
UCLA
Papers

Title
Emstar: A Software Environment for Developing and Deploying Heterogeneous Sensor
Actuator Networks

Permalink
https://escholarship.org/uc/item/48f3r97w

Authors
Girod, Lewis
Ramanathan, Nithya
Elson, J
et al.

Publication Date
2007-05-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/48f3r97w
https://escholarship.org/uc/item/48f3r97w#author
https://escholarship.org
http://www.cdlib.org/

Emstar: a Software Environment for Developing

and Deploying Heterogeneous Sensor-Actuator

Networks

LEWIS GIROD
‡
, NITHYA RAMANATHAN

†
, JEREMY ELSON

♯
,

THANOS STATHOPOULOS
†
, MARTIN LUKAC

†
, DEBORAH ESTRIN

†

‡ MIT CSAIL

Cambridge, MA

† Center For Embedded Networked Sensing

University of California, Los Angeles

Los Angeles, CA

♯ Microsoft Research

Redmond, WA

Recent work in wireless embedded networked systems has followed heterogeneous designs, incor-
porating a mixture of elements from extremely constrained 8- or 16-bit “Motes” to less resource-

constrained 32-bit embedded “Microservers”.
Emstar is a software environment for developing and deploying complex applications on such

heterogeneous networks. Emstar is designed to leverage the additional resources of Microservers
by trading-off some performance for system robustness in sensor network applications. It enables

fault isolation, fault tolerance, system visiblity, in-field debugging, and resource sharing across
multiple applications.

In order to accomplish these objectives, Emstar is designed to run as a multi-process system

and consists of libraries that implement message-passing IPC primitives, services that support
networking, sensing, and time synchronization, and tools that support simulation, emulation, and
visualization of live systems, both real and simulated. We evaluate this work by discussing the
Acoustic ENSBox, a platform for distributed acoustic sensing that we built using Emstar. We

show that by leveraging existing Emstar services, we are able to significantly reduce development
time while achieving a high degree of robustness. We also show that a sample application was
developed much more quickly on this platform than it would have been otherwise.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded systems

Author’s address: L. Girod, MIT CSAIL, 32-G918, 32 Vassar St. Cambridge, MA 02139.
This work was made possible with support from The Center for Embedded Networked Sensing
(CENS) under the NSF Cooperative Agreement CCR-0120778, and the UC MICRO program

(grant 01-031) with matching funds from Intel Corp.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, February 2007, Pages 1–34.

2 · Lewis Girod et al.

General Terms: Design, Experimentation, Measurement

Additional Key Words and Phrases: Sensor Networks, Real Code Simulation, EmStar, TinyOS

1. INTRODUCTION

As new applications require more sophisticated tasks of wireless sensor-actuator
networks, system complexity tends to increase. From the standpoint of minimizing
overall complexity, the most expedient solution usually simplifies the end nodes
by centralizing as much of the computation as possible. However, this strategy is
impossible when the application involves sensors with high data rates such as au-
dio [Wang et al. 2004] [Chen et al. 2003] or video, or requires low-latency actuation
within an unreliable network [Merrill et al. 2004]—these cases force a distributed
implementation.

These types of distributed system are notoriously difficult to deploy. Through
our initial experiences in this area we identified several impediments to deploying
distributed sensing systems, and outlined key system requirements necessary to
overcome these hurdles.

First, hardware and software components are prone to fail as a result of harsh
deployment environments, unexpected inputs, and unreliable hardware. This is
particularly true during the development process, when the environment is not
fully understood, and components of the hardware and software are still in the
prototype stage. Because failures are common, systems must be able to continue
functioning despite their presence. This leads to two separate but related system
requirements: fault isolation—a failure in one software component (e.g. memory
corruption) should not corrupt the entire system; and fault tolerance—a failure in
one hardware or software component should not result in a system reboot.

Second, the ability to debug such a failure in the field is critical but extremely
difficult. For example, in deploying 20 microphones, at least one is bound to fail.
If the entire system fails to start because one software component cannot access
this device, it will be much more difficult to find and fix the failure; thus ensuring
in-field debugging and system visibility despite failures is critical.

Third, the high cost of development and deployment motivates platforms that
support a broad class of applications [Girod et al. 2006], and deployments that can
host multiple independent users. This is accomplished through resource sharing

via reusable and composable services that arbitrate access to resources.

While many early projects produced inspiring demos (for example, many early
demos in the NEST DARPA program), these efforts typically provided little lever-
age for follow-on work. Systems that make a good demo often disregard details that
are critical for practical deployments, e.g., setup and configuration is typically done
by the developers themselves, and the system is often calibrated to fit the specific
environmental conditions at the demo. Furthermore, the development process for
demos typically cuts corners that rule out applying the system in a broader context.

One of the primary motivations for Emstar came from our experience developing
an acoustic localization system [Girod and Estrin 2001; Girod et al. 2002; Girod
et al. 2006]. This work went through several iterations of increasing sophistication,

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 3

in which the robustness and applicability of the system improved.

In the earliest version [Girod and Estrin 2001], the software was written as a
single monolithic process that processed audio I/O and transmitted packets via a
radio module interfaced through the parallel port. Because this implementation
was highly integrated, it was difficult to add more complex functionality such as
the ability to time-synchronize over multiple RF hops. The implementation also
made it difficult to implement other applications without integrating them with the
localization system, because access to key hardware components (e.g., the radio and
the audio interface) were exclusively held by the localization software.

In the second version of the system [Girod et al. 2002], these problems were
addressed by decomposing the system into services. For example, the radio module
was managed exclusively by a service, but many applications could access it. By
decoupling these services, their implementations could be made more sophisticated
with lower overall complexity. However, new difficulties arose in managing a system
composed of many interlocking services. The new system worked well as a demo,
but was difficult to operate and was not robust to component failures, which would
sometimes occur because of imperfections in the setup of the equipment, or when
the system was tested for the first time in a new environment.

In the final version of the system [Girod et al. 2006], the ideas that compose
Emstar were fully applied. The interlocking services from the previous version
were updated to use the Emstar IPC and design principles, yielding a robust system
that can be used by non-engineers, outside of the context of a demo. Ad-hoc, jury-
rigged solutions to the problems of managing the system were replaced by reusable
components supplied with Emstar, providing many common services from system
health monitoring and fault reporting to web-based management tools. We discuss
this final version in more detail in Section 4.

This incremental development process drove the development of Emstar. In this
work we set out to provide a reusable set of services that speed the development
of practical, deployable distributed sensing systems, within a common, extensible
framework. The services and the framework speed development by providing a
substrate for developing distributed sensor systems and by solving many common
practical problems, lessening the temptation to just “hack it together” while saving
considerable development time. Through this one-time investment in infrastructure,
future systems can explore new application domains with increased sophistication.

Emstar’s driving design goal is to enable and facilitate the deployment of resource-
constrained wireless sensing systems. To this end, Emstar is an event-driven system
comprised of a framework that enables fault tolerance and field preparation, a
communication layer that facilitates fault diagnosis, and a set of commonly required
services that enables quick construction of applications. What makes Emstar unique
is its basic philosophy in which services are loosely couped through stateless status
channels and an emphasis on making the interfaces between these services visible.
What makes Emstar usable is the set of libraries, communication primitives (i.e.
device patterns), easily composable services, visualization tools, and simulation
framework that also compose this system.

In this article, we present the Emstar software system in detail. In Section 2 we
explain the design decisions we made in the design of Emstar, and some of the trade-

ACM Journal Name, Vol. V, No. N, February 2007.

4 · Lewis Girod et al.

offs. In Section 3 we show that Emstar can be decomposed into several layers, and
we explain each layer in more detail. In Section 4 we evaluate Emstar by describing
how we have used it to build a complex distributed application. Section 5 contains
Related Work and we conclude with lessons learned in Section 6.

2. DESIGN DECISIONS AND TRADE-OFFS

Based on the requirements of this application area as described in the previous
section, we made a series of design decisions with corresponding trade-offs. These
decisions resulted from early experiences with distributed wireless sensing systems,
and from considering the ways in which existing programming interfaces meshed or
clashed with the needs of these systems.

Overall the design is motivated by the desire to trade-off some performance for
system robustness and visibility in developing applications for “microserver” sensor
nodes. Emstar was not designed to write software for extremely constrained nodes
such as the Berkeley Mote, and thus operates in a very different efficiency regime.
While energy is ultimately still an important consideration, it has not been a central
focus of Emstar development. In addition, since Emstar operates exclusively at the
application layer, it cannot directly control hardware or process interrupts with low
latency. Whenever events must be timestamped accurately, the timestamps must
be captured from within the kernel and exposed to Emstar applications.

The two most influential decisions in the Emstar design were guided by our
design philosophy: 1) The multi-process service architecture enables loosely coupled
services; and 2) the device file IPC enables the interfaces between these services
to be easily browseable from the command line. We discuss Emstar’s key design
decisions in the following sections.

2.1 Multi-process service architecture

Emstar is built as a collection of separate processes providing services. This decision
is in fact two independent choices: first, the decision to provide a set of common
services to support multiple applications, and second, the decision to implement
these services as separate processes.

The first choice was made based on the observation that Microservers had suf-
ficient resources to concurrently support multiple independent applications. The
ability to support multiple applications was a requirement of some of the first
instances of sensor nodes, notably the WINSNG 2.0 platform [Merrill et al. 2002]
used in the DARPA SensIT program. In this program, several independent research
groups ran applications on a single fielded network. Given that applications act in-
dependently, there was therefore a need to provide services that regulate access to
shared resources.

The second choice, to implement the services as separate processes, was made
to enable greater freedom in the implementation of the services as well as to pro-
vide fault isolation between services and to enable the system to tolerate faults in
individual services more gracefully. By narrowing the scope of individual services,
the initial implementation of each service was simplified, enabling implementations
to grow in sophistication as requirements change. This approach also enabled us
to readily compose a system from only the select services that were required for a
given application. Building each service as a separate process also provided max-

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 5

imum flexibility of language choice and the ability to integrate arbitrary external
components (such as proprietary code), rather than forcing the early adoption of
any particular language or discipline.

By implementing Emstar as a group of processes instead of a single process we
fulfilled several of our requirements for system robustness. Yet there are trade-offs
to this approach, which are discussed in Section 2.1.3.

2.1.1 Importance of fault isolation and fault tolerance. Fault isolation and fault
tolerance were critical elements of the reasoning for making this choice. Because
in the early work in WINSNG we provided a platform to a set of customers, it
was critical to be able to immediately distinguish between a failure of the platform
services and a failure of the customers’ applications. This principle holds true for
today’s implementation of Emstar, in which it is helpful to minimize the complexity
of the Emstar client libraries in order to reduce the likelihood that an application
crash is due to a library bug.

Fault isolation (i.e. the separation of services across process boundaries so a bug
such as memory corruption in one process does not impact other processes) and
fault tolerance (i.e. tolerance of service or application to failures by only rebooting
the failed process instead of the entire application) are critical properties for fielded
systems. Performing fielded experiments involves an immense investment of time
and effort, and is in many cases time-critical (e.g. in the event that a scientific
phenomenon only occurs at certain times of year). In addition, debugging systems
while in the field is considerably more difficult. These two considerations suggest
that there is a very high cost to bugs and failures that lie in the critical path of
getting results. Thus, it is more desirable that the system limp along in spite of
faults and still collect some data, than it is that the system suffer a catastrophic
failure that requires in-field, high-pressure debugging. As long as the system is
limping and the faults are reported and visible, the bugs can be diagnosed and
fixed in parallel, or even left alone.

In our experience with these systems, we have had examples where systems ex-
hibited failures only in the field, typically when a system is deployed in a new
environment for the first time or when a system is re-deployed with modified sys-
tem software. In these cases, we have made use of Emstar’s fault-tolerance prop-
erty. Because of the selection of service boundaries and interfaces, portions of the
system can restart with momentary or even unmeasurable effects on application
performance.

For example, in one instance a rare combination of range errors caused a numer-
ical algorithm in the multilateration component to cause an FPU exception. This
behavior had never happened in lab environments, and only cropped up with cer-
tain types of error in the field. After the problematic range estimates were refined,
the errors were eliminated and the numerical algorithm converged properly. How-
ever, had the whole system rebooted each time this bug occurred, the refinements
would never happen and the system would be very unlikely to ever converge. While
nobody would argue that buggy systems should be preserved, the ability to work
around unexpected failures is a critical part of building a robust system.

ACM Journal Name, Vol. V, No. N, February 2007.

6 · Lewis Girod et al.

2.1.2 Selection of service boundaries. A key element of the design of the Emstar
services is the careful selection of service boundaries and interfaces. In general,
Emstar services are delineated such that the interface provided by a service is
transactional, delivers a series of messages, and exhibits a low traffic volume. That
is, connections between client and service are generally loose, stateless couplings—
most often simply a series of periodic state updates sent from a server to multiple
clients. This approach eliminates many of the semantic difficulties that typically
plague RPC systems [Tanenbaum and van Renesse 1988]; in particular, simplifying
crash recovery and eliminating problems associated with loss of state and repeated
execution semantics.

For example, consider the case of a neighbor discovery service. Rather than a
model where a client queries the neighbor service to iterate through the neighbor
list, the client of the Emstar neighbor service may retrieve a complete and consistent
list at any time, and can register to receive a new neighbor report whenever the
neighbor list changes. This approach serves to simplify the interface between client
and server and to decouple the client from the server, reducing the importance of
IPC performance by greatly limiting the frequency of IPC transactions. By relying
wholly on passing complete messages, it also eliminates synchronization problems
arising from concurrency and inconsistencies arising from service or client restart.

2.1.3 Alternative solutions and trade-offs. There are several trade-offs to a mul-
tiprocess architecture. The most obvious one is that defining IPC channels between
processes is generally less efficient, less flexible and more complex than using sim-
ple function calls. In cases where memory protection is not required and language
choice is not an issue (for example, if all applications are written in a common lan-
guage and it is immune from memory errors), loading all applications into a single
process space is more efficient and often simpler.

The other problem is that while partial restart may be helpful in deployment it is
much more difficult to implement correctly than a full-system restart model. Prior
work has addressed robustness by partial rebooting in several contexts, including
Microreboot [Candea and Fox 2003] [Candea et al. 2004] for distributed systems and
Nooks [Swift et al. 2004] for driver restart within a Linux kernel. The conclusion
of these efforts has agreed with our own conclusions: enabling restart is often the
best approach to designing robust complex applications, but it can be challenging
to implement. In a careful implementation, partial restart works correctly and pro-
vides excellent robustness. However, if done incorrectly the system can experience
various forms of livelock, or never properly recover.

2.2 Device File IPC

Another choice in the design of Emstar was to settle on a microkernel-like model
for services. Rather than implementing interfaces to services using sockets, we
implemented a kernel module called FUSD [Girod et al. 2004a] that enables a user-
space process to expose device file interfaces by proxy through the kernel. These
device files appear in the /dev filesystem and enable an interactive user to browse
the state of an Emstar system in a similar way to the /proc and /sys filesystems
which provide a view and control channel into a Linux kernel. This approach has
certain advantages and disadvantages.

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 7

2.2.1 Simple, library-optional interface. The use of FUSD and device files for
IPC is described in detail in Section 3. The key advantage of this approach is that
no special library is required to access a FUSD-based IPC channel. Any software
with access to the POSIX API can connect to the service by opening the device
and making system calls. This means that these interfaces are accessible from
the shell and from most simple UNIX utilities and scripting languages without
additional support. Ousterhout’s arguments on the relationships between scripting
and system languages [Ousterhout 1998] apply here. Accessing Emstar services
from scripts trades-off performance for significant ease of use and code re-use. By
providing typeless ASCII interfaces in addition to typed binary interfaces, Emstar
supports rapid development by “gluing” applications together.

Another advantage is that the blocking nature of a system call often simplifies
the implementation of software that interfaces to these IPC channels. While noti-
fication that the channel is ready is signaled via select(), system calls on a FUSD
device file are synchronous and blocking, which means that they can be used in
simple, “straight-line” code without worrying about concurrency and synchroniza-
tion. As long as the service hosting the interface is responsive, the latency of a call
is generally low [Girod et al. 2004a]. The disadvantage of blocking semantics is the
possibility of deadlock in the event of a cycle in the graph of FUSD clients and
servers.

2.2.2 No local-remote transparency. One key disadvantage of FUSD IPC is that
unlike sockets, FUSD devices do not natively provide local/remote transparency.
However, this loss is less important when we observe that Emstar systems are typ-
ically embedded wireless systems for which remote access rarely behaves similarly
to local access. This argument follows many similar arguments against the use of
transparent RPC, e.g., in [Tanenbaum and van Renesse 1988]. For the common
case of local access, FUSD achieves adequate performance and provides a con-
venient interface for clients that can be used directly via system calls. The less
common case of remote access is addressed using the FUSDNet service, described
in Section 3.3.5.1.

2.2.3 Alternative solutions and trade-offs. Tanenbaum and van Renesse [Tanen-
baum and van Renesse 1988] cited a number of disadvantages to an RPC style
interface, some of which we have already discussed: Emstar IPC is strictly local
and tends to be used in a stateless, transactional manner. Many of the other
concerns are addressed by the protocols that Emstar builds over the syscall RPC
layer. Clients and servers are typically implemented as event-driven programs and
thus can readily handle concurrent connections. Client-server role reversal is ac-
complished by dispatching events to the client via the select() system call, so that
the client subsequently calls back to retrieve a message. “Multicast” communi-
cation from server to clients is achieved by notifying multiple clients at once and
individually handling their retrieval requests; thus while the system calls are not
“multicast”, the semantics layered above can be.

When considering the implementation of IPC, there are many alternatives, most
of which are based on sockets. Sockets have the advantage of higher performance
and local-remote transparency, but have the disadvantages of not being browseable

ACM Journal Name, Vol. V, No. N, February 2007.

8 · Lewis Girod et al.

and of requiring a client library or a helper program to enable access. Using sock-
ets would also eliminate the blocking RPC semantics that can provide a simpler
“straight-line” programming model when making immediate calls to a service. On
the other hand, a sockets-based solution would not be subject to deadlock.

Some libraries such as libasync [Dabek et al. 2002] enable asynchronous socket
operations within an event-based system to appear as though they were “straight-
line” blocking code. However, the very fact that these systems allow asynchronous
operations means that their concurrency is more difficult to reason about. The fact
that the code appears “straight-line” does not prevent other blocks of code from
running concurrently. In contrast, using the Emstar event system and FUSD IPC
calls, no two event handlers ever run concurrently.

By using the syscall API as its fundamental IPC mechanism, Emstar represents
a simple implementation of a microkernel. As with many microkernels, the cost of
crossing the kernel boundary on inter-service calls in Emstar is expensive. However,
newer microkernels such as L4 achieve reasonably comparable performance [Härtig
et al. 1997] to monolithic kernels using memory mapping mechanisms to share
memory for large data transfers. Such an approach could also be used in Emstar
for large memory transfers where buffer copies across kernel boundaries hurt per-
formance. However, so far, the added complexity of shared memory has not been
required as most of our applications have not required high data rates; thus the
system robustness achieved with multiple processes outweighs the IPC performance
hit.

2.3 Event driven vs. polling vs. threads

While Emstar does not mandate a particular execution model, the requirements
of embedded sensing dictate a system architecture optimized for efficiency in idle
periods. Whereas servers are typically designed to use polling to optimize for
peak performance under high load, sensor systems are more often designed to stay
vigilant but under-utilized for long periods of time. While servers stand to lose
nothing by doing more work when under-utilized, sensor systems can extend system
lifetime by triggering processing only when events occur.

In general, interleaved, interacting events are the common case for distributed
sensing systems. Similar to the principles of “reactive robotics”, distributed sensing
systems tend to operate in a “reactive” mode in which their immediate behavior
is heavily influenced by asynchronous and concurrent sensor inputs [Brooks 1986].
This reactive style fits well within an event-driven programming model, because
events and inputs of different types arriving asynchronously must be integrated to
influence the immediate behavior of the system. While threads can also be used
to achieve this type of concurrency, synchronizing different types of events often
makes threaded implementations more complex.

Most services in Emstar are implemented using a common set of helper libraries
that impose a event-based execution model. In order to maintain responsiveness, no
event handler can block. Long running computations are run in separate “compute
threads”, with message queues linking the thread with the main event loop.

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 9

POSIX API File IO and Timer Events

Device Server APIs Device Client APIs

Module Control Interfaces

Scripting APIWeb UI

EmRun Config File

Layer 0: IPC and Event System
(FUSD IPC and GLib Events)

Layer 1: Device Server and Client Libraries
(e.g., Status Device, Packet Device, etc.)

Layer 2: Services and Tools
(e.g., EmRun, Neighbor discovery, EmSim, etc.)

Platforms and Applications
(e.g., Acoustic ENSBox, Seismic, etc.)

Interfaces

System Layers

SDK

POSIX API File IO and Timer Events

Device Server APIs Device Client APIs

Module Control Interfaces

Scripting APIWeb UI

EmRun Config File

Layer 0: IPC and Event System
(FUSD IPC and GLib Events)

Layer 1: Device Server and Client Libraries
(e.g., Status Device, Packet Device, etc.)

Layer 2: Services and Tools
(e.g., EmRun, Neighbor discovery, EmSim, etc.)

Platforms and Applications
(e.g., Acoustic ENSBox, Seismic, etc.)

Layer 0: IPC and Event System
(FUSD IPC and GLib Events)

Layer 1: Device Server and Client Libraries
(e.g., Status Device, Packet Device, etc.)

Layer 2: Services and Tools
(e.g., EmRun, Neighbor discovery, EmSim, etc.)

Platforms and Applications
(e.g., Acoustic ENSBox, Seismic, etc.)

Interfaces

System Layers

SDK

Fig. 1. Decomposition of the Emstar framework into layers and interfaces.

3. HOW EMSTAR WORKS

Software frameworks are by nature difficult to conceptualize because they exist only
as the foundation and structure of a set of applications. However, a framework can
be captured by describing the services and interfaces it provides, and the structure
it imposes on an application. Emstar can be decomposed into three distinct layers
connected by interfaces, as shown in Figure 1.

Layer 0 consists of the low-level code necessary for IPC and for implementing
events. This layer motivates the construction of all Emstar applications as server
and client processes, and is thus important to understand. Layer 1 is the heart of
Emstar—libraries implementing common patterns of communication between client
and server processes. Layer 2 consists of the set of re-usable tools and services, e.g.,
time synchronization, routing, simulation, visualization, and system management,
included with Emstar and used by applications written within Emstar. The layer at
the top of the figure represents the platforms and applications built using Emstar,
for example the Acoustic ENSBox system described in Section 4. Each of the
underlying layers is described in more detail in this section.

3.1 Layer 0: FUSD Syscall IPC and the Event System

The lowest layer of Emstar is composed of FUSD [Girod et al. 2004a; Elson 2002]
and the GLib event library. Together these provide two interfaces: the POSIX API
used to connect clients and servers through character device files, and an I/O and
Timer event API. It is important to note that while the existing version of Emstar
implements these interfaces using FUSD and GLib, these components can be readily
exchanged for other implementations that provide equivalent functionality. For
example, while on Linux we use FUSD for IPC, much of Emstar could be ported
to another operating system simply by replacing FUSD and GLib. In this section
we describe the current Linux-based implementation.

The GLib event library is a standard component of most Linux distributions that

ACM Journal Name, Vol. V, No. N, February 2007.

10 · Lewis Girod et al.

provides an interface for registering File I/O and timer event handlers. Emstar
registers events through the GLib API, and the GLib library runs a main loop that
calls select().

FUSD is a custom micro-kernel interface implemented in Linux that allows user-
space server processes to register character device files and handle system calls on
those devices. FUSD provides a convenient way to enable cross-process message-
passing, while at the same time exposing shell-accessible interfaces to internal state
and control functions. In some respects, FUSD is similar to the AT&T Plan 9 sys-
tem [Pike et al. 1990], but has the advantage of running over any platform running
Linux rather than requiring the port of a complete OS to the latest embedded hard-
ware. FUSD also has much in common with the procfs and sysfs features of Linux,
which expose control and status interfaces to in-kernel features; the difference being
that FUSD exposes interfaces to user-space processes. For example, Emstar ser-
vices typically forgo the standard UNIX methods of logging and status—plain files
in /var/log and /var/run—for active FUSD device interfaces that retain “backwards
compatibility” with plain files.

FUSD implements the inter-process communication for the multiple processes
that make up an Emstar system. Emstar clients interface to services through
POSIX system calls on a FUSD device file that is registered by a server. This
simplifies the implementation of clients by reducing all interaction with a server
to a combination of straight-line blocking RPC calls and event notification via
select(). Although the underlying implementation is wholly grounded in POSIX
calls and the FUSD device API, most developers will operate at the higher layer of
abstraction provided by libraries that support common device patterns and device
clients. In the next few sections we describe FUSD and show how FUSD client-
server connections provide fault isolation.

3.1.1 System Calls as Blocking RPC. A system call on a FUSD device repre-
sents a blocking RPC call to the server, brokered by the kernel. For example,
consider the following snippet of client code:

In line 4, the read() system call results in the following sequence of events, cor-
responding to the diagram in Figure 2:

(1) Client process traps into the kernel and blocks.

(2) Kernel marshals the arguments to the read() call into a FUSD message.

(3) Kernel queues the FUSD message for the server process bound to “/dev/test”,
and wakes the server.

(4) Server reads and processes any previously queued FUSD messages.

(5) Server reads out the FUSD message and processes it.

(6) After processing the message, Server marshals a response and writes the re-
sponse message to the kernel.

(7) Kernel passes the response back to the Client and the Client’s system call
returns with a result code.

From this sequence of events, it is important to note that the client blocks for
the entire duration of the system call. Even if the system call is a “non-blocking”

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 11

Client A FUSD Server B

read()

Msg3

1

2

Msg3
Msg2

3

read()

Msg2 Process Other Client
read()

Msg3 Process Client A

Msg3

Msg3
read() returns
result code

Msg3

write() result code

4

5

6

7

Client A blocks until
system call returns

Client A FUSD Server B

read()

Msg3

1

2

Msg3
Msg2

3

read()

Msg2 Process Other Client
read()

Msg3 Process Client A

Msg3

Msg3
read() returns
result code

Msg3

write() result code

4

5

6

7

Client A blocks until
system call returns

Fig. 2. Message timing diagram of a FUSD call. The middle column of the diagram represents
the FUSD kernel module.

call such as a read() on a file descriptor that is configured non-blocking, the client
will still be blocked until the server processes the message and returns a response,
e.g. EAGAIN to indicate that the server is not ready. This means that if the server
is unresponsive the client can block in a system call for arbitrary amounts of time.
Slow response times could be caused either by errors in the implementation of the
server, or if the server is busy handling calls from other clients. Under high system
load, scheduling latency can cause a significant increase in response time. However,
under normal loading conditions experiments show that inter-process latency is
about 66 microseconds on a typical PC platform.

Despite this drawback of a blocking RPC model, there is also considerable benefit
to this approach. First, synchronous RPC calls can be made in a straightforward
coding style, as opposed to using completion callbacks. Each syscall synchronously
returns a result code with a minimum of latency. Lengthy operations are typically
structured as a request which is accepted or rejected quickly in one RPC call,
followed by notification when the requested operation completes.

Second, syscalls are a very basic interface accessible from any POSIX application,
with no library required beyond the standard UNIX interface libraries. Emstar de-
vice file interfaces are browseable within the device filesystem, and in many cases
can be accessed directly by existing UNIX programs such as cat. The syscall in-
terface is also narrow and therefore readily ported to operating systems other than
Linux.

ACM Journal Name, Vol. V, No. N, February 2007.

12 · Lewis Girod et al.

Because FUSD is central to the Emstar system, understanding its performance is
important; it is investigated further in Section 3.2.4. However, it is also important
to consider that Emstar systems are typically designed in a way that limits the
importance of FUSD performance. Unlike module interfaces based on function call
APIs (e.g., TinyOS or RPC), Emstar uses FUSD to support control traffic between
loosely coupled modules, with application-specific caching on the client side. For
example, the Emstar neighbor service publishes its list to its clients once, rather than
servicing numerous requests to access table elements. Since most Emstar services
interface to some physical entity that changes state relatively slowly, caching at the
client works quite well.

3.1.2 Client-Server Connections in FUSD. Using FUSD, client and server are
distinct roles. A process becomes a server by registering a new device file and
handling operations on that device file. A process becomes a client by opening a
FUSD device file. By successfully opening a device file, a connection is established
between client and server, which is named on the client side by the file descriptor
returned by open(). The client may invoke RPC calls to the server at any time
by making a system call on that file descriptor. The client may also listen for
asynchronous notification on that file descriptor using select() or poll(). Thus, to
communicate from server to client, the server first notifies the client and the client
then calls back to the server. For example, the server might indicate “readable”
and the client responds by calling read().

This asymmetric relationship has advantages. The primary advantage is fault
isolation: clients can be written to lower standards than servers without compro-
mising the integrity of the system. That is, while an incorrectly implemented server
can permanently block a client, an implementation error in a client can’t cause a
server to fail. This is a consequence of the blocking semantics: while a server can
potentially cause a client to block, a client can at worst only pass malformed argu-
ments in a system call which are either caught by the kernel or should be rejected
by the server process.

The FUSD client-server connection provides certain guarantees ensured by the
kernel that enable fault isolation. The kernel ensures memory fault isolation be-
tween the client and server processes. Any pointers provided as arguments to a
system call are checked for validity in the kernel and transferred to the memory
space of the destination process, thus protecting the client and server from each
other. In addition, in the event that a client or server terminates unexpectedly,
any open connections are automatically cleaned up. When a client terminates with
open connections, close() messages are generated and sent to the servers handling
those connections. When a server terminates with active clients, those clients’ file
descriptors are immediately notified with exception signals and any future system
calls on those descriptors will return EBADF error codes.

3.1.3 FUSD Dependency Graphs. An Emstar system typically involves dozens
of components, each of which hosts multiple servers and is client to several other
components. For example, the acoustic localization system described in this docu-
ment, along with all of its Emstar subcomponents, is composed of 23 components
and 182 device file interfaces. While processes are often both servers and clients of

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 13

A
/dev/A

B

/dev/B

write(X) write(Y)

Broker

/dev/broker

A B

write(A�Y)

X � read()

write(B�X)

Y � read()

A
/dev/A

B

/dev/B

write(X) write(Y)

A
/dev/A

B

/dev/B

write(X) write(Y)

Broker

/dev/broker

A B

write(A�Y)

X � read()

write(B�X)

Y � read()

Broker

/dev/broker

A B

write(A�Y)

X � read()

write(B�X)

Y � read()

Fig. 3. A dependency loop, and using a broker service to break the loop.

syncd

udpd

/dev/link/udp0/data

/dev/sync/params

syncd

udpd

/dev/link/udp0/data

/dev/sync/params

IO Threadsyncd

udpd

/dev/link/udp0/data

/dev/sync/params

syncd

udpd

/dev/link/udp0/data

/dev/sync/params

syncd

udpd

/dev/link/udp0/data

/dev/sync/params

IO Threadsyncd

udpd

/dev/link/udp0/data

/dev/sync/params

IO Thread

Fig. 4. Diagram showing how to use a thread and a queue to break a FUSD dependency loop.

other processes, there is a requirement that the dependency graph of clients and
servers be loop-free. This stems from the blocking nature of the system calls. A
loop in the dependency graph introduces the potential for deadlock, as shown in
the left side of Figure 3. In the diagram, process A is blocked in write() system call
as a client of process B, but before handling that call process B attempts to make
a write() call back to process A. When a process is blocked in a system call as a
client, it cannot respond as a server.

Figure 3 also shows a way to resolve this type of circular dependency. The most
common solution is to restructure the system to add a new service that can act as
an application-level “broker”. Building systems as a collection of services tends to
lend itself naturally to this type of structure, because most services naturally act
as a broker in the course of their operations.

Note that unlike a generic message-passing mechanism, an application-level bro-
ker still serves as a service endpoint from the perspective of a client. Errors in the
implementation of a service are handled by avoiding client/server protocols based
on hard state.

In some cases, there is no natural decomposition into strictly layered services.
When a strict layering is inconvenient, a thread and a queue can be used to break a
loop, as shown in Figure 4. Essentially, this decouples the client and server portions
of a process, with a queue between them.

3.2 Layer 1: Emstar Device Patterns and Libraries

Layer 1 of the Emstar design is a layer of libraries that comprise the heart of Emstar,
supporting the implementations of all of the tools, services, and applications built
within the framework. Using FUSD, it is possible to implement character devices
with almost arbitrary semantics. FUSD itself does not enforce any restrictions on
the semantics of system calls, other than those needed to maintain fault isolation
between the client, server, and kernel. While this absence of restriction makes
FUSD a very powerful tool, we have found that in practice the interface needs

ACM Journal Name, Vol. V, No. N, February 2007.

14 · Lewis Girod et al.

Pattern Name Description

Status Device Presents current status on demand, and notification of status
change.

Packet Device Send and receive small packets on a best-effort basis, with

per-client queuing.

Command Device Presents usage information when read, accepts command
strings via write().

Query Device Synchronous RPC with a single round-robin queue for
transactions.

Sensor Device Streaming or buffered interface to a buffered sequence of
samples measured from a sensor.

Log Device Buffer of recent log messages

Option Device /proc-style runtime-configurable option

Directory Device Internally stores a mapping from strings to small integers, and
allows clients to access and add to the mapping.

Table I. Device Patterns currently defined by the Emstar system.

of most applications fall into well-defined classes, which we term Device Patterns.
Device Patterns factor out the device semantics common to a class of interfaces,
while leaving the rest to be customized in the implementation of the service. Table I
shows a list of Emstar Device Patterns.

The Emstar device patterns are implemented by libraries that hook into the GLib
event framework. The libraries encapsulate the detailed interface to FUSD, leaving
the service to provide the configuration parameters and callback functions that
tailor the semantics of the device to fit the application. For example, Figure 5 shows
a diagram of a Status Device server. In this diagram, the dotted box represents the
portion implemented by the device pattern library. Because the library encapsulates
all of the FUSD-related details, a minimal server implementation is less than 10
lines of C.

Emstar client implementations are trivial, because services are interfaced directly
through the POSIX API. Many Emstar services provide human-readable device
interfaces that can be accessed using simple shell commands such as cat and echo.
For access from C programs, Emstar provides a thin client library that integrates
with the GLib event system and supports added features such as crashproofing,
that limits the impact of service failures by automatically re-connecting to a failed
service.

The following sections will describe a few of the Device Patterns and client li-
braries defined within Emstar. Most of these patterns were discovered during the
development of services that needed them and later factored out into libraries.
In some cases, several similar instances were discovered, and the various features
amalgamated into a single pattern.

3.2.1 Status Device. The Status Device pattern provides a device that reports
the current state of a service or application. The exact semantics of “state” and
its representation in both human-readable and binary forms are determined by the
service. Status Devices are used for many purposes, from the output of a neighbor
discovery service to the current configuration and packet transfer statistics for a
radio link. Because they are so easy to add, Status Devices are often the most

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 15

Status
Device

Server

O I

Client1 Client2 Client3

write binary
printable

status_notify()

Status
Device

Server

O I

Client1 Client2 Client3

write binary
printable

status_notify()

Fig. 5. Block diagram of the Status Device pattern. The functions binary(), printable(), and write()
are callbacks defined by the server, while status notify() is called by the server to notify the client
of a state change.

convenient way to instrument a program for debugging purposes, such as the output
of the Neighbors service and the packet reception statistics for links.

Status Devices support both human-readable and binary representations through
two independent callbacks implemented by the service. Since the devices default to
ASCII mode on open(), programs such as cat will read a human-readable represen-
tation. Alternatively, a client can put the device into binary mode using a special
ioctl() call, after which the device will produce output formatted in service-specific
structs. For programmatic use, binary mode is preferable for convenience and com-
pactness. Binary mode responses aim to provide standard, well-defined interfaces
for services that provide similar functions.

Status Devices support traditional read-until-EOF semantics. That is, a status
report can be any size, and its end is indicated by a zero-length read. But, in a slight
deviation from traditional POSIX semantics, a client can keep a Status Device open
after EOF and use poll() to receive notification when the status changes. When
the service triggers notification, each client will see its device become readable and
may then read a new status report.

This process highlights a key property of the status device: while every new
report is guaranteed to be the current state, a client is not guaranteed to see every
intermediate state transition. The corollary to this is that if no clients care about
a particular state, no work is done to compute it. Applications that desire queue
semantics should use the Packet Device pattern (described in Section 3.2.2).

The possibility of dropping intermediate states requires that services implement a
“soft-state” style of interface, in which the complete current state is always reported
in each message. This style has the advantage of simplifying the implementation
and eliminating a wide array of potential bugs in which implementation errors cause
the client to become out of sync with the server. While this approach becomes
inefficient as the update rate or the message size increases, in practice our services

ACM Journal Name, Vol. V, No. N, February 2007.

16 · Lewis Girod et al.

do not exhibit high loads in either event rate or the size of the data required to
represent each event.

Like many Emstar device patterns, the Status Device supports multiple concur-
rent clients. Intended to support one-to-many status reporting, this feature has the
interesting side effect of increasing system transparency. A new client that opens
the device for debugging or monitoring purposes will observe the same sequence
of state changes as any other client, effectively snooping on the “traffic” from that
service to its clients. The ability to do this interactively is a powerful development
and troubleshooting tool.

A Status Device can implement an optional write() handler, which can be used
to configure client-specific state such as options or filters. For example, a routing
protocol that maintained multiple routing trees might expose its routing tables as a
client-configurable status device. In such a design, the client might request updates
for a particular sink tree by opening the device and configuring it by writing the
node ID of the sink into the open device file.

3.2.2 Packet Device. The Packet Device pattern provides a read/write device
that provides a queued multi-client packet interface. This pattern is generally
intended for packet data, such as the interface to a radio, a fragmentation service,
or a routing service, but it is also convenient for many other interfaces where queue
semantics are desired.

Reads and writes to a Packet Device must transfer a complete packet in each
system call. If read() is not supplied with a large enough buffer to contain the
packet, the packet will be truncated. A Packet Device may be used in either a
blocking or poll()-driven mode. In poll(), readable means there is at least one
packet in its input queue, and writable means that a previously filled queue has
dropped below half full.

Packet Device supports per-client I/O queues with client-configurable lengths.
When at least one client’s output queue contains data, the Packet Device processes
the client queues serially in round-robin order, and presents the server with one
packet at a time. This supports the common case of servers that are controlling
access to a rate-limited serial channel.

To deliver a packet to clients, the server must call into the Packet Device library.
Packets can be delivered to individual clients, but the common case is to deliver
the packet to all clients, subject to a client-specified filter. This method enhances
the transparency of the system by enabling a “promiscuous” client to see all traffic
passing through the device.

3.2.3 Client Libraries and Crashproofing. Crashproofing is intended to prevent
the failure of a lower-level service from causing exceptions in clients that would lead
them to abort. It achieves this by encapsulating the mechanism required to open
and configure the device, and automatically triggering that mechanism to re-open
the device whenever it closes unexpectedly.

The algorithm used in crashproofing is described in Figure 6. The arguments to
this algorithm are the name of the device, and two callback functions, config and
handler. The config function configures a freshly opened device file according to the
needs of the client, e.g. setting queue lengths and filter parameters. The handler

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 17

Watch-Crashproof(devname, config, handler)

1 fd ← open(devname)
2 if configure(fd) < 0 goto 11
3 crashed ← false

4 resultset ← poll(fd , {input, except})
5 if crashed
6 then status ← read(fd , buffer)
7 if status < 0 abort

8 if devname ∈ buffer goto 1
9 else

10 if except ∈ resultset
11 then close(fd)

12 fd ← open(“/dev/fusd/status”)
13 if fd < 0 abort

14 crashed ← true

15 elseif input ∈ resultset
16 then status ← read(fd , buffer)
17 if fatal error goto 11
18 if status ≥ 0 handler(buffer , status)

19 goto 4

Fig. 6. “Crashproof” auto-reopen algorithm.

function is called when new data arrives. Note that in the implementation, the call
to poll() occurs in the GLib event system, but the fundamental algorithm is the
same.

A client’s use of crashproof devices is completely transparent. The client con-
structs a structure specifying the device name, a handler callback, and the client
configuration, including desired queue lengths, filters, etc. Then, the client calls
a constructor function that opens and configures the device and starts watching
it according to the algorithm in Figure 6. In the event of a crash and reopen,
the information originally provided by the client will be used to reconfigure the
new descriptor. Crashproof client libraries are supplied for both Packet and Status
devices.

3.2.4 Impact of FUSD and Emstar Devices on Latency. While Emstar process
isolation has many advantages, passing messages though successive user-space ser-
vices increases latency. To quantify the latency costs of FUSD and of some repre-
sentative Emstar services, we sent a series of loopback UDP “ping” messages and
measured the latency costs incurred by layering additional modules over an Emstar
link device.

Figure 7 shows the results of our experiment, running on a 700 MHz Pentium III.
The udp-raw curves represent a non-Emstar benchmark, in which we used a UDP
socket directly. The udp-dev curves represent a minimal Emstar configuration, in
which we used the Emstar UDP Link device. For a two-layer stack, we added the
Emstar Link Quality Estimation service, represented by the +linkstats curves. For
a three-layer stack, we added the Fragmentation service over Link Quality, shown
by the +frag curves.

ACM Journal Name, Vol. V, No. N, February 2007.

18 · Lewis Girod et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 6 7 8 9 10 11 12 13 14 15 16

 P
in

g
R

T
T

 [m
se

c]

 Log2 of Packet-Size [Bytes]

 Latency Test over Loopback

udp-dev-linkstats+frag
udp-dev-linkstats

udp-dev
udp-raw

Fig. 7. Measurements of packet latency through a stack of Emstar link devices on a 700 MHz
Pentium III running the 2.4.20 kernel. Each curve shows the average round-trip delay of a ping
message over the loopback interface, as a function of packet length, through different Emstar

stacks. Both graphs show that performance is dominated by per-packet overhead rather than
data transfer.

In this experiment we measured the round-trip times for 1000 packets and av-
eraged them to estimate the latency for our four configurations. Since the latency
over loopback is negligible (shown in the “udp-raw” curve), all of the measured
latency represents Emstar overhead. In each case, a ping round trip traverses the
stack four times, thus is approximately 4x the latency of a single traversal. Thus,
the data show that crossing an Emstar interface costs about 66 microseconds on
this architecture, without a strong dependence on the length of the message being
passed. This means that timing jitter at the Emstar application level is large rel-
ative to interrupt latency. Emstar assumes that all timing-critical operations and
all time-stamping is performed within the kernel (as is the case for any user-level
Linux software).

3.3 Layer 2: Emstar Components, Services, and Tools

Layer 2 in the Emstar design is a collection of reusable components, services, and
tools that address common needs in embedded networked systems. This spans
a wide range of functionality including device drivers, routing algorithms, time
synchronization services, and distributed collaboration services. Table II lists the
most commonly used Emstar services.

In this section we first detail three of the most fundamental services used in Em-
star systems. First we describe Emstar’s collection of network components, which
enable Emstar systems to bridge between 802.11 and Mote networks, and enable the
development of new network protocols that emphasize local communication over
end-to-end connections. Second, we discuss the EmTOS library, a TinyOS [Hill
et al. 2000] platform that enables TinyOS code to be shared between Motes and

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 19

Service Name Description

UDPd Provides a packet interface to IP networks.

TOSNic Provides a packet interface to Mica2, MicaZ and Telos mote
networks.

Fragmentation Fragmentation layer for sending large packets via small-MTU

links.

Neighbord Sends periodic beacons to discover neighbors.

Linkstats Link quality estimator based on measuring packet loss.

RNPLite Low-overhead link quality estimator based on measuring

packet loss.

Blacklist Drops packets based on a specified policy about link quality.

Flooding Flood routing.

DSR Distributed Source Routing.

Sink Generic routing module, routes packets based on tables

provided by an external service, such as StateSync.

StateSync Reliable multicast state dissemination protocol, with two
flavors: flooding and multicast.

Centroute Microserver-based system for managing Mote networks.
Incorporates lightweight Mote registration protocol and
unicast routing to and from Motes.

TimeSync Time conversion service that enables conversions between CPU

clock time, other system clocks (e.g. GPS or audio codec), and
the CPU clocks of neighboring nodes.

GSync Global time broadcast service, makes a single time reference
available on all nodes in the network.

Audio Server Continuous multichannel recording service with 8 seconds of

internal buffering and integration to the TimeSync system.

EmRun Manages startup, shutdown, and logging of processes in an
Emstar system.

EmProxy Daemon for monitoring and controlling groups of nodes via
UDP broadcast.

Directory Service Creates a persistent local mapping of string values to integers.

IP Connector Tunnels IP packets via a link interface.

Table II. Partial list of services currently implemented within the Emstar system.

Emstar systems. Third, we discuss the EmRun service, a daemon that starts up,
shuts down, and monitors a running Emstar system, providing centralized logging
and fault reporting.

Finally, we describe a collection of tools that help developers design, implement,
and deploy new systems, including tools for simulation, deployment, remote access,
and visualization.

3.3.1 Network Stack Components. Emstar includes a suite of components that
are used and combined to provide network functionality tuned to the needs of wire-
less embedded systems. These components include “link drivers”, that implement
the lowest layer interfaces to network resources, pass-through modules that im-
plement various types of filter and passive processing, and routing modules that
provide facilities that provide network-layer interfaces that route messages among
one or more link-layer interfaces. Each network component provides a standard
Link Device interface, composed of a packet device for data traffic, and command

ACM Journal Name, Vol. V, No. N, February 2007.

20 · Lewis Girod et al.

and status devices for configuration and status. The Link Device interface provides a
uniform interface to a basic set of common features such as neighbor list, data trans-
fer, and channel selection, but is extensible to support hardware-specific features
in the interim before the uniform abstraction can be extended. This represents a
different approach from the recently proposed SP abstraction [Polastre et al. 2005],
in which all hardware-specific details are hidden behind a rigid abstract interface.

Emstar implements several “link drivers”, providing interfaces to radio link hard-
ware including 802.11, and several flavors of the Mica Mote. The 802.11 driver
overlays the socket interface, sending and receiving packets through the Linux net-
work stack, and optionally integrating feedback from the MAC layer about RSSI,
precise timing, and transmission failures. Two versions of the Mote driver exist,
one that supports both Berkeley MAC [Hill et al. 2000] and SMAC [Ye et al. 2002]
on Mica2, and a new version that supports only BMAC but adds support for newer
platforms such as Telos. While the Link Device provides an abstraction for many
common radio features, it does not require that this abstraction be complete or
opaque. Low level information about the link’s capabilities and current status,
e.g., transmit power, MTU, and channel, is exposed so that applications can make
intelligent decisions about how and when to use them.

Link interfaces are also used to construct modules that sit in the middle of the
stack, passing packets through to lower layers, possibly analyzing or modifying them
along the way. A pass-through module is both a client of a lower Link device and
a provider of an upper Link device. To simplify the implementation, some of the
work of proxying status and command interfaces is done by a library. In some cases,
the implementation of a pass-through involves implementing a single function that
transforms a packet from above and sends it below, and vice versa.

Linkstats, Blacklisting, and Fragmentation are examples of pass-through modules.
Linkstats adds a small header to each packet and counts gaps in sequence numbers to
estimate link quality. Blacklisting uses the output of a neighbor discovery module to
block traffic on links that are not bidirectional. Fragmentation breaks large packets
up into smaller packets.

Link interfaces are also used to provide interfaces to routing modules. These
are network layer interfaces rather than link layer interfaces, so the source and
destination addresses are usually interpreted as network layer IDs i.e. Node IDs)
rather than link layer IDs (i.e. Interface IDs). The simplest routing module is the
flooding module, which accepts messages, adds a sequence number, and re-sends
each message exactly once. There is also an implementation of DSR and a generic
routing module called sink that uses routing tables provided by another module to
route messages to a specified destination.

3.3.2 Supporting Heterogeneity with EmTOS. EmTOS [Girod et al. 2004b] is a
TinyOS [Hill et al. 2000] platform target that enables TinyOS applications to run
as a single module in an Emstar system. EmTOS implements a shim layer that
translates between the TinyOS system API and the Emstar API, enabling a TinyOS
application to run on a Microserver. EmTOS also enables a TinyOS application to
provide services to other Emstar applications by hosting Emstar device interfaces.
Because EmTOS emulates the TinyOS API, applications that require direct access
to Mote hardware or that rely on precise timing will not work properly in EmTOS.

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 21

The key advantage of EmTOS is that it allows TinyOS/NesC code to be shared
between TinyOS Motes and Linux Microservers. Consider the case of a Mote net-
work in which a complex protocol is implemented. Without EmTOS, there are
two ways to interface that network to a Microserver: either by re-implementing
the protocol on the Microserver, or by loading a specialized image on the Mote
directly connected to the Microserver. In the latter case, the Mote must implement
the protocol and translate it into TOS Msg structures that can be interpreted on
the Microserver side (e.g. in Java via MIG). However, EmTOS provides a third
alternative: to run the NesC protocol code directly on the Microserver, in a special
TinyOS application that uses any convenience afforded to Linux applications.

To better support Emstar integration, EmTOS provides NesC interfaces that
support the native Emstar IPC mechanisms, including Status Device, Packet De-
vice, and Link Device. EmTOS also enables the Emstar simulation environment to
simulate heterogeneous networks composed of both Motes and Microservers [Girod
et al. 2004b]. Using EmTOS as a building block, we have developed more so-
phisticated Mote-Microserver collaboration tools, including the concept of Mote
Herding [Stathopoulos et al. 2005].

3.3.3 EmRun Services. EmRun is a program that parses a configuration file that
describes an Emstar system, launches the system, and provides several centralized
services. Among the services it provides are automatic re-spawning with visibility
into the status and history of processes, centralized in-memory logging, process
responsiveness tracking, and fault reporting.

3.3.3.1 Respawn. Process respawn is neither new, nor difficult to achieve, but
it is very important to an Emstar system. It is difficult to track down every bug,
especially ones that occur very infrequently, such as a floating-point error processing
an unusual set of data. Nonetheless, in a deployment, even infrequent crashes are
still a problem. Often, process respawn is sufficient to work around the problem;
eventually, the system will recover. Emstar’s process respawn is unique because
it happens in the context of “crashproofed” interfaces (Section 3.2.3). When an
Emstar process crashes and restarts, Crashproofing prevents a ripple effect, and
the system operates correctly when the process is respawned.

When processes die unexpectedly, EmRun tracks the termination signal and last
log message reported by the process. This information can be accessed from the
last msg device, that reports the count and circumstances of all process terminations
along with their final message.

3.3.3.2 In-Memory Logs. EmRun saves each process’ output to in-memory log
rings that are available interactively from the /dev/emlog/* hierarchy. This de-
sign decision stemmed from experience with hardware platforms in which writing
logs to flash posed serious practical problems. While in principle saving persistent
logs to a large flash device should not be a problem, in practice many platforms
do not include a suitable device. In our early experiences with embedded Linux
platforms we found that frequent writes to flash often caused system performance
problems. When multiple applications needed access to flash and erase operations
were occurring, flash accesses would sometimes block for long periods of time.

ACM Journal Name, Vol. V, No. N, February 2007.

22 · Lewis Girod et al.

Defaulting to in-memory logs addressed both of these problems at once. In the
event of a critical failure or user command, an external component saves a snapshot
of the current logs to persistent storage on flash. As logging capabilities improve,
this design choice may need to be revisited.

3.3.3.3 Process Responsiveness Tracking. An unresponsive server can cause per-
formance bottlenecks for an entire Emstar system. To address this, EmRun tracks
the responsiveness of all processes in the system. The EmRun client library in-
cludes a timer event that sends a periodic heartbeat message to EmRun. EmRun
tracks the arrival of these messages and compares the arrival time to the scheduled
send time according to the timer. The discrepancy in the times reveals an estimate
of the responsiveness of the process, since whenever the timer fires, that process is
also free to respond to I/O events.

3.3.3.4 Fault Reporting. Fielded systems often have the possibility of unex-
pected faults. For example, our acoustic systems sometimes experience wiring
problems that cause one or more channels of the microphones or the speaker to
fail. It is also possible for our acoustic systems to be incorrectly set up, for example
if the battery pack for the microphone array is disconnected or if the array’s wires
are crossed. A driver that detects a fault can publish this fault through a centralized
reporting service provided by EmRun. This fault report is only available locally
through the faults device file, but other modules can publish that fault information
over the network to other nodes and to the user.

The fault reporting API is very simple. A process reports a fault by opening a
device file, writing in a string describing the fault, and keeping that file open until
the fault is corrected. When the file is closed (whether by the application or by the
process terminating), the fault will be removed from the list. Other processes may
monitor the fault list using the standard Status Client library.

3.3.4 EmSim: the Emstar Simulator. Transparent simulation at varying levels
of accuracy is crucial for building and deploying large systems [Elson et al. 2003]
[Levis et al. 2003] [Girod et al. 2004b]. EmSim enables “real-code” simulation at
many different accuracy regimes. EmSim runs many virtual nodes in parallel, each
with its own device hierarchy. Because Emstar applications always interact with
the world through standard interfaces such as Link devices and Sensor Devices,
EmSim can transparently run nodes in simulation by presenting identical interfaces
to simulated or remote resources.

For operations in pure simulation, a radio channel simulator and a sensor sim-
ulator can provide interfaces to a modeled world, or re-play conditions that have
been observed empirically. EmSim also supports “emulation mode”, in which real
hardware such as radios and sensors can be accessed remotely. This yields a very
convenient interface to a testbed, because the entire application can run centrally
on a single simulation server, while the radio traffic or sensor data comes from a
deployed testbed. We have found that using real radios is far superior to attempt-
ing to model radios, especially when there may be bugs or glitches in the operation
or performance of the radios.

These different simulation regimes speed development and debugging; pure sim-
ulation helps to get the code logically correct, while emulation in the field helps to

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 23

understand environmental dynamics before a real deployment. However, because
the Emstar simulator does not provide tight timing accuracy and glosses over hard-
ware details, timing- and hardware-related bugs that appear in deployment may be
difficult to reproduce in simulation. Simulation and emulation do not eliminate the
need to debug a deployed system, but they do tend to reduce it.

In all of these regimes, the Emstar source code and configuration files are iden-
tical to those in a deployed system, making it painless to transition among them
during development and debugging. This serves to eliminate accidental code dif-
ferences that can arise when running in simulation requires modifications. EmSim
can also simulate heterogeneous networks that contain both Motes and Emstar sys-
tems, by running the Mote code inside an EmTOS wrapper [Girod et al. 2004b].
Other “real-code” simulation environments include TOSSim [Levis et al. 2003] and
SimOS [Rosenblum et al. 1997], but Emstar is the only environment that readily
supports heterogeneous networks and “emulation” using real hardware.

3.3.5 Remote Access Methods. As an IPC mechanism, FUSD has the benefit of
being fast, deterministic, and synchronous, making straight-line programming of
sequential calls possible. These properties make it easy to communicate between
processes on a single node, but unlike sockets, they do not provide any native remote
access mechanism. In addition, some languages such as Java are designed to handle
everything in terms of sockets, and don’t have complete support for POSIX system
calls.

To address these concerns, we have implemented several remote access mech-
anisms to Emstar. These mechanisms enable access to Emstar services over the
network, and can also simplify the integration of Emstar with other systems. The
three remote access mechanisms supported by Emstar are FUSDnet, the Emstar
HTTP server, and EmProxy.

3.3.5.1 FUSDnet. FUSDnet is a remote access protocol based on FUSD. Using
FUSDnet, any FUSD device can be accessed remotely via a sockets protocol.

A server that wants to enable incoming remote connections must set a special
flag when it registers the device. This flag will register the device with the FUS-
Dnet daemon, which listens for incoming requests and demultiplexes them to the
appropriate server. A client that wants to connect to a remove FUSD service must
run a client program that opens a socket to the remote node, requests a connection
to the specified device, and creates a local stub device. Once the connection is
established, the local stub device will be an exact mirror of the remote device. A
system call made on the stub will be marshaled and transferred via the socket to the
remote server, where it will be handled and a response returned. Thus, FUSDnet
provides transparent access to remote FUSD services.

FUSDnet is transparent, but it is recommended only for use in conditions with
reliable and deterministic network links between client and server. FUSDnet might
be a convenient way to link two Emstar systems together if they have a wired
Ethernet link between them, but it would not be so appropriate if those two systems
are physically separate and are connected wirelessly. For such situations, protocols
designed for slow or unreliable links would be preferred.

ACM Journal Name, Vol. V, No. N, February 2007.

24 · Lewis Girod et al.

3.3.5.2 HTTP. With the advent of the Web, HTTP has become one of the most
universally implemented protocols. Recognizing this, Emstar supports an HTTP
gateway that enables remote access to FUSD devices. This access is implemented
by CGI scripts that enable access to Status Devices, Command Devices, and Log
Devices via simple URL formats. This approach can easily be extended by adding
additional CGI scripts to handle other device types.

The Emstar HTTP server integrates with EmRun to provide a default web page
that shows the node’s current status and can integrate sub-pages for each running
process. This “Node Page” can make it easy for novice users to browse the status
of a node using a web client. The HTTP service also enables integration with Java
and other software that can readily access services via HTTP, and allows those
programs to run remotely.

3.3.5.3 EmProxy. EmProxy is a remote access protocol that exposes real-time
state changes via a best-effort UDP protocol. Unlike FUSDnet and HTTP, which
use TCP to reliably connect to a specific node, EmProxy provides a broadcast
interface to control and monitor groups of nodes over a broadcast network. Because
EmProxy can operate over broadcast to groups of nodes, it is very useful in deployed
environments where many nodes are involved but only a subset of those nodes are
reachable at any given time. The use of UDP enables EmProxy to report status
at high rates, dropping messages rather than buffering them when the rate exceeds
capacity.

An EmProxy client connects to EmProxy by periodically sending a request mes-
sage that lists a set of Status Devices to monitor. The EmProxy service opens
those Status Devices and monitors them for notification. Whenever notification is
triggered, EmProxy reads the new state and reports that back to the requester via
UDP. The request string can include options and arguments to limit the rate at
which replies are reported, to automatically re-read the device periodically, and to
set the mode in which the device is read (e.g. binary, ASCII, XML, etc.)

EmProxy also supports the ability to run shell commands and report back the
results. This broadcast remote shell is very useful for managing and controlling
groups of nodes in a deployed setting.

3.3.6 Deployment Tools. Emstar includes a number of tools and facilities de-
signed to aid deployments. When working on a deployment the two primary issues
to address are finding out the state of the nodes and controlling the nodes. Emstar
provides several mechanisms that address these issues: rbsh (Remote Broadcast
SHell), IP routing, and efficient state flooding.

3.3.6.1 rbsh. The rbsh program is an invaluable tool for dealing with collections
of nodes. It provides a simple shell prompt interface, but when commands are
written at the prompt, they are broadcast out over a selected network, and the
command script is run on each node. The results of the command are then reported
back and collated at the prompt.

In a deployed setting, this provides a fast and convenient way to send commands
to all reachable nodes without needing to know which nodes exist or which are
reachable. In addition, relative to tools based on ssh and other connection-oriented
protocols, there is no need to maintain connections to remote nodes, nor to time

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 25

Fig. 8. (a) Screen shot of EmView, the Emstar visualizer, taken from our James Reserve deploy-

ment. (b) Photo of one of the Acoustic ENSBox nodes, deployed at the James Reserve.

out broken connections. The result is a simple, fast, and generally intuitive shell
interface.

We have also had success using rbsh in scripts to control groups of nodes while
running experiments and to implement simple forms of coordination without writing
specialized application code.

3.3.6.2 IP Routing. In a deployed setting, being able to telnet across the net-
work is very useful. For this reason, even if the application itself does not require
end-to-end IP routing, IP routing can be very useful for debugging a deployment.
Often full pairwise routing is not needed, and routing along a tree is sufficient.
Emstar provides IP routing by combining native Emstar routing facilities with the
IP Connector. The IP connector provides a regular IP network interface that ap-
plications such as telnet and ping can use, but tunnels the traffic on that interface
through a Emstar Link device.

3.3.6.3 State Flooding. One of the most challenging parts of a deployment is
determining what is happening in the network. For example, it is important to
know the link quality observed between different nodes in the system so that gaps
in connectivity can be corrected. It is also important for the user to be aware of
faults that may have occurred in the deployment.

ACM Journal Name, Vol. V, No. N, February 2007.

26 · Lewis Girod et al.

To address these needs, Emstar includes StateSync, an efficient reliable state
dissemination mechanism [Girod et al. 2005]. The StateSync protocol defines a
local retransmission protocol, and is provided in two versions: the flooding version
and the tree-based multicast version. The flooding version is ideal for debugging
and fault reporting, because it does not rely on any form of routing; it exchanges
messages peer to peer at a low rate to flood the current state of a set of variables
to its neighbors with a maximum hopcount to limit propagation. Reliability is
achieved by triggering local retransmission when a gap is detected in the sequence
of messages. This mechanism is described in more detail in [Girod et al. 2005].

In our acoustic deployment, we use this mechanism to flood reported faults and
neighbor link quality. This enables us to use a laptop to observe the network from
anywhere in the field, quickly getting a picture of the link quality in the network,
and immediately seeing any reported faults.

3.3.7 Visualizing Emstar Systems. EmView is a graphical visualizer for Emstar
systems. Through an extensible design, developers can easily add “plugins” for new
applications and services. Figure 8(a) shows a screen-shot of EmView displaying
real-time state of a running deployment at the James Reserve. In this instance, the
data was being displayed live from our state flooding protocol.

EmView uses the EmProxy protocol to acquire status information from a collec-
tion of nodes. Although the protocol is only best-effort, the responses are delivered
with low latency, such that EmViewcaptures real-time system dynamics. In order
to support heterogeneous networks, EmView first requests a configuration file from
each node that details how to visualize the services on that node. Based on that
file, EmView then follows up with a request for node status as needed. This design
enables EmView to visualize any Emstar system without needing to be informed
up front about the details of what software or services are present in each system.

4. EVALUATION

To evaluate the utility of Emstar we present a case study in which Emstar was used
to build a sophisticated Microserver application. The Acoustic ENSBox [Girod
et al. 2006; Girod 2005], shown deployed in the James Reserve in Figure 8(b), is a
platform for distributed acoustic sensing. It represents a complete vertical imple-
mentation of a sensor-actuator network, from hardware through the sophisticated
application software shown in the architectural diagram in Figure 9. We have used
this system to detect and localize animal calls in several field experiments [Ali et al.
2007; Trifa et al. 2007].

In a typical deployment, a cluster of ENSBoxes is positioned on tripods in an
area of interest. Each node runs an Emstar stack and hosts a 4-channel microphone
array and 4 piezo tweeters, capable of sampling and processing all four channels at
48 KHz. Nodes in the system communicate via an 802.11 interface with an external
antenna; an on-board mote radio provides an interface to networks of motes.

In this section, we evaluate the effectiveness of Emstar as an application frame-
work by describing how it enabled the implementation of two applications: a sophis-
ticated acoustic self-calibration service, and a simple marmot detection application.

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 27

Ranging
Layer

Emit Coded
Signal

Detection
Algorithm

Select
Code

Detection
Algorithm

<Code, Detect Time> <Code, Detect Time><Range, θ, φ>

Multilateration Layer

<Range, θ, φ><X, Y, Z, θ>

Time-Synchonized Sampling Service Layer

Time Sync Control Traffic

Trigger

Trigger

Multi-hop Network Layer

Ranging
Layer

Emit Coded
Signal

Detection
Algorithm

Select
Code

Detection
Algorithm

<Code, Detect Time> <Code, Detect Time><Range, θ, φ>

Multilateration Layer

<Range, θ, φ><X, Y, Z, θ>

Time-Synchonized Sampling Service Layer

Time Sync Control Traffic

Trigger

Trigger

Multi-hop Network Layer

Fig. 9. Simplified architectural diagram of the Acoustic ENSBox automated position estimation

system. The “Time Synchronized Sampling Layer” is composed of the TimeSync service and the
Audio service. The “Multi-hop Network Layer” is composed of the UDPd packet service, RNPLite
link estimator, the Flood routing service, and the StateSync reliable state dissemination service.

The “Multilateration Layer” and the “Ranging Layer” are two separate processes that together
make up the position estimation service.

4.1 Acoustic Self-Calibration

The ENSBox platform includes an integrated self-calibration mechanism that com-
putes highly accurate position and orientation estimates for each node. When the
calibration system is activated, it emits acoustic signals into the environment and
detects them at other points to autonomously estimate a high-accuracy 3D posi-
tion map for all nodes in the system. This map may then be used by higher-level
applications such as bearing-based localization applications and algorithms [Wang
et al. 2005; Wang et al. 2004; Chen et al. 2003; Ali et al. 2007].

4.1.1 Leveraging Emstar’s Wealth of Services. The implementation of the Acous-
tic ENSBox software stack, shown in Figure 9, uses most of the components of
Emstar described in this article. EmRun starts the system up, keeps processes run-
ning in the event of a failure, and supports fault reporting, local logging, process
responsiveness monitoring, and other diagnostics. Faults and network connectivity
information is propagated throughout the network via the state flooding facility.
From a laptop at the edge of the network, EmView can visualize the deployment,
faults can be observed, and rbsh can broadcast shell commands to the whole net-
work for control or diagnosis. Figure 8(a) shows a screen shot of EmView captured
during the James Reserve deployment.

The Acoustic ENSBox uses Emstar services to provide a synchronized sampling
layer [Elson et al. 2002b]. The Audio service continuously samples the audio hard-

ACM Journal Name, Vol. V, No. N, February 2007.

28 · Lewis Girod et al.

ware and provides an interface to the last 8 seconds of sampled audio data using
the sensor device pattern. The Audio service also provides time conversion data to
the Time Synchronization service, enabling applications to directly convert CPU
timestamps to and from points in the audio time series. To enable conversions
between the clocks of neighboring nodes, the Time Synchronization service imple-
ments Reference Broadcast Synchronization (RBS) [Elson et al. 2002a]. The time
synchronization API provides access to this entire graph of conversions, while the
sensor client API provides access to specified ranges of audio samples from the
recent past. Should a node discover an interesting feature at a particular point
in its audio stream, these facilities make it easy to communicate that information
to nodes one or more hops away, who in turn can retrieve and analyze the data
recorded at the same time at their location.

The Acoustic ENSBox also uses StateSync [Girod et al. 2005] to share acoustic
ranging and position estimation results with other nodes. The StateSync facility,
also built using Emstar, provides a publish-subscribe interface over an efficient reli-
able multihop broadcast. Designed to make soft-state system designs more efficient,
applications can publish and re-publish their current “state” via StateSync. The
StateSync system will deliver the current state reliably and deliver efficient diffs
to that state whenever a change is made. StateSync can be used to implement a
variety of coordination mechanisms; Acoustic ENSBox uses it to coordinate ranging
experiments and to publish the results of ranging and position estimation.

The re-usable Emstar services described above represent over 50K lines of C.
Using these facilities substantially reduced the complexity and time required to
construct the acoustic self-calibration system. While the self-calibration imple-
mentation is still substantial (15K lines), it is focused exclusively on the signal
processing and estimation details required to estimate the ranges between nodes
and to construct a coordinate system.

In addition, by implementing common services as separate modules we have been
able to generalize them across applications and to support multiple concurrent
applications. In contrast to the first iterations of this system we described in
Section 1, the Emstar based implementation has enabled animal call detection and
localization software to run in parallel with the self-calibration system.

4.1.2 Emstar’s Robustness. Using Emstar uniquely enabled us to build and de-
ploy a robust system. Before we left the lab, we used the real-code simulation and
emulation capabilities of EmSim to debug many of the underlying components. For
the networking portions, we used emulation mode on a 13-node 802.11 testbed that
tested our networking components on a real (albeit different) radio channel. Using
emulation mode, we were able to test our networking algorithms using a real 802.11
channel, subjecting them to real channel-loss and timing characteristics. This en-
abled us to debug problems relating to timing, congestion, and link asymmetry.

After getting the system working in the lab, we performed several test deploy-
ments at the James Reserve, each running the system continuously for 24 hours.
Once in the field, Emstar’s robustness paid off in three specific ways.

First, there were a few unexpected failures of underlying software components,
particularly the Time Synchronization and the Link Quality Estimation services.
These failures were reported, the services automatically restarted, and clients of

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 29

those services automatically reconnected. These failures did not cause more than
a few minutes’ disruption in the application, and so we were able to ignore those
problems during our experiment. If these faults had caused a total system restart
it would have been much more disruptive because many services would need to
go through a time-consuming process to rediscover their state. For example, the
Acoustic Ranging service would need to re-range to all of its neighbors, which takes
minutes to complete. Moreover, in some cases a complete system restart would
simply have re-created the failure mode, whereas restarting an individual service
would enable the system to continue to move forward and collect data.

Second, because our acoustic arrays are prototypes and are not completely hard-
ened, we experienced problems with microphone wiring and low voltages on the mi-
crophone batteries. These faults were detected by the Audio service and reported
to EmRun with low latency. StateSync was then used to reliably disseminate ob-
served faults, so that they were visible from a laptop anywhere in the field. Thus,
whenever a fault arose, we would walk out to that node and debug it.

Third, some hardware failures caused software lock-ups. In one case, problems
with the flash filesystem caused the application to block while attempting to write.
This problem was detected and reported by EmRun as an unresponsive process.
While in this instance there was no way to fix the problem in the field, Emstar
enabled the problem to be diagnosed on-line and the node was removed from the
experiment. Without a framework that was monitoring distributed software and
hardware components, it would have been more difficult to track down the source
of the problem.

Arguably, if these debugging facilities and robustness features did not already
exist, system developers would need to construct them in order to test and deploy
their system in difficult environments.

4.2 A Simple Detection Application

Our second use case is the implementation of a simple animal-call detection algo-
rithm described in [Ali et al. 2007]. This detection algorithm was written in about
a week, and comprised about 800 lines of C. The application monitors a single
audio channel, filtering the signal and detecting an onset of energy in a particular
band. When an event is thus detected, the time of the event is flooded to all nodes
within N hops. A separate event recording application receives these notifications,
aggregates them whenever notifications from different nodes overlap, and records
the event to flash. Thus, whenever any node in the network detects an event, all
nearby nodes record precisely synchronized segments of audio for later processing.

Just as in the case of the localization system, Emstar’s existing services and
components vastly reduce the work required to develop this application. Approx-
imately 50% of the detector implementation was devoted to the signal processing
algorithms themselves; the remainder provided control and status interfaces for
run-time re-configuration of parameters. However, Emstar services addressed most
of the remaining details, from time-synchronized sampling at multiple nodes and
multi-hop networking to logging and centralized fault reporting.

ACM Journal Name, Vol. V, No. N, February 2007.

30 · Lewis Girod et al.

5. RELATED WORK

Throughout the paper we have mentioned work related to individual components
or aspects of Emstar. See Section 2.1.3 for a discussion of Microreboot [Candea and
Fox 2003] [Candea et al. 2004] and Nooks [Swift et al. 2004]; see Section 2.2.3 for a
discussion of alternative IPC mechanisms. In this section we discuss two categories
of work related to Emstar: software systems and simulators.

5.1 Software Systems

The system most similar to Emstar is TinyOS [Hill et al. 2000]. TinyOS addresses
the same problem space, only geared to the much smaller Mote platform. As
such, much TinyOS development effort must focus on reducing memory and CPU
usage. By operating with fewer constraints, Emstar can focus on more complex
applications and on improving robustness in the face of growing complexity. A
key attribute of TinyOS that Emstar lacks is the capacity to perform system-wide
compile time optimizations. Because Emstar supports forms of dynamic binding
that do not exist in TinyOS, many compile-time optimizations are ruled out.

Player/Stage [Vaughan et al. 2003] is a software system designed for robotics
that supports “real-code” simulation. In many respects, Player and Emstar have
a similar philosophy. Both focus considerable effort on ease of system integration,
because just as in typical Emstar systems, the robots Player is designed to support
must interface to many peripherals and devices that often do not support any pre-
existing standardized interface. Both are designed to support a soft-state system
design typical of reactive robotics systems, in which different components are loosely
connected by data paths that pass along the latest state and notify on change.
The main difference lies in the design of the system and the IPC mechanisms.
Player is based on simple sockets protocols, which have the advantage of remote
transparency, but are not as easily browsed and provide less diagnostic capability.

CARMEN1 is another software framework designed to support development and
real-code simulation in the field of robotics. Like Player, CARMEN uses sockets-
based IPC with a loose publish-subscribe message-passing semantics. Unlike Player,
in which clients and servers connect directly to each other, CARMEN routes all
messages through a central message router that plays a role similar to FUSD in
Emstar.

5.2 Simulation Environments

Several other simulation environments have been applied to sensor network sys-
tems, including TOSSIM [Levis et al. 2003], Avrora [Titzer et al. 2005] and ns-22.
TOSSIM and Avrora both support real-code simulation of Mote-based systems.
The ns-2 simulation environment is commonly used to model the behavior of In-
ternet protocols.

Like EmTOS, TOSSIM [Levis et al. 2003] is implemented as a TinyOS “plat-
form”, and simulates code running above a TinyOS API. TOSSIM can been used
to simulate above either a very low-level API or over a higher message-level API.
Simulations above the low-level API can be used to simulate behavior within the

1CARMEN (Carnegie Mellon Robot Navigation Toolkit), http://carmen.sourceforge.net/doc/.
2ns-2, the Network Simulator, http://nsnam.isi.edu/nsnam/index.php/Main Page

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 31

radio stack, whereas simulations above the message-level API are more scalable.
TOSSIM does not run real-time, but guarantees proper ordering of messages and
proper timing of timer interrupts. However, it does not take execution time into
account.

Avrora [Titzer et al. 2005] is an AVR/Mote binary emulator that provides a
cycle-accurate emulation environment with energy accounting and an interface to
a radio channel model. Avrora executes a complete binary Mote image just as a
real Mote would, and all hardware interrupts work as in a real Mote. Unlike the
Emstar simulator or TOSSIM, Avrora properly accounts for processing time and
will deliver interrupts with completely accurate timing. However, Avrora is very
resource intensive relative to other simulators.

The ns-2 simulation environment has been adapted for use in wireless settings,
including the use of different MAC layers and integrated support for common IP
protocols. While wireless support was not central to the design of ns-2, it includes
good support for MAC layer details, particularly of 802.11. The most significant
drawback to ns-2 is that it is not a real-code simulation environment, instead re-
quiring considerable amounts of glue to link real code to the simulation engine.

Relative to Avrora and TOSSIM, Emstar provides a reduced-accuracy simulation
environment, but provides two important additional capabilities: the ability to
run using real hardware to provide a radio or sensor channel, and the ability to
simulate systems composed of different types of hardware, such as different types
and configurations of Motes as well as Microservers. Emstar also is relatively easy
to integrate with other simulation tools; for example with Avrora to include a few
cycle-accurate Motes within a larger simulation.

6. CONCLUSION AND LESSONS LEARNED

We have found Emstar to be a very useful development environment for Linux-based
and heterogeneous embedded sensor-actuator networks. We use Emstar at CENS in
several current development efforts, including the Acoustic ENSBox project [Girod
et al. 2006] [Girod 2005], the Cyclops heterogeneous camera network, a 50-node
seismic deployment [Lukac et al. 2006], and the James Reserve ESS microclimate
sensing system. In support of these projects, we continue to enhance Emstar with
new components and tools. We also support several other groups using Emstar,
including groups at Ohio State [Arora et al. 2004] [Arora et al. 2005], MIT, and
USC/ISI.

Although Emstar has been used quite successfully internally and at a few external
sites, it has not been easy to export to a broader community, and since the beginning
of the project the basis for some of our original assumptions have changed.

First, while the multi-process service model has positive benefits for robustness
when the services are implemented appropriately, new users have had difficulty
correctly developing their own services. While Emstar applications are generally
single processes and are easier to implement, implementing services correctly is
more challenging. We are investigating the use of a monolithic system approach
using a type-safe, garbage collected language and a uniform component model. In
this context, we would try to retain the system visibility and robustness features,
while greatly simplifying the system from the developer’s perspective. However,

ACM Journal Name, Vol. V, No. N, February 2007.

32 · Lewis Girod et al.

we have not yet come to a conclusive approach that achieves these ends, and are
considering a range of different points on the spectrum from multi-process systems
to monolithic.

Second, configuration information in the system tends to be set either by com-
mand line arguments or dynamically through a Command Device. While Command
Device enables dynamic run-time configuration, it also has the effect of distribut-
ing configuration into many different places and it means that the restart semantics
must include dynamically re-issuing configuration commands. The standard UNIX
approach of reading a configuration file on startup and on SIGHUP would greatly
simplify the restart semantics and would reduce the incidence of incorrect imple-
mentations. This might be implemented as a centralized configuration service,
similar to the Windows registry.

Third, the Status Device has been incredibly useful as a construct, but the re-
liance on FUSD has introduced several difficulties, from not directly supporting
remote access to requiring compilation of a kernel module as a prerequisite to using
the system. We are considering implementing a new version of Emstar that bases
its IPC on sockets and eliminates the kernel module dependency. We are also con-
sidering implementing a specialized “inter-positioning” interface that allows cheap
and reliable logging of outputs or traffic on a particular IPC interface.

Fourth, some more recent applications have needed to handle data rates that
impose noticeable overhead via message passing. This has led to plans to imple-
ment a shared memory interface for the sensor device interface. In addition, it is
more efficient and more natural for high rate network services such as DTN “bun-
dle transfer” to use direct TCP connections to neighboring nodes, even if they
implement a control and discovery protocol over the link device [Lukac et al. 2006].

As we continue work on this system, we are investigating ways to address these
issues, keeping the good features of Emstar while fixing it to better address the
needs of the user community.

REFERENCES

Ali, A., Collier, T., Girod, L., Yao, K., Taylor, C., and Blumstein, D. T. 2007. An empir-

ical study of acoustic source localization. In IPSN ’07: Proceedings of the sixth international
conference on Information processing in sensor networks. ACM Press, New York, NY, USA.

Arora, A. et al. 2004. A line in the sand: A wireless sensor network for target detection,

classification and tracking. Computer Networks 46, 5 (Dec.), 605–634.

Arora, A. et al. 2005. Exscal: Elements of an extreme scale wireless sensor network. In IEEE
RTCSA. IEEE.

Brooks, R. 1986. A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation 2, 1.

Candea, G., Cutler, J., and Fox, A. 2004. Improving availability with recursive micro-reboots:
A soft-state system case study. Performance Evaluation Journal 56, 1-3 (March).

Candea, G. and Fox, A. 2003. Crash-only software. In Proceedings of the 9th Workshop on Hot

Topics in Operating Systems (HotOS-IX). Lihue, HI, USA.

Chen, J., Yip, L., Elson, J., Wang, H., Maniezzo, D., Hudson, R., Yao, K., and Estrin,

D. 2003. Coherent Acoustic Array Processing and Localization on Wireless Sensor Networks.
Proceedings of the IEEE 91, 8 (August).

Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., , and Morris, R. 2002. Event-driven
programming for robust software. In Proceedings of the 2002 SIGOPS European Workshop.
Saint-Emilion, France.

ACM Journal Name, Vol. V, No. N, February 2007.

Emstar: a Software Environment for Developing Heterogeneous Sensor Networks · 33

Elson, J. 2002. FUSD: Framework for User Space Devices.

Elson, J., Bien, S., Busek, N., Bychkovskiy, V., Cerpa, A., Ganesan, D., Girod, L., Green-

stein, B., Schoellhammer, T., Stathopoulos, T., and Estrin, D. 2003. EmStar: An En-

vironment for Developing Wireless Embedded Systems Software. Tech. Rep. CENS Technical
Report 0009, Center for Embedded Networked Sensing, University of California, Los Angeles.
March.

Elson, J., Girod, L., and Estrin, D. 2002a. Fine-grained network time synchronization using

reference broadcasts. In OSDI. Boston, MA, 147–163.

Elson, J., Girod, L., and Estrin, D. 2002b. A wireless time-synchronized COTS sensor plat-
form, part i: System architecture. In IEEE CAS Workshop on Wireless Communications and
Networking.

Girod, L. 2005. A self-calibrating system of distributed acoustic arrays. Ph.D. thesis, Univerity
of Caliornia at Los Angeles.

Girod, L. et al. 2004a. Emstar: a software environment for developing and deploying wireless
sensor networks. In Proceedings of the 2004 USENIX Technical Conference. USENIX Associ-

ation, Boston, MA.

Girod, L. et al. 2004b. A system for simulation, emulation, and deployment of heterogenous
sensor networks. In Proceedings of the second international conference on Embedded networked
sensor systems. ACM Press.

Girod, L., Bychkovskiy, V., Elson, J., and Estrin, D. 2002. Locating tiny sensors in time
and space: A case study. In in Proceedings of ICCD 2002 (invited paper). Freiburg, Germany.

Girod, L. and Estrin, D. 2001. Robust range estimation using acoustic and multimodal sensing.
In International Conference on Intelligent Robots and Systems.

Girod, L., Lukac, M., Parker, A., Stathopoulos, T., Tseng, J., Wang, H., Estrin, D., Guy,

R., and Kohler, E. 2005. A reliable multicast mechanism for sensor network applications.
Tech. rep., CENS. April 25, 2005.

Girod, L., Lukac, M., Trifa, V., and Estrin, D. 2006. The design and implementation of a

self-calibrating distributed acoustic sensing platform. In ACM SenSys. Boulder, CO.

Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., and Wolte, J. 1997. The performance
of -kernel-based systems”. In Proceedings of the 16th 16th ACM SOSP.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System archi-

tecture directions for networked sensors. In Proceedings of the Ninth International Conference
on Arhitectural Support for Programming Languages and Operating Systems (ASPLOS-IX).
ACM., Cambridge, MA, USA, 93–104.

Levis, P., Lee, N., Welsh, M., and Culler, D. 2003. TOSSIM: Accurate and Scalable Simula-
tions of Entire TinyOS Applications. In Sensys. Los Angeles.

Lukac, M., Girod, L., and Estrin, D. 2006. Disruption tolerant shell. In Proceedings of the
2006 ACM SIGCOMM Workshop on Challenged Networks. Pisa, IT.

Merrill, W., Girod, L., Schiffer, B., McIntire, D., Rava, G., Sohrabi, K., Newberg, F., El-

son, J., and Kaiser, W. 2004. Dynamic networking and smart sensing enable next-generation
landmines. IEEE Pervasive Computing Magazine.

Merrill, W. M., Sohrabi, K., Girod, L., Elson, J., Newberg, F., and Kaiser, W. 2002. Open

standard development platforms for distributed sensor networks. In SPIE Unattended Ground
Sensor Technologies and Applications IV. 327–337.

Ousterhout, J. K. 1998. Higher level programming for the 21st century.

Pike, R., Presotto, D., Thompson, K., and Trickey, H. 1990. Plan 9 from bell labs. In

Proceedings of the Summer 1990 UKUUG Conference. 1–9.

Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., and Stoica, I. 2005. A
unifying link abstraction for wireless sensor networks. In Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems (SenSys05). ACM.

Rosenblum, M., Bugnion, E., Devine, S., and Herrod, S. 1997. Using the simos machine
simulator to study complex computer systems. ACM TOMACS Speical Issue on Computer
Simulation.

ACM Journal Name, Vol. V, No. N, February 2007.

34 · Lewis Girod et al.

Stathopoulos, T., Girod, L., Heidemann, J., and Estrin, D. 2005. Mote herding for tiered
wireless sensor networks. Tech. Rep. CENS-TR-59, University of California, Los Angeles, Center
for Embedded Networked Computing. Dec.

Swift, M. M., Annamalai, M., Bershad, B. N., and Levy, H. M. 2004. Recovering device
drivers. In Proceedings of the 6th ACM/USENIX Symposium on Operating Systems Design

and Implementation. San Francisco.

Tanenbaum, A. S. and van Renesse, R. 1988. A critique of the remote procedure call paradigm.

In EUTECO ’88 Proceedings. 775–783.

Titzer, B. L., Lee, D. K., and Palsberg, J. 2005. Avrora: Scalable sensor network simula-

tion with precise timing. In IPSN ’05: Proceedings of the Fourth ACM/IEEE International
Conference on Information Processing in Sensor Networks.

Trifa, V., Girod, L., Collier, T., Blumstein, D. T., and Taylor, C. E. 2007. Automated
wildlife monitoring using self-configuring sensor networks deployed in natural habitats. In The
12th International Symposium on Artificial Life and Robotics (AROB).

Vaughan, R. T., Gerkey, B., and Howard, A. 2003. On Device Abstractions For Portable,
Resuable Robot Code. In In IEEE/RSJ IROS 2003. Las Vegas, USA.

Wang, H., Chen, C.-E., Ali, A., Asgari, S., Hudson, R. E., Yao, K., Estrin, D., and Tay-

lor, C. 2005. Acoustic sensor networks for woodpecker localization. In SPIE Conference on
Advanced Signal Processing Algorithms, Architectures and Implementations.

Wang, H., Yao, K., Pottie, G., and Estrin, D. 2004. Entropy-based sensor selection heuristic
for localization. In Symposium on Information Processing in Sensor Networks (IPSN04).

Ye, W., Heidemann, J., and Estrin, D. 2002. An energy-efficient MAC protocol for wireless
sensor networks. In Proceedings of IEEE INFOCOM.

Received December 2005

ACM Journal Name, Vol. V, No. N, February 2007.

