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ABSTRACT OF THE DISSERTATION

Modeling of Topological States of Matter: Gate Controlled Majorana Fermions and
Transport Signature of Antiferromagnetic Skyrmions

by

Nima Djavid

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2019

Dr. Roger K. Lake, Chairperson

Half-integer conductance, the signature of Majorana edge modes, was recently ob-

served in a thin-film magnetic topological insulator / superconductor bilayer. Chapter 2

of this thesis analyzes a scheme for gate control of Majorana zero modes in such systems.

Gating the top surface of the thin-film magnetic topological insulator controls the topolog-

ical phase in the region underneath the gate. The voltage of the transition depends on the

gate width, and narrower gates require larger voltages. Relatively long gates are required,

on the order of 2 µm, to prevent hybridization of the end modes and to allow the creation

of Majorana zero modes at low gate voltages. Applying voltage to T-shaped and I-shaped

gates localizes the Majorana zero modes at their ends. This scheme may provide a facile

method for implementing quantum gates for topological quantum computing.

The extremely small energy splitting of Majorana zero modes caused by s-wave

pairing makes identifying them experimentally very challenging. A heterostructure between

a magnetic TI and a high Tc superconductor, which has an order of magnitude enhancement

in the induced pairing gap, may offer a more feasible approach. In Chapter 3, we study
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the effect of top surface electrical gating on a TI / high-Tc-superconductor with dx2−y2

pairing. We calculated the phase diagram using the Kubo formula to find the required

condition for the topological superconductivity Chern number ±1, which is necessary for

obtaining Majorana modes. We show that chiral Majorana modes appear by applying the

gating potential to the top surface of the TI. We also show that we are able to change their

propagation direction by only changing the top gating potential. In the end, we apply the

gating potential locally to create localized Majorana zero modes. Although bound states

appear at zero energy, and they are robust against an increasing gating potential, we find

that the wave functions of these zero energy modes do not fulfill the wavefunction condition

of a Majorana zero mode, namely that a Majorana mode is its own anti-particle.

In Chapter 4, the effect of an antiferromagnetic Skyrmion on the tunneling mag-

netoresistance of a ferromagnet/insulator/antiferromagnet/ferromagnet heterostructure is

numerically investigated. The tunneling magnetoresistance in the presence of a Bloch type

antiferromagnetic Skyrmion is significantly reduced when the polarization of the ferromag-

netic leads is anti-parallel. The amplitude of the output signal, caused by the transmission

of current in the presence of Skyrmion, depends on the resistance change induced by the

Skyrmion. The change in the resistance can be engineered by changing the thickness of the

insulator and magnetization strength of the ferromagnetic leads. This scheme can be used

for electrical detection, and the read-out of antiferromagnetic Skyrmions in the future of

Skyrmion based antiferromagnetic memories.
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Chapter 1

Rationale

1.1 Introduction

Topologically protected material systems are highly robust against small changes

in system parameters and can not be disturbed by local perturbations. This property

is very useful for applications in the field of quantum computing and antiferromagnetic

Skyrmion based memory [2]. Materials showing topologically protected quasiparticles, and

those exhibiting topologically non-trivial spin textures, have motivated many studies on

new energy-efficient spintronic devices and topological qubits [3–5].

Majorana fermions are among the topologically protected quasiparticles that are

predicted to be a key element in the topological quantum computing [6]. Ettore Majorana

first introduced them to theoretical physics [7]. Majorana fermions are particles that, unlike

electrons and positrons, constitute their own antiparticles. In operator language, it is

reflected as Ψ† = Ψ. Although they have been elusive in high energy particle physics, it is

predicted that they can emerge as non-trivial excitations in hybrid solid-state materials [8].
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Superconductors in which fermions pair are ideal structures for hosting such quasi-

particle excitations. The quasiparticle excitation in superconductors is a superposition of

electrons and holes, and they are called Cooper-pairs. In s-wave pairing, the superconduc-

tivity arises from electron-hole pairs carrying opposite spins. The quasiparticle operator

can be written as z = uc†↑+υc↓ which is distinct from z† = u∗c↑+υ∗c†↓. Therefore, the spin

singlet pairing prevents the s-wave superconducting state from satisfying the condition Ψ†

= Ψ.

As a result, superconductors with spinless pairing provide an ideal platform for

Majorana fermions. Spinless pairing occurs in p-wave superconductivity with p + ip pairing

in two dimensions. These superconductors support exotic excitations in their boundaries

and topological defects [9, 10]. Localized modes that form at the ends of a 1D topological

p-wave superconductor [9], and that bind to vortices of p + ip superconductors are the

most important examples [11]. p-wave superconductors are extremely rare in nature, and

they exhibit low superconductivity correlation in comparison to the long-range assumption

in the Kitaev model.

Most proposals for engineering a 1D Kitaev model exploit a proximity effect to a

s-wave superconductor. Spin-orbit coupling, in conjunction with time-reversal symmetry

breaking, can effectively convert such a system to a p-wave superconductor.
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1.2 Motivation

1.2.1 Majorana fermions

Fu and Kane’s proposal [8], for generating Majorana fermions at the edges of

a topological insulator (TI) in the proximity of an s-wave superconductor, was break-

through in this field. Numerous studies were conducted to find a signature of Majorana

fermions in this platform. In 2015 a theoretical study on transport signature of chiral

Majorana edge modes showed that a half-integer conductance plateau in a topological-

insulator/superconductor/topological-insulator is a signature of a Majorana edge mode [12].

This signature was experimentally observed in a magnetic topological insulator/supercon-

ductor heterostructure [13]. They observed this phenomenon in a Bi2Se3 thin film in prox-

imity to Nb, which is an s-wave superconductor. This finding inspired the idea of designing

a new platform based on the same material for the creation and braiding of Majorana zero

modes described in Chapter 2. However, a small pairing gap is a problem that makes the

detection of Majorana modes much harder. New materials with proximity induced high-Tc

superconductivity have been proposed. It is claimed that cuprates can induce large s-wave

and d-wave pairing simultaneously in Bi2Se3 [14]. Therefore, in Chapter 3, we explore the

possibility of having Majorana modes and the necessary condition for their creation in a

TI/d-wave superconductor system.
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1.2.2 Antiferromagnetic Skyrmions

Over the last few years, antiferromagnetic spintronics has received significant at-

tention from the magnetism community, as antiferromagnetic materials have several in-

herent properties that could lead to better spin dynamic performance suitable for practical

applications [15]. In very recent years, theoretical studies have suggested that antiferromag-

netic Skyrmions may have higher velocity compared to their magnetic counterparts [16].

The Magnus force in current-driven magnetic skyrmions causes an undesired trans-

verse shift, which results in the destruction of skyrmion at sample edges. In ferromagnets,

the magnetic skyrmion is driven by an external force, such as the spin current, that usually

shows an undesired transverse velocity, which may result in the destruction of the skyrmion

at the sample edges. In antiferromagnetic materials, skyrmions are regarded as two coupled

magnetic skyrmions with opposite topological charges. Since the total topological number

of an antiferromagnetic skyrmion is zero, the Magnus force is eliminated, leading to the

straight motion of skyrmions along the force direction. More theoretical works also predict

that skyrmions in synthetic antiferromagnets made from stacking ferromagnetic skyrmions

in opposite directions are also immune to the Magnus effect [17]. New experimental work

shows that skyrmions can be stabilized at room temperature in synthetic antiferromag-

nets [18]. Based on these promising recent results, we investigate a new scheme for the

electrical detection and read-out of skyrmions in antiferromagnets. Vertical detection is

compatible with conventional electronic technology and easy to engineer. Our goal is to

study the tunneling magnetoresistance of antiferromagnetic skyrmions to find their signa-

ture in the magneto resistance.
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Chapter 2

Gate Controlled Majorana Zero

Modes on a Two-Dimensional

Topological Superconductor

2.1 Introduction

Majorana fermions are charge-neutral fermionic particles that are their own an-

tiparticles originally proposed by Ettore Majorana [7]. Prior theoretical work suggested

that Majorana fermions could exist in topological superconductors as elementary excita-

tions [19–22]. The first experimental demonstration was the zero-bias anomaly observed in

a III-V semiconductor nanowire coupled to an s-wave superconductor [23, 24], a material

system that is a physical implementation of Kitaev’s one dimensional topological supercon-

ductor model [19]. In the middle of the superconducting gap, zero-energy localized states
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appear at the ends of such nanowires. These states are Majorana zero modes (MZMs).

MZMs obey non-Abelian statistics, [25] and they can be used for fault-tolerant, topological

quantum computing [26,27]. This requires the precise control of the position of the MZMs

in a nanowire network. Gate control has been proposed and analyzed [27, 28], and recent

experiments demonstrated prototypes of such nanowire networks [29].

Although previous experiments using III-V nano-wires have shown exciting possi-

bilities, an implementation in two-dimensional (2D) thin films would be more compatible

with conventional semiconductor device fabrication. Such a scheme in the InAs / supercon-

ducting system has been proposed [30]. Recently, quantized half–integer conductance ( e
2

2h)

was observed in a different material system consisting of a thin film magnetic topological

insulator (MTI) capped by an s–wave superconductor (Nb) [31]. The half–integer conduc-

tance suggested the existance of a chiral Majorana mode propagating along the edge [31–34].

In this system, the MTI consisted of Cr doped, epitaxial, thin film (Bi,Sb)2Te3. Recently,

signatures of MZMs were observed in a similar material system by scanning probe mea-

surements, where the anti-periodic boundary condition is induced by a superconducting

vortex [35]. Prior theoretical studies on the MTI–superconductor system focused on the

topological phase diagram [36], and the most recent theoretical studies propose gate control

of MZMs in ribbon geometries with large aspect ratios [37,38].

In this study, we build upon that recent work. We theoretically demonstrate the

micron–scale gate dimensions required for creating MZMs, and we analyze how gate geom-

etry effects the gate voltage required to create the MZMs. The system under consideration

is an array of ‘keyboard’ gates [37] on top of the MTI / superconductor bilayer as illustrated

6



in Fig. 2.1. The effect of the geometric shape of the gated area on unwanted hybridization

and the topological band gap is analyzed. Fundamental building blocks of the crossbar

gate-array, the I-shaped and the T-shaped gates, are demonstrated. To ensure that the

MZMs are not trivial low energy modes, the symmetry of the MZM wave functions are

analyzed to show that the the wave function is its own complex conjugate.
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2.2 Hamiltonian

The system, as shown in Fig. 2.1, consists of a thin-film MTI placed on the top

of an s-wave superconductor. Electric gates on top of the MTI control the top-surface elec-

trostatic potential. The Hamiltonian of the system is [39]

Super Conductor

TI

Keyboard Gates

Figure 2.1: A quantum anomalous Hall insulator/ superconductor heterostructure. The
crossbar shaped gates at the top, can change the electro-static potential of the top surface
locally.

HBdG =

 H0(k)− µ ∆k

∆†k −H∗0 (−k) + µ,

 . (2.1)

where

∆k =

 i∆tσy 0

0 i∆bσy

 , (2.2)
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and

H0(k) = ~vf (kyσx − kxσy)τ̃z +m(k)τ̃x + JHσz +
Vg
2

(τ̃z + I). (2.3)

Ψ = [(ψ↑t ψ↓t ψ↑b ψ↓b), (ψ†↑t ψ
†
↓t ψ

†
↑b ψ

†
↓b)] is the basis of the Hamiltonian where

ψ↑t(k) corresponds to an up-spin electron on the top surface and ψ†↓b(k) corresponds to a

down-spin hole at the bottom. σ and τ̃ are Pauli matrices corresponding to the spin and

the top-bottom surfaces, respectively. ∆t and ∆b are the proximity-induced Cooper-pairing

interactions at the top and bottom surfaces, respectively. The pairing interaction of the

bottom surface that is in contact with the superconductor is ∆b = 1.4 meV [40], and at

the top surface, ∆t = 0. m(k) = m0 + m1k
2 represent the hybridization of the top and

bottom surfaces of the thin–film MTI. The value of these terms for 3 quintuple layers of

Bi2Se3 are m0 = 138 meV and m1 = 18 eVÅ2 [41, 42]. The quantity ~vF = 3.29 eVÅ is

consistent with DFT results [43]. JH is the Hund’s rule coupling from the ferromagnetic

exchange interaction induced by the Cr dopants. For calculations using a fixed JH , the value

is JH = 130 meV. The chemical potential µ = 0. The last term in Eq. (2.3) represents the

gate voltage Vg applied at the top surface of the MTI, with the bottom surface adjacent

to the superconductor at ground. An equivalent approach would be to shift µ by −Vg/2 in

Eq. (2.1) and apply the gate voltage symmetrically across the top and bottom layers such

that the bottom layer is shifted to −Vg/2 and the top layer is shifted to +Vg/2. This latter

approach is the way the gate voltage was included in recent work [37].
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2.3 Numerical modeling and results

2.3.1 Phase diagram and Majorana chiral modes

To model finite and spatially varying structures, the Hamiltonian is transformed

into a tight–binding model on a square lattice by substituting kx → −i ∂∂x and ky → −i ∂∂y in

Eq. (2.1) and discretizing the derivatives using a 1 nm discretization length [44]. Each site

in the tight-binding model is then represented by an 8×8 matrix corresponding to Eq. (2.1)

with the inter–site matrix elements coming from the discretized derivatives. Eigenenergies

and eigenstates of the discretized, spatially–varying systems are calculated numerically using

a Lanczos algorithm. The eigenstate calculations use periodic boundary conditions, and the

simulation domain is sufficiently large that the gated regions in the neighboring cells do not

interact with each other. Simulation domains are illustrated in Figs. 2.3(a,b) and 2.4(a,b).

For the calculation of conductance shown in Fig. 2.2(d), the transmission is de-

termined in the usual way from the ‘device’ Green’s function and the lead self-energies [45].

In the calculation of the lead self energies, an imaginary potential −iη with η = 0.1 meV is

placed on the diagonal of the discretized HBdG to assist convergence of the surface Green’s

function. The zero–temperature, two–terminal conductance is then σxx = e2

h T (EF ) where

T (EF ) is the transmission coefficient at the Fermi energy.
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To investigate a single edge mode of a semi-infinite plane (−∞ < x ≤ 0 and

−∞ < y < ∞) as shown in Fig. 2.2(b,c), only the substitution kx → −i ∂∂x is made,

and the derivative is discretized on the 1 nm grid. Since the edge of the half-plane is

parallel to ŷ, ky remains a good quantum number. The Hamiltonian then becomes a semi-

infinite, one-dimensional chain model, where each site of the chain is represented by a 8× 8

ky–dependent matrix. The 8 × 8 edge Green’s function GR(ky, E) is calculated using the

decimation method [46,47]. Note that this is traditionally referred to as the ‘surface Green’s

function,’ however, for this system, the ‘surface’ is an ‘edge.’ To resolve the edge spectrum,

the energy broadening η used in the calculation of the surface Green’s function is 1 meV,

which is chosen to be five times larger than the energy discretization step size. The spectral

function at the edge site is A(ky, E) = −2 Im
{

tr
[
GR (ky, E)

]}
.
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Figure 2.2: (a) Phase diagram of the system with ∆t = 0. Vg is applied to the top surface.
(b) and (c) show the spectral function A(ky, E) at the edge site (x = 0) of a semi–infinite
plane (−∞ < x ≤ 0 and −∞ < y < ∞) at different gate voltages. (b) Vg = 0.0 mV
corresponding to the red star in (a) and (c) Vg = -30 mV corresponding to the yellow star
in (a). (d) The half-integer plateau in conductivity of a 100 nm wide by 40 nm long MTI
/ superconductor bilayer with topological insulator leads for two different values of ∆t as
shown in the legend. Ef = 0.1 meV, Vg = 0, and ∆b = 0. Inset: Illustration of the
structure.
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In the superconducting Nambu space, the topological superconducting Chern num-

ber (TSC), N , is allowed to be −2,−1, 0, 1, 2 where N characterizes the number of chiral

edge modes [33]. One practical way to tune the TSC number is to apply an out-of-plane

external electric field to modify the top-surface electrostatic potential energy [33, 37]. The

topological phase diagram of the system represented by Eq. (2.1) is plotted in Fig. 2.2(a)

as a function of the top-gate potential Vg and the magnitude of the exchange energy JH .

The phase boundaries are obtained by the gap closing in the BdG Hamiltonian (Eq. (2.1))

at k = 0. To determine the the TSC number in each region, we evaluate the number of edge

states from the bandstructure calculation of a 150 nm wide ribbon that is periodic along

x. N is the number of the degeneracy of the edge states along one edge. The ribbon width

is chosen to be sufficiently wide such that the hybridization of the edge states is negligible.

The blue area belongs to the trivial phase (N = 0) of a normal insulator. The purple regions

correspond to N = 2, which is topologically equivalent to a non-superconducting quantum

anomalous Hall insulator with Chern number C = 1. In the grey areas, N = 1, and a single

Majorana edge mode propagates along the edges. As shown in Fig. 2.2(a), when Vg is zero,

N = 1 only occurs over a narrow range of exchange potentials. Therefore, gating the top

surface can control the transition between different topological phases.

To demonstrate the voltage-controlled topological transition, we numerically cal-

culate the edge-state spectrum of the semi-infinite plane at different values of Vg. A semi-

infinite plane is chosen to ensure that the edge state hybridization is zero since the opposite

edge is at x = −∞. Choosing the parameters for N = 0 and N = 1 as shown by the two

points in Fig. 2.2(a), the edge spectral function is plotted versus ky and E in Figs. 2.2(b)
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and (c), respectively. In Fig. 2.2(b) the applied voltage is zero, N = 0, and a trivial gap

opens at the Dirac point. Applying a −30 mV potential to the top surface, a topological

transition occurs, and a gapless Majorana edge mode appears as shown in Fig. 2.2(c).

For further verification of the model, we construct a 2-terminal, finite-width device

consisting of a central superconducting / MTI bilayer region with two non-superconducting,

topological insulator leads mimicking the experimental setup recently reported [33]. The

structure is illustrated in the inset of Fig. 2.2(d) where the length of the superconductor

area is 40 nm and the width is 100 nm. As seen in Fig. 2.2(d), a half-integer plateau in

conductivity appears during a scan of the Hund’s-rule exchange energy JH , which emulates

a scan of an externally applied magnetic field. This plateau is the result of a combination

of normal reflection and Andreev reflection [33].
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2.3.2 Majorana zero modes

We now show that a voltage applied to a gate with a large aspect ratio can create

localized Majorana zero modes at the ends. Fig. 2.3 shows the simulation geometry that

consists of a long, thin, gated region within a rectangular supercell. The dimensions of the

gated region are 28 nm × 1.8 µm, and the dimensions of the supercell are 100 nm × 2 µm.

Fig. 2.3(a) is a color map of of the lowest positive–energy (E ≥ 0) state |ψi|2 at each site i

at a gate voltage of Vg = −30 mV. The thin width of the gated area, 28 nm, is less than the

penatration depth of a Majorana edge mode. This hybridizes the states on the opposing

long edges of the gated region, so that a gap is opened in the energy spectrum and there

is no zero–energy mode along the edges. Further decreasing Vg to -55 mV, a pair of bound

states appear at the ends of the gate as shown in Fig. 2.3(b), and the energy of these bound

states drops 15 to 16 order of magnitude from 7 meV to ∼ 10−15 meV, suggesting that they

are MZMs. The hybridization of the MZMs at the ends of the gated regions is negligible

since they are 1.8 µm apart. When the gate length is reduced to 1.3 µm, hybridization is no

longer negligible, the energy always remains numerically finite, and it reaches a minimum

value of 6× 10−6 meV.
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Figure 2.3: (a) The lowest positive–energy state at Vg = −30 mV. It transitions into (b)
two MZMs at Vg = −55 mV. (c) Ground state energy as a function of the applied voltage
for different widths. The length is fixed at 1.8 µm. Components of the MZM used to verify
that the zero–energy mode is indeed a Majorana mode: (d) Re[〈γ|ψ↑b〉] (e) Im[〈γ|ψ↑b〉]
(f)Re[〈γ|ψ†↑b〉] (g) Im[〈γ|ψ†↑b〉]

The voltage at which the topological transition occurs depends on the geometry

of the gated region. Fig. 2.3(c) shows a calculation of the ground state energy as a function

of the gate voltage for 4 different gate widths. The gate lengths are fixed at 1.8 µm. For

each gate width, there is a critical gate voltage at which the ground-state energy goes to

zero. The required magnitude of Vg to achieve the zero-energy state increases as the gate

width decreases.

16



To confirm that the localized end-modes are indeed MZMs and not simply very

low-energy states, the eigenvectors Ψ of the zero-modes are analyzed to determine if they

satisfy the property Ψ = Ψ†. The eight coefficients of each mode at each site j can be

divided into four groups with each of the groups containing a pair of coefficients that are

complex-conjugate, as shown in Eq. (2.4).

Ψ =A(1− i)ψ↑t +A(1 + i)ψ†↑t

+A(1− i)ψ↑b +A(1 + i)ψ†↑b

+B(−1 + i)ψ↓t +B(−1− i)ψ†↓t

+B(1− i)ψ↓b +B(1 + i)ψ†↓b

(2.4)

Ψ is the wave function of a MZM, and A, B are the site–dependent normalization coeffi-

cients. The real and imaginary parts of 〈Ψ |ψ↑b〉 and 〈Ψ
∣∣∣ψ†↑b〉 are shown in Fig. 2.3(d)-(g).

Numerically, Re[〈Ψ|ψ↑b〉] and Re[〈Ψ|ψ†↑b〉] are identical, whereas Im[〈Ψ|ψ↑b〉] and Im[〈Ψ|ψ†↑b〉]

have different signs, which satisfies Eq. (2.4). Similar results are obtained for the other

bases. This confirms that the zero–energy states are MZMs.
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2.3.3 Braiding Majorana zero modes

The motivation for an array of crossbar gates is to mimic a 1D network of wires

for gate–controlled transfer and exchange of MZMs. A fundamental building block of such

a network is a T–junction as shown in Fig. 2.4. With voltage applied to the vertical section

of the gate, two MZMs are created at the ends of the I-shaped gated area. Turning off

the voltage of the lower gate and applying it to the horizontal gate results in the MZM at

the end of the ‘L’. The MZM does not appear at the sharp corner of the ‘L’. Controlling

the voltages of the gates moves the topological regions (N = 1) and the associated MZMs.

Such a network of top gates can implement a pixel-by-pixel control of the geometric shape

of the topological region, such that more complicated braiding operations can be achieved

within this scheme.

All of the calculations presented are for 3 quintuple layers. In terms of the model

Hamiltonian (2.3), only the interlayer hybridization terms, m0 and m1, change due to layer

thickness. For example, at 5 quintuple layers, their values become m0 = 41 meV and m1 = 5

eVÅ2 [42]. The phase diagram of the topological transitions shown in Fig. 2.2(a) does not

change. This means that the optimum value for |JH | is approximately m0.
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Figure 2.4: Shifting the MZM in the left (a) to the bottom (b) by changing the gate electric
potential. The gates are set to be on and off inside the dashed and solid lines, respectively.
The widths of the gated regions are 70nm.

In other words the spin-splitting due to the magnetic exchange interaction from the

Cr dopants should be close to the hybridization gap induced by the inter-surface coupling of

the top and bottom layers. Also, the gate voltage scales as m0. Thus, smaller inter-surface

coupling allows lower voltage operation.
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However, the values of m0 and JH affect the energy, temperature, and length

scales. The MZMs of interest live within the spin and hybridization energy gap. As JH and

m0 are reduced, lower temperatures would be required to prevent population of the excited

states and maintain the magnetic ordering. The hybridization gap 2m0 affects the spatial

extent of the MZM wavefunctions. As this energy gap shrinks, the spatial extent of the

MZM wavefunction increases, and this increases the inter-edge tunneling. The increased

tunneling necessitates both wider and longer gate regions to keep the required applied

voltage Vg < m0. Thus, thicker films with lower inter-surface hybridization require smaller

exchange coupling, and allow lower voltage operation, but at the cost of lower temperatures

and larger areas.
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2.4 Conclusion

In summary, a gated MTI / superconductor bilayer provides a platform for 2D

spatial control of Majorana zero modes. The phase diagram of the system shows that a

gate voltage can control the topological transition between the N = 0 and N = 1 states.

The voltage of the transition depends on the gate width, and narrower gates require larger

voltages. Relatively long gates are required, approximately 2 µm, to prevent hybridization

of the end modes and to allow the creation of MZMs at low gate voltages. The MZM

positions are controlled by the local gating of the top surface. Sequential clocking of an

array of gates provides a method of braiding MZMs.
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Chapter 3

Electrically induced quasi-particle

bound states in high Tc topological

superconductors with dx2−y2 pairing

3.1 Introduction

Majorana edge modes were detected by observation of half-integer conductivity in

a magnetic topological insulator/superconductor (MTI/SC) heterostructure [31]. Recently

proposed systems that are compatible with standard semiconductor processing are the most

promising schemes for braiding Majorana modes. However, definite proof of Majorana zero

modes has been lacking, and identifying them experimentally has been challenging mostly

because of the small pairing gap of s-wave SCs. A heterostructure between an anomalous

quantum insulator and a high Tc d-wave superconductor with a large pairing gap may offer a
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more feasible approach for implementing Majorana bound states. The existence of Majorana

bound states in high-Tc magnetic impurity chains [48], Majorana edge states in iron-based

superconductors [49] and Majorana corner modes in a high-temperature platform [50] are

some the of previous studies on the Majorana modes on High Tc superconductors. On the

other hand fully gapped topological surface states in Bi2Se3 can be induced by a d-wave

high-temperature superconductor [14]. Also, evidence for Majorana bound states in an

iron-based superconductor has been experimentally claimed [51].

In this work, we study the topological properties of a gated unconventional (MTI/SC)

heterostructure. The phase diagram of the system is obtained by employing the Kubo for-

mula. The existence of Majorana edge modes in the presence of electrical gating has been

studied for the first time in d-wave topological superconductors. A Green’s function for-

malism has been employed for the detection of Majorana edge modes, and their localization

properties have been investigated.

23



3.2 Model

3.2.1 Hamiltonian and d-wave pairing

We start with a quantum anomalous Hall insulator (QAHI) surface states Hamil-

tonian:

H0(k) = ~vf (kyσx − kxσy)τ̃z +m(k)τ̃x + JHσz +
Vg
2

(τ̃z + I). (3.1)

where τ̃ and σ are Pauli matrices of the top and bottom surfaces and spin, respectively.

vf is the Fermi velocity, JH is magnetism induced by dopants, Vg is the applied electric

potential to the top surface, and m(k) = m0 + m1k
2 is the hybridization between the top

and bottom surfaces.

To induce superconducting gap in the surface states we insert H0 in to the BdG

hamiltonian,

HBdG =

 H0(k)− µ ∆k

∆†k −H∗0 (−k) + µ,

 . (3.2)

with

∆k =

 i∆tσy 0

0 i∆bσy

 , (3.3)

∆t,b are the top and bottom surface pairing gaps. The superconductor is at the bottom

surface, so ∆t = 0. For high Tc cuprates the gap function is

∆(k) = ∆0(cos kx − cos ky) (3.4)

for dx2−y2 pairing [50].
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Fig. 3.1 shows the bandstructure resulting from Eq. (3.2) with dx2−y2 pairing.

The corresponding top gating potential of the red curve is 50 meV, and the dotted blue

line is 100 meV. When the applied potential is zero, the system is gapless and has a trivial

phase. By increasing the applied voltage, the gap is closed at the Γ point and continues

to move away from the Γ point as the voltage is increased. Therefore the system is in a

non-trivial topological phase.

Figure 3.1: Bandstructure of a topological d-wave superconductor. Red-curves and black
curves correspond to Vg = 50 meV and Vg = 100 meV, respectively. The gap is closed at
the Γ point, and by increasing the applied voltage, it moves away from the Γ point.
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3.2.2 Analytical phase diagrams

To find the phase diagram, we diagonalize the Hamiltonian at the Γ point. The

eight energy levels obtained from diagonalizing the Hamiltonian at k = 0 are given by Eq.

(3.5).

E = ±(
V g

2
− µ± JH)±

√
V 2
g + 4m2

0

2
(3.5)

By setting E = 0, we find the boundaries at which the trivial gap closes and re-opens. These

are the boundaries between the different topological regions. Two variables that govern the

bandstructure are Vg and JH . Therefore we plot a 2D phase diagram in which these two

parameters are the corresponding axes. By plotting the obtained lines, the phase diagram is

separated into eight regions. To find the topological superconducting Chern number of the

system of each region, we choose a set of points within the region, and we find the number of

edge states from the transmission or from a wide ribbon band structure calculation. From

Eq. (3.4), we see that the value of the pairing gap is zero at the Γ point. Therefore, the

phase diagram is general for any d-wave pairing with zero pairing potential at the Γ point.

The resulting phase diagrams are shown in Fig. 3.2. Fig. 3.2(a) is the phase

diagram of a topological superconductor for µ = 0. As we see for Vg = 0, there is a direct

transition from the trivial gap to N = ±2, which is the topological superconductivity Chern

number of the system. To have the topological condition for hosting Majorana modes, the

topological Chern number of the system must be N = ±1. In Fig. 3.2(b), µ is set to be

non-zero. In this condition, we can get N = ±1 without applying the gate potential. Figs.

3.2(c, d) are the phase diagrams for |JH | = |m0| and |JH | < |m0|, respectively. The green
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area corresponds to N = 1. By applying the values chosen from the phase diagram to the

whole top surface, a Majorana mode appears at each edge of our system.

Figure 3.2: (a)Phase diagram of the system for µ = 0. For Vg = 0, N goes directly from
zero to two. (b) µ = |m0| (c) |JH | = |m0| and |JH | < |m0|. All the numbers are in the units
of |m0|.
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3.2.3 Kubo formula and Numerical phase diagrams

In this section, we use a different approach to determine the phase diagram and

topological superconducting Chern number of the system. We employ Kubo formula to

calculate the Chern number of the system. According to Kubo formula the Hall conductance

is [52]

σxy = − ie
2

h

2π

L2

∑
n,k

f(Enk)×
∑
m(6=n)

〈
nk| ∂H∂kx |mk

〉〈
mk| ∂H∂ky |nk

〉
− (n↔ m)

(Enk − Emk)2
, (3.6)

where
∑

m(6=n)

is the summation over the bands, and f(E) is the Fermi distribution function.

We can rewrite the Kubo formula at zero temperature as σxy = e2

h

∑
n:filledNn where Nn

is the Chern number of the nth band. The total topological superconductor (TSC) Chern

number of the system is N =
∑

n:filledNn. To verify the phase diagrams in the previous

section, we calculate the phase diagram for µ = 0 and µ = m0.
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Figure 3.3: Phase digram of a d-wave topological superconductor for (a) µ = 0 and (b)
µ = m0. All the numbers are in the unit of m0. The phase diagrams are obtained from the
Kubo formula. The colorbar is the topological Chern number of the system (N).
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Comparing Fig. 3.3 with Fig. 3.2 verifies the phase diagram obtained from an-

alytical calculations. The orange and cornflower blue colors correspond to the topological

superconductivity Chern number ±1 (N = ±1). For µ = 0, increasing the gate potential

makes it more feasible to achieve the necessary condition for hosting Majorana modes. The

realistic magnitude of JH , which comes from the magnetic doping, is still not well under-

stood experimentally. However, In the presence of a gate potential, the range of JH in

which the Chern number remains ±1 is larger and we can choose a smaller value for the

exchange potential to obtain the desired Chern number. Therefore gating the top surface

is a tool to create a platform for hosting Majorana modes without having certainty on the

magnitude of exchange potential induced by the Cr doping.

By using the Kubo formula, we can calculate the phase diagram for even larger

gating potentials and extend our phase diagram. Fig. 3.4 is the extended Kubo phase

diagram of a dx2−y2 pairing high Tc topological superconductor. The sign of the Chern

number indicates the propagation direction. We can see in Fig. 3.4 that, changing the

amplitude of the gating potential not only can change the number of propagating edge

modes, but it can also change the propagation direction of a single edge mode by going

from N = +1 → N = −1 directly.
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Figure 3.4: Extended d-wave pairing phase diagram obtained from the Kubo formula. The
orange and cornflower colored regions correspond to N = ±1. For N = ±1, our system
can harbor a single Majorana mode at domain boundaries. The color bar indicates the
topological superconducting Chern number.
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3.3 Majorana modes

3.3.1 Chiral Majorana edge modes

The existence of chiral Majorana modes (CMMs) in nodal superconductors has

been theoretically studied [53,54], however, they have not yet been experimentally observed.

In this section we investigate the existence of CMMs in the presence of the applied gating

potential. We use the phase diagram we obtained in the previous section to create CMMs.

To get CMMs on the edges of our system, the gap must be closed and re-opened once.

Therefore, by choosing a proper set of parameters that correspond to N = ±1 the chiral

modes must appear at the edge of the system.

Figs. 3.5(a,b) are the spectral functions calculated at Vg = 0 and Vg = 100 meV

respectively. The surface hybridization term is m0 = 70 meV, JH = 50 meV and the

pairing potential ∆b = 15 meV. When the applied gating potential is zero in Fig. 3.5(a),

the spectral function of the system has a trivial gap. If we use the same set of parameters

to plot the bandstructure of a 180 nm wide ribbon in Fig. 3.5(c), we see that the bands

at the Γ point do not cross each other. However, when we apply the gating potential of

Vg = 100 meV, the gap is closed and re-opened, Fig. 3.5(d), and a chiral Dirac edge mode

appears in the edge spectral function, Fig. 3.5(b).
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(a) (b)

(d)(c)

Figure 3.5: Spectral functions A(ky, E) calculated at the edge x = 0 of a semi-infinite
(0 ≤ x < ∞ and −∞ < y < ∞) topological superconductor at (a) Vg = 0 and (b)
Vg = 100 meV. The corresponding bandstructures for a 180 nm wide ribbon with the same
set parameters are plotted in (c) and (d) respectively. m0 = 70 meV, JH = 50 meV and
∆b = 15 meV.
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To see if the CMMs are indeed located at the edge of the system, we plotted the

local density of the states along the width of the ribbon and its corresponding band structure

at k2D = 0. Fig. 3.6(a) is the bandstructure of a 180 nm wide ribbon. For Vg = 50 meV,

the two red bands in the bandstructure do not cross. But for Vg = 100 meV we can see the

crossing at the Γ point. The spatial distribution of the wavefunction along the ribbon width

in Fig. 3.6(b) shows that when the applied potential is zero, the wavefunction is localized

in the middle of the ribbon. By increasing the applied potential, the wave function starts

to move toward the edges. For Vg = 100 meV, the wave function is largely concentrated at

the edges as we expect for chiral Majorana modes.

50

100

Figure 3.6: (a) Band structure of a 180 nm wide ribbon. Black curves correspond to
Vg = 100 meV and the red curve is the lowest energy band at Vg = 50 meV. (b) Local
density of states (|ψ(kx)|2) along the width shows how Majorana edge modes appear by
increasing the electric field.
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(a)

(b)

Figure 3.7: Spectral functions A(ky, E) calculated at the edge x = 0 of a semi-infinite
(0 ≤ x < ∞ and −∞ < y < ∞) at (a) Vg = 250 meV and at (b) Vg = 500 meV.
Applying a large gating potential causes the balk bands touch at some k points apart from
the superconducting nodal points.
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Chiral Majorana modes caused by the gating potential of the top surface are

robust against the increasing the applied gating potential. In Fig. 3.7, spectral functions of

a semi-infinite d-wave topological superconductor plane at two different gating potentials

are shown. In Fig. 3.7a, the applied potential is 250 meV, and a chiral Majorana mode at

the edge of the system exists. By increasing the applied potential, as long as the topological

superconducting Chern number of the system is ±1 (N = ±1), the Majorana mode exists

at the edge. In Fig. 3.7b, even by increasing the applied potential to 500 meV, the chiral

Majorana mode is still at the edge. We use the same set of parameters that correspond to

Fig. 3.7b and find the wave fucntion of a very wide TSC ribbon. By looking at the obtained

wave function at E = 0 and ky = 0, we confirm that it satisfies the criteria Ψ† = Ψ, and is,

therefore, a Majorana mode.
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3.3.2 Majorana zero modes

In this section, we apply the gating potential locally to the top surface of the

topological superconductor with dx2−y2 pairing. This applied potential creates a topological

defect, and we expect to find a Majorana mode attached to these topological defects. First,

we start by applying the electric potential to a long rectangle-shaped area. The width of

the rectangle is 20 nm and its length is 2 nm, JH = 50 meV, m0 = 70 meV. Fig. 3.8 shows

the density of states as a function energy, plotted for 4 different gating potentials. In Fig.

3.8(a), there are three mid-gap states at E1 = 2 meV, E2 = 5 meV, and E3 = 10 meV. By

changing the gating potential, the location of the peaks can move. In Fig. 3.8(d), when the

gating potential is 80 meV, the bound state is located at zero. By increasing the gating

potential further, the peak location does not change, and it is pinned at zero energy. Since

Majorana bound states only appear at zero energy, we must investigate the wave-function

of the zero-energy bound state to evaluate if it is indeed a Majorana zero mode. However,

by evaluating the wave-function and checking for the form described by Eq. (2.4), we found

that those bound states are not Majorana zero modes.
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(a) (b)

(c)

22

(d)

Figure 3.8: The density of states calculated at (a) Vg = 20 meV, (b) Vg = 40 meV, (c)
Vg = 60 meV, (d) Vg = 80 meV. The peaks show the energy where the mid-gap bound
states are located. The density of states is calculated by summing |ψ2| over the entire gated
area.
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3.4 Conclusion

In this chapter, the existence of Majorana modes in a magnetic TI in proximity to

a high Tc superconductor with dx2−y2 pairing has been investigated. The phase diagram

of the system is obtained from the eigenvalue calculation and confirmed by using the Kubo

formula. It has been shown that the required topological superconducting Chern number

for having Majorana modes (N = 1), is achievable by gating the top surface of the magnetic

TI. The top gating potential is applied to a semi-infinite 2-D plane, and a chiral Majorana

edge mode appeared. We evaluated its wave function and confirmed that it is indeed a

chiral Majorana mode. We applied the top surface gating potential locally in order to

create localized MZMs attached at the ends of the gated area. Although localized zero-

energy peaks appear in the density of states calculations which correspond to zero-energy

bound states, the wavefunctions do not satisfy the criteria Ψ† = Ψ, and, therefore, are not

Majorana zero modes.
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Chapter 4

Magneto tunneling resistance of

Skyrmions in layered

antiferromagnetic materials

4.1 Introduction

Skyrmions are topological magnetic defects that exist in magnetic interfaces with

Dzyaloshinskii-Moriya interaction [55, 56]. Since their initial discovery in B20 chiral mag-

nets, they have been observed in a variety of materials such as Cu2SeO3 [57], FeGe, [58,59]

and etc. Magnetic Skyrmions (MSKX) have been the subject of intensive studies for their

promising characteristics in the future memory applications. However, there are some funda-

mental problems with magnetic Skyrmions. Most of the proposed applications of Skyrmions

in magnetic memories rely on Skyrmion propagation for data transformation. The Magnus
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force in current-driven magnetic Skyrmions induces a transverse movement resulting in the

destruction of the Skyrmion at the sample edge. Also, the ferromagnetic order creates a

dipolar field that hinders ultrasmall Skyrmion sizes.Theoretical studies, based on micro-

magnetic simulations, not only show that antiferromagnetic Skyrmions (ASKX) can travel

in straight lines, but that they also can move faster in comparison to their ferromagnetic

counterparts and can be driven with lower current densities [16,17,60]. It is also suggested

that Skyrmions in synthetic antiferromagnets made from stacking ferromagnetic Skyrmions

in opposite directions are also immune to the Magnus effect [17]. Also, a recent experimen-

tal work shows that ultra-small size antiferromagnetic Skyrmions can be stabilized at room

temperature in Synthetic antiferromagnets [61].

Electrical detection of magnetic Skyrmions has been heavily investigated [62–66].

Among these studies, perpendicular reading of single magnetic Skyrmions in Pd/Fe/Ir(111)

thin films [52], and the impact of a magnetic Skyrmion on magnetoresistance are based on

vertical electron transport [67]. Due to the lack of a net magnetic moment, the detection

of antiferromagnetic Skyrmion texture is very challenging [68]. Their detection method

is limited to topological spin hall measurements [69] and magnetic force microscopy [61].

In this work, we study a new scheme for the detection and read-out process of layered

antiferromagnetic Skyrmions (ASKX) in synthetic antiferromagnets. We calculate the tun-

neling magnetoresistance (TMR) of a ferromagnet/insulator/antiferromagnet/ferromagnet

(FM/I/AFM/FM) heterostructure to understand how the presence of a Skyrmion influ-

ences the resistance. This scheme is simple to implement, compatible with conventional

integrated circuit technology, and highly scalable.
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4.2 Methodology

4.2.1 Hamiltonian

FM probe

Insulator

AFM

Hard magnet

(a)

FM probe

Insulator

AFM

Hard magnet

(b)

Figure 4.1: A ferromagnet/ insulator/ anti-ferromagnet/ ferromagnet heterostructure with
layered (a) A-type AFM, (b) AFM Skyrmion. The top ferromagnetic probe is a soft-magnet
that creates a spin-polarized current with a magnetic moment in any desirable direction.
The hard magnet at the bottom is a ẑ apparatus for blocking the Sz = +~

2 component of
the current.

The schematic of the system is shown in Fig. 4.1. The top layer is a soft ferromag-

net (SFM) in which the magnetic moment of emitted electrons is manipulated by a magnetic

field. The electrons tunnel through a wide bandgap insulator (INS) to the antiferromagnet

(AFM). The AFM can host a layered Bloch type antiferromagnetic Skyrmion. The bottom

layer is a hard magnet (HM) and works like an apparatus for blocking a polarized current

with a certain magnetic moment.
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The tight-binding Hamiltonian of the system can be written as :

H =
∑
i

c†imci +
∑
<i,j>

(c†i t0cj +H.c.) + JH
∑
i

c†iσi.Ŝici, (4.1)

where Ŝi is localized spin on site i, t0 is the nearest neighbor hopping term, JH is the

Heisenberg exchange potential and m is the on-site mass term.

The bandstructure of the bulk AFM, INS and FM regions are calculated as Eqs.

(4.2), (4.3), (4.4), respectively. The mass term is zero in the AFM and FM region but it

has a finite value inside the insulator and it’s sign alternates between two adjacent insulator

atomic grid points. Also, JH is zero in the insulating region.

E = ±
√

J2
H + 2t20(1 + cos kza) + 2t0 cos kxa+ 2t0 cos kya (4.2)

E = ±
√

m2 + 2t20(1 + cos kza) + 2t0 cos kxa+ 2t0 cos kya (4.3)

E = ±JH + 2t0 cos kxa+ 2t0 cos kya+ 2t0 cos kza (4.4)

We set t0 = −0.3812 eV and m* = 0.4me (MgO effective mass), therefore since the band

dispersion is almost parabolic at the Γ point in all three band structures, the discretization

length is estimated to be around 5 Å. By setting m = 3.8 eV the insulating gap at the Γ

becomes 7.8 eV , which is the same as MgO.
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Figs. 4.2a, 4.2b, and 4.2c are the ferromagnetic, antiferromagnetic and insulating

band structures, respectively. Our goal is to detect the presence of Skyrmions in a layered

AFM (A-type) by calculating its tunneling magnetoresistance. To inject a spin-polarized

current from the soft ferromagnetic lead, we set the value of JSFM = 0.5 eV in it. As a

result, the red band is far away from the bottom of the bandstructure, and the injected

current is almost %100 polarized, which is achievable is certain materials [70]. To keep the

bottom of the band structure fixed, we shift the FM bandstructure down by the value of

JFM , in both the FM leads. The chosen value for the Fermi level is Ef = −2.1 eV , which

lies deep inside the insulating gap and is close to the bottom of both the AFM and FM

bands.
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Figure 4.2: (a) Ferromagnetic band structure with JSFM = 0.5 eV belongs to the soft
ferromagnetic lead. The chosen Fermi level is Ef = −2.1 eV. Therefore the injected current
is from a single spin-polarized band and near the Γ point. (b) AFM bandstructure with
JAFM = 40 meV. The two bands are spin-degenerate. (c) Insulator bandstructure with
m = 3.8 eV.
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4.2.2 Transport

To calculate the tunneling magnetoresistance, the nonequilibrium Green’s function

is employed. The retarded greens function of the system is:

GR(E) = [E(I + iη)I −H − ΣL − ΣR]−1 (4.5)

ΣL,R are the leads self energies and η is an infinitesimally small number. The

transmission of the system is calculated from the retarded Green’s function as below:

T (E) = trace[ΓLG
RΓRG

A] (4.6)

where GA = GR and ΓL,R = −2Im[ΣL,R] is the broadening of the left and right contacts.

Finally, in the linear response regime, the conductance of the device is calculated as

G = −e
2

h

∑
σ

∫
dkx,y Tσ(Ef ) (

∂f

∂E
)E=Ef

. (4.7)

The conductance is calculated at zero temperature so that −∂f/∂E = δ(E − Ef ).

4.3 Results and disscussion

4.3.1 TMR of magnetic Skyrmions

To better understand the effect of the hard magnet on the TMR, we temporarily

eliminate the AFM layer from the device region (green) in Fig. 4.1 and replace it with

another ferromagnet to investigate how the value of the exchange potential in the hard
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magnet changes the tunneling resistance. Fig. 4.3 shows the polarization of the HM as a

function of JHM , which is the exchange potential of the hard magnet. The polarization is

calculated as P = (D↑ −D↓)/(D↑ +D↓) for a bulk ferromagnet. Dσ is the electron density

at the Fermi level. D↓ is constant since the down-spin band is fixed. On the other hand, by

increasing JHM from zero, the bottom of the up-spin band moves toward the Fermi level.

The density of states of bulk materials is proportional to
√
E, therefore D↑ decreases with

JHM .

P

−0.8

−0.6

−0.4

−0.2

0

JHM
0 10 20 30 40 50 60 70 80 90

Figure 4.3: Polarization of the hard magnet vs. JHM . Up-spin electrons density gradually
decreases by increasing JHM since the bottom of the up-spin band moves toward the Fermi
level.

Now we put a magnetic Skyrmion in the device region to evaluate how it effects

the transport and the TMR. The magnetization of a single Skyrmion is described by :

n(r) = [sin γ(r) cosϕ(φ), sin γ(r) sinϕ(φ), cos γ(r)] (4.8)

where ϕ(φ) = mφ + υ and φ = tan−1( yx) and the term ”υ” determines the helicity of

Skyrmion. In this chapter, we only study Bloch-type Skyrmions (m = 1, υ = π/2). Therefore

47



γ(r = 0) = 0, γ(0 < r < R) = π(1− r
R), and γ(r > R) = π.

To implement a Skyrmion, we use a square cross-section made of 15×15 gridpoints,

and to make it infinitely large, we apply the periodic boundary conditions. The diameter

of the Skyrmion is also 13 gridpoints. Considering that the discretization length is about 5

Å, the Skyrmion diameter is about 6.5 nm. The thickenss of the device region is fixed to be

5 nm (10 layers) in all calculations, and the insulating barrier thickness is set to be 2 nm.

The TMR in the presence (MSKX) and absence (FM) of a magnetic Skyrmion

in the device region is shown in Fig. 4.4a. Θ is the angle between the magnetic moment

of the two magnetic leads . The ferromagnetic exchange potential in the device (Jdevice)

and the hard magnet (JHM ) is set to be 85 meV. At Θ = 0, the FM device shows a

lower resistance since it has the same magnetic moment as the two leads. By rotating

the magnetic moment of the injected current, the FM device resistance increases with a

significantly higher steep in comparison to the MSKX device. The maximum difference in

the TMR occurs at Θ = π, where the FM device resistance is 12.65 times higher than the

MSKX device. To understand how the Skyrmion affects transport, we use a Stern-Gerlach

apparatus analogy. In Fig. 4.4b, the two ferromagnetic leads are replaced with ẑ polarizers.

Since the FM device is a ferromagnet without a Skyrmion, it is also a ẑ polarizer. Therefore

it can not change the eigenstate of the incident electron from the left lead (SFM). When

the two leads polarization is anti-aligned, the electron is blocked by the right lead (HM).

However, by looking at a Skyrmion spatial spin configuration, we can replace a Skyrmion

with a x̂ polarizer. An incident electron with Sz = ±~
2 collapses two one of Sx = ±~

2

eigenstates with the same probability.
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Figure 4.4: (a) Tunneling magnetoresistance as a function of Θ, in the presence (MSKX)
and absence (FM) of a magnetic Skyrmion in the device region. Θ is the angle between
the spin polarization of the two magnetic leads. The exchange potential of the hard FM
(JHM ) is set to be 85 meV (P = -0.594). (b)The Stern-Gerlach apparatus analogy. The
device region is the middle polarizer. The FM device is a ẑ polarizer, which does not change
the magnetic moment of injected current. The MSKX is analogous to a x̂ polarizer, which
changes the eigenstate of the injected current to Sz = ~

2 . Electrons that leave the x̂ polarizer
can propagate in the right lead with the same probability. (c) The ratio of FM TMR to
MSKX TMR at Θ = π, plotted as a function of polarization (Jdevice = JHM ).
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The electron with the new eigenstate also travels in the right magnet eigenstates

(Sz = ±~
2) with the same transmission probability. Therefore it becomes insensitive to the

Θ. The slight change in the MSKX TMR corresponds to the resistance of the pillar area,

which is not covered by the Skyrmion and has the same polarization as the hard magnet.

We intend to block the injected current in the absence of Skyrmion and let the cur-

rent flow to the hard magnet in the presence of Skyrmion. Then we can read-out Skyrmion

whenever it passes under the magnetic probe in racetrack memories. Therefore the change

that Skyrmion causes in the TMR is important. We define the resistance ratio as the ratio

of TMR in the absence of Skyrmion to TMR in the presence of Skyrmion. The effect of

the polarization on the resistance ratio (TMRFM/TMRMSKX) is plotted in Fig. 4.4c. We

calculated the resistance for different values of JHM (Jdevice = JHM ) and mapped it onto

the polarization. The ratio is enhanced directly by increasing the polarization. This is be-

cause the injected current is most likely blocked by the hard magnet when the polarization

is higher, but the MSKX is not sensitive to the polarization of the hard magnet.
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4.3.2 TMR of AFM Skyrmions

In this section, we replace the ferromagnetic device with an AFM device, and we

calculate the TMR to investigate the effect of AFM Skyrmion(ASKX) on the transport

properties. An antiferromagnetic Skyrmion can be considered as a stack of two magnetic

Skyrmions that are antiferromagnetically coupled.

The TMR, as a function of Θ is shown in Fig. 4.5a. The Néel vector of the AFM

is along the transport direction (Sz = ±~
2), and Jdevice = JHM = 85 meV. Similar to Fig.

4.4a, in the absence of Skyrmion, the TMR rises faster with Θ, and at Θ = π, the resistance

ratio is at its maximum. The big difference here is that the AFM device with a ẑ Néel

vector does not block the current as much as the FM device does. Therefore the resistance

ratio is smaller, and the maximum ratio is 2.86 which occurs at P = −0.7.

To understand why the AFM Skyrmion works as a x̂ polarizer and reduces the

TMR, we replaced it with a x̂ AFM and plotted the spin-precision of the injected current

with respect to its initial phase as travels in the device region in Fig. 4.6. Since the AFM

Skyrmion includes Sx and Sy components, a 1-D AFM chain with the Néel vector in the

x̂ direction captures the essential behavior as the presence of an AFM Skyrmion. Φ is

the polar angle of the left-injected spinor calculated at each site from 〈ψi|σz|ψi〉/
√
〈ψi|ψi〉,

where ψi is the left-injected wavefunction at site i. The AFM device Néel vector is along

the x̂ direction, and Φ is calculated at the Fermi level with kx = ky = 0. In Fig. 4.6a, the

angle of the injected current is zero at the left lead. When the up-spin electron (Φ = 0)

travels through the device, Φ acquires a non-zero value at each gridpoint. When it reaches

the right lead, it has some −Sz component. If the leads spin-polarization is anti-aligned,
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the transmission occurs due to this deviation from the initial angle. By increasing the

value of JAFM we increased the deviation from the initial angle, which means a larger -Sz

component and more transmission. For JAFM = 50 meV Φ is 17.4◦ and it increases up

to Φ = 24.1◦ at JAFM = 120 meV. The existence of a tunneling barrier, as shown in Fig.

4.6b, can slightly increase Φ and decrease the resistance ratio. For JAFM = 120m eV in

the presence of the tunneling barrier, the Φ becomes 28.6◦.
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Figure 4.5: (a) TMR vs. Θ for an antiferromagnetic (AFM) device and AFM Skyrmion
(ASKX). JAFM = JHM = 85 meV and the insulating barrier thickness is 2 nm. (b) The
resistance ratio (TMRAFM/TMRASKX), at Θ = π. (Jdevice = JHM )
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Figure 4.6: The polar angle Φ of the injected upspin as it travels in the device region. (a)
Without an insulating barrier. (b) The thickness of the barrier is 2nm. When the current
leaves the left lead, it has no -Sz component. However, when it reaches to the right lead,
it gains some -Sz component and deviates from its initial angle. This deviation depends on
the strength of the AFM exchange potential. (Φ is the angle between the injected current
magnetic moment and the transport direction)
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4.4 Conclusion

In summary, magneto tunneling resistance can be employed to detect Skyrmion

spin textures in layered synthetic antiferromagnetic materials. We calculated the resistance

of a ferromagnet/insulator/antiferromagnet/ferromagnet heterostructure in the presence

and absence of a Skyrmion. The top ferromagnetic lead is used as a magnetic probe to inject

a spin-polarized current into the device. The hard bottom magnet works as a ẑ polarizer

that filters out the injected current. We showed that, in the presence of a magnetic or

an antiferromagnetic Skyrmion, the tunneling magnetoresistance is much less sensitive to

whetever the magnetic leads are aligned or anti-aligned. The change in the resistance caused

by the presence of Skyrmion is a tool for the detection and read-out process of Skyrmions in

race track memories. This resistance ratio can reach up to 100 in the FM Skyrmion device

and up to 8 in the AFM Skyrmion device. This ratio can be engineered by the magnitude

of antiferromagnetic exchange potential, the polarization of the magnetic leads, and the

existence of a tunneling barrier.
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Appendix A

Sparse NEGF solver tutorial

This section is a tutorial for using the c++ based simulator designed for electronic

transport calculations of any 3D heterostructure. Features of this simulator are : Non-

equilibrium Greens function is employed for the transport calculations. Recursive Greens

function is implemented to find the Greens function from the open boundary Hamiltonian.

Sparse matrix algebra is used to enable us to simulate very large structures. The decimation

algorithm (Sancho) is implemented in the code to accelerate the surface Greens function

calculations.
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A.1 tutorial

A.1.1 Compiling the code

The code is written in c++, and we use a make file inside the code folder to

compile our simulator. The required library for compilation is the ”Eigen” library. The

code is written in c++, and we use a make file inside the code folder to compile our simulator.

The required library for compilation is the ”Eigen” library. The location of the ”Eigen”

library is set in the make file as below :

s r c = $ ( wi ldcard Code /∗ . cpp )

dep = $ ( wi ldcard Code /∗ . hpp )

obj = $ ( s r c : . c=.o )

CC = g++ −std=c++0x

Flags = −g −fopenmp −O3 −march=nat ive −I

Inc lude = ” Set the l o c a t i o n here ! ” $ ( dep )

TARGET = OUTPUT

myprog : $ ( obj )

$ (CC) −o $ (TARGET) $ ( Flags ) $ ( Inc lude ) $ ( s r c )

run : myprog

c l e a r
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. / $ (TARGET)

c l ean :

c l e a r

rm −r f $ (TARGET)∗

rm −r f ∗ . l og

rm −r f ∗ . dat

r e s e t :

rm −r f ∗ . l og

rm −r f ∗ . dat

After setting the location of the ”Eigen” library, we can compile code by using the

”make” command. To run or remove the executable file, the ”make run” and ”make clean”

commands are used, respectively.
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A.1.2 Input files

We use three different input files to set the geometry and spatial dependent vari-

ables for the code.

The first input file is the geometry file, which it can find the main folder as ”In-

putfile.txt”. In this file, we define the geometry and some desirable variables that have a

spatial dependency and take different values at different parts of the device. Below is an

example of an ”Inputfile.txt” file.

x y z Sx Sy Sz PG mu Eg isSC

0 0 0 0 0 1 0.500000 0.000000 0.000000 1

1 0 0 0 0 0 0.000000 0.000000 4.000000 0

2 0 0 0 0 1 0.500000 0.000000 0.000000 1

3 0 0 0 0 1 0.500000 0.000000 0.000000 1

0 1 0 0 0 1 0.500000 0.000000 0.000000 1

1 1 0 0 0 0 0.000000 0.000000 4.000000 0

2 1 0 0 0 1 0.500000 0.000000 0.000000 1

3 1 0 0 0 1 0.500000 0.000000 0.000000 1

As can be seen, each row is a gid point that contains some information such as

spin polarization, Fermi level (µ), and superconductivity flag (isSC). We can add as many

as columns we need to get more information inside the code. If any new column is added

to the input file, we should make a small change in a file called ”ElectronSystem.cpp”.
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// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

// ∗∗∗∗∗∗∗∗ Read In Geometry d e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗ //

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

void ElectronSystem : : ReadInGeometry ( const char ∗ InputFileName )

{

i n t x , y , z , Sx , Sy , Sz , isAFM , isSC ;

i n t countS i t e = 0 ;

i n t countTota lS i ze = 0 ;

double E0 , JH, PG S , mu;

Vector3d newSpin (0 , 0 , 0 ) , newLocation (0 , 0 , 0 ) ;

i f s t r e a m input ( InputFileName ) ;

s t r i n g l i n e ;

g e t l i n e ( input , l i n e ) ;

do {

g e t l i n e ( input , l i n e ) ;

i f ( l i n e . empty ( ) | | input . e o f ( ) )

break ;

i s t r i n g s t r e a m i s s ( l i n e ) ;

i s s >> x >> y >> z >> Sx >> Sy >> Sz >> PG >> mu >> Eg >> isSC ;
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In the last line of the above function, each variable corresponds to a column in

the input file. Therefore adding any column to the input file requires a new variable in the

mentioned line of the code.

The other two input files are called ”OpenBoundaries.txt” and ”BoundariesShift.txt”.

Each row of the first file contains the grid points that are located at the open boundaries,

and the corresponding row in the second file is the vector that expands the boundary in

that direction.

An example of an ”OpenBoundaries.txt” file :

0 1 2 3

4 5 6 7

An example of a ”BoundariesShift.txt” file :

−1 0 0

+ 0 0
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A.1.3 Setting up the Hamiltonian

To set up the Hamiltonian in the code, it is required to discretize the analytical

model and find the on-site block and coupling matrices. The on-site block is defined in

the ”ElectronSite.cpp” file. The coupling blocks are defined in the ”ElectronSystem.cpp”

file and inside the ”Couplingmtrices” function. Below in an example of an on-site block

Hamiltonian of a superconductor.

th i s−>OnSiteBlock . s e tZero (4 , 4 ) ;

Matrix2cd Pair ingBlock ;

Pa i r ingBlock << 0 , PG,

−PG, 0 ;

th i s−>OnSiteBlock (0 , 0) = +mu;

th i s−>OnSiteBlock (1 , 1) = +mu;

th i s−>OnSiteBlock (2 , 2) = − mu;

th i s−>OnSiteBlock (3 , 3) = − mu;

th i s−>OnSiteBlock . b lock (0 , 2 , 2 , 2) = Pair ingBlock ;

th i s−>OnSiteBlock . b lock (2 , 0 , 2 , 2) = Pair ingBlock . a d j o i n t ( ) ;

69



A.1.4 Sparse matrix library

The required functions for making and filling a sparse matrix is implemented in

the ”SparseMath.hpp” header file. To create a sparse matrix, we use CSpMat syntax, as

shown in the last line of the example below.

pub l i c :

i n t NumSite , Tota lMatr ixS ize ;

vector<Elec t ronS i t e> L i s t O f S i t e s ;

vector<OpenBoundaries> ListOfOpenBoundaries ;

CSpMat Hamiltonian , GR;

To set the size of yout sparse matrix the below command can be used :

th i s−>Hamiltonian . r e s i z e ( number o f rows , number o f columns ) ;

To fill a sparse matrix like the Hamiltonian matrix of the system, we use a triplet

vector. We use smaller blocks to fill the triplet vector, and then we turn the vector to a

sparse matrix. In the below example, the Filler is a triplet vector. The FillingTriplet

function is used to the Filler. We send the Filler as the first argument of the function.

The second input argument is a small block that we want to put inside the Hamiltonian.

The third and fourth arguments are the starting rows and columns in the Hamiltonian that

we want to put the block. The last line is used to fill the Hamiltonian from the filler vector.
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vector<TPT> F i l l e r ;

.

.

.

f o r ( i n t j = 0 ; j < th i s−>L i s t O f S i t e s [ i ] .

L istOfTightBindingNeighbors . s i z e ( ) ; j++)

{

i n t J = L i s t O f S i t e s [ i ] . L istOfTightBindingNeighbors [ j ] ;

F i l l i n g T r i p l e t ( F i l l e r , th i s−>L i s t O f S i t e s [ i ]

. ListOfOutwardsCouplingBlocks [ j ] ,

I ∗OnSiteSize , J∗OnSiteS ize ) ;

}

th i s−>Hamiltonian . setFromTrip le t s ( F i l l e r . begin ( ) ,

F i l l e r . end ( ) ) ;
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A.1.5 Sanch algorithm

The decimal or Sancho algorithm is implemented to accelerate the surface Greens

function calculation. This function can be found in ”OpenBoundaries” class and has four

input arguments. The first argument is the on-site Hamiltonian of one repeating unit cell

of the lead (H00). The second argument is the coupling matrix between two adjacent unit

cells in the lead (H01). The third and fourth arguments are the energy and broadening (η).

The change−max sets the value for convergence condition and after finishing the

calculation, the surface Greens function is returned by the function.

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Sancho Algorithm ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

CSpMat OpenBoundaries : : Sancho (CSpMat& H00 , CSpMat& H01 , cd energy ,

cd eta )

{

i n t S i z e = th i s−>F00 . rows ( ) ;

CSpMat One( Size , S i z e ) ;

One . s e t I d e n t i t y ( ) ;
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CSpMat e p s i l , e p s i l s , alpha , beta , alpha 0 , beta 0 , EH;

e p s i l = H00 ;

e p s i l s = H00 ;

alpha = H01 ;

beta = H01 . a d j o i n t ( ) ;

a lpha 0 = alpha ;

beta 0 = beta ;

unsigned i n t counter = 0 ;

const unsigned i n t counter max = 100 ;

cd change max = 2 .5 e−5;

double change = 1 . 0 ;

Complex E New( energy , eta ) ;

whi l e ( change > change max && counter < counter max )

{

counter++;

EH = E New ∗ One − e p s i l ;

CSpMat EH New = SpInverse (EH) ;

CSpMat alpha New = alpha ∗ EH New ∗ alpha ;

alpha = alpha New ;

CSpMat beta New = beta ∗ EH New ∗ beta ;
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beta = beta New ;

CSpMat EpsilN = e p s i l + alpha 0 ∗ EH New ∗ beta 0 +

beta 0 ∗ EH New ∗ a lpha 0 ;

e p s i l = EpsilN ;

CSpMat Epsi l sN = e p s i l s + alpha 0 ∗ EH New ∗ beta 0 ;

e p s i l s = Epsi l sN ;

change = ( alpha − a lpha 0 ) . norm ( ) ;

a lpha 0 = alpha ;

beta 0 = beta ;

}

i f ( counter == counter max )

p r i n t f ( ”Contact s e l f energy didn ’ t converge .\n” ) ;

EH = E New ∗ One − e p s i l s ;

CSpMat g = SpInverse (EH) ;

re turn g ;

}
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