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Abstract 

Mounting evidence suggests that human category learning is 
achieved by multiple qualitatively distinct biological and 
psychological systems. In an information-integration (II) 
categorization task, optimal performance requires switching 
away from rule and adopting a procedural response strategy. 
However, many participants perseverate with rules. This article 
attempts at understanding the difference between optimal and 
suboptimal participants in II categorization. To this end, we 
collected data in the Iowa Gambling Task (IGT) and an II 
categorization task. Performance in the IGT was used to 
estimate each participant’s sensitivity to reward, punishment, 
and propensity to explore. The results show that optimal 
participants in the II task explored more in the IGT than 
suboptimal participants. However, optimal participants in the 
II task did not show higher sensitivity to punishment or lower 
sensitivity to reward. We conclude by discussing the 
implications of these findings on system-switching and 
theoretical work on multiple-systems model of perceptual 
category learning. 

Keywords: perceptual categorization; decision-making; dual 
systems; exploration-exploitation 

Introduction 

Categorization is an important part of daily life. From 

categorizing objects as edible or not to categorizing people as 

friends or enemies, everyday life is filled with thousands of 

category decisions. Over the past 20 years, mounting 

evidence has been gathered that category learning is achieved 

using a number of different psychological and biological 

systems (e.g., Ashby et al., 1998; Ashby & Valentin, 2017; 

Erickson & Kruschke, 1998; Hélie et al., 2010; Nosofsky et 

al., 1994; Waldschmidt & Ashby, 2011). However, much less 

is known about the interactions between the multiple 

categorization systems (Hélie, 2017). For example, the 

COVIS theory of categorization (Ashby et al., 1998) assumes 

that participants begin by guessing or using simple rules 

generated by hypothesis testing. Only after these rules have 

failed will participants abandon rule-based strategies and 

proceed to using alternative, more intuitive and less verbal 

methods of categorization.  

One task where the primacy of rule-based strategy is often 

observed is the information-integration (II) categorization 

task. In II categorization tasks, participants need to integrate 

information from more than one dimensions at a pre-

decisional level in order to maximize accuracy. Example for 

the II category structures are shown in Figure 2B. In this 

figure, each symbol represents the coordinate of a stimulus in 

perceptual space and specify one specific rotation angle and 

frequency that allow for drawing a unique sine wave grating 

(see Figure 2A). In this example, participants need to learn to 

categorize the ‘o’ and ‘+’ in separate categories. This can be 

achieved by drawing a line in Figure 2B, but notice that the 

line would not correspond to a meaningful verbal description. 

The verbal description would be: ‘o’ are stimuli where the 

rotation angle is larger than the frequency, which is not 

meaningful given that rotation angle and frequency are not 

commensurable. 

In an II categorization task like the one presented in Figure 

2, the most accurate verbal rules can produce an accuracy of 

about 75%. In order to perform optimally, participants need 

to abandon rules and rely on a non-verbal procedural strategy. 

Decision bound models (DBM) (Hélie et al.,2017; Maddox 

& Ashby, 1993) can be used to identify the type of strategy 

that participants are using, and a consistent finding over the 

past 30 years is that a substantial number of participants 

perseverate with rule-based strategy in II category tasks and 

as a result perform suboptimally.  

Reward Processing 

The goal of this study is to understand why certain 

participants fail to abandon rule-based strategies and adopt 

non-verbal procedural strategies. To generate predictions, we 

first used the COVIS model of categorization (Ashby et al., 

1998; Hélie, Paul, & Ashby, 2012) to fit published II 

categorization data collected in our lab. The COVIS model 

implements a multiple-systems theory of category learning 

that includes an explicit hypothesis-testing system and an 

implicit procedural-learning system. The explicit system 

learns through declarative memory by choosing and testing 

simple verbally expressible rules, whereas the implicit 

system employs non-declarative memory whereby learning is 

mediated by reinforcement learning as the system gradually 

assigns motor responses to regions of perceptual space. On 

each trial, the model compares the confidence in both systems 

and produce one response, either from the explicit system or 

from the implicit system.  

The COVIS model was fit to data from Experiment 2 in  

Hélie & Cousineau (2015)  (Condition = 0.5) to understand 

the switching of learning system between explicit and 
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implicit system in a perceptual categorization task. Decision 

bound models were fit to the data from each participant to 

separate participants using an optimal strategy from 

participants using a suboptimal strategy. The COVIS model 

was then fit to each group separately in order to identify 

which model parameters differed between simulations 

matching optimal participants and simulations matching 

suboptimal participants. Two hundred simulations were run 

for each subgroup of participants and the results are shown in 

Figure 1. The fit was excellent, with a RMSD of 1.5%. The 

model was able to differentiate optimal from suboptimal 

participants by changing the parameters odelta_e and 

odelta_c, which are the magnitude of the effect of the 

(negative and positive, respectively) feedback to adjust 

confidence in the hypothesis-testing system (Hélie, Paul, & 

Ashby, 2012). The simulations for optimal participants had a 

higher odelta_e value and a lower odelta_c value compared 

to the simulations of suboptimal participants, indicating that 

optimal participants are more sensitive to negative feedback 

while suboptimal participants are more sensitive to positive 

feedback. As a result, we hypothesize that optimal 

participants in II categorization tasks are more sensitive to 

negative feedback than participants who perseverate with 

rule-based strategies. 

 

 
 

Figure 1: Average accuracy in Hélie & Cousineau (2015) and 

model results for each block of 100 trials. Black lines shows 

data for participants that use an optimal strategy, while grey 

lines indicate participants that use a suboptimal strategy. The 

participants’ accuracy collected from the experiment are 

shown as solid lines, while the data from simulation are 

shown as dashed lines.  

The Exploration-Exploitation Dilemma 

One useful way to think about strategy switching and 

selection is to consider them in the context of the exploration-

exploitation dilemma (Berger-Tal et al., 2014). Exploration 

and exploitation are seen as two opposing ways in the means 

of attention and resources allocation (Benner & Tushman, 

2003; Gupta, Smith, & Shalley, 2006). Exploration entails 

risk taking, flexibility, discovery, and disengaging from the 

current task to allow for more room for experimentation, 

which is frequently associated with innovation. In contrast, 

exploitation is described with high-level engagement, choice-

selection, efficiency and improvement (Laureiro-Martínez et 

al., 2015). The behavior of gathering information and 

exploiting are viewed as mutually exclusive events in many 

cases (Mettke-Hofmann, Winkler, & Leisler, 2002). When 

exploring, the agent seeks information about its environment 

as a way to improve performance, but in many situations it 

has to pay an opportunity cost (March, 1991). Agents that 

only exploit using current knowledge might be stuck in a 

suboptimal stable equilibrium, unable to adapt fully to the 

environment (March, 1991; Uotila et al., 2009). Thus, an 

optimal strategy in decision-making is to have balance 

between exploration and exploitation, allowing resource 

allocation between the two behaviors to yield the ‘best’ long-

term rewards (March, 1991).  

The exploration-exploitation dilemma to some extend 

resembles the results observed in the II categorization task. 

Assuming that participants begin by using a rule-based 

strategy, ‘exploiters’ may perseverate with a rule-based 

strategy since it allows for responding correctly in about 75% 

of the trials. Exploration is required to abandon rule-based 

strategies and try procedural strategies that are more optimal. 

As a result, we hypothesize that participants who explore 

more are more likely to perform optimally in an II 

categorization task. 

Methods 

To test for the hypotheses, we used the Iowa Gambling Task 

(IGT) (Bechara et al., 1994) to measure reward sensitivity 

and exploration tendencies. Each participant performed both 

an II categorization task and the IGT. Performance in the IGT 

was used to predict whether participants would use an 

optimal or suboptimal strategy in the II categorization task. 

Participants 

Fifty participants were recruited from the Purdue University 

undergraduate population. Each participant was given credit 

for participation as partial fulfillment of a course 

requirement. Participants gave written informed consent and 

all procedures were approved by the Purdue University 

Human Research Protection Program Institutional Review 

Board. 

Materials and Procedure 

Each participant did both the Iowa Gambling Task (IGT) and 

the perceptual categorization task (PCT) in random order of 

IGT-PCT (n = 27) and PCT-IGT (n = 23). The experiment 

was run on a Desktop PC equipped with a regular mouse and 

keyboard. Stimuli were displayed in a 21-inch monitor with 

1,920 × 1,080 resolution. The experiment was controlled by 

in-house programs written using PsychoPy.  

 

Iowa Gambling Task Participants were presented with four 

blue rectangles. The blue rectangles were labeled as “Deck 

A”, “Deck B”, “Deck C”, and “Deck D”. The task required 

participants to repeatedly draw ‘cards’ from the four decks, 

by clicking on the blue rectangle on the screen with a mouse. 

Participants were required to select a deck on each trial within 
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four seconds. If a participant failed to select a deck before the 

deadline, the program randomly selected a deck. The 

participant could only select one deck for each trial.  

The expected values of the decks differed so that two decks 

were associated with high immediate rewards but long-term 

overall loss (disadvantageous decks A and B), and two other 

decks yielded lower immediate rewards but long-term overall 

gains (advantageous decks C and D). The experiment was 

designed to record the participant’s affinity towards each 

deck given the rewards and penalties presented in each trial 

upon selection of a particular deck. The reward and penalty 

from the selected deck in the particular trial, as well as the 

total accumulated gain from the rewards and penalty gathered 

thus far was presented to the participant at the end of each 

trial. The rewards and penalties were generated to meet the 

requirements listed in Table 1. Each deck contained 10 

different cards and was re-shuffled after all 10 cards had been 

drawn. Each participant performed 120 trials grouped into six 

blocks of 20 trials each. Completing the IGT took about 10 

minutes.  

 

Perceptual Categorization Task (PCT) The stimuli used in 

the PCT were circular sine-wave gratings of fixed contrast 

and size, as shown in Figure 2. The stimuli differed in terms 

of bar width and orientation. The bar width was derived as 

the frequency of lines in a 2D space in cycles per degree, 

while the orientation is the counterclockwise rotation of the 

lines from horizontal in radian. The stimuli were categorized 

as A and B, with a diagonal line as a category bound as shown 

in Figure 2. Perfect accuracy was possible and optimal 

performance required responding to the A-B stimuli using a 

procedural strategy. 

 

    
 

Figure 2: (A) Example stimulus shown to the participants for 

PCT, (B) Category structures used in PCT. 

 

The participants were informed that they were taking part 

in a categorization experiment and that they needed to learn 

to categorize the stimuli presented into either category A or 

B with trial-and-error. In each trial of this task, a “crosshair” 

was presented on the screen for one second, followed by a 

single stimulus presented in the center of the screen. 

Participants were required to choose a category for the 

stimulus. Responses were given on a standard keyboard: “s” 

key for category A and “k” key for category B. After each 

trial, visual feedback showing “Correct”, “Incorrect”, or 

“Wrong Key” was given to the participant according to the 

response they pushed. The response for stimulus on each trial 

was recorded, as well as the response time. The participants 

did 600 trials grouped into six blocks of 100 trials each. The 

PCT took about 35 minutes to complete. 

Decision bound models 

The objective of the study was to explore the difference in 

sensitivity to reward and punishment between participants 

that used an optimal strategy and participants that did not use 

an optimal strategy. To allow for the classification of 

participants into optimal strategy users and suboptimal 

strategy users, Decision Bound Models (DBM) were applied 

to the perceptual categorization task to identify how 

participants learned to assign responses to regions of 

perceptual space. In DBM, it is assumed that participants 

determine the region of the percept and give the associated 

response. The decision bound is described as a partition 

segregating competing response regions. Three general 

classes of decision bound models were fit to response data of 

the PCT (Hélie et al., 2017; Maddox & Ashby, 1993): (1) 

guessing models, (2) explicit rule-reasoning models, and (3) 

procedural learning models.  

The guessing models assumes that participants do not use 

the information on the screen and randomly responded “A” 

or “B” in each trial. The explicit models set a boundary to 

segregate participant’s responses with a vertical line or 

horizontal line (or the combination of both vertical and 

horizontal lines). An adjusted diagonal line is used as the 

boundary instead in the procedural learning models. For each 

participant’s data set, the best model is selected using the 

Bayes information criterion (BIC). Participants whose data 

were best-fit by the optimal models, which is the procedural 

learning model in this case, are labelled as “optimal strategy” 

and all other participants are labelled as “suboptimal 

strategy”. 

Rescorla-Wagner Model 

The data recorded in the IGT were fitted with the Rescorla-

Wagner (1972) model (RW). The RW was used to calculate 

a value for each deck and estimate a participant’s sensitivity 

towards reward and punishment.  

Data for each participant was fed into the RW model. For 

each trial, t in a particular task block, the parameter for 

sensitivity to reward, brew was multiplied with the magnitude 

of reward, R received following the participant’s response in 

each trial, while the parameter for sensitivity to punishment, 

bpun was multiplied with the magnitude of punishment, P 

received following the participant’s response in each trial. 

 

Table 1: Deck properties (Bechara et al., 1994) 

 

Card Deck A Deck B Deck C Deck D 

P(penalty) 0.5 0.1 0.5 0.1 

Penalty 
-150 to   

-350 

-1250 -25 to   

-75 

-250 

Reward 100 100 50 50 

Expectation -250 -250 250 250 

 A               B 
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The key equations to update reward and punishment 

sensitivity were: 

 

𝐵𝑟𝑒𝑤 =  
𝑏𝑟𝑒𝑤 × (𝑅(𝑡) − 𝑃(𝑡))

max (𝑅)
 

𝐵𝑝𝑢𝑛 =  
𝑏𝑝𝑢𝑛 × (𝑃(𝑡) − 𝑅(𝑡))

max (𝑃)
 

 

(1) 

where, 𝐵𝑟𝑒𝑤  and 𝐵𝑝𝑢𝑛 are the sensitivity to reward and 

punishment, for the perceived net gain and loss in each trial. 

The key equations to update reward and punishment 

sensitivity were: 

 

Qdeck(t) = Qdeck(t –  1) +  α(𝐵𝑟𝑒𝑤 −  Qdeck(t − 1)) 

Qdeck(t) = Qdeck(t − 1) +  α(𝐵𝑝𝑢𝑛 −  Qdeck(t − 1)) 

(2) 

 

where, Qdeck is the Q-value for each deck and α  is the 

learning rate. The equation on top in Eq. 2 updates the deck 

value with 𝐵𝑟𝑒𝑤, while the equation below updates with 𝐵𝑝𝑢𝑛. 

In trials where an overall reward was received, the equation 

with 𝐵𝑟𝑒𝑤  was used to update the deck value; in trials where 

overall punishment was received, the equation with 𝐵𝑝𝑢𝑛 was 

applied to update the deck value. All parameters were 

estimated using Maximum A Posteriori (MAP). 

The sensitivity towards reward and punishment 𝑏𝑟𝑒𝑤 and 

𝑏𝑝𝑢𝑛 for each participant were then normalized. The 

weighted proportion of 𝑏𝑟𝑒𝑤 and 𝑏𝑝𝑢𝑛 with respect to the 

summation of 𝑏𝑟𝑒𝑤 and 𝑏𝑝𝑢𝑛 were computed with Equation 

3.  

 

𝑊𝑟𝑒𝑤 =
𝑏𝑟𝑒𝑤

𝑏𝑟𝑒𝑤 + 𝑏𝑝𝑢𝑛
 

𝑊𝑝𝑢𝑛 =
𝑏𝑝𝑢𝑛

𝑏𝑟𝑒𝑤 + 𝑏𝑝𝑢𝑛
 

(3) 

 

where, 𝑊𝑟𝑒𝑤 and 𝑊𝑝𝑢𝑛 are the weighted proportion of 𝑏𝑟𝑒𝑤 

and 𝑏𝑝𝑢𝑛, respectively. 

Results 

Effects of sensitivity to punishment and rewards 

Participants in the PCT were categorized into participants 

who found the optimal strategy and participants who did not 

using DBM. The sensitivity to punishment (bpun) and reward 

(brew) were computed with the RW. 𝑊𝑟𝑒𝑤 and 𝑊𝑝𝑢𝑛 were 

computed as the weighted proportion of sensitivity to reward 

and punishment, respectively, and the mean estimates of the 

proportion of 𝑊𝑟𝑒𝑤 and 𝑊𝑝𝑢𝑛 for participants that used an 

optimal strategy and a suboptimal strategy are shown in 

Figure 3. Confirming our hypothesis, 𝑊𝑟𝑒𝑤 [t(48) = 1.901,  p 

= 0.032] of participants that used an optimal strategy was 

lower than that of participants that used a suboptimal 

strategy, whereas 𝑊𝑝𝑢𝑛 [t(48) = -1.901,  p = 0.032] of 

participants that used an optimal strategy was higher than that 

of participants that used a suboptimal strategy. These results 

show that participants using an optimal strategy in the PCT 

have a greater sensitivity to punishment, while participants 

using a suboptimal strategy in the PCT have a higher 

sensitivity to reward. 

 

 
 

Figure 3: Estimated sensitivity to reward and punishment 

(IGT) for optimal and suboptimal participants (PCT). Error 

bars are standard error of the mean.  

Exploration affects category learning 

Exploration was quantified as the number of deck switches in 

the IGT and was compared between the two groups of 

participants. The number of deck switches was subjected to 

an independent samples t-test to test the effect of using 

optimal or suboptimal strategy in PCT. The average number 

of deck switches for the two groups is shown in Figure 4. The 

main effect of the strategy used [t(48) = 1.684,  p = 0.049] 

was significant. The number of deck switches for participants 

that used an optimal strategy in the PCT (mean = 71.91) was 

higher than the number of deck switches for participants that 

used a suboptimal strategy in the PCT (mean = 60.38). The 

results suggest that, as predicted, participants who conduct 

more exploration are more likely to perform optimally in an 

II categorization task. 

 

 
 

 

Figure 4: Average number deck switches in the IGT for 

optimal and suboptimal participants in the PCT. Error bars 

are standard error of the mean. 
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To further assess the role of exploration in strategy 

selection, we measured the entropy of choosing different 

decks: A, B, C and D. Entropy gives a sense of disorder and 

uncertainty. Hence higher entropy means that all decks were 

sampled equally often, whereas an entropy of 0 means that 

participants always selected the same deck. We first 

calculated the correlation between entropy and number of 

deck switches in the IGT (Figure 5A). This analysis informs 

whether participants always switch between a subset of the 

decks or if all decks are sampled. The correlation was 0.513, 

which is statistically significant [t(48) = 4.136, p < 0.001]. 

This result suggests that participants with more deck switches 

sample from all decks.  

Next, we computed the linear relationship between entropy 

and sensitivity to feedback in the IGT (bpun + brew). Here, bpun 

is negative, so a negative number means higher sensitivity to 

punishment while a positive number means a higher 

sensitivity to reward (0 means equally sensitive to both types 

of feedback). This analysis informs about the relationship 

between the breadth of exploration (sampling from some or 

all the decks) and feedback sensitivity in the IGT. The 

correlation was -0.665, which reached statistical significance 

[t(48) = -6.168, p < 0.001] (Figure 5B). This suggests that 

higher sensitivity to punishment leads to sampling from more 

decks, which is consistent with our hypothesis that greater 

sensitivity to punishment leads to more exploration.  

 

 
 

Figure 5: (A) Relationship between entropy and number of 

deck switches in the IGT. (B) Relationship between feedback 

sensitivity and entropy in the IGT. 

Discussion 

This article presents the results of an experiment aimed at 

understanding why some participants fail to select an optimal 

procedural strategy in II categorization and instead 

perseverate with using suboptimal rule-based strategies. By 

fitting the COVIS model to published II categorization data, 

we hypothesized that participants using an optimal strategy 

in II categorization would be more sensitive to punishment 

whereas participants using a suboptimal strategy would be 

more sensitive to reward. We further hypothesized that 

participants with a tendency to explore would be more likely 

to use an optimal strategy in the II task.  

We tested these predictions by running participants in an II 

categorization task and the IGT. Decision-bound models 

were fit to II categorization data to classify each participant 

as optimal or suboptimal. The RW model was fit to the IGT 

to estimate each participant’s sensitivity to reward and 

punishment. The number of deck switches and entropy of 

choice in the IGT were used to estimate the propensity of 

each participant to explore. The results partially supported 

our hypotheses. As predicted, exploration was related to the 

selection of an optimal strategy in II categorization. 

Sensitivity to punishment was also related to propensity to 

explore, but only in the IGT. The hypothesis that sensitivity 

to punishment would be related to the selection of an optimal 

strategy in II categorization was not supported in the 

experiment. 

System-Switching vs. Rule-switching 

Individuals vary considerably in terms of their sensitivity to 

reward and punishment. Sensitivity to reward can be 

described as how an individual’s behavior is driven by 

reward-related stimuli, while sensitivity to punishment is 

described as how an individual’s behavior is subdued by 

punishment-related stimuli. Studies suggest that individuals 

with greater sensitivity to reward are more reactive to 

rewarding outcomes but are less sensitive to monitoring loss, 

while greater sensitivity to punishment are linked to 

avoidance and giving up actions in absence of immediate 

reward (Kim et al., 2015). 

As predicted by COVIS, the selection of certain strategies 

and the abandonment of others depends on the evaluation of 

how rewarding the strategy is. The implementation of one 

system over the other depends on the confidence and trust in 

the system. The trust is a function of the effect of received 

feedback when using a particular system. Thus, the switching 

of strategies from a rule-based to aa procedural strategy 

depends on the feedback received when using the particular 

strategy, which can be explained in terms of the reward and 

punishment the system or strategy gets when providing a 

response. 

Our study confirms the finding that the selection of an 

optimal strategy in II categorization task is associated with 

greater sensitivity to punishment and perseveration with 

suboptimal strategies in II tasks is associated with greater 

sensitivity to reward. If the participant focuses more on the 

effect of punishment, losses in the task leads to giving up and 

avoidance of certain strategies, which leads to the possibility 

of adopting a strategy that leads to the optimal outcome. If 

the participant has greater sensitivity towards reward, s/he is 

less sensitive to immediate loss and tend to perseverate with 

strategies that bring a certain degree of rewards. In the II 

categorization task, participants tend to perseverate with a 

rule-base strategy since the strategy allows for a certain 

degree of accuracy (typically about 70%). However, 

additional research is required to determine how participants 

change from attending to specific stimulus dimension(s) to an 

integrated procedural-based strategy.  

Exploration in the IGT 

Deck switch is used as a measure of exploration. A larger 

number of deck switches indicates that participants were 

willing to disengage from the current strategy or deck, and 
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were willing to explore other possible options, despite the 

uncertainty and risk of getting punished. As seen in Figure 4, 

both optimal and suboptimal participants explored greatly in 

the IGT. The difference in exploration between optimal and 

suboptimal participants may have been caused by several 

factors, which includes willingness to take risk to maximize 

gain. The tendency for exploration appears to be robust and 

may be predictive of both rule-switching and system-

switching. This was shown by the number of switches being 

both related to entropy in the IGT and the selection of an 

optimal strategy in II categorization. COVIS does not 

explicitly model exploration but a tendency to explore would 

be characterize by noise in system selection. 

One observation is that many participants tend to choose 

Deck B in the IGT. With an expected value of a net loss of 

$250 and a relatively large loss of $1250 as compared to the 

other decks in the task, it would normally inhibit participants 

from selecting Deck B. The basic assumption is that the 

largest loss would trigger an alarming signal from the intact 

somatic system, thus inhibiting further selection of deck B as 

it guides the process of decision-making (Lin et al., 2007). 

However, Deck B has a low loss-frequency owing to a small 

number of trials with large losses (or can be seen as a high 

gain-frequency), which may explain why participants choose 

the deck despite great immediate loss when a penalty card is 

drawn from the deck. Most participants’ behavior are driven 

by the high gain-frequency, instead of inhibited by the great 

loss while choosing Deck B (Dunn et al., 2006; Lin et al., 

2007). 

Participants that used suboptimal strategies tend to fixate 

on specific deck(s) and were not willing to explore for more 

reward, which might cause them to be stuck in a local 

minimum, and lose the chance to seek out strategies that are 

more efficient. The fixation can be due to contentment, 

unwillingness to take risks, or pros-to-cons weighing. 

Additional research is needed to determine why certain 

participants are reluctant to explore. 

Future Work 

This experiment came with a few limitations. Some of the 

advantage and disadvantage decks used in the IGT were 

difficult to identify through limited interactions with the 

decks, which might misguide participants while performing 

the tasks. For example, exploiting Deck B in IGT results in 

an overall loss, the frequency of loss is small. Hence, 

participants may consider Deck B to be an advantageous deck 

and continue choosing the deck along with other advantage 

decks. Questionnaires could be given to participants to ask 

for the decks the participants believed to be advantageous. 

This would allow for better understanding whether 

participants considered each deck as “risky” or not and 

disentangle risk taking from bad estimation of deck 

expectation. 

Finally, a task needs to be designed that shares properties 

with the IGT but requires system-switching instead of rule-

switching (or deck switching). This new task would allow to 

more directly estimated sensitivity to reward and punishment 

between-system and would provide a more definitive test of 

the hypothesis that optimal participants, who switch system 

in an II categorization task, are more sensitive to punishment 

then suboptimal participants, who are more sensitive to 

reward. 
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