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ABSTRACT OF THE DISSERTATION

Studies of Stochastic Effects in Biological Signaling Pathways

by

Kai Wang

Doctor of Philosophy in Physics (Biophysics)

University of California, San Diego, 2006

Professor Herbert Levine, Chair

In this thesis three case studies of stochastic effects in biological signaling systems

are presented. The opening of Ca release channels, clustered at discrete sites on

the endoplasmic reticulum, can lead to large scale intracellular calcium waves. Ex-

periments in Xenopus oocytes have shown the inter-wave intervals for these waves

have a standard deviation much smaller than the mean and that the background

[Ca2+] exhibits a slow rise during the interwave interval. In Chapter III we mod-

eled this process and confirmed slow rise of Ca increases the cooperativity between

the openings of the clusters. Moreover, a slow kinetics of Ca pump proteins is

important for the accumulation of background Ca.

Cardiac calcium release channels are reported to have sub-conducting

states when FK-506 binding protein (FKBP) level is low. This has important

implications for heart failure, where it has been hypothesized that hyperphospho-

rylation of calcium channel by β-adrenergic stimulation results in a loss of FKBP

binding, which can lead to a persistent leak and a reduced SR calcium content.

In Chapter IV we modeled the gating of the channel via an allosteric interaction

between its subunits and coupled this dynamics with the excitation-contraction

(E-C) cycle of cardiac myocytes. We find the level of cooperativity can have a dra-

matic effect on the cardiac E-C coupling gain and that this gain exhibits a clear

maximum. These findings are compared to currently available data from different

species and allows for an evaluation of the heart failure scenario.

xii



Cells often measure their local environment via the interaction of dif-

fusible chemical signals with membrane receptors. At the level of a single receptor,

this process is inherently stochastic, but cells can contain many such receptors to

reduce the variability in the detected signal by suitable averaging. In Chapter V,

we use explicit Monte Carlo simulations and analytical calculations to characterize

the noise level as a function of the number of receptors. We show that the resid-

ual noise approaches zero and that the correlation time diverges for large receptor

numbers. This result has important implications for such processes as eukaryotic

chemotaxis.
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I

Introduction

Physicists have been fascinated by the versatility of biological world for

a long time. Accompanying with the revolution of molecular biology marked by

the discovery of DNA structure, theoretical biology has prospered for decades.

Due to limited access to experimental data, early theoretical research focused on

universal phenomena such as enzyme dynamics, or circadian rhythms, etc. Such

research was directly related to some fields of physics like nonlinear dynamics, and

was of great interest by physicists. But the models were usually phenomenological

and can hardly be linked to the real biological components in a specific system.

Moreover, a whole picture including different spatial and temporal properties of

the system was lacking because experiments couldn’t provide enough details.

Nowadays experimental biology has made tremendous progress and al-

most every biological process can be studied through experiments. Some systems,

such as Escherichia coli (E. coli) chemotaxis, have been studied so thoroughly that

almost every functional protein and gene is known. The enormous experimental

data has provided theorists a great platform to do modeling work on all scales

from atom level to ecological level with highly reliable system parameters. On the

other hand, although a lot of facts have been accumulated, there is still a long way

to truly understand how those components work together to form an organism.

Theorists can help this understanding process by making models based on their

1
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theoretical training. A successful model can identify the critical players of the pro-

cess and provoke new experiment designs. Moreover, today’s biological modeling

is heavily involved with computer simulation, mostly using differential equations

or Monte Carlo methods. Thanks to the incredibly increasing computation speed,

it is possible to run simulations of large spatial and temporal scales which take no

more than a few days. Simulation costs much less than experiment, and one can

freely change parameters, with some of those being impossible to be varied in ex-

periments. This provides an advantage to explore a much wider range of dynamics

of the system.

Among all levels of modeling, signaling transduction pathways involve

with how enzymes and second messenger molecules are connected together to ful-

fill a specific cellular function such as cell division, cell motility, etc., and how the

cell reacts to specific membrane stimuli such as hormone stimulation or membrane

depolarization. At this cellular level, the enzyme-ligand interaction is usually mod-

eled as chemical rate equations abstracted from more detailed protein dynamics

research. Mathematically, even there are only a few participants in the signaling

pathway, they can form complicated nonlinear reaction network and have rich dy-

namic behavior such as oscillations, switch-like behaviors, and even chaos, although

the latter one is the region that cells try to avoid.

Since the spatial effects have no place in the rate equation models, the

cell is modeled as a well-stirred reactor, and the modeling tool is a set of ordinary

differential equations. In many cases this methodology works fine for an initial

model, and it’s easy to analyze and fast to simulate. But there are more situations

where spatial difference of reaction components cannot be ignored. Molecules

inside a cell is not uniformly distributed. A cell has its structure and different

ligands and proteins are compartmentalized into different regions such as nucleus,

endoplasmic reticulum, mitochondria, etc. In this case a common-pool model can

be changed to a model with several pools and the communication between different

pools can be modeled as well.
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As another possibility, some cellular events initiate at a local region and

can propagate through the whole cell. For example, intracellular calcium release

channels usually form clusters and distribute discretely in space. They have a pos-

itive feedback circuit called calcium-induced-calcium-release (CICR). That means,

they can be activated by calcium and release more calcium from internal Ca2+

stores. Once a local cluster is activated, the released calcium has the potential to

open neighboring clusters and eventually form a propagating calcium wave. This

wave sometimes work as an important intracellular signal. For example, the sperm

initiated Ca2+ wave in oocyte fertilization process propagates through the whole

cytoplasm and triggers a series of important biological events. [1, 2]. But in other

systems like ventricular cells, a Ca2+ wave is considered as harmful and is blocked

under physiological condition [3]. So the geometric distribution and diffusive prop-

erty of biological components can be a decisive factor for the function, even the

underlying rate equations show no difference.

Moreover, spatial properties are intrinsic for some cellular functions. One

example is cell division. The cell decides the spatial location to divide itself into

two equally half by forming a FtsZ ring [4, 5]. Then all the cellular organelles

are equally partitioned into the two halves before the division begins. This whole

event is highly organized in space, while it is still based on the chemical reac-

tions between regulatory proteins, coupled with spatial diffusion process. Another

example is eukaryotic chemotaxis. An eukaryotic cell can tell the gradient of chem-

ical signal concentration and swim in that direction. The receptors which capture

the signal molecules distribute uniformly on cell membrane. They accept signals

indistinguishably and transmit the them into the cell. The whole signaling path-

way must have the ability to compare membrane receptor activity in all directions

and decide the way to go. Here again the large scale spatial effect is intrinsically

required, and it is implemented by the coupling between reaction and diffusion.

The importance of spatiotemporal dynamics of cellular signaling presents

us a puzzle. On one hand, the cell is usually small (1-10µm in length) and typical
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molecule concentration ranges from nM to mM. With a simple calculation we know

that 1µM is equivalent to roughly 0.6 molecule per µm3. That means for many

reactions with µM or lower molecule concentration, there are usually no more than

1000 molecules in the whole cell. For example, in cardiac excitation-contraction

coupling, in the local chamber where Ca2+ is released, there is only about one free

Ca2+ ion during peak activity, and zero for most of the time. Such a small number

of molecules causes large intrinsic fluctuations in the system that is comparable to

the mean concentration, and thus can damage the efficiency of cellular signaling.

On the other hand, cellular signaling pathway turns out to have many excellent

features, such as high accuracy, adaptability, specificity, and stability. For cell

division, the determined location for the formation of FtsZ ring is highly accurate,

with the error less than 3% of cell length [6]. Eukaryotic cells can detect a gradi-

ent as small as 1% of background concentration across the cell, and such a high

accuracy is maintained across four orders of background concentration, showing

great adaptability. The T-cell recognition of antigen-presenting-cells (APCs) is an

extremely specific process. T-cell receptors can identify a single antigen peptide

among thousands of domestic peptides and amplify the signal to trigger a whole-

cell event [7]. All of these facts imply cells must have found their unique ways to

deal with stochastic effects during the long time of evolution.

Some of these mechanisms have been well known. The most simple way

is probably to increase the number of participating molecules directly, and trad-

ing the reaction time with high accuracy. But it has a cost and is not feasible

for some small cells. Specific reaction networks can also control the noise. For

example, for a simplest two-component model, a negative feedback can effectively

suppress noise level, while a positive feedback circuit strengthens the signal and

forms a switch-like all-or-none behavior [8]. Proteins can also form dimers or

other composites to limit their accessibility with ligands and make the reaction

more controllable. These are bricks to form more complicated nonlinear reaction

networks. The spatial organization also plays a role in controlling the noise. In
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calcium dynamics, calcium sparks caused by single cluster of Ca2+ release channels

are stochastic events. Other factors such as Ca2+ binding proteins (Ca2+ buffers)

and spacing between clusters determine whether the individual events should com-

municate with each other or not. For example, in Xenopus oocytes, opening of

>7 neighboring clusters seems to be a threshold for initiating a global Ca2+ wave

[9]. In ventricular cells, Ca2+ release is strictly controlled by membrane depo-

larization. The rate of individual spontaneous sparks is controlled under a low

level and regenerative calcium wave is unwanted. So the system parameters ensure

the released Ca2+ from one unit cannot trigger another, unless under pathological

conditions where Ca2+ release is prolonged and amplified [3]. These mechanisms

show that the way to control the noise is very versatile and depends on the specific

system that is of interest. Such research involves heavily with modeling stochastic

reaction-diffusion systems, Monte-Carlo simulations and detailed experimental ob-

servations. It brings interesting and challenging topics to contemporary physicists,

while is closely related to the real biology.

I.A Dissertation Outline

In this thesis the stochastic effects of calcium dynamics in two different

systems: Xenopus oocytes and cardiac myocytes are discussed. Then we switch

to chemotaxis process and a general theory for the noise level during biochemical

signal detection is presented.

Calcium is a universal intracellular second messenger. Although its func-

tion is very versatile in different cell types, the mechanisms of its dynamics are

all based on the calcium-induced-calcium-release of intracellular calcium channels.

In Chapter II I will first introduce the common components of calcium signal-

ing pathway. Then two examples of calcium dynamics in oocytes and myocytes

respectively are discussed.

In Chapter III we studied the spatiotemporal calcium dynamics in Xeno-
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pus oocytes. Our research shows spontaneous global Ca2+ waves can be initiated

through the gradual elevation of background Ca2+ contributed by individual open-

ing of Ca2+ release sites, and the variation of inter-wave interval is much smaller

than that of a Poisson process with the same mean. Such an integrate-and-fire

mechanism requires the slow kinetics of calcium pump proteins.

In Chapter IV we modeled the stochastic gating of RyR, a calcium release

channel in myocytes, by assuming cooperativity between subunits of RyR can be

controlled by bound FKBP, a small RyR regulatory protein. The RyR model is

integrated into the whole excitation-contraction process of myocyte and is shown

that the loss of cooperativity can lead to heart failure disease. The modeling

results also explained the apparant discrepancy of the function of FKBP observed

in experiments across different species.

In Chapter V we reviewed the classic chemoreception theory by Burg and

Purcell in 1977 [10]. The theory deals with the initial step of a general extracellular

signal detection process and claims there is a universal limit of accuracy for the de-

tection process that cannot be improved by increasing membrane receptor number.

We showed through both theory and Monte Carlo simulation that the limit only

exists when the measuring time of down signaling pathway is much larger than the

correlation time scale of this detection process, and the correlation time increases

linearly when increasing the number of receptors. Thus increasing receptor number

converts a time-averaged measurement into an instantaneous measurement by re-

ducing the correlation time, and the error of measurements approaches zero. This

work clarifies the noise structure of the detection process and helps to build more

accurate chemotaxis models.
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II

A Brief Review of Intracellular

Calcium Dynamics

Ca2+ is an omnipresent intracellular second messenger that regulates

many different cellular functions. Its cytosolic concentration is determined by

a balance of processes that bring Ca2+ into cytoplasm and processes that remove

Ca2+ from the cytoplasm [10]. The basal level of cytosolic Ca2+ is kept low since a

persistent high calcium transient leads to unsoluble Ca2+ salts, which is very harm-

ful. But upon external stimuli, membrane receptors can be triggered to activate

oscillatory calcium concentration in cytoplasm.

For example, in non-muscle cells such as oocytes and hepatocytes, inositol

1,4,5-trisphosphate (IP3 ) is produced through the activation of phospholipase C

(PLC) by signals such as fertilization or hormone stimulation. As a response, cal-

cium is released from endoplasmic reticulum (ER) through IP3 receptors (IP3Rs).

In cardiac myocytes, calcium entry during depolarization of plasma membrane

triggers large calcium release from sarcoplasmic reticulum (SR) through ryanodine

receptors (RyRs), which activates muscle contraction.

In this chapter we will first review the most common components of in-

tracellular calcium signaling cycle. Then calcium dynamics in two specific systems:

Xenopus oocytes and cardiac myocytes is discussed.

8
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II.A Major Components of Calcium Signaling

Although each cell type utilize calcium in a unique way, the core part

of calcium signaling pathways share a lot in common. As we have mentioned in

last section, It always involves calcium transport between cytoplasm and internal

stores such as SR/ER. The resting cytosolic Ca2+ is about 0.1µM, and Ca2+ in-

side SR/ER is roughly 1mM. Such a steep concentration gradient is maintained

by SR/ER calcium ATPase (SERCA), which actively pump cytosolic Ca2+ into

SR/ER. During a large releasing event, a group of IP3R /RyR opens for less than

100ms and the cytosolic Ca2+ increases to 0.5-1µM, followed by a slow but per-

sistent reuptake by SERCA. For excitable cells such as muscle cells or neurons,

there are important calcium channels on the plasma membrane, such as Na+-Ca2+

exchanger (NCX). There are also huge amount of calcium buffer proteins, either

diffusible or non-diffusible. They modify the amplitude and diffusivity of Ca2+ in

both cytoplasm and SR/ER.

II.A.1 IP3R

IP3R is one of the two major calcium release channels mediated with

many calcium signaling events from the fertilization of oocytes [8, 9] to the control

of gene expression, cell proliferation and cell death [10], to long-term depression of

neural system [11, 12]. IP3R is a tetrameric protein with 300kDa subunits. It has

a central pore, and 4 large wings which provide functional sites for many regulators

[13, 14]. The gating of IP3R is controlled by IP3 , which is a second messenger

produced primarily by phospholipase C (PLC) metabolism of phosphoinositol-4,5-

bisphosphate (PIP2) activated by hormone-receptor coupled G-proteins [15, 16].

The channel is also regulated by Ca2+ through both an activation site and an

inhibition site. The Ca2+ -dependent activation is fast ( 1 sec) and has high

affinity ( 0.2 µM), but the inhibition process is more than ten times slower and

has low affinity for Ca2+ (10-100 µM). So the steady state Ca2+ response curve
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is of bell shape, with highest open probability at 1-10µM Ca2+ . Furthermore,

in response to a sudden Ca2+ elevation, IP3R gating is of an adaptive manner,

first activated, and subsequently inactivated. When this CICR is coupled with the

calcium diffusion, buffering and reuptaking in cytoplasm, temporal oscillations and

spatial waves of Ca2+ can appear under appropriate controlled IP3 concentration.

This interesting gating behavior of IP3R has attracted modeling work since decades

ago. Despite early phenomenological models based on generic excitable systems,

such as Fitzhugh-Nagumo model [17], the first influential model is DeYoung-Keizer

model [11]. It assumes there are 3 identical subunits for each IP3R . Each unit can

be regulated by IP3 activation, Ca2+ activation or Ca2+ inhibition independently.

The channel is only opened when each subunit has one IP3 and one activating Ca2+

bound, and no inactivating Ca2+ bound. Although the 3-subunits assumption is

wrong and the regulation by IP3 and Ca2+ is proved to be not independent, this

model captures the essentials of IP3R dynamics and forms the basis of other models.

Li and Rinzel [12] simplified De Young-Keizer model and get a 2 component model,

which is much easier to be analyzed.

II.A.2 RyR

RyR is the other major type of calcium release channels. It exists in

many tissues, but it is mostly known as playing the central role in the excitation-

contraction coupling in striated muscle. RyR is also a huge tetramer protein with

a central pore which shares significant homology with IP3R . The conductance of

the pore is about 100pS for divalent cation but is not very selective. Under physio-

logical condition, the current through a single RyR is suggested to be 0.5-1pA. Like

IP3R , RyR can be activated by low Ca2+ concentrations (1-10µM) and inhibited

by high Ca2+ concentrations (1-10mM), but it is doubted that physiological Ca2+

can ever reach that high level for inhibition.

There are three isoforms of RyR. The expression of different isoforms is

tissue specific. The predominant RyR isoform in skeletal muscle is RyR1 [1, 2].
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Each RyR1 is physically associated with a cluster of 4 plasma membrane dihy-

dropyridine receptors (DHPRs or L-type calcium channels) through a 10-nm gap

between plasma membrane and SR membrane [3, 4]. It is thought that mem-

brane depolarization can induce internal calcium release through the direct protein-

protein interaction and it ensures the fast twitch of skeletal muscles [5, 6].

RyR2 is the most redundant isoform in cardiac muscle [1]. There are

about 10 DHPRs and 50-100 RyRs in one calcium release unit [7]. Contrary to

the skeletal muscle case, there is no physical contact between DHPR and RyR2,

and they are loosely coupled through Ca2+ entry from DHPR and calcium-induced-

calcium-release from RyR2. The coupling is considerably slower than DHPR-RyR1

signaling, but it may provide more opportunities for pharmacological regulation

[7].

RyR3 is relatively rare in mammalian muscles, and its specific physiolog-

ical role is still unclear [1]. In tissues other than striated muscles (e. g. neurons

[12]), all isoforms of RyR can be expressed, as well as IP3R s. The coexistence

of these calcium release channels may work together and satisfy the complicated

signaling function required by the cell.

RyR can be regulated by many molecules and proteins including Mg2+,

FK506 binding proteins (FKBP), protein kinase A (PKA), calmodulin, sorcin, and

many others.

Mg2+ inhibits RyR in several ways. First, free cytosolic ATP is an RyR

activator [1], but Mg2+ binds to ATP and reduces the amount of free ATP avail-

able to RyR. Second, Mg2+ is a competitive antagonist of RyR [1, 20, 21]. It

can bind to Ca2+ activation sites on RyR, and thus prevents Ca2+ from opening

the channel. Third, the high RyR inhibition site does not discriminate between

different divalent cations, so even physiological Ca2+ can never reach the inhibi-

tion threshold, RyR can be inhibited by binding of Mg2+, which is typically 1mM

[1, 20, 21]. In addition, Mg2+ is reported to slow down the rate of activation of

RyRs in response to sustained elevations of Ca2+ [22]. This could be critical to
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the control of excitation-contraction coupling since the trigger Ca2+ lasts only less

than 1ms.

FKBP is a small protein that can bind to each of the RyR monomer.

It has been observed that FKBP binding lowers open probability and prevents

unwanted Ca2+ leak from SR without DHPR signal. Moreover, several groups

have shown that lack of FKBP binding results in subconductance states of RyR

[23, 24]. Subconductance states are open events with less than normal unit current

amplitude. Some of the experiments show clearly 3 discrete subconductance, which

indicates there are 4 stages of RyR opening, and FKBP stabilizes the channel by

make the opening in a more cooperative way, i.e., with higher Ca2+ activation

threshold and Hill coefficient. The level of bound FKBP is suggested to be critical

in heart muscle excitation-contraction coupling [25, 26].

PKA is activated through β-adrenergic signaling pathway, and it can

phosphorylate RyR. Some groups have reported that PKA phosphorylation results

in the dissociation of FKBP from RyR, and thus destabilizes RyR [27]. However,

other groups report FKBP is not dissociated by phosphorylation, or RyR kinetics

is not altered [28, 29]. It is possible that different experimental conditions are

responsible.

Sorcin is also a small RyR-binding protein. It inhibits RyR gating inde-

pendent of Ca2+ regulation, and this inhibition is turned off by PKA phosphoryla-

tion of sorcin [30]. Overexpression of sorcin has been found to dramatically rescue

the abnormal excitation-contraction coupling in diabetic heart [31], which may in-

dicate sorcin helps to stabilize the RyR gating and prevents unwanted leaking of

Ca2+ .

II.A.3 DHPR

As mentioned in last section, DHPR is a plasma membrane Ca2+ channel

widely spreading in striated muscles and is responsible for triggering intracellular

Ca2+ release when cell membrane is depolarized. It has a fast voltage-dependent ac-
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tivation and a slow voltage-dependent inactivation circuit, and a Ca2+ -dependent

inactivation circuit [32, 33]. Upon depolarization, DHPR is opened immediately

and allows extracellular Ca2+ to enter the cell. Since DHPRs are usually located

very close to RyRs, the small Ca2+ entry can trigger large amount of Ca2+ release

from SR. DHPR is then closed by the elevated intracellular Ca2+ and membrane

potential. The opening of a DHPR is usually less than 1ms.

The details of the activation and inactivation sites on DHPR are still not

clear, and several models have been proposed to describe its gating [34, 35, 36].

They are not necessarily optimal, but they all recover the kinetics observed in

experiments very well.

II.A.4 SERCA

SERCA is a Ca-ATPase on ER/SR membrane. It actively pumps cy-

tosolic Ca2+ released by IP3R/RyR back into ER/SR and keeps cytosolic Ca2+ at

low level [37]. At the beginning of a transport cycle, one Ca2+ ion is binded to

a Ca2+ binding site very rapidly. Then the second Ca2+ binding site is exposed,

which explains the observed cooperative transport with Hill coefficient about 1-2.

SERCA is only phosphorylated after two Ca2+ binding sites are occupied. Note

that under appropriate conditions the phosphorylated SERCA can also bind ADP

and synthesize ATP, so the reaction is reversible. At this stage SERCA still has

high affinity for Ca2+ . Then it isomerizes rapidly and sequentially into several

other intermediate forms which translocates the Ca2+ binding sites to the luminal

side and lowers Ca2+ affinity by 3 orders. After Ca2+ ions are occluded SERCA

is hydrolyzed in a reaction stimulated by Mg2+. In total each cycle transports 2

Ca2+ ions into luminal side by the hydrolysis of 1 ATP. The steep gradient of Ca2+

across ER/SR membrane is maintained by this energy-costing process.

In theory the reuptake rate is usually modeled as:

Juptake =
Vmax[Ca2+]n

[Ca2+]n + Kn
1/2

(II.1)
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with Hill coefficient n=2 in most cases. The max uptake rate Vmax is 0.5-1µM/s.

Another model of SERCA is proposed recently by Bers group [38]:

Juptake =
Vmf ([Ca2+]i/Kmf)

n − Vmr([Ca2+]SR/Kmr)
n

1 + ([Ca2+]i/Kmf )n + ([Ca2+]SR/Kmb)n
(II.2)

This model considers the fact that reuptake process is reversible and the

rate is the difference of Ca2+ transport from cytoplasm to ER/SR and the vice

versa. It has the potential to cover wider range of physiological parameters, such

as partially depletion of ER/SR, or persistent high level of cytosolic Ca2+ .

There are three major isoforms of SERCA [39]. SERCA1 is expressed

exclusively in fast-twitch skeletal muscle. SERCA2 has 2 sub-isoforms: SERCA2a

and SERCA2b. SERCA2a expresses in cardiac and slow-switch skeletal muscle.

Its quantitative properties are identical as SERCA1. SERCA2b exists in smooth

muscle and non-muscle cells such as oocytes. It has lower rates for both calcium

transport and ATP hydrolysis, which suggests a slower catalytic cycle. SERCA3

expresses in non-muscle cells. It has a lower Ca2+ affinity comparing to the other

two.

II.A.5 Sodium Calcium Exchanger

To keep the Ca2+ balance inside a cell, there are other plasma membrane

Ca2+ channels which extrude those Ca2+ entered through DHPR. The most im-

portant one is Na-Ca exchanger (NCX). This membrane protein imports Na+ ions

by exporting Ca2+ ions, with the exchange stoichiometry as 3:1 (Na:Ca) [40]. Note

that the exchange is also reversible and it depends on the membrane voltage and

ion concentrations. The NCX current is likely to be responsible for the transient

inward current during diastolic phase[7]. This current increases membrane poten-

tial and may trigger the opening of inward Na+ current and intracellular calcium

releasing, producing the so-called delayed after-depolarization, which is usually a

precaution of cardiac arrhythmia.
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II.A.6 Buffer Proteins

Buffers are intracellular Ca2+ -binding proteins. They exist in large abun-

dance in both cytoplasm and ER/SR. For example, calsequestrin is the major Ca2+

buffer in SR [41], and calmodulin and troponin C are Ca2+ buffers in cytoplasm

[7]. These buffers bind most of the Ca2+ in a cell (up to 99%)[42]. Buffers have

much lower diffusivity than free Ca2+ , and some of them are even immobile, so

they greatly affect the intracellular Ca2+ dynamics by limiting the Ca2+ diffusion.

For simulation, buffers with fast binding and unbinding rates like calsequestrin

and calmodulin are modeled as in equilibrium with free Ca, while slow buffers are

simulated according to their kinetics [41, 43].

II.B Case Studies of Calcium Dynamics

II.B.1 Spatial Organization and Spontaneous Calcium Waves

The opening of a single calcium release channel is the smallest calcium

signaling event, called a ”blip”. However, calcium release channels are not uni-

formly distributed on ER/SR membrane. Instead 10-100 channels tend to form

a cluster. Channels within one cluster are strongly coupled through CICR. That

means, calcium ions released from a ”blip” can diffuse and increase the open prob-

ability of nearby channels. Such an elemental releasing event is the building block

for local and global Ca2+ signaling. They are called ”puffs” for IP3R mediated

signaling, or ”sparks” for RyR mediated signaling. Puffs were first observed in

immature Xenopus oocytes by I. Parker’s group [44]. The calcium release is reg-

ulated by IP3 level, which is controlled by flash photolysis of caged IP3 . Ca2+

fluorescent indicator protein is added to the cell and the fluorescence is measured

through confocal linescan microscopy technique. By this method they were able to

measure the spatiotemporal spread of a highly localized Ca2+ release event. (See

Figure II.1.)

Although the cluster size and the number of opening channels in a puff is
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very difficult to be directly measured, they are estimated by several models based

on the confocal image results. Swillens et al [13] concluded a puff is generated by

at least openings of 5 IP3Rs, and a cluster has about 20-30 IP3Rs, packed closely

together in order to allow inter-channel cooperativity. More recently, Shuai et al

[46] build a model directly simulating the fluorescence signal mass measured in

experiments. They estimated there are 25 channel openings during a puff, the size

of a cluster ranges from 300 to 800nm, and physiological current through a single

IP3R is about 0.4pA.

Ca2+ released from a puff can diffuse to neighboring sites and increase

the rate of puffs at those sites. This weaker version of CICR has the potential to

form organized calcium events, such as calcium waves, at a larger spatial scale. I.

Parker’s group have studied the initiation of spontaneous Ca2+ waves in unfertilized

Xenopus oocytes with controlled IP3 level [47] (see Figure II.1). They found the

amount of Ca2+ required to trigger a wave was about 10-fold greater than the

average size of a puff. However, frequent puffs contribute to a slow increase in

basal free Ca, which increases puff rates slowly, and initiates a wave eventually.

The ability for a puff to trigger neighboring puffs is determined by the

[IP3], the Ca2+ diffusivity, and the space between puff sites. The diffusion constant

of free calcium is about 200µm2/s, but it’s greatly reduced to about 25 µm2/s by

Ca2+ buffers. The density of puff sites is about 1 per 20-30µm [48]. Jung and

Shuai [18, 7] studied the global stochastic Ca2+ dynamics based on Li-Rinzel [12]

model and revealed that global propagating wave can only happen in a selective

range of [IP3], calcium diffusion constant (D), and spacing between puff sites (d).

There are only independent puffs when [IP3] or D is too low, or d is too large.

On the opposite side, there are too many competitive local calcium waves, and

global Ca2+ average turns out to be constant. Global Ca2+ waves only appear for

intermediate parameters.

The wave speed is studied by J. Keizer et al [51] through a simple fire-

diffuse-fire model. Suppose the mean time a site is open is τ , which is directly



17

controlled by [IP3], then apparently the relevant dimensionless constant is Dτ/d2.

It is shown that when this constant is much larger than one, the wave propagation

is continuous and the speed is proportional to
√

Dτ . However, when it is much less

than one (which is the case in calcium signaling), the propagation is saltatory and

the speed is proportional to D. The wave speed in Xenopus oocytes is >50µm/s.

The period of spontaneous Ca2+ waves is regulated by [IP3] [52]. With

very high [IP3], wave period is as short as 7s, which is the recovery time after

a cluster is inactivated. For low IP3 level, the period can extend to more than

120 seconds. The measured standard deviation is much less than the mean inter-

wave interval, indicating spontaneous waves are not Poisson processes. A natural

assumption is that the gradual elevation of basal Ca2+ by puffs increases the prob-

ability of wave nucleation at a later time, rather than right after last wave. In

chapter III we will study this assumption, and the possible underlying mechanism

responsible for the gradual elevation of Ca2+ .

II.B.2 Cardiac Excitation-Contraction Coupling

Calcium dynamics plays a central role in cardiac excitation-contraction

coupling. During the systolic phase of a heart beat cycle, the plasma membrane

is depolarized by a trigger current and further by the activation of Na+ channel.

The DHPR is then opened and a small amount of Ca2+ ions enter the myoplasm.

RyRs are then activated by CICR and a much larger amount of Ca2+ is released

from SR. Ca2+ level in myoplasm is increased to around 1µM. These abundant

Ca2+ ions activate the myofilaments and cause the contraction of the myocyte.

Ca2+ release is terminated by the membrane repolarization. The cytosolic Ca2+

is pumped back into SR by SERCA or extruded from the cell by sodium-calcium

exchanger (NCX) on the membrane. The ratio of the amount of Ca2+ released

from the SR to the Ca2+ entry through DHPR is defined as the gain of excitation-

contraction coupling. It is usually larger than 10 under physiological conditions,

and depends on the level of membrane depolarization in a graded way. Figure IV.2
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shows that under voltage clamp condition, the triggered release from SR is much

larger than the Ca2+ entry through DHPR, and the gain is a decreasing function

of membrane potential.

Early models assume the CICR happens directly in the cytoplasm. There

are only two chambers: the cytoplasm and the SR. RyRs are triggered by the mean

Ca2+ elevation caused by DHPR activation, and release Ca2+ from SR. However,

such common pool model cannot explain the graded control of Ca2+ release by

membrane potential. The positive feedback of RyR determines the response is

all-or-none. That is, no Ca2+ can be released from SR when membrane potential

is low, and regenerative Ca2+ waves will appear when membrane potential is high,

just as we discussed in the IP3R case. M. D. Stern proposed the local control

model to solve this puzzle [53]. Instead of triggering CICR in a common pool, this

model assumes there are many local chambers and CICR happens in each chamber

independently. The local chambers all connect to the cytoplasm and contribute

the local Ca2+ release to the global Ca2+ . In this way, although the Ca2+ release

in each local chamber is still all-or-none, their sum can be a smoothly graded

function of membrane potential. The key point here is the CICR in one chamber

must not affect Ca2+ release of other chambers, so Ca2+ wave is a phenomenon

that is avoided in myocytes under physiological condition.

The geometric distribution of RyR in myocytes has greatly supported

the local control theory. Each calcium release unit (CRUs) contains 100-200 RyRs

clustering on the end of a junctional SR which is opposed to plasma membrane

with only 10-20 nm dyadic clefts between them. There are thousands of such

CRUs in one myocyte and they form a very regular lattice, with 2 µm distance

between them along the longitudinal direction and 0.4-0.8µm along the transverse

direction [54]. When cell membrane is depolarized, the local [Ca2+] in the dyadic

space can reach 10-100 µM [55], and the gating of a RyR cluster is essentially of

all-or-none style. The release event of such a CRU is called a ”spark” (just like

a ”puff” in oocytes). The profiles of all the triggered sparks are similar, but the
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probability to trigger a spark is a continuous function of membrane potential, thus

the total calcium release during systole varies in a graded style with the membrane

potential.

There are also spontaneous sparks during diastolic phase. They are harm-

less under physiological condition because the rate is very small. When the acti-

vation threshold of RyR is reduced (for example, by dissociation of FKBP), the

channel becomes leaky and the rate of spontaneous sparks increases greatly. On the

other hand, this causes a partially depletion of SR Ca2+ content in a long term,

which results in a reduced RyR Ca2+ current. It seems that there is a balance

between these two contrary effects: increased RyR open probability and reduced

RyR current. In Chapter IV we will see there is an optimal point for excitation-

contraction coupling based on the assumption that RyR gating is cooperative, and

it suggests that loss of this cooperativity may cause heart failure disease.
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Figure II.1: Induction of puffs and periodic Ca2+ waves by sustained photorelease
of IP3 (Marchant and Parker 2001 [52]). (A) Measurements of IP3 -dependent
fluorescence monitored from 8 × 8 µm regions centered on two puff sites (i and
ii) within the imaging field. The UV photolysis light was turned on at the start
of the record, and remained on thereafter. Photoreleased IP3 initially evoked
asynchronous puffs at these sites (and at many other sites not shown), and a puff
at site (i) triggered a Ca2+ wave that propagated throughout the imaging field. Puff
activity ceased during the falling phase of the wave, but subsequently recovered
until a second wave was again triggered by a puff at site (i). (B) Single image frames
illustrating the spatial patterns of cytosolic Ca2+ observed at times corresponding
to the points marked in (A). The sites from which the traces in (A) were obtained
are marked on frame B (a). Panels depict Ca2+ -dependent fluorescence on a
pseudo-color scale, after subtraction of resting fluorescence before stimulation. (C)
Fluorescence trace from site (i) shown on a slower time scale illustrating periodic
Ca2+ waves during sustained photolysis for 20 min.
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Figure II.2: Simulation results of cardiac graded control by Stern et at [56]. Top:
Calcium current through DHPR (ICaL) and RyR (ISR) as functions of membrane
potential. Bottom: Excitation-contraction coupling gain is a smooth decreasing
function of membrane potential.
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III

Stochastic Calcium Waves in

Xenopus Oocytes

III.A Introduction

In many cell types, Ca2+ is released from the ER through the opening

of the inositol (1,4,5)-triphosphate (IP3) receptors (IP3Rs). These receptors are

clustered at sites [2, 3] which are positioned randomly on the ER membrane with

a distance of ∼ 5−8 µm [4]. The binding of IP3 and Ca2+ results in the opening of

a channel which is inactivated for very high concentrations of Ca2+. Through the

use of novel experimental techniques that permit the visualization of subcellular

events, it has become clear that Ca2+ dynamics can be a highly localized process.

Release events, during which the IP3Rs open and release Ca2+ from the ER into

the cytosol, can be limited to single clusters (“puffs” or “sparks”) or even single

channels (“blips”) [2, 5]. Furthermore, it has become clear that these release events

exhibit a large degree of stochasticity [6, 2]. The increase in Ca2+ concentration

due to a puff from one cluster can initiate the opening of neighboring clusters. The

subsequent further increase in local Ca2+ concentration can then lead to a global

Ca2+ wave.

A recent experimental study by Marchant et al. [4] examined spontaneous

27
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global Ca2+ waves in unfertilized Xenopus oocytes for different IP3 concentrations.

In particular, they found global waves with mean inter-wave intervals ranging from

8 s, for the highest IP3 concentration, to 120 s for the lowest IP3 concentration.

The standard deviations for these inter-wave intervals were found to be signifi-

cantly smaller than their mean and ranged from < 2 s to ∼ 25 s. Furthermore,

for the global events with large inter-wave intervals, the average cytosolic Ca2+

concentration was observed to increase slowly between two waves. In contrast, the

puff rate only increased during the first part of a wave cycle and then reached a

sustained level.

The relatively small standard deviation observed in the experiments in-

dicates that the puffs, which are the building blocks of the global events, are not

uncoupled. After all, if the puffs were independent of the history of the system,

the global events could be described by a Poisson process. Then, the distribu-

tion of mean inter-wave intervals would be exponential and the measured standard

deviation should equal the measured mean inter-wave interval. Conversely, a mech-

anism which makes global events progressively more likely to occur as the system

generates puffs would be able to explain the observed data.

In this chapter, we investigate the possibility that the slow increase of

the average Ca2+ concentration is related to the small standard deviations in the

inter-wave intervals and study possible sources for this slow increase. Our basic

hypothesis is that this slow rise will increase the probability that cluster openings

lead to global waves. Thus, the probability of the nucleation process for a global

wave will be an increasing function of time and the standard deviation will be

reduced.

We address this hypothesis via the simulation of a simple computational

model for Ca2+ dynamics. Several groups have presented detailed models of intra-

cellular Ca2+ dynamics, taking into account spatial localization of the IP3 receptor

clusters [7, 8, 9]. These models have been helpful in furthering our understanding

of Ca2+ dynamics. However, their complexity makes it difficult to investigate the
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essential processes involved in certain experimental observations. For this reason,

we have chosen to study a very simple model, with as goal to capture the physical

mechanism that can lead to mean inter-wave intervals with small standard devi-

ations, as caused by a slow rise in cytosolic Ca2+ between two successive waves.

As we will see, our approach leads to the conclusion that a model consisting of a

diffusive coupling between the receptor clusters, combined with instantaneously ac-

tivated pumps on the ER is not able to explain the experimental data. Specifically,

it is unable to produce both a slow cytosolic Ca2+ rise and a sufficient reduction in

cytosolic Ca2+ after a global event. Thus, our model needs to incorporate an addi-

tional mechanism and we show that incorporating a pump which slowly activates

is one possible way to account for the experimental findings.

III.B The Ca2+ model

The basic elements of Ca2+ dynamics include diffusion through the cy-

tosol, release from the ER through IP3Rs and the uptake into ER through SERCA

pumps. Thus, we start with the reaction-diffusion equation

∂[Ca2+]

∂t
= Jrelease − Juptake + D∇2[Ca2+] (III.1)

where D is the Ca2+ diffusion constant. We have chosen a two-dimensional 150×150 µm

square computational domain with zero-flux boundary conditions; this is large

enough to study large scale calcium dynamics. The first term of this equation

models the release of Ca2+ from the IP3Rs. Instead of using a detailed channel

model as in previous studies [10, 11, 12, 13], we use a simple point-source descrip-

tion which reads

Jrelease = νr

∑
i,j

δ (−→x −−→x i) δ
(
t − tji

)
(III.2)

where −→x i is the position of a cluster site, and tji gives the time of the jth puff

at site −→x i. (see also ref. [14]). The cluster sites are located on a square grid

with a grid spacing of d =6 µm. During each puff a constant amount of Ca2+
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is released instantaneously. Estimated from experiments[2], the amount is chosen

here as νr = 70 µM/µm2.

Stochasticity is built in the model via the description of the “firing” times

tji . To this end, we associate with each cluster site a stochastic controlling vari-

able θ and generate a puff at that site when the value of this variable exceeds a

threshold, θth. The fact that the firing is controlled by Ca2+ (the well-known CICR

mechanism [5]), is incorporated by making this threshold a function of the Ca2+

concentration. In general we expect this dependence to be sigmoidal, correspond-

ing to a high, baseline threshold at low concentration dropping to a low threshold

at high concentration. Here we take the simplest caricature,

θth = θth,0 for Ca2+ < Ca2+
th

θth = −∞ for Ca2+ ≥ Ca2+
th (III.3)

In other words, for Ca2+ levels exceeding Ca2+
th the threshold becomes infinitely

low and the cluster will fire with probability 1, which will be called a triggered

puff. For Ca2+ levels below Ca2+
th the cluster will only release Ca2+ when θ exceeds

θth,0, which will be called a spontaneous puff. To incorporate a refractory period

we specify that after a threshold crossing θ is reset to 0 where it remains for a fixed

period of time. The equation for θ reads:

dθ = −Γθdt + σdW (III.4)

where W is a standard Wiener process and where the positive Γ ensures a stochastic

process centered around 0. In the following, we have fixed θth,0 = 1.05, Γ = 1 s−1,

and σ = 0.2 s−1/2. The refractory period is set to 7s, following the minimum

period seen in Parker’s data[4]. We will vary the Ca2+ threshold to mimic the

effect of varying IP3 in the experiments.

The second term in our equation describes the uptake of the cytosolic

Ca2+ into the ER via the SERCA pumps. We assume that the pumps are uniformly

distributed on the ER membrane and that the uptake can be described by

Juptake = ru[Ca2+] (III.5)
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As we will discuss below, the exact form of the pumping rate ru might play a

determining role in the distribution of inter-wave intervals. We will assume here

that ru obeys a first order reaction

τu
∂ru

∂t
= νu[Ca2+] − ([Ca2+]2 + K2

u

)
ru (III.6)

The parameter τu controls the time scale of the pump kinetics and we will con-

sider two cases. The first one, customarily used in modeling studies and which

we will call ultra-fast SERCA kinetics, is the limit of large τu. In this case,

ru reaches equilibrium very quickly and Juptake can be described by Juptake =

νu[Ca2+]2/([Ca2+]2 + K2
u). This Hill function form of Juptake has been seen ex-

perimentally and we have chosen the values of the parameters to be consistent

with measured data [16, 15, 17] and theoretical models [18, 7]: νu = 0.5 µM/s,

and Ku = 0.31 µM . The second case investigated here corresponds to taking a

finite value of τu. In this case, we can no longer use the steady state solution for

ru, which now has to be solved explicitly through Eq. III.6. We will call this case

slow SERCA kinetics and we have chosen τu = 1.25s.

The last term in our equation describes the diffusion of free Ca2+. In

reality, most of the cytosolic calcium is bound by calcium buffer proteins. Gener-

ally, the buffers are present in large concentrations and have fast binding kinetics

relative to the time scale of global calcium waves. Therefore, we assume that

the buffers are always in equilibrium with free Ca2+. This assumption can be

shown to result in a simple renormalization of the diffusion constant which we

take D = 25 µm2/s, a value that falls within the experimentally observed range

[19].

III.C Results

Ultra-fast SERCA kinetics We start by showing in Fig. III.1 several typical

snapshots of the Ca2+ concentration field as simulated by the model with ultra-

fast SERCA kinetics. These snapshots are qualitatively similar to those using
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slow SERCA kinetics (data not shown). The Ca2+ concentration is shown on a

gray scale with white corresponding to high and black corresponding to low Ca2+

concentrations. Initially there is no activity in the entire region, as we start our

simulation with all θ’s set to zero and with a uniform zero Ca2+ concentration

(Fig. III.1a). Gradually, some stochastic puffs appear, as shown by the small

white circles in Fig. III.1b. These puffs can then trigger neighboring cluster sites

to open (right side in Fig. III.1c), which releases more Ca2+. This, in turn, will

trigger more neighboring sites to open (Fig. III.1d) and a global calcium wave is

initiated (Fig. III.1e,f ). This wave was found to propagate with a wave speed of

approximately 15 µm/s, which falls into the measured velocity region. [20, 21].

After the wave has swept through the entire computational domain (Fig. III.1g),

almost all the puff sites have been triggered and thereby entered the refractory

period (Fig. III.1h). During this refractory period, no puffs are generated while

Ca2+ is continuously pumped back into ER by the SERCA pumps. After the

refractory period, a new cycle can begin.

Fig. III.2 shows a full simulation run for ultra-fast SERCA kinetics. The

calcium concentration shown in Fig. III.2A is an average over the whole computa-

tional domain. Unlike the experiments, it is obviously very irregular. In Fig. III.3

we show the mean of the inter-wave intervals, along with its standard deviation,

as a function of [Ca2+]th. Each simulation was run for a long enough time so that

at least 100 global waves were counted. As in the experiments, the mean increases

from 10 s, close to the refractory period, to 100 s as the Ca2+ threshold, which

is inversely related to the IP3 concentration, is increased. As seen, the standard

deviation is roughly equal to the mean of the inter-wave interval plus the refrac-

tory period, which is much larger than the one observed in the experiments. This

indicates that the global waves are uncoupled and can be described by a Poisson

process (supplemented by a refractory period). This is further illustrated by Fig.

III.4 where we plot the distribution of inter-wave intervals for the simulation shown

in Fig. III.2. As demonstrated by the solid line, which is obtained through a two
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parameter fit A exp(−(T − 7)/(T0 − 7), the distribution is well described by an

exponential, a hallmark of the Poisson process.

As mentioned above, our basic hypothesis is that the slow rise in back-

ground Ca2+ is important in limiting the variance. Our model so far is consistent

with this claim which is shown in Fig. III.2B, where we plot the background

Ca2+ concentration as a function of wave phase between two global waves. The

background concentration was measured by averaging the concentration over the

whole simulated region and over 250 different inter-wave intervals. Contrary to

the experiments, the simulations show no discernible rise in the background Ca2+

concentration. It is therefore not surprising that the global waves are completely

Poissonian. Finally, for completeness we show in Fig. III.2C the corresponding

puff rate, defined as the average number of puffs per second. The puff rate fol-

lowing a global wave increases during the first 1/5 wave cycle and then reaches a

steady state level until another global wave occurs.

Let us now address why the ultra-fast kinetics fails to describe the ex-

perimental findings. For ultra-fast kinetics, the Ca2+ released in a puff will be

pumped backed into the ER very quickly. This is illustrated in Fig. III.5A where

we have plotted as a dashed line the Ca2+ concentration as a function of time at

the release site for the case of ultra-fast kinetics. The Ca2+ concentration reaches

an almost constant level very quickly after the release. Thus, unless the pump rate

is very low, the Ca2+ is prevented from diffusing far from the release site (see Fig.

III.5B) and the global background Ca2+ will not exhibit a slow increase over time.

Consequently, the puff sites will always fire independently and the probability for

a global event remains constant over time.

One obvious way to prevent the Ca2+ from being pumped back into the

ER is to reduce the pump rate via the reduction of νu. However, reducing this

rate also reduces the ability of the pumps to reduce the Ca2+ concentration after

a global event. We found, through extensive numerical experiments, that reducing

the value of νu results in Ca2+ concentration that are above or very close to the
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Ca2+ threshold after a global event. Thus, this reduction was always accompanied

by a significant decrease in the inter-wave interval. One could not get long inter-

wave intervals together with weak pumping. Thus, a new mechanism is needed.

Slow SERCA kinetics A possible mechanism that will permit large

inter-wave intervals coupled with background Ca2+ concentrations that accumu-

late slowly between global events is the inclusion of slow SERCA kinetics. The

slow kinetics ensures that after a release event, the pump activity is initially not

very high and the released Ca2+ can diffuse away from the cluster site. This leads

to a slow build-up of background Ca2+, which reduces the threshold for firing and

which leads to global waves with a large mean and a small standard deviation. On

the other hand, by choosing the time scale of the kinetics to be smaller than the re-

fractory period, the pumps are still able to efficiently bring the Ca2+ concentration

to small levels after a global event.

To verify this qualitative picture, we have performed a series of numerical

simulations. Fig. III.6A shows a sample simulation of slow SERCA kinetics with

roughly the same mean inter-wave interval as in Fig. III.2. But in this simulation,

global waves are much more regular compared to the case of ultra fast kinetics, and

each global wave is indeed preceded by a slow background increase. Furthermore, in

Fig. III.7 we show the mean of the inter-wave intervals and its standard deviation

as a function of [Ca2+]th. As in the case of ultra-fast kinetics, the mean inter-wave

intervals ranges from 10 s to 90 s but now the standard deviation is much smaller

and comparable to the experimental one. In Fig. III.8 we show the distribution of

inter-wave intervals based on 172 global events. The inter-wave interval is clearly

not exponentially distributed and thus the global wave generation can no longer

be described by a Poisson process.

Our hypothesis claims that the probability for the occurrence of a global

event depends on the background Ca2+ concentration. In Fig. III.6B we plot

the background Ca2+ concentration, again measured by averaging [Ca2+] over the

whole simulated region and over 172 global events. As in the experiment, the
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background Ca2+ concentration rises slowly by about 0.01µ M between two global

events. This cumulative increase of Ca2+ should lead to an increased wave nucle-

ation probability. It is important to note, though, that, as in the experiments the

simulated puff rate (shown in Fig. III.6C) does not change significantly during the

latter parts of the wave cycle. This is because most of the puffs are spontaneous

and independent of each other. However, during a nucleation process, all the in-

volved puffs are correlated via the Ca2+ concentration. Therefore, the distribution

of the ”triggered puffs” should be a proper measure of the effect of the background

Ca2+ level. In Fig. III.9 we show the distribution of triggered events for both cases.

The distribution shown here is confined by the distribution of global waves because

we cannot measure the appearance times of triggered puffs which are longer than

the intervals of global waves. The distribution for ultra-fast SERCA kinetics shows

that nucleation processes are likely to occur during both the early and late stages

of an interwave interval. On the contrary, Fig. III.9B demonstrates that the nu-

cleation probability for slow SERCA kinetics is an increasing function of time and

is vanishingly small immediately following a global event.

To further elucidate the contribution of slow SERCA kinetics to the back-

ground Ca2+ increase, we have plotted in Fig. III.5A as a solid line the Ca2+

concentration as a function of time at the release site for the case of slow kinetics.

Contrary to the case of ultra-fast kinetics (dashed line), the Ca2+ concentration at

the release site decays slowly. In Fig. III.5B we plot the Ca2+ concentration as a

function of time at the cluster site that neighbors a site from which Ca2+ is released

at t = 0 s. As expected, slow SERCA kinetics (solid line) results in a much higher

Ca2+ concentration in the cytoplasm during a puff than does ultra-fast kinetics

(dashed line).
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III.D Discussion

Our results are two-fold. First, we show that a new mechanism is needed

to account for the slow rise in global Ca2+ during the inter-wave period. We

propose that a simple possibility is afforded by relaxing the usual assumption of

instantaneous SERCA pump activation. The detailed kinetics of the pumps have

been measured for both SERCA1 [22, 23] and for SERCA3 [24]. An estimate

based on kinetic parameters of SERCA1 shows that the typical time scale for

the pump to reach a new equilibrium working state upon a rapid change in the

cytosolic Ca2+ concentration is about 0.1 s, which is much smaller than we postu-

lated in our model. However, the major isoform of SERCA in Xenopus oocytes is

SERCA2b, which is proving to be very different from the other isoforms due to its

higher sensitivity to calcium and slower turnover rate [16, 25]. Moreover, a very

recent study on the kinetics of SERCA2b shows that some of the reaction steps of

SERCA2b are much slower than their counterparts in SERCA1 and SERCA3 [26].

Although more work is needed, the current experimental data strongly supports

the possibility of slow pump kinetics.

The second result concerns the necessity and sufficiency of the slow Ca2+

rise in limiting the variance of the inter-wave interval. The sufficiency is clear, but

the question if whether this is the only possible mechanism is more complicated.

After all, this necessity has been shown in a model which is rather simple and in

particular ignores the detailed biochemistry involved in the channel dynamics. We

have verified that relaxing some of the simplifying assumptions in our model (such

as the all-or-none nature of the puff) do not alter any of our conclusions, but it

is hard to check all possible modifications. In the work of Falcke [8] who studied

global oscillations using the deYoung-Keizer kinetics [11], there is some limitation

in the variance as compared to the mean due to what appears to be an effective

increase in the refractory period as IP3 is lowered. His simulations do not show the

slow background rise and therefore the interval distribution presumably remains
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exponential after the refractory period. It should therefore be straightforward in

principle to distinguish the single-puff biochemical effects as seen in his work from

the inter-puff coordination effects seen in our model.

There are of course issues that need to be addressed in future work with

our model. Foremost among these is the role of the third dimension, i.e. the fact

that Ca2+ can diffuse away from the ER membrane. This could change somewhat

the nature of the global waves and needs to be carefully studied. Additionally, one

can consider the effects of slow buffers as that can have a large effect on coupling

between puff sites (see [9]). Finally, one can imagine applying our framework to

cells other than the Xenopus oocyte, including hepatocytes in which IP3 dynamics

may play a more critical role in the oscillations [27].

Our model suggests several new directions for experiments. First, it is

clear that the most important diagnostic of the global wave nucleation mecha-

nism is the interval distribution function. Different models lead to very different

distributions, which offers a way to examine their validity in experiments. Next,

we predict that altering SERCA kinetics either pharmacologically or genetically

would lead to changes in global oscillation behavior - faster pumps mean more

randomness in the oscillations and less Ca2+ accumulation. Finally, measuring

the spatial correlations among puff sites (our notion of the ”triggered” as opposed

to ”spontaneous” puff) should reveal how global waves are organized from their

fundamental constituents.
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Figure III.1: Snapshots of calcium puffs and a global calcium wave simulated by
the model with ultra-fast SERCA kinetics within a 150×150 µm region. After
many stochastic puffs, a global wave is initiated from the right side of the region
and spreads over the whole region in about 10 seconds.
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Figure III.2: Cytosolic calcium concentration exhibits irregular global oscillations
for the case of ultra-fast SERCA kinetics with [Ca2+]th = 0.1µM . A: a trace of
[Ca2+] for the first 1000 s. B: cytosolic calcium level averaged over 250 interwave
intervals as a function of a rescaled wave phase beginning immediately after a global
wave. C: corresponding averaged puff frequency as a function of wave phase.
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Figure III.3: The mean and standard deviation of inter-wave intervals as a function
of [Ca2+]th for the model with ultra-fast SERCA kinetics.
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Figure III.4: The distribution of inter-wave intervals for the ultra-fast SERCA
kinetics case and [Ca2+]th = 0.1µM . The mean inter-wave interval for this distri-
bution is 65.3s while the standard deviation is 53.2s. It fits well to an exponential
distribution A exp(−(T −7)/(T0−7)). The value of the fitting parameters are A =
and T0 = 67.9s.
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Figure III.5: A: The [Ca2+] released by a puff decreases with time as SERCA
works. When SERCA kinetics is slow, less [Ca2+] are pumped back into ER.
B: The change of cytosolic calcium level at a puff site after a puff happens at a
neighboring site. The peak [Ca2+] is larger when SERCA kinetics is slow.
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Figure III.6: Cytosolic calcium concentration exhibits periodical global oscillation
in the case of slow SERCA kinetics with [Ca2+]th = 0.12µM . A: a trace of [Ca2+]
for the first 1000 s. B: cytosolic calcium level averaged over 172 interwave intervals
as a function of a rescaled wave phase beginning immediately following a global
wave. C: corresponding averaged puff frequency as a function of wave phase.



45

Figure III.7: The mean and standard deviation of inter-wave intervals as a function
of [Ca2+]th for the model with slow SERCA kinetics.
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Figure III.8: The distribution of inter-wave intervals for the slow SERCA kinetics
case and [Ca2+]th = 0.12µM . The mean inter-wave interval for this distribution is
66.8s while the standard deviation is 24.7s.
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Figure III.9: The distribution of triggered puffs for ultra-fast SERCA kinetics with
[Ca2+]th = 0.1 µM (A) and slow SERCA kinetics with [Ca2+]th = 0.12 µM (B). In
A, the distribution was obtained by examining 149 global waves, containing 251
puffs, while in B, the distribution was found by simulating 172 global waves with
172 puffs.
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IV

Excitation-contraction Coupling

Gain and Cooperative Gating of

Cardiac RyR

Congestive heart failure (HF) is a condition affecting more than two mil-

lion people in the USA, characterized by reduced contractility of the heart muscle

[1, 2, 3]. Many of these patients will die directly from this contractile dysfunction,

associated with a reduction of calcium transients elicited in response to electrical

stimulation; others will die from ventricular arrhythmias many of which themselves

appear related to this calcium handling malfunction [4]. The calcium transient

reduction in turn appears to be primarily due to a decrease in the amount of

releasable Ca2+ in the SR [5]. Many factors can contribute to this reduction, in-

cluding lowered SERCA pump activity, smaller influx through the L-type channel,

anomalous activity of the Na-Ca exchanger and, of concern here, increased SR leak

through the RyR array. The relative importance of these components continues to

be debated [3, 6, 7].

In this study, we focus on the role of RyR subunit cooperativity as it af-

fects RyR gating and hence diastolic SR leak. Initial evidence for this cooperativity

came from lipid bilayer experiments in which the concentration of FK506-binding

51
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protein (FKBP) was controlled [8, 9]. The RyR, a homotetramer comprised of four

monomers that can each bind one FKBP, was found to exhibit subconductance

states in the absence of FKBP. These subconductance states are characterized by

fractional openings of the receptor and the current through these fractional open-

ings were, interestingly, either 1/4, 1/2 or 3/4 of the current of a fully opened

channel. The clear implication of this in vitro data was that FKBP binding in-

duced a coupling between the otherwise independent opening and closing dynamics

of the individual subunits.

Data from isolated myocyte studies also shows the importance of FKBP

in RyR functioning. However, these experiments provide seemingly contradictory

results: sequestering of FKBP in rats [10] and mice [11] was found to increase

E-C coupling gain while in rabbits it resulted in a decreased E-C coupling gain

[12]. In addition, overexpression of FKBP in rabbits was reported to increase the

Ca2+ transient and contractility [13, 14], while overexpression in rats decreased the

spontaneous spark frequency while increasing the Ca2+ transient [15].

To model the role of FKBP in RyR gating, we introduce an allosteric in-

teraction between the RyR subunits whose strength is modulated by FKBP bind-

ing. This interaction changes the transition rates in a Markov process approach

to RyR gating. We find that the E-C coupling gain exhibits a clear maximum

for a certain optimal level of cooperativity (i.e. an optimal value of FKBP bind-

ing). In addition, we find that an increase in cooperativity leads to a decrease in

the spontaneous spark frequency. These results are then critically compared to

existing experimental data. Furthermore, our model can be compared to detailed

information regarding the effects of adrenergic stimulation, based on the fact that

stimulation leads to activation of cAMP-dependent protein kinase A (PKA) which

then lowers FKBP binding via RyR phosphorylation [16, 17].

It is through the action of PKA that HF is hypothesized to lead to in-

creased SR leak. Specifically, a chronic hyperadrenergic state during HF leads to

elevated levels of PKA and consequently the RyR becomes hyperphosphorylated
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[18, 19]. This leads to a persistent dissociation of FKBP and presumably a reduced

SR content [19, 20, 21]. Our results lend support to this proposed mechanism, as

we show that a reduction of cooperativity as would be caused by FKBP disassoci-

ation would indeed give rise to a large RyR leak and a concomitantly reduced SR

content. While one obviously needs to use a more comprehensive model to account

for all the changes in calcium handling one would expect under HF conditions, the

results to date do show that this idea is quantitatively sensible.

We note in passing a final set of experiments which links FKBP directly

to cardiac arrhythmias: FKBP deficient mice were found to consistently exhibit

exercise-induced ventricular arrhythmias and sudden cardiac death [22], most likely

caused by delayed after depolarization resulting from Ca2+ mishandling. Moreover,

it was shown that restoring the binding of FKBP through pharmaceutical interven-

tion was able to protect these mice from ventricular arrhythmias [23] Although it

remains extremely challenging to relate subcellular-scale physiology with organism

scale response, we view this latest work as an indication that properly modeling

the effects of FKBP is a critical issue that is timely to address.

IV.A Materials and Methods

IV.A.1 Intracellular Calcium Dynamics

The calcium dynamics in the myocyte is locally controlled through the

tight coupling between the L-type calcium channels and the RyR cluster. In our

model, the calcium concentration in the dyadic space, [Ca2+]ds, is described as:

d[Ca2+]ds

dt
= JRyR + Jdhpr + Jbuf − [Ca2+]ds − [Ca2+]cyto

τefflux
(IV.1)

Here, Jbuf describes the binding of calcium to buffers that are present in the dyadic

space [24]:

JBuf = −
∑

j

kj,on[Ca2+]ds([Bj ] − [CaBj ]) − kj,off [CaBj ] (IV.2)
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The sum is over 3 calcium buffers B (calmodulin, SR membrane buffers and sar-

colemmal membrane buffers) of constant concentration. For a full description in-

cluding parameter settings we refer to the Supplemental Materials. Furthermore,

JRyR is the flux through the RyRs, Jdhpr is the L-type channel flux and the last

term represents the flow of Ca2+ ions from the dyadic space to the cytoplasm.

The equation for the Ca2+ concentration in the junctional SR (jSR),

[Ca2+]jSR, includes the release of Ca2+ through the RyR receptors and the refilling

from the network SR (nSR), where the Ca2+ concentration, [Ca2+]nSR, is taken as

constant:

d[Ca2+]jSR

dt
= βjSR

(
− Vds

VjSR
JRyR +

[Ca2+]nSR − [Ca2+]jSR

τrefill

)
(IV.3)

where the parameter values are listed in Table IV.1. In this equation, we have

assumed rapid equilibrium between calcium and calsequestrin in the junctional

SR, leading to [25]:

βjSR =

(
1 +

[BCSQN ]KCSQN

(KCSQN + [Ca2+]ds)2

)−1

(IV.4)

In most of the simulation results reported here we assumed that [Ca2+]cyto

was constant and equal to its resting cytosolic calcium concentration [Ca2+]i. Fur-

thermore, the the nSR calcium concentration [Ca2+]nSR was also taken constant.

These assumptions lead to a more computationally tractable model that avoids the

simulation of the cytosolic calcium machinery including SERCA pumps and the

sodium-calcium exchanger. Furthermore, since [Ca2+]nSR is assumed to be con-

stant, it is sufficient to simulate a single calcium release unit (see E). However, we

have also performed simulations using a “full model” in which these assumptions

are relaxed. Details of this model can be found in the Supplemental Materials

sections. The results of these simulations (shown in Fig. IV.4) demonstrate that

the full model produces qualitatively identical results to the simple model.
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Table IV.1: Cell Geometry Parameters

Parameter Description Value Reference

Acap Cell capacitance 153.4pF [26]

Vcyto Cytoplasm volume 25.84pL [26]

VjSR Junctional SR volume 0.16pL [26]

VnSR Network SR volume 2.1pL [26]

Vds Dyadic space volume 1.2×10−3pL [26]

[Ca2+]o Extracellular calcium concentration 2.0mM [26]

[Ca2+]i Cytosolic calcium concentration 0.1µM [24]

[Ca2+]nSR Network SR calcium concentration 1.0mM [24]

τefflux Dyadic space efflux time 7.0×10−7s [24]

τrefill Junctional SR refilling time 0.003s [25]

IV.A.2 The L-type calcium channel

To model the L-type channel, we adopt the formulation from [26], along

with its parameters. The channel is described via a Markov model consisting of 11

voltage and calcium-dependent states along with 2 voltage dependent inactivation

states. The calcium current through a single channel can be written as:

Idhpr = PCa
4V F 2

RT

[Ca2+]dse
2V F/RT − 0.341[Ca2+]o
e2V F/RT − 1

(IV.5)

leading to a total flux through the L-type channel

Jdhpr = −Nopen,dhprIdhpr

2FVds

(IV.6)

where V is the membrane potential, PCa is the channel permeability, [Ca2+]o is

the extracellular calcium concentration and where Nopen,dhpr is the number of open

L-type calcium channels, which is set to be 10 per calcium release unit in our

simulation. For further details we refer to [25, 26].
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IV.A.3 The RyR

As already noted, the RyR is a homotetramer comprised of four monomers

that can each bind one FKBP. Lipid bilayer experiments have shown that RyR

can exhibit 1/4, 1/2 and 3/4 of the total channel conductance when FKBP is ab-

sent (8). In our model we thus assume that each subunit can be activated upon

binding of one Ca2+ ion and is responsible for 1/4 of the maximum current via

a conformational change. To model the gating kinetics of the subunits, we will

employ a simple scheme in which each subunit can be in one of three states: closed

(C), open (O) or inactivated (I) (see Fig. IV.1). Similar gating schemes, but with-

out subunit coupling, were investigated in [27]. To incorporate the FKBP binding

effect, we assume that it can introduce an allosteric energy between neighboring

subunits and that subunits are energetically penalized for being in a different state

than their neighbors. This allosteric energy is introduced via a symmetric energy

matrix with vanishing diagonal terms:

∆E = s ×

⎛
⎜⎜⎜⎝

0 ∆Eco ∆Eci

∆Eco 0 ∆Eoi

∆Eci ∆Eoi 0

⎞
⎟⎟⎟⎠ (IV.7)

The continuous variable s is the key parameter in our model and controls the

coupling strength between subunits. It corresponds indirectly to the amount of

associated FKBP with low values of s corresponding to nearly all FKBP being

dissociated and high values of s corresponding to full FKBP association.

To include this interaction into the RyR gating dynamics, we need to

specify how this interaction energy enters into the rate constants. Here, we simply

follow [27] and let half of the energy contribute to the forward rate constant and

half to the backward rate constant. In other words, the rate constants Kij for the

transition from state i to state j have the form:

Kij = kij exp

(∑ s (∆Eism − ∆Ejsm)

2kT

)
(IV.8)

where the sum is over neighboring subunits and sm is the state of the neighboring
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subunits. The values of matrix elements ∆Eij and the transition rates kij in the

absence of any allosteric interaction used in our simulations are given in Table

IV.2.

Based on experimental results, we take the number of RyRs in our basic

calcium release unit to be 100 [28]. Fast equilibrium of calcium diffusion within

the dyadic space is assumed so that all the RyRs in the same calcium release unit

sense [Ca2+]ds with no difference. The total flux through the RyRs in a calcium

release unit is then proportional to the concentration gradient and the number of

open subunits Nopen,RyR:

JRyR = gRyRNopen,RyR([Ca2+]jSR − [Ca2+]ds) (IV.9)

where gRyR is the conductance of single RyR subunit. See Table IV.2 for parameter

settings.

IV.A.4 The E-C coupling gain

The E-C coupling gain function is defined as:

Gain =
JRyR,max − JRyR,rest

Jdhpr,max

(IV.10)

where JRyR,max and Jdhpr,max are the maximal fluxes through the RyR cluster and

the L-type calcium channels during E-C coupling, and JRyR,rest is the calcium

release through the RyR receptors in the absence of Jdhpr.

IV.A.5 Simulation protocol

The gating of L-type calcium channels and RyRs are simulated as Markov

processes. Thus, at each time step, a random number is generated to help a channel

to decide how its state should change based on the rate equations. The time step

∆t is set to be 10−5s, which is much shorter than all the processes except the

calcium efflux from dyadic space to the cytoplasm. During ∆t, Eq. IV.11 is

integrated analytically under the approximation that Jdhpr, JRyR and JBuf don’t
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Table IV.2: RyR parameters

Parameter Description Value

NRyR Number of RyRs in a CaRU 100

gRyR conductance of single RyR subunit 800/s

kco transition rate from C to O 31.25µM/s

koc Rate constant from O to C 1250.0/s

koi Rate constant from O to I 5.0/s

kio Rate constant from I to O 5.0/s

kic Rate constant from I to C 2.0/s

kci Rate constant from C to I 0.05µM/s

∆Eco interaction energy between C and O 5.0kT

∆Eoi interaction energy between O and I 1.667kT

∆Eci interaction energy between C and I 0

s strength of coupling between subunits adjustable

change during such a short time interval. Eq. IV.12 is simply integrated using

Euler’s method.

All simulations reported here consisted of presenting a sequence of triggers

to the calcium release units. The trigger, given once every second, consisted of

clamping the membrane voltage from a holding voltage of −80 mV to a specified

higher potential (0 mV everywhere, except in Fig. IV.2 where it is varied) for

a duration of 0.1 s. Since each calcium release unit exhibits a response which

varies stochastically from trigger to trigger, this sequence needs to be long enough

to ensure statistically meaningful results that can be compared to the spatially

averaged results in myocyte experiments. In all simulations recorded here, we

used a sequence of 1000 triggers, with the first 50 discarded to eliminate transient

effects.
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In our simple model, in which the nSR calcium concentration is kept

constant, it is sufficient to simulate a single release unit. In the full model, on the

other hand, we simulated 100 calcium release units simultaneously. Each release

unit share a common cytoplasm and nSR, in which the calcium concentration is

treated as a dynamic variable. Further details are furnished in the Supplemental

Materials.

IV.B Results

We start by showing in Fig. IV.2 the gain as a function of the mem-

brane potential for a particular value of s. For different values of s we obtained

qualitatively similar curves (data not shown). The gain is clearly a monotonically

decreasing function of the membrane potential and displays the graded release

found in experiments [29,30,31]. The current through a single L-type channel and

through a RyR, on the other hand, is bell shaped, with a small difference between

their positions. This type of graded release is indicative of the local control theory.

After all, if the RyR would respond only to the ensemble-averaged L-type current

it would be impossible to have a different gain for two identical values of Idhpr.

Instead, the RyR responds to and is triggered by local L-type channels.

We next show in Fig. IV.3 the Ca2+ concentration in the dyadic space

as a function of time for different values of s. As s is increased, the decay rate

becomes larger and the peak Ca2+ concentration increases. After s ∼ 0.4, however,

both the decay time and the rising rate increase and this peak Ca2+ concentration

decreases. This leads to a maximum in peak Ca2+ concentration for a particular

value of the cooperativity parameter s∗ ∼ 0.4.

The gain function also shows a clear maximum as a function of the co-

operativity s (Fig. IV.4A) with the maximum occurring at s = s∗. Here, as in

Fig. IV.4B and C, we have plotted the results from the simple model as a thick

solid line and the results from the full model as a thin dashed line. Further char-
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acterization of the effect of a varying s is illustrated in Fig. IV.4B where we plot

the diastolic jSR content as function of s. The diastolic jSR content was measured

during the second half of the 1 s interval separating the stimuli. This content

increases monotonically until s ∼ s∗, and then reaches the nSR concentration in

the simple model. In the full model, on the other hand, the jSR content depends

on the uptake mechanisms and reaches an equilibrium for larger values of s. The

resting value of the Ca2+ concentration in the dyadic space as a function of s is

plotted in Fig. IV.4C. It is a monotonically decreasing function of s for s < s∗ and

is roughly constant for s > s∗.

Comparing the results from the two models shows that the simple model

already captures the essential qualitative features of the full model. It also shows

a distinct bell shaped gain curve while the jSR content saturates at slightly earlier

values of s. Note that the Ca2+ concentration in the dyadic space in the full model

increases slower when s is decreased due to the partial depletion of the jSR and

the nSR. Finally, the nSR calcium concentration in the full model follows the jSR

calcium concentration for s > s∗ and decreases to values slightly higher than the

jSR calcium concentration for s > s∗ (data not shown). In the remainder of the

chapter, we will focus on the simple model.

The reduced SR content for s < s∗ is caused by an increased leak in the

RyR. This is shown in Fig. IV.5A, where we have plotted the open probability P0

as a function of background Ca2+ for two different values of s. This probability is

calculated analytically and represents the probability that at least one subunit is

open. Reducing the cooperativity leads to a shift in this curve to smaller values of

Ca2+ and thus to an increased probability for opening at low Ca2+ concentration.

The presence of an increased leak is further illustrated in Fig. IV.5B and C where

we plot the distribution of open states within an RyR at a controlled calcium

concentration (the dashed line in Fig. IV.5A). For s = 0 (Fig. IV.5B), the subunits

are completely independent and the distribution shows a significant contribution

from the subconductance states. For high values of s (Fig. IV.5C), the increased
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cooperativity suppresses the subconductance states and the fully closed and fully

open states become dominant.

The effect of the subunit cooperativity and the presence of a leak can

be further characterized by the spontaneous spark frequency. To measure this

frequency, we stimulated the cell every second and measured the number of sparks

0.5 s before each stimulus. The total duration of the numerical experiment was

50 s and to ensure the steady state was reached we discarded the first 40 s. We

defined a spontaneous calcium spark as an event during which 30% or more of

the subunits open. Furthermore, to prevent counting small fluctuations around

this threshold value, we required the activity to decrease below 5% of the subunits

before a new spark could be counted. The measured spark frequency (per calcium

release unit) is shown in Fig. IV.6 and shows that this frequency decreases rapidly

when s approaches s∗. For s > s∗ the measured spontaneous spark frequency was

essentially zero, indicating that an increased cooperativity reduces the probability

for a spontaneous spark and hence for leak. Furthermore, assuming a distance of

2 µm between CRUs along a Z-line, for s slightly smaller than s∗ we obtain spark

rates ( 0.1-0.5 /s/CRU) that are in good agreement with experimentally obtained

values ( 0.1 /s/CRU) [14].

We have also examined the detailed calcium release pattern in the pres-

ence of the L-type channel current and found it was different for s < s∗ and s > s∗.

In Fig. IV.7A we plot the distribution of latency times, defined as the time between

the rising of the test potential and the time when JRyR reaches its maximum. As s

is increased, the average and the variation of the latency times are: 7.9 ms and 8.2

ms respectively for s = 0.3, 7.6 ms and 4.9 ms respectively for s = 0.4 and 13.3 ms

and 8.5 ms respectively for s = 0.5. The mean latency time increases significantly

when s > s∗, and the variation reaches minimum at s = s∗. Furthermore, we

have calculated the total fraction of open RyR channel subunits within a cluster

at the peak Ca2+ concentration, and have plotted its distribution in Fig. IV.7B.

As s is increased, this distribution changes from essentially single-peaked to clearly
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double peaked. In other words, for higher values of s, the probability of opening

becomes smaller and a substantial portion of clusters exhibit a small fraction of

open RyRs. This, combined with the larger variation in latency time, indicates

that the calcium release from different clusters is less synchronized by the triggers

when the cooperativity becomes larger than s∗.

To examine the dependence of the gain on the SR load, we also performed

simulations using a higher nSR Ca2+ concentration and recalculated the gain as a

function of s. The result, for two different values of [Ca2+]nSR, is plotted in Fig.

IV.8 and shows that the qualitative form of the gain curve has not changed. On

the other hand, the peak value of the gain shifts towards lower values of s for

increased SR content. Thus, for a given value of s, the gain function can be either

increasing or decreasing, depending on the value of the SR load.

IV.C Discussion

In this chapter we have examined the effect of cooperativity between RyR

subunits using a theoretical approach. This approach consists of modeling the Ca2+

dynamics within the cell and the dyadic cleft combined with a novel Markovian

approach for the RyR. The RyR Markovian model takes into account the subunit

structure of the RyR and includes a measure of cooperativity s. Using this model,

we calculated the E-C coupling gain as a function of several system parameters.

Our main result is that this gain exhibits a clear maximum for a particular value of

the cooperativity, s = s∗. For larger cooperativity values the resting jSR content

is s insensitive while for smaller values it decreases with decreasing s.

To understand intuitively why the gain curve displays a maximum let us

consider the effects of the subunit cooperativity s on the gain. This gain is roughly

determined by the maximum value of JRyR and is thus given by the product of

the open probability of the RyRs and the gradient of the calcium concentration

between the jSR and the dyadic space (see Eq. IV.9). Increasing s decreases the
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open probability, but it increases the calcium concentration difference between the

jSR and the dyadic space due to the suppression of subconductance states of the

RyR. The competition of these two opposite effects leads to a maximum of gain

at some definite s∗.

Specifically, for s > s∗, recalling that increasing s represents an energy

penalty for a subunit to be in a different state than its neighbors, it is easy to see

that a large s makes it more difficult to have fractional openings. In other words,

the RyR subunits become more likely to open and close collectively and leads to a

smaller effective activation rate due to a higher energy barrier between closed and

open states. This can be seen from Fig.IV.7A which shows that the latency time

increases as s is increased. Thus, the probability that a cluster can be triggered to

open successfully is reduced, which leads to a reduced gain.

For s < s∗, the probability that the RyRs exhibit subconductance states

becomes substantial (Fig. IV.5). This leads to a persistent SR leak during diastole,

defined here as 1/2 s before a stimulus. This causes a decreased SR content (Fig.

IV.4B) and an increased diastolic calcium level in the dyadic space (Fig. IV.4C).

Hence, upon an Idhpr stimulus, the Ca2+ current through the RyRs is smaller,

leading to a decreased E-C coupling gain.

How do these results relate to experimental findings? As discussed above,

our cooperativity parameter s correlates with the amount of FKBP associated with

the RyR complexes in the cell. The effect of FKBP on in vivo E-C coupling has

been investigated in three species: rat, mouse and rabbit. For the latter, FKBP

sequestering reduced E-C coupling [12] while FKBP overexpression increased E-

C coupling [13,14]. In rats and mice, on the other hand, FKBP sequestering

increased E-C coupling [10,11,12], even though overexpression appears to increase

E-C coupling [15]. These results appear to be contradictory, although there are of

course caveats about whether other components of the calcium-handling system

are affected by the different protocols. If we for the moment ignore the data from

FKBP overexpression in rats, we can combine all the other experimental data
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with the results of our theoretical modeling and provide the following hypothesis:

normal levels of cooperativity in rats and mice are higher than the optimal level

while normal levels of cooperativity in rabbits are lower than the optimal level.

One way to achieve this difference is schematically drawn in Fig. IV.9a where the

circle represents the postulated operating point for rats and mice and the square

represents rabbits. Another possibility is of course that the subunit cooperativity

across species is preserved while other factors determining the gain varies. Then,

as is schematically shown in Fig. IV.9b, the rabbit gain curve has shifted in its

entirety towards higher values of s compared to the gain curve for the rat and

mouse (or vice versa) while the value of the cooperativity sop is the same for both

species. In both cases, the operating value of s for the rat and mouse is larger than

s∗ which agrees with experimental data showing that the SR content is maintained

during FKBP dissociation [12]. The fact that the SR content decreases in rabbits

after dissociation of FKBP and increases after FKBP overexpression [12,13] serves

as a self-consistency check (see Fig. IV.4).

On the other hand, if the overexpression of FKBP in rats does indeed

increase the E-C coupling gain [15], we have to modify the above hypothesis. In

this case, the experimental data is consistent with our modeling results if we assume

that both rats/mice and rabbits have a normal level of cooperativity that is lower

than the optimal level. Of course, this still leaves open the question why FK506

decreases the gain in rats but perhaps, as pointed out in [15], it also acts on other

components of the E-C coupling machinery. In summary, it is clear that rabbits

lie to the left of the peak and the situation for rats/mice needs to be clarified

experimentally.

Another comparison comes from the distribution of the spark latency

times. Two groups [32,33] performed experiments showing that the calcium release

is more synchronized under β-AR stimulation. Although Song et al hypothesized

that the observed simultaneous release of calcium is mainly an effect of increased

L-type channel current, we show in Fig. IV.7 that a decreased cooperativity inside
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RyR can also cause a larger probability for a cluster to respond to the trigger.

Moreover, our model predicts that the mean latency time increases as s increases,

which is consistent with experiments [32].

A final comparison with in vivo experiments can be made when we analyze

the frequency of spontaneous sparks (Fig. IV.6). Since increasing s corresponds

to increasing the energy barrier, we find that the spark frequency decreases as s

increases. This is consistent with experimental findings which show a decreased

spontaneous spark frequency in rabbits with overexpressed FKBP [14]. In fact,

it is also consistent with the observed decrease in spontaneous spark frequency in

FKBP-overexpressing rats [15], independent of the aforementioned uncertainty as

to the normal level of cooperativity. In addition, the model shows that for s < s∗,

the total released Ca2+ in a cluster is smaller than for s ∼ s∗ due to a decreased jSR

content. Thus, for s < s∗ a locally triggered spark is less likely to initiate a release

event in the neighboring cluster and a propagating wave is more likely to abort.

This scenario seems consistent with experimental data in FKBP -overexpressed

rabbits. Of course, to investigate wave propagation in our model requires us to

include spatial coupling between cluster and t-tubules. Once incorporated, this

model would then be able to investigate the stochastic process of wave abortion,

using an similar approach to that employed in [34] for the case of Xenopus oocytes.

Our major goal was to produce a model which could be compared with

data from single myocyte studies as well as from bilayer experiments. The bilayer

experiments suggest that in the presence of FKBP the subconductance states are

nearly completely suppressed, while in the absence of FKBP they are prominently

present. By assuming that each RyR subunit can contribute 1/4 of the total con-

ductance independently and that they must act cooperatively with FKBP binding,

our model produces very similar distributions of subconductance states (Fig. IV.5)

as shown in those experiments.

Our model is not able to investigate the complete ”fight-or-flight” re-

sponse, during which the β−adrenergic pathway is stimulated and PKA activation
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levels are elevated. This signaling pathway not only targets the RyR but also

increases the influx through the L-type channel and the Ca2+ uptake through the

SERCA pumps, mechanisms that are not included in our study. Nevertheless, if

our hypothesis shown in Fig. IV.9 is correct, we can postulate that the relative

importance of the components involved in the fight-or-flight response should be

species dependent. After all, independent of the species, the net result of the

fight-or-flight response is an increased E-C coupling gain and cardiac output [35].

If our postulated schematic gain function in Fig. IV.9 is correct, β−adrenergic

stimulation in rabbits will reduce the E-C coupling gain if only considering the

dissociation of FKBP from RyR. Thus, one of the other targets of β−adrenergic

pathway needs to compensate the reduction of gain associated with the loss in co-

operativity. In mice and rats, if we assume that FK-506 acts primarily on RyRs to

decrease the cooperativity and increase the E-C coupling gain, this compensation

is not necessary. Of course, if both rabbits and rats operate with normal levels of

s below the maximal value, rats also need a compensatory mechanism.

The effect of FKBP dissociation on human congestive heart failure, and

in particular the role of PKA hyperphosphorylation, is a controversial topic. Sev-

eral groups have found that the FKBP association level is significantly decreased

by PKA hyperphosphorylation in HF myocytes [19,21]. Furthermore, experiments

have shown that drugs can prevent the onset of experimental heart failure by

reversing PKA hyperphosphorylation and preventing the decrease of RyR-bound

FKBP [21]. Other groups, however, have reported that PKA hyperphosphory-

lation of RyR does not dissociate FKBP from RyR and can not influence RyR

function [36,37,38]. Our model does not take into account the actual mechanism

whereby the cooperativity is changed and, hence, can not shed light on the hyper-

phosphorylation controversy. On the other hand, our model shows that a scenario

in which partial association of FKBP (i.e. a slightly lower value of s) results in

a increased E-C coupling and severe dissociation of FKBP (i.e. a very low value

of s) leads to events typically associated with heart failure (reduced SR content,
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decreased ECC gain and increased diastolic leak) is plausible.

Marks et al found that the destablization of RyR can also lead to exer-

cise induced ventricular arrhythmia, resulting in sudden cardiac death [39]. They

compared FKBP12.6 deficient (FKBP12.6−/−) mouse myocytes and the normal

mouse myocytes, and delayed after-depolarizations (DADs) appear consistently in

FKBP12.6−/− mice under exercise. DAD is a spontaneous action potential dur-

ing diastolic phase and it’s a precaution of ventricular arrhythmia. In this case,

cytosolic calcium concentration is greatly elevated by the persistent leak through

RyR and the overloaded SR Ca2+ content. This increases the calcium inward cur-

rent (majorly sodium calcium exchanger current), and so increases the membrane

potential to the threshold of inward fast sodium current, leading to the DAD. This

is an interesting phenomenon that we can model in the next step. The voltage

clamp condition will be replaced by the interacting dynamics of ion channel cur-

rents and membrane potential, and all the major currents including Ca2+,Na+, K+

and Cl− needs to be simulated carefully. Such a full model has been implemented.

However, the simulations show decreasing s greatly prolongs the action potential

because RyR can’t close and nSR Ca2+ is forcibly maintained at high level. But the

inward current during diastole, although increased, is not enough to trigger DAD.

One possible solution is to add some stronger ”fateful” Ca-activation-dependent

inactivation mechanism to RyR gating, so calcium sparks can terminate while the

frequency of spontaneous sparks is still high for low s. The effect of diffusion may

also be very important, because under this pathological condition the background

[Ca2+] is high and the opening threshold of RyR is low. A spontaneous spark

can probably activate neighboring calcium release units, and the leak is magnified

through such a calcium wave. Such a spatially extended model might be necessary

to trigger DAD. Overall our work has provided a platform to study the relation be-

tween RyR destablization and exercise-linked ventricular arrhythmia. By adding

more realistic mechanisms to the current model, it has the potential to simulate

the DAD phenomenon observed in experiments.
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By now we have only modeled the effect of FKBP on the coupling between

the RyR subunits. There is experimental evidence, however, that FKBP can also

couple neighboring receptors [40,41]. Several groups have addressed the effect of

receptor-receptor coupling on Ca2+ dynamics. A recent modeling study, which

implements coupling between neighboring RyRs in much the same way as we do

here, found that introducing a cooperativity between receptors can make certain

unstable RyR gating schemes stable [27]. Another modeling study showed that a

lack of cooperativity between receptors can lead to prolonged calcium sparks [24].

In our model, we also observed an increase in the duration of these sparks when

we lowered s (data not shown). In fact, we believe that the inter-receptor coupling

discussed in [24,27] and the intra-receptor coupling discussed in this chapter may

lead to very similar effects. For example, we predict that the gain curve will exhibit

a similar qualitative form when varying the inter-receptor coupling constant. The

relative importance of intra- vs. inter-receptor coupling remains to be resolved.

Finally, there is no way to date to establish a quantitative link between

the concentration of FKBP and the value of s. Microscopically, s can be calibrated

to the change of Ca-RyR binding energy for a specific level of bound FKBP. This

would require direct measurements of the gating mechanisms while varying the

FKBP concentration.
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Figure IV.1: Left: A schematic picture of the RyR used in our model. Each
receptor consists of four subunits which only interact with its nearest neighbor
(i.e., subunit one interacts with subunits 2 and 4 but not with subunit 3). Right:
The 3-state model for each RyR subunit.
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Figure IV.2: Top: The E-C coupling gain as a function of the membrane voltage.
Bottom: The current through the L-type channel and the RyR, both normalized
to their peak values, as a function of the membrane voltage. s is set to be 0.5 in
this simulation.
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Figure IV.3: Calcium release through the RyR cluster in the dyadic space for
different values of s following a 0.1 s pulse of the membrane potential started at
t=0 s. The release reaches its maximum at s = 0.4.
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Figure IV.4: Dependence of the gain (A), the resting jSR calcium level (B) and
the diastolic calcium concentration in the dyadic cleft (C) on the coupling strength
(s). The thick lines show results from from the simple model and the thin lines
display results from the full model (see appendix).
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Figure IV.5: (A): The probability of opening as a function of the background Ca2+

concentration for two different values of s. (B,C): The probability of opening for
each of the 5 possible RyR configurations for s = 0 (B) and s = 1 (C). The
background Ca2+ concentration is held fixed at 100µM (shown as dashed line in
(A)).
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Figure IV.6: The spontaneous spark frequency as a function of the cooperativity
s. There is very severe leak when s is small, and almost no sparks when s > s∗.
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Figure IV.7: A The distributions of the latency time of the release triggered by
the L-type channel current with varied level of cooperativity. B The corresponding
distributions of the peak opening fraction during the release triggered by the L-type
channel current.
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Figure IV.8: The gain as a function of the cooperativity for two different, fixed
values of the SR content.
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Figure IV.9: Possible schematic E-C coupling gain as a function of the FKBP
association. (A): The gain function is the same for different species while the
cooperativity level varies. The postulated operating point for rabbits is marked by
a square while the operating point for mice and rats is marked by a circle. (B):
The cooperativity is the same across species while the gain function is different.
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IV.E Appendix: Description of the Full Model

In the main text we used a full model to validate the simple model in

Figure 4. In this section, we describe in detail the construction of this full model,

their corresponding equations, and parameter settings.

In this full model, we simulate Nsim calcium release units(CRU) simulta-

neously. Each CRU has its own L-type channels, RyRs and corresponding junc-

tional SR. All CRUs are linked by sharing a common cytoplasm and network SR.

The calcium dynamics in these 4 kind of pools are described by the following

equations. Note that the subscript i denotes ith CRU, and Vcyto and VnSR are the

volumes per CRU.

dCa2+
ds,i

dt
= JRyR,i + Jdhpr,i + JBuf,i − Jefflux,i (IV.11)

dCa2+
jSR,i

dt
= βjSR,i(− Vds

VjSR
JRyR,i + Jrefill,i) (IV.12)

dCa2+
cyto

dt
= βcyto(

1

Nsim

∑
i

Vds

Vcyto
Jefflux,i−JSERCA−Jtrpn−AcapCsc

2FVcyto
(ICa,b−2INaCa+Ip(Ca)))

(IV.13)

dCa2+
nSR

dt
= − 1

Nsim

∑
i

VjSR

VnSR
Jrefill,i +

Vcyto

VnSR
JSERCA (IV.14)

All the flux described in the simple model are the same here. The

fast buffer approximation in cytoplasm (calmodulins) and junctional SR (calse-

questrins) are given by:

βcyto =
1

1 + BCMDN KCMDN

(KCMDN+Ca2+
cyto)2

(IV.15)

βjSR,i =
1

1 +
BCSQN KCSQN

(KCSQN+Ca2+
jSR,i)

2

(IV.16)
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All the slow buffer dynamics are simulated according to Eq.IV.17. In

the dyadic space these buffers include calmodulins, SR membrane buffers (BSR)

and sarcolemmal membrane buffers (BSL). In Eq.IV.11 JBuf is the sum of these 3

buffering flux. In cytoplasm they include high-sensitive troponins (HTRPN) and

low-sensitive troponins (LTRPN). In Eq.IV.13 Jtrpn is the sum of these 2 buffering

flux. The total buffer amount Bj , dissociation constant Kj, on-rate kj,on and off-

rate kj,off for each kind of buffer j are given in Table IV.3.

d[CaBj]

dt
= kj,on[Ca]([Bj ] − [CaBj ]) − kj,off [CaBj ] (IV.17)

We adopt the SERCA pump mechanism from a recent model by Shannon

et al with parameters provided in Table IV.4:

JSERCA = Ksr

Vmf(
[Ca2+]cyto

Kmf
)H − Vmr(

[Ca2+
nSR]

Kmr
)H

1 + ( [Ca2+]cyto

Kmf
)H + ( [Ca2+]nSR

Kmr
)H

(IV.18)

The sodium-calcium exchanger reads:

INaCa = kNaCa

e
ηV F
RT [Na+]3i Ca2+

o − e
(η−1)V F

RT [Na+]3oCa2+
cyto

(1 + ksate
(η−1)V F

RT )(K3
m,Na + [Na+]3o)(Km,Ca + Ca2+

o )
(IV.19)

The other two plasma membrane calcium currents are:

Ip(Ca) = Ip(Ca)

Ca2+
cyto

Kp(Ca) + Ca2+
cyto

(IV.20)

ICa,b = GCa,b(V − ECa) (IV.21)

where Nernst potential for calcium ECa reads:

ECa =
RT

2F
ln(

Ca2+
o

Ca2+
cyto

) (IV.22)

150 beats are simulated in each run. The first 50 beats work as a warm-up

to ensure the system reach the steady state, and data are collected from averaging

the following 100 beats. Due to the limit of computation time, we only simulate

100 CRUs (Nsim = 100). But we tested simulations with a larger Nsim and it

shows no significant difference.
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Table IV.3: Buffering Parameters

Parameter Value Reference

[BCMDN ] 50µM Greenstein and Winslow, 2002

KCMDN 2.38µM Greenstein and Winslow, 2002

kCMDN,on 100/µM/s Sobie et al, 2002

[BCSQN ] 13.5mM Greenstein and Winslow, 2002

KCSQN 0.63mM Greenstein and Winslow, 2002

[BBSL] 1124µM Sobie et al, 2002

kBSL,on 115/µM/s Sobie et al, 2002

kBSL,off 1000/s Sobie et al, 2002

[BBSR] 47µM Sobie et al, 2002

kBSR,on 115/µM/s Sobie et al, 2002

kBSR,off 100/s Sobie et al, 2002

[BHTRPN ] 140µM Iyer et al, 2004

kHTRPN,on 20/µM/s Iyer et al, 2004

kHTRPN,off 0.066/s Iyer et al, 2004

[BLTRPN ] 70µM Iyer et al, 2004

kLTRPN,on 40/µM/s Iyer et al, 2004

kLTRPN,off 40/s Iyer et al, 2004

Table IV.4: SERCA Pump Parameters

Parameter Value Reference

Ksr 2.6 (Shannon et al, 2004)

Kmf 0.246µM (Shannon et al, 2004)

Kmr 1700µM (Shannon et al, 2004)

Vmf 286µM/cytosol/s (Shannon et al, 2004)

Vmr 286µM/cytosol/s (Shannon et al, 2004)

H 1.787 (Shannon et al, 2004)
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Table IV.5: Sodium-calcium Exchanger Parameters

Parameter Value Reference

kNaCa 1500µA/µF Greenstein and Winslow, 2002

Km,Na 87.5mM Greenstein and Winslow, 2002

Km,Ca 1.38mM Greenstein and Winslow, 2002

ksat 0.2 Greenstein and Winslow, 2002

η 0.35 Greenstein and Winslow, 2002

[Na+]i 10mM Greenstein and Winslow, 2002

[Na+]o 138mM Greenstein and Winslow, 2002

Ca2+
o 2mM Greenstein and Winslow, 2002

Table IV.6: Membrane Calcium Exchanges, Background Current

Parameter Value Reference

Kp(Ca) 0.5µM Grrenstein and Winslow, 2002

Ip(Ca) 0.05µA/µF Grrenstein and Winslow, 2002

GCa,b 0.254µS/µF Grrenstein and Winslow, 2002
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V

Measuring Intercellular Signals

with Arbitrary Accuracy

The interaction between an external diffusing stimulus and cell receptors

has long been recognized as a stochastic process [1]. At the level of a single receptor,

this process is inherently stochastic, but cells can contain many such receptors

which can reduce the variability in the detected signal by suitable averaging. It

is therefore of interest to characterize the residual noise in this measurement as a

function of interaction kinetics, signal integration time, and receptor number.

In their classic paper on the physics of chemoreception, Berg and Purcell

[2] argued for an irreducible level of noise encountered whenever a cell utilizes

receptors to detect local concentrations of diffusing molecules. Using heuristic

arguments, they proposed that for large receptor number the normalized variance

in the concentration c approaches(
δc

c̄

)2


 1

DT c̄R
(V.1)

Here D is the diffusivity of the molecule with mean concentration c̄, R is

the cell radius and T is the measurement time, implemented by the downstream

signaling circuitry. This result was re-derived by Bialek and Setayeshgar by using a

fluctuation-dissipation approach [3]. This leaves the impression that a cell cannot
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achieve arbitrary accuracy by increasing its receptor number; its only option would

be to increase the measurement time T , which may be an impractical solution for

a dynamically changing environment. We will show by direct stochastic simulation

and by physical reasoning that this conclusion is unwarranted.

V.A Methods

We start by focusing on the most common interaction between a ligand

L and a receptor:

L + R0 � R1 (V.2)

The forward rate k+[L], where [L] represents the ligand concentration,

and backward rate k− determine the transitions between the unoccupied R0 and

occupied R1 states and can be combined to give the dissociation constant Kd ≡ k−
k+

.

To study the stochastic dynamics of this model, we performed numerical

simulations using MCell3, a modeling tool for realistic simulation of cellular sig-

naling in complex three dimensional geometries [4]. MCell uses highly optimized

Monte Carlo algorithms to track the stochastic behavior of discrete molecules in

space and time as they diffuse in user-specified geometries. It can model inter-

actions between diffusing molecules and receptors on cell membranes as well as

molecule-molecule interactions and has been validated extensively [4].

In our simulations, we modeled the cell as a 5 µm radius sphere, rendered

by 100 triangles (Fig. V.E). The surface of the cell was divided into tiny patches

and each patch could hold at most one receptor. The patch density was taken to be

1000/µm2, resulting in a receptor size of 1000 nm2. We have verified that simula-

tions with smaller receptor sizes show no observable differences for the parameters

we are considering here. A variable number of N receptors (N = 20000− 300000)

were randomly distributed on the membrane of the cell. Each receptor can bind

one ligand and the dissociation constant was taken to be Kd = 30 nM and the

unbinding rate as k− =10 s−1.
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Our cell was placed in a cubic box with sides of size 30 µm. To re-

duce finite-box effects and to save computation time, we incorporated a specific

concentration-clamp boundary condition in MCell3. In this condition, we imagine

our computational box to be immersed in a much larger box with the same ligand

concentration that functions as a reservoir. Molecules from this reservoir can enter

the computational box at a random location and at a rate that equals the escape

rate of molecules from the computational box to the reservoir. The latter can be

calculated analytically and depends on system parameters and the time step. Note

that this boundary condition neglects any possible correlation between outgoing

and incoming molecule. Hence, the measured correlation function (see below) will

be underestimated for large times. We refer to the Appendix for more details on

the dependence of the numerical results on the box size and time step size.

Each simulation simulated 50 seconds and the time step was 10 µs. At

the start of a simulation, a certain amount of ligand molecules are released into

the box and diffuse freely with diffusion constant D = 200 µm2/s. Once a ligand

hits a receptor, it can either bind to it or be reflected off the membrane. MCell3

calculates the binding probability based on the reaction rates, ligand diffusivity,

receptor size and time step. After an initial transient period of 10 s, during which

the system reaches equilibrium, the number of bound receptors was recorded every

1 ms. A snapshot of a simulation is shown in Fig. V.E.

Two types of measurements are identified. With N receptors in total, an

instantaneous measurement is defined as

Z(t) =
1

N

N∑
i

ri (V.3)

where ri is a binary random variable taking the value 0 if the ith receptor is in the

R0 state and 1 if the ith receptor is in the R1 state. To compare directly with Burg-

Purcell’s result, we define a time-averaged measurement of receptor occupancy ias

an average of instantaneous measurements over a time window T:

ZT (t) =
1

T

∫ t

t−T

dτZ(τ) (V.4)
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For each simulation, we measured both the instantaneous receptors oc-

cupancy Z(t) and the time-averaged measurement ZT (t), for T = 10/k− = 1 s, as

well as the correlation function C(τ) =
∫

(Z(t) − Z̄)(Z(t + τ) − Z̄)dt. The latter

is only calculated for τ < 4 s; for larger values of τ the correlation function is

overwhelmed by fluctuations. The mean and variance of Z(t) were estimated in

the following standard way:

Z̄ =
1

Ndata

Ndata∑
j=1

Zj (V.5)

σ2
Z =

1

Ndata − 1

Ndata∑
j=1

(Zj − Z̄)2 (V.6)

where Ndata is the number of time stamps obtained from a single simulation. The

ensemble average and variance of the estimated variances are estimated by repeat-

ing each simulation 10 times.

The ensemble average of the correlation function is fit to an exponential,

C(τ) ∼ exp(−τ/τc) , to obtain an estimate of the correlation time scale τc. The

variance in the receptor occupancy is simply proportional to the variance in the

concentration of Eq. V.1 (see Eq. V.13).

V.B Results

V.B.1 Instantaneous measurements

Fig. V.Ea shows the variance σ2
Z of the instantaneous measurement Z(t)

as a function of receptor number N . The data, obtained by averaging over ten

independent runs, is easily fit by the form σ2
Z = A0/N with the coefficient A0

equal to

A0 =
c̄Kd

(c̄ + Kd)2
(V.7)

which is just the single receptor variance. This simple finding arises from the fact

that once a molecule binds a receptor, it cannot affect neighboring receptors no
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matter how close-by they are located, until a finite time later when it is unbound.

Hence instantaneous measurements at separate receptors are uncorrelated and the

mean has accuracy that scales as 1/N . Thus, utilizing a one-time measurement,

the cell can attain arbitrary accuracy in its evaluation of a signal concentration.

V.B.2 Time-averaged measurements

To understand why this result appears to disagree with the Berg-Purcell

conclusion, we consider now the time-averaged measurements, where T is the

time interval over which the instantaneous measurement is averaged. As demon-

strated in Fig. V.Eb, the data now do fit the expected finite residual formula

σ2
ZT

= AT /N + BT ; the error cannot be less than BT . The difference between

the instantaneous measurement and the time averaged measurement is more easily

appreciated when we write the variance as σ2 = A(1/N + 1/Nc). For the time

averaged measurement we obtain Nc = 1.1 × 105 while the instantaneous mea-

surement results in a value of Nc that is nearly two orders of magnitude bigger

(Nc = 7.6 × 106 ).

V.B.3 Instantaneous measurements and time-averaged measurements

are related

How can this occur? The answer is that as long as the integration time

T is longer than the correlation time τc one needs to multiply the instantaneous

data by a factor of 2τc/T to obtain the time-averaged measurement. To see this,

we start with the definition of the variance of the time-averaged measurement:

σ2
ZT

=

〈(
1

T

∫ T

0

(Z(t) − Z̄)dt

)2
〉

=
1

T 2

∫ T

0

dt

∫ T

0

ds 〈Z(t)Z(s)〉 − Z̄2

Next, we assume that the correlation function has an exponential decay:

〈Z(t)Z(s)〉 = Z̄2 + σ2
Ze−

|t−s|
τc
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where τc is the correlation time. Performing the integrals leads to:

σ2
ZT

=
2σ2

Zτc

T 2
(T − τc(1 − e−T/τc)) (V.8)

The relationship between the two variances can be simplified for T >> τc

where it becomes σ2
ZT

=
2σ2

Zτc

T
. Thus, to obtain the variance of the time-averaged

measurement, one needs to multiply the variance of the instantaneous measurement

with the correlation time. For our system, this correlation time diverges as N for

large receptor number which can be demonstrated directly in our simulations (Fig.

V.E). Hence, τc ∼ ΛN which leads to the residual term

BT =
2ΛA0

T
, (V.9)

consistent with our computational data.

Where does this diverging time come from? The receptor surface density

for our cell is obviously ρ = N/4πR2. Thus, the expected number of bound

receptors per unit surface area is ρc̄/Kd, where for simplicity we have considered

the case c̄ << Kd, leading to A0 = c̄/Kd. In order for the molecules bound to these

receptors to escape to infinity and hence for the configuration to be completely

refreshed, we must wait a time equal to the correlation time:

τc =
1

k−
+

ρc̄/Kd

Jdiff
=

1

k−
+

N

4πDRKd
(V.10)

where the first term describes the average time for unbinding and where the diffu-

sive flux is given by Jdiff = Dc̄/R. (See Appendix V.F for an analytical calculation

of τc.)

To test the scalings of τc, we start our simulation with a ratio of bound to

unbound receptors equal to c̄/Kd and no free ligands. The box boundary is taken

to be absorptive so once a ligand hits the boundary it is removed from the system.

As in the full simulation, we record the number of bound receptors as a function of

time which exhibits an exponential decay with time scale as the correlation time of

receptor occupancy τc. Since we do not need to maintain a constant concentration
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of ligands in the entire computational box, this simulation is very fast and we use

a box size of 120 µm and a time step of 1 µs to ensure accurate results. Figure V.E

shows the correlation time as a function of the number of receptors for 5 different

parameter sets: our “default” parameter set, used throughout the chapter, and

sets in which one parameter is changed to the indicated value. The results show

clearly that the correlation time increases linearly with N in all cases. Linear fits

give the following values for the slope Λ:

Table V.1: Comparison of estimated Λ for different parameter sets.

Parameter Set default k− = 5s−1 D = 400µm2/s R = 10µm Kd = 60nM

Λ(µs) 4.36 ± 0.03 4.34 ± 0.05 2.23 ± 0.02 2.12 ± 0.03 2.19 ± 0.03

The theoretical value of Λ is 4.406 µs for the default case. Clearly all

the fitting results are very close to the predictions of Eq. V.32. Reducing k− by a

factor of 2 does not change the slope, but shifts the correlation time up by about

0.1s, consistent with Eq. V.32. Changing D, R or Kd by a factor of 2, on the other

hand, changes the slope also by a factor of 2, validating Eq. V.32. In addition, we

have performed a limited set of full simulations and have found that the correlation

time depends on the system parameters as in Eq. V.32 (data not shown).

Combining Eq. V.8, Eq. V.32, and the condition T >> τc, we immedi-

ately find

σ2
ZT

=
AT

N
+ BT = σ2

Z

2τc

T
=

2A0

NT
(

1

k−
+

N

4πDRKd
) (V.11)

and thus:

AT =
2A0

Tk−
and BT =

c̄

2πDTRK2
d

(V.12)

The term BT is in agreement with Eq. V.1 for small c̄. The crucial point,

however, is that this formula is valid only for long-enough times (T > τc) and does
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not imply any irreducible diffusive noise limiting measurement accuracy. In fact,

for any fixed measuring time T , there is a sufficiently large N such that τc(N) > T ,

resulting in a variance that scales as 1/N just like the variance of instantaneous

measurements. This is demonstrated in Fig. V.E where we have plotted σ2
ZT

as

a function of the measurement time T , using Eq. V.8, for different number of

receptors. On each curve we have marked the point where T = τc; the collections

of these points for different N is plotted as a dashed line. Below this line, T is

much smaller than τc and the time-averaged variance approaches the instantaneous

variance σ2
Z .

Furthermore, the difference in the noise level estimated from Eq. V.1

and from our formula can become significant. To see this, we first need to relate

the variance in concentration level (δc/c̄)2 to the variance in the number of bound

receptors σ2
ZT

. The average occupancy level is given by Z̄ = c̄/(c̄ + Kd) from

which we can derive δc = (c̄ + Kd)
2δZ/Kd. Hence, the variance appearing in

the Berg and Purcell expression is simply the variance in the number of bound

receptors multiplied by a factor that depends on the average concentration and

the dissociation constant: (
δc

c̄

)2

= σ2
ZT

[
(c̄ + Kd)

2

c̄Kd

]2

(V.13)

In Fig. V.E we have plotted (δc/c̄)2 as a function of the diffusion constant

as predicted by Eq. V.1 (dashed line) and by our general formulas Eq. V.8 and Eq.

V.13 (solid line). For small diffusion constants, where the larger correlations time

becomes larger than the averaging time, the difference between the two formulas

becomes appreciable and a simple application of the Berg and Purcell formula

would significantly overestimate the noise level.

V.B.4 Alternative reaction models

It is interesting to note that our conclusions depend on the interaction

details. To study this, we considered an alternate model in which the diffusing
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molecule, L, acts enzymatically on the receptor:

L + R0 → L + R1

R1 → R0 (V.14)

where the forward and backward rate are identical to the ones in the binding-

unbinding model. Now, the fact that the diffusing particle is not absorbed by

the receptor means that it can act in rapid succession on neighboring receptors,

thereby correlating their response. In the limit of infinite N , this can happen with

infinitesimal time-lags and the resulting correlations limit the achievable accuracy.

In fact, the variance of the instantaneous measurement for this case is

σ2
Z = A0(

1

N
+

1

Nc
) (V.15)

where

Nc = 8πR2Kd(1 + c̃)3/2

√
D

k−
· 1

1 − e−2R

q
k−(1+c̃)

D

(V.16)

and c̃ = c̄/Kd. The details of this calculation is shown in Appendix V.G.

Figure V.E (red circles) shows the simulation results of σ2
Z does not vanish for large

N but remains finite and it fits very well with the theoretical prediction. It is not

clear whether there are any direct realizations of this alternate scheme. However,

more complex models in which the decay of the bound ligand-receptor pair leaves

the receptor at least temporarily in the signaling-competent state will behave in

the enzymatic way whenever the dissociation rate is fast compared to the final rate

of decay.

V.C Experimental relevance

This new understanding of the way in which fluctuations limit measure-

ment accuracy will become relevant whenever cells utilize measurements with in-

tegration times less than the receptor array correlation τc. The most intriguing

possible example arises in the case of the chemotactic sensing of f-Met-Leu-Phe by
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neutrophils [5]. Eukaryotic chemotaxis is a difficult task, as the signal is created

by a small difference between front and rear concentrations whereas the noise is

due to the mean occupancy [6]. Typical interaction numbers for this system are

k− 
2/s, Kd 
 15 − 50 nM, for a cell of radius 6 − 8 µm [7, 8]. The number

of receptors is regulated, increasing from N = 40, 000 to N = 150, 000 when the

neutrophil is activated by cytokines [9, 10]. With a typical small-molecule diffu-

sivity of 200 µm2/s, we estimate a τc of approximately one second, but this could

be increased by experimental manipulation of the extracellular medium. Rapidly

advancing microfuidics technology [11, 12] should enable a test of whether and

when the neutrophil sensing must be thought of as instantaneous, being governed

directly by the individual receptor variance. Once this occurs, the ultimate limit

(in evolutionary terms) of gradient detection would be set by considerations other

than diffusion, perhaps by noise in the downstream processing system or by trade-

offs with other needs for cell surface “real estate”.

V.D Applications in modeling gradient detection

This work has important implications in modeling eukaryotic gradient

detection. Usually in those models the membrane receptor occupancy works as

the input of the whole signaling pathway, and the fluctuation of the occupancy is

not considered, or considered in a simple way. Our work reveals this fluctuation

has a relatively complicated time correlations due to the rebinding of ligands. We

can construct sample input sequences for those models according to this particular

correlation, and make the modeling more accurate. For example, in a 1-dimensional

gradient detection model, the correct self-correlation for one end of the cell is an

exponential decay,

Cself(t2 − t1) = As exp(−|t2 − t1|/τs) (V.17)

and the cross-correlation between the front and the back can be fit to

Ccross(t2 − t1) = Ac|t2 − t1| exp(−|t2 − t1|/τc) (V.18)
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This cross-correlation starts from 0 and has a peak at τc, marking the maximal

rebinding of molecules on one side originating from the other side. The A’s and

τ ’s can be obtained from a 3-D MCell simulation.

We can also measure the cross-correlations between different surface seg-

ments of a flat cylindric cell with MCell, and use this data to construct input

signals for more abstracted 2-D models. By this approach, we found the local

fluctuation of receptor activity can be as large as the difference of the mean signals

across the cell, and a model which is very sensitive to local receptor activity may

not be able to work properly and detect the right gradient direction. This difficulty

is never considered in previous models. The key idea is the cell must have some

mechanism to spatially average the signal. The range of this spatial average must

be at least comparable with the spatial scale of the cross-correlation, while its still

small comparing to the cell’s size. We found allowing 2-D diffusion of membrane

receptors can help this situation and smooth out the local fluctuations to some

extent.
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Figure V.1: Representation of the numerical geometry. Top, A spherical cell is
placed at the center of the computational box. Bound receptors on the cell mem-
brane are plotted red, unbound are plotted as white symbols and freely diffusing
ligands are yellow. Bottom, A close-up view of the membrane with its receptors
and diffusing ligands.
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Figure V.2: Instantaneous measurements of receptor occupancy can achieve arbi-
trary accuracy while time-averaged measurements display a residual noise level. a,
The variance of instantaneous measurements of receptor occupancy as a function
of the number of receptors N. The symbols show the results from our MCell3 sim-
ulations which agree very well with the expression σ2

Z = c̄Kd/N(c̄+Kd)
2, shown as

a solid line, where c̄ is the ligand concentration (1 nM) and Kd is the dissociation
constant (30 nM). Remaining parameter values are: R = 5µm and k− = 10 s−1.
The fact that the variance vanishes in the limit of large number of receptors can
be further verified by fitting the symbols to A0/N + B0. This fit results in a
value of B0 very close to zero (B0 = −4.1 × 10−9), indicating that the cell can
achieve arbitrary accuracy in its measurement of an external signal. Furthermore,
the fitted value of A0 = 3.02 × 10−2 agrees well with the theoretically predicted
value of Eq. 4 (3.12 × 10−2). The error bars here, and in the remaining figures,
indicate the standard deviation obtained by performing 10 independent simula-
tions. b, The variance of time-averaged measurements as a function of the number
of receptors. Shown are the results of the simulations (symbols) and the fitting
formula AT /N + BT with AT = 6.49 × 10−3, in good agreement with Eq. 10,
and BT = 5.83 × 10−8. The instantaneous receptor occupancy was averaged over
T = 1s.
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Figure V.3: The correlation time of receptor occupancy increases linearly with the
number of receptors. Symbols represent the correlation time obtained from fitting
the measured correlation function to an exponential decay function. The solid line
shows the linear fit τc(N) = τ0 + ΛN with τ0 = 0.112s and Λ = 2.74 × 10−6s.



100

Figure V.4: The correlation time as a function of the number of receptors for
different parameter sets. The black symbols correspond to the default parameter
set: R = 5µm, D = 200µm2/s, Kd = 30nM, c̄ = 1nM, k− = 10s−1. Other curves
are obtained by changing only the indicated parameter. Increasing the value of
D, R or Kd reduces the slope of the linear fit by a factor of two, in accordance
with Eq. 1. Furthermore, decreasing k− results in a constant translation of the
correlation time, again in agreement with Eq. 1.
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Figure V.5: The time-averaged variance as a function of the measurement time T
for different number of receptors. The symbols represent the points for which the
measurement time equals the correlation time. The collection of these points for
different N is drawn as a dashed line. Below this line, the variance approaches the
instantaneous variance σ2

Z while above this line the variance scales as 1/T .
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Figure V.6: The Berg and Purcell formula can overestimate the noise level. The
dashed line shows the normalized variance in the concentration as a function of the
diffusion constant using the Berg and Purcell result. The solid line represents the
results found in the present work and demonstrate that for small diffusion constants
the widely used formula of Berg and Purcell can significantly overestimate the noise
level. Parameter values are the default ones with N = 100000 and T = 1 s.
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Figure V.7: The variance of the instantaneous receptor occupancy for 3 types
of receptor-ligand interactions. Black symbols: binding-unbinding scheme with
the default rates (Kd = 30 nM, k+ = 0.33nM−1s−1, k− = 10s−1). Red symbols:
enzymatic scheme for the same rates. Blue symbols: interpolating scheme with
k+ = 0.33nM−1s−1, k1 = 20s−1, k2 = 20s−1.
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Cellcnew

Jout

Jrebind
cold

Figure V.8: Ligands are identified as new molecules (those never bind any recep-
tors) and old molecules. New molecules can bind to the receptors and are converted
to old molecules. Old molecules can be released from receptors. They can either
escape to infinity or rebind to receptors.
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V.F Appendix: Calculation of τc

As Figure V.8 shows, we divide the flux of molecules into those of ”new”

molecules and those of ”old” molecules. We can write down proper differential

equations for both type of molecules. For new molecules the concentration at

infinity is fixed as c̄:

∂cnew(r, t)

∂t
= D∇2cnew − acnewδ(R)

cnew(∞) = c̄ (V.19)

where R is the cell radius. For old molecules:

∂cold(r, t)

∂t
= D∇2cold + (b − acold)δ(R)

cold(∞) = 0 (V.20)

Note that (V.19)+(V.20) gives the desired dynamics of molecules:

∂c(r, t)

∂t
= D∇2c + (b − ac)δ(R)

c(∞) = c̄ (V.21)

Here c = cnew + cold. If we let b = ac̄, then the steady state solution is c(r) = c̄.

To calculate the refreshing rate of the receptors, we need to know Jout in Figure

V.8, which is equal to the flux of new molecules at equilibrium. The steady state

solution of Eqn. V.19 is:

c(r) = cin, r < R

c(r) = c̄ − A

r
, r > R (V.22)

where R is the cell radius. cin and A are unknown constants. At r = R, c should

be continuous:

cin = c̄ − A

R
(V.23)

Also, the flux should be conserved:

D
∂cout

∂r
(R) − D

∂cin

∂r
(R) = ac(R) (V.24)
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Combine (V.23) and (V.24) we get A = aR2 c̄
D+aR

, and thus the solution:

c(r) =
Dc̄

D + aR
, r < R

c(r) = c̄

(
1 − aR2

r(D + aR)

)
, r > R (V.25)

The flux of the new molecules to the receptors is:

Jnew = D
∂cout

∂r
(R) =

Dac̄

D + aR
=

c̄D

R
· aR

D + aR
(V.26)

Now let’s consider there are nc molecules binded to receptors, and there is no new

molecules. The dynamics of nc satisfies:

dnc

dt
= −4πR2Jout (V.27)

and Jout has the same form as Jnew:

Jout =
c(R)D

R
· aR

D + aR
(V.28)

on the membrane nc = Nc/Kd, where N is the total number of receptors, and c is

small. Plug Jout into (V.26), we get:

dnc

dt
= −nc/τc (V.29)

and the correlation time is:

τc =
N

4πDRKd

(
1 +

D

aR

)
(V.30)

Now we need to figure out a. Obviously a should be proportional to the receptor

density and the binding rate constant:

a ∝ ρNk+ =
Nk−

4πR2Kd
(V.31)

Actually this gives the right dimension. So we assume a = Nk−
4πR2Kd

and finally we

get the correlation time as:

τc =
1

k−
+

N

4πDRKd
(V.32)
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V.G Appendix: Calculation of σ2
Z for the Alternative Scheme

The reaction scheme considered here is:

L+R0 −→ L+R1

R1 −→ R0

To be convenient, I also list all the notations used in the following calcu-

lations here:

c(�x, t) : Concentration of molecule C at space �x and time t.

yi(t): The state of ith receptor at time t. It is either 0(unbound) or

1(bound).

N : Total number of receptors on the cell membrane.

k+: Binding rate constant.

k−: Unbinding rate constant.

Kd: k−/k+, Dissociation constant.

c̄: Equilibrium mean concentration of molecule C around the cell.

Γ: k+c̄ + k−.

c̃: c̄/Kd, relative molecule concentration.

G(�x, t): Green function of the diffusion equation in a free space.

Pij(yi(t1), yj(t2)): Joint probability of the ith and jth receptor states at t1

and t2 respectively.

Pij(yi(t1), yj(t2)|�ci(t1),�cj(t2)): Joint probability of receptor states given

the trajectories of the molecule concentrations around the two receptors up to

time t1 and t2 respectively.

P(�ci(t1),�cj(t2)): Joint probability of the trajectories of the molecule con-

centrations at �xi and �xj up to time t1 and t2 respectively.

f̂(s): Laplace transform of f(t).

〈f〉: The ensemble average of f .
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V.G.1 〈δyi(t)δyj(t)〉

〈yi(t)yj(t)〉 =
∑

yi(t)yj(t)

yi(t)yj(t)Pij(yi(t), yj(t))

= Pij(1, 1)

=

∫
D�ciD�cjPij(1, 1|�ci(t),�cj(t))P(�ci(t),�cj(t))

=

∫
D�ciD�cjPi(1|�ci)Pj(1|�cj)P(�ci(t),�cj(t)) (V.33)

Now let’s suppose ci(t) = c̄ + δci(t) and expand Pi(1|�ci) around the mean of c at

every time:

Pi(1|�ci) = Pi(1|c̄) +

∫ t

−∞
dτk

[
δPi(1|�ci)

δci(τk)

]
ci(τk)=c̄

δci(τk) (V.34)

Note that < yi(t) >= Pi(1|c̄) at equilibrium. Plug Eqn. V.34 into Eqn. V.33, we

get:

〈yi(t)yj(t)〉 = 〈yi(t)〉〈yj(t)〉 +

∫
D �δciD �δcjP(�δci(t), �δcj(t)) ·(∫ t

−∞
dτk

[
δPi(1|�ci)

δci(τk)

]
ci(τk)=c̄

δci(τk)

)(∫ t

−∞
dτl

[
δPj(1|�cj)

δcj(τl)

]
cj(τl)=c̄

δcj(τl)

)

(V.35)

Let δyi(t) = yi(t) − 〈yi(t)〉, and note that

〈δci(τk)δcj(τl)〉 =

∫
D �δciD �δcjP(�δci(t), �δcj(t))δci(τk)δcj(τl) (V.36)

Plug these into Eqn. V.35, we get:

〈δyi(t)δyj(t)〉 =

∫ t

−∞
dτk

∫ t

−∞
dτl〈δci(τk)δcj(τl)〉Q(τk)Q(τl) (V.37)

where

Q(t) =

[
δP (1|�c)
δc(t)

]
c(t)=c̄

(V.38)

Eqn. V.37 establishes a simple relation between 〈δyi(t)δyj(t)〉 and 〈δci(τk)δcj(τl)〉.
We can expect to get another relation between these two correlation functions from
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the diffusion equation and thus solve out these two functions. For this section,

we assume the cell membrane is transparent and the catalytic reaction scheme is

adopted, so that the binding process won’t affect δci(t). The diffusion equation

reads:
dδc

dt
= D∇2δc + ∇ · �L(�x, t) (V.39)

and the random flux �L satisfies,

〈Li(�x, t)Lj(�x
′, t′)〉 = 2Dc̄δijδ(�x − �x′)δ(t − t′) (V.40)

It can be proved that,

〈δci(τk)δcj(τl)〉 = c̄G(�xi − �xj , τk − τl) (V.41)

Next step we need to calculate Q(t). Note that Pi(1|�ci(t)) satisfies the following

master equation:

dPi(1|�ci(t))

dt
= k+ci(t)(1 − Pi(1|�ci(t))) − k−Pi(1|�ci(t)) (V.42)

The solution is:

Pi(1|�ci(t)) =

∫ t

−∞
dt′k+ci(t

′) exp

(
−
∫ t

t′
dt′′(k− + k+ci(t

′′))
)

(V.43)

So for some τ < t, we get:

Q(τ) =
k−k+

Γ
e−Γ(t−τ) (V.44)

Plug Eqn. V.41 and Eqn. V.44 back into Eqn. V.37, we get:

〈δyi(t)δyj(t)〉 =
c̄k2

−k2
+e−2Γt

Γ2(4πD)3/2

∫ t

−∞

∫ t

−∞
dτkdτl |τk − τl|−

3
2 e

− |�xi−�xj |2
4D|τk−τl|

+Γ(τk+τl)

=
c̄k2

−k2
+e−2Γt

Γ2(2π)3

∫
d�k

∫ t

−∞

∫ t

−∞
dτkdτle

−i�k·(�xi−�xj)−Dk2|τk−τl|+Γ(τk+τl)

(V.45)

Now the integral over τk and τl are simple exponentials. After computing them,
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the equation becomes:

〈δyi(t)δyj(t)〉 =
c̄k2

−k2
+

Γ3(2π)3

∫
d�k

e−i�k·(�xi−�xj)

Γ + Dk2

=
c̄k2

−k2
+

Γ3(2π)3

∫ ∞

0

k2dk

∫ π

0

dθsinθ

∫ 2π

0

dϕ
e−ik|�xi−�xj |cosθ

Γ + Dk2

= −i
c̄k2

−k2
+

Γ3(2π)2|�xi − �xj|
∫ +∞

−∞
dk

keik|�xi−�xj |

Γ + Dk2
(V.46)

Finally we get:

〈δyi(t)δyj(t)〉 =
c̄k2

−k2
+

4πΓ3|�xi − �xj |e
−
√

Γ
D
|�xi−�xj | (V.47)

V.G.2 σ2
Z

Suppose Z = 1
N

∑N
i=1 yi is the final output of the receptor bindings that

the cell can measure. It is interesting to ask how the fluctuation of Z depends on

the system parameters. From its definition, we have:

〈Z2〉 =
1

N2

N∑
i=1

〈y2
i 〉 +

1

N2

N∑
i=1

∑
j �=i

〈yiyj〉 (V.48)

Let p = 〈yi〉, it is obvious that 〈y2
i 〉 = p too. So,

〈Z2〉 =
Np

N2
+

N(N − 1)p2

N2
+

1

N2

N∑
i=1

∑
j �=i

〈δyiδyj〉

= p2 +
p(1 − p)

N
+

1

N2

N∑
i=1

∑
j �=i

〈δyiδyj〉

=
k−k+c̄

NΓ
+ 〈Z〉2 +

1

N2

N∑
i=1

∑
j �=i

〈δyiδyj〉 (V.49)

So the variance of Z is,

σ2
Z =

k−k+c̄

NΓ
+

1

N2

N∑
i=1

∑
j �=i

〈δyiδyj〉 (V.50)

Now let’s assume that the cell is an ideal sphere with transparent membrane, and

the receptors are evenly distributed on the membrane. Due to the symmetry, the
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outer sum can be replaced by a factor of N . In the limit that N is large, the inner

sum can be approximated by the integral:

N∑
j=2

〈δy1δyj〉 =
N

4π

∫ π

0

dθ sin θ

∫ 2π

0

dϕ〈δy(0, 0)δy(θ, ϕ)〉 (V.51)

It is easy to prove that |�x(0, 0) − �x(θ, ϕ)| = 2R sin θ
2
, where R is the radius of the

cell. Then Eqn. V.47 becomes:

〈δy(0, 0)δy(θ, ϕ)〉 =
c̄k2

−k2
+

8πDΓ3R sin θ
2

e−
√

Γ
D

R sin θ
2 (V.52)

Plug this back into Eqn. V.51, we can get:

N∑
j=2

〈δy1δyj〉 =
c̄k2

−k2
+

8πD1/2Γ7/2R2

(
1 − e−2R

√
Γ
D

)
(V.53)

Put this into Eqn. V.50, and change parameter sets to {D, c̃, k−, Kd, R}, we get

the final answer as the following:

〈σ2
Z〉 =

c̃

(1 + c̃)2
(

1

N
+

1

Nc
) (V.54)

where

Nc = 8πR2Kd(1 + c̃)3/2

√
D

k−
· 1

1 − e−2R

q
k−(1+c̃)

D

(V.55)

Despite the transparent cell assumption and the first order approximation in Eqn.

V.34, this result is precise for the catalytic reaction scheme. Actually, it fits quite

well with MCell simulations.
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VI

Conclusions

In this thesis we have investigated three topics about stochastic effects in

biological systems: the formation of spontaneous calcium wave in Xenopus oocytes,

the stochastic cooperative gating of cardiac RyR and its relation with heart failure

disease, and the noise of chemoreception.

The opening of inositol (1,4,5)-triphosphate (IP3) receptors, clustered at

discrete sites on the endoplasmic reticulum, can lead to large scale intracellular cal-

cium waves. Experiments in Xenopus oocytes have shown that the inter-wave in-

tervals for these spontaneous waves have a standard deviation that is much smaller

than their mean and that the background calcium concentration exhibits a slow

rise during the inter-wave interval. In Chapter III, we built a simple mathematical

model and examined the possibility that this slow rise increases the cooperativ-

ity between the openings of the clusters. We find that incorporating pumps that

slowly activate leads to a slow increase in the background calcium concentration

which makes global events progressively more likely to occur. We show that this

cooperativity results in much smaller standard deviations and inter-wave interval

distributions that are close to experimental observations.

In Chapter IV we studied the cooperative gating of RyR in cardiac my-

ocytes. Recent experiments have suggested that cooperativity between the four

monomers comprising the RyR plays an important role in the dynamics of the

114
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overall receptor. Furthermore, this cooperativity can be affected by the binding

of FKBP and hence modulated by adrenergic stimulation through the phospho-

rylating action of PKA. This has important implications for heart failure, where

it has been hypothesized that RyR hyperphosphorylation, resulting in a loss of

cooperativity, can lead to a persistent leak and a reduced SR content. In this

study, we construct a theoretical model that examines the cooperativity via the

assumption of an allosteric interaction between the four subunits. We find that the

level of cooperativity, regulated by FKBP binding, can have a dramatic effect on

the excitation-contraction (E-C) coupling gain and that this gain exhibits a clear

maximum. These findings are compared to currently available data from different

species and allows for an evaluation of the heart failure scenario.

In Chapter V we studied a general problem about how accurate a cell can

detect environmental chemical signals via the bindings of membrane receptors. At

the level of a single receptor, this process is inherently stochastic, but cells can con-

tain many such receptors which can reduce the variability in the detected signal

by suitable averaging. We applied explicit Monte Carlo simulations and analytical

calculations to characterize the noise level as a function of the number of recep-

tors. We show that the noise of an instantaneous measurement approaches zero

for large receptor number, while the noise of a time-averaged measurement has

a residue noise due to the rebindings of signal molecules by membrane receptors.

Furthermore, the correlation time of receptor-ligand interaction increases linearly

with receptor number. For a cell with fixed measuring time characterized by in-

ternal signaling pathways, increasing receptor number converts a time-averaged

measurement into an instantaneous measurement, and thus the cell achieves ar-

bitrary accuracy. This result has important implications for such processes as

eukaryotic chemotaxis.




