∣∣∣∣∣∣∣∣
l
= OP (ϱT sT ) as T → ∞ for any l ∈ [1,∞].

Note that the term containing K3/
√
p arises due to the need to estimate unknown factors:

[52] obtained a similar rate but for the case when factors are observable (in their work,

ω3T = K1/2
√

log p/T ). The second part of Theorem 2 is based on the relationship between

the convergence rates of the estimated covariance and precision matrices established in [76]

(Theorem 14.1.3). [87] obtained the convergence rate when factors are observable: the

rate obtained in our paper is slower due to the fact that factors need to be estimated

(concretely, the rate under observable factors would satisfy ϱ−1
T

√
K log p/T

p−→ 0 ). We now

comment on the optimality of the rate in Theorem 2: as pointed out in [87], in the standard

Gaussian setting without factor structure, the minimax optimal rate is d(Θε)
√
log p/T ,

which can be faster than the rate obtained in Theorem 2 if d(Θε) < sT . Using penalized

nodewise regression could help achieve this faster rate. However, our empirical application

to the monthly stock returns demonstrated superior performance of the Weighted Graphical

Lasso compared to the nodewise regression in terms of the out-of-sample Sharpe Ratio and

portfolio risk. Hence, in order not to divert the focus of this paper, we leave the theoretical

properties of the nodewise regression for future research.
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2.4.4 Convergence of Precision Matrix Estimator and Portfolio Weights

by FGL

Having established the convergence properties of Σ̂ε and Θ̂ε, we now move to the

estimation of the precision matrix of the factor-adjusted returns in equation (2.16).

Theorem 3 Under the assumptions of Theorem 2, if dT sTϱT
p−→ 0, then

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

2
=

OP (ϱT sT ) and
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1
= OP (ϱTdTK

3/2sT ).

Note that since, by construction, the precision matrix obtained using the Factor Graphical

Lasso is symmetric,
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
∞

can be trivially obtained from the above theorem.

Using Theorem 3, we can then establish the consistency of the estimated weights

of portfolios based on the Factor Graphical Lasso.

Theorem 4 Under the assumptions of Theorem 3, we additionally assume |||Θ|||2 = O(1)

(this additional requirement essentially imposes Λp(Σ) > 0 in (A.1)), and ϱTd
2
T sT = o(1).

Algorithm 2 consistently estimates portfolio weights in (2.2), (2.3) and (2.10):

∥ŵGMV −wGMV∥1 = OP

(
ϱTd

2
TK

3sT

)
= oP (1), ∥ŵMWC −wMWC∥1 = OP (ϱTd

2
TK

3sT ) =

oP (1), and ∥ŵMRC −wMRC∥1 = OP

(
d
3/2
T K3 · [ϱT sT ]1/2

)
= oP (1).

We now comment on the rates in Theorem 4: first, the rates obtained by [24] for GMV

and MWC formulations, when no factor structure of stock returns is assumed, require

s(Θ)3/2
√
log p/T = oP (1), where the authors imposed sparsity on the precision matrix of

stock returns, Θ. Therefore, if the precision matrix of stock returns is not sparse, portfolio

weights can be consistently estimated only if p is less than T 1/3 (since (p−1)3/2
√
log p/T =

o(1) is required to ensure consistent estimation of portfolio weights). Our result in Theorem
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4 improves this rate and shows that as long as d2T sTK
3
√

log p/T = oP (1) we can consistently

estimate weights of the financial portfolio. Specifically, when the precision of the factor-

adjusted returns is sparse, we can consistently estimate portfolio weights when p > T without

assuming sparsity on Σ or Θ. Second, note that GMV and MWC weights converge slightly

slower than MRC weight. This result is further supported by our simulations presented in

the next section.

2.4.5 Implications on Portfolio Risk Exposure

Having examined the properties of portfolio weights, it is natural to comment on

the portfolio variance estimation error. It is determined by the errors in two components:

the estimated covariance matrix and the estimated portfolio weights. Define a = ι′pΘιp/p,

b = ι′pΘm/p, d = m′Θm/p, g =
√
m′Θm/p and â = ι′pΘ̂ιp/p, b̂ = ι′pΘ̂m̂/p, d̂ = m̂′Θ̂m̂/p,

ĝ =
√
m̂′Θ̂m̂/p. Define ΦGMV = w′

GMV ΣwGMV = (pa)−1 to be the global minimum

variance, ΦMWC = w′
MWCΣwMWC = p−1

[
aµ2−2bµ+d

ad−b2

]
is the MWC portfolio variance,

and ΦMRC = w′
MRCΣwMRC = σ2(pg) is the MRC portfolio variance. We use the terms

variance and risk exposure interchangeably. Let Φ̂GMV, Φ̂MWC, and Φ̂MRC be the sample

counterparts of the respective portfolio variances. The expressions for ΦGMV and ΦMWC

were derived in [48] and [24]. Theorem 5 establishes the consistency of a large portfolio’s

variance estimator.
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Theorem 5 Under the assumptions of Theorem 3, FGL consistently estimates GMV, MWC,

and MRC portfolio variance:∣∣∣Φ̂GMV/ΦGMV − 1
∣∣∣ = OP (ϱTdT sTK

3/2) = oP (1),∣∣∣Φ̂MWC/ΦMWC − 1
∣∣∣ = OP (ϱTdT sTK

3/2) = oP (1),∣∣∣Φ̂MRC/ΦMRC − 1
∣∣∣ = OP

(
[ϱTdT sTK

3/2]1/2
)
= oP (1).

[24] derived a similar result for ΦGMV and ΦMWC under the assumption that precision

matrix of stock returns is sparse. Also, [43] derived the bounds for ΦGMV under the factor

structure assuming sparse covariance matrix of idiosyncratic components and gross exposure

constraint on portfolio weights which limits negative positions.

The empirical application in Section 6 reveals that the portfolios constructed us-

ing MRC formulation have higher risk compared with GMV and MWC alternatives: using

monthly and daily returns of the components of S&P500 index, MRC portfolios exhibit

higher out-of-sample risk and return compared to the alternative formulations. Further-

more, the empirical exercise demonstrates that the higher return of MRC portfolios out-

weighs higher risk for the monthly data which is evidenced by the increased out-of-sample

Sharpe Ratio.

2.4.6 Generalization: Sub-Gaussian and Elliptical Distributions

So far the consistency of the Factor Graphical Lasso in Theorem 4 relied on the

assumption of the exponential-type tails in (A.3)(c). Since this tail-behavior may be too

restrictive for financial portfolio, we comment on the possibility to relax it. First, recall

where (A.3)(c) was used before: we required this assumption in order to establish conver-
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gence of unknown factors and loadings in Theorem 1, which was further used to obtain the

convergence properties of Σ̂ε in Theorem 2. Hence, when Assumption (A.3)(c) is relaxed,

one needs to find another way to consistently estimate Σε. We achieve it using the tools

developed in [56]. Specifically, let Σ = ΓΛΓ
′
, where Σ is the covariance matrix of returns

that follow a factor structure described in equation (2.11). Define Σ̂, Λ̂K , Γ̂K to be the

estimators of Σ,Λ,Γ. We further let Λ̂K = diag(λ̂1, . . . , λ̂K) and Γ̂K = (v̂1, . . . , v̂K) to be

constructed by the first K leading empirical eigenvalues and the corresponding eigenvectors

of Σ̂ and B̂B̂′ = Γ̂KΛ̂KΓ̂
′
K . Similarly to [56], we require the following bounds on the

componentwise maximums of the estimators:

(C.1)
∥∥∥Σ̂−Σ

∥∥∥
max

= OP (
√

log p/T ),

(C.2)
∥∥∥(Λ̂K −Λ)Λ−1

∥∥∥
max

= OP (K
√
log p/T ),

(C.3)
∥∥∥Γ̂K − Γ

∥∥∥
max

= OP (K
1/2
√

log p/(Tp)).

Let Σ̂SG be the sample covariance matrix, with Λ̂SG
K and Γ̂SG

K constructed with

the first K leading empirical eigenvalues and eigenvectors of Σ̂SG respectively. Also, let

Σ̂EL1 = D̂R̂1D̂, where R̂1 is obtained using the Kendall’s tau correlation coefficients and

D̂ is a robust estimator of variances constructed using the Huber loss. Furthermore, let

Σ̂EL2 = D̂R̂2D̂, where R̂2 is obtained using the spatial Kendall’s tau estimator. Define

Λ̂EL
K to be the matrix of the first K leading empirical eigenvalues of Σ̂EL1, and Γ̂EL

K is the

matrix of the first K leading empirical eigenvectors of Σ̂EL2. For more details regarding

constructing Σ̂SG, Σ̂EL1 and Σ̂EL2 see [56], Sections 3 and 4.
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Proposition 1 For sub-Gaussian distributions, Σ̂SG, Λ̂SG
K and Γ̂SG

K satisfy (C.1)-(C.3).

For elliptical distributions, Σ̂EL1, Λ̂EL
K and Γ̂EL

K satisfy (C.1)-(C.3).

When (C.1)-(C.3) are satisfied, the bounds obtained in Theorems 2-5 continue to hold.

Proposition 1 is essentially a rephrasing of the results obtained in [56], Sections 3 and 4.

The difference arises due to the fact that we allow K to increase, which is reflected in the

modified rates in (C.2)-(C.3). As evidenced from the above Proposition, Σ̂EL2 is only

used for estimating the eigenvectors. This is necessary due to the fact that, in contrast with

Σ̂EL2, the theoretical properties of the eigenvectors of Σ̂EL are mathematically involved

because of the sin function. The FGL for the elliptical distributions will be called the Robust

FGL.

2.5 Monte Carlo

In order to validate our theoretical results, we perform several simulation studies

which are divided into four parts. The first set of results computes the empirical conver-

gence rates and compares them with the theoretical expressions derived in Theorems 3-5.

The second set of results compares the performance of the FGL with several alternative

models for estimating covariance and precision matrix. To highlight the benefit of using

the information about factor structure as opposed to standard graphical models, we include

Graphical Lasso by [65] (GL) that does not account for the factor structure. To explore

the benefits of using FGL for error quantification in (2.16), we consider several alternative

estimators of covariance/precision matrix of the idiosyncratic component in (2.16): (1) lin-

ear shrinkage estimator of covariance developed by [91] further referred to as Factor LW or
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FLW; (2) nonlinear shrinkage estimator of covariance by [94] (Factor NLW or FNLW); (3)

POET ( [53]); (4) constrained ℓ1-minimization for inverse matrix estimator, Clime ( [23])

(Factor Clime or FClime). Furthermore, we discovered that in certain setups the estimator

of covariance produced by POET is not positive definite. In such cases we use the matrix

symmetrization procedure as in [56] and then use eigenvalue cleaning as in [25] and [72].

This estimator is referred to as Projected POET; it coincides with POET when the covari-

ance estimator produced by the latter is positive definite. The third set of results examines

the performance of FGL and Robust FGL (described in Subsection 4.6) when the dependent

variable follows elliptical distribution. The fourth set of results explores the sensitivity of

portfolios constructed using different covariance and precision estimators of interest when

the pervasiveness assumption (A.2) is relaxed, that is, when the gap between the diverg-

ing and bounded eigenvalues decreases. All exercises in this section use 100 Monte Carlo

simulations.

We first discuss the choice of the tuning parameter λ in (2.13) used in Algorithm 1.

Let Θ̂ε,λ be the solution to (2.13) for a fixed λ. Following [87], we minimize the following

Bayesian Information Criterion (BIC) using grid search:

BIC(λ) ≡ T
[
trace(Θ̂ε,λΣ̂ε)− log det(Θ̂ε,λ)

]
+ (log T )

∑
i≤j

1
[
θ̂ε,λ,ij ̸= 0

]
. (2.21)

The grid G ≡ {λ1, . . . , λm} is constructed as follows: the maximum value in the grid, λm,

is set to be the smallest value for which all the off-diagonal entries of Θ̂ε,λm are zero, that

is, the maximum modulus of the off-diagonal entries of Σ̂ε. The smallest value of the grid,

λ1 ∈ G, is determined as λ1 ≡ ϑλm for a constant ϑ > 0. The remaining grid values
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λ1, . . . , λm are constructed in the ascending order from λ1 to λm on the log scale:

λi = exp
(
log(λ1) +

i− 1

m− 1
log(λm/λ1)

)
, i = 2, . . . ,m− 1.

We use ϑ = ω3T and m = 10 in the simulations and the empirical exercise. We consider the

following setup: let p = T δ, δ = 0.85, K = 2(log T )0.5 and T = [2h], for h = 7, 7.5, 8, . . . , 9.5.

A sparse precision matrix of the idiosyncratic components is constructed as follows: we first

generate the adjacency matrix using a random graph structure. Define a p × p adjacency

matrix Aε which is used to represent the structure of the graph:

aε,ij =


1, for i ̸= j with probability q,

0, otherwise.

(2.22)

Let aε,ij denote the i, j-th element of the adjacency matrix Aε. We set aε,ij = aε,ji =

1, for i ̸= j with probability q, and 0 otherwise. Such structure results in sT = p(p− 1)q/2

edges in the graph. To control sparsity, we set q = 1/(pT 0.8), which makes sT = O(T 0.05).

The adjacency matrix has all diagonal elements equal to zero. Hence, to obtain a positive

definite precision matrix we apply the procedure described in [142]: using their notation,

Θε = Aε ·v+ I(|τ |+0.1+u), where u > 0 is a positive number added to the diagonal of the

precision matrix to control the magnitude of partial correlations, v controls the magnitude

of partial correlations with u, and τ is the smallest eigenvalue of Aε · v. In our simulations

we use u = 0.1 and v = 0.3.
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Factors are assumed to have the following structure:

ft = ϕf ft−1 + ζt (2.23)

rt︸︷︷︸
p×1

= B ft︸︷︷︸
K×1

+ εt, t = 1, . . . , T (2.24)

where εt is a p × 1 random vector of idiosyncratic errors following N (0,Σε), with sparse

Θε that has a random graph structure described above, ft is a K × 1 vector of factors, ϕf

is an autoregressive parameter in the factors which is a scalar for simplicity, B is a p ×K

matrix of factor loadings, ζt is a K × 1 random vector with each component independently

following N (0, σ2ζ ). To create B in (2.24) we take the first K rows of an upper triangular

matrix from a Cholesky decomposition of the p×p Toeplitz matrix parameterized by ρ. For

the first set of results we set ρ = 0.2, ϕf = 0.2 and σ2ζ = 1. The specification in (2.24) leads

to the low-rank plus sparse decomposition of the covariance matrix of stock returns rt.

As a first exercise, we compare the empirical and theoretical convergence rates of

the precision matrix, portfolio weights and exposure. A detailed description of the procedure

and the simulation results is provided in Appendix 2.B.1. We confirm that the empirical

rates and theoretical rates from Theorems 3-5 are matched.

As a second exercise, we compare the performance of FGL with the alternative

models listed at the beginning of this section. We consider two cases: Case 1 is the same

as for the first set of simulations (p < T ): p = T δ, δ = 0.85, K = 2(log T )0.5, sT = O(T 0.05).

Case 2 captures the cases when p > T with p = 3 · T δ, δ = 0.85, all else equal. The results

for Case 2 are reported in Figure 2.1-2.3, and Case 1 is located in Appendix 2.B.2. FGL

demonstrates superior performance for estimating precision matrix and portfolio weights
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in both cases, exhibiting consistency for both Case 1 and Case 2 settings. Also, FGL

outperforms GL for estimating portfolio exposure and consistently estimates the latter,

however, depending on the case under consideration some alternative models produce lower

averaged error.

Figure 2.1: Averaged errors of the estimators of Θ for Case 2 on logarithmic
scale: p = 3 · T 0.85, K = 2(log T )0.5, sT = O(T 0.05).
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Figure 2.2: Averaged errors of the estimators of wGMV (left) and wMRC (right)
for Case 2 on logarithmic scale: p = 3 · T 0.85, K = 2(log T )0.5, sT = O(T 0.05).

Figure 2.3: Averaged errors of the estimators of ΦGMV (left) and ΦMRC (right)
for Case 2 on logarithmic scale: p = 3 · T 0.85, K = 2(log T )0.5, sT = O(T 0.05).
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As a third exercise, we examine the performance of FGL and Robust FGL (de-

scribed in subsection 4.6) when the dependent variable follows elliptical distributions. A

detailed description of the data generating process (DGP) and simulation results are pro-

vided in Appendix 2.B.3. We find that the performance of FGL for estimating the precision

matrix is comparable with that of Robust FGL: this suggests that our FGL algorithm is

robust to heavy-tailed distributions even without additional modifications.

As a final exercise, we explore the sensitivity of portfolios constructed using differ-

ent covariance and precision estimators of interest when the pervasiveness assumption (A.2)

is relaxed. A detailed description of the data generating process (DGP) and simulation re-

sults are provided in Appendix 2.B.4. We verify that FGL exhibits robust performance when

the gap between the diverging and bounded eigenvalues decreases. In contrast, POET and

Projected POET are most sensitive to relaxing pervasiveness assumption which is consistent

with our empirical findings and also with the simulation results by [113].

2.6 Empirical Application

In this section we examine the performance of the Factor Graphical Lasso for

constructing a financial portfolio using daily data. The description and empirical results for

monthly data can be found in Appendix 2.C. We first describe the data and the estimation

methodology, then we list four metrics commonly reported in the finance literature, and,

finally, we present the results.
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2.6.1 Data

We use daily returns of the components of the S&P500 index. The data on his-

torical S&P500 constituents and stock returns is fetched from CRSP and Compustat using

SAS interface. For the daily data the full sample size has 5040 observations on 420 stocks

from January 20, 2000 - January 31, 2020. We use January 20, 2000 - January 24, 2002 (504

obs) as the first training (estimation) period and January 25, 2002 - January 31, 2020 (4536

obs) as the out-of-sample test period. We roll the estimation window (training periods)

over the test sample to rebalance the portfolios monthly. At the end of each month, prior

to portfolio construction, we remove stocks with less than 2 years of historical stock return

data.

We examine the performance of Factor Graphical Lasso for three alternative port-

folio allocations (2.2), (2.3) and (2.10) and compare it with the equal-weighted portfolio

(EW), index portfolio (Index), FClime, FLW, FNLW (as in the simulations, we use alter-

native covariance and precision estimators that incorporate the factor structure through

Sherman-Morrison inversion formula), POET and Projected POET. Index is the composite

S&P500 index listed as ∧GSPC. We take the risk-free rate and Fama/French factors from

Kenneth R. French’s data library.

2.6.2 Performance Measures

Similarly to [24], we consider four metrics commonly reported in the finance litera-

ture: the Sharpe Ratio, the portfolio turnover, the average return and the risk of a portfolio

(which is defined as the square root of the out-of-sample variance of the portfolio). We
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consider two scenarios: with and without transaction costs. Let T denote the total number

of observations, the training sample consists of m = 504 observations, and the test sample

is n = T −m.

When transaction costs are not taken into account, the out-of-sample average

portfolio return, variance and Sharpe Ratio (SR) are

µ̂test =
1

n

T−1∑
t=m

ŵ′
trt+1, σ̂

2
test =

1

n− 1

T−1∑
t=m

(ŵ′
trt+1 − µ̂test)

2, SR = µ̂test/σ̂test. (2.25)

When transaction costs are considered, we follow [9,24,39,100] to account for the

transaction costs, further denoted as tc. In line with the aforementioned papers, we set

tc = 50bps. Define the excess portfolio at time t+ 1 with transaction costs (tc) as

rt+1,portfolio = ŵ′
trt+1 − tc(1 + ŵ′

trt+1)

p∑
j=1

∣∣∣ŵt+1,j − ŵ+
t,j

∣∣∣, (2.26)

where

ŵ+
t,j = ŵt,j

1 + rt+1,j + rft+1

1 + rt+1,portfolio + rft+1

, (2.27)

rt+1,j+r
f
t+1 is sum of the excess return of the j-th asset and risk-free rate, and rt+1,portfolio+

rft+1 is the sum of the excess return of the portfolio and risk-free rate. The out-of-sample

39



average portfolio return, variance, Sharpe Ratio and turnover are defined accordingly:

µ̂test,tc =
1

n

T−1∑
t=m

rt,portfolio, σ̂
2
test,tc =

1

n− 1

T−1∑
t=m

(rt,portfolio − µ̂test,tc)
2, SRtc = µ̂test,tc/σ̂test,tc,

(2.28)

Turnover =
1

n

T−1∑
t=m

p∑
j=1

∣∣∣ŵt+1,j − ŵ+
t,j

∣∣∣. (2.29)

2.6.3 Results

This section explores the performance of the Factor Graphical Lasso for the finan-

cial portfolio using daily data. We consider two scenarios, when the factors are unknown

and estimated using the standard PCA (statistical factors), and when the factors are known.

The number of statistical factors, K̂, is estimated in accordance with Remark 1. For the

scenario with known factors we include up to 5 Fama-French factors: FF1 includes the

excess return on the market, FF3 includes FF1 plus size factor (Small Minus Big, SMB)

and value factor (High Minus Low, HML), and FF5 includes FF3 plus profitability factor

(Robust Minus Weak, RMW) and risk factor (Conservative Minus Agressive, CMA). In

Table 2.1 and Appendix 2.C, we report the daily and monthly portfolio performance for

three alternative portfolio allocations in (2.2), (2.3) and (2.10). Following [24], we set a

return target µ = 0.0378% which is equivalent to 10% yearly return when compounded.

The target level of risk for the weight-constrained and risk-constrained Markowitz portfolio

(MWC and MRC) is set at σ = 0.013 which is the standard deviation of the daily excess

returns of the S&P500 index in the first training set. Following [24], transaction costs for

each individual stock are set to be a constant 0.1%.
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Markowitz Risk-Constrained Markowitz Weight-Constrained Global Minimum-Variance

Return Risk SR Turnover Return Risk SR Turnover Return Risk SR Turnover

Without TC
EW 2.33E-04 1.90E-02 0.0123 - 2.33E-04 1.90E-02 0.0123 - 2.33E-04 1.90E-02 0.0123 -
Index 1.86E-04 1.17E-02 0.0159 - 1.86E-04 1.17E-02 0.0159 - 1.86E-04 1.17E-02 0.0159 -
FGL 8.12E-04 2.66E-02 0.0305 - 2.95E-04 8.21E-03 0.0360 - 2.94E-04 7.51E-03 0.0392 -

FClime 2.15E-03 8.46E-02 0.0254 - 2.02E-04 9.85E-03 0.0205 - 2.73E-04 1.07E-02 0.0255 -
FLW 4.34E-04 2.65E-02 0.0164 - 3.12E-04 9.96E-03 0.0313 - 3.10E-04 9.38E-03 0.0330 -
FNLW 4.91E-04 6.66E-02 0.0074 - 2.98E-04 1.24E-02 0.0241 - 3.06E-04 1.32E-02 0.0231 -
POET NaN NaN NaN - -7.06E-04 2.74E-01 -0.0026 - 1.07E-03 2.71E-01 0.0039 -

Projected POET 1.20E-03 1.71E-01 0.0070 - -8.06E-05 1.61E-02 -0.0050 - -7.57E-05 1.93E-02 -0.0039 -
FGL (FF1) 7.96E-04 2.80E-02 0.0285 - 3.73E-04 8.73E-03 0.0427 - 3.52E-04 8.62E-03 0.0408 -
FGL (FF3) 6.51E-04 2.74E-02 0.0238 - 3.52E-04 8.96E-03 0.0393 - 3.39E-04 8.94E-03 0.0379 -
FGL (FF5) 5.87E-04 2.70E-02 0.0217 - 3.47E-04 9.38E-03 0.0370 - 3.36E-04 9.29E-03 0.0362 -

With TC
EW 2.01E-04 1.90E-02 0.0106 0.0292 2.01E-04 1.90E-02 0.0106 0.0292 2.01E-04 1.90E-02 0.0106 0.0292
FGL 4.47E-04 2.66E-02 0.0168 0.3655 2.30E-04 8.22E-03 0.0280 0.0666 2.32E-04 7.52E-03 0.0309 0.0633

FClime 1.18E-03 8.48E-02 0.0139 1.0005 1.67E-04 9.86E-03 0.0170 0.0369 2.46E-04 1.07E-02 0.0230 0.0290
FLW -5.54E-05 2.65E-02 -0.0021 0.4874 1.92E-04 9.98E-03 0.0193 0.1207 1.92E-04 9.39E-03 0.0204 0.1194
FNLW -2.39E-03 7.03E-02 -0.0340 3.6370 5.50E-05 1.25E-02 0.0044 0.2441 6.08E-05 1.33E-02 0.0046 0.2457
POET NaN NaN NaN NaN -2.28E-02 5.55E-01 -0.0411 113.3848 -2.81E-02 4.21E-01 -0.0666 132.8215

Projected POET -1.59E-02 3.64E-01 -0.0437 35.9692 -1.03E-03 1.68E-02 -0.0616 0.9544 -1.37E-03 2.06E-02 -0.0666 1.2946
FGL (FF1) 3.86E-04 2.80E-02 0.0138 0.4068 2.82E-04 8.74E-03 0.0323 0.0903 2.63E-04 8.63E-03 0.0305 0.0887
FGL (FF3) 2.47E-04 2.74E-02 0.0090 0.4043 2.60E-04 8.98E-03 0.0290 0.0928 2.49E-04 8.96E-03 0.0278 0.0911
FGL (FF5) 1.83E-04 2.71E-02 0.0068 0.4032 2.53E-04 9.40E-03 0.0269 0.0952 2.43E-04 9.30E-03 0.0262 0.0937

Table 2.1: Daily portfolio returns, risk, Sharpe Ratio (SR) and turnover.
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Let us summarize the results for daily data in Table 2.1: (1) MRC portfolios

produce higher return and higher risk, compared to MWC and GMV. However, the out-of-

sample Sharpe Ratio for MRC is lower than that of MWC and GMV, which implies that

the higher risk of MRC portfolios is not fully compensated by the higher return. (2) FGL

outperforms all the competitors, including EW and Index. Specifically, our method has the

lowest risk and turnover (compared to FClime, FLW, FNLW and POET), and the highest

out-of-sample Sharpe Ratio compared with all alternative methods. (3) The implemen-

tation of POET for MRC resulted in the erratic behavior of this method for estimating

portfolio weights, concretely, many entries in the weight matrix had “NaN” entries. We

elaborate on the reasons behind such performance below. (4) Using the observable Fama-

French factors in the FGL, in general, produces portfolios with higher return and higher

out-of-sample Sharpe Ratio compared to the portfolios based on statistical factors. Inter-

estingly, this increase in return is not followed by higher risk. The results for monthly data

are provided in Appendix 2.C: all the conclusions are similar to the ones for daily data.

We now examine possible reasons behind the observed puzzling behavior of POET

and Projected POET. The erratic behavior of the former is caused by the fact that POET

estimator of covariance matrix was not positive-definite which produced poor estimates

of GMV and MWC weights and made it infeasible to compute MRC weights (recall, by

construction MRC weight in (2.10) requires taking a square root). To explore deteriorated

behavior of Projected POET, let us highlight two findings outlined by the existing closely

related literature. First, [8] examined “pervasiveness” degree, or strength, of 146 factors

commonly used in the empirical finance literature, and found that only the market factor was
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strong, while all other factors were semi-strong. This indicates that the factor pervasiveness

assumption (A.2) might be unrealistic in practice. Second, as pointed out by [113], “the

quality of POET dramatically deteriorates as the systematic-idiosyncratic eigenvalue gap

becomes small”. Therefore, being guided by the two aforementioned findings, we attribute

deteriorated performance of POET and Projected POET to the decreased gap between the

diverging and bounded eigenvalues documented in the past studies on financial returns.

High sensitivity of these two covariance estimators in such settings was further supported

by our additional simulation study (Appendix 2.B.4) examining the robustness of portfolios

constructed using different covariance and precision estimators.

Table 2.2 compares the performance of FGL and the alternative methods for the

daily data for different time periods of interesting episodes in terms of the cumulative excess

return (CER) and risk. To demonstrate the performance of all methods during the periods

of recession and expansion, we chose four periods and recorded CER for the whole year

in each period of interest. Two years, 2002 and 2008 correspond to the recession periods,

which is why we we refer to them as “Downturns”. We note that the references to Argentine

Great Depression and The Financial Crisis do not intend to limit these economic downturns

to only one year. They merely provide the context for the recessions. The other two years,

2017 and 2019, correspond to the years which were relatively favorable to the stock market

(“Booms”).
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Table 2.2 reveals some interesting findings: (1) MRC portfolios yield higher CER

and they are characterized by higher risk. (2) MRC is the only type of portfolio that

produces positive CER during both recessions. Note that all models that used MWC and

GMV during that time experienced large negative CER. (3) When EW and Index have

positive CER (during Boom periods), all portfolio formulations also produce positive CER.

However, the return accumulated by MRC is mostly higher than that by MWC and GMV

portfolio formulations. (4) FGL mostly outperforms the competitors, including EW and

Index in terms of CER and risk.
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Downturn #1
Argentine Great Depression

(2002)

Downturn #2
Financial Crisis

(2008)

Boom #1
(2017)

Boom #2
(2019)

CER Risk CER Risk CER Risk CER Risk

Equal-Weighted and Index

EW -0.1633 0.0160 -0.5622 0.0310 0.0627 0.0218 0.1642 0.0185
Index -0.2418 0.0168 -0.4746 0.0258 0.1752 0.0042 0.2934 0.0086

Markowitz Risk-Constrained (MRC)

FGL 0.2909 0.0206 0.2938 0.0282 0.7267 0.0142 0.6872 0.0263
FClime -0.0079 0.0348 -0.8912 0.1484 0.5331 0.0383 0.2346 0.0557
FLW 0.0308 0.0231 0.2885 0.0315 0.3164 0.0118 0.5520 0.0287
FNLW 0.0728 0.0213 0.2075 0.0392 0.5796 0.0497 0.6315 0.0355

Projected POET -0.6178 0.0545 2.81E-05 0.1874 -0.7599 0.1197 1.8592 0.1177

Markowitz Weight-Constrained (MWC)

FGL -0.0138 0.0082 -0.1956 0.0135 0.1398 0.0044 0.3787 0.0072
FClime -0.1045 0.0124 -0.3974 0.0204 0.1309 0.0041 0.2595 0.0078
FLW -0.0158 0.0080 -0.2789 0.0126 0.1267 0.0037 0.3018 0.0085
FNLW -0.0195 0.0078 -0.2811 0.0123 -0.0361 0.0087 0.4078 0.0098
POET -0.2820 0.0324 -0.9989 0.1198 0.5720 0.0630 1.4756 0.0403

Projected POET -0.0217 0.0130 -0.0842 0.0176 -0.0877 0.0089 0.5300 0.0176

Global Minimum-Variance Portfolio (GMV)

FGL -0.0044 0.0081 -0.2113 0.0138 0.1384 0.0045 0.3703 0.0072
FClime -0.1061 0.0129 -0.4410 0.0241 0.1264 0.0041 0.2829 0.0081
FLW -0.0151 0.0080 -0.2926 0.0128 0.1323 0.0037 0.2994 0.0084
FNLW -0.0206 0.0078 -0.2959 0.0124 -0.0388 0.0090 0.3287 0.0097
POET -0.3190 0.0330 -0.9928 0.0931 -1.0000 0.2414 1.6301 0.0318

Projected POET -0.0662 0.0135 0.0829 0.0247 -0.1106 0.0115 0.6870 0.0186

Table 2.2: Cumulative excess return (CER) and risk of portfolios using daily data.
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2.7 Conclusion

In this paper, we propose a new conditional precision matrix estimator for the

excess returns under the approximate factor model with unobserved factors that combines

the benefits of graphical models and factor structure. We established consistency of FGL

in the spectral and ℓ1 matrix norms. In addition, we proved consistency of the portfolio

weights and risk exposure for three formulations of the optimal portfolio allocation without

assuming sparsity on the covariance or precision matrix of stock returns. All theoretical

results established in this paper hold for a wide range of distributions: sub-Gaussian family

(including Gaussian) and elliptical family. Our simulations demonstrate that FGL is robust

to very heavy-tailed distributions, which makes our method suitable for the financial ap-

plications. Furthermore, we demonstrate that in contrast to POET and Projected POET,

the success of the proposed method does not heavily depend on the factor pervasiveness as-

sumption: FGL is robust to the scenarios when the gap between the diverging and bounded

eigenvalues decreases.

The empirical exercise uses the constituents of the S&P500 index and demonstrates

superior performance of FGL compared to several alternative models for estimating precision

(FClime) and covariance (FLW, FNLW, POET) matrices, Equal-Weighted (EW) portfolio

and Index portfolio in terms of the out-of-sample Sharpe Ratio and risk. This result is

robust to both monthly and daily data. We examine three different portfolio formulations

and discover that the only portfolios that produce positive cumulative excess return (CER)

during recessions are the ones that relax the constraint requiring portfolio weights sum up

to one.
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Appendices

This Appendix is structured as follows: Appendix 2.A contains proofs of the theo-

rems and accompanying lemmas, Appendix 2.B provides additional simulations for Section

5, additional empirical results for Section 6 are located in Appendix 2.C.

2.A Proofs of the Theorems

2.A.1 Lemmas for Theorem 1

Lemma 1 Under the assumptions of Theorem 1,

(a) maxi,j≤K

∣∣∣(1/T )∑T
t=1 fitfjt − E[fitfjt]

∣∣∣ = OP (
√
1/T ),

(b) maxi,j≤p

∣∣∣(1/T )∑T
t=1 εitεjt − E[εitεjt]

∣∣∣ = OP (
√
log p/T ),

(c) maxi≤K,j≤p

∣∣∣(1/T )∑T
t=1 fitεjt

∣∣∣ = OP (
√
log p/T ).

Proof. The proof of Lemma 1 can be found in Fan et al. (2011) (Lemma B.1).

Lemma 2 Under Assumption (A.4), maxt≤T
∑K

s=1|E[ε′sεt]|/p = O(1).

Proof. The proof of Lemma 2 can be found in Fan et al. (2013) (Lemma A.6).
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Lemma 3 For K̂ defined in expression (3.6),

Pr
(
K̂ = K

)
→ 1.

Proof. The proof of Lemma 3 can be found in Li et al. (2017) (Theorem 1 and Corollary

1). Using the expressions (A.1) in Bai (2003) and (C.2) in Fan et al. (2013), we have the

following identity:

f̂t −Hft =
(V
p

)−1
[
1

T

T∑
s=1

f̂s
E[ε′sεt]
p

+
1

T

T∑
s=1

f̂sζst +
1

T

T∑
s=1

f̂sηst +
1

T

T∑
s=1

f̂sξst

]
, (2.30)

where ζst = ε′sεt/p− E[ε′sεt] /p, ηst = f ′s
∑p

i=1 biεit/p and ξst = f ′t
∑p

i=1 biεis/p.

Lemma 4 For all i ≤ K̂,

(a) (1/T )
∑T

t=1

[
(1/T )

∑T
t=1 f̂isE[ε′sεt] /p

]2
= OP (T

−1),

(b) (1/T )
∑T

t=1

[
(1/T )

∑T
t=1 f̂isζst/p

]2
= OP (p

−1),

(c) (1/T )
∑T

t=1

[
(1/T )

∑T
t=1 f̂isηst/p

]2
= OP (K

2/p),

(d) (1/T )
∑T

t=1

[
(1/T )

∑T
t=1 f̂isξst/p

]2
= OP (K

2/p).

Proof. We only prove (c) and (d), the proof of (a) and (b) can be found in Fan et al.

(2013) (Lemma 8).

(c) Recall, ηst = f ′s
∑p

i=1 biεit/p. Using Assumption (A.5), we get

E
[
(1/T )×

∑T
t=1∥

∑p
i=1 biεit∥2

]
= E

[
∥
∑p

i=1 biεit∥2
]

= O(pK). Therefore, by the

Cauchy-Schwarz inequality and the facts that (1/T )
∑T

t=1∥ft∥2 = O(K), and, ∀i,
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∑T
s=1 f̂

2
is = T ,

1

T

T∑
t=1

( 1
T

T∑
s=1

f̂isηst

)2
≤

∥∥∥∥∥∥ 1T
T∑

s=1

∥f̂isf ′s∥2
1

T

T∑
t=1

1

p
∥

p∑
j=1

biεjt∥

∥∥∥∥∥∥
2

≤ 1

Tp2

T∑
t=1

∥∥∥∥∥∥
p∑

j=1

biεjt

∥∥∥∥∥∥
2(

1

T

T∑
s=1

f̂2is
1

T

T∑
s=1

∥fs∥2
)

= OP

(K
p

·K
)
= OP

(K2

p

)
.

(d) Using a similar approach as in part (c):

1

T

T∑
t=1

( 1
T

T∑
s=1

f̂isξst

)2
=

1

T

T∑
t=1

∣∣∣∣∣∣ 1T
T∑

s=1

f ′t

p∑
j=1

εjs
1

p
f̂is

∣∣∣∣∣∣
2

≤
( 1
T

T∑
t=1

∥ft∥2
)∥∥∥∥∥∥ 1T

T∑
s=1

p∑
j=1

bjεjs
1

p
f̂is

∥∥∥∥∥∥
2

≤
( 1
T

T∑
t=1

∥ft∥2
) 1
T

T∑
s=1

∥∥∥∥∥∥
p∑

j=1

bjεjs
1

p

∥∥∥∥∥∥
2( 1
T

T∑
s=1

f̂2is

)

= OP

(
K · pK

p2
· 1
)
= OP

(K2

p

)

Lemma 5

(a) maxt≤T

∥∥∥(1/(Tp))∑T
s=1 f̂

′
sE[ε′sεt]

∥∥∥ = OP (K/
√
T ).

(b) maxt≤T

∥∥∥(1/(Tp))∑T
s=1 f̂

′
sζst

∥∥∥ = OP (
√
KT 1/4/

√
p).

(c) maxt≤T

∥∥∥(1/(Tp))∑T
s=1 f̂

′
sηst

∥∥∥ = OP (KT
1/4/

√
p).

(d) maxt≤T

∥∥∥(1/(Tp))∑T
s=1 f̂

′
sξst

∥∥∥ = OP (KT
1/4/

√
p).
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Proof. Our proof is similar to the proof in Fan et al. (2013). However, we relax the

assumptions of fixed K.

(a) Using the Cauchy-Schwarz inequality, Lemma 2, and the fact that (1/T )
∑T

t=1∥f̂t∥2 =

OP (K), we get

max
t≤T

∥∥∥∥∥ 1

Tp

T∑
s=1

f̂ ′sE
[
ε′sεt

]∥∥∥∥∥ ≤ max
t≤T

[
1

T

T∑
s=1

∥∥∥f̂s∥∥∥ 1
T

T∑
s=1

(
E[ε′sεt]
p

)2]1/2

≤ OP (K)max
t≤T

[
1

T

T∑
s=1

(
E[ε′sεt]
p

)2]1/2

≤ OP (K)max
s,t

√∣∣∣∣E[ε′sεt]p

∣∣∣∣max
t≤T

[
1

T

T∑
s=1

∣∣∣∣E[ε′sεt]p

∣∣∣∣
]1/2

= OP

(
K · 1 · 1√

T

)
= OP

( K√
T

)
.

(b) Using the Cauchy-Schwarz inequality,

max
t≤T

∥∥∥∥∥ 1T
T∑

s=1

f̂
′
sζst

∥∥∥∥∥ ≤ max
t≤T

1

T

(
T∑

s=1

∥∥∥f̂s∥∥∥2 T∑
s=1

ζ2st

)1/2

≤

(
OP (K)max

t

1

T

T∑
s=1

ζ2st

)1/2

= OP

(√
K · T 1/4/

√
p ·
)
.

To obtain the last inequality we used Assumption (A.5)(b) to get E
[
(1/T )

∑T
s=1 ζ

2
st

]2
≤

maxs,t≤T E
[
ζ4st
]
= O(1/p2), and then applied the Chebyshev inequality and Bonfer-

roni’s method that yield maxt(1/T )
∑T

s=1 ζ
2
st = OP

(√
T/p

)
.

(c) Using the definition of ηst we get

max
t≤T

∥∥∥∥∥ 1T
T∑

s=1

f̂
′
sηst

∥∥∥∥∥ ≤

∥∥∥∥∥ 1T
T∑

s=1

f̂sf
′
s

∥∥∥∥∥max
t

∥∥∥∥∥1p
p∑

i=1

biεit

∥∥∥∥∥ = OP

(
K · T 1/4/

√
p
)
.

To obtain the last rate we used Assumption (A.5)(c) together with the Chebyshev
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inequality and Bonferroni’s method to get maxt≤T ∥
∑p

i=1 biεit∥ = OP

(
T 1/4√p

)
.

(d) In the proof of Lemma 4 we showed that

∥(1/T ) ×
∑T

t=1

∑p
i=1 biεit(1/p)f̂s∥2 = O

(√
K/p

)
. Furthermore, Assumption (A.3)

implies E
[
K−2ft

]4
< M , therefore, maxt≤T ∥ft∥ = OP

(
T 1/4

√
K
)
. Using these bounds

we get

max
t≤T

∥∥∥∥∥ 1T
T∑

s=1

f̂
′
sξst

∥∥∥∥∥ ≤ max
t≤T

∥ft∥ ·

∥∥∥∥∥
T∑

s=1

p∑
i=1

biεit
1

p
f̂s

∥∥∥∥∥ = OP

(
T 1/4

√
K ·

√
K/p

)
= OP

(
T 1/4K/

√
p
)
.

Lemma 6

(a) maxi≤K(1/T )
∑T

t=1(f̂t −Hft)
2
i = OP (1/T +K2/p).

(b) (1/T )
∑T

t=1∥f̂t −Hft∥2 = OP (K/T +K3/p).

(c) maxt≤T (1/T )∥f̂t −Hft∥ = OP (K/
√
T +KT 1/4/

√
p).

Proof. Similarly to Fan et al. (2013), we prove this lemma conditioning on the event

K̂ = K. Since Pr(K̂ ̸= K) = o(1), the unconditional arguments are implied.
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(a) Using (2.30), for some constant C > 0,

max
i≤K

(1/T )

T∑
t=1

(f̂t −Hft)
2
i ≤ Cmax

i≤K

1

T

T∑
t=1

(
1

T

T∑
s=1

f̂is
E[ε′sεt]
p

)2

+ Cmax
i≤K

1

T

T∑
t=1

(
1

T

T∑
s=1

f̂isζst

)2

+ Cmax
i≤K

1

T

T∑
t=1

(
1

T

T∑
s=1

f̂isζst

)2

+ Cmax
i≤K

1

T

T∑
t=1

(
1

T

T∑
s=1

f̂isξst

)2

= OP

(
1

T
+

1

p
+
K2

p
+
K2

p

)
= OP (1/T +K2/p).

(b) Part (b) follows from part (a) and

1

T

T∑
t=1

∥f̂t −Hft∥2 ≤ Kmax
i≤K

1

T

T∑
t=1

(f̂t −Hft)
2
i .

(c) Part (c) is a direct consequence of 2.30 and Lemma 5.

Lemma 7

(a) HH′ = IK̂ +OP (K
5/2/

√
T +K5/2/

√
p).

(b) HH′ = IK +OP (K
5/2/

√
T +K5/2/

√
p).

Proof. Similarly to Lemma 6, we first condition on K̂ = K.
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(a) The key observation here is that, according to the definition of H, its rank grows

with K, that is, ∥H∥ = OP (K). Let ĉov(Hft) = (1/T )
∑T

t=1Hft(Hft)
′. Using the

triangular inequality we get

∥∥HH′ − IK̂
∥∥
F
≤
∥∥HH′ − ĉov(Hft)

∥∥
F
+
∥∥ĉov(Hft)− IK̂

∥∥
F
. (2.31)

To bound the first term in (2.31), we use Lemma 1:

∥HH′ − ĉov(Hft)∥F ≤ ∥H∥2∥IK − ĉov(Hft)∥F = OP (K
5/2/

√
T ).

To bound the second term in (2.31), we use the Cauchy-Schwarz inequality and Lemma

6:

∥∥∥∥∥ 1T
T∑
t=1

Hft(Hft)
′ − 1

T

T∑
t=1

f̂tf̂
′
t

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1T
T∑
t=1

(Hft − f̂t)(Hft)
′

∥∥∥∥∥
F

+

∥∥∥∥∥ 1T ∑
t

f̂t(f̂
′
t − (Hft)

′)

∥∥∥∥∥
F

≤

(
1

T

∑
t=1

∥∥∥Hft − f̂t

∥∥∥2 1
T

∑
t=1

∥Hft∥2
)1/2

+

(
1

T

∑
t=1

∥∥∥Hft − f̂t

∥∥∥2 1
T

∑
t=1

∥∥∥f̂t∥∥∥2)1/2

= OP

((K
T

+
K3

p
·K
)1/2

+
(K
T

+
K3

p
·K2

)1/2)
= OP

(
K3/2

√
T

+
K5/2

√
p

)
.

(b) The proof of (b) follows from Pr(K̂ = K) → 1 and the arguments made in Fan et al.

(2013), (Lemma 11) for fixed K.
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2.A.2 Proof of Theorem 1

The second part of Theorem 1 was proved in Lemma 6. We now proceed to the

convergence rate of the first part. Using the following definitions: b̂i = (1/T )
∑T

t=1 ritf̂t

and (1/T )
∑T

t=1 f̂tf̂
′
t = IK , we obtain

b̂i −Hbi =
1

T

T∑
t=1

Hftεit +
1

T

T∑
t=1

rit(f̂t −Hft) +H
( 1
T

T∑
t=1

ftf
′
t − IK

)
bi. (2.32)

Let us bound each term on the right-hand side of (2.32). The first term is

max
i≤p

∥Hftεit∥ ≤ ∥H∥max
i

√√√√ K∑
k=1

(
1

T

T∑
t=1

fktεit

)2

≤ ∥H∥
√
K max

i≤p,j≤K

∣∣∣∣∣ 1T
T∑
t=1

fjtεit

∣∣∣∣∣
= OP

(
K ·K1/2 ·

√
log p/T

)
,

where we used Lemmas 1 and 7 together with Bonferroni’s method. For the second term,

max
i

∥∥∥∥∥ 1T
T∑
t=1

rit

(
f̂t −Hft

)∥∥∥∥∥ ≤ max
i

(
1

T

T∑
t=1

r2it
1

T

T∑
t=1

∥∥∥f̂t −Hft

∥∥∥2)1/2

= OP

(
1

T
+
K2

p

)1/2

,

where we used Lemma 6 and the fact that maxi T
−1
∑T

t=1 r
2
it = OP (1) since E

[
r2it
]
= O(1).

Finally, the third term is OP (K
2T−1/2) since ∥(1/T )

∑T
t=1 ftf

′
t − IK∥ = OP

(
KT−1/2

)
,

∥H∥ = OP (K) and maxi∥b∥i = O(1) by Assumption (B.1).
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2.A.3 Corollary 1

As a consequence of Theorem 1, we get the following corollary:

Corollary 1 Under the assumptions of Theorem 1,

max
i≤p,t≤T

∥∥∥b̂′
if̂t − b′

ift

∥∥∥ = OP (log T
1/r2K2

√
log p/T +K2T 1/4/

√
p).

Proof. Using Assumption (A.4) and Bonferroni’s method, we have

maxt≤T ∥ft∥ = OP (
√
K log T 1/r2). By Theorem 1, uniformly in i and t:

∥∥∥b̂′
if̂t − b′

ift

∥∥∥ ≤
∥∥∥b̂i −Hbi

∥∥∥∥∥∥f̂t −Hft

∥∥∥+ ∥Hbi∥
∥∥∥f̂t −Hft

∥∥∥
+
∥∥∥b̂i −Hbi

∥∥∥∥Hft∥+ ∥bi∥∥ft∥
∥∥H′H− IK

∥∥
= OP

((
K3/2

√
log p

T
+

K
√
p

)
·
( K√

T
+
KT 1/4

√
p

))

+OP

(
K ·

( K√
T

+
KT 1/4

√
p

))

+OP

((
K3/2

√
log p

T
+

K
√
p

)
· log T 1/r2K1/2

)

+OP

(
log T 1/r2K1/2

(K5/2

√
T

+
K5/2

√
p

))

= OP

(
log T 1/r2K2

√
log p/T +K2T 1/4/

√
p
)
.
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2.A.4 Proof of Theorem 2

Using the definition of the idiosyncratic components we have εit − ε̂it = b′
iH

′(f̂t −

Hft)+ (b̂′
i −b′

iH
′)f̂t +b′

i(H
′H− IK)ft. We bound the maximum element-wise difference as

follows:

max
i≤p

1

T

T∑
t=1

(εit − ε̂it)
2 ≤ 4max

i

∥∥b′
iH

′∥∥2 1
T

T∑
t=1

∥∥∥f̂t −Hft

∥∥∥2 + 4max
i

∥∥∥b̂′
i − b′

iH
′
∥∥∥2 1
T

T∑
t=1

∥∥∥f̂t∥∥∥2
+ 4max

i

∥∥b′
i

∥∥ 1
T

T∑
t=1

∥ft∥2
∥∥H′H− IK

∥∥2
F

= O

(
K2 ·

(K
T

+
K3

p

))
+O

((K3 log p

T
+
K2

p

)
·K

)

+O

(
K ·

(K5

T
+
K5

p

))
= O

(
K4 log p

T
+
K6

p

)
.

Let ω3T ≡ K2
√

log p/T +K3/
√
p. Denote maxi≤p(1/T )

∑T
t=1(εit− ε̂it)2 = OP (ω

2
3T ). Then,

maxi,t|εit − ε̂it| = OP (ω3T ) = oP (1), where the last equality is implied by Corollary 1.

As pointed out in the main text, the second part of Theorem 2 is based on the relationship

between the convergence rates of the estimated covariance and precision matrices established

in Janková and van de Geer (2018) (Theorem 14.1.3).

2.A.5 Lemmas for Theorem 3

Lemma 8 Under the assumptions of Theorem 1, we have the following results:

(a) ∥B∥ = ∥BH′∥ = O(
√
p).

(b) ϱ−1
T max1≤i≤p

∥∥∥b̂i −H′bi

∥∥∥ = oP (1/
√
K) and max1≤i≤p

∥∥∥b̂i

∥∥∥ = OP (
√
K).

(c) ϱ−1
T

∥∥∥B̂−BH′
∥∥∥ = oP

(√
p/K

)
and

∥∥∥B̂∥∥∥ = OP (
√
p).
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Proof. Part (c) is direct consequences of (a)-(b), therefore, we only prove the first two

parts in what follows.

(a) Part (a) easily follows from (B.1): tr(Σ−BB′) = tr(Σ)−∥B∥2 ≥ 0, since tr(Σ) = O(p)

by (B.1), we get ∥B∥2 = O(p). Part (a) follows from the fact that the linear space

spanned by the rows of B is the same as that by the rows of BH′, hence, in practice,

it does not matter which one is used.

(b) From Theorem 1, we have maxi≤p

∥∥∥b̂i −Hbi

∥∥∥ = OP (ω1T ). Using the definition of ϱT

from Theorem 2, it follows that ϱ−1
T ω1T = oP (ω1Tω

−1
3T ). Let z̃T ≡ ω1Tω

−1
3T . Consider

ϱ−1
T max1≤i≤p

∥∥∥b̂i −Hbi

∥∥∥ = oP (zT ). The latter holds for any zt ≥ z̃T , with the tightest

bound obtained when zT = z̃T . For the ease of representation, we use zT = 1/
√
K

instead of z̃T .

The second result in Part (b) is obtained using the fact that max1≤i≤p

∥∥∥b̂i

∥∥∥ ≤
√
K∥B∥max,

where ∥B∥max = O(1) by (B.1).

Lemma 9 Let Π ≡
[
Θf + (BH′)′Θε(BH′)

]−1
, Π̂ ≡

[
Θ̂f + B̂′Θ̂εB̂

]−1
. Also, define

Σf = (1/T )
∑T

t=1Hft(Hft)
′, Θf = Σ−1

f , Σ̂f ≡ (1/T )
∑T

t=1 f̂tf̂
′
t, and Θ̂f = Σ̂−1

f . Under the

assumptions of Theorem 2, we have the following results:

(a) Λmin(B
′B)−1 = O(1/p).

(b) |||Π|||2 = O(1/p).

(c) ϱ−1
T

∣∣∣∣∣∣∣∣∣Θ̂f −Θf

∣∣∣∣∣∣∣∣∣
2
= oP

(
1/
√
K
)
.

(d) ϱ−1
T

∣∣∣∣∣∣∣∣∣Π̂−Π
∣∣∣∣∣∣∣∣∣

2
= OP

(
sT /p

)
and

∣∣∣∣∣∣∣∣∣Π̂∣∣∣∣∣∣∣∣∣
2
= OP (1/p).
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Proof.

(a) Using Assumption (A.2) we have
∣∣∣Λmin(p

−1B′B)− Λmin(B̆)
∣∣∣ ≤

∣∣∣∣∣∣∣∣∣p−1B′B− B̆
∣∣∣∣∣∣∣∣∣

2
,

which implies Part (a).

(b) First, notice that |||Π|||2 = Λmin(Θf + (BH′)′Θε(BH′))−1. Therefore, we get

|||Π|||2 ≤ Λmin((BH′)′Θε(BH′))−1 ≤ Λmin(B
′B)−1Λmin(Θε)

−1

= Λmin(B
′B)−1Λmax(Σε),

where the second inequality is due to the fact that the linear space spanned by the

rows of B is the same as that by the rows of BH′, hence, in practice, it does not matter

which one is used. Therefore, the result in Part (b) follows from Part (a), Assumptions

(A.1) and (A.2).

(c) From Lemma 7 we obtained:

∥∥∥∥∥ 1T
T∑
t=1

Hft(Hft)
′ − 1

T

T∑
t=1

f̂tf̂
′
t

∥∥∥∥∥
F

= OP

(
K3/2

√
T

+
K5/2

√
p

)
.

Since
∣∣∣∣∣∣∣∣∣Θf (Σ̂f −Σf )

∣∣∣∣∣∣∣∣∣
2
< 1, we have

∣∣∣∣∣∣∣∣∣Θ̂f −Θf

∣∣∣∣∣∣∣∣∣
2
≤

|||Θf |||2
∣∣∣∣∣∣∣∣∣Θf (Σ̂f −Σf )

∣∣∣∣∣∣∣∣∣
2

1−
∣∣∣∣∣∣∣∣∣Θf (Σ̂f −Σf )

∣∣∣∣∣∣∣∣∣
2

= OP

(
K3/2

√
T

+
K5/2

√
p

)
.
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Let ω4T = K3/2/
√
T +K5/2/

√
p. Using the definition of ϱT from Theorem 2, it follows

that ϱ−1
T ω4T = oP (ω4Tω

−1
3T ). Let γ̃T ≡ ω4Tω

−1
3T . Consider ϱ

−1
T

∣∣∣∣∣∣∣∣∣Θ̂f −Θf

∣∣∣∣∣∣∣∣∣
2
= oP (γT ).

The latter holds for any γt ≥ γ̃T , with the tightest bound obtained when γT = γ̃T . For

the ease of representation, we use γT = 1/
√
K instead of γ̃T .

(d) We will bound each term in the definition of Π̂−Π. First, we have

∣∣∣∣∣∣∣∣∣B̂′Θ̂εB̂− (BH′)′Θε(BH′)
∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣B̂−BH′

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Θ̂ε

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣B̂∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣BH′∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣∣Θ̂ε −Θε

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣B̂∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣BH′∣∣∣∣∣∣

2
|||Θε|||2

∣∣∣∣∣∣∣∣∣B̂−BH′
∣∣∣∣∣∣∣∣∣

2

= OP

(
p · sT · ϱT

)
. (2.33)

Now we combine (2.33) with the results from Parts (b)-(c):

ϱ−1
T

∣∣∣∣∣∣∣∣∣Π(Π̂−1 −Π−1
)∣∣∣∣∣∣∣∣∣

2
= OP

(
st

)
.

Finally, since
∣∣∣∣∣∣∣∣∣Π(Π̂−1 −Π−1

)∣∣∣∣∣∣∣∣∣
2
< 1, we have

ϱ−1
T

∣∣∣∣∣∣∣∣∣Π̂−Π
∣∣∣∣∣∣∣∣∣

2
≤ ϱ−1

T

|||Π|||2
∣∣∣∣∣∣∣∣∣Π(Π̂−1 −Π−1

)∣∣∣∣∣∣∣∣∣
2

1−
∣∣∣∣∣∣∣∣∣Π(Π̂−1 −Π−1

)∣∣∣∣∣∣∣∣∣
2

= OP

(
st
p

)
.
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2.A.6 Proof of Theorem 3

Using the Sherman-Morrison-Woodbury formula, we have

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

l
≤
∣∣∣∣∣∣∣∣∣Θ̂ε −Θε

∣∣∣∣∣∣∣∣∣
l
+
∣∣∣∣∣∣∣∣∣(Θ̂ε −Θε)B̂Π̂B̂′Θ̂ε

∣∣∣∣∣∣∣∣∣
l
+
∣∣∣∣∣∣∣∣∣Θε(B̂−BH′)Π̂B̂′Θ̂ε

∣∣∣∣∣∣∣∣∣
l

+
∣∣∣∣∣∣∣∣∣ΘεBH′(Π̂−Π)B̂′Θ̂ε

∣∣∣∣∣∣∣∣∣
l
+
∣∣∣∣∣∣∣∣∣ΘεBH′Π(B̂−B)′Θ̂ε

∣∣∣∣∣∣∣∣∣
l

+
∣∣∣∣∣∣∣∣∣ΘεBH′Π(BH′)′(Θ̂ε −Θε)

∣∣∣∣∣∣∣∣∣
l

= ∆1 +∆2 +∆3 +∆4 +∆5 +∆6. (2.34)

We now bound the terms in (2.34) for l = 2 and l = ∞. We start with l = 2. First, note

that ϱ−1
T ∆1 = OP (sT ) by Theorem 2. Second, using Lemmas 8-9 together with Theorem

2, we have ϱ−1
T (∆2 +∆6) = OP (sT · √p · (1/p) · √p · 1) = OP (sT ). Third, ϱ

−1
T (∆3 +∆5) is

negligible according to Lemma 8(c). Finally, ϱ−1
T ∆4 = OP

(
1 ·√p · (sT /p) ·

√
p ·1
)
= OP (sT )

by Lemmas 8-9 and Theorem 2.

Now consider l = ∞. First, similarly to the previous case, ϱ−1
T ∆1 = OP (sT ). Second,

ϱ−1
T (∆2 +∆6) = OP

(
sT ·

√
pK · (

√
K/p) ·

√
pK ·

√
dT

)
= OP (sTK

3/2
√
dT ), where we used

the fact that for any A ∈ Sp we have |||A|||1 = |||A|||∞ ≤
√
d(A)|||A|||2, where d(A) measures

the maximum vertex degree as described at the beginning of Section 4. Third, the term

ϱ−1
T (∆3 + ∆5) is negligible according to Lemma 8(c). Finally, ϱ−1

T ∆4 = OP (
√
dT ·

√
pK ·

√
K(sT )/p ·

√
pK ·

√
dT ) = OP (dTK

3/2sT ).
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2.A.7 Lemmas for Theorem 4

Lemma 10 Under the assumptions of Theorem 4,

(a) ∥m̂−m∥max = OP (
√
log p/T ), where m is the unconditional mean of stock returns

defined in Subsection 3.3, and m̂ is the sample mean.

(b) |||Θ|||1 = O(dTK
3/2), where dT was defined in Section 4.

Proof.

(a) The proof of Part (a) is provided in Chang et al. (2018) (Lemma 1).

(b) To prove Part (b) we use the Sherman-Morrison-Woodbury formula:

|||Θ|||1 ≤ |||Θε|||1 +
∣∣∣∣∣∣ΘεB[Θf +B′ΘεB]−1B′Θε

∣∣∣∣∣∣
1

= O(
√
dT ) +O

(√
dT · p ·

√
K

p
·K ·

√
dT

)
= O(dTK

3/2). (2.35)

The last equality in (2.35) is obtained under the assumptions of Theorem 4. This result

is important in several aspects: it shows that the sparsity of the precision matrix of

stock returns is controlled by the sparsity in the precision of the idiosyncratic returns.

Hence, one does not need to impose an unrealistic sparsity assumption on the precision

of returns a priori when the latter follow a factor structure - sparsity of the precision

once the common movements have been taken into account would suffice.
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Lemma 11 Define a = ι′pΘιp/p, b = ι′pΘm/p, d = m′Θm/p, g =
√
m′Θm/p and â =

ι′pΘ̂ιp/p, b̂ = ι′pΘ̂m̂/p, d̂ = m̂′Θ̂m̂/p, ĝ =
√

m̂′Θ̂m̂/p . Under the assumptions of Theorem

4 and assuming (ad− b2) > 0,

(a) a ≥ C0 > 0, b = O(1), d = O(1), where C0 is a positive constant representing the

minimal eigenvalue of Θ.

(b) |â− a| = OP (ϱTdTK
3/2sT ) = oP (1).

(c)
∣∣∣̂b− b

∣∣∣ = OP (ϱTdTK
3/2sT ) = oP (1)

(d)
∣∣∣d̂− d

∣∣∣ = OP (ϱTdTK
3/2sT ) = oP (1).

(e) |ĝ − g| = OP

(
[ϱTdTK

3/2sT ]
1/2
)
= oP (1).

(f)
∣∣∣(âd̂− b̂2)− (ad− b2)

∣∣∣ = OP

(
ϱTdTK

3/2sT

)
= oP (1).

(g)
∣∣ad− b2

∣∣ = O(1).

Proof.

(a) Part (a) is trivial and follows directly from |||Θ|||2 = O(1) and ∥m∥∞ = O(1) from

Assumption (B.1). We show the proof for d: recall, d = m′Θm/p ≤ |||Θ|||22∥m∥22/p =

O(1).

(b) Using the Hölders inequality, we have

|â− a| =

∣∣∣∣∣ι′p(Θ̂−Θ)ιp

p

∣∣∣∣∣ ≤
∥∥∥(Θ̂−Θ)ιp

∥∥∥
1
∥ιp∥max

p
≤
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1

= OP

(
ϱTdTK

3/2(sT + (1/p))
)
= oP (1),

where the last rate is obtained using the assumptions of Theorem 3.
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(c) First, rewrite the expression of interest:

b̂− b = [ι′p(Θ̂−Θ)(m̂−m)]/p+ [ι′p(Θ̂−Θ)m]/p+ [ι′pΘ(m̂−m)]/p. (2.36)

We now bound each of the terms in (2.36) using the expressions derived in Callot et

al. (2019) (see their Proof of Lemma A.2) and the fact that log p/T = o(1).

∣∣∣ι′p(Θ̂−Θ)(m̂−m)
∣∣∣/p ≤ ∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1
∥m̂−m∥max = OP

(
ϱTdTK

3/2sT ·
√

log p

T

)
.

(2.37)

∣∣∣ι′p(Θ̂−Θ)m
∣∣∣/p ≤ ∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1
= OP

(
ϱTdTK

3/2sT

)
. (2.38)

∣∣ι′pΘ(m̂−m)
∣∣/p ≤ |||Θ|||1∥m̂−m∥max = OP

(
dTK

3/2 ·
√

log p

T

)
. (2.39)

(d) First, rewrite the expression of interest:

d̂− d = [(m̂−m)′(Θ̂−Θ)(m̂−m)]/p+ [(m̂−m)′Θ(m̂−m)]/p

+ [2(m̂−m)′Θm]/p+ [2m′(Θ̂−Θ)(m̂−m)]/p

+ [m′(Θ̂−Θ)m]/p. (2.40)
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We now bound each of the terms in (2.40) using the expressions derived in Callot et

al. (2019) (see their Proof of Lemma A.3) and the fact that log p/T = o(1).

∣∣∣(m̂−m)′(Θ̂−Θ)(m̂−m)
∣∣∣/p ≤ ∥m̂−m∥2max

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1

= OP

( log p
T

· ϱTdTK3/2sT

)
(2.41)

∣∣(m̂−m)′Θ(m̂−m)
∣∣/p ≤ ∥m̂−m∥2max|||Θ|||1 = OP

( log p
T

· dTK3/2
)
. (2.42)

∣∣(m̂−m)′Θm
∣∣/p ≤ ∥m̂−m∥max|||Θ|||1 = OP

(√ log p

T
· dTK3/2

)
. (2.43)

∣∣∣m′(Θ̂−Θ)(m̂−m)
∣∣∣/p ≤ ∥m̂−m∥max

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1

= OP

(√ log p

T
· ϱTdTK3/2sT

)
. (2.44)

∣∣∣m′(Θ̂−Θ)m
∣∣∣/p ≤ ∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1
= OP

(
ϱTdTK

3/2sT

)
. (2.45)

(e) This is a direct consequence of Part (d) and the fact that
√
d̂− d ≥

√
d̂−

√
d.
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(f) First, rewrite the expression of interest:

(âd̂− b̂2)− (ad− b2) = [(â− a) + a][(d̂− d) + d]− [(̂b− b) + b]2,

therefore, using Lemma 11, we have

∣∣∣(âd̂− b̂2)− (ad− b2)
∣∣∣ ≤ [|â− a|

∣∣∣d̂− d
∣∣∣+ |â− a|d+ a

∣∣∣d̂− d
∣∣∣+ (̂b− b)2 + 2|b|

∣∣∣̂b− b
∣∣∣]

= OP

(
ϱTdTK

3/2sT

)
= oP (1).

(g) This is a direct consequence of Part (a): ad− b2 ≤ ad = O(1).

2.A.8 Proof of Theorem 4

Let us derive convergence rates for each portfolio weight formulas one by one. We

start with GMV formulation.

∥ŵGMV −wGMV∥1 ≤
a
∥(Θ̂−Θ)ιp∥1

p + |a− â|∥Θιp∥1
p

|â|a
= OP

(
ϱTd

2
TK

3sT

)
= oP (1),

where the first inequality was shown in Callot et al. (2019) (see their expression A.50), and

the rate follows from Lemmas 11 and 10.
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We now proceed with the MWC weight formulation. First, let us simplify the

weight expression as follows: wMWC = κ1(Θιp/p) + κ2(Θm/p), where

κ1 =
d− µb

ad− b2

κ2 =
µa− b

ad− b2
.

Let ŵMWC = κ̂1(Θ̂ιp/p) + κ̂2(Θ̂m̂/p), where κ̂1 and κ̂2 are the estimators of κ1 and κ2

respectively. As shown in Callot et al. (2019) (see their equation A.57), we can bound the

quantity of interest as follows:

∥ŵMWC −wMWC∥1 ≤ |(κ̂1 − κ1)|
∥∥∥(Θ̂−Θ)ιp

∥∥∥
1
/p+ |(κ̂1 − κ1)|∥Θιp∥1/p

+ |κ1|
∥∥∥(Θ̂−Θ)ιp

∥∥∥
1
/p

+ |(κ̂2 − κ2)|
∥∥∥(Θ̂−Θ)(m̂−m)

∥∥∥
1
/p+ |(κ̂2 − κ2)|∥Θ(m̂−m)∥1/p

+ |(κ̂2 − κ2)|
∥∥∥(Θ̂−Θ)m

∥∥∥
1
/p+ |(κ̂2 − κ2)|∥Θm∥1/p

+ |κ2|
∥∥∥(Θ̂−Θ)(m̂−m)

∥∥∥
1
/p+ |κ2|

∥∥∥(Θ̂−Θ)m
∥∥∥
1
/p. (2.46)

For the ease of representation, denote y = ad − b2. Then, using similar technique as in

Callot et al. (2019) we get

|(κ̂1 − κ1)| ≤
y
∣∣∣d̂− d

∣∣∣+ yµ
∣∣∣̂b− b

∣∣∣+ |ŷ − y||d− µb|

ŷy
= OP

(
ϱTdTK

3/2sT

)
= oP (1),

where the rate trivially follows from Lemma 11.
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Similarly, we get

|(κ̂2 − κ2)| = OP

(
ϱTdTK

3/2sT

)
= oP (1).

Callot et al. (2019) showed that |κ1| = O(1) and |κ2| = O(1). Therefore, we can get the

rate of (2.46):

∥ŵMWC −wMWC∥1 = OP

(
ϱTd

2
TK

3sT

)
= oP (1).

We now proceed with the MRC weight formulation:

∥ŵMRC −wMRC∥1 ≤
g
p

[∥∥∥(Θ̂−Θ)(m̂−m)
∥∥∥
1
+
∥∥∥(Θ̂−Θ)m

∥∥∥
1
+ ∥Θ(m̂−m)∥1

]
|ĝ|g

+
|ĝ − g|∥Θm∥1

|ĝ|g

≤
g
p

[
p
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1
∥(m̂−m)∥max + p

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1
∥m∥max + p|||Θ|||1∥(m̂−m)∥max

|ĝ|g

+p|ĝ − g||||Θ|||1∥m∥max

]
|ĝ|g

= OP

(
ϱTdTK

3/2sT ·
√

log p

T

)
+OP

(
ϱTdTK

3/2sT

)
+OP

(
dTK

3/2 ·
√

log p

T

)
+OP

(
[ϱTdTK

3/2sT ]
1/2 · dTK3/2

)
= oP (1),

where we used Lemmas 10-11.
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2.A.9 Proof of Theorem 5

We start with the GMV formulation. Using Lemma 11 (a)-(b), we get

∣∣∣∣ â−1

a−1
− 1

∣∣∣∣ = |a− â|
|â|

= OP (ϱTdTK
3/2sT ) = oP (1).

Proceeding to the MWC risk exposure, we follow Callot et al. (2019) and introduce the

following notation: x = aµ2 − 2bµ+ d and x̂ = âµ− 2b̂µ+ d̂ to rewrite Φ̂MWC = p−1(x̂/ŷ).

As shown in Callot et al. (2019), y/x = O(1) (see their equation A.42). Furthermore, by

Lemma 11 (b)-(d)

|x̂− x| ≤ |â− a|µ2 + 2
∣∣∣b̂− b

∣∣∣µ+
∣∣∣d̂− d

∣∣∣ = OP (ϱTdTK
3/2sT ) = oP (1),

and by Lemma 11 (f):

|ŷ − y| =
∣∣∣âd̂− b̂2 − (ad− b2)

∣∣∣ = OP (ϱTdTK
3/2sT ) = oP (1).

Using the above and the facts that y = O(1) and x = O(1) (which were derived by Callot

et al. (2019) in A.45 and A.46), we have

∣∣∣∣∣ Φ̂MWC − ΦMWC

ΦMWC

∣∣∣∣∣ =
∣∣∣∣(x̂− x)y + x(y − ŷ)

ŷy

∣∣∣∣O(1)OP (ϱTdTK
3/2sT ) = oP (1).

Finally, to bound MRC risk exposure, we use Lemma 11 (e) and rewrite

|g − ĝ|
|ĝ|

= OP

(
[ϱTdTK

3/2sT ]
1/2) = oP (1).
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2.B Additional Simulations

2.B.1 Verifying Theoretical Rates

To compare the empirical rate with the theoretical expressions derived in Theorems

3-5, we use the facts from Theorem 2 that ω3T ≡ K2
√

log p/T +K3/
√
p and ϱ−1

T ω3T
p−→ 0

to introduce the following functions that correspond to the theoretical rates for the choice

of parameters in the empirical setting:

f|||·|||2 = C1 + C2 · log2(sTϱT )

g|||·|||1 = C3 + C2 · log2(dTK3/2sTϱT )

 for Θ̂ (2.47)

h1 = C4 + C2 · log2(ϱTd2TK3sT ) for ŵGMV, ŵMWC (2.48)

h2 = C5 + C6 · log2([ϱT sT ]1/2d
3/2
T K3) for ŵMRC (2.49)

h3 = C7 + C2 · log2(dTK3/2sTϱT ) for Φ̂GMV, Φ̂MWC (2.50)

h4 = C8 + C9 · log2(dTK3/2sTϱT ) for Φ̂MRC (2.51)

where C1, . . . , C9 are constants with C6 > C2 (by Theorem 4), C9 > C2 (by Theorem 5).

Figure 2.B.1 shows the averaged (over Monte Carlo simulations) errors of the

estimators of Θ, w and Φ versus the sample size T in the logarithmic scale (base 2). In

order to confirm the theoretical findings from Theorems 3-5, we also plot the theoretical

rates of convergence given by the functions in (2.47)-(2.51). We verify that the empirical

and theoretical rates are matched. Since the convergence rates for GMV and MWC portfolio

weights w and risk exposures Φ are very similar, we only report the former. Note that as

predicted by Theorem 3, the rate of convergence of the precision matrix in |||·|||2-norm is
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faster than the rate in |||·|||1-norm. Furthermore, the convergence rate of the GMV, MWC

and MRC portfolio weights and risk exposures are close to the rate of the precision matrix

Θ in |||·|||1-norm, which is confirmed by Theorem 4. As evidenced by Figure 2.B.1, the

convergence rate of the MRC risk exposure is slower than the rate of GMV and MWC

exposures. This finding is in accordance with Theorem 5 and it is also consistent with the

empirical findings that indicate higher overall risk associated with MRC portfolios.
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Figure 2.B.1: Averaged empirical errors (solid lines) and theoretical rates of
convergence (dashed lines) on logarithmic scale: p = T 0.85, K = 2(log T )0.5, sT =
O(T 0.05).
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2.B.2 Results for Case 1

We compare the performance of FGL with the alternative models listed at the

beginning of Section 5 for Case 1. The only instance when FGL is strictly but slightly

dominated occurs in Figure 2.B.2: POET outperforms FGL in terms of convergence of

precision matrix in the spectral norm. This is different from Case 2 in Figure 2.1 where

FGL outperforms all the competing models.

Figure 2.B.2: Averaged errors of the estimators of Θ for Case 1 on logarithmic
scale: p = T 0.85, K = 2(log T )0.5, sT = O(T 0.05).

72



Figure 2.B.3: Averaged errors of the estimators of wGMV (left) and wMRC (right)
for Case 1 on logarithmic scale: p = T 0.85, K = 2(log T )0.5, sT = O(T 0.05).

Figure 2.B.4: Averaged errors of the estimators of ΦGMV (left) and ΦMRC (right)
for Case 1 on logarithmic scale: p = T 0.85, K = 2(log T )0.5, sT = O(T 0.05).
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2.B.3 Robust FGL

The DGP for elliptical distributions is similar to [56]: let (ft, εt) from (2.11) jointly

follow the multivariate t-distribution with the degrees of freedom ν. When ν = ∞, this

corresponds to the multivariate normal distribution, smaller values of ν are associated

with thicker tails. We draw T independent samples of (ft, εt) from the multivariate t-

distribution with zero mean and covariance matrix Σ = diag(Σf ,Σε), where Σf = IK . To

constructΣε we use a Toeplitz structure parameterized by ρ = 0.5, which leads to the sparse

Θε = Σ−1
ε . The rows of B are drawn from N (0, IK). We let p = T 0.85, K = 2(log T )0.5

and T = [2h], for h ∈ {7, 7.5, 8, . . . , 9.5}. Figure 2.B.5-2.B.6 report the averaged (over

Monte Carlo simulations) estimation errors (in the logarithmic scale, base 2) for Θ and two

portfolio weights (GMV and MRC) using FGL and Robust FGL for ν = 4.2. Noticeably, the

performance of FGL for estimating the precision matrix is comparable with that of Robust

FGL: this suggests that our FGL algorithm is insensitive to heavy-tailed distributions even

without additional modifications. Furthermore, FGL outperforms its Robust counterpart in

terms of estimating portfolio weights, as evidenced by Figure 2.B.6. We further compare the

performance of FGL and Robust FGL for different degrees of freedom: Figure 2.B.7 reports

the log-ratios (base 2) of the averaged (over Monte Carlo simulations) estimation errors for

ν = 4.2, ν = 7 and ν = ∞. The results for the estimation of Θ presented in Figure 2.B.7 are

consistent with the findings in [56]: Robust FGL outperforms the non-robust counterpart

for thicker tails.
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Figure 2.B.5: Averaged errors of the estimators of Θ on logarithmic scale: p =
T 0.85, K = 2(log T )0.5, ν = 4.2.

Figure 2.B.6: Averaged errors of the estimators of wGMV (left) and wMRC (right)
on logarithmic scale: p = T 0.85, K = 2(log T )0.5, ν = 4.2.
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Figure 2.B.7: Log ratios (base 2) of the averaged errors of the FGL and the Robust

FGL estimators of Θ: log2

( |||Θ̂−Θ|||
2

|||Θ̂R−Θ|||
2

)
(left), log2

( |||Θ̂−Θ|||
1

|||Θ̂R−Θ|||
1

)
(right): p = T 0.85,

K = 2(log T )0.5.
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2.B.4 Relaxing Pervasiveness Assumption

As pointed out by [113], the data on 100 industrial portfolios shows that there are

no large gaps between eigenvalues i and i+1 of the sample covariance data except for i = 1.

However, as is commonly believed, such data contains at least three factors. Therefore,

the factor pervasiveness assumption suggests the existence of a large gap for i ≥ 3. In

order to examine sensitivity of portfolios to the pervasiveness assumption and quantify the

degree of pervasiveness, we use the same DGP as in (2.23)-(2.24), but with σε,ij = ρ|i−j|

and K = 3. We consider ρ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} which corresponds to λ3/λ4 ∈

{3.1, 2.7, 2.6, 2.2, 1.5, 1.1}. In other words, as ρ increases, the systematic-idiosyncratic gap

measured by λ̂3/λ̂4 decreases. Table 2.B.1-2.B.2 report the mean quality of the estimators

for portfolio weights and risk over 100 replications for T = 300 and p ∈ {300, 400}. The

sample size and the number of regressors are chosen to closely match the values from the

empirical application. POET and Projected POET are the most sensitive to a reduction

in the gap between the leading and bounded eigenvalues which is evident from a dramatic

deterioration in the quality of these estimators. The remaining methods, including FGL,

exhibit robust performance. Since the behavior of the estimators for portfolio weights is

similar to that of the estimators of precision matrix, we only report the former for the ease of

presentation. For (T, p) = (300, 300), FClime shows the best performance followed by FGL

and FLW, whereas for (T, p) = (300, 400) FGL takes the lead. Despite inferior performance

of POET and Projected POET in terms of estimating portfolio weights, risk exposure of

the portfolios based on these estimators is competitive with the other approaches.
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ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9
(λ3/λ4 = 3.1) (λ3/λ4 = 2.7) (λ3/λ4 = 2.6) (λ3/λ4 = 2.2) (λ3/λ4 = 1.5) (λ3/λ4 = 1.1)

∥ŵGMV −wGMV∥1
FGL 2.3198 2.3465 2.5177 2.4504 2.5010 2.7319

FClime 1.9554 1.9359 1.9795 1.9103 1.9813 1.9948
FLW 2.3445 2.3948 2.5328 2.4715 2.5918 3.0515
FNLW 2.2381 2.3009 2.3293 2.5497 2.9039 3.1980
POET 47.6746 82.1873 43.9722 54.1131 157.6963 235.8119

Projected POET 9.6335 7.8669 10.1546 10.6205 12.1795 15.2581∣∣∣Φ̂GMV − ΦGMV

∣∣∣
FGL 0.0033 0.0032 0.0034 0.0027 0.0021 0.0023

FClime 0.0012 0.0012 0.0012 0.0011 0.0010 0.0010
FLW 0.0049 0.0052 0.0061 0.0056 0.0049 0.0059
FNLW 0.0055 0.0060 0.0054 0.0052 0.0066 0.0057
POET 0.0070 0.0122 0.0058 0.0063 0.0103 0.0160

Projected POET 0.0021 0.0022 0.0019 0.0019 0.0018 0.0026

∥ŵMWC −wMWC∥1
FGL 2.3766 2.4108 2.7411 2.6094 2.5669 3.4633

FClime 2.0502 2.0279 2.2901 2.1400 2.1028 3.0737
FLW 2.4694 2.5132 2.8902 2.7315 2.7210 4.0248
FNLW 2.7268 2.3060 2.8984 3.5902 2.9232 3.2076
POET 49.8603 34.2024 469.3605 108.1529 74.8016 99.4561

Projected POET 9.0261 7.4028 8.1899 9.4806 11.9642 13.3890∣∣∣Φ̂MWC − ΦMWC

∣∣∣
FGL 0.0033 0.0032 0.0034 0.0027 0.0021 0.0024

FClime 0.0012 0.0012 0.0013 0.0011 0.0010 0.0009
FLW 0.0050 0.0053 0.0062 0.0057 0.0050 0.0059
FNLW 0.0055 0.0060 0.0055 0.0053 0.0066 0.0057
POET 0.0068 0.0047 0.0363 0.0092 0.0060 0.0056

Projected POET 0.0022 0.0022 0.0020 0.0020 0.0018 0.0027

∥ŵMRC −wMRC∥1
FGL 0.4872 0.1793 1.0044 0.6332 1.4568 2.3353

FClime 0.5160 0.2148 1.0188 0.6694 1.4855 2.3519
FLW 0.5333 0.2279 1.0345 0.6734 1.4904 2.3691
FNLW 0.8365 1.1285 1.1181 1.4419 1.7694 2.4612
POET NaN NaN NaN NaN NaN NaN

Projected POET 0.7414 0.6383 1.6686 1.8013 2.3297 3.2791∣∣∣Φ̂MRC − ΦMRC

∣∣∣
FGL 0.0004 0.0003 0.0025 0.0007 0.0021 0.0071

FClime 0.0005 0.0003 0.0024 0.0004 0.0016 0.0062
FLW 0.0002 0.0002 0.0021 0.0003 0.0018 0.0066
FNLW 0.0062 0.0062 0.0069 0.0119 0.0059 0.0143
POET NaN NaN NaN NaN NaN NaN

Projected POET 0.0003 0.0003 0.0027 0.0031 0.0069 0.0062

Table 2.B.1: Sensitivity of portfolio weights and risk exposure when the gap between the
diverging and bounded eigenvalues decreases: (T, p) = (300, 300).
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ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9
(λ3/λ4 = 3.1) (λ3/λ4 = 2.7) (λ3/λ4 = 2.6) (λ3/λ4 = 2.2) (λ3/λ4 = 1.5) (λ3/λ4 = 1.1)

∥ŵGMV −wGMV∥1
FGL 1.6900 1.8134 1.8577 1.8839 1.9843 2.0692

FClime 1.9073 1.9524 1.9997 1.9490 1.9898 2.0330
FLW 2.0239 2.0945 2.1195 2.1235 2.2473 2.4745
FNLW 2.0316 2.0790 2.1927 2.2503 2.4143 2.4710
POET 18.7934 28.0493 155.8479 32.4197 41.8098 71.5811

Projected POET 7.8696 8.4915 8.8641 10.7522 11.2092 19.0424∣∣∣Φ̂GMV − ΦGMV

∣∣∣
FGL 8.62E-04 9.22E-04 7.23E-04 7.31E-04 6.83E-04 5.73E-04

FClime 8.40E-04 8.27E-04 8.02E-04 7.87E-04 7.36E-04 6.71E-04
FLW 1.59E-03 1.73E-03 1.57E-03 1.68E-03 1.69E-03 1.54E-03
FNLW 2.24E-03 2.10E-03 1.83E-03 1.88E-03 2.07E-03 1.29E-03
POET 1.11E-03 1.46E-03 3.59E-03 1.27E-03 1.88E-03 2.51E-03

Projected POET 8.97E-04 8.80E-04 6.83E-04 6.79E-04 7.98E-04 6.55E-04

∥ŵMWC −wMWC∥1
FGL 1.9034 2.2843 1.9118 3.2569 2.7055 2.8812

FClime 2.1193 2.4024 2.0540 3.3487 2.7277 2.8593
FLW 2.2573 2.5809 2.1790 3.5728 3.0072 3.3164
FNLW 2.3207 3.3335 3.5518 3.4282 2.6446 4.8827
POET 15.8824 100.1419 56.9827 33.6483 38.8961 103.0434

Projected POET 6.5386 7.2169 7.8583 9.7342 12.1420 17.7368∣∣∣Φ̂MWC − ΦMWC

∣∣∣
FGL 8.72E-04 9.41E-04 7.26E-04 7.99E-04 7.12E-04 6.08E-04

FClime 8.52E-04 8.49E-04 8.06E-04 8.32E-04 7.50E-04 6.86E-04
FLW 1.59E-03 1.74E-03 1.57E-03 1.71E-03 1.70E-03 1.56E-03
FNLW 2.25E-03 2.22E-03 1.89E-03 1.91E-03 2.08E-03 1.56E-03
POET 1.14E-03 4.91E-03 1.78E-03 1.45E-03 1.57E-03 2.93E-03

Projected POET 9.19E-04 9.20E-04 7.11E-04 7.04E-04 8.26E-04 6.78E-04

∥ŵMRC −wMRC∥1
FGL 0.6683 0.7390 1.3103 1.5195 1.7124 3.0935

FClime 0.6903 0.7635 1.3238 1.5403 1.7415 3.1180
FLW 0.7132 0.7828 1.3430 1.5549 1.7517 3.1364
FNLW 0.4909 1.2121 1.4974 1.1996 1.8020 3.2989
POET NaN NaN NaN NaN NaN NaN

Projected POET 1.6851 1.4434 1.9628 2.6182 2.7716 4.1753∣∣∣Φ̂MRC − ΦMRC

∣∣∣
FGL 1.02E-03 9.73E-04 4.63E-03 4.49E-03 3.23E-03 8.73E-03

FClime 1.14E-03 1.01E-03 4.55E-03 4.22E-03 2.70E-03 7.72E-03
FLW 6.62E-04 5.54E-04 4.19E-03 4.01E-03 2.71E-03 8.11E-03
FNLW 2.73E-04 6.93E-03 5.11E-03 1.93E-03 6.42E-03 2.98E-02
POET NaN NaN NaN NaN NaN NaN

Projected POET 3.59E-03 1.20E-03 1.49E-03 2.58E-03 7.86E-03 1.39E-02

Table 2.B.2: Sensitivity of portfolio weights and risk exposure when the gap between the
diverging and bounded eigenvalues decreases: (T, p) = (300, 400).
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2.C Additional Empirical Results

Similarly to daily data, we use monthly returns of the components of the S&P500

from CRSP and Compustat. The full sample has 480 observations on 355 stocks from

January 1, 1980 - December 1, 2019. We use January 1, 1980 - December 1, 1994 (180 obs)

as a training (estimation) period and January 1, 1995 - December 1, 2019 (300 obs) as the

out-of-sample test period. At the end of each month, prior to portfolio construction, we

remove stocks with less than 15 years of historical stock return data. We set the return

target µ = 0.7974% which is equivalent to 10% yearly return when compounded. The target

level of risk for MWC and MRC portfolios is set at σ = 0.05 which is the standard deviation

of the monthly excess returns of the S&P500 index in the first training set. Transaction

costs are taken to be the same as for the daily returns in Section 6.

Table 2.C.1 reports the results for monthly data. Some comments are in order:

(1) interestingly, MRC produces portfolio return and Sharpe Ratio that are mostly higher

than those for the weight-constrained allocations MWC and GMV. This means that relaxing

the constraint that portfolio weights sum up to one leads to a large increase in the out-of-

sample Sharpe Ratio and portfolio return which has not been previously well-studied in the

empirical finance literature. (2) Similarly to the results from Table 2.1, FGL outperforms

the competitors including EW and Index in terms of the out-of-sample Sharpe Ratio and

turnover. (3) Similarly to the results in Table 2.1, the observable Fama-French factors

produce the FGL portfolios with higher return and higher out-of-sample Sharpe Ratio

compared to the FGL portfolios based on statistical factors. Again, this increase in return

is not followed by higher risk.
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Markowitz Risk-Constrained Markowitz Weight-Constrained Global Minimum-Variance

Return Risk SR Turnover Return Risk SR Turnover Return Risk SR Turnover

Without TC
EW 0.0081 0.0519 0.1553 - 0.0081 0.0519 0.1553 - 0.0081 0.0519 0.1553 -
Index 0.0063 0.0453 0.1389 - 0.0063 0.0453 0.1389 - 0.0063 0.0453 0.1389 -
FGL 0.0256 0.0828 0.3099 - 0.0059 0.0329 0.1804 - 0.0065 0.0321 0.2023 -

FClime 0.0372 0.2337 0.1593 - 0.0067 0.0471 0.1434 - 0.0076 0.0466 0.1643 -
FLW 0.0296 0.1049 0.2817 - 0.0059 0.0353 0.1662 - 0.0063 0.0353 0.1774 -
FNLW 0.0264 0.0925 0.2853 - 0.0060 0.0333 0.1793 - 0.0064 0.0332 0.1930 -
POET NaN NaN NaN - -0.1041 2.0105 -0.0518 - 0.5984 11.0064 0.0544 -

Projected POET 0.0583 0.3300 0.1766 - 0.0058 0.0546 0.1056 - 0.0069 0.0612 0.1128 -
FGL (FF1) 0.0275 0.0800 0.3433 - 0.0061 0.0316 0.1941 - 0.0073 0.0302 0.2427 -
FGL (FF3) 0.0274 0.0797 0.3437 - 0.0061 0.0314 0.1955 - 0.0073 0.0300 0.2440 -
FGL (FF5) 0.0273 0.0793 0.3443 - 0.0061 0.0314 0.1943 - 0.0073 0.0300 0.2426 -

With TC
EW 0.0080 0.0520 0.1538 0.0630 0.0080 0.0520 0.1538 0.0630 0.0080 0.0520 0.1538 0.0630
FGL 0.0222 0.0828 0.2682 3.1202 0.0050 0.0329 0.1525 0.8786 0.0056 0.0321 0.1740 0.8570

FClime 0.0334 0.2334 0.1429 4.9174 0.0062 0.0471 0.1307 0.5945 0.0071 0.0466 0.1522 0.5528
FLW 0.0237 0.1052 0.2257 5.5889 0.0043 0.0353 0.1231 1.5166 0.0048 0.0354 0.1343 1.5123
FNLW 0.0224 0.0927 0.2415 3.7499 0.0049 0.0334 0.1463 1.0812 0.0053 0.0333 0.1596 1.0793
POET NaN NaN NaN NaN -0.1876 1.7274 -0.1086 152.3298 1.0287 14.2676 0.0721 354.6043

Projected POET 0.0166 0.2859 0.0579 69.7600 -0.0002 0.0540 -0.0044 5.9131 -0.0002 0.0613 -0.0027 7.0030
FGL (FF1) 0.0243 0.0800 0.3036 2.8514 0.0054 0.0317 0.1692 0.7513 0.0066 0.0302 0.2176 0.7095
FGL (FF3) 0.0242 0.0797 0.3037 2.8708 0.0054 0.0314 0.1703 0.7545 0.0066 0.0300 0.2186 0.7127
FGL (FF5) 0.0241 0.0793 0.3037 2.8857 0.0053 0.0315 0.1686 0.7630 0.0065 0.0300 0.2167 0.7224

Table 2.C.1: Monthly portfolio returns, risk, Sharpe Ratio (SR) and turnover.
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Chapter 3

Sparse Portfolios

Abstract

The existing approaches to sparse wealth allocations (1) are suboptimal due to the

bias induced by ℓ1-penalty; (2) require the number of assets to be less than the

sample size; (3) do not model factor structure of stock returns in high dimensions.

We address these shortcomings and develop a novel strategy which produces unbi-

ased and consistent sparse allocations. We demonstrate that: (1) failing to correct

for the bias leads to low out-of-sample portfolio return; (2) only sparse portfolios

achieved positive cumulative return during several economic downturns, including

the dot-com bubble of 2000, the financial crisis of 2007-09, and COVID-19 outbreak.
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3.1 Introduction

The search for the optimal portfolio weights reduces to the questions (i) which

stocks to buy and (ii) how much to invest in these stocks. Depending on the strategy used

to address the first question, the existing allocation approaches can be further broken down

into the ones that invest in all available stocks, and the ones that select a subset out of

the stock universe. The latter is referred to as a sparse portfolio, since some assets will

be excluded and get a zero weight leading to sparse wealth allocations. Any portfolio op-

timization problem requires the inverse covariance matrix, or precision matrix, of excess

stock returns as an input. In the era of big data, a search for the optimal portfolio becomes

a high-dimensional problem: the number of assets, p, is comparable to or greater than the

sample size, T . Constructing non-sparse portfolios in high dimensions has been the main

focus of the existing research on asset management for a long time. In particular, many

papers focus on developing an improved covariance or precision estimator to achieve desir-

able statistical properties of portfolio weights. In contrast, the literature on constructing

sparse portfolio is scarce: it is limited to a low-dimensional framework and lacks theoret-

ical analysis of the resulting sparse allocations. In this paper we fill this gap and propose

a novel approach to construct sparse portfolios in high dimensions. We obtain the oracle

bounds of sparse weight estimators and provide guidance regarding their distribution. From

the empirical perspective, we examine the merit of sparse portfolios during the periods of

economic growth, moderate market decline and severe economic downturns. We find that

in contrast to non-sparse counterparts, our strategy is robust to recessions and can be used

as a hedging vehicle during such times.
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As pointed out above, estimating high-dimensional covariance or precision matrix

to improve portfolio performance of non-sparse strategies has received a lot of attention

in the existing literature. [91, 95] developed linear and non-linear shrinkage estimators of

covariance matrix, [53,56] introduced a covariance matrix estimator when stock returns are

driven by common factors under the assumption of a spiked covariance model. Once the

covariance estimator is obtained, it is then inverted to get a precision matrix, the main

input to any portfolio optimization problem. A parallel stream of literature has focused

on estimating precision matrix directly, that is, avoiding the inversion step that leads to

additional estimation errors, especially in high dimensions. [65] developed an iterative algo-

rithm that estimates the entries of precision matrix column-wise using penalized Gaussian

log-likelihood (Graphical Lasso); [108] used the relationship between regression coefficients

and the entries of precision matrix to estimate the elements of the latter column by column

(nodewise regression). [23] use constrained ℓ1-minimization for inverse matrix estimation

(CLIME). [24] examined the performance of high-dimensional portfolios constructed us-

ing covariance and precision estimators and found that precision-based models outperform

covariance-based counterparts in terms of the out-of-sample (OOS) Sharpe Ratio and port-

folio return.

From a practical perspective, apart from enjoying favorable statistical properties a

successful wealth allocation strategy should be easy to maintain and monitor and it should

be robust to economic downturns such that investors could use it as a hedging vehicle.

Having this motivation in mind, we chose several popular covariance and precision-based

estimators to construct non-sparse portfolios and explore their performance during the
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recent COVID-19 outbreak. Using daily returns of 495 constituents of the S&P500 from

May 25, 2018 – September 24, 2020 (588 obs.), Table 3.1.1 reports the performance of

the selected strategies: we included equal-weighted (EW) and Index portfolios, as well as

precision-based nodewise regression estimator by [108] (motivated by the recent application

of this statistical technique to portfolio studied in [24]), linear shrinkage covariance estimator

by [91] and CLIME by [23]. We use May 25, 2018 – October 23, 2018 (105 obs.) as a

training period and October 24, 2018 – September 24, 2020 (483 obs.) as the out-of-sample

test period. We roll the estimation window over the test sample to rebalance the portfolios

monthly. The left panel of Table 3.1.1 shows return, risk and Sharpe Ratio of portfolios

over the training period, and the right panel reports cumulative excess return (CER) and

risk over two sub-periods of interest: before the pandemic (January 2, 2019 – December 31,

2019) and during the first wave of COVID-19 outbreak in the US (January 2, 2020 – June

30, 2020). As evidenced by Table 3.1.1, none of the portfolios was robust to the downturn

brought by pandemic and yielded negative CER. We noticed that similar pattern pertained

in several other historic episodes of mild and severe downturns, such as the Global Financial

Crisis (GFC) of 2007-09.1

Studies that examine the relationship between portfolio performance and the num-

ber of stock holdings are scarce. [131] used active US equity funds’ quarterly data from Jan-

uary 2000 to December 2017 from Morningstar, Inc. to study the impact of concentration

(measured by the number of holdings) on fund excess returns: they found that the effect

was significant and fluctuated considerably over time. Notably, the relationship became

negative in the period preceding and including the GFC. This indicates that holding sparse

1Please see the Empirical Application section for more details.

85



portfolios might be the key to hedging during downturns. To support this hypothesis, we

further compare the performance of sparse vs non-sparse strategies in terms of utility gain

to investors. Suppose we observe i = 1, . . . , p excess returns over t = 1, . . . , T period of

time: rt = (r1t, . . . , rpt)
′ ∼ D(m,Σ). Consider the following mean-variance utility problem:

minw −U ≡ γ
2wΣw−w′m, s.t. w′ι = 1, |supp(w)| ≤ p̄, p̄ ≤ p, where w is a p×1 vector of

portfolio weights, supp(w) = {i : wi > 0} is the cardinality constraint that controls sparsity,

and γ determines the risk of an investor under the assumption of a normal distribution.

When p̄ = p the portfolio is non-sparse and the respective utility is denoted as UNon-Sparse,

while when p̄ < p the utility of such sparse portfolio is denoted as USparse. Figure 3.1.1

reports the ratio of utilities using monthly data from 2003:04 to 2009:12 on the constituents

of the S&P100 as a function of p̄: we set γ = 3 and vary p̄ = {5, 10, 15, 20, 30, . . . , 90}2. Our

test sample includes two periods of particular interest: before the GFC (2004:01-2006:12)

and during the GFC (2007:01-2009:12) As evidenced from Figure 3.1.1: (1) for both time

periods there exists a lower-dimensional subset of stocks which brings greater utility com-

pared to non-sparse portfolios; (2) the number of stocks minimizing the ratio of utilities is

smaller during the GFC compared to the period preceding it. Both findings are consistent

with the empirical result of [131] that including more stocks does not guarantee better per-

formance and suggesting that holding a “basket half full” instead can help achieve superior

performance even in stressed market scenarios.

2Since the optimization problem with a cardinality constraint is not convex, we find a solution using
Lagrangian relaxation procedure of [124]
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Total OOS Performance
10/24/19–09/24/20

Before the Pandemic
01/02/19–12/31/19

During the Pandemic
01/02/20–06/30/20

Return
(×100)

Risk
(×100)

Sharpe Ratio CER
(×100)

Risk
(×100)

CER
(×100)

Risk
(×100)

EW 0.0108 1.8781 0.0058 28.5420 0.8010 -19.7207 3.3169
Index 0.0351 1.7064 0.0206 27.8629 0.7868 -9.0802 2.9272

Nodewise Regr’n 0.0322 1.6384 0.0196 29.6292 0.6856 -11.7431 2.8939
CLIME 0.0793 3.1279 0.0373 31.5294 1.0215 -25.3004 3.8972
LW 0.0317 1.7190 0.0184 29.5513 0.7924 -14.9328 3.0115

Our Post-Lasso-based 0.1247 1.7254 0.0723 45.2686 1.0386 12.4196 2.8554
Our De-biased Estimator 0.0275 0.5231 0.0526 23.7629 0.4972 6.5813 0.5572

Table 3.1.1: Performance of non-sparse and sparse portfolios: return (×100), risk (×100)
and Sharpe Ratio over the training period (left), CER (×100) and risk (×100) over two
sub-periods (right). Weights are estimated using the standard Global Minimum Variance
formula.

Figure 3.1.1: The ratio of non-sparse and sparse portfolio utilities averaged over

the test window.
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In order to create a sparse portfolio, that is, a portfolio with many zero entries in

the weight vector, we can use an ℓ1-penalty (Lasso) on the portfolio weights which shrinks

some of them to zero (see [58], [2], [100], [17] among others). [19] proved the mathematical

equivalence of adding an ℓ1-penalty and controlling transaction costs associated with the

bid-ask spread impact of single and sequential trades executed in a very short time. This

indicates another advantage of sparse portfolios: market liquidity dries up during economic

downturns which increases bid-ask spreads, a measure of liquidity costs. Henceforth, regu-

larizing portfolio positions accounts for the increased liquidity risk associated with acquiring

and liquidating positions. The existing literature on sparse wealth allocations is scarce and

has several drawbacks: (1) it is limited to low-dimensional setup when p < T , whereas

sparsity becomes especially important in high-dimensional scenarios; (2) it lacks theoretical

analysis of sparse wealth allocations and their impact on portfolio exposure; (3) the use of

an ℓ1-penalty produces biased estimates (see [14, 77–79, 135, 141] among others), however,

this issue has been overlooked in the context of portfolio allocation. This paper addresses

the aforementioned drawbacks and develops an approach to construct sparse portfolios in

high dimensions. Our contribution is twofold: from the theoretical perspective, we estab-

lish the oracle bounds of sparse weight estimators and provide guidance regarding their

distribution. From the empirical perspective, we examine the merit of sparse portfolios

during different market scenarios. We find that in contrast to non-sparse counterparts, our

strategy is robust to recessions and can be used as a hedging vehicle during such times. To

illustrate, the last two rows of Table 3.1.1 show the performance of two sparse strategies

proposed in this paper: both approaches outperform non-sparse counterparts in terms of
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total OOS Sharpe Ratio, and they produce positive CER during the pandemic, as well as in

the period preceding it. Figure 3.1 shows the stocks selected by post-Lasso in August, 2019

and in May, 2020: the colors serve as a visual guide to identify groups of closely-related

stocks (stocks of the same color do not necessarily correspond to the same sector). Our

framework makes use of the tool from the network theory called nodewise regression which

not only satisfies desirable statistical properties, but also allows us to study whether cer-

tain industries could serve as safe havens during recessions. We find that such non-cyclical

industries as consumer staples, healthcare, retail and food were driving the returns of the

sparse portfolios during both GFC and COVID-19 outbreak, whereas insurance sector was

the least attractive investment in both periods.
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Figure 3.1.2: Stocks selected by Post-Lasso strategy from Table 3.1.1: August, 2019 (left) and May, 2020 (right)
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This paper is organized as follows: Section 2 introduces sparse de-biased portfolio

and sparse portfolio using post-Lasso. Section 3 develops a new high-dimensional precision

estimator called Factor Nodewise regression. Section 4 develops a framework for factor

investing. Section 5 contains theoretical results and Section 6 validates these results using

simulations. Section 7 provides empirical application. Section 8 concludes.

Notation

For the convenience of the reader, we summarize the notation to be used through-

out the paper. Let Sp denote the set of all p × p symmetric matrices. For any matrix C,

its (i, j)-th element is denoted as cij . Given a vector u ∈ Rd and parameter a ∈ [1,∞),

let ∥u∥a denote ℓa-norm. Given a matrix U ∈ Sp, let Λmax(U) ≡ Λ1(U) ≥ Λ2(U) ≥

. . .Λmin(U) ≡ Λp(U) be the eigenvalues of U, and eigK(U) ∈ RK×p denote the first

K ≤ p normalized eigenvectors corresponding to Λ1(U), . . .ΛK(U). Given parameters

a, b ∈ [1,∞), let |||U|||a,b = max∥y∥a=1∥Uy∥b denote the induced matrix-operator norm.

The special cases are |||U|||1 ≡ max1≤j≤p
∑p

i=1|ui,j | for the ℓ1/ℓ1-operator norm; the opera-

tor norm (ℓ2-matrix norm) |||U|||22 ≡ Λmax(UU′) is equal to the maximal singular value of U;

|||U|||∞ ≡ max1≤j≤p
∑p

i=1|uj,i| for the ℓ∞/ℓ∞-operator norm. Finally, ∥U∥max = maxi,j |ui,j |

denotes the element-wise maximum, and |||U|||2F =
∑

i,j u
2
i,j denotes the Frobenius matrix

norm. We also use the following notations: a ∨ b = max{a, b}, and a ∧ b = min{a, b}. For

an event A, we say that A wp → 1 when A occurs with probability approaching 1 as T

increases.
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3.2 Sparse Portfolios

There exist several widely used portfolio weight formulations depending on the type

of optimization problem solved by an investor. Suppose we observe p assets (indexed by i)

over T period of time (indexed by t). Let rt = (r1t, r2t, . . . , rpt)
′ ∼ D(m,Σ) be a p×1 vector

of excess returns drawn from a distribution D, where m and Σ are unconditional mean and

covariance of excess returns, and D belongs to either sub-Gaussian or elliptical families.

When D = N , the precision matrix Σ−1 ≡ Θ contains information about conditional

dependence between the variables. For instance, if θij , which is the ij-th element of the

precision matrix, is zero, then the variables i and j are conditionally independent, given the

other variables. The goal of the Markowitz theory is to choose assets weights in a portfolio

optimally. We will study two criteria of optimality: the first is a well-known Markowitz

weight-constrained optimization problem, and the second formulation relaxes constraints

on portfolio weights.

The first optimization problem, which will be referred to as Markowitz weight-

constrained problem (MWC), searches for assets weights such that the portfolio achieves a

desired expected rate of return with minimum risk, under the restriction that all weights

sum up to one. The aforementioned goal can be formulated as the following quadratic

optimization problem:

min
w

1

2
w′Σw, s.t. w′ι = 1 and m′w ≥ µ, (3.1)

where w is a p× 1 vector of assets weights in the portfolio, ι is a p× 1 vector of ones, and
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µ is a desired expected rate of portfolio return. The constraint in (3.1) requires portfolio

weights to sum up to one - this assumption can be easily relaxed and we will demonstrate

the implications of this constraint on portfolio weights.

If m′w > µ, then the solution to (3.1) yields the global minimum-variance (GMV)

portfolio weights wGMV :

wGMV = (ι′Θι)−1Θι. (3.2)

If m′w = µ, the solution to (3.1) is

wMWC = (1− a1)wGMV + a1wM , (3.3)

wM = (ι′Θm)−1Θm, (3.4)

a1 =
µ(m′Θι)(ι′Θι)− (m′Θι)2

(m′Θm)(ι′Θι)− (m′Θι)2
, (3.5)

where wMWC denotes the portfolio allocation with the constraint that the weights need to

sum up to one and wM captures all mean-related market information.

The second optimization problem, which will be referred to as Markowitz risk-

constrained (MRC) problem, has the same objective as in (3.1), but portfolio weights are

not required to sum up to one:

min
w

1

2
w′Σw s.t. m′w ≥ µ. (3.6)

It can be easily shown that the solution to (2.6) is:

w∗
1 =

µΘm

m′Θm
. (3.7)
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Alternatively, instead of searching for a portfolio with a specified desired expected rate of

return and minimum risk, one can maximize expected portfolio return given a maximum

risk-tolerance level:

max
w

w′m s.t. w′Σw ≤ σ2. (3.8)

In this case, the solution to (2.8) yields:

w∗
2 =

σ2

w′m
Θm =

σ2

µ
Θm. (3.9)

To get the second equality in (2.9) we used the definition of µ from (3.1) and (3.6). It

follows that if µ = σ
√
θ, where θ ≡ m′Θm is the squared Sharpe Ratio, then the solution

to (2.6) and (2.8) admits the following expression:

wMRC =
σ√

m′Θm
Θm =

σ√
θ
α, (3.10)

where α ≡ Θm. Equation (2.10) tells us that once an investor specifies the desired return,

µ, and maximum risk-tolerance level, σ, this pins down the Sharpe Ratio of the portfolio

which makes the optimization problems of minimizing risk and maximizing expected return

of the portfolio in (2.6) and (2.8) identical.

This brings us to three alternative portfolio allocations commonly used in the exist-

ing literature: Global Minimum-Variance Portfolio in (3.2), weight-constrained Markowitz

Mean-Variance in (3.3) and maximum-risk-constrained Markowitz Mean-Variance in (2.10).
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Below we summarize the aforementioned portfolio weight expressions:

GMV: wGMV = (ι′Θι)−1Θι, (3.11)

MWC wMWC = (1− a1)wGMV + a1wM , (3.12)

where wM = (ι′Θm)−1Θm,

a1 =
µ(m′Θι)(ι′Θι)− (m′Θι)2

(m′Θm)(ι′Θι)− (m′Θι)2
,

MRC: wMRC =
σ√
θ
α, (3.13)

where α = Θm, θ = m′Θm

So far we have considered allocation strategies that put non-zero weights to all

assets in the financial portfolio. As an implication, an investor needs to buy a certain

amount of each security even if there are a lot of small weights. However, oftentimes

investors are interested in managing a few assets which significantly reduces monitoring

and transaction costs and was shown to outperform equal weighted and index portfolios in

terms of the Sharpe Ratio and cumulative return (see [58], [2], [100], [17] among others).

This strategy is based on holding a sparse portfolio, that is, a portfolio with many zero

entries in the weight vector.

3.2.1 Sparse De-Biased Portfolio

Let us first introduce some notations. The sample mean and sample covariance

matrix have standard formulas: m̂ =
1

T

∑T
t=1 rt and Σ̂ =

1

T

∑T
t=1(rt − m̂)(rt − m̂)

′
. Our

empirical application shows that risk-constrained Markowitz allocation in (3.13) outper-
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forms GMV and MWC portfolios in (3.11)-(3.12). Therefore, we first study sparse MRC

portfolios. Our goal is to construct a sparse vector of portfolio weights given by (3.13). To

achieve this we use the following equivalent and unconstrained regression representation of

the mean-variance optimization in (2.6) and (2.8):

wMRC = argmin
w

E
[
y −w′rt

]
, where y ≡ 1 + θ

θ
µ ≡ σ

1 + θ√
θ
. (3.14)

The sample counterpart of (3.14) is written as:

wMRC = argmin
w

1

T

T∑
t=1

(y −w′rt)
2. (3.15)

[2] prove that the weight allocation from (3.14) is equivalent to (3.13). The sparsity is

introduced through Lasso which yields the following constrained optimization problem:

wMRC, SPARSE = argmin
w

1

T

T∑
t=1

(y −w′rt)
2 + 2λ∥w∥1. (3.16)

Now we propose two extensions to the setup (3.16). First, the estimatorwMRC, SPARSE

is infeasible since θ used for constructing y is unknown. [2] construct an estimator of θ under

normally distributed excess returns, assuming p/T → ρ ∈ (0, 1) and the sample size T is

required to be larger than the number of assets p. Their paper uses an unbiased estimator

proposed in [84]: θ̂ = ((T −p−2)m̂′Σ̂−1m̂−p)/T , where m̂ and Σ̂−1 are sample mean and

inverse of the sample covariance matrix respectively. One of the limitations of the model

studied by [2] is that it cannot handle high dimensions. In both simulations and empirical

application the maximum number of stocks used by the authors is limited to 100. Another
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limitation of [2] approach is that they do not correct the bias introduced by imposing ℓ1-

constraint in (3.16). However, it is well-known that the estimator in (3.16) is biased and

the existing literature proposes several de-biasing techniques (see [14,77–79,135,141] among

others).

To address the first aforementioned limitation, we propose to use an estimator of

a high-dimensional precision matrix discussed in the next section. The suggested estimator

is appropriate for high-dimensional settings, it can handle cases when the sample size is less

than the number of assets, and it is always non-negative by construction3. Consequently,

the estimator of y is

ŷ ≡ 1 + θ̂

θ̂
µ ≡ σ

1 + θ̂√
θ̂
. (3.17)

To approach the second limitation, motivated by [135], we propose the de-biasing

technique that uses the nodewise regression estimator of the precision matrix. First, let R

be a T × p matrix of excess returns stacked over time and ŷ be a T × 1 constant vector.

Consider a high-dimensional linear model

ŷ = Rw + e, where e ∼ D(0, σ2eI). (3.18)

We study high-dimensional framework p ≥ T and in the asymptotic results we require

log p/T = o(1). Let us rewrite (3.16):

wMRC, SPARSE = arg min
w∈Rp

1

T
∥ŷ −Rw∥22 + 2λ∥w∥1. (3.19)

3Our empirical results suggest that the unbiased estimator θ̂ = ((T −p−2)m̂′Σ̂−1m̂−p)/T is oftentimes
negative even after using the adjusted estimator defined in [84] (p. 2906).
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The estimator in (3.16) satisfies the following KKT conditions:

−R′(ŷ −Rŵ)/T + λĝ = 0, (3.20)

∥ĝ∥∞ ≤ 1 and ĝi = sign(ŵi) if ŵi ̸= 0. (3.21)

where ĝ is a p× 1 vector arising from the subgradient of ∥w∥1. Let Σ̂ = R′R/T , then we

can rewrite the KKT conditions:

Σ̂(ŵ −w) + λĝ = R′e/T. (3.22)

Multiply both sides of (3.22) by Θ̂ obtained from Algorithm 5, add and subtract (ŵ−w),

and rearrange the terms:

ŵ −w + Θ̂λĝ = Θ̂R′e/T −
√
T (Θ̂Σ̂− Ip)(ŵ −w)︸ ︷︷ ︸

∆

/
√
T . (3.23)

In the section with the theoretical results we show that ∆ is asymptotically negligible under

certain sparsity assumptions4. Combining (3.20) and (3.23) brings us to the de-biased

estimator of portfolio weights:

ŵMRC, DEBIASED = ŵ + Θ̂λĝ = ŵ + Θ̂R′(ŷ −Rŵ)/T. (3.24)

The properties of the proposed de-biased estimator are examined in Section 5.

4Note that we cannot directly apply Theorem 2.2 of [135] since rc needs to be estimated and we first
need to show consistency of the respective estimator.
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3.2.2 Sparse Portfolio Using Post-Lasso

One of the drawbacks of the de-biased portfolio weights in (3.24) is that the weight

formula is tailored to a specific portfolio choice that maximizes an unconstrained Sharpe

Ratio (i.e. MRC in (3.13)). However, it is desirable to accommodate preferences of different

types of investors who might be interested in weight allocations corresponding to GMV

(3.11) or MWC (3.12) portfolios. At the same time, we are willing to stay within the

framework of sparse allocations. One of the difficulties that precludes us from pursuing

a similar technique as in (3.16) is the fact that once the weight constraint is added, the

optimization problem in (3.16) has two solutions depending on whether ι′Θm is positive or

negative. As shown in [104], when ι′Θm < 0, the minimum value cannot be achieved exactly

for a specified portfolio allocation that satisfies the full investment constraint. Hence, one

can design an approximate solution to approach the supremum as closely as desired.

To overcome this difficulty, we propose to use Lasso regression in (3.19) for selecting

a subset of stocks, and then constructing a financial portfolio using any of the weight

formulations in (3.11)-(3.13). The procedure to estimate sparse portfolio using post-Lasso

is described in Algorithm 3.
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Algorithm 3: Sparse Portfolio Using Post-Lasso

1: Use Lasso regression in (3.19) to select the model Ξ̂ ≡ support(ŵ)

• Apply additional thresholding to remove stocks with small estimated weights:

ŵ(t) = (ŵj1 [|ŵj | > t] , j = 1, . . . , p),

where t ≥ 0 is the thresholding level.

• The corresponding selected model is denoted as Ξ̂(t) ≡ support(ŵ(t)). When

t = 0, Ξ̂(t) = Ξ̂.

2: Choose a desired portfolio formulation in (3.11)-(3.13) and apply it to the selected

subset of stocks Ξ̂(t).

• When card(Ξ̂(t)) < t̃, use the inverse of the sample covariance matrix as an

estimator of Θ. Otherwise, apply the estimator of precision matrix described in

Section 3.

3.3 Factor Nodewise Regression

In this section we first review a nodewise regression ( [108]), a popular approach

to estimate a precision matrix. After that we propose a novel estimator which accounts for

the common factors in the excess returns.
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In the high-dimensional settings it is necessary to regularize the precision matrix,

which means that some of the entries θij will be zero. In other words, to achieve consistent

estimation of the inverse covariance, the estimated precision matrix should be sparse.

3.3.1 Nodewise Regression

One of the approaches to induce sparsity in the estimation of precision matrix is

to solve for Θ̂ one column at a time via linear regressions, replacing population moments by

their sample counterparts. When we repeat this procedure for each variable j = 1, . . . , p, we

will estimate the elements of Θ̂ column by column using {rt}Tt=1 via p linear regressions. [108]

use this approach to incorporate sparsity into the estimation of the precision matrix. They

fit p separate Lasso regressions using each variable (node) as the response and the others

as predictors to estimate Θ̂. This method is known as the “nodewise” regression and it is

reviewed below based on [135] and [24].

Let rj be a T × 1 vector of observations for the j-th regressor, the remaining

covariates are collected in a T × (p − 1) matrix R−j . For each j = 1, . . . , p we run the

following Lasso regressions:

γ̂j = arg min
γ∈Rp−1

(
∥rj −R−jγ∥22/T + 2λj∥γ∥1

)
, (3.25)

where γ̂j = {γ̂j,k; j = 1, . . . , p, k ̸= j} is a (p − 1) × 1 vector of the estimated regression
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coefficients that will be used to construct the estimate of the precision matrix, Θ̂. Define

Ĉ =



1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p
...

...
. . .

...

−γ̂p,1 −γ̂p,2 · · · 1


. (3.26)

For j = 1, . . . , p, define

τ̂2j = ∥rj −R−jγ̂j∥22/T + λj∥γ̂j∥1 (3.27)

and write

T̂2 = diag(τ̂21 , . . . , τ̂
2
p ). (3.28)

The approximate inverse is defined as

Θ̂ = T̂−2Ĉ. (3.29)

The procedure to estimate the precision matrix using nodewise regression is summarized in

Algorithm 4.
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Algorithm 4: Nodewise Regression by [108] (MB)

1: Repeat for j = 1, . . . , p :

• Estimate γ̂j using (3.25) for a given λj .

• Select λj using a suitable information criterion.

2: Calculate Ĉ and T̂2 .

3: Return Θ̂ = T̂−2Ĉ.

One of the caveats to keep in mind when using the nodewise regression method is

that the estimator in (3.29) is not self-adjoint. [24] show (see their Lemma A.1) that Θ̂ in

(3.29) is positive definite with high probability, however, it could still occur that Θ̂ is not

positive definite in finite samples. To resolve this issue we use the matrix symmetrization

procedure as in [56] and then use eigenvalue cleaning as in [25] and [72]. First, the symmetric

matrix is constructed as

θ̂sij = θ̂ij1
[∣∣∣θ̂ij∣∣∣ ≤ ∣∣∣θ̂ji∣∣∣]+ θ̂ji1

[∣∣∣θ̂ij∣∣∣ > ∣∣∣θ̂ji∣∣∣] , (3.30)

where θ̂ij is the (i, j)-th element of the estimated precision matrix from (3.29). Second,

we use eigenvalue cleaning to make Θ̂s positive definite: write the spectral decomposition

Θ̂s = V̂′Λ̂V̂, where V̂ is a matrix of eigenvectors and Λ̂ is a diagonal matrix with p

eigenvalues Λ̂i on its diagonal. Let Λm ≡ min{Λ̂i|Λ̂i > 0}. We replace all Λ̂i < Λm with

Λm and define the diagonal matrix with cleaned eigenvalues as Λ̃. We use Θ̃ = V̂′Λ̃V̂

which is symmetric and positive definite.
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3.3.2 Factor Nodewise Regression

The arbitrage pricing theory (APT), developed by [119], postulates that expected

returns on securities should be related to their covariance with the common components

or factors only. The goal of the APT is to model the tendency of asset returns to move

together via factor decomposition. Assume that the return generating process (rt) follows

a K-factor model:

rt︸︷︷︸
p×1

= B ft︸︷︷︸
K×1

+ εt, t = 1, . . . , T (3.31)

where ft = (f1t, . . . , fKt)
′ are the factors, B is a p × K matrix of factor loadings, and εt

is the idiosyncratic component that cannot be explained by the common factors. Factors

in (3.31) can be either observable, such as in [46, 47], or can be estimated using statistical

factor models.

In this subsection we examine how to approach the portfolio allocation problems in

(3.11)-(3.13) using a factor structure in the returns. Our approach, called Factor Nodewise

Regression, uses the estimated common factors to obtain sparse precision matrix of the

idiosyncratic component. The resulting estimator is used to obtain the precision of the

asset returns necessary to form portfolio weights.

As in [53], we consider a spiked covariance model when the first K principal eigen-

values of Σ are growing with p, while the remaining p − K eigenvalues are bounded and

grow slower than p.
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Rewrite equation (3.31) in matrix form:

R︸︷︷︸
p×T

= B︸︷︷︸
p×K

F+E. (3.32)

Let Σ = T−1RR′, Σε = T−1EE′ and Σf = T−1FF′ be covariance matrices of stock

returns, idiosyncratic components and factors, and let Θ = Σ−1, Θε = Σ−1
ε and Θf = Σ−1

f

be their inverses. The factors and loadings in (3.32) are estimated by solving (B̂, F̂) =

argminB,F∥R−BF∥2F s.t. 1
T FF

′ = IK , B′B is diagonal. The constraints are needed to

identify the factors ( [56]). It was shown ( [126]) that F̂ =
√
T eigK(R′R) and B̂ = T−1RF̂′.

Given F̂, B̂, define Ê = R− B̂F̂.

Since our interest is in constructing portfolio weights, our goal is to estimate a

precision matrix of the excess returns. However, as pointed out by [87], when common

factors are present across the excess returns, the precision matrix cannot be sparse because

all pairs of the returns are partially correlated given other excess returns through the com-

mon factors. Therefore, we impose a sparsity assumption on the precision matrix of the

idiosyncratic errors, Θε, which is obtained using the estimated residuals after removing the

co-movements induced by the factors (see [11,18,87]).

We use the nodewise regression as a shrinkage technique to estimate the precision

matrix of residuals. Once the precision Θf of the low-rank component is also obtained,

similarly to [52], we use the Sherman-Morrison-Woodbury formula to estimate the precision

of excess returns:

Θ = Θε −ΘεB[Θf +B′ΘεB]−1B′Θε. (3.33)
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To obtain Θ̂f = Σ̂−1
f , we use the inverse of the sample covariance of the estimated factors

Σ̂f = T−1F̂F̂′. To get Θ̂ε, we apply Algorithm 4 to the estimated idiosyncratic errors, ε̂t.

Once we have estimated Θ̂f and Θ̂ε, we can get Θ̂ using a sample analogue of (3.33). The

proposed procedure is called Factor Nodewise Regression and is summarized in Algorithm

5.

Algorithm 5: Factor Nodewise Regression by [108] (FMB)

1: Estimate factors, F̂, and factor loadings, B̂, using PCA. Obtain Σ̂f = T−1F̂F̂′, Θ̂f =

Σ̂−1
f and ε̂t = rt − B̂f̂t.

2: Estimate a sparse Θε using nodewise regression: run Lasso regressions in (3.25) for ε̂t

γ̂j = arg min
γ∈Rp−1

(∥∥∥ε̂j − Ê−jγ
∥∥∥2
2
/T + 2λj∥γ∥1

)
, (3.34)

to get Θ̂ε.

3: Use Θ̂f from Step 1 and Θ̂ε from Step 2 to estimate Θ using the sample counterpart

of the Sherman-Morrison-Woodbury formula in (2.16):

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε. (3.35)
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Algorithm 5 involves a tuning parameter λj in (3.34): we choose shrinkage in-

tensity by minimizing the generalized information criterion (GIC). Let
∣∣∣Ŝj(λj)∣∣∣ denote the

estimated number of nonzero parameters in the vector γ̂j :

GIC(λj) = log
(∥∥∥ε̂j − Ê−jγ̂j

∥∥∥2
2
/T
)
+
∣∣∣Ŝj(λj)∣∣∣ log(p)

T
log(log(T )).

We can use Θ̂ obtained in (3.35) to estimate y in equation (3.17) and obtain sparse

portfolio weights in (3.24) and Algorithm 3.

3.4 Factor Investing is Allowed

In this section we allow an investor to hold a portfolio of assets and factors, in other

words, factors are assumed to be tradable. Note that in contrast with [2], the distinction

between tradable and non-tradable factors is not pinned down by the fact that the excess

returns are driven by the common factors. That is, factor structure of returns is allowed

independently of whether factors are tradable or not. We assume that only observable

factors can be tradable. Denote a K1 × 1 vector of observable factors as f̃t, and K2 × 1

vector of unobservable factors as fPCA
t , where K1 +K2 = K. The goal of factor investing

is to decide how much weight is allocated to factors f̃t and stocks rt. Let rt,all be the return

of portfolio at time t:

rt,all = w′
all,t︸ ︷︷ ︸

1×(p+K1)

xt. (3.36)

where xt = (f̃ ′t , r
′
t)
′ is a (p + K1) × 1 vector of excess returns of observable factors and

stocks and wall,t = (w′
ft,w

′
t)
′ is a vector of weights with wft invested in f̃t and wt invested
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in stocks. We treat f̃t as additional K1 investments vehicles which will contribute to the

return of the total portfolio. Now consider K2-factor model for xt:

xt = BfPCA
t︸ ︷︷ ︸
K2×1

+ et, t = 1, . . . , T (3.37)

Rewrite equation (3.37) in matrix form:

X︸︷︷︸
(p+K1)×T

= BFPCA︸ ︷︷ ︸
K2×T

+ E, (3.38)

which can be estimated using the standard PCA techniques as in (3.32):

F̂PCA =
√
T eigK2

(X′X) and B̂ = T−1XF̂
′PCA. Given F̂PCA, B̂, define Ê = X− B̂F̂PCA.

Similarly to Algorithm 5, we use (2.16) to estimate the precision of the augmented

excess returns, Θx. To get Θ̂fPCA = Σ̂−1
fPCA , we use the inverse of the sample covariance of

the estimated factors Σ̂fPCA = T−1F̂PCAF̂
′PCA. To get Θ̂e, we first apply Algorithm 4 to

the estimated idiosyncratic errors, êt in (3.37). Once we have estimated Θ̂fPCA and Θ̂e, we

can get Θ̂x using a sample analogue of (2.16). This procedure is summarized in Algorithm

6.

Algorithm 6: Factor Investing Using FMB

1: Estimate the residuals from equation (3.37): êt = xt − B̂f̂PCA
t using PCA.

2: Estimate a sparse Θe using nodewise regression: apply Algorithm 4 to êt.

3: Estimate Θx using the Sherman-Morrison-Woodbury formula in (2.16).
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We can use Θ̂x obtained from Algorithm 6 to estimate portfolio weightswall,t using

either a de-biased technique from section 2.1 ((3.24)), or post-Lasso (Algorithm 3). Once

we obtain ŵall,t = (ŵ′
ft, ŵ

′
t)
′, we can test whether factor investing significantly contributes

to the portfolio return by testing whether wft = 0.

3.5 Asymptotic Properties

In this section we study asymptotic properties of the de-biased estimator of weights

for sparse portfolio in (3.24) and post-Lasso estimator from Algorithm 3.

Denote S0 ≡ {j;wj ̸= 0} to be the active set of variables, where w is a vector of

true portfolio weights in equation (3.18). Also, let s0 ≡ |S0|. Further, let Sj ≡ {k; γj,k ̸= 0}

be the active set for row γj for the nodewise regression in (3.25), and let sj ≡ |Sj |. Define

s̄ ≡ max1≤j≤p sj .

Consider a factor model from equation (3.31):

rt︸︷︷︸
p×1

= B ft︸︷︷︸
K×1

+ εt, t = 1, . . . , T (3.39)

We study the case when the factors are not known, i.e. the only observable variable in

equation (3.39) is the excess returns rt. In this paper our main interest lies in establishing

asymptotic properties of sparse portfolio weights and the out-of-sample Sharpe Ratio for

the high-dimensional case. We assume that the number of common factors, K, is fixed.
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3.5.1 Assumptions

We now list the assumptions on the model (2.11):

(A.1) (Spiked covariance model) As p → ∞, Λ1(Σ) > Λ2(Σ) > . . . > ΛK(Σ) ≫ ΛK+1(Σ) ≥

. . . ≥ Λp(Σ) ≥ 0, where Λj(Σ) = O(p) for j ≤ K, while the non-spiked eigenvalues are

bounded, Λj(Σ) = o(p) for j > K.

(A.2) (Pervasive factors) There exists a positive definite K ×K matrix B̆ such that∣∣∣∣∣∣∣∣∣p−1B′B− B̆
∣∣∣∣∣∣∣∣∣

2
→ 0 and Λmin(B̆)−1 = O(1) as p→ ∞.

Similarly to [30] and [24], we also impose beta mixing condition.

(A.3) (Beta mixing) Let F t
−∞ and F∞

t+k denote the σ-algebras that are generated by {εu :

u ≤ t} and {εu : u ≥ t + k} respectively. Then {ε}u is β-mixing in the sense that

βk → 0 as k → ∞, where the mixing coefficient is defined as

βk = sup
t

E

[
sup

B∈F∞
t+k

∣∣∣Pr(B|F t
−∞

)
− Pr

(
B
)∣∣∣] . (3.40)

Some comments regarding the aforementioned assumptions are in order. Assump-

tions (A.1)-(A.2) are the same as in [56], and assumption (A.3) is required to consistently

estimate precision matrix for de-biasing portfolio weights. Assumption (A.1) divides the

eigenvalues into the diverging and bounded ones. Without loss of generality, we assume

that K largest eigenvalues have multiplicity of 1. The assumption of a spiked covariance

model is common in the literature on approximate factor models, however, we note that the

model studied in this paper can be characterized as a “very spiked model”. In other words,

the gap between the first K eigenvalues and the rest is increasing with p. As pointed out

110



by [56], (A.1) is typically satisfied by the factor model with pervasive factors, which brings

us to the assumption (A.2): the factors impact a non-vanishing proportion of individual

time-series. Assumption (A.3) allows for weak dependence in the residuals of the factor

model in 2.11: causal ARMA processes, certain stationary Markov chains and stationary

GARCH models with finite second moments satisfy this assumption. We note that our

Assumption (A.3) is much weaker than in [24], the latter requires weak dependence of the

returns series, whereas we only restrict dependence of the idiosyncratic components.

LetΣ = ΓΛΓ
′
, whereΣ is the covariance matrix of returns that follow factor struc-

ture described in equation (2.11). Define Σ̂, Λ̂K , Γ̂K to be the estimators ofΣ,Λ,Γ. We fur-

ther let Λ̂K = diag(λ̂1, . . . , λ̂K) and Γ̂K = (v̂1, . . . , v̂K) to be constructed by the firstK lead-

ing empirical eigenvalues and the corresponding eigenvectors of Σ̂ and B̂B̂′ = Γ̂KΛ̂KΓ̂
′
K .

Similarly to [56], we require the following bounds on the componentwise maximums of the

estimators:

(B.1)
∥∥∥Σ̂−Σ

∥∥∥
max

= OP

(√
log p/T

)
,

(B.2)
∥∥∥(Λ̂K −Λ)Λ−1

∥∥∥
max

= OP

(√
log p/T

)
,

(B.3)
∥∥∥Γ̂K − Γ

∥∥∥
max

= OP

(√
log p/(Tp)).

Let Σ̂SG be the sample covariance matrix, with Λ̂SG
K and Γ̂SG

K constructed with

the first K leading empirical eigenvalues and eigenvectors of Σ̂SG respectively. Also, let

Σ̂EL1 = D̂R̂1D̂, where R̂1 is obtained using the Kendall’s tau correlation coefficients and

D̂ is a robust estimator of variances constructed using the Huber loss. Furthermore, let

Σ̂EL2 = D̂R̂2D̂, where R̂2 is obtained using the spatial Kendall’s tau estimator. Define

Λ̂EL
K to be the matrix of the first K leading empirical eigenvalues of Σ̂EL1, and Γ̂EL

K is the
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matrix of the first K leading empirical eigenvectors of Σ̂EL2. For more details regarding

constructing Σ̂SG, Σ̂EL1 and Σ̂EL2 see [56], Sections 3 and 4.

Theorem 6 ( [56])

For sub-Gaussian distributions, Σ̂SG, Λ̂SG
K and Γ̂SG

K satisfy (B.1)-(B.3).

For elliptical distributions, Σ̂EL1, Λ̂EL
K and Γ̂EL

K satisfy (B.1)-(B.3).

Theorem 6 is essentially a rephrasing of the results obtained in [56], Sections 3 and 4.

Since there is no separate statement of these results in their paper (it is rather a summary

of several theorems), we separated it as a Theorem for the convenience of the reader. As

evidenced from the above Theorem, Σ̂EL2 is only used for estimating the eigenvectors. This

is necessary due to the fact that, in contrast with Σ̂EL2, the theoretical properties of the

eigenvectors of Σ̂EL are mathematically involved because of the sin function.

In addition, the following structural assumption on the model is imposed:

(C.1) ∥Σ∥max = O(1) and ∥B∥max = O(1),

which is a natural assumption on the population quantities.

In contrast to [56], instead of estimating and inverting covariance matrix, we fo-

cus on obtaining precision matrix directly since it is the ultimate input to any portfolio

optimization problem.

3.5.2 Asymptotic Properties of Non-Sparse Portfolio Weights

Recall that we used equation (2.16) to estimate Θ. Therefore, in order to establish

consistency of the estimator in (2.16), we first show consistency of Θ̂ε. Proofs of all the

theorems are in Appendix.
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Theorem 7 Suppose that Assumptions (A.1)-(A.3), (B.1)-(B.3) and (C.1) hold. Let

ωT ≡
√
log p/T+1/

√
p. Then maxi≤p(1/T )

∑T
t=1|ε̂it − εit| = OP (ω

2
T ) and maxi,t|ε̂it − εit| =

OP (ωT ) = oP (1). Under the sparsity assumption s̄2ωT = o(1), with λj ≍ ωT , we have

max
1≤j≤p

∥∥∥Θ̂ε,j −Θε,j

∥∥∥
1
= OP (s̄ωT ),

max
1≤j≤p

∥∥∥Θ̂ε,j −Θε,j

∥∥∥2
2
= OP (s̄ω

2
T )

Some comments are in order. First, the sparsity assumption s̄2ωT = o(1) is stronger than

that required for convergence of Θ̂ε: this is necessary to ensure consistency for Θ̂ established

in Theorem 8, so we impose a stronger assumption at the beginning. We also note that

at the first glance, our sparsity assumption in Theorem 8 is stronger than that required

by [135] and [24], however, recall that we impose sparsity on Θε, not Θ as opposed to

the two aforementioned papers. Hence, this assumption can be easily satisfied once the

common factors have been accounted for and the precision of the idiosyncratic components

is expected to be sparse. The bounds derived in Theorem 7 help us establish the convergence

properties of the precision matrix of stock returns in equation (2.16).

Theorem 8 Under the assumptions of Theorem 7 and, in addition, assuming ∥Θε,j∥2 =

O(1), we have

max
1≤j≤p

∥∥∥Θ̂j −Θj

∥∥∥
1
= OP (s̄

2ωT ),

max
1≤j≤p

∥∥∥Θ̂j −Θj

∥∥∥2
2
= OP (s̄ω

2
T ).
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Using Theorem 8 we can then establish the consistency of the non-sparse counter-

part of the estimated MRC portfolio weight in (3.19).

Theorem 9 Under the assumptions of Theorem 8, Algorithm 5 consistently estimates non-

sparse MRC portfolio weights such that ∥ŵMRC −wMRC∥1 = OP (s̄
2ωT ).

Note that the rate in Theorem 9 depends on the sparsity of Θε. If, instead, sparsity on

Θ is imposed, the rate becomes similar to the one derived by [24]: s̄(Θ)3/2ωT = oP (1),

where s̄(Θ) is the maximum vertex degree of Θ. In their case, if the precision matrix of

stock returns is not sparse, consistent estimation of portfolio weights is possible if (p −

1)3/2(
√
log p/T + 1/

√
p) = o(1). However, this excludes high-dimensional cases since p is

required to be less than T 1/3.

3.5.3 Asymptotic Properties of De-Biased Portfolio Weights

We now proceed to examining the properties of sparse MRC portfolio weights for

de-biased portfolio, as summarized by the following Theorem:

Theorem 10 Let Σ̂ be an estimator of covariance matrix satisfying (B.1), and Θ̂ be

the estimator of precision obtained using FMB in Algorithm 5. Under the assumptions of

Theorem 8, consider the linear model (3.18) with e ∼ D(0, σeI), where σ
2
e = O(1). Consider

a suitable choice of the regularization parameters λ ≍ ωT for the Lasso regression in (3.19)

and λj ≍ ωT uniformly in j for the Lasso for nodewise regression in (3.25). Assume
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(s0 ∨ s̄2)
(
log p/

√
T +

√
T/p

)
= o(1). Then

√
T (ŵDEBIASED−w) =W +∆,

W = Θ̂R′e/
√
T ,

∥∆∥∞ = OP

(
(s0 ∨ s̄2)

(
log p/

√
T +

√
T/p

))
= oP (1).

Furthermore, if e ∼ N (0, σ2eI), let Ω̂ ≡ Θ̂Σ̂Θ̂′. ThenW |R ∼ Np(0, σ
2
eΩ̂) and

∥∥∥Ω̂−Θ
∥∥∥
∞

=

oP (1).

Some comments are in order. Our Theorem 8 is an extension of Theorem 2.4 of [135]

for non-iid case, where the latter is achieved with a help of [30]. Furthermore, there are

several fundamental differences between Theorem 8 and Theorem 2.4 of [135]: first, we

apply nodewise regression to estimate sparse precision matrix of factor-adjusted returns,

which explains the difference in convergence rates. Concretely, [135] have ωT =
√

log p/T ,

whereas we have ωT =
√

log p/T + 1/
√
p, where 1/

√
p arises due to the fact that factors

need to be estimated. However, we note that since we deal with high-dimensional regime

p ≥ T , this additional term is asymptotically negligible, we only keep it for identification

purposes. Second, in contrast with [135], the dependent variable in the Lasso regression in

(3.19) is unknown and needs to be estimated. Lemma 13 shows that ŷ constructed using

the precision matrix estimator from Theorem 8 is consistent and shares the same rate as

the ℓ1-bound in Theorem 8. Third, interestingly, the sparsity assumption on the Lasso

regression in (3.19) is the same as in [135]: as shown in the Appendix, this condition is

still sufficient to ensure that the bias term is asymptotically negligible even when the stock
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returns follow factor structure with unknown factors. Once we impose Gaussianity of e in

(3.18), we can infer the distribution of portfolio weights. Note that in this case normally

distributed errors do not imply that the stock returns are also Gaussian: we did not assume

εt ∼ Np(·) in (2.11). The unknown σ2e can be replaced by a consistent estimator. Finally,

even when Gaussianity of e is relaxed, we can use the central limit theorem argument to

obtain approximate Gaussianity of components of W |R of fixed dimension, or moderately

growing dimensions (see [135] for more details), however, in order not to divert the focus of

this paper, we leave it for future research.

3.5.4 Asymptotic Properties of Post-Lasso Portfolio Weights

To establish the properties of the post-Lasso estimator in Algorithm 3, we focus on

MRC weight formulation, since it satisfies the standard post-Lasso assumptions. For GMV

and MWC formulations, the procedure described in Algorithm 3 is not “post-Lasso” in the

usual sense. Concretely, the latter assumes that both steps in Algorithm 3 have the same

objective function, which is violated for GMV and MWC. Consequently, we leave rigorous

theoretical derivations of these two portfolio formulation for future research. For MRC, we

use the post-model selection results established in [13]. Specifically, we have the following

theorem:

116



Theorem 11 Suppose the restricted eigenvalue condition and the restricted sparse eigen-

value condition on the empirical Gram matrix hold (see Condition RE(c̄) and Condition

RSE(m) of [13], p. 529). Let ŵ be the post-Lasso weight estimator from Algorithm 3, we

have

∥ŵ −w∥1 = OP


σe

(
(s0ωT ) ∨ (s̄2ωT )

)
, in general,

σes0

(√
1
T + 1√

p

)
, if s0 ≥ s̄2 and Ξ = Ξ̂ wp → 1.

The proof of Theorem 11 easily follows from the proof of Corollary 2 of [13] and is omitted

here. Let us comment on the upper bounds for post-Lasso estimator: first, the term (s0ωT )∨

(s̄2ωT ) appears since one needs to estimate the dependent variable in equation (3.18), which

creates the difference between the bound in [13] and our Theorem 11. Second, similarly

to [13], the upper bound undergoes a transition from the oracle rate enjoyed by the standard

Lasso to the faster rate that improves on the latter when (1) the precision matrix of the

idiosyncratic components is sparse enough and (2) the oracle model has well-separated

coefficients. Noticeably, the upper bounds in Theorem 11 hold despite the fact that the

first-stage Lasso regression in Algorithm 3 may fail to correctly select the oracle model Ξ

as a subset, that is, Ξ /∈ Ξ̂.

Finally, let us compare the rates of non-sparse MRC portfolio weights in Theo-

rem 9, de-biased weights in Theorem 8, and post-lasso weights in Theorem 11: de-biased

estimator exhibits fastest convergence, followed by post-lasso and non-sparse weights. This

result is further supported by our simulations presented in the next section.
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3.6 Monte Carlo

We study the consistency for estimating portfolio weights in (2.10) of (i) sparse

portfolios that use the standard Lasso without de-biasing in (3.19), (ii) Lasso with de-biasing

in (3.24), (iii) post-Lasso in Algorithm 3, and (iv) non-sparse portfolios that use FMB from

Algorithm 5. Our simulation results are divided into two parts: the first part examines the

performance of models (i)-(iv) under the Gaussian setting, and the second part examines the

robustness of performance under the elliptical distributions (to be described later). Each

part is further subdivided into two cases: with p < T (Case 1) and with p > T (Case 2), in

both cases we allow the number of stocks to increase with the sample size, i.e. p = pT → ∞

as T → ∞. In Case 1 we let p = T δ, δ = 0.85 and T = [2h], for h = 7, 7.5, 8, . . . , 9.5, in

Case 2 we let p = 3 · T δ, δ = 0.85, all else equal.

First, consider the following data generating process for stock returns:

rt︸︷︷︸
p×1

= m+B ft︸︷︷︸
K×1

+ εt, t = 1, . . . , T (3.41)

where mi ∼ N (1, 1) independently for each i = 1, . . . , p, εt is a p × 1 random vector of

idiosyncratic errors following N (0,Σε), with a Toeplitz matrix Σε parameterized by ρ:

that is, Σε = (Σε)ij , where (Σε)ij = ρ|i−j|, i, j ∈ 1, . . . , p which leads to sparse Θε, ft is

a K × 1 vector of factors drawn from N (0,Σf = IK/10), B is a p × K matrix of factor

loadings drawn from N (0, IK/100). We set ρ = 0.5 and fix the number of factors K = 3.

LetΣ = BΣfB
′+Σε. To create sparse MRC portfolio weights we use the following

procedure: first, we threshold the vector Σ−1m to keep the top p/2 entries with largest
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absolute values. This yields sparse vector α = Σ−1m defined in (3.13). We use Σα and

Σ as the values for the mean and covariance matrix parameters to generate multivariate

Gaussian returns in (3.41). Note that the low rank plus sparse structure of the covariance

matrix is preserved under this transformation.

Figure 3.6.1 shows the averaged (over Monte Carlo simulations) errors of the esti-

mators of the weight wMRC versus the sample size T in the logarithmic scale (base 2). As

evidenced by Figure 3.6.1, (1) sparse estimators outperform non-sparse counterparts; (2)

using de-biasing or post-Lasso improves the performance compared to the standard Lasso

estimator. As expected from Theorems 8-11, the Lasso, de-biased Lasso and post-Lasso ex-

hibit similar rates, but the two latter estimators enjoy lower estimation error. The ranking

remains similar for Case 2, however, as illustrated in Figure 3.6.1, the performance of all

estimators slightly deteriorates.

Gaussian-tail assumption is too restrictive for modeling the behavior of financial

returns. Hence, as a second exercise we check the robustness of our sparse portfolio allo-

cation estimators under the elliptical distributions, which we briefly review based on [56].

Elliptical distribution family generalizes the multivariate normal distribution and multivari-

ate t-distribution. Let m ∈ Rp and Σ ∈ Rp×p. A p-dimensional random vector r has an

elliptical distribution, denoted by r ∼ EDp(m,Σ, ζ), if it has a stochastic representation

r
d
= m+ ζAU, (3.42)
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Figure 3.6.1: Averaged errors of the estimators of wMRC for Case 1 on logarithmic
scale (left): p = T 0.85, K = 3 and for Case 2 on logarithmic scale (right): p =
3 · T 0.85, K = 3.
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where U is a random vector uniformly distributed on the unit sphere Sq−1 in Rq, ζ ≥ 0 is

a scalar random variable independent of U, A ∈ Rp×q is a deterministic matrix satisfying

AA′ = Σ. As pointed out in [56], the representation in (3.42) is not identifiable, hence,

we require E
[
ζ2
]
= q, such that Cov(r) = Σ. We only consider continuous elliptical

distributions with Pr[ζ = 0] = 0. The advantage of the elliptical distribution for the

financial returns is its ability to model heavy-tailed data and the tail dependence between

variables.

Having reviewed the elliptical distribution, we proceed to the second part of sim-

ulation results. The data generating process is similar to [56]: let (ft, εt) from (3.41) jointly

follow the multivariate t-distribution with the degrees of freedom ν. When ν = ∞, this

corresponds to the multivariate normal distribution, smaller values of ν are associated with

thicker tails. We draw T independent samples of (ft, εt) from the multivariate t-distribution

with zero mean and covariance matrix Σ = diag(Σf ,Σε), where Σf = IK . To construct Σε

we use a Toeplitz structure parameterized by ρ = 0.5, which leads to the sparse Θε = Σ−1
ε .

The rows of B are drawn from N (0, IK/100). Figure 3.6.2 reports the results for ν = 4.25:

the performance of the standard Lasso estimator significantly deteriorates, which is further

amplified in the high-dimensional case where it exhibits the worst performance. Noticeably,

post-Lasso still achieves the lowest estimation error, followed by de-biased estimator.

5The results for larger degrees of freedom do not provide any additional insight, hence we do not report
them here. However, they are available upon request.
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Figure 3.6.2: Elliptical Distribution (ν = 4.2): Averaged errors of the estimators
of wMRC for Case 1 on logarithmic scale (left): p = T 0.85, K = 3 and for Case 2 on
logarithmic scale (right): p = 3 · T 0.85, K = 3.

3.7 Empirical Application

This section is divided into three main parts. First, we examine the performance

of several non-sparse portfolios, including the equal-weighted and Index portfolios (reported

as the composite S&P500 index listed as ∧GSPC). Second, we study the performance of

sparse portfolios that are based on de-biasing and post-Lasso. Third, we consider several

interesting periods that include different states of the economy: we examine the merit of

sparse vs non-sparse portfolios during the periods of economic growth, moderate market

decline and severe economic downturns.
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3.7.1 Data

We use monthly returns of the components of the S&P500 index6. The data on

historical S&P500 constituents and stock returns is fetched from CRSP and Compustat

using SAS interface. The full sample has 480 observations on 355 stocks from January 1,

1980 - December 1, 2019. We use January 1, 1980 - December 1, 1994 (180 obs) as a training

period and January 1, 1995 - December 1, 2019 (300 obs) as the out-of-sample test period.

We roll the estimation window over the test sample to rebalance the portfolios monthly. At

the end of each month, prior to portfolio construction, we remove stocks with less than 15

years of historical stock return data. For sparse portfolio we employ the following strategy

to choose the tuning parameter λ in (3.16): we use the first two thirds of the training data

(which we call the training window) to estimate weights and tune the shrinkage intensity λ

in the remaining one third of the training sample to yield the highest Sharpe Ratio which

serves as a validation window. We estimate factors and factor loadings in the training

window and validation window combined. The risk-free rate and Fama-French factors are

taken from Kenneth R. French’s data library.

3.7.2 Performance Measures

Similarly to [24], we consider four metrics commonly reported in finance literature:

the Sharpe Ratio, the portfolio turnover, the average return and risk of a portfolio. We

consider two scenarios: with and without transaction costs. Let T denote the total number

of observations, the training sample consists of m observations, and the test sample is

6The conclusions from using daily data are the same as those for monthly returns, hence we do not report
them in the main manuscript text. However, they are available upon request.
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n = T −m. When transaction costs are not taken into account, the out-of-sample average

portfolio return, risk and Sharpe Ratio are

µ̂test =
1

n

T−1∑
t=m

ŵ′
trt+1, (3.43)

σ̂test =

√√√√ 1

n− 1

T−1∑
t=m

(ŵ′
trt+1 − µ̂test)2, (3.44)

SR = µ̂test/σ̂test. (3.45)

We follow [9,24,39,100] to account for transaction costs (tc). In line with the aforementioned

papers, we set c = 50bps. Define the excess portfolio at time t+1 with transaction costs as

rt+1,portfolio =ŵ′
trt+1 − c(1 + ŵ′

trt+1)

p∑
j=1

∣∣∣ŵt+1,j − ŵ+
t,j

∣∣∣, (3.46)

where ŵ+
t,j = ŵt,j

1 + rt+1,j + rft+1

1 + rt+1,portfolio + rft+1

, (3.47)

where rt+1,j + rft+1 is sum of the excess return of the j-th asset and risk-free rate, and

rt+1,portfolio+r
f
t+1 is the sum of the excess return of the portfolio and risk-free rate. The out-
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of-sample average portfolio return, risk, Sharpe Ratio and turnover are defined accordingly:

µ̂test,tc =
1

n

T−1∑
t=m

rt,portfolio, (3.48)

σ̂test,tc =

√√√√ 1

n− 1

T−1∑
t=m

(rt,portfolio − µ̂test,tc)2, (3.49)

SRtc = µ̂test,tc/σ̂test,tc, (3.50)

Turnover =
1

n

T−1∑
t=m

p∑
j=1

∣∣∣ŵt+1,j − ŵ+
t,j

∣∣∣. (3.51)

3.7.3 Results and Discussion

The first set of results explores the performance of several non-sparse portfolios:

equal-weighted portfolio (EW), Index portfolio (Index), MB from Algorithm 4, FMB from

Algorithm 5, linear shrinkage estimator of covariance that incorporates factor structure

through the Sherman-Morrison inversion formula ( [91], further referred to as LW), CLIME

( [23]). We consider two scenarios, when the factors are unknown and estimated using the

standard PCA (statistical factors), and when the factors are known. For the statistical

factors, we determine the number of factors, K, in a standard data-driven way using the

information criteria discussed in [6] and [85] among others. For the scenario with known

factors we include up to 5 Fama-French factors: FF1 includes the excess return on the

market, FF3 includes FF1 plus size factor (Small Minus Big, SMB) and value factor (High

Minus Low, HML), and FF5 includes FF3 plus profitability factor (Robust Minus Weak,

RMW) and risk factor (Conservative Minus Agressive, CMA). In Table 3.7.1, we report

monthly portfolio performance for three alternative portfolio allocations in (3.11), (3.12)
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and (3.11). We set a return target µ = 0.7974% which is equivalent to 10% yearly return

when compounded. The target level of risk for the weight-constrained and risk-constrained

Markowitz portfolio (MWC and MRC) is set at σ = 0.05 which is the standard deviation

of the monthly excess returns of the S&P500 index in the first training set.
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Markowitz (risk-constrained) Markowitz (weight-constrained) Global Minimum-Variance

Return Risk SR Turnover Return Risk SR Turnover Return Risk SR Turnover

Without TC
EW 0.0081 0.0520 0.1553 - 0.0081 0.0520 0.1553 - 0.0081 0.0520 0.1553 -
Index 0.0063 0.0458 0.1389 - 0.0063 0.0458 0.1389 - 0.0063 0.0458 0.1389 -
MB 0.0539 0.2522 0.2138 - 0.0070 0.0021 0.1539 - 0.0082 0.0020 0.1860 -

FMB (PC) 0.0287 0.1049 0.2743 - 0.0069 0.0346 0.1968 - 0.0076 0.0346 0.2211 -
CLIME 0.0372 0.2337 0.1593 - 0.0067 0.0471 0.1434 - 0.0076 0.0466 0.1643 -
LW 0.0296 0.1049 0.2817 - 0.0059 0.0353 0.1662 - 0.0063 0.0353 0.1774 -

FMB (FF1) 0.0497 0.2200 0.2258 - 0.0071 0.0447 0.1582 - 0.0083 0.0436 0.1921 -
FMB (FF3) 0.0384 0.1319 0.2908 - 0.0067 0.0387 0.1754 - 0.0080 0.0361 0.2223 -
FMB (FF5) 0.0373 0.1277 0.2921 - 0.0068 0.0374 0.1788 - 0.0081 0.0361 0.2250 -

With TC
EW 0.0080 0.0520 0.1538 0.0630 0.0080 0.0027 0.1538 0.0630 0.0080 0.0027 0.1538 0.0630
MB 0.0512 0.0637 0.2027 2.9458 0.0067 0.0021 0.1461 0.3223 0.0080 0.0020 0.1804 0.2152

FMB (PC) 0.0248 0.1049 0.2368 3.7190 0.0059 0.0346 0.1687 0.9872 0.0067 0.0346 0.1929 0.9686
CLIME 0.0334 0.2334 0.1429 4.9174 0.0062 0.0471 0.1307 0.5945 0.0071 0.0466 0.1522 0.5528
LW 0.0237 0.1052 0.2257 5.5889 0.0043 0.0353 0.1231 1.5166 0.0048 0.0354 0.1343 1.5123

FMB (FF1) 0.0470 0.2202 0.2136 2.7245 0.0067 0.0447 0.1498 0.3489 0.0080 0.0436 0.1857 0.2486
FMB (FF3) 0.0356 0.1319 0.2694 2.4670 0.0062 0.0387 0.1622 0.4728 0.0076 0.0361 0.2106 0.3920
FMB (FF5) 0.0345 0.1277 0.2699 2.4853 0.0063 0.0387 0.1653 0.4847 0.0076 0.0361 0.2129 0.4057

Table 3.7.1: Monthly portfolio returns, risk, Sharpe Ratio and turnover.
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We now comment on the results which are presented in Table 3.7.1: (1) accounting

for the factor structure in stock returns improves portfolio performance in terms of the

OOS Sharpe Ratio. Specifically, EW, Index, MB and CLIME which ignore factor structure

perform worse than FMB and LW. (2) The models that use an improved estimator of

covariance or precision matrix outperform EW and Index on the test sample. As a downside,

such models have higher Turnover. This implies that superior performance is achieved at

the cost of larger variability of portfolio positions over time and, as a consequence, increased

risk associated with it.

The second set of results studies the performance of sparse portfolios: we include

our proposed methods based on de-biasing and post-Lasso, as well as the approach studied

in [2] (Lasso) without factor investing. For post-Lasso we first use Lasso-based weight

estimator in (3.19) for selecting stocks with absolute value of weights above a small threshold

ϵ (we use ϵ = 0.0001), then we form portfolio with the selected stocks using three alternative

portfolio allocations in (3.11)-(3.13).
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De-Biasing Post-Lasso

Markowitz (RC) Markowitz (RC) Markowitz (WC) GMV

Return Risk SR Turnover Return Risk SR Turnover Return Risk SR Turnover Return Risk SR Turnover

Without TC
Lasso (PC0) 0.0007 0.0048 0.1406 -

De-biased Lasso (PC0) 0.0023 0.0100 0.2266 - 0.0287 0.1217 0.2362 - -0.0174 0.4987 -0.0350 - -0.0187 0.4941 -0.0379 -
Lasso (PC) 0.0006 0.0052 0.1122 -

De-biased Lasso (PC) 0.0067 0.0265 0.2542 - 0.0290 0.1005 0.2882 - 0.0075 0.0624 0.1205 - 0.0087 0.0458 0.1901 -
Lasso (FF1) 0.0007 0.0039 0.1902 -

De-biased Lasso (FF1) 0.0109 0.0346 0.3213 - 0.0207 0.1192 0.1738 - 0.0031 0.2468 0.0124 - -0.0222 0.6047 -0.0367 -
Lasso (FF3) 0.0004 0.0040 0.1113 -

De-biased Lasso (FF3) 0.0072 0.0265 0.2721 - 0.0157 0.1245 0.1263 - 0.0136 0.1153 0.1182 - -0.0226 0.6054 -0.0373 -
Lasso (FF5) 0.0002 0.0042 0.0577 -

De-biased Lasso (FF5) 0.0073 0.0300 0.2467 - 0.0212 0.1127 0.1879 - 0.0093 0.0693 0.1342 - 0.0094 0.0980 0.0959 -

With TC
Lasso (PC0) 0.0006 0.0049 0.1189 0.0719

De-biased Lasso (PC0) 0.0020 0.0100 0.1953 0.7952 0.0262 0.1212 0.2155 2.1249 -0.0191 0.4990 -0.0383 1.5373 -0.0199 0.4945 -0.0402 1.0737
Lasso (PC) 0.0004 0.0052 0.0845 0.1136

De-biased Lasso (PC) 0.0055 0.0265 0.2061 1.2113 0.0268 0.1005 0.2668 2.1756 0.0059 0.0624 0.0940 1.5777 0.0076 0.0458 0.1652 1.1026
Lasso (FF1) 0.0006 0.0038 0.1654 0.0789

De-biased Lasso (FF1) 0.0100 0.0346 0.2949 0.8298 0.0186 0.1192 0.1559 2.1589 0.0013 0.2458 0.0052 1.7374 -0.0234 0.6056 -0.0386 1.1113
Lasso (FF3) 0.0003 0.0040 0.0852 0.0785

De-biased Lasso (FF3) 0.0062 0.0265 0.2352 0.9142 0.0134 0.1245 0.1077 2.2245 0.0120 0.1149 0.1046 1.6208 -0.0236 0.6058 -0.0390 1.0482
Lasso (FF5) 0.0001 0.0042 0.0310 0.0861

De-biased Lasso (FF5) 0.0062 0.0300 0.2124 0.9507 0.0184 0.1122 0.1639 2.2542 0.0076 0.0693 0.1098 1.6033 0.0083 0.0980 0.0844 1.0944

Table 3.7.2: Sparse portfolio (FMB is used for de-biasing): monthly portfolio returns, risk, Sharpe Ratio and turnover.
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Let us comment on the results presented in Table 3.7.2: (1) column one demon-

strates that de-biasing leads to significant performance improvement in terms of the return

and the OOS Sharpe Ratio. Even though the risk of de-biased portfolio is also higher, it

still satisfies the risk-constraint. This result emphasizes the importance of correcting for

the bias introduced by ℓ1-regularization. (2) Comparing two bias-correction methods, de-

biasing and post-Lasso, we find that the latter is characterized by higher return and higher

risk. However, such increase in portfolio return is, overall, not sufficient to outperform de-

biasing approach in terms of the OOS Sharpe Ratio. (3) Sparse portfolios have lower return,

risk and turnover compared to non-sparse counterparts in Table 3.7.1, however, the OOS

Sharpe Ratio is comparable. Therefore, incorporating sparsity allows investors to reduce

portfolio risk at the cost of lower return while maintaining the Sharpe Ratio comparable to

holding a non-sparse portfolio.

Tables 3.7.3-3.7.4 compare the performance of non-sparse and sparse (de-biased.

“DL”, and post-Lasso, “PL”) portfolios for different time periods in terms of the cumula-

tive excess return (CER) over the period of interest and risk. The first period of interest

(1997-98, “Period I”) corresponds to economic growth since Index exhibited positive CER

during this time. “Period II”, corresponds to moderate market decline since EW and Index

had relatively small negative CER. Finally, “Period III”, corresponds to severe economic

downturn and significant drop in the performance of EW and Index. The references to the

specific crises in Tables 3.7.3-3.7.4 do not intend to limit these economic periods to these

time spans. They merely provide the context for the time intervals of interest. Since the

performance of MWC portfolios is similar to GMV, we only report MRC and GMV.
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Asian & Rus.
Fin. Crisis
(1997-1998)

Argen. Great Depr.
& dot-com bubble

(1999-2002)

Fin. Crisis
(2007-2009)

CER Risk CER Risk CER Risk

EW 0.2712 0.0547 -0.0322 0.0519 -0.4987 0.1203
Index 0.3222 0.0508 -0.1698 0.0539 -0.4924 0.0929

Markowitz Risk-Constrained (MRC)

MB 2.1662 0.3381 -0.1140 0.2916 -3.0688 0.5101
CLIME 1.3285 0.0892 0.4241 0.1297 -3.0470 0.4735
LW 0.9134 0.1021 0.3677 0.1412 -0.3196 0.2751
FMB (PC) 1.3153 0.0883 0.5016 0.1286 -0.1312 0.1219
FMB (FF1) 2.0379 0.3029 0.0861 0.2660 -2.7247 0.4301

Global Minimum-Variance Portfolio (GMV)

MB 0.2791 0.0496 -0.0470 0.0476 -0.4637 0.1015
CLIME 0.3960 0.0374 -0.1224 0.0510 -0.4588 0.0987
LW 0.3127 0.0415 -0.0952 0.0483 -0.4013 0.0693
FMB (PC) 0.4117 0.0364 -0.1227 0.0505 -0.3444 0.0393
FMB (FF1) 0.2784 0.0487 -0.0396 0.0468 -0.4570 0.0986

Table 3.7.3: Cumulative excess return (CER) and risk of non-sparse portfolios using monthly data.
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Asian & Rus.
Fin. Crisis
(1997-1998)

Argen. Great Depr.
& dot-com bubble

(1999-2002)

Fin. Crisis
(2007-2009)

CER Risk CER Risk CER Risk

EW 0.2712 0.0547 -0.0322 0.0519 -0.4987 0.1203
Index 0.3222 0.0508 -0.1698 0.0539 -0.4924 0.0929

Debiased MRC

DL(PC) 0.2962 0.0261 0.1567 0.0217 0.1129 0.0408
DL(FF1) 0.4149 0.0277 0.1681 0.0240 -0.0258 0.0230
DL(FF3) 0.2123 0.0142 0.1782 0.0186 -0.0406 0.0202

Post-Lasso MRC

PL(PC) 3.0881 0.2211 1.7153 0.1281 2.6131 0.1862
PL(FF1) 2.3433 0.1568 1.4470 0.1828 2.8639 0.2404
PL(FF3) 0.6691 0.1887 -0.1561 0.1799 -0.9998 0.1410

Post-Lasso GMV

PL(PC) 0.4403 0.0593 0.8150 0.0955 -0.3694 0.1243
PL(FF1) 0.3385 0.0616 0.8151 0.0877 -0.5545 0.1213
PL(FF3) 0.0711 0.0713 0.1458 0.1061 0.0295 0.0694

Table 3.7.4: Cumulative excess return (CER) and risk of sparse portfolios using monthly data.
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Let us summarize the findings from Tables 3.7.3-3.7.4: (1) In Period I non-sparse

portfolios that rely on the estimation of covariance or precision matrix outperformed EW

and Index in terms of CER for both MRC and GMV. However, in Period II GMV portfolios

exhibited slightly negative CER, whereas MRC portfolios had higher risk but positive CER

(albeit being lower compared to Period I). Note that in Period III none of the non-sparse

portfolios generated positive CER and portfolio risk increased rapidly. Examining the per-

formance of sparse portfolios in Table 3.7.4, we see that (2) our proposed sparse portfolios

produce positive CER during all three periods of interest. Furthermore, the return gen-

erated by PL is higher than that by non-sparse portfolios even during Periods I and II.

Interestingly, DL produces positive CER without having high risk exposure. This suggests

that our de-biased estimator of portfolio weights exhibits minimax properties. We leave the

formal theoretical treatment of the latter for the future research.

3.8 Conclusion

This paper develops an approach to construct sparse portfolios in high dimensions

that addresses the shortcomings of the existing sparse portfolio allocation techniques. We

establish the oracle bounds of sparse weight estimators and provide guidance regarding their

distribution. From the empirical perspective, we examine the merit of sparse portfolios

during different market scenarios. We find that in contrast to non-sparse counterparts, our

strategy is robust to recessions and can be used as a hedging vehicle during such times. Our

framework makes use of the tool from the network theory called nodewise regression which

not only satisfies desirable statistical properties, but also allows us to study whether certain
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industries could serve as safe havens during recessions. We find that such non-cyclical

industries as consumer staples, healthcare, retail and food were driving the returns of the

sparse portfolios during both the global financial crisis of 2007-09 and COVID-19 outbreak,

whereas insurance sector was the least attractive investment in both periods. Finally, we

develop a simple framework that provides clear guidelines how to implement factor investing

using the methodology developed in this paper.
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Appendices

In this Appendix we collected the proofs of Theorems 2-5.

3.A Proof of Theorem 7

The first part of Theorem 7 was proved in [56] (see their proof of Theorem 2.1)

under the assumptions (A.1)-(A.3), (B.1)-(B.3) and log p = o(T ). To prove the con-

vergence rates for the precision matrix of the factor-adjusted returns, we follow [30], [27]

and [24]. Using the facts that maxi≤p(1/T )
∑T

t=1|ε̂it − εit| = OP (ω
2
T ) and maxi,t|ε̂it − εit| =

OP (ωT ) = oP (1), we get

max
1≤j≤p

∥γ̂j − γj∥1 = OP (s̄ωT ), (3.52)

where γ̂j was defined in (3.25). The proof of 3.52 is similar to the proof of the equation

(23) of [30], with ωT =
√
log p/T for their case.
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Similarly to [24], consider the following linear model:

ε̂j = Ê−jγj + ηj , for j = 1, . . . , p, (3.53)

E
[
η′
jÊ−j

]
= 0.

[135] and [30] showed that

max
1≤j≤p

∥∥∥η′
jÊ−j

∥∥∥
∞
/T = OP (ωT ). (3.54)

Let τ2j ≡ E
[
η′
jηj

]
, then we have

max
1≤j≤p

∥∥η′
jηj/T − τ2j

∥∥ = OP (ωT ). (3.55)

Note that the rate in (3.55) is the same as in Lemma 1 of [30] with ωT =
√
log p/T

for their case. However, the rate in (3.55) is different from the one derived in [135] since we

allow time-dependence between factor-adjusted returns.

Recall that τ̂2j =
∥∥∥ε̂j − Ê−jγ̂j

∥∥∥2
2
/T + λj∥γ̂j∥1. Using triangle inequality, we have:

max
1≤j≤p

∣∣τ̂2j − τ2j
∣∣ ≤ max

1≤j≤p

∣∣η′
jηj/T − τ2j

∣∣︸ ︷︷ ︸
I

+ max
1≤j≤p

∣∣∣η′
jÊ−j(γ̂j − γj)/T

∣∣∣︸ ︷︷ ︸
II

+ max
1≤j≤p

∣∣∣η′
jÊ−jγj/T

∣∣∣︸ ︷︷ ︸
III

+ max
1≤j≤p

γ ′
jÊ

′
−jÊ−j(γ̂j − γj)/T︸ ︷︷ ︸

IV

.
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The first term was bounded in 3.55, we now bound the remaining terms:

II ≤ max
1≤j≤p

∥∥∥η′
jÊ−j/T

∥∥∥
∞

max
1≤j≤p

∥γ̂j − γj∥1 = OP (s̄ω
2
T ),

where we used 3.52 and 3.54. For III we have

III ≤ max
1≤j≤p

∥∥∥η′
jÊ−j/T

∥∥∥
∞

max
1≤j≤p

∥γj∥1 = OP (
√
s̄ωT ),

where we used 3.54 and the fact that ∥γj∥1 ≤
√
sj∥γj∥2 = O(

√
sj). To bound the last term,

we use KKT conditions in node-wise regression:

max
1≤j≤p

∥∥∥Ê′
−jÊ−j(γ̂j − γj)/T

∥∥∥
∞

≤ max
1≤j≤p

∥∥∥Ê′
−jηj/T

∥∥∥
∞

+ max
1≤j≤p

λj = OP (ωT ),

where we used 3.54 and λj ≍ ωT . It follows that

IV = OP (ωT ) max
1≤j≤p

∥γj∥1 = OP (
√
s̄ωT ).

Therefore, we now have shown that

max
1≤j≤p

∣∣τ̂2j − τ2j
∣∣ = OP (

√
s̄ωT ). (3.56)

Using the fact that 1/τ2j = O(1), we also have

1/τ̂2j − 1/τ2j = OP (
√
s̄ωT ). (3.57)
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Finally, using the analysis in (B.51)-(B.53) of [27], we get

max
1≤j≤p

∥∥∥Θ̂ε,j −Θε,j

∥∥∥
1
= OP (sTωT ). (3.58)

To prove the second rate for the precision of the factor-adjusted returns, we note that

max
1≤j≤p

∥γ̂j − γj∥2 = OP (
√
s̄ωT ), (3.59)

which was obtained in [30] (see their Lemma 2). We can write

max
1≤j≤p

∥∥∥Θ̂ε,j −Θε,j

∥∥∥
2
≤ max

1≤j≤p
[∥γ̂j − γj∥2/τ̂

2
j + ∥γj∥21/τ̂

2
j − 1/τ2j ] = OP (

√
s̄ωT ). (3.60)

3.B Proof of Theorem 8

Let Ĵ = Λ̂1/2Γ̂′Θ̂εΓ̂Λ̂
1/2 and J̃ = Λ̃1/2Γ̃′ΘεΓ̃Λ̃

1/2. Also, define

∆inv = Θ̂εΓ̂Λ̂
1/2(IK + Ĵ)−1Λ̂1/2Γ̂′Θ̂ε −ΘεΓ̃Λ̃

1/2(IK + J̃)−1Λ̃1/2Γ̃′Θε.

Using Sherman-Morrison-Woodbury formulas in 2.16, we have

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣∣∣∣Θ̂ε −Θε

∣∣∣∣∣∣∣∣∣
1
+ |||∆inv|||1. (3.61)
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As pointed out by [56], |||∆inv|||1 can be bounded by the following three terms:

∣∣∣∣∣∣∣∣∣(Θ̂ε −Θε)Γ̃Λ̃
1/2(IK + J̃)−1Λ̃1/2Γ̃′Θε

∣∣∣∣∣∣∣∣∣
1
= OP (s̄ωT · p · 1

p
·
√
s̄),∣∣∣∣∣∣∣∣∣Θε(Γ̂Λ̂

1/2 − Γ̃Λ̃1/2)(IK + J̃)−1Λ̃1/2Γ̃′Θε

∣∣∣∣∣∣∣∣∣
1
= OP (

√
s̄ · pωT · 1

p
·
√
s̄),∣∣∣∣∣∣∣∣∣ΘεΛ̃

1/2Γ̃′((IK + Ĵ)−1 − (IK + J̃)−1)Γ̃′Θε

∣∣∣∣∣∣∣∣∣
1
= OP (

√
s̄ · 1
p
· ps̄ωT

√
s̄).

To derive the above rates we used (B.1)-(B.3), Theorem 7 and the fact that∥∥∥Γ̂Λ̂Γ̂′ −BB′
∥∥∥
F
= OP (pωT ). The second rate in Theorem 8 can be easily obtained using

the technique described above for the l2-norm.

3.C Lemmas for Theorems 9-10

Lemma 12 Under the assumptions of Theorem 8,

(a) ∥m̂−m∥max = OP (
√
log p/T ), where m is the unconditional mean of stock returns

defined in Subsection 3.2, and m̂ is the sample mean.

(b) |||Θ|||1 = O(s̄).

Proof.

(a) The proof of Part (a) is provided in [30] (Lemma 1).

(b) To prove Part (b) we use Sherman-Morrison-Woodbury formula in 2.16:

|||Θ|||1 ≤ |||Θε|||1 +
∣∣∣∣∣∣ΘεB[IK +B′ΘεB]−1B′Θε

∣∣∣∣∣∣
1

= O(
√
s̄) +O(

√
s̄ · p · 1

p
·
√
s̄) = O(s̄). (3.62)
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The last equality in (3.62) is obtained under the assumptions of Theorem 10. This

result is important in several aspects: it shows that the sparsity of the precision matrix

of stock returns is controlled by the sparsity in the precision of the idiosyncratic returns.

Hence, one does not need to impose an unrealistic sparsity assumption on the precision

of returns a priori when the latter follow a factor structure - sparsity of the precision

once the common movements have been taken into account would suffice.

Lemma 13 Define θ = m′Θm/p and g =
√
m′Θm/p. Also, let θ̂ = m̂′Θ̂m̂/p and ĝ =√

m̂′Θ̂m̂/p. Under the assumptions of Theorem 8:

(a) θ = O(1).

(b)
∣∣∣θ̂ − θ

∣∣∣ = OP (s̄
2ωT ) = oP (1).

(c) |ŷ − y| = OP (s̄
2ωT ) = oP (1), where y was defined in (3.17).

(d) |ĝ − g| = OP

(
[s̄2ωT ]

1/2
)
= oP (1).

Proof.

(a) Part (a) is trivial and follows directly from |||Θ|||2 = O(1).

(b) First, rewrite the expression of interest:

θ̂ − θ = [(m̂−m)′(Θ̂−Θ)(m̂−m)]/p+ [(m̂−m)′Θ(m̂−m)]/p

+ [2(m̂−m)′Θm]/p+ [2m′(Θ̂−Θ)(m̂−m)]/p

+ [m′(Θ̂−Θ)m]/p. (3.63)
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We now bound each of the terms in (3.63) using the expressions derived in [24] (see

their Proof of Lemma A.3), Lemma 12 and the fact that log p/T = o(1).

∣∣∣(m̂−m)′(Θ̂−Θ)(m̂−m)
∣∣∣/p ≤ ∥m̂−m∥2max

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1

= OP

( log p
T

· s̄2ωT

)
(3.64)

∣∣(m̂−m)′Θ(m̂−m)
∣∣/p ≤ ∥m̂−m∥2max|||Θ|||1 = OP

( log p
T

· s̄
)
. (3.65)

∣∣(m̂−m)′Θm
∣∣/p ≤ ∥m̂−m∥max|||Θ|||1 = OP

(√ log p

T
· s̄
)
. (3.66)

∣∣∣m′(Θ̂−Θ)(m̂−m)
∣∣∣/p ≤ ∥m̂−m∥max

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1

= OP

(√ log p

T
· s̄2ωT

)
. (3.67)

∣∣∣m′(Θ̂−Θ)m
∣∣∣/p ≤ ∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1
= OP

(
s̄2ωT

)
. (3.68)

(c) Part (c) trivially follows from Part (b).

(d) This is a direct consequence of Part (b) and the fact that
√
θ̂ − θ ≥

√
θ̂ −

√
θ.
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3.D Proof of Theorem 9

Using the definition of MRC weight in (3.13), we can rewrite

∥ŵMRC −wMRC∥1 ≤
g
p

[∥∥∥(Θ̂−Θ)(m̂−m)
∥∥∥
1
+
∥∥∥(Θ̂−Θ)m

∥∥∥
1
+ ∥Θ(m̂−m)∥1

]
|ĝ|g

+
|ĝ − g|∥Θm∥1

|ĝ|g

≤
g
p

[
p
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1
∥(m̂−m)∥max + p

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1
∥m∥max + p|||Θ|||1∥(m̂−m)∥max

]
|ĝ|g

+
p|ĝ − g||||Θ|||1∥m∥max

|ĝ|g

= OP

(
s̄2ωT ·

√
log p

T

)
+OP

(
s̄2ωT

)
+OP

(
s̄ ·
√

log p

T

)
+OP

(
[s̄2ωT ]

1/2 · s̄
)
= oP (1),

where we used Lemmas 1-2 to obtain the rates.

3.E Proof of Theorem 10

The KKT conditions for the nodewise Lasso in (3.25) imply that

τ̂2j = (ε̂j − Ê−jγ̂j)
′ε̂j/T, hence, ε̂′jÊΘ̂′

ε,j/T = 1.

As shown in [135], these KKT conditions also imply that

∥∥∥Ê′
−jÊΘ̂ε,j

∥∥∥
∞
/T ≤ λj/τ̂

2
j . (3.69)
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Therefore, the estimator of precision matrix needs to satisfy the following “extended KKT”

condition:

∥∥∥Σ̂εΘ̂
′
ε,j − ej

∥∥∥
∞

≤ λj/τ̂
2
j , (3.70)

where ej is the j-th unit column vector. Combining the rate in ℓ1 norm in Theorem 8 and

(3.70), we have:

∥∥∥Σ̂Θ̂′
j − ej

∥∥∥
∞

≤ λj/τ̂
2
j , (3.71)

Using the definition of ∆ in (3.23), it is straightforward to see that

∥∆∥∞/
√
T =

∥∥∥(Θ̂Σ̂− Ip)(ŵ −w)
∥∥∥
∞

≤
∥∥∥Θ̂Σ̂− Ip

∥∥∥
∞
∥ŵ −w∥1. (3.72)

Therefore, combining (3.71) and (3.72), we have

∥∆∥∞ ≤
√
T∥ŵ −w∥1max

j
λj/τ̂

2
j = OP

(√
T · (s0 ∨ s̄2)ωT · ωT

)
(3.73)

= OP

(
(s0 ∨ s̄2)

(
log p/

√
T +

√
T/p

))
= oP (1). (3.74)

Finally, we show that
∥∥∥Ω̂−Θ

∥∥∥
∞

= oP (1). Using Theorem 8 and Lemma 12 we have∥∥∥Θ̂j

∥∥∥
1
= OP (sj). Also,

Ω̂ = Θ̂Σ̂Θ̂′ = (Θ̂Σ̂− Ip)Θ̂
′ + Θ̂′. (3.75)
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And using 3.71 and 3.72 together with maxj λjs
2
j = oP (1):

∥∥∥(Θ̂Σ̂− Ip)Θ̂
′
∥∥∥
∞

≤ max
j
λj

∥∥∥Θ̂j

∥∥∥
1
/τ̂2j = oP (1). (3.76)

It follows that

∥∥∥Θ̂−Θ
∥∥∥
∞

≤ max
j

∥∥∥Θ̂j −Θj

∥∥∥
2
≤ max

j
λj
√
sj = oP (1). (3.77)

Combining 3.75-3.77 completes the proof.
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Chapter 4

Learning from Forecast Errors: A

New Approach to Forecast

Combinations

Abstract

1 Forecasters often use common information and hence make common mistakes. We

propose a new approach, Factor Graphical Model (FGM), to forecast combinations

that separates idiosyncratic forecast errors from the common errors. FGM exploits

the factor structure of forecast errors and the sparsity of the precision matrix of

1This paper is co-authored with Dr. Tae-Hwy Lee and is circulated under the name “Learning from
Forecast Errors: A New Approach to Forecast Combinations”.
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the idiosyncratic errors. We prove the consistency of forecast combination weights

and mean squared forecast error estimated using FGM, supporting the results with

extensive simulations. Empirical applications to forecasting macroeconomic series

shows that forecast combination using FGM outperforms combined forecasts us-

ing equal weights and graphical models without incorporating factor structure of

forecast errors.

4.1 Introduction

A search for the best forecast combination has been an important on-going research

question in economics. [33] pointed out that combining forecasts is “practical, economical

and useful. Many empirical tests have demonstrated the value of composite forecasting. We

no longer need to justify that methodology”. However, as demonstrated by [42], there are

still some unresolved issues. Despite the findings based on the theoretical grounds, equal-

weighted forecasts have proved surprisingly difficult to beat. Many methodologies that

seek for the best forecast combination use equal weights as a benchmark: for instance, [42]

develop “partially egalitarian Lasso”.

The success of equal weights is partly due to the fact that the forecasters use

the same set of public information to make forecasts, hence, they tend to make common

mistakes. For example, in the European Central Bank’s Survey of Professional forecasters

of Euro-area real GDP growth, the forecasters tend to jointly understate or overstate GDP

growth. Therefore, we stipulate that the forecast errors include common and idiosyncratic

components, which allows the forecast errors to move together due to the common error
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component. Our paper provides a simple framework to learn from analyzing forecast errors:

we separate unique errors from the common errors to improve the accuracy of the combined

forecast and support the merits of such approach using an empirical application to a large

dataset of macroeconomic time series.

Dating back to [12], the well-known expression for the optimal forecast combi-

nation weights requires an estimator of inverse covariance (precision) matrix. Graphical

models are a powerful tool to estimate precision matrix directly, avoiding the step of ob-

taining an estimator of covariance matrix to be inverted. Prominent examples of graphical

models include Graphical Lasso ( [65]) and nodewise regression ( [108]). Despite using

different strategies for estimating precision matrix, all graphical models assume that the

latter is sparse: many entries of precision matrix are zero, which is a necessary condition

to consistently estimate inverse covariance. Our paper demonstrates that such assumption

contradicts the stylized fact that experts tend to make common mistakes and hence the

forecast errors move together through common factors. We show that graphical models fail

to recover entries of precision matrix under the factor structure.

This paper overcomes the aforementioned challenge and develops a new precision

matrix estimator for the forecast errors under the approximate factor model with unobserved

factors. We call our algorithm the Factor Graphical Model. We use a factor model to

estimate an idiosyncratic component of the forecast errors, and then apply a Graphical

model (Graphical Lasso or nodewise regression) for the estimation of the precision matrix

of the idiosyncratic component.
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There are a few papers that used graphical models in different contexts to esti-

mate the covariance matrix of the idiosyncratic component when the factors are known

and the loadings are assumed to be constant. [18] estimate a sparse covariance matrix for

high-frequency data and construct the realized network for financial data. [11] develop a

power-law partial correlation network based on the Gaussian graphical models. [87] uses

the Weighted Graphical Lasso to estimate a sparse covariance matrix of the idiosyncratic

component for a factor model with observable factors for high-frequency financial data.

Our paper makes several contributions. First, we allow the forecast errors to

be highly correlated due to the common component which is motivated by the stylized

fact that the forecasters tend to jointly understate or overstate the predicted series of

interest. Second, we develop a high-dimensional precision matrix estimator which combines

the benefits of the factor structure and sparsity of the precision matrix of the idiosyncratic

component for the forecast combination under the approximate factor model. We prove

consistency of forecast combination weights and the Mean Squared Forecast Error (MSFE)

estimated using Factor Graphical models. Third, an empirical application to forecasting

macroeconomic series in big data environment shows that incorporating the factor structure

of the forecast errors into the graphical models improves the performance of a combined

forecast over forecast combination using equal weights and graphical models without factors.

The paper is structured as follows: Section 2 reviews Graphical Lasso and nodewise

regression. Section 3 studies the approximate factor models for the forecast combination.

Section 4 introduces the Factor Graphical Models and discusses the choice of the tuning

parameters. Section 5 contains theoretical results and Section 6 validates these results
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using simulations. Section 7 studies an empirical application for macroeconomic time-series.

Section 8 concludes and Section 9 collects the proofs of the theorems.

Notation. For the convenience of the reader, we summarize the notation to be

used throughout the paper. Let Sp denote the set of all p× p symmetric matrices. For any

matrix C, its (i, j)-th element is denoted as cij . Given a vector u ∈ Rd and a parameter

a ∈ [1,∞), let ∥u∥a denote ℓa-norm. Given a matrix U ∈ Sp, let Λmax(U) ≡ Λ1(U) ≥

Λ2(U) ≥ . . . ≥ Λmin(U) ≡ Λp(U) be the eigenvalues of U. Given a matrix U ∈ Rp×p

and parameters a, b ∈ [1,∞), let |||U|||a,b ≡ max∥y∥a=1∥Uy∥b denote the induced matrix-

operator norm. The special cases are |||U|||1 ≡ max1≤j≤p
∑p

i=1|ui,j | for the ℓ1/ℓ1-operator

norm; the operator norm (ℓ2-matrix norm) |||U|||22 ≡ Λmax(UU′) is equal to the maximal

singular value of U. Finally, ∥U∥∞ ≡ maxi,j |ui,j | denotes the element-wise maximum.

4.2 Graphical Models for Forecast Errors

This section briefly reviews a class of models, called graphical models, that search

for the estimator of the precision matrix. In graphical models, each vertex represents a

random variable, and the graph visualizes the joint distribution of the entire set of random

variables. Sparse graphs have a relatively small number of edges.

Suppose we have p competing forecasts of the univariate series yt, t = 1, . . . , T .

Let et = (e1t, . . . , ept)
′ ∼ N (0,Σ) be a p× 1 vector of forecast errors. Assume they follow a

Gaussian distribution. The precision matrix Σ−1 ≡ Θ contains information about partial

covariances between the variables. For instance, if θij , which is the ij-th element of the
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precision matrix, is zero, then the variables i and j are conditionally independent, given the

other variables.

Let W be the estimate of Σ. Given a sample {et}Tt=1, let S = (1/T )
∑T

t=1(et)(et)
′

denote the sample covariance matrix, which can be used as a choice for W. Also, let

D̂2 ≡ diag(W). We can write down the Gaussian log-likelihood (up to constants) l(Θ) =

log det(Θ) − trace(WΘ). When W = S, the maximum likelihood estimator of Θ is Θ̂ =

S−1.

In the high-dimensional settings it is necessary to regularize the precision matrix,

which means that some edges will be zero. In the following subsections we discuss two most

widely used techniques to estimate sparse high-dimensional precision matrices.

4.2.1 Graphical Lasso

The first approach to induce sparsity in the estimation of precision matrix is to add

penalty to the maximum likelihood and use the connection between the precision matrix

and regression coefficients to maximize the following weighted penalized log-likelihood ( [76]):

Θ̂λ = arg min
Θ=Θ′

trace(WΘ)− log det(Θ) + λ
∑
i ̸=j

d̂iid̂jj |θij |, (4.1)

over positive definite symmetric matrices, where λ ≥ 0 is a penalty parameter. The subscript

λ in Θ̂λ means that the solution of the optimization problem in (4.1) will depend upon the

choice of the tuning parameter. More details on the latter are provided in Subsection

4.1 that describes how to choose the shrinkage intensity in practice. In order to simplify

notation, we will omit the subscript.
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One of the most popular and fast algorithms to solve the optimization problem in

(4.1) is called the Graphical Lasso (GLASSO), which was introduced by [65]. Define the

following partitions of W, S and Θ:

W =


W11︸︷︷︸

(p−1)×(p−1)

w12︸︷︷︸
(p−1)×1

w′
12 w22

 ,S =


S11︸︷︷︸

(p−1)×(p−1)

s12︸︷︷︸
(p−1)×1

s′12 s22

 ,Θ =


Θ11︸︷︷︸

(p−1)×(p−1)

θ12︸︷︷︸
(p−1)×1

θ′
12 θ22

 .

(4.2)

Let β ≡ −θ12/θ22. The idea of GLASSO is to set W = S + λI in (4.1) and combine

the gradient of (4.1) with the formula for partitioned inverses to obtain the following ℓ1-

regularized quadratic program

β̂ = arg min
β∈Rp−1

{1
2
β′W11β − β′s12 + λ∥β∥1

}
, (4.3)

As shown by [65], (4.3) can be viewed as a LASSO regression, where the LASSO estimates

are functions of the inner products of W11 and s12. Hence, (4.1) is equivalent to p coupled

LASSO problems. Once we obtain β̂, we can estimate the entries Θ using the formula for

partitioned inverses. GLASSO procedure is summarized in Algorithm 7.
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Algorithm 7: Graphical Lasso ( [65])

1: Initialize W = S+ λI. The diagonal of W remains the same in what follows.

2: Repeat for j = 1, . . . , p, 1, . . . , p, . . . until convergence:

• Partition W into part 1: all but the j-th row and column, and part 2: the j-th

row and column.

• Solve the score equations using the cyclical coordinate descent:

W11β − s12 + λ · Sign(β) = 0.

This gives a (p− 1)× 1 vector solution β̂.

• Update ŵ12 = W11β̂.

3: In the final cycle (for i = 1, . . . , p) solve for

1

θ̂22
= w22 − β̂′ŵ12, θ̂12 = −θ̂22β̂.

As was shown in [65], the estimator produced by Algorithm 7 is guaranteed to be

positive definite. Furthermore, [76] showed that Algorithm 7 is guaranteed to converge and

produces consistent estimator of precision matrix under certain sparsity conditions.
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4.2.2 Nodewise Regression

An alternative approach to induce sparsity in the estimation of precision matrix

in equation (4.1) is to solve for Θ̂ one column at a time via linear regressions, replacing

population moments by their sample counterparts S. When we repeat this procedure for

each variable j = 1, . . . , p, we will estimate the elements of Θ̂ column by column using

{et}Tt=1 via p linear regressions. [108] use this approach (which we will refer to as MB)

to incorporate sparsity into the estimation of the precision matrix. Instead of running p

coupled LASSO problems as in GLASSO, they fit p separate LASSO regressions using each

variable (node) as the response and the others as predictors to estimate Θ̂. This method is

known as the “nodewise” regression and it is reviewed below based on [135] and [24].

Let ej be a T × 1 vector of observations for the j-th regressor, the remaining

covariates are collected in a T × p matrix E−j . For each j = 1, . . . , p we run the following

Lasso regressions:

γ̂j = arg min
γ∈Rp−1

(
∥ej −E−jγ∥22/T + 2λj∥γ∥1

)
, (4.4)

where γ̂j = {γ̂j,k; j = 1, . . . , p, k ̸= j} is a (p − 1) × 1 vector of the estimated regression

coefficients that will be used to construct the estimate of the precision matrix, Θ̂. Define

Ĉ =



1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p
...

...
. . .

...

−γ̂p,1 −γ̂p,2 · · · 1


. (4.5)
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For j = 1, . . . , p, define

τ̂2j = ∥ej −E−jγ̂j∥22/T + λj∥γ̂j∥1 (4.6)

and write

T̂2 = diag(τ̂21 , . . . , τ̂
2
p ). (4.7)

The approximate inverse is defined as

Θ̂λj
= T̂−2Ĉ. (4.8)

Similarly to GLASSO, the subscript λj in Θ̂λj
means that the estimated Θ will depend

upon the choice of the tuning parameter: more details are provided in Subsection 4.1 which

discusses how to choose shrinkage intensity in practice. The subscript is omitted to simplify

the notation. The procedure to estimate the precision matrix using nodewise regression is

summarized in Algorithm 8.

Algorithm 8: Nodewise regression by [108] (MB)

1: Repeat for j = 1, . . . , p :

• Estimate γ̂j using (4.4) for a given λj .

• Select λj using a suitable information criterion (see section 4.1 for the possible

options).

2: Calculate Ĉ and T̂2 .

3: Return Θ̂ = T̂−2Ĉ.
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One of the caveats to keep in mind when using the MB method is that the estimator

in (4.8) is not self-adjoint. [24] show (see their Lemma A.1) that Θ̂ in (4.8) is positive definite

with high probability, however, it could still occur that Θ̂ is not positive definite in finite

samples. In such cases we use the matrix symmetrization procedure as in [56] and then use

eigenvalue cleaning as in [25] and [72].

4.3 Approximate Factor Models for Forecast Errors

The approximate factor models for the forecasts were first considered by [29].

They modeled a panel of ex-ante forecasts of a single time-series as a dynamic factor model

and found out that the combined forecasts improved on individual ones when all forecasts

have the same information set (up to difference in lags). This result emphasizes the ben-

efit of forecast combination even when the individual forecasts are not based on different

information and, therefore, do not broaden the information set used by any one forecaster.

In this paper, we are interested in finding the combination of forecasts which yields

the best out-of-sample performance in terms of the mean-squared forecast error. We claim

that the forecasters use the same set of public information to make forecasts and hence they

tend to make common mistakes. Figure 4.3.1 illustrates this statement: it shows quarterly

forecasts of Euro-area real GDP growth produced by the European Central Bank’s Survey

of Professional Forecasters from 1999Q3 to 2019Q3. As described in [42], forecasts are

solicited for one year ahead of the latest available outcome: e.g., the 2007Q1 survey asked

the respondents to forecast the GDP growth over 2006Q3-2007Q3. As evidenced from

Figure 4.3.1, forecasters tend to jointly understate or overstate GDP growth, meaning that
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their forecast errors include common and idiosyncratic parts. Therefore, we can model the

tendency of the forecast errors to move together via factor decomposition.

Figure 4.3.1: The European Central Bank’s (ECB) Survey of Professional Fore-
casters (SPF). Each circle denotes the forecast of each professional forecaster in the SPF
for the quarterly 1-year-ahead forecasts of Euro-area real GDP growth, year-on-year per-
centage change. Actual series is the blue line. Source: European Central Bank.

Recall that we have p competing forecasts of the univariate series yt, t = 1, . . . , T

and et = (e1t, . . . , ept)
′ ∼ N (0,Σ) is a p × 1 vector of forecast errors. Assume that the

generating process for the forecast errors follows a q-factor model:

et︸︷︷︸
p×1

= B ft︸︷︷︸
q×1

+ εt, t = 1, . . . , T (4.9)

where ft = (f1t, . . . , fqt)
′ are the common factors of the forecast errors for p models, B is

a p × q matrix of factor loadings, and εt is the idiosyncratic component that cannot be
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explained by the common factors. Unobservable factors, ft, and loadings, B, are usually

estimated by the principal component analysis (PCA), studied in [5,6,35,126]. Strict factor

structure assumes that the idiosyncratic forecast error terms, εt, are uncorrelated with

each other, whereas approximate factor structure allows correlation of the idiosyncratic

components ( [28]).

We use the following notations: E[εtε′t] = Σε, E[ftf ′t ] = Σf , E[ete′t] = Σ =

BΣfB
′ + Σε, and E[εt|ft] = 0. Let Θ = Σ−1, Θε = Σ−1

ε and Θf = Σ−1
f be the preci-

sion matrices of forecast errors, idiosyncratic and common components respectively. The

objective function to recover factors and loadings from (4.9) is:

min
f1,...,fT ,B

1

T

T∑
t=1

(et −Bft)
′(et −Bft) (4.10)

s.t. B′B = Iq, (4.11)

where (4.11) is the assumption necessary for the unique identification of factors. Fix-

ing the value of B, we can project forecast errors et into the space spanned by B: ft =

(B′B)−1B′et = B′et. When combined with (4.10), this yields a concentrated objective

function for B:

max
B

tr
[
B′
( 1
T

T∑
t=1

ete
′
t

)
B
]
. (4.12)

It is well-known (see [126] among others) that B̂ estimated from the first q eigenvec-

tors of 1
T

∑T
t=1 ete

′
t is the solution to (4.12). Given a sample of the estimated residu-

als {ε̂t = et − B̂f̂t}Tt=1 and the estimated factors {f̂t}Tt=1, let Σ̂ε = (1/T )
∑T

t=1 ε̂tε̂
′
t and

Σ̂f = (1/T )
∑T

t=1 f̂tf̂
′
t be the sample counterparts of the covariance matrices.
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Moving forward to the forecast combination exercise, suppose we have p competing

forecasts, ŷt = (ŷ1,t, . . . , ŷp,t)
′, of the variable yt, t = 1, . . . , T . The forecast combination is

defined as follows:

ŷct = w′ŷt (4.13)

where w is a p × 1 vector of weights. Define a measure of risk MSFE(w,Σ) = w′Σw. As

shown in [12], the optimal forecast combination minimizes the variance of the combined

forecast error:

min
w

MSFE = min
w

E
[
w′ete

′
tw
]
= min

w
w′Σw, s.t. w′ιp = 1, (4.14)

where ιp is a p×1 vector of ones. The solution to (4.14) yields a p×1 vector of the optimal

forecast combination weights:

w =
Θιp
ι′pΘιp

. (4.15)

If the true precision matrix is known, the equation (4.15) guarantees to yield the optimal

forecast combination. In reality, one has to estimate Θ. Hence, the out-of-sample perfor-

mance of the combined forecast is affected by the estimation error. As pointed out by [125],

when the estimation uncertainty of the weights is taken into account, there is no guaran-

tee that the “optimal” forecast combination will be better than the equal weights or even
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improve the individual forecasts. Define a = ι′pΘιp/p, and â = ι′pΘ̂ιp/p. We can write

∣∣∣∣∣MSFE(ŵ, Σ̂)

MSFE(w,Σ)
− 1

∣∣∣∣∣ =
∣∣∣∣ â−1

a−1
− 1

∣∣∣∣ = |a− â|
|â|

, (4.16)

and

∥ŵ −w∥1 ≤
a
∥(Θ̂−Θ)ιp∥1

p + |a− â|∥Θιp∥1
p

|â|a
. (4.17)

Therefore, in order to control the estimation uncertainty in the MSFE and combination

weights, one needs to obtain a consistent estimator of the precision matrix Θ. More details

are discussed in Subsection 5.2 and Theorems 12 and 13.

4.4 Factor Graphical Models for Forecast Errors

Since our interest is in constructing weights for the forecast combination, our goal

is to estimate a precision matrix of the forecast errors. However, as pointed out by [87],

when common factors are present across the forecast errors, the precision matrix cannot be

sparse because all pairs of the forecast errors are partially correlated given other forecast

errors through the common factors. To illustrate this point, we generated forecast errors

that follow (4.9) with q = 2 and εt ∼ N (0,Σε), where σε,ij = 0.4|i−j| is the i, j-th element

of Σε. The vector of factors ft is drawn from N (0, Iq/10), and the entries of the matrix of

factor loadings for forecast error j = 1, . . . , p, bj , are drawn from N (0, Iq/100). The full

loading matrix is given by B = (b1, . . . ,bp)
′. Let q̂ denote the number of factors estimated

by the PCA. We set (T, p) = (1000, 50) and plot the heatmap and histogram of population
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partial correlations of forecast errors et, which are the entries of a precision matrix, in

Figure 4.4.1. We now examine the performance of graphical models for estimating partial

correlations under the factor structure. Figure 4.4.2 shows the partial correlations estimated

by GLASSO that does not take into account factors: due to strict sparsity imposed by

graphical models almost all partial correlations are shrunk to zero which degenerates the

histogram in Figure 4.4.2. This means that strong sparsity assumption on Θ imposed by

classical graphical models (such as GLASSO and nodewise regression from Algorithms 7-8)

is not realistic under the factor structure.

Figure 4.4.1: Heatmap and histogram of population partial correlations. T = 1000,
p = 50, q = 2.

In order to avoid the aforementioned problem, instead of imposing sparsity as-

sumption on the precision of forecast errors, Θ, we require sparsity of the precision matrix

of the idiosyncratic errors, Θε. The latter is obtained using the estimated residuals after

removing the co-movements induced by the factors (see [11, 18, 87]). Naturally, once we
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Figure 4.4.2: Heatmap and histogram of sample partial correlations estimated
using GLASSO with no factors. T = 1000, p = 50, q = 2, q̂ = 0.

condition on the common components, it is sensible to assume that many remaining partial

correlations of εt will be negligible and thus Θε is sparse.

We use the weighted Graphical Lasso and nodewise regression as shrinkage tech-

niques to estimate the precision matrix of residuals. Once the precision of the low-rank

component is obtained, we use the Sherman-Morrison-Woodbury formula to estimate the

precision of forecast errors:

Θ = Θε −ΘεB[Θf +B′ΘεB]−1B′Θε. (4.18)

To obtain Θ̂f = Σ̂−1
f , we use Σ̂f = 1

T

∑T
t=1 f̂tf̂

′
t . To get Θ̂ε, we develop two approaches:

the first uses the weighted GLASSO Algorithm 7, with the initial estimate of the covariance

matrix of the idiosyncratic errors calculated as Σ̂ε = 1
T

∑T
t=1 ε̂tε̂

′
t, where ε̂t = et − B̂f̂t.

The second uses nodewise regression and applies Algorithm 8 to ε̂t. Once we estimate Θ̂f
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and Θ̂ε, we can get Θ̂ using a sample analogue of (4.18). We call the proposed procedures

Factor Graphical Lasso and Factor nodewise regression and summarize them in Algorithm

9 and Algorithm 10 respectively.

Algorithm 9: Factor Graphical Lasso (Factor GLASSO)

1: Estimate factors, f̂t, and factor loadings, B̂, using PCA. Obtain Σ̂f = 1
T

∑T
t=1 f̂tf̂

′
t ,

Θ̂f = Σ̂−1
f , ε̂t = et − B̂f̂t, and Σ̂ε =

1
T

∑T
t=1 ε̂tε̂

′
t.

2: Estimate a sparse Θε using the weighted Graphical Lasso in (4.1) initialized with Wε =

Σ̂ε + λI:

Θ̂ε,λ = arg min
Θε=Θ′

ε

trace(WεΘε)− log det(Θε) + λ
∑
i ̸=j

d̂ε,iid̂ε,jj |θε,ij |. (4.19)

to get Θ̂ε.

3: Use Θ̂f from Step 1 and Θ̂ε from Step 2 to estimate Θ using the sample counterpart

of the Sherman-Morrison-Woodbury formula in (4.18):

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε. (4.20)
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Algorithm 10: Factor nodewise regression [108] (Factor MB)

1: Estimate factors, f̂t, and factor loadings, B̂, using PCA. Obtain Σ̂f = 1
T

∑T
t=1 f̂tf̂

′
t ,

Θ̂f = Σ̂−1
f , and ε̂t = et − B̂f̂t.

2: Estimate a sparse Θε using nodewise regression: let ε̂j be a T ×1 vector of observations

for the j-th regressor, and Υ̂−j is a T × p matrix that collects the remaining covariates.

Run LASSO regressions in (4.4) for ε̂t:

γ̂ε,j = arg min
γε∈Rp−1

(∥∥∥ε̂j − Υ̂−jγε

∥∥∥2
2
/T + 2λj∥γε∥1

)
, (4.21)

to get Θ̂ε.

3: Use Θ̂f from Step 1 and Θ̂ε from Step 2 to estimate Θ using the sample counterpart

of the Sherman-Morrison-Woodbury formula in (4.18):

Θ̂ = Θ̂ε − Θ̂εB̂[Θ̂f + B̂′Θ̂εB̂]−1B̂′Θ̂ε. (4.22)

Note that Algorithms 9 and 10 involve the tuning parameters λ and λj , the pro-

cedure on how to choose the shrinkage intensity coefficients is described in more detail in

Subsection 4.1 that describes how to choose the shrinkage intensity in practice, and Section

5 that establishes sparsity requirements that guarantee convergence of (4.19), (4.20), (4.21),

and (4.22).
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We can use Θ̂ to estimate the forecast combination weights ŵ

ŵ =
Θ̂ιp

ι′pΘ̂ιp
, (4.23)

where Θ̂ is obtained from Algorithm 9 or Algorithm 10. Let us now revisit the motivating

example at the beginning of this section: Figures 4.4.3-4.4.5 plot the heatmaps and the

estimated partial correlations when precision matrix is computed using Factor GLASSO

in Algorithm 2 with q̂ ∈ {1, 2, 3} statistical factors. The heatmaps and histograms closely

resemble population counterparts in Figure 4.4.1, and the result is not very sensitive to over-

or under-estimating the number of factors q̂. This demonstrates that using a combination of

classical graphical models and factor structure via Factor Graphical Models in Algorithms

9-10 improves upon the performance of classical graphical models: our approach allows

to extract the benefits of modeling common movements in forecast errors, captured by a

factor model, and the benefits of using many competing forecasting models that give rise

to a high-dimensional precision matrix, captured by a graphical model.

4.4.1 The Choice of the Tuning Parameters for FGM

Algorithms 9-10 require the tuning parameters λ (from Algorithm 7) and λj (from

Algorithm 8) respectively. We now comment on the choices for both tuning parameters.

To motivate the choice of the tuning parameter for GLASSO and Factor GLASSO,

we first briefly discuss some of the existing options to motivate our choice of λ in (4.1) in

simulations and the empirical application. Usually λ is selected from a grid of values
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Figure 4.4.3: Heatmap and histogram of sample partial correlations estimated
using Factor GLASSO with 1 statistical factor. T = 1000, p = 50, q = 2, q̂ = 1.

Figure 4.4.4: Heatmap and histogram of sample partial correlations estimated
using Factor GLASSO with 2 statistical factors. T = 1000, p = 50, q = 2, q̂ = 2.

Fλ = (λmin, . . . , λmax) which minimizes the score measuring the goodness-of-fit. Some pop-

ular examples include multifold cross-validation (CV), Stability Approach to Regularization

Selection (STARS, [101]), and the Extended Bayesian Information Criteria (EBIC, [64]).
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Figure 4.4.5: Heatmap and histogram of sample partial correlations estimated
using Factor GLASSO with 3 statistical factors. T = 1000, p = 50, q = 2, q̂ = 3.

Since we are interested in estimating a sparse high-dimensional precision matrix, we need to

choose a method for selecting the tuning parameter which is consistent in high-dimensions.

[109] suggest that CV performs poorly for high-dimensional data, it overfits ( [101]), and

it does not consistently select models. [143] pointed out that the STARS is not computa-

tionally efficient. It is consistent under certain conditions, but suffers from the problem of

overselection in estimating Gaussian graphical models. In contrast, EBIC is computation-

ally efficient and is considered to be the state-of-the-art technique for choosing the tuning

parameter for the undirected graphs. The score measuring the goodness of fit for EBIC can

be written as:

λEBIC = argmin
λ∈Fλ

{−2l(Θε,λ) + log(T )df(Θε,λ) + 4df(Θε,λ) log(p)η}, (4.24)

where η ∈ [0, 1], Θε,λ is the precision matrix estimated for the tuning parameter λ ∈ Fλ,
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and the log-likelihood is l(Θε,λ) = log det(Θε,λ) − trace(WεΘε). For the estimation of

graphical models, the degrees of freedom are usually defined as the number of unique non-

zero elements in the estimated precision matrix, df(Θε,λ) =
∑

i≤j IΘε,λ,i,j ̸=0. [31] showed

that when η = 1, EBIC is consistent as long as the dimension p does not grow exponentially

with the sample size T . Hence, in our simulations and the empirical exercise we use EBIC

with η = 1 for GLASSO and Factor GLASSO in Algorithms 7 and 9.

For Algorithms 8 and 10, we follow [24] to choose λj in (4.4) by minimizing the gen-

eralized information criterion (GIC). Let
∣∣∣Ŝj(λj)∣∣∣ denote the estimated number of nonzero

parameters in the vector γ̂ε,j :

GIC(λj) = log
(∥∥∥ε̂j − Υ̂−jγε

∥∥∥2
2
/T
)
+
∣∣∣Ŝj(λj)∣∣∣ log(p)

T
log(log(T )). (4.25)

As pointed out by [24], the GIC selects the true model with probability approaching one

both when p > T and when p ≤ T .

4.5 Asymptotic Properties

We first introduce some terminology and notations. Let A ∈ Sp. Define the

following set for j = 1, . . . , p:

Dj(A) ≡ {i : Aij ̸= 0, i ̸= j}, dj(A) ≡ card(Dj(A)), d(A) ≡ max
j=1,...,p

dj(A), (4.26)

where dj(A) is the number of edges adjacent to the vertex j (i.e., the degree of vertex j),

and d(A) measures the maximum vertex degree. Define S(A) ≡
⋃p

j=1Dj(A) to be the
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overall off-diagonal sparsity pattern, and s(A) ≡
∑p

j=1 dj(A) is the overall number of edges

contained in the graph. Note that card(S(A)) ≤ s(A): when s(A) = p(p− 1)/2 this would

give a fully connected graph.

For the nodewise regression in (4.21), denote Dj ≡ {k; γj,k ̸= 0} to be the active

set for row γj , and let dj ≡ |Dj |. Define d̄ ≡ max1≤j≤p dj .

4.5.1 Assumptions

We now list the assumptions on the model (4.9):

(A.1) (Spiked covariance model) As p → ∞, Λ1(Σ) > Λ2(Σ) + . . . > Λq(Σ) ≫ Λq+1(Σ) ≥

. . . ≥ Λp(Σ) > 0, where Λj(Σ) = O(p) for j ≤ q, while the non-spiked eigenvalues are

bounded, Λj(Σ) = o(p) for j > q. We further require that Λ1(Σ) is uniformly bounded

away from infinity.

(A.2) (Pervasive factors) There exists a positive definite q × q matrix B̆ such that∣∣∣∣∣∣∣∣∣p−1B′B− B̆
∣∣∣∣∣∣∣∣∣

2
→ 0 and Λmin(B̆)−1 = O(1) as p→ ∞.

We also impose strong mixing condition. Let F0
−∞ and F∞

T denote the σ-algebras that

are generated by {(ft, εt) : t ≤ 0} and {(ft, εt) : t ≥ T} respectively. Define the mixing

coefficient

α(T ) = sup
A∈F0

−∞,B∈F∞
T

|PrAPrB − PrAB|. (4.27)

(A.3) (Strong mixing) There exists r3 > 0 such that 3r−1
1 + 1.5r−1

2 + 3r−1
3 > 1, and C > 0

satisfying, for all T ∈ Z+, α(T ) ≤ exp(−CT r3).
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Assumption (A.1) divides the eigenvalues into the diverging and bounded ones.

This assumption is satisfied by the factor model with pervasive factors, which is stated in

Assumption (A.2). We say that a factor is pervasive in the sense that it has non-negligible

effect on a non-vanishing proportion of individual time-series. Assumptions (A.1)-(A.2)

are crucial for estimating a high-dimensional factor model: they ensure that the space

spanned by the principal components in the population level Σ is close to the space spanned

by the columns of the factor loading matrix B. Assumption (A.3) is a technical condition

which is needed to consistently estimate the factors and loadings.

Let Σ = ΓΛΓ
′
, where Σ is the covariance matrix of returns that follow factor

structure described in equation (4.9). Define Σ̂, Λ̂q, Γ̂q to be the estimators of Σ,Λ,Γ. We

further let Λ̂q = diag(λ̂1, . . . , λ̂q) and Γ̂q = (v̂1, . . . , v̂q) to be constructed by the first q

leading empirical eigenvalues and the corresponding eigenvectors of Σ̂ and B̂B̂′ = Γ̂qΛ̂qΓ̂
′
q.

Similarly to [56], we require the following bounds on the componentwise maximums of the

estimators:

(B.1)
∥∥∥Σ̂−Σ

∥∥∥
max

= OP (
√
log p/T ),

(B.2)
∥∥∥(Λ̂q −Λ)Λ−1

∥∥∥
max

= OP (
√

log p/T ),

(B.3)
∥∥∥Γ̂q − Γ

∥∥∥
max

= OP (
√

log p/(Tp)).

Assumptions (B.1)-(B.3) are needed in order to ensure that the first q principal compo-

nents are approximately the same as the columns of the factor loadings. The estimator Σ̂

can be thought of as any “pilot” estimator that satisfies (B.1). For sub-Gaussian distribu-

tions, sample covariance matrix, its eigenvectors and eigenvalues satisfy (B.1)-(B.3).
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In addition, the following structural assumption on the model is imposed:

(C.1) ∥Σ∥max = O(1) and ∥B∥max = O(1).

4.5.2 Convergence of Forecast Combination Weights and MSFE

To study the properties of the combination weights in (4.23) and MSFE, we first

need to establish the convergence properties of precision matrix produced by Algorithms

9-10. Let ωT ≡
√
log p/T +1/

√
p. Also, let s(Θε) = OP (sT ) for some sequence sT ∈ (0,∞)

and d(Θε) = OP (dT ) for some sequence dT ∈ (0,∞). The deterministic sequences sT and

dT will control the sparsity Θε for Factor GLASSO. Note that dT can be smaller than or

equal to sT . The reason why we distinguish between these two sequences is to juxtapose it

with the sparsity conditions for the Factor MB, where we will only use the analogue of dT

which was defined as d̄ at the beginning of this section.

Let ϱ1T be a sequence of positive-valued random variables such that ϱ−1
1T ωT

p−→ 0

and ϱ1TdT sT
p−→ 0, with λ ≍ ωT (where λ is the tuning parameter for the Factor GLASSO

in (4.19)). [97] show that under the Assumptions (A.1)-(A.3), (B.1)-(B.3) and (C.1),∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

1
= OP (ϱ1TdT sT ) for Factor GLASSO. Furthermore, let ϱ2T be a sequence of

positive-valued random variables such that ϱ−1
2T ωT

p−→ 0 and ϱ2T d̄
2 p−→ 0, with λj ≍ ωT (where

λj is the tuning parameter for Factor nodewise regression in (4.21)). [122] shows that under

the Assumptions (A.1)-(A.3), (B.1)-(B.3), and (C.1), we have
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1
= OP (ϱ2T d̄

2).
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It is interesting to compare the rates for precision matrix obtained by two factor

graphical models: if dT = sT , the rates are similar, whereas if dT < sT Factor MB is

expected to converge faster. In fact, in high dimensions when p > T and ωT ≃
√
log p/T ,

Factor MB achieves the minimax rate for this problem (see [21] for the rate expression).

Having established the convergence rates for precision matrix, we now study the

properties of the combination weights and MSFE.

Theorem 12 Assume (A.1)-(A.3), (B.1)-(B.3), and (C.1) hold.

(i) If ϱ1Td
2
T sT

p−→ 0, Algorithm 9 consistently estimates forecast combination weights in

(4.23): ∥ŵ −w∥1 = OP

(
ϱ1Td

2
T sT

)
= oP (1).

(ii) If ϱ2T d̄
3 p−→ 0, Algorithm 10 consistently estimates forecast combination weights in

(4.23): ∥ŵ −w∥1 = OP

(
ϱ2T d̄

3
)
= oP (1).

Theorem 13 Assume (A.1)-(A.3), (B.1)-(B.3), and (C.1) hold.

(i) If ϱ1TdT sT
p−→ 0, Algorithm 9 consistently estimates MSFE(w,Σ):

∣∣∣MSFE(ŵ,Σ̂)
MSFE(w,Σ) − 1

∣∣∣ =
OP (ϱ1TdT sT ) = oP (1).

(ii) If ϱ2T d̄
2 p−→ 0, Algorithm 10 consistently estimates MSFE(w,Σ):

∣∣∣MSFE(ŵ,Σ̂)
MSFE(w,Σ) − 1

∣∣∣ =
OP (ϱ2T d̄

2) = oP (1).

Proofs of Theorems 12-13 can be found in Section 9. Note that the rates of convergence

for MSFE and precision matrix Θ are the same and both are faster than the combination

weight rates in Theorem 12. In contrast to classical graphical models in Algorithms 7-8, the

convergence properties of which were examined by [76] among others, the rates in Theorems

12-13 depend on the sparsity of Θε rather than of Θ. This means that instead of assuming

that many partial correlations of forecast errors et are negligible, which is not realistic under
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the factor structure, we impose a milder restriction requiring many partial correlations of εt

to be negligible once the common components have been taken into account. Similarly to

the comparison of precision matrix Θ obtained by two graphical models, if dT < sT Factor

MB is expected to converge faster for combination weights and MSFE. In our simulations

the rates of Factor Graphical models are comparable, whereas an empirical application

shows that for most macroeconomic series that we studied Factor GLASSO outperforms

Factor MB. This suggests that for macroeconomic forecasting using weighted penalized

log-likelihood and running p coupled LASSO problems for estimating precision matrix is

preferable to fitting p separate LASSO regressions using each variable as the response and

the others as predictors.

4.6 Monte Carlo

We divide the simulation results into two subsections. In the first subsection we

study the consistency of the Factor GLASSO and Factor MB for estimating precision ma-

trix and the combination weights. In the second subsection we evaluate the out-of-sample

forecasting performance of combined forecasts based on the Factor Graphical models from

Algorithms 9-10 in terms of the mean-squared forecast error. We compare the performance

of forecast combinations based on the factor models with equal-weighted (EW) forecast

combination, forecast combinations using GLASSO and nodewise regression from Algo-

rithms 7-8. Similarly to the literature on graphical models, all exercises use 100 Monte

Carlo simulations.
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4.6.1 Consistent Estimation of forecast combination weights based on

FGM

We consider sparse Gaussian graphical models which may be fully specified by a

precision matrix Θ0. Therefore, the random sample is distributed as et = (e1t, . . . , ept)
′ ∼

N (0,Σ0), where Θ0 = (Σ0)
−1 for t = 1, . . . , T, j = 1, . . . , p. Let Θ̂ be the precision matrix

estimator. We show consistency of the Factor GLASSO (Algorithm 9) and Factor MB

(Algorithm 10), in (i) the operator norm,
∣∣∣∣∣∣∣∣∣Θ̂−Θ0

∣∣∣∣∣∣∣∣∣
2
, (ii) ℓ1/ℓ1-matrix norm,

∣∣∣∣∣∣∣∣∣Θ̂−Θ0

∣∣∣∣∣∣∣∣∣
1
,

and (iii) in ℓ1-vector norm for the combination weights, ∥ŵ −w∥1, where w is given by

(4.15).

The forecast errors are assumed to have the following structure:

et︸︷︷︸
p×1

= B ft︸︷︷︸
q×1

+ εt, t = 1, . . . , T (4.28)

ft = ϕf ft−1 + ζt, (4.29)

where et is a p× 1 vector of forecast errors following N (0,Σ), ft is a q× 1 vector of factors,

B is a p×q matrix of factor loadings, ϕf is an autoregressive parameter in the factors which

is a scalar for simplicity, ζt is a q × 1 random vector with each component independently

following N (0, σ2ζ ), εt is a p × 1 random vector following N (0,Σε), with sparse Θε that

has a random graph structure described below. To create B in (4.28) we take the first q

columns of an upper triangular matrix from a Cholesky decomposition of the p×p Toeplitz

matrix parameterized by ρ: that is, B = (b)ij , where (b)ij = ρ|i−j|, i, j ∈ {1, . . . , p}. We set

ρ = 0.2, ϕf = 0.2 and σ2ζ = 1.
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The specification in (4.28) leads to the low-rank plus sparse decomposition of the

covariance matrix:

E
[
ete

′
t

]
= Σ = BΣfB

′ +Σε. (4.30)

When Σε has a sparse inverse Θε, it leads to the low-rank plus sparse decomposition of the

precision matrix Θ, such that Θ can be expressed as a function of the low-rank Θf plus

sparse Θε.

We consider the following setup: let p = T δ, δ = 0.85, q = 2(log(T ))0.5 and

T = [2κ], for κ = 7, 7.5, 8, . . . , 9.5. Our setup allows the number of individual forecasts, p,

and the number of common factors in the forecast errors, q, to increase with the sample

size, T .

A sparse precision matrix of the idiosyncratic components Θε is constructed as

follows: we first generate the adjacency matrix using a random graph structure. Define a

p× p adjacency matrix Aε which represents the structure of the graph:

aε,ij =


1, for i ̸= j with probability π,

0, otherwise,

(4.31)

where aε,ij denotes the i, j-th element of the adjacency matrix Aε. We set aε,ij = aε,ji =

1, for i ̸= j with probability π, and 0 otherwise. Such structure results in sT = p(p− 1)π/2

edges in the graph. To control sparsity, we set π = 1/(pT 0.8), which makes sT = O(T 0.05).

The adjacency matrix has all diagonal elements equal to zero. Hence, to obtain a positive
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definite precision matrix we apply the procedure described in [142]: using their notation,

Θε = Aε ·v+ I(|τ |+0.1+u), where u > 0 is a positive number added to the diagonal of the

precision matrix to control the magnitude of partial correlations, v controls the magnitude

of partial correlations with u, and τ is the smallest eigenvalue of Aε · v. In our simulations

we use u = 0.1 and v = 0.3.

Figures 4.6.1-4.6.2 show the averaged (over Monte Carlo simulations) errors of

the estimators of the precision matrix Θ and the optimal combination weight versus the

sample size T in the logarithmic scale (base 2). The estimate of the precision matrix

of the EW forecast combination is obtained using the fact that diagonal covariance and

precision matrices imply equal weights. To determine the values of the diagonal elements

we use the shrinkage intensity coefficient calculated as the average of the eigenvalues of

the sample covariance matrix of the forecast errors (see [91]). As evidenced by Figures

4.6.1-4.6.2, Factor GLASSO and Factor MB demonstrate superior performance over EW

and non-factor based models (GLASSO and MB). Furthermore, our method achieves lower

estimation error in the combination weights (4.17), which leads to lower risk of the combined

forecast as shown in (4.16). Interestingly, even though the precision matrix estimated using

Factor MB has faster convergence rate in |||·|||2 and |||·|||1 norms as compared to Factor

GLASSO, the weights estimated using Factor GLASSO converge faster. Also, note that the

precision matrix estimated using the EW method also shows good convergence properties.

However, in terms of estimating the combination weight, the performance of EW does

not exhibit convergence properties. This is in agreement with previously reported findings

( [125]) that equal weights are not theoretically optimal, however, as demonstrated in the
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next subsection, the EW combination still leads to a relatively good performance in terms

of MSFE although the FGM-based combinations outperform it.

Figure 4.6.1: Averaged errors of the estimators of Θ on logarithmic scale (base
2). p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05).
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Figure 4.6.2: Averaged errors of the estimator of w (base 2) on logarithmic scale.
p = T 0.85, q = 2(log(T ))0.5, sT = O(T 0.05).

Figure 4.6.3: Plots of the MSFE over the sample size T . c1 = 0 (left), c1 = 0.75
(right), c2 = 0.9, N = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ = 0.9, ϕ = 0.8.
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4.6.2 Comparing Performance of forecast combinations based on FGM

We consider the standard forecasting model in the literature (e.g., [126]), which

uses the factor structure of the high dimensional predictors. Suppose the data is generated

from the following data generating process (DGP):

xt = Λgt + vt, (4.32)

gt = ϕgt−1 + ξt, (4.33)

yt+1 = g′
tα+

∞∑
s=1

θsϵt+1−s + ϵt+1, (4.34)

where yt+1 is a univariate series of our interest in forecasting, xt is an N × 1 vector of

regressors (predictors), β is an N × 1 parameter vector, gt is an r × 1 vector of factors, Λ

is an N × r matrix of factor loadings, vt is an N × 1 random vector following N (0, σ2v), ϕ

is an autoregressive parameter in the factors which is a scalar for simplicity, ξt is an r × 1

random vector with each component independently following N (0, σ2ξ ), ϵt+1 is a random

error following N (0, σ2ϵ ), and α is an r× 1 parameter vector which is drawn randomly from

N (1, 1). We set σϵ = 1. The coefficients θs are set according to the rule

θs = (1 + s)c1cs2, (4.35)

as in [70]. We set c1 ∈ {0, 0.75} and c2 ∈ {0.6, 0.7, 0.8, 0.9}. We generate r factors using

(4.33) with a grid of 10 different AR(1) coefficients ϕ equidistant between 0 and 0.9. To

create Λ in (4.32) we take the first r rows of an upper triangular matrix from a Cholesky

decomposition of the N ×N Toeplitz matrix parameterized by ρ. We consider a grid of 10
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different values of ρ equidistant between 0 and 0.9. One-step ahead forecasts are estimated

from the factor-augmented autoregressive (FAR) models of orders k, l, denoted as FAR(k, l):

ŷt+1 = µ̂+ κ̂1ĝ1,t + · · ·+ κ̂kĝk,t + ψ̂1yt + · · ·+ ψ̂lyt+1−l, (4.36)

where the factors (ĝ1,t, . . . , ĝk,t) are estimated from equation (4.32). We consider the FAR

models of various orders, with k = 1, . . . ,K and l = 1, . . . , L. We also consider the models

without any lagged y or any factors. Therefore, the total number of forecasting models is

p ≡ (1 + K) × (1 + L), which includes the forecasting models using naive average or no

factors.

The total number of observations is T , and the number of observations in the

regression period (the train sample) is set to be the first half of the sample, t = 1, . . . ,m ≡

T/2, to leave the second half of the sample, t = m+1, . . . , T , for the out-of-sample evaluation

(the test sample). We roll the estimation window over the test sample of the size n ≡ T−m,

to update all the estimates in each point of time t = 1, . . . ,m. Recall that q denotes the

number of factors in the forecast errors as in equation (3.31). We first examine the properties

of the combined forecasts based on the Factor Graphical models when T and p vary and

compare their performance with the combined forecasts based on the GLASSO, MB and

EW forecasts.

We consider a low-dimensional setup to demonstrate the advantage of using FGM

even when the number of forecasts, p, is small relative to the sample size, T : (1) in such

scenario EW has an advantage since there are not many models to combine and assigning

equal weights should produce satisfactory performance, and (2) non-factor based models
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have the advantage over the models that estimate factors due to the estimation errors. As

a result, this framework with the low-dimensional setup is favorable to EW and non-factor

based models. Figure 4.6.3 shows the MSFE for different sample sizes and fixed parameters:

we report the results for two values of c1 ∈ {0, 0.75}. As evidenced from Figure 4.6.3, the

models that use the factor structure outperform EW combination and non-factor based

counterparts for both values of c1. We see that Factor GLASSO, in general, has lower

MSFE than Factor MB. This finding is further supported by our empirical application in

Section 7.

In Appendix 4.A we examine the sensitivity of the competing models with respect

to variation in the DGP parameters such as number of predictors N , values of c2, ϕ, the

strength of factor loadings ρ, and the number of factors q. We conclude that Factor Graph-

ical Models outperform equally-weighted combinations and the graphical models without

factors.

4.7 Application of FGM for Macroeconomic Forecasting

An empirical application to forecasting macroeconomic time series in big data

environment highlights the advantage of both Factor Graphical models described in Algo-

rithms 9-10 in comparison with the existing methods of forecast combination. We use a

large monthly frequency macroeconomic database of [107], who provide a comprehensive

description of the dataset and 128 macroeconomic series. We consider the time period

1960:01-2020:07 with the total number of observations T = 726, the training sample con-

sists of m = 120 observations, and the test sample n ≡ T −m−h+1, where h is the forecast
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horizon. We roll the estimation window over the test sample to update all the estimates in

each point of time t = m, . . . , T − h. We estimate h-step ahead forecasts from FAR(k, l)

which were defined in (4.36) with k = 0, 1, . . . ,K = 9, and l = 0, 1, . . . , L = 11. The total

number of forecasting models is p = 120. The optimal number of factors in the forecast

errors (denoted as q in equation (4.9)) is chosen using the standard data-driven method

that uses the information criterion IC1 described in [6]. We note that in the majority of

the cases the optimal number of factors was estimated to be equal to 1.

Table 4.7.1 compares the performance of the Factor GLASSO and Factor MB with

the competitors for predicting seven representative macroeconomic indicators of the US

economy: monthly industrial production (INDPRO), S&P500 composite index (S&P500),

Consumer Price Index (CPIAUCSL), real personal consumption (DPCERA3MO86SBEA),

M1 money stock (M1SL), civilian unemployment rate (UNRATE), and the effective federal

funds rate (FEDFUNDS) using 127 remaining macroeconomic series. Let {Yt}Tt=1 be the

series of interest for forecasting. Similarly to [37], for INDPROD, S&P500, CPI, Real

Personal Consumption and M1 Money Stock we forecast the average growth rate (with

logs):

yt+h =
1

h
ln(Yt+h/Yt). (4.37)

For UNRATE we forecast the average change (without logs):

yt+h =
1

h
(Yt+h/Yt). (4.38)

181



And for FEDFUNDS we forecast the log of the series:

yt+h = ln(Yt+h). (4.39)

Table 4.7.1 reports MSFEs of the competing methods with the smallest MSFE in each row

in bold font. As evidenced from Table 4.7.1, our methods outperform EW, GLASSO and

nodewise regression: accounting for the factor structure results in lower MSFE. Therefore,

the FGM framework developed in this paper leads to the superior performance of the com-

bined forecast as compared to EW model even when the models/experts do not contain a lot

of unique information. Our empirical application demonstrates that this finding does not

originate from the difference in the performance of EW vs graphical models: as evidenced

from Table 4.7.1, the performance of GLASSO is worse than that of EW for the FED-

FUNDS series, whereas Factor GLASSO outperforms EW. A similar pattern is observed in

the performance of nodewise regression for M1 Money Stock. Therefore, the improvement

in the combined forecast comes from incorporating the factor structure of the forecast errors

into the graphical models. Note that in contrast with EW and non-factor based methods,

the performance of Factor GLASSO and Factor MB does not deteriorate significantly when

the forecast horizon, h, increases. Notice, however, that Factor Graphical Models tend to

perform better for h ≥ 2. In other words, accounting for common factors in forecast errors

has greater benefit for longer horizons. Finally, for most series Factor GLASSO outper-

forms Factor MB, suggesting that for macroeconomic forecasting using weighted penalized

log-likelihood and running p coupled LASSO problems for estimating precision matrix is
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INDPRO

h EW GLASSO Factor GLASSO MB Factor MB

1 2.77E-04 1.51E-04 1.24E-04 2.23E-04 1.28E-04
2 3.26E-04 1.79E-04 5.59E-05 1.61E-04 1.38E-04
3 1.55E-04 9.77E-05 3.81E-05 1.17E-04 6.54E-05
4 1.18E-04 7.60E-05 2.38E-05 1.03E-04 2.65E-05

S&P500

1 1.40E-03 1.39E-03 1.37E-03 1.34E-03 9.57E-03
2 1.71E-03 1.44E-03 8.95E-04 1.55E-03 1.01E-03
3 1.66E-03 1.34E-03 3.48E-04 1.43E-03 6.69E-04
4 1.27E-03 1.06E-03 3.95E-04 9.55E-04 7.91E-04

CPI: All Items

1 6.88E-06 6.75E-06 5.84E-06 6.46E-06 8.98E-06
2 1.05E-05 1.06E-05 8.39E-06 9.93E-06 9.93E-06
3 1.52E-05 1.47E-05 9.36E-06 1.56E-05 1.34E-05
4 1.63E-05 1.63E-05 7.00E-06 1.60E-05 1.14E-05

Real Personal Consumption

1 3.05E-05 2.70E-05 4.18E-05 2.88E-05 2.74E-05
2 2.65E-04 8.52E-05 2.79E-05 8.11E-05 2.39E-05
3 7.94E-04 1.41E-04 2.91E-05 6.42E-05 2.84E-05
4 8.65E-04 7.87E-04 2.61E-05 6.42E-05 2.63E-05

M1 Money Stock

1 5.42E-05 5.18E-05 4.99E-05 5.40E-05 5.47E-05
2 5.82E-05 1.58E-04 7.27E-05 5.86E-05 5.40E-05
3 5.97E-05 1.56E-04 7.44E-05 5.96E-05 5.64E-05
4 5.97E-05 1.63E-04 6.97E-05 5.94E-05 5.78E-05

UNRATE

1 0.2531 0.0858 0.0109 0.0557 0.0107
2 0.3758 0.1334 0.0066 0.0448 0.0081
3 0.0743 0.0651 0.0066 0.0532 0.0051
4 2.1999 0.6871 0.1578 1.0973 0.2510

FEDFUNDS

1 0.0609 0.1813 0.0205 0.0424 0.0448
2 0.1426 1.2230 0.0288 0.0675 0.0416
3 0.2354 1.2710 0.0508 0.1217 0.1038
4 0.3702 1.4672 0.0592 0.2470 0.1962

Table 4.7.1: Prediction of Monthly Macroeconomic Variables. The numbers are MSFEs
with the smallest MSFE in each row in bold font. h indicates the forecast horizon, EW
stands for the “Equal-Weighted” forecast, GLASSO and MB are the models that do not
use the factor structure in the forecast errors.
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preferable to fitting p separate LASSO regressions using each variable as the response and

the others as predictors.

4.8 Conclusions

In this paper we overcome the challenge of using graphical models under the fac-

tor structure and provide a simple framework that allows practitioners to combine a large

number of forecasts when experts tend to make common mistakes. Our new approach to

forecast combinations breaks down forecast errors into common and unique parts which

improves the accuracy of the combined forecast. The proposed algorithms, Factor Graph-

ical Models, are shown to consistently estimate forecast combination weights and MSFE.

Extensive simulations and empirical applications to macroeconomic forecasting in big data

environment reveal that FGM outperforms equal-weighted forecasts and combined forecasts

produced using graphical models without factors. With the superior performance observed

at all forecast horizons, we find that the greater benefit from accounting for the common

factors is evidenced at longer horizons.

4.9 Proofs of Theorems

In this section we collected the proofs of Theorems 12-13. We first present a

Lemma which is used in the theoretical derivations.
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Lemma 14 Let l ∈ {1, 2} ≡ {Factor GLASSO,Factor MB}.

(a) |||Θ|||1 = O(κ1l), where κ1l = dT if l = 1 which corresponds to Factor GLASSO, and

κ1l = d̄ if l = 2 which corresponds to Factor MB. This will be further abbreviated as

κ1l ∈ {dT , d̄}l=1,2.

(b) a ≥ C0 > 0, where a was defined in Section 3 and C0 is a positive constant representing

the minimal eigenvalue of Θ.

(c) |â− a| = OP (κ2l), where â was defined in Section 3 and κ2l ∈ {ϱ1TdT sT , ϱ2T d̄2}l=1,2.

Proof.

(a) To prove part (a) we use the following matrix inequality which holds for any A ∈ Sp:

|||A|||1 = |||A|||∞ ≤
√
d(A)|||A|||2, (4.40)

where d(A) was defined at the beginning of Section 5. The proof of (4.40) is a straight-

forward consequence of the Schwarz inequality.

Sherman-Morrison-Woodbury formula together with (4.40) and Assumptions (B.1)-

(B.3) yield:

|||Θ|||1 ≤ |||Θε|||1 +
∣∣∣∣∣∣ΘεB[Θf +B′ΘεB]−1B′Θε

∣∣∣∣∣∣
1

= O(
√
κ1l) +O

(√
κ1l · p ·

1

p
·
√
κ1l

)
= O(κ1l). (4.41)

(b) Assumption (A.1) states that the minimal eigenvalue of Θ is bounded away from zero,

hence,

a = ι′pΘιp/p ≥ C0 > 0.
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(c) Using the Hölders inequality, we have

|â− a| =

∣∣∣∣∣ι′p(Θ̂−Θ)ιp

p

∣∣∣∣∣ ≤
∥∥∥(Θ̂−Θ)ιp

∥∥∥
1
∥ιp∥∞

p
≤
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
1

= OP (κ2l) = oP (1),

where the last rate is obtained using the assumptions of Theorem 12.

4.9.1 Proof of Theorem 12

First, note that the forecast combination weight can be written as

ŵ −w =

(
(aΘ̂ιp)− (âΘιp)

)
/p

âa

=

(
(aΘ̂ιp)− (aΘιp) + (aΘιp)− (âΘιp)

)
/p

âa
.

As shown in [24], the above can be rewritten as

∥ŵ −w∥1 ≤
a
∥(Θ̂−Θ)ιp∥1

p + |a− â|∥Θιp∥1
p

|â|a
. (4.42)

186



Prior to bounding the terms in (4.42), we first present an inequality which is used

in the derivations. Let A ∈ Rp×p and v ∈ Rp×1. Also, let Aj and A′
j be a p× 1 and 1× p

row and column vectors in A, respectively.

∥Av∥1 =
∣∣A′

1v
∣∣+ . . .+

∣∣A′
pv
∣∣ ≤ ∥A1∥1∥v∥∞ + . . .+ ∥Ap∥1∥v∥∞ (4.43)

=

(
p∑

j=1

∥Aj∥1

)
∥v∥∞ ≤ pmax

j
|Aj |1∥v∥∞.

Hölders inequality was used to obtain each inequality in (4.43). If A ∈ Sp, then the last

expression can be further reduced to p|||A|||1∥v∥∞.

Let us now bound the right-hand side of (4.42). In the numerator we have:

∥∥∥(Θ̂−Θ)ιp

∥∥∥
1

p
≤ |||Θ|||1 = OP (κ3l), (4.44)

where κ3l ∈ {ϱ1TdT sT , ϱ2T d̄2}l=1,2, the rates were derived in [97, 122] as discussed at the

beginning of Section 5, and the inequality follows from (4.43).

∥Θιp∥1
p

≤ |||Θ|||1 = O(κ1l), (4.45)

where the rate follows from Lemma 14 (a) and the inequality is obtained from (4.43).

Combining (4.44), (4.45), and Lemma 14 (c) we get:

a

∥∥∥(Θ̂−Θ)ιp

∥∥∥
1

p
+ |a− â|

∥Θιp∥1
p

= O(1) · OP (κ3l) +OP (κ2l) · O(κ1l) = OP (κ4l) = oP (1),

(4.46)
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where κ4l ∈ {ϱ1Td2T sT , ϱ2T d̄3}l=1,2 and the last equality holds under the assumptions of

Theorem 12.

For the denominator of (4.42) it easy to see that |â|a = OP (1) using the results of

Lemma 14 (b).

4.9.2 Proof of Theorem 13

Using Lemma 14 (b)-(c), we get

∣∣∣∣ â−1

a−1
− 1

∣∣∣∣ = |a− â|
|â|

= OP (κ2l) = oP (1),

where the last rate is obtained using the assumptions of Theorem 13.
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Appendices

4.A Additional Simulations

Figures 4.A.1-4.A.5 show the performance in terms of MSFE for different number

of predictors N , different values of c2, ϕ, ρ and q: Factor-based models (Factor GLASSO

and Factor MB) outperform the equal-weighted forecast combination and the standard

GLASSO and nodewise regression without any factor structure. As evidenced from the

figures, these findings are robust to the changes in the model parameters. Importantly,

Figure 4.A.5 shows the scenario when the true number of principal components, r, is equal

to 5, whereas none of the forecasters use PCA for prediction: in this case including at least

2 common components of the forecasting errors reduces MSFE, such that Factor GLASSO

and Factor MB outperform EW forecast combination.

189



Figure 4.A.1: Plots of the MSFE over the number of predictors N . c1 = 0.75, c2 =
0.9,
T = 800, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ = 0.9, ϕ = 0.8.

Figure 4.A.2: Plots of the MSFE over the values of c2. c1 = 0.75, c2 ∈
{0.6, 0.7, 0.8, 0.9},
T = 800, N = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ = 0.9, ϕ = 0.8.
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Figure 4.A.3: Plots of the MSFE over the values of ϕ. c1 = 0.75, c2 = 0.8, T = 800,
N = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ = 0.9, ϕ ∈ {0, 0.1, . . . , 0.9}.

Figure 4.A.4: Plots of the MSFE over the values of ρ. c1 = 0.75, c2 = 0.8, T = 800,
N = 100, r = 5, σξ = 1, L = 7, K = 2, p = 24, q = 5, ρ ∈ {0, 0.1, . . . , 0.9}, ϕ = 0.7.
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Figure 4.A.5: Plots of the MSFE over the values of q. c1 = 0.75, c2 = 0.9, T = 800,
N = 100, r = 5, σξ = 1, L = 12, K = 0, p = 13, q ∈ {0, 1, . . . , 10}, ρ = 0.9, ϕ = 0.8.
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regression approach to estimating large portfolios. Journal of Business & Economic
Statistics, 0(0):1–12, 2019.

[25] Laurent A. F. Callot, Anders B. Kock, and Marcelo C. Medeiros. Modeling and
forecasting large realized covariance matrices and portfolio choice. Journal of Applied
Econometrics, 32(1):140–158, 2017.

[26] John Y Campbell, Andrew W Lo, and A Craig MacKinlay. The Econometrics of
Financial Markets. Princeton University Press, 1997.

194



[27] Mehmet Caner and Anders Bredahl Kock. Asymptotically honest confidence regions
for high dimensional parameters by the desparsified conservative lasso. Journal of
Econometrics, 203(1):143–168, 2018.

[28] Gary Chamberlain and Michael Rothschild. Arbitrage, factor structure, and mean-
variance analysis on large asset markets. Econometrica, 51(5):1281–1304, 1983.

[29] Yeung Lewis Chan, James H. Stock, and Mark W. Watson. A dynamic factor model
framework for forecast combination. Spanish Economic Review, 1(2):91–121, Jul 1999.

[30] Jinyuan Chang, Yumou Qiu, Qiwei Yao, and Tao Zou. Confidence regions for entries
of a large precision matrix. Journal of Econometrics, 206(1):57–82, 2018.

[31] Jiahua Chen and Zehua Chen. Extended bayesian information criteria for model
selection with large model spaces. Biometrika, 95(3):759–771, 2008.

[32] Gerda Claeskens, Jan R Magnus, Andrey L Vasnev, and Wendun Wang. The fore-
cast combination puzzle: A simple theoretical explanation. International Journal of
Forecasting, 32(3):754–762, 2016.

[33] Robert T. Clemen. Combining forecasts: A review and annotated bibliography. In-
ternational Journal of Forecasting, 5(4):559 – 583, 1989.

[34] Gregory Connor, Matthias Hagmann, and Oliver Linton. Efficient semiparametric
estimation of the fama–french model and extensions. Econometrica, 80(2):713–754,
2012.

[35] Gregory Connor and Robert A. Korajczyk. Risk and return in an equilibrium APT:
Application of a new test methodology. Journal of Financial Economics, 21(2):255–
289, 1988.

[36] Gregory Connor and Oliver Linton. Semiparametric estimation of a characteristic-
based factor model of common stock returns. Journal of Empirical Finance, 14(5):694
– 717, 2007.

[37] Philippe Goulet Coulombe, Maxime Leroux, Dalibor Stevanovic, and Stéphane
Surprenant. How is machine learning useful for macroeconomic forecasting?
arXiv:2008.12477, 2020.

[38] Chaoxing Dai, Kun Lu, and Dacheng Xiu. Knowing factors or factor loadings, or nei-
ther? Evaluating estimators of large covariance matrices with noisy and asynchronous
data. Journal of Econometrics, 208(1):43–79, 2019. Special Issue on Financial Engi-
neering and Risk Management.

[39] Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal. Optimal versus naive diver-
sification: How inefficient is the 1/n portfolio strategy? The Review of Financial
Studies, 22(5):1915–1953, 2009.

[40] Francis X. Diebold. Forecast combination and encompassing: Reconciling two diver-
gent literatures. International Journal of Forecasting, 5(4):589 – 592, 1989.

195



[41] Francis X. Diebold and Peter Pauly. The use of prior information in forecast combi-
nation. International Journal of Forecasting, 6(4):503 – 508, 1990.

[42] Francis X. Diebold and Minchul Shin. Machine learning for regularized survey forecast
combination: Partially-egalitarian lasso and its derivatives. International Journal of
Forecasting, 2018.

[43] Yi Ding, Yingying Li, and Xinghua Zheng. High dimensional minimum variance
portfolio estimation under statistical factor models. Journal of Econometrics, 222(1,
Part B):502–515, 2021.

[44] Graham Elliott, Antonio Gargano, and Allan Timmermann. Complete subset re-
gressions. Journal of Econometrics, 177(2):357–373, 2013. Dynamic Econometric
Modeling and Forecasting.

[45] Graham Elliott, Antonio Gargano, and Allan Timmermann. Complete subset regres-
sions with large-dimensional sets of predictors. Journal of Economic Dynamics and
Control, 54:86–110, 2015.

[46] Eugene F. Fama and Kenneth R. French. Common risk factors in the returns on
stocks and bonds. Journal of Financial Economics, 33(1):3–56, 1993.

[47] Eugene F. Fama and Kenneth R. French. A five-factor asset pricing model. Journal
of Financial Economics, 116(1):1–22, 2015.

[48] Jianqing Fan, Yingying Fan, and Jinchi Lv. High dimensional covariance matrix
estimation using a factor model. Journal of Econometrics, 147(1):186 – 197, 2008.

[49] Jianqing Fan, Yingying Fan, and Jinchi Lv. High dimensional covariance matrix
estimation using a factor model. Journal of Econometrics, 147:186–197, 11 2008.

[50] Jianqing Fan, Yang Feng, and Yichao Wu. Network exploration via the adaptive
Lasso and SCAD penalties. The Annals of Applied Statistics, 3(2):521–541, 06 2009.

[51] Jianqing Fan, Alex Furger, and Dacheng Xiu. Incorporating global industrial clas-
sification standard into portfolio allocation: A simple factor-based large covariance
matrix estimator with high-frequency data. Journal of Business & Economic Statis-
tics, 34(4):489–503, 2016.

[52] Jianqing Fan, Yuan Liao, and Martina Mincheva. High-dimensional covariance matrix
estimation in approximate factor models. The Annals of Statistics, 39(6):3320–3356,
12 2011.

[53] Jianqing Fan, Yuan Liao, and Martina Mincheva. Large covariance estimation by
thresholding principal orthogonal complements. Journal of the Royal Statistical So-
ciety: Series B, 75(4):603–680, 2013.

[54] Jianqing Fan, Yuan Liao, and Xiaofeng Shi. Risks of large portfolios. Journal of
Econometrics, 186(2):367–387, 2015. High Dimensional Problems in Econometrics.

196



[55] Jianqing Fan, Yuan Liao, and Weichen Wang. Projected principal component analysis
in factor models. Ann. Statist., 44(1):219–254, 02 2016.

[56] Jianqing Fan, Han Liu, and Weichen Wang. Large covariance estimation through
elliptical factor models. The Annals of Statistics, 46(4):1383–1414, 08 2018.

[57] Jianqing Fan, Weichen Wang, and Yiqiao Zhong. Robust covariance estimation for
approximate factor models. Journal of Econometrics, 208(1):5–22, 2019.

[58] Jianqing Fan, Haolei Weng, and Yifeng Zhou. Optimal estimation of functionals of
high-dimensional mean and covariance matrix. arXiv:1908.07460, 2019.

[59] Jianqing Fan, Lingzhou Xue, and Jiawei Yao. Sufficient forecasting using factor mod-
els. Journal of Econometrics, 201(2):292–306, 2017.

[60] Jianqing Fan, Jingjin Zhang, and Ke Yu. Vast portfolio selection with gross-exposure
constraints. Journal of the American Statistical Association, 107(498):592–606, 2012.
PMID: 23293404.

[61] Yingying Fan and Jinchi Lv. Innovated scalable efficient estimation in ultra-large
gaussian graphical models. The Annals of Statistics, 44(5):2098–2126, 10 2016.

[62] Yingying Fan and Cheng Yong Tang. Tuning parameter selection in high dimensional
penalized likelihood. Journal of the Royal Statistical Society: Series B, 75(3):531–552,
2013.

[63] Wayne E. Ferson. Tests of multifactor pricing models, volatility bounds and portfolio
performance (Chapter 12 ). In Financial Markets and Asset Pricing, volume 1 of
Handbook of the Economics of Finance, pages 743 – 802. Elsevier, 2003.

[64] Rina Foygel and Mathias Drton. Extended bayesian information criteria for gaussian
graphical models. In Proceedings of the 23rd International Conference on Neural
Information Processing Systems - Volume 1, NIPS, pages 604–612, USA, 2010. Curran
Associates Inc.

[65] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance
estimation with the Graphical Lasso. Biostatistics, 9(3):432–441, 12 2008.
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