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ABSTRACT OF THE DISSERTATION

Essays in Information Economics

by

Stepan Aleksenko

Doctor of Philosophy in Economics

University of California, Los Angeles, 2024

Professor Moritz Meyer-ter-Vehn, Chair

This dissertation comprises three chapters that study information and learning aspects in

various game-theoretical models.

The first chapter studies how firms manage their reputation for quality via price-dependent

consumer reviews. Pricing decisions are crucial for managing a firm’s reputation and

maximizing profits. Consumer reviews reflect both the product quality and its price,

with more favorable reviews being left when a product is priced lower. We study whether

such review behavior can induce a firm to manipulate the review process by underpric-

ing its product, or pricing it below current consumers’ willingness to pay. We introduce

an equilibrium model with a privately informed firm repeatedly selling its product to un-

informed but rational consumers who learn about the quality of the product from past

reviews and current prices. We show that underpricing can arise only when the firm

reputation is low and then only under a specific condition on consumers’ taste shock

distribution, which we fully characterize. Rating manipulation unambiguously benefits

consumers, because it operates via underpricing.

The second chapter studies how delegated recruitment shapes talent selection. Firms

typically pay recruiters via refund contracts, which specify a payment upon the hire of a

suggested candidate and a refund if a candidate is hired but terminated during an initial

period of employment. We develop a model where refund contracts naturally arise and

ii



show that delegation leads to statistical discrimination, where the recruiter favors candi-

dates with more precise productivity information. This is misaligned with direct hiring,

where the firm has option value from uncertain candidates. Under tractable paramet-

ric assumptions, we characterize the unique equilibrium in which candidates with lower

expected productivity but more informative signals (“safe bets”) are hired over candi-

dates with higher expected productivity but less informative signals (“diamonds in the

rough”).

The third chapter studies the efficiency of information aggregation in the DeGroot learn-

ing model. We introduce a social planner in the DeGroot model who aims to improve

the time asymptotic information aggregation in finite observational networks. We show

that in any connected network, it is possible to achieve the best information aggregation

by reassigning the attention individuals pay to each others’ opinions. We provide an al-

gorithm that constructs a solution to this problem. We also identify the necessary and

sufficient condition on the network for achieving the best information aggregation in the

average-based updating learning model for homogeneous private signals. Finally, we

demonstrate an approach to increasing the speed of learning.
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CHAPTER 1

Reputational Underpricing

with Jakob Kohlhepp (UNC Chapel Hill)1

1.1 Introduction

Consumer reviews often reflect not just product quality but also value for the price. Cur-

rent consumers leave better reviews for higher-quality goods than for low-quality ones,

but the reviews are worse if the same good is sold at a higher current price (Abrate et al.

(2021), Luca and Reshef (2021)). Future consumers then make purchase decisions based

on a firm’s reputation for quality, which is shaped by these reviews (Chevalier and May-

zlin (2006)). In settings where consumers observe past reviews but not past prices of a

product (such as Amazon, Google Maps, Airbnb, etc.), the firm selling the product may

strategically manipulate its own reputation through prices, a phenomenon that is sup-

ported by empirical evidence (Sorokin (2021)).

In this paper, we propose a novel model to analyze how firms make pricing decisions

in the presence of reputational incentives driven by price-dependent consumer reviews.

We derive a necessary and sufficient condition for these reputational incentives to cause

1First version: February 2023. Previous Version: November 2023. This paper supersedes an earlier
version circulated as ”Consumer Reviews and Dynamic Price Signaling” (Aleksenko and Kohlhepp (2023)).
We are grateful for insightful comments from Sushil Bikhchandani, Alex Bloedel, Simon Board, Daniel
Clark, Felipe Goncalves, Jay Lu, Moritz Meyer-ter-Vehn, Ichiro Obara, Luciano Pomatto, Tomasz Sadzik,
Eran Shmaya, and William Zame. We thank participants in the ASSA 2024 Annual Meeting; SEA 2023
Annual Meeting; All-UC Theory Conference; 35th Stony Brook International Conference on Game Theory;
South-Western Economic Theory Conference; UCLA, UNC Chapel Hill, and SBU theory proseminars; and
CalTech reading group where this work was presented.

1



the firm to price its product below consumers’ willingness to pay, a phenomenon we call

underpricing.

In our model, an infinite stream of short-lived consumers decide whether to purchase the

product based on their expected utility from consuming it. After purchasing the product,

a consumer can leave a review for it depending on the quality of the product and her

realized utility, which additionally depends on the current price of the product and the

consumer’s idiosyncratic taste shock. Future consumers rationally learn about the quality

of the product from past consumer reviews and the current price of the product, but they

do not observe past prices. Our technical contribution is solving this reputation model

with observable current actions (prices) and dynamic price-signaling.

To solve the model, we analyze the firm’s trade-off between the reputational and the my-

opic pricing incentives. Consumers’ ability to observe past reviews but not past prices

of a product creates a reputation-management channel for the firm selling that product.

Specifically, if the firm lowers the price of its product today, the firm will receive bet-

ter consumer reviews today and build a better future reputation. Future consumers will

have higher beliefs about the quality of the firm’s product because they cannot distin-

guish whether the firm’s better reviews are due to its higher product quality or lower

past prices. The downside of lowering the price today is a lower current profit, either di-

rectly, via price, or indirectly, via signaling a lower quality today and lowering the current

demand for that product.

We show that the consumer taste shock distribution, specifically, its adjusted hazard rate,

determines whether underpricing occurs in equilibrium. For a wide range of primi-

tives, including the case when consumer taste shocks are distributed uniformly, there is a

unique equilibrium where the firm prices its product at consumers’ willingness to pay at

all reputation levels and never tries to build its reputation via underpricing. For another

range of primitives, underpricing occurs only at lower reputation levels. Underpricing is

unlikely to occur when the taste shock distribution is sufficiently dispersed. Additionally,

we show that the reputation-management channel, and therefore underpricing, is more

prominent when consumers arrive more frequently.
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Although many insights can be extended to other review processes, we focus on the case

when the reviews are modeled as perfect good news. Consumers leave only good re-

views, and they can leave a review only for a high-quality product.2 Each consumer’s

probability of leaving a good review is increasing in the utility delivered net of the price

and is therefore decreasing in the price. We model this feature by introducing an explicit

review rule: the consumer leaves a review if the overall ex-post utility depending on

the price of the product and the consumer’s idiosyncratic (ex-post) taste shock exceeds

the given threshold.3 The taste shocks are i.i.d. mean zero distributed and realized only

after the decision to purchase the product. These taste shocks can be interpreted as after-

purchase idiosyncratic experiences from consuming the product. Examples include faster

or slower delivery of the product or service in the restaurant on a given date, or horizontal

matching shocks unobserved prior to purchase.

To build intuition and show that underpricing need not occur, we first consider the case

when ex-post taste shocks are distributed uniformly. We show that reputational incen-

tives are always dominated by the static profit motive. At lower reputation levels, the

firm is forced to charge low prices, whether via underpricing or not. Under the uniform

shock distribution, the reputational incentives become insensitive to price reductions rel-

ative to the overall speed of reputation building. Therefore, future reputation-building

crowds out any incentives to underprice a product today. This means that both the high-

quality and low-quality types of firm have the same pricing incentives, so price signaling

never occurs. Thus, both types of firm pool at consumers’ maximum willingness to pay

at any rating and underpricing does not occur.

More generally, for an arbitrary taste shock distribution, there do not exist equilibria

where firms pool and price their products below consumers’ willingness to pay. Either

there is a unique equilibrium where both firm types pool at consumers’ willingness to

2There is empirical evidence for mostly positive reviews on online platforms including AirBnB (Carnehl
et al. (2021a)) and Amazon (Hu et al. (2009)).

3This implies only people with extreme experiences select into leaving a review, an idea with empirical
support (Schoenmüller et al. (2019), Lafky (2014), Marinescu et al. (2021)).
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pay or the two types separate at low reputation levels and pool at high reputation lev-

els. In the second case, for a given reputation level below a threshold, the high-quality

type of firm (“high type”) prices its product below that of the low-quality type of firm

(“low type”). Then, prices are also fully informative about the quality of the product

at low reputation levels. We derive necessary and sufficient conditions on the ex-post

taste shock distribution and the consumer arrival rate that determine which type of equi-

librium arises. Underpricing does not occur in equilibrium if the density of marginal

consumers that the firm can win by using underpricing is low relative to the mass of

consumers who will leave reviews regardless of whether underpricing is used.

With equilibrium pricing behavior in hand, we analyze the welfare implications. Con-

trary to the standard intuition that review manipulation harms consumers, underpricing,

when it occurs, makes consumers better off relative to a myopic benchmark for two main

reasons. First, underpricing directly increases the consumer surplus. Second, underpric-

ing by the high-quality firm increases the arrival rate of good news, which speeds up

consumer learning and effectively transfers information rent from the low-quality firm to

consumers. The welfare consequences for the high-quality firm are ambiguous because it

cuts prices at low reputation levels but is sooner differentiated from the low-quality firm.

The rest of the paper is organized as follows. We discuss the related literature and our

contribution to it in Section 1.2. We introduce the model in Section 1.3 and show the equi-

librium characterization and main results in Section 1.4. The robustness of our results to

a number of extensions and the welfare implications are discussed in Section 1.6. Section

1.7 concludes the paper.

1.2 Literature Review

Our paper is related to a set of papers that study how a firm sets prices over time in the

presence of a consumer review system. In this literature, papers typically consider two

types of reviews: those that do not depend on product prices (He and Chen (2018)) and

those that do. Our model belongs to the second category. Many papers in this literature

4



consider consumers which are behavioral rather than Bayesian. Shin et al. (2021) consider

consumers who choose a single quality and a single price faced by past consumers that

rationalize the observed current average rating. Carnehl et al. (2021b) consider consumers

who form beliefs about product quality that rationalize the current rating at the current

price. Crapis et al. (2017) consider a firm that sets a price once and for all and consumers

who assume all past consumers had the same information.

Behavioral assumptions on consumers are typically used because “a fully rational con-

sumer would have to solve a dynamic signaling game with rating systems, which is a

highly complicated problem” (Carnehl et al. (2021b)). Our contribution to this literature

is an analysis of fully rational consumers that make Bayesian inferences from the current

price and full history of reviews of a product. One important difference between our

model and those in the literature is that we allow for static price signaling, and it occurs

in equilibrium. Of the four papers mentioned in the previous paragraph, three explicitly

assume price signaling does not occur.

A small literature (Huang et al. (2022), Martin and Shelegia (2021)) considers pricing in-

centives and learning in the presence of both consumer reviews and Bayesian consumers,

similar to our paper. One key difference between the models in these papers and ours is

that they consider a single period of building reputation via reviews, while we consider

an infinite number of periods. This is one reason underpricing is more common in the

models in this literature: there is only one attempt at building reputation, while under-

pricing generically need not occur in our model, because the firms might simply wait for

their future selves to build their reputation.

Our paper is also related to work on sequential learning through review systems. In line

with this literature, one goal of our paper is to understand how and what consumers

learn from rating systems. However, we focus on how dynamic pricing undertaken by a

forward-looking strategic firm interacts with consumer learning. In contrast, other work

in this literature, including Acemoglu et al. (2017) and Koh and Li (2023), focuses on the

case when prices are given but other questions are of interest, including how the selection

of consumers into purchase impacts learning.
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Our paper contributes to the literature on reputation management and is most related to

Holmström (1999) and Board and Meyer-ter Vehn (2013). We discuss these papers using

the language of our model, for clarity. In Holmström (1999), the firm has a quality that is

fixed but initially unknown by everyone. The firm makes costly effort choices that impact

the utility delivered to consumers. Importantly, while the full history of utility delivered

is observed by consumers, effort choices both today and in the past are unobserved. In

Board and Meyer-ter Vehn (2013), the firm can make costly effort choices that determine

quality when it is redrawn. Importantly, while the firm observes its quality and its effort

choices, consumers do not; instead, they observe signals about quality via a process that

the firm cannot influence.

Our paper is also related to the strand of reputation literature with observable actions

(such as the seminal paper by Fudenberg and Levine (1989), and most closely to Pei

(2020)). The main differences between our paper and this literature are that in our model

(1) we do not have the commitment type, (2) current rather than past actions are observ-

able, (3) the long-lived player is not necessarily patient, (4) we analyze a different class of

stage games.

In our model, the firm cannot influence the quality of its product; instead, the firm makes

costly effort choices (prices) that impact the utility delivered to consumers. Reviews are

left when the firm is high quality, but the firm can influence the arrival rate by chang-

ing the prices of its product. Importantly, consumers observe the full history of reviews

and the current price, but not the full history of prices. Our paper is like Holmström

(1999) (and unlike Board and Meyer-ter Vehn (2013)) in that the firm can influence learn-

ing about quality but not quality itself. Our paper is like Board and Meyer-ter Vehn (2013)

(and unlike Holmström (1999)) in that the firm knows its quality, but consumers do not.

Our paper is different from both in that the firm takes an observable action (price). Similar

to Board and Meyer-ter Vehn (2013), we find that when incentives for underpricing exist,

equilibria take a partition form with investment (underpricing) at low reputation levels

and shirking (pricing at consumers’ willingness to pay) at high reputation levels. Differ-

6



ent from Board and Meyer-ter Vehn (2013), we find that for a wide class of primitives,

there is a unique equilibrium where investment never occurs.

Finally, our paper is related to a literature where individuals signal by choosing an in-

formation structure. A few examples are Rodrı́guez Barraquer and Tan (2022) (tasks on

the job), Degan and Li (2021) (precision of information), and Daley and Green (2014)

(grades across levels of education). In our case, the firm’s choice of price influences the

arrival rate of future information. In some cases, this gives rise to a form of endogenous

single crossing where high-quality firms separate themselves from low-quality firms by

choosing to price their products low, to invest in reputation. The biggest difference from

our model is that we assume a repeated dynamic structure where the choice of signal

structure is observed today, but its realization is observed in the future. For this reason,

(semi-)separating equilibria are less common in our model.

1.3 Model

Firm. A single long-lived firm repeatedly sells a single product. Time is continuous,

and the firm posts a price pt ∈ [0, 1] at each moment of time t ∈ R+. Production is

costless and the future is discounted at rate r. The quality of the firm’s product θt is low

or high θt ∈ {L,H}, with a prior probability q0 ∈ (0, 1) of being high at t = 0. Quality is

exogenously redrawn from the same prior distribution at a Poisson rate χ.4 High quality

is normalized to H = 1, and low quality is assumed to be strictly positive (L > 0).

Consumers. The market is composed of a stream of short-lived consumers that arrive

at Poisson rate λ. When a consumer arrives, she decides whether to buy a single unit

of the product. Consumer utility from purchasing a product of quality θt at price pt is

equal to ut = θt − pt + εt, where the consumer’s idiosyncratic ex-post taste shock εt is

drawn i.i.d. from a symmetric, unimodal, and mean-zero distribution with CDF Fε and

4Almost all results in the paper will be for a positive but “small” χ.
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PDF fε.5 This shock is realized only after the good is purchased, i.e., the consumer makes

the purchase decision based only on the expected quality net of the price. We normalize

the consumer’s outside option to 0, which implies each consumer purchases the good if

her expected utility from consumption of that product is greater than 0, with indifference

resolved in favor of purchasing.

Consumer Reviews. Consumer reviews are modeled by perfect good news. Specifically,

a consumer only leaves a good review at t if (1) she purchases a high-quality product,

θt = H , and (2) her realized ex-post utility exceeds threshold ū: ut = H − pt + εt ≥ ū. This

implies that conditional on the product of high-quality being purchased, the probability

of a good review being generated is decreasing in the price of the product:

Pr(εt > ū− (1− pt)) = 1− Fε(ū− 1 + pt)

Consumers never leave good reviews for a low-quality product, but as long as the product

is truly high quality, consumers are more likely to leave good reviews if their expected

utility from consumption is higher. The firm’s review history ht− = {t, τ1, ..., τn} is a

public history of good review arrival times before time t (τi < t) that also tracks the

current calendar time t.

Information. A consumer at t observes the review history ht− and the currently posted

price pt of a product, but not past prices, and forms an expectation about the firm’s current

quality θ̃(pt, h
t−) ∈ [L,H]. Then, she buys the product if her expected utility from the

consumption of that product is weakly positive: θ̃(pt, ht−) − pt ≥ 0. The firm is privately

informed about the quality of its product, but consumers are initially uncertain of it. The

firm also observes the review history prior to setting a price pt = p(θt, ht−).

Firm’s Problem. Even though consumers arrive at discrete times, the Poisson struc-

ture implies that expected discounted profit can be expressed as if consumers were ar-

riving as a flow. From the firm’s perspective, at any small interval of time (dt), a con-

sumer arrives with probability λdt. Thus the firm’s expected profit during dt is equal to

5Normal, logistic, uniform, and type-1 extreme value random variables are examples.
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1{θ̃(pt,ht−)≥pt)}λptdt, and we can write the firm’s expected discounted value at the t = 0 as

an integral:

max
{p(θt,ht−)}

E

[ +∞∫
0

e−rt1{θ̃(p(θt,ht−),ht−)≥p(θt,ht−)}p(θ
t, ht−) λdt

]

1.3.1 Model Discussion

Several ingredients in our model allow us to highlight the key economic forces present in

the environment without sacrificing tractability. We discuss these in turn.

The product quality in our model is exogenous and changing but highly persistent over

time: χ > 0 but small. This is mainly a technical assumption that guarantees the conti-

nuity of value functions at all points. It also guarantees that consumers do not learn the

product quality perfectly and allows us to produce more realistic price dynamics. Intu-

itively, there may be some idiosyncratic changes in the firm’s supply chain that impact its

product quality that are observable by the firm but out of its control.

A binary type with perfect good news is a tractable benchmark model in the reputa-

tion literature. To model the idea that consumers are reciprocal and more likely to leave

good reviews when the product is priced lower, we introduce an additional condition

that a consumer leaves a good review only if the overall utility, including an idiosyncratic

taste shock, is above some threshold. This model provides a micro-foundation and is

also isomorphic to modeling the arrival rate function of perfect good news explicitly as a

primitive. The ex-post taste shock εt captures unexpected differences in the consumer’s

individual experience of the product, such as faster or slower delivery of the product or

service in the restaurant.

Consumers in our model are fully Bayesian in the way they update their beliefs based on

the review history and the current price. However, they do not observe the full history of

past prices. These ingredients imply that the firm can invest in its reputation by choosing

off-path prices, and because the different types of firm may have different incentives,
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price signaling becomes a possibility. In this way, we allow for price signaling to occur in

any given period instead of assuming it away ex-ante.

1.3.2 Equilibrium Concept

We define a pure Markov Perfect Bayesian Equilibrium (MPBE) with the current firm’s

quality and the public belief about this quality, which we call the firm’s reputation, as the

Markovian states.

Definition 1 The firm’s reputation q is the public belief that the firm’s quality is high:

q(ht−) :=
θ̃(ht−)− L

H − L
∈ [0, 1]

The firm’s reputation is a single sufficient statistic that summarizes the whole review his-

tory and describes the quality distribution in the market for this review history. Under

the Markov assumption, the firm’s prices and consumers’ beliefs depend on the review

history only via the firm’s reputation. Definition 2 below formalizes that the firm’s rep-

utation is Markovian and the full review history is not necessary for updating the firm’s

reputation in equilibrium.

To proceed with defining the equilibrium concept, we first introduce an auxiliary func-

tion, the good news arrival rate, which is the arrival rate of good news for the high-quality

product sold at price p, conditional on that the high-quality firm sells its product at price

p if a consumer arrives:

λg(p) := λ · (1− Fε(ū− 1 + p))

Now we can formalize the equilibrium concept.

Definition 2 A pure Markov Perfect Bayesian Equilibrium (MPBE) consists of

10



1. Piecewise continuous6 in q firm’s pricing strategies: p(θ, q) : {L,H} × [0, 1] → [0, 1];

2. Value functions: V (θ, q) : {L,H} × [0, 1] → R+;

3. Consumers’ belief about prices: p̃(θ, q) : {L,H} × [0, 1] → [0, 1];

4. Consumers’ expectations about the firm’s quality: θ̃(p, q) : [0, 1]2 → [L,H]

such that:

(a) The value functions V (θ, q) solve the Hamilton-Jacobi-Bellman (HJB) equations (1.1) and

(1.2).7

(b) Prices p(θ, q) maximize the right-hand sides of HJB equations (1.1) and (1.2):

rV (H, q) = max
p

{
1{θ̃(p,q)≥p} · [λp+ λg(p) · (V (H, 1)− V (H, q))]

+ Vq(H, q) · dq
dt

+ χ(1− q0)(V (L, q)− V (H, q))

}
(1.1)

rV (L, q) = max
p

{
1{θ̃(p,q)≥p} · λp+ Vq(L, q) ·

dq

dt
+ χq0(V (H, q)− V (L, q))

}
(1.2)

where q jumps to 1 at rate 1{θ̃(p̃(q),q)≥p̃(q)} · λg(p̃(H, q)), and otherwise drifts as

dq

dt
= −1{θ̃(p̃(q),q)≥p̃(q)} · λg(p̃(H, q)) · q(1− q) + χ · (q0 − q) (1.3)

(c) Consumers’ expectations about the firm’s quality θ̃(p, q) is Bayesian for the on-equilibrium-

path prices {p(L, q), p(H, q)}.

(d) Consumers’ belief about price is correct p̃(θ, q) = p(θ, q).

We now explain each component of this definition:

• Strategies and beliefs. Definition 2 formalizes that the firm’s price and continuation

value depend only on its current quality and reputation: p(θt, q(h
t−)) = p(θt, ht−).

6A condition the guarantees its integrability and differentiability of the value function.

7Where Vq(θ, q) is a left or right derivative ∂V (θ,q)
∂q depending on whether dq

dt is negative or positive.
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Consumers’ belief about prices for each type of firm depends only on the current

reputation of the firm, and their expectations about the firm’s quality depend only

on the current reputation of the firm and the price of the product: θ̃(pt, q(h
t−)) =

θ̃(pt, h
t−).

• HJB. Equations (1.1) and (1.2) are recursive formulations of the low- and high-

quality firms’ problems. The first line of (1.1) includes the revenue stream as well

as the possibility of getting a value jump as the reputation jumps from q to 1 after

receiving a good review. It is multiplied by an indicator function because the firm

gets the revenue and reviews only if a consumer buys the firm’s product at the cho-

sen price. The second line reflects how the future continuation value drifts down

without good reviews and might also jump to a different type’s value if the quality

is redrawn.

• Law of motion of reputation. To derive the law of motion for the firm’s reputation

(1.3), we need to understand how the consumers form their beliefs about the firm’s

quality based on the firm’s review history. The review history process is governed

by the prices chosen by the firm. Consumers do not observe past prices, so they use

their beliefs about those prices in order to update their belief about the firm’s quality

in the absence of good news. Intuitively, consumers ”fill in” unobserved past prices

using their understanding of equilibrium and the review history.

Consumers believe that the high-quality firm charges price p̃(H, q) and receives a

good review at arrival rate λg(p̃(H, q)) · 1{θ̃(p̃(H, q), q) ≥ p̃(H, q)}
]
. We derive the

law of motion for the firm’s reputation q using the fact that without redrawing the

state, it is a martingale and it jumps to 1 immediately after a good review.

Otherwise, since the time of the last review, the reputation drifts down. An addi-

tional term χ · (q0 − qt) represents the mean reversion of the firm’s quality because

the quality is stochastically redrawn at rate χ. The HJB equations include all these

events to calculate the expected continuation value of each type of firm.

A set of acceptable prices is a set of prices at which consumers purchase the good:
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Pq := {p ∈ [0, 1]|θ̃(p, q) ≥ p} (1.4)

Any type of firm at any reputation level would only choose a price for its product among

the acceptable prices p ∈ Pq (1.4), because selling today adds weakly positive revenue to a

stream of payoffs and allows a possibility of getting good news, which increases revenue

in the future.8 Thus the law of motion of the firm’s reputation in equilibrium can be

expressed as

dq

dt
=− λg(p(H, q)) · q(1− q) + χ · (q0 − q) (1.5)

There is a signaling game at every reputation level that endogenously defines both the

firm’s prices and consumers’ expectations, which prohibits us from solving for full HJB

equations paths for a given consumers’ expectation function. Thus, to derive value func-

tions and MPBE, we first need to define and solve an auxiliary signaling game as a static

version of our model played at a single moment for a given reputation level, with the

firm’s payoffs derived from the HJB equations (1.1) and (1.2).

To be a signaling equilibrium at q for a given value function V (H, q), the firm’s prices

must be optimal

p(H, q) ∈ argmax
p∈Pq

{λp+ λg(p)(V (H, 1)− V (H, q))} (1.6)

p(L, q) = maxPq

and the consumers’ expectations function is correct for the equilibrium prices, i.e.,

1. θ̃(p(L, q), q) = L and θ̃(p(H, q), q) = H , if p(L, q) ̸= p(H, q) OR

2. θ̃(p(L, q), q) = θ̃(p(H, q), q) = qH + (1− q)L, if p(L, q) = p(H, q).

8We show in online appendix Section 1.8.5 that ∀q : V (H, 1) ≥ V (H, q)
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Equation (1.6) includes only the parts of the firm’s HJB (1.1) that depend on the cho-

sen price and therefore reflect the same pricing incentives for the firm. Equation (1.6)

illustrates the main trade-off in the model. Conditional on choosing a price that signals a

quality high enough to sell today, a higher price increases the revenue today but decreases

the arrival rate of good news (for the high type), which decreases future payoffs.

The low type’s arrival rate of good news is always zero, and therefore the payoff is in-

creasing, and p(L, q) = maxPq. We continue the analysis of this trade-off for the high

type and how it affects the signaling equilibrium and MPBE structure in Section 1.4.

Therefore MPBE conditions (a)-(d) are satisfied if and only if, (A) the firm’s prices and

consumers’ expectations satisfy the equilibrium conditions of the signaling games at (al-

most) every q for the given value functions, and (B) the value functions are derived from

HJB equations (1.1), (1.2) for given price functions with the law of motion for q given by

equation (1.5).

1.4 Analysis

In this section, we derive necessary and sufficient conditions for underpricing in equilibria:

pricing below the consumer’s expected value of the product at the given reputation of the

firm θ̃(q) := qH + (1− q)L.

First, we analyze the case with a uniform taste shock distribution, which allows us to

illustrate the main forces in the model and introduce a continuity equilibrium refinement.

In this case, we show that underpricing will never arise in equilibrium and different firm

types pool at consumers’ willingness to pay θ̃(q).

Second, we solve the general case of the model and characterize the necessary and suf-

ficient condition under which underpricing occurs in equilibrium. A key element of the

model is the taste shock CDF Fε and a related primitive object that we call the adjusted

hazard rate:
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(a) Low adjusted hazard rate (b) High adjusted hazard rate

Figure 1.1

hε :=
λ(Fε(ū− 1 + L)− Fε(ū− 1))/L

λ(1− Fε(ū− 1 + L)) + r
(1.7)

The adjusted hazard rate represents the value of underpricing to the firm. The numerator

of this expression is equal to the density of reviewers at p = 0 if L → 0, and the average

density of reviewers between p = 0 and p = L if L > 0. It reflects the density of reviewers

the firm can attract through underpricing when its reputation is lowest. The denominator

includes the mass of consumers who leave reviews regardless of the firm’s underpricing

at its lowest reputation level. Thus, this expression is equal to the ratio of the marginal to

the inframarginal reviewers (see Figure 1.1).

Additionally, the adjusted hazard rate is affected by the discount rate and the consumer

arrival rate. A higher discount rate makes the current marginal reviewers less valuable.

A higher consumer arrival rate makes the review channel, and therefore the marginal

reviewers, more important.

In Theorem 1, we show that there is underpricing in (every) MPBE if and only if the

adjusted hazard rate is high (hε > h∗). Otherwise, there is no underpricing in the unique

MPBE.
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1.4.1 Uniform Case

In this subsection, we analyze a version of our model where the taste shock ε is distributed

uniformly. In this natural case, we show that the possibility of good news in the future

crowds out any incentive of the firm to underprice its product today, and the reputational

incentives do not lead to underpricing.

Assumption 1 The taste shock has a uniform distribution with sufficiently large support (a ≥

ū ≥ 1− a):

ε ∼ U [−a, a]

Under Assumption 1, we can show that λg is linear in price:

λg(p) = λ(1− Fε(ū− 1 + p)) = λ · 1 + a− ū− p

2a
(1.8)

We will show that underpricing does not occur, in two steps: First, we will solve the firm’s

problem and derive the pricing incentives for different types of firm in order to charac-

terize all possible equilibria of the auxiliary game. Second, we will characterize a unique

(in terms of prices) equilibrium in this model under a continuous belief refinement.

We can see three different components of the pricing incentives in the high-quality firm’s

objective function in equation (1.6) and (1.4). The reputational incentive is the combina-

tion of the probability of the good news with the value jump λg(p) · (V (H, 1) − V (H, q)).

The myopic profit maximization incentive is reflected by λp. The signaling incentive and

the demand confound the other two incentives, because firms must choose a price at

which the consumer’s belief is sufficiently high to purchase the good (p ∈ Pq).

We will analyze the first-order condition (FOC) of the firm’s problem formulated in (1.6)

subject to the selling-price constraint Pq to determine the optimal price p(H, q). We de-

termine the pricing incentives by differentiating the firm’s objective. Because the firm’s
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problem is linear in p, the sign of the FOC will determine if H chooses the maximum or

the minimum price in Pq:

∂

∂p
[λp+ λg(p) · (V (H, 1)− V (H, q))] = λ− λ

2a
· (V (H, 1)− V (H, q)) (1.9)

Lemma 1 9 For small χ10, the high-type firm always prefers the highest possible price, i.e., (1.9)

is positive and p(H, q) = maxPq (1.4).

This lemma implies that for a low redrawing rate χ, the high-quality firm has no incen-

tives to underprice its product. A high-quality firm gains the most from receiving a good

review, (V (H, 1) − V (H, q)), when its reputation q and the current value V (H, q) are low.

However, when the firm’s reputation is low, the product sells only at low prices. Because

the firm always sells in any profit-maximizing strategy, the only deviations we need to

consider are those from already low prices to even lower prices.

The marginal benefit of reducing the price today is decreasing the expected time until

getting a good review and jumping to a high reputation level. Without good reviews at

low reputation levels, the firm also has to charge low prices in the future. For a uniform

distribution of taste shocks, the density of marginal consumers that the firm can win by

underpricing, λ
2a

, is low relative to the mass of consumers who will leave reviews regard-

less of whether the firm uses underpricing today or will use it in the near future (because

the density in the tails of the uniform distribution is high). Thus, underpricing does not

significantly reduce the expected time until getting a good review, and the benefit of it is

lower than the cost of sacrificing the profit today.

From an algebraic perspective, one could try to break this result by making the λg(p)

function steeper, i.e., increasing the density of marginal consumers λ′
g(p) =

λ
2a

in order to

make the continuation value more sensitive to price. However, this effect is completely

counteracted by also increasing the reviews arrival rate at q ≈ 0, when the firm is forced

9The proof is provided in the online appendix, Section 1.8.1.

10There exists χ∗ > 0 such that for any χ < χ∗
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to charge p ≈ 0 no matter what: λg(0) ≥ λ
2a

. Increasing this rate decreases the value jump

V (H, 1)−V (H, 0), because a review will arrive very soon when q = 0 and q will jump to 1

almost immediately. For this reason, the firm has no incentives to decrease the price when

the firm’s reputation level is low because the good news will arrive very soon regardless

of whether the firm uses underpricing.11

Thus, the high and low types have the same pricing incentives and, as a result, all equi-

libria under uniform taste shocks will be pooling equilibria. The problem is that both

types of firm are choosing the same price for each equilibrium belief, so on-path behavior

pins down only one point of the equilibrium belief function. Thus there is a continuum

of equilibria with pooling at any given price point and fully pessimistic off-path beliefs

at all other prices (θ̃(p, q) = 1{p=p(H,q)}θ̃(q)). Further, many common refinements do not

help select an equilibrium because both types of firm have exactly the same preferences

over actions for any consumers’ belief functions. To remedy this problem, we introduce a

continuity refinement.12

Assumption 2 For all q, the expectation function θ̃(p, q) is continuous in p.

This continuity refinement requires that small differences in price do not cause large

jumps in perceived quality. This requirement is reasonable in the context of online mar-

ketplaces such as Amazon: We do not expect consumers to believe a product priced at

$99.99 has a significantly different quality than a product priced at $100. Under this re-

finement, there is a unique equilibrium.

Proposition 1 Under Assumptions 1 and 2, and for small χ, no underpricing is the unique

MPBE: the high and low types pool at the willingness to pay, p(L, q) = p(H, q) = θ̃(q), at any

reputation level q.

11This and the previous arguments can be thought of as a form of the one-shot deviation principle, where
we consider a price path that is equal to consumers’ willingness to pay at every reputation level of the firm,
and then show one-shot price cuts are not profitable.

12A similar continuity refinement is used in Gertz (2014).
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Proof. We show that any pooling equilibrium with the pooling price strictly below con-

sumers’ belief (p∗ < θ̃(q)) cannot be an equilibrium of the signaling game if the belief

function is continuous by contradiction. If it is, then by definition of the equilibrium,

the expectations θ̃(p, q) should be correct on-path (for p∗) and strictly above the price

θ̃(p∗, q) > p∗. By continuity of θ̃(p, q), for a small range of prices around p∗, this con-

sumers’ expectations about the quality of the product is still above the price. Thus, con-

sumers would also buy the good for a price a little higher than the equilibrium price

and both types of firm would prefer to deviate to that higher price (see Figure 1.2). This

contradicts optimality. Therefore, in the unique equilibrium of the auxiliary game at any

q, both types of firm always charge the consumers’ willingness to pay: θ̃(q). Thus, the

unique MPBE features no underpricing. ■

(a) Unreasonable Underpricing (b) NUP Proof by Contradiction

Figure 1.2

1.4.2 General Case

In this section, we derive the main results of the paper for a general class of unimodal taste

shock distributions and show that underpricing occurs if and only if the adjusted hazard

rate, hε, is sufficiently high. We show that any equilibrium is defined as a partition of the

firm reputation interval, with no underpricing at higher reputation levels and possibly

full underpricing at lower reputation levels.

If underpricing occurs, the high-quality firm charges lower prices than the low-quality

firm, and prices are fully informative about quality. This happens because the high-

19



quality firm values establishing its reputation, while the low-quality firm does not. The

high-quality firm knows that its quality is high and it only needs to “convince” consumers

that this is so, to start collecting high profits. Thus, the high-quality firm prefers to under-

price its product heavily when its current reputation is low.

In contrast, the low-quality firm at the lower reputation level cannot “convince” con-

sumers that the quality of its product is high, not even by charging low prices. Thus, the

best the firm can do is collect as much profit as possible given its reputation, which entails

selling the product at face value to consumers, whereas the high-quality firm prefers to

price its product even lower.

Throughout this section, we maintain two important assumptions. First, we retain our

continuity belief refinement introduced in the linear case (Assumption 2). Second, we

assume ū ≥ 1, which implies that reviews are sufficiently selected, and therefore the

review arrival rate λg(u) is convex (Lemma 2). This assumption is equivalent to requiring

that the fraction of consumers leaving reviews be never above 1/2. This requirement is

consistent with empirical evidence that a very small fraction (1 out of 1000) of consumers

leave a review (Hu et al. (2017)).

Lemma 2 If ū ≥ 1, λg(p) is decreasing and convex.

Proof. Ex-ante utility, ut, is bounded by 1 from above in any equilibrium. Thus ut − ū is

below zero if ū ≥ 1. A random variable that is unimodal has a CDF that is concave above

its mode (zero for ε); thus Fε is concave over the relevant domain of ū − 1 + p. Finally,

1 − Fε(ū − 1 + p) is a linear increasing function composed within a convex decreasing

function and is thus decreasing and convex. ■

We show that convex good news arrival rate functions can induce underpricing and sep-

arating equilibria at lower reputation levels. Intuitively, a convex arrival rate means that

the good reviews arrival rate function is more sensitive to price when the price is low.

In Theorem 1, we will show precisely which distributions Fε lead to underpricing for

small χ. The necessary and sufficient condition for underpricing is that hε (1.7) be suffi-

ciently high or Fε be convex “enough” around the marginal consumer point, or the taste
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shock be sufficiently concentrated around its mean. If Fε is linear or nearly linear, then

there is no underpricing. On the other hand, making Fε steeper between ū−1 and ū−1+L

generates underpricing.

Theorem 1 An equilibrium exists.

1. If hε <
1

1−L
, then for small χ, no-underpricing is the unique MPBE:

∀ q : p(L, q) = p(H, q) = θ̃(q)

2. If hε > 1
1−L

, then for small χ, there must be underpricing at low reputation levels and no

underpricing at high reputation levels in any MPBE, i.e., ∃ 0 < q∗ < q∗∗ < 1:

∀q < q∗ : p(L, q) = L, p(H, q) = 0

∀q > q∗∗ : p(L, q) = p(H, q) = θ̃(q)

High hε corresponds to a case where there is a large density of consumers who can be

convinced to leave a review after the firm cuts the price of its product from L to 0 and a

small mass of consumers who leave reviews even if the firm does not cut the price. When-

ever this is the case, the high-quality firm with a low reputation exploits the opportunity

because it knows that if a customer leaves a review, the product will be revealed for what

it truly is: high quality. The high-quality firm with a good reputation does not cut the

price of its product, because the gains it obtains from a good review are small when the

firm’s reputation and the profit stream are already high.

In contrast, the low-quality firm, at any reputation level, knows that regardless of how

low it cuts the price of its product, no customer will leave a good review. Therefore it

sets the price of its product as high as it can to exploit its current reputation as much as

possible. In this way, the two types of firm engage in separate pricing strategies at low

reputation levels, but pool and engage in the same pricing strategy at high reputation

levels.
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Proof. We prove Theorem 1 in three steps: First, we discuss how the high-quality firm’s

pricing incentives determine the signaling-game equilibria at different reputation levels

and characterize all possible MPBEs as a partition of the reputation interval. Second, we

prove equilibrium existence and show that more generally there is a dichotomy: either

there is a unique equilibrium with no underpricing or all equilibria have underpricing.

Third, we derive the condition on λg along which the dichotomy occurs and translate it

into a condition on the primitives.13

First, similarly to 1.4.1, we first need to analyze the high-quality firm’s pricing incentives

for a given reputation q. Let us fix all the future strategies of the firm and consumers,

which determines V (H, q) and V (H, 1), and analyze an auxiliary signaling game at q. The

high-type (H) firm’s problem is characterized by (1.6):

p(H, q) ∈ argmax
p∈Pq

{λp+ λg(p)(V (H, 1)− V (H, q))}

Because λg(p) is convex, the whole objective function in (1.6) is also convex in p, for any

given (V (H, 1) − V (H, q)). This implies that the optimal solution to (1.6) is bang-bang:

p(H, q) ∈ {0,maxPq}.

Given that the low type always plays p(L, q) = maxPq and the high type plays 0 or maxPq,

there can be two possible equilibria in the auxiliary game: separating or pooling. Know-

ing the consumer’s preference, we can characterize the two equilibria. In any separating

equilibrium, p(H, q) = 0 and p(L, q) = L because the consumers are not ready to buy an

obviously low-quality good for any price above L, and they are ready to buy any kind of

good for any price weakly below L. In the pooling equilibrium p(L, q) = p(H, q) = θ̃(q)

because of the continuity refinement.

Because all these equilibrium prices are within [0, θ̃(q)] interval, we need to determine the

high type’s preferences over prices on this interval, or, more specifically, its preferences

over 0, L, and θ̃(q). Both the continuation value and the public belief about the quality

q (1.3) are continuous functions of time, so the value function V (θ, q) is also a continu-

13The full proof is provided in the online appendix, Section 1.8.2.
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(a) high reputation (b) low reputation (c) intermediate reputation

Figure 1.3: Pricing Incentives

ous function in any MPBE. To simplify the next argument, we assume just for now that

V (H, q) is monotone increasing in q.14

∂

∂p

(
λp+ λg(p)(V (H, 1)− V (H, q))

)
= λ+ λ′

g(p)(V (H, 1)− V (H, q)) (1.10)

We start by showing that pooling is a unique equilibrium of the auxiliary game at high

reputation levels. When q is high and V (H, 1)−V (H, q) is small (since V (H, q) is continu-

ous), the static profit motive dominates the reputational incentive and (1.10) is positive for

any p. Therefore, the objective in (1.6) is monotone increasing in p and H always prefers

higher prices to lower prices (see Figure 1.3a), thus p(H, q) = maxPq and pooling at θ̃(q)

is a unique equilibrium of the auxiliary game. Because of the continuity of V (H, q), there

must be a non-empty interval of high reputations at which this is a unique equilibrium of

the auxiliary game.

Next, we show that separating is a unique equilibrium of the auxiliary game for low

reputation levels. When reputation q is low and the value gap V (H, 1)− V (H, q) is large,

the high type prefers p = 0 to p = θ̃(q) and therefore to all prices in [0, θ̃(q)] (see Figure

1.3b). This happens because the reputational incentive becomes more significant than

the static motive in (1.10). In this case, the high type unambiguously chooses 0 in any

14We relax this assumption in the full proof in the online appendix, Section 1.8.2.
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equilibrium Pq, and separating p(H, q) = 0, p(L, q) = L is a unique equilibrium of the

auxiliary game.

Finally, if q is intermediate, such that both θ̃(q) and V (H, 1) − V (H, q) are sufficiently

large for the high type to prefer p = θ̃(q) to p = 0 to p = L (see Figure 1.3c). In this

case, both pooling and separating equilibria are possible in the auxiliary game. In the

pooling equilibrium, both types charge p = θ̃(q) and have no profitable deviations. In

the separating equilibrium, the high type would like to deviate from 0 to θ̃(q), but it is

not available because maxPq = L. Thus, neither type has a profitable deviation from

p(H, q) = 0 and p(L, q) = L.

This auxiliary-game equilibria characterization suggests that equilibria can be described

as partitions with separating, or underpricing, at low reputation levels, pooling at high

reputation levels, and multiple equilibria at intermediate reputation levels (we formalize

how this partition and the thresholds q∗ and q∗∗ are defined in the appendix).

Second, we prove equilibrium existence by constructing a partition equilibrium with un-

derpricing below some reputation threshold and no underpricing above it. We start with

a no-underpricing strategy profile and keep increasing the underpricing interval of the

partition until it becomes an equilibrium (a formal proof is provided in the appendix and

relies on the intermediate value theorem).

Then we show generally that if there exists an equilibrium with complete pooling and

no underpricing, then it is unique. Otherwise, there must be some non-empty interval

of low reputations where the auxiliary game exhibits separating equilibria. We show it

by proving that a complete pooling equilibrium generates the highest values for the high

type at any q, including V (H, 1) (the full proof relies on comparing equilibria values by

imitating the MPBE with underpricing as a long deviation from the MPBE without un-

derpricing). It also generates the largest gain from a positive review, which is the value

gap V (H, 1)− V (H, 0) (this follows from the 1.1). Underpricing cannot occur in any equi-

librium, because the high type has no incentive to use underpricing even when the value

gap is largest.
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Finally, the condition separating between cases (1) and (2) of the theorem follows from

the HJB equation (1.1). If χ is small, then approximately V (H, 1) = λ/r. Then V (H, 0) =

(λg(L) · V (H, 1) + λL)/(λg(L) + r). Then for the high type to prefer p = L to p = 0,

the absolute value of the average slope of λg between them (λg(1) − λg(L))/L should be

smaller than λ/(V (H, 1)− V (H, 0)). We can rewrite this condition as

λg(1)− λg(L)

L
<

λg(L) + r

1− L

or as equation 1.11 in terms of the model primitives:

Fε(1− ū)− Fε(1− L− ū)

L
<

Fε(1− L− ū) + r/λ

1− L
(1.11)

which is equivalent to hε <
1

1−L
. ■

1.5 Quality and Taste Differentiation

In this section, we discuss how the spread of the taste shock distribution, consumer ar-

rival rate, and discount factor affect the occurrence of underpricing in equilibrium. A

larger horizontal differentiation relative to vertical differentiation leads to a less likely

occurrence of underpricing in equilibrium due to the highly heterogeneous consumer re-

view behavior, which cannot be easily affected by the price. The following corollary gives

a partial characterization of the set of situations when underpricing does not occur.

Corollary 1.1 15 Take a set of primitives L, q0, λ, r, Fε. Then

1. There exists α∗ < +∞, such that for any α > α∗ and ε′ = αε no underpricing is the unique

MPBE (for small χ).

2. There exists λ∗ > 0, such that for any λ < λ∗ no underpricing is the unique MPBE (for

small χ).

15The full proof is in the online appendix.
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3. There exists r∗ < ∞, such that for any r > r∗ no underpricing is the unique MPBE (for

small χ).

4. There exists L∗ < 1, such that for any L > L∗ no underpricing is the unique MPBE (for

small χ).

The first statement of Proposition 1.1 states that increasing the consumer taste shock

spread above some threshold (by multiplying it by a constant) guarantees that there is

no underpricing in equilibrium. The same is true if the discount rate is sufficiently large,

the consumer arrival rate is sufficiently small, or the low quality is sufficiently high.

(Fε(ū− 1 + L)− Fε(ū− 1))/L

1− Fε(ū− 1 + L) + r/λ
<

1

1− L
(1.12)

To prove show these comparative statics, we rewrite the no-underpricing condition from

Theorem 1 as (1.12). Increasing (resp., decreasing) any of the parameters from 1–4 above

(resp., below) some threshold decreases the left-hand side of (1.12) below its right-hand

side 1
1−L

and thus guarantees the equilibrium from the first case of Theorem 116.

1.6 Discussion and Future Work

1.6.1 Welfare Analysis

Underpricing benefits consumers at the expense of the low-quality firm. To illustrate this,

compare our model to a myopic benchmark. Consider a model where the firm ignores its

ability to influence future reviews through prices. In this myopic model, the first-order

conditions of the low- and high-quality firm are the same, with both desiring to price their

products at consumers’ willingness to pay, which implies zero consumer surplus.

Whenever the adjusted hazard rate is high, consumer surplus is unambiguously higher

under our baseline model than in the myopic benchmark via the direct benefit of paying

16See online appendix Section 1.8.3 for a detailed proof.
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a strictly lower price for a range of reputation levels. Moreover, the high-quality firm sets

a lower price to speed up the arrival rate of good reviews. When this happens, the low-

quality firm is revealed to be low quality and forced to charge exactly its market value.

Although the welfare benefits of underpricing seem straightforward ex-post, they are not

obvious ex-ante. This is because once a good review arrives, the price increases to 1, and

consumer surplus is 0. Thus revealing the quality of the product does not directly lead to

high consumer surplus.

1.6.2 Price Dynamics

In our model, a combination of quality changes, review arrivals, and (in some cases)

strategic underpricing generates nontrivial price dynamics over time. We highlight sev-

eral examples in turn.

Consider the case with uniform consumer taste shocks so that there is no underpricing.

Then the price moves downward over time until a good review arrives, at which point

the price jumps to 1. The true quality of the firm’s product matters only indirectly via the

reputation dynamics.

Next, consider the case when the adjusted hazard rate is high enough so that there is

underpricing. If a good review arrives, the price jumps immediately to 1 and then moves

downward until it reaches a critical threshold. At this point, what occurs depends on the

quality of the firm’s product. If it is high quality, the firm will engage in underpricing

and the price will suddenly drop to 0 and stay there until a good review arrives. If the

product is low quality, the price will still drop, but only to L > 0. The price will remain at

L until the quality becomes high, at which point the firm will drop the price further to 0

and engage in underpricing.

The taste shock distribution is the primitive of the model which determines whether un-

derpricing occurs. Because preference distributions are typically unobserved, we may

want an alternative empirical test for underpricing. Price dynamics provide such a test.

When underpricing is occurring, we should observe both upward jumps in prices when

27



good reviews arrive and downward jumps in prices when the firm’s reputation is low.

When underpricing is not occurring, we should observe only upward jumps in prices at

all levels of a firm’s reputation.

In many models with uncertain quality, firms price their products low early on in order

to build their reputation later, a strategy called introductory pricing.17 Although there are

conceptual differences between our model and many of those in the literature, underpric-

ing in our model can be viewed as a form of introductory pricing. To see this, consider

when high-quality products are uncommon but nevertheless a firm begins its life with a

high-quality product. Then the firm’s reputation will start out low, and in some cases, the

firm will underprice its product initially in order to build reputation, which it will exploit

via higher prices when a good review arrives. Crucially, introductory pricing of this type

occurs only for certain consumer taste shock distributions.

1.6.3 Price Signaling

In our model, when price signaling occurs, the firm with a high-quality product signals

with a low price. This may seem to clash with past work, where high-type firms typically

signal with higher prices (Milgrom and Roberts (1986)). However, to better understand

our result, recall that the high-quality firm prices its product lower than the low-quality

firm only conditional on reputation. However, from an unconditional perspective, high-

quality firms are more likely to have high reputations at any given moment of time be-

cause they have some probability of receiving good reviews, while low-quality firms do

not. As a result, there is still a sense in which firms with high-quality products set gener-

ally higher prices: they enjoy a high reputation for longer.

Even with this qualification, it is still true that when price signaling occurs, a price of 0

signals high quality, while a price of L > 0 signals low quality. To understand why this

occurs, we can ask what single crossing is supporting separation. Recall that there is no

difference in the costs of producing high- and low-quality products, and conditional on a

17See for example, Shapiro (1983).
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firm’s reputation, there is no difference in demand. The only source that could generate

single-crossing is the review process. This is why the high-quality firm has an incentive

to underprice its product, while the low-quality firm does not: using underpricing today

can increase the arrival rate of good reviews in the future.

1.6.4 Perfect Bad News

In our main model, we consider a review process with perfect good news. Under this

model, the interesting strategic choices and forces operate when the firm has a high-

quality product. When underpricing occurs, it is used by a firm with a high-quality

product attempting to improve its low reputation. One could also consider a perfect-

bad-news review process, where consumers leave reviews only for low-quality products.

Our framework can be easily adjusted to accommodate such an extension.

In this alternative model, the interesting strategic choices and forces operate when the

firm has a low-quality product. If underpricing occurs, it will be used by the low-quality

firm with a good reputation attempting to preserve its reputation. In this case underpric-

ing can harm consumers, because it allows the low-quality firm to slow down consumer

learning.

In general, the forces in this model will differ from those in the perfect-good-news model.

However, when idiosyncratic taste shocks follow a uniform distribution, it continues to

be true that no underpricing occurs.18 In this sense, one of the main results of the paper

is robust to some alternative review processes.

In terms of price dynamics, our benchmark model produces a smooth downward trend

in price punctuated by sudden upward jumps when good reviews are left. An alternative

model with perfect bad news produces the opposite: a smooth upward trend in price

punctuated by sudden downward jumps when bad reviews are left.

18See online appendix Section 1.8.4 for formal results.
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1.7 Conclusion

This paper proposes a model of dynamic pricing, where a firm privately informed about

the quality of its product faces a market of rational consumers and a rating system that

depends on both product quality and net utility delivered. The model allows us to fully

account for three important economic forces at play in many online markets: static profit

maximization, price signaling, and ratings-based reputation building. We characterize a

simple necessary and sufficient condition for when such a review system leads to under-

pricing in equilibrium.

30



1.8 Appendix [Latest Version of Online Appendix]

1.8.1 Section 4.1 Proofs

Proof of Lemma 1. We prove this lemma by contradiction. First, we notice that the high-

quality firm’s value V (H, q) at any q cannot be lower than that of charging p = 0 until

receiving a good review. The high type can always charge zero price at any reputation

level, because the consumers are ready to buy a product of any quality at any price weakly

below L.

Moreover, V (H, 1) < λ/r; that is, selling the product to every consumer arriving at the

maximum price consumers are possibly ready to pay.

Then for small χ, rearranging (1.1) together with (1.3) under Assumption 1 implies

λ

2a
·(V (H, 1)−V (H, q)) ≤ λg(0)·(V (H, 1)−V (H, q)) ≤ rV (H, 0) ≤ rV (H, 1) ≤ r∗(λ/r) = λ.

Therefore,

λ− λ

2a
· (V (H, 1)− V (H, q)) ≥ 0.

This inequality immediately implies that 1.9 is positive for any q. ■

1.8.2 Section 4.2 Proofs

To proceed with the characterization of the set of all possible equilibria, we require ad-

ditional notation. First, we need to determine what happens to the firm’s reputation on

path in any given equilibrium.

Definition 3 The lowest rating is q := sup{q ∈ (0, 1)|dq/dt ≥ 0} for a given equilibrium price

p̃(H, q).

Lemma 3 The lowest rating is well defined, and q ∈ (0, q0). Without good reviews, the firm’s

rating drifts down until it reaches q, where it stays forever.
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Proof. By definition of q, dq/dt < 0 for q > q and q drifts down without good reviews.

When q drifts down to q, it does not drift up or down anymore and stays at q without

good news. Thus, all reputation levels q < q are off-path. ■

Proof of Theorem 1. In equilibrium, H’s price p̃(H, q) determines q, and given q, equilib-

rium prices should be defined on [q, 1]. We are now ready to define equilibrium partition

thresholds for a given equilibrium and unify those partitions across all equilibria as q∗

and q∗∗:

q∗ = inf
all equilibria

inf{q ∈ [q, 1]|p(L, q) > L}

q∗∗ = sup
all equilibria

sup
{
{q ∈ [q, 1]|p(L, q) < θ̃(q)} ∪ {q}

}
.

The auxiliary-game equilibria characterization suggests that equilibria can be described

as a partition with separating, or underpricing, at low reputation levels, pooling at high

reputation levels, and multiple equilibria at intermediate reputation levels. By the def-

inition of thresholds q∗ and q∗∗, [0, q∗) and (q∗∗, 1] are separating and pooling regions,

respectively; that is, in any equilibrium, high and low types always pool at θ̃(q) for any

q ∈ (q∗∗, 1] and always separate at p(L, q) = L, p(H, q) = 0, respectively, for any on-path

q ∈ [0, q∗). For a range of reputations [q∗, q∗∗], the prices can vary across multiple equi-

libria. Now we need to show the existence of MPBE and characterize the equilibrium

dichotomy in terms of these thresholds.

Lemma 4 MPBE exists.

Proof. We prove the existence of MPBE by constructing a bi-partition equilibrium with

underpricing below some reputation threshold and no underpricing above it: q∗ = q∗∗.

We start with a no-underpricing strategy profile q = q∗ = q∗∗ and check if it is an equi-

librium from the firm’s optimality perspective. If it is not, then the high type wants to

underprice at low ratings, and we start increasing the underpricing region by increas-

ing q∗ = q∗∗. Our goal is to find a threshold with which the H’s pricing incentives are
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consistent (there are multiple such thresholds), for instance, at which H is indifferent be-

tween p = 0 and p = θ̃(q) (this would be just one possible equilibrium). We know that

at q∗ = q∗∗ = q H strictly prefers 0. Also, if q∗ = q∗∗ = 1, then V (H, q) = 0 for any q

and H prefers any positive price to 0. By the continuity of the values in q∗ = q∗∗, there

exists a threshold at which H is indifferent between p = 0 and p = θ̃(q), and this will be a

threshold for which the strategy profile is an equilibrium. Thus, an equilibrium exists. ■

Then we show generally that if there exists an equilibrium with complete pooling and

no underpricing, then it is unique: q∗ = q∗∗ = q. Otherwise, there must be some non-

empty interval of low reputations where the auxiliary game exhibits separating equilibria:

q∗ > sup q > 0. We show that this interval exists by proving that a no-underpricing

equilibrium generates the highest values for the high type at any q, including V (H, 1) and

therefore the largest gap V (H, 1)−V (H, q) (this follows from the 1.1). Then, underpricing

cannot occur in any equilibrium, because the high type has no incentive to underprice in

the NUP MPBE, where the value gap is largest.

Lemma 5 If there are multiple MPBE and no-underpricing is one of them, then it generates the

largest V (H, 1) among all MPBE.

Proof. Consider any other possible equilibrium with underpricing at some reputation

levels. We can recreate it as a long off-path deviation of H from the NUP equilibrium,

because pricing at 0 is always allowed. This deviation is not profitable for H , because we

assumed that complete pooling is an equilibrium and no single-shot or longer deviations

are profitable. Thus the pooling equilibrium value is higher than the off-path deviation

one at any q. The off-path deviation value, on the other hand, is higher than the value in

the underpricing equilibrium we picked because the prices are the same for every q, but

the public belief q drifts down slower in the off-path deviation, because the consumers do

not expect lower prices and a higher good news arrival rate in the past, which benefits H .

This implies that the value in the pooling equilibrium is higher than in the underpricing

one. The proof is concluded.■
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Thus if no-underpricing is an equilibrium, it generates the largest V (H, 1) and thus the

largest gap V (H, 1)− V (H, q) because

V (H, 1)− V (H, q) =
(r2 + rχ)V (H, 1)− (r + χ)λL

r2 + rχ+ (r + χq0)λg(L)
,

which is increasing in V (H, 1). The expression follows from equations (1.1 and (1.2).

The next step is to show that if no-underpricing is an MPBE, it is unique. Here we explic-

itly rely on small χ. Specifically, when χ is small, q is small and θ̃(q) ≈ L. Thus the choice

between p = 0 and p = L is nearly the same as between p = 0 and p = θ̃(q). Then by the

continuity of the problem in χ, if χ is small enough, H prefers p = L to p = 0 because it

prefers p = θ̃(q) to p = 0. Therefore, there can be no underpricing signaling equilibria with

the largest gap V (H, 1) − V (H, q), which implies that there cannot be any underpricing

signaling equilibria (because all other value gaps V (H, 1)− V (H, q) are smaller).

The previous point implies that the condition separating between cases (1) and (2) of the

theorem can be characterized as an explicit condition for when no-underpricing is an

MPBE. This condition follows directly from the HJB.

If χ is small, then V (H, 1) ≈ λ/r and V (H, 0) ≈ (λg(L) · V (H, 1) + λL)/(λg(L) + r). Then

for the high type to prefer p = θ̃(q) ≈ L to p = 0, the absolute value of the average slope

of λg between them (λg(1) − λg(L))/L should be smaller than λ/(V (H, 1) − V (H, 0)). We

can rewrite this condition as

λg(1)− λg(L)

L
<

λg(L) + r

1− L

or as equation 1.11 in terms of the model primitives:

Fε(1− ū)− Fε(1− L− ū)

L
<

Fε(1− L− ū) + r/λ

1− L
,

which is equivalent to hε <
1

1−L
.
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Finally, when relaxing the monotonicity of V (H, q) assumption, we need to show that the

underpricing and no-underpricing regions in case (2) of Theorem 1 are non-empty. This

follows from the continuity of V (H, q) in q. Specifically, if hε > 1
1−L

, then H prefers to

underprice at q and at least some small interval of q’s around it. ■

1.8.3 Section 4.3 Proofs

Proof of Comparative Statics. Let us rewrite hε (1.7) in an alternative form:

hε :=
(Fε(ū− 1 + L)− Fε(ū− 1))/L

1− Fε(ū− 1 + L) + r/λ
.

We want to show that we can make this expression below 1 < 1
1−L

in either part of Corol-

lary 1.1.

1. Increasing α above a large threshold increases 1 − Fαε(ū − 1 + L) and decreases

density fαε(x) for any x ∈ [ū− 1, ū− 1 + L]. By decreasing the density at any point

of this interval below r
λ(1−L)

, we make hαε below 1
1−L

.

2. The adjusted hazard rate hε is increasing in λ and lim
λ→0

hε = 0. Thus there is a thresh-

old λ∗ above which there is no underpricing.

3. The adjusted hazard rate hε is decreasing in r and lim
r→∞

hε = 0. Thus there is a

threshold r∗ above which there is no underpricing.

4. hε ≤ lim
L→0

hε < ∞. By making L < L∗ and 1
1−L

above this limit, we guarantee no

underpricing.

1.8.4 Section 5 Proofs

Perfect Bad News with Uniform Taste Shock.

Assume a model modification where consumers leave only bad reviews if the quality is

low and the overall utility is below u, and the taste shocks are distributed i.i.d. uniformly
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between −a and q with a > max{L − u, 1 − (L − u)}. Then the bad news arrival rate is

linear in the price:

λb(p) = λ · u− L+ a+ p

2a

.

Proposition 2 For small χ, the no-underpricing MPBE is the unique MPBE.

Proof. L’s pricing incentives are given by

∂V

∂p
= λ− λ

2a
· (V (L, q)− V (L, 0)).

Given that V (L, 0) ≈ 0 and rV (L, 1) ≈ maxp{λp + λb(p)(V (L, 0) − V (L, 1)}, we can show

that

V (L, 1)− V (L, 0) ≤ λ

r + λb(1)

and
∂V

∂p
≥ λ− λ

2a
· λ

r + λ
2a

> 0

Therefore, L always prefers maxPq, and pooling at the consumers’ willingness to pay is

a unique signaling equilibrium at any q. Thus, the no-underpricing MPBE is the unique

MPBE.

Consumer Arrival Rate Depending on q.

Assume a model modification where consumers are more likely to arrive for a firm with

a higher reputation (i.e., λ(q) is increasing). We want to show that the analysis remains

the same as in the main model, and we can easily characterize the condition for the case

when there is underpricing in equilibrium.
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Notice that for any given value function V (H, q) and q, λ(q) multiplies both the static

and the dynamic parts of H’s objective. Therefore, signaling equilibrium characterization

remains the same.

However, λ(q) affects the overall solution of the HJB equation (1.1), V (H, q). Therefore,

we need to verify the condition on the taste shock distribution for the lowest q and λ(0),

hε =
λ(0) · (Fε(ū− 1 + L)− Fε(ū− 1))/L

λ(0) · (1− Fε(ū− 1 + L)) + r
.

However, given the threshold which follows from V (H, 1) ≈ λ(1)
r

, which is equal to 1
λ(1)
λ(0)

−L

instead of 1
1−L

in the benchmark model. Thus, if λ(0) = λ from the benchmark model, then

the reputation-based consumer arrival rate (popularity-based demand) increases the pos-

sibility of underpricing, which is quite intuitive given that the higher reputation increases

the profit stream via both price and demand. ■

1.8.5 Section 3 Proofs

Law of motion of q without redrawing the state:

qt = qt · λg(p̃(qt))dt · 1 + (1− qt · λg(p̃(qt))dt)qt+dt

qt = qt · λg(p̃(qt))dt · 1 + (1− qt · λg(p̃(qt))dt)(qt + dqt)

dqt · (1− qt · λg(p̃(qt))dt) = qt(1− qt)λg(p̃(qt))dt

dqt
dt

= qt(1− qt)λg(p̃(qt)) ·
1

(1− qt · λg(p̃(qt))dt)

dqt
dt

= lim
dt→0

qt(1− qt)λg(p̃(qt)) ·
1

(1− qt · λg(p̃(qt))dt)
= qt(1− qt)λg(p̃(qt))

Adding mean reversion and a possibility of selling or not selling at p̃(q) implies the law

of motion in equation (1.3).
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HJB for high type (1.1). We show an intuitive way of deriving this HJB, simplifying some

aspects, such as demand, for ease of notation. This HJB can also be derived more formally

from the continuation value of the firm introduced in Section 3.1:

V (H, q) =λpdt+ (1− rdt)[(1− χ(1− q0)dt)λg(p)dtV (H, 1)

+ (1− χ(1− q0)dt)(1− λg(p)dt)V (H, q + dq) + χ(1− q0)dtV (L, q + dq)]

rV (H, q)dt = λpdt+ (1− rdt)[(1− χ(1− q0)λg(p)dt(V (H, 1)− V (H, q))

+ (1− χ(1− q0)dt)(1− λg(p)dt)dV (H, q) + χ(1− q0)dt(V (L, q) + dV (L, q)− V (H, q))]

(1.13)

rV (H, q) = lim
dt→0

RHS(1.13)

= λp+ λg(p)(V (H, 1)− V (H, q)) +
dV (H, q)

dt
+ χ(1− q0)(V (L, q)− V (H, q)).

Incorporating the demand 1{θ̃(p,q)≥p} into this equation gives us equation (1.1).

Finally, we want to show that for small χ, V (H, 1) ≥ V (H, q) ∀q. That follows from the

fact that lim
χ→0

V (H, 1) = λ/r and ∀q : V (H, q) < λ/r.
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CHAPTER 2

Delegated Recruitment and Statistical Discrimination

with Jacob Kohlhepp (UNC Chapel Hill)1

2.1 Introduction

The use of delegated recruitment has increased in the past few decades. Between 1991

and 2022, the fraction of American workers who found their job through a recruiter or

headhunter rose from 4.9% to 14.3%, at the expense of direct applications (Black et al.

(2022)). How does delegation impact the choice of candidates hired?

To answer this question, we develop a model where a firm (the principal) wishes to fill

a position. A recruiter (the agent) can choose to suggest a candidate based on imperfect

private information about the candidate’s productivity. Candidates differ in their under-

lying productivity and the amount of information available about their productivity. If

a candidate is suggested by a recruiter, the firm pays a hiring cost, observes the candi-

date’s true productivity, and then chooses whether to terminate or retain the candidate.

Given that employment is observable but the candidate’s productivity and the recruiter’s

signals are not, all feasible contracts can be expressed as refund contracts, typical in the

recruiting industry. Such contracts consist of a payment when a candidate suggested by

the recruiter is hired by the firm, and a refund when a candidate is hired by the firm but

terminated during an initial period of employment.

1We are grateful for comments and suggestions from Alex Bloedel, Simon Board, Moritz Meyer-ter-
Vehn, Tara Sinclair, and participants in the UCLA Theory Proseminar, UNC Theory Seminar, the SEA An-
nual Meeting, and SOLE Annual Conference. This project benefited from the support of the Institute for
Humane Studies. We thank Hanqing Ye for excellent research assistance.
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We demonstrate that refund contracts generate misalignment over whom to hire. Be-

cause refund contracts penalize recruiters for terminated candidates but do not reward

recruiters for suggesting outstanding performers (“stars”), the recruiter prefers candi-

dates whose productivity is likely to exceed the threshold. This leads to statistical dis-

crimination in favor of more information when the contract features strong screening

incentives: the recruiter requires a lower expected productivity threshold to suggest can-

didates whose resumes the recruiter understands better.

In contrast, in a first-best benchmark with direct recruitment, the firm has the option

value of trying candidates with large residual uncertainty because of the firm’s ability to

terminate poor performers and retain stars. This leads to group statistical discrimination

in favor of less information: the firm requires a lower expected productivity threshold to

suggest candidates whose resumes the firm understands less.

We further show that misalignment occurs when the firm designs an optimal contract

under a tractable Pareto-uniform information structure. The unique equilibrium con-

tract features strong screening incentives: the recruiter suggests only candidates who

will certainly not be terminated. As a result, delegation reverses the direction of sta-

tistical discrimination compared to the first-best benchmark. Furthermore, low-expected-

productivity candidates about whom the recruiter is better informed (“safe bets”) are

inefficiently hired at the expense of high-expected-productivity candidates about whom

the recruiter is less informed (“diamonds in the rough”). Thus, delegation via refund

contracts systematically disadvantages groups of candidates. All groups with less in-

formative signals than a cutoff are hired with a lower probability than in the first-best

benchmark, while all groups with more informative signals than a cutoff are hired with a

higher probability than in the first-best benchmark.

Information heterogeneity across candidates is a key driver of inefficiency in equilibrium.

When the recruiter observes the same amount of information about all candidates, the

first-best benchmark is achieved. Information heterogeneity can reflect both differences

in a candidate’s profile (e.g., one candidate may have worked at a well-known company

or may have obtained a college degree from a well-known university, while another may
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have not) and differences in a recruiter’s ability to interpret a candidate’s profile (e.g., a

recruiter may be better at interpreting the resumes of candidates that share the recruiter’s

race, gender, or socioeconomic backgrounds).2 Under this interpretation, our results im-

ply recruitment delegation favors the candidates who can afford to acquire precise but

costly productivity signals and those who share demographic characteristics with the re-

cruiter.

By considering extensions of the baseline model, we show that the qualitative results de-

rived under the parametric information structure without commitment are robust. When

the firm has a third payment it can use to extract all surplus from the agent, profit weakly

increases but the first-best benchmark is not achieved even when information heterogene-

ity is small. When the recruiter can search for other candidates, the contract additionally

serves to encourage unobserved effort, but different types of statistical discrimination

between the first-best benchmark and equilibrium remain. When the firm can commit

to a termination threshold, full extraction occurs and misalignment persists due to the

fundamental tension between first- and second-stage screening.

Using a series of comparative statics in productivity and signal distributions, we show

how delegation induces various spillovers across groups of candidates in equilibrium.

Better information about some candidates makes screening unambiguously more valu-

able and therefore increases the hiring bar and decreases the probability of being hired for

the rest of the candidates. However, better productivity for some candidates can either

increase or decrease the hiring bar, depending on the quality of the information available

for those candidates.

2.1.1 Literature

Our work relates to several strands of literature. Similar to many papers in the litera-

ture on delegation to an expert, our model features an agent with an information advan-

tage making decisions for a principal. However, unlike in many papers in this literature

2For an example of racial homophily in hiring, see Giuliano et al. (2009).
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(e.g., Frankel (2014), Kundu and Nilssen (2020), Szalay (2005)), in our paper the princi-

pal cannot constrain the action set of the agent directly and must exert control indirectly

through monetary payments. Our paper shows refund contracts are a way to screen out

recruiters with low-productivity candidates, similar to how debt contracts can be used

to screen borrowers (Gale and Hellwig (1985)). Additionally, the agent’s bias stems from

not internalizing the principal’s hiring cost, similar in spirit to Che et al. (2013) where the

agent does not internalize the firm’s outside option. Notably, Che et al. (2013) find a bias

towards “conditionally better looking” projects, similar to how we find a bias towards

“safe-bet” applicants.

Our paper is also related to the literature on delegated information acquisition. As in

Chade and Kovrijnykh (2016), Inderst and Ottaviani (2012), and Szalay (2009), the princi-

pal must consider how the agent will act when faced with varying amounts of informa-

tion. However, while in these papers the amount of information acquired is endogenous

and homogeneous, in ours it is exogenous but heterogeneous. Moreover, the focus of the

principal in this literature is to encourage information acquisition, while in our paper it is

to achieve the best screening behavior on average across differently informed agents.

Our model features an agent who is privately informed about the candidates’ expected

productivity and the amount of information available about it. As a result, our paper

is related to the literature on multidimensional screening (Carroll (2017), Yang (2021)).

An essential aspect of our setting is that the agent is privately informed about the qual-

ity of information available. Even though productivity is the only object the firm cares

about, the distribution of productivity across interim agent types differs in two dimen-

sions. Additionally, the agent does not have intrinsic preferences over the dimensions

being screened, as in problems of screening buyers. Instead, the way the agent engages

with the contract offered by the firm is impacted by the agent’s private type, and the firm

exploits this in equilibrium to screen out recruiters with low-expected-productivity can-

didates. Another difference from this literature is that we do not allow the firm to offer a

menu of contracts. This is because our model is application driven, and to our knowledge

contract menus are not commonly observed in the recruiting industry.
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Our paper differs from most past work in that the principal commits to a monetary con-

tract, but this contract explicitly depends on an action taken by the principal after all

information is revealed. There is a form of limited commitment built into the model that

is inspired by the specific application to recruiters. One exception is Levitt and Snyder

(1997) where, as in our model, an agent observes a private signal about a project’s suc-

cess and the principal can cancel the project based on the agent’s interim advice. A key

difference is that in Levitt and Snyder (1997) the contract is accepted before information

is observed. The authors find that the principal’s ability to influence the final contractible

outcome undermines incentives, and commitment can help rectify the situation.

Our paper also contributes to the literature that studies what occurs when the hiring de-

cision is delegated. Frankel (2021) considers delegation to a hiring manager, where the

trade-off is between using the manager’s soft information and indulging the manager’s

bias towards soft information relative to hard information. Two key differences are that

in Frankel (2021) the firm has access to hard information and uses it to limit the man-

ager’s actions directly. Cowgill and Perkowski (2020) propose a theoretical framework

and study empirically how recruiters select applicants. They show in a two-sided audit

that recruiters over-interview candidates from elite schools and big companies, a fact the

authors interpret as evidence of a reputational effect. Our paper proposes another inter-

pretation: even conditional on the same expected productivity of candidates, recruiters

are biased towards candidates from elite schools or big companies because of the way

refund contracts are structured.

After presenting the model, the paper proceeds as follows. In Section 2.3.1, we derive

hiring thresholds in a first-best benchmark where the firm does not delegate but rather

observes the candidate directly. In Section 2.3.2, we derive the equilibrium contract. In

Section 2.3.3, we compare the set of hired candidates in the first-best benchmark and

equilibrium and derive the main result that refund contracts induce misalignment and

different types of statistical discrimination. In Section 2.4, we discuss the forces that lead

to the main result. Finally, we analyze several comparative statics in Section 2.5, discuss

the robustness of our results in Section 2.6, and conclude the paper in Section 2.7.
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2.2 Model

Players and Actions. A risk-neutral firm wishes to hire one candidate, and a risk-neutral

recruiter has one candidate with uncertain productivity (a). The firm proposes a contract

to the recruiter. After receiving private information about the candidate’s productivity,

the recruiter either accepts the contract by suggesting the candidate or rejects the contract

by not suggesting the candidate. If the candidate is suggested, the firm incurs a hiring cost

(c), fully and privately observes the candidate’s productivity, and then decides whether

to retain or terminate the candidate.3 If the candidate is retained, the firm receives the

candidate’s productivity. Finally, all contract transfers are realized.

If the candidate is not suggested, both the firm and the recruiter receive their outside

option. The outside option of the firm is 0, and that of the recruiter is ū ≥ 0. The candidate

is not a strategic player.

Candidates and Information. A candidate is characterized by a productivity a distributed

according to a common prior with a CDF Fa and an information type (or candidate’s

group) i ∈ {1, ..., N} with probabilities {p1, ..., pn}, which are drawn independently. Prior

to deciding whether to suggest the candidate to the firm, the recruiter privately observes

the candidate’s i and a signal about productivity, x ∈ Rτi , distributed according to a

CDF Gi(·|a) for the candidate with productivity a and information type i.4 With a slight

abuse of notation, we call Gi an information structure for the productivity signal that the

recruiter observes for a candidate from group i. Throughout, we index candidate infor-

mation types in descending order of their informativeness in the Blackwell sense, i.e., Gi

is Blackwell more informative than Gj for any i < j. To make these concepts concrete, we

provide two parametric examples below.

Normal example. The prior distribution of the candidate’s productivity is normal: a ∼

N(µa, σ
2
a); formally, Fa is the CDF of a normal random variable with mean µa and variance

3After suggestion but before paying c, the firm does not observe any additional information about the
candidate.

4The candidate’s information type i (or group) is not payoff relevant and serves only as a part of infor-
mation structure description and, hence, the productivity signal.
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σ2
a. For each information type, the recruiter observers a single productivity signal (τi = 1),

which is the sum of true productivity and independent normal noise: x = a + ε, where

ε|a, i ∼ N(0, σ2
i ). Using our notation, Gi(·|a) is a CDF of a normal random variable with

mean a and variance σ2
i . Groups with lower i have higher signal precision (σ2

1 < σ2
2 <

... < σ2
N ). Conditional on observing signal x for a candidate with information type i, the

recruiter’s posterior belief about productivity is N
( σ2

i

σ2
aσ

2
i
· µa +

σ2
a

σ2
aσ

2
i
· x, σ2

aσ
2
i

σ2
a+σ2

i

)
.

Pareto example. The prior distribution of the candidate’s productivity is Pareto: a ∼

Pareto(ā, k). The recruiter observes a productivity signal consisting of τi unidimensional

signals: x = (x1, ...xτi). Groups with lower i have more signals: τ1 > τ2 > ... > τN . Con-

ditional on productivity a, signals are drawn i.i.d. from a uniform distribution with min-

imum 0 and maximum a. Using our notation, Gi(·|a) is a CDF of a multivariate uniform

distribution on [0, a]τi . Conditional on observing signal x for a candidate with information

type i, the recruiter’s posterior belief about productivity is Pareto(max{ā, {xt}τit=1}, τi+k).

Contracts and Payoffs. The productivity signal x is the recruiter’s private information

and is not contractible. The productivity a is privately observed only by the firm and is

also not contractible. Even though the information type i is sometimes observable by both

parties, we will frequently interpret it as representing demographic characteristics (race,

gender, age, etc.). Because in many countries these characteristics are illegal to contract

on, we assume they are also not contractible. This leaves only two possible contractible

outcomes after the contract is accepted: whether the candidate is eventually retained or

terminated.

Given the space of contractible outcomes, we can express all contracts as refund contracts,

which consist of a transfer from the firm to the recruiter if the candidate is suggested and

retained (α ∈ R) and a refund from the recruiter to the firm if the candidate is terminated

(β ∈ R). Under these contracts, the ex post profit of the firm is

π = 1{suggested} ·
(
− c− α + 1{retained} · a+ 1{terminated} · β

)
,
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and the ex post utility of the recruiter is

u = 1{suggested} ·
(
α− β · 1{terminated}

)
.

In Section 2.2.1, we argue that these contracts are commonly observed in the recruiting

industry. We specify that the recruiter chooses to accept the contract if indifferent.

We consider two versions of the model in this paper. A. In the commitment case, the firm

can commit to a termination threshold γ (for all candidates regardless of their information

type i), include it as a part of the contract, and then terminate the candidate if and only

if the candidate’s realized productivity a is below γ. The contracts cannot depend on the

realized productivity in any other way apart from the termination rule.5 B. In the no-

commitment case, the firm cannot commit to the termination rule and decides whether to

terminate the candidate in the last stage of the game. Thus, the firm prefers to terminate

the candidate if and only if the candidate’s productivity a is below the refund β regardless

of the candidate’s information type i (thus, the ex post compatible termination threshold

in the no-commitment case is γ = β).

Equilibrium. The equilibrium concept we use is weak Perfect Bayesian Equilibrium with

the assumption that the recruiter has passive beliefs about the productivity of the candi-

date in the contract offered by the firm. We require passive beliefs in order to have well-

defined beliefs under off-path contracts.6 We assume that when indifferent, the recruiter

suggests the candidate. Finally, we assume that there exists a feasible interior suggestion

5If the contract could freely depend on the productivity, the firm would prefer to lie about its realization
conditional on retaining or terminating the candidate, in order to increase its payoff.

6Without passive beliefs, the recruiter does not have to be Bayesian when interpreting the signals under
off-path contracts because those information sets are of zero probability. Thus, for any realization of signals
for any off-path contract, the recruiter can be extremely pessimistic about the candidate’s productivity
and suggest no one. Therefore, any contract can be an equilibrium one under wPBE. To fix that, we use
passive beliefs and force the recruiter to make a Bayesian inference from the productivity signals in every
information set (including those off-path).
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strategy7 which delivers strictly greater total surplus than always or never suggesting a

candidate.

2.2.1 Model Comments

Refund Contracts. Refund contracts are a natural formalization of the contract space in

our model. They closely resemble what is called guarantee contracts, which are the main

form of contract used by external recruiters, according to evidence from qualitative inter-

views, industry materials, and surveys. We interviewed one mid-career headhunter and

one early-career recruiter. Both stated they were paid if a candidate they suggested was

placed, but they had to provide a refund or a free replacement if the candidate left the firm

in the first 90 days of employment. This refund is called in the industry a “guarantee.”

The early-career recruiter confirmed that the refund was given for any reason, includ-

ing termination of the candidate by the company. The relevant sections of the interview

transcript are provided in Appendix Section 2.8.6.

Recruiters that use this structure of compensation are called contingent recruiters, and

they represent the majority of recruiters, according to estimates (Finlay and Coverdill

(2007)). The contingent compensation structure with a guarantee discussed by the re-

cruiters we interviewed is also mentioned in a variety of sources, including a report on

recruiting practices in the hospitality industry (Dingman (1993)), how-to books about

starting an executive recruiting firm (Press (2007), Perry and Haluska (2017)), a guide

for lawyers working with headhunters (Steinberg and Machlowitz (1989)), a guide for

managing financial service companies (Arslanian (2016)), and an academic article (Florea

(2014)). Further, the American Staffing Association provides a “Model Recruiting Agree-

ment” which includes sample language for refund and replacement guarantees (Associa-

tion (2014)).

7Feasible by the firm via refund contracts, and “interior” meaning the probability of suggestion is not 0
or 1.
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A survey of recruiters by Top Echelon found that 96% of recruiters offered some form

of guarantee. The most popular guarantee time frame was 90 days, consistent with our

interviews. When asked about the form of the refund, 61% responded that they offered a

replacement, and 26% responded that they offered money back (Deutsch (2019)).8

Information Types. The information type of the candidate may in some cases be ob-

served by the firm, but it is unnatural and often illegal to condition on it in a contract.

For example, the information type of a candidate may be determined by the candidate’s

demographics (age, gender, race, etc.). In the U.S. it is illegal to recruit based on such

characteristics, much less write them explicitly in a contract.9 In our model, the informa-

tion type by itself is uninformative about the candidate’s productivity. Alternatively, the

information heterogeneity can also come from differences in the candidates’ experiences

or certifications, which might be unobserved by the firm and therefore cannot be included

in the contract.

Firm and Recruiter. The hiring cost can be interpreted as the cost to the firm of inter-

viewing the candidate10 or the cost of employing the candidate for a probationary period.

Within the model, the hiring cost operates as the cost to the firm of fully learning the

candidate’s productivity. This is an important ingredient in the model because it makes

the recruiter’s private information valuable to the firm. The firm’s main goal is to use

the recruiter’s private information to screen candidates. Because the recruiter does not

bear any intrinsic cost of suggesting a candidate, the recruiter has a natural tendency not

to screen candidates and instead suggest everyone. For this reason, the contract must be

designed to reduce this tendency.

It may appear that the only reason the firm uses a recruiter is that the recruiter has a candi-

date and the firm does not. However, by setting the payment from suggestion to be ū and

8Of the remaining 13%, 11% responded that they offered a guarantee that did not fit into the two afore-
mentioned categories, and 2% gave no response.

9Per EEOC (2023): “It is also illegal for an employer to recruit new employees in a way that discrimi-
nates against them because of their race, color, religion, sex (including gender identity, sexual orientation,
and pregnancy), national origin, age (40 or older), disability or genetic information.”

10For example, the cost of having current employees conduct on-site interviews.
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setting β = 0, the firm can always design a contract where the recruiter suggests everyone

(i.e., no screening). Thus, if the firm had an outside option of paying the hiring cost c to

learn the productivity of a random candidate or using a recruiter, it will always weakly

prefer to use the recruiter. Recruiters are useful to the firm because of their information

advantage prior to hiring, not because they have a monopoly on candidates.

2.3 Nonparametric Analysis

In this section, we define notions of statistical discrimination and show that discrimina-

tion goes in opposite directions in the first-best benchmark and equilibrium under a wide

set of contracts. We begin by analyzing the space of posteriors about the candidate. Sec-

ond, we define the first-best benchmark and equilibrium and derive the conditions under

which the candidate is suggested. Third, we introduce directed notions of individual and

group statistical discrimination and provide conditions under which the direction of sta-

tistical discrimination is different in the first-best benchmark and equilibrium. We finally

show what forces distort the equilibrium outcome relative to the first-best benchmark.

2.3.1 Candidate Posteriors

Characterizing the recruiter’s (or firm’s) optimal decisions for each possible recruiter’s

information set is the same as characterizing the optimal suggestion decisions over the

space of the candidate’s group and productivity signal realizations. We start by parame-

terizing this space.

For any information type i and any realized signal x, we can derive the posterior pro-

ductivity distribution Fi,x(a). We assume that each group’s information structure is such

that no two signal realizations have the same posterior µ. This assumption allows us to

uniquely map every posterior distribution of productivity Fi,x to its mean µ and the in-

formation type of the candidate i, and therefore to parameterize the set of all candidates’
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productivity posterior distributions by i and µ (Fi,x ↔ Fi,µ). Further, we describe the

candidates upon observing their productivity signal and group by (i, µ).

To define intuitive risk attitudes for the firm and the recruiter, we require that the space

of candidates satisfy the following assumption.

Assumption

(a) Fi,µ1(a) first-order stochastically dominates Fi,µ2(a) for any (µ1 > µ2, i),

(b) Fi,µ(a) second-order stochastically dominates Fj,µ(a) for any (µ, i < j), and

(c) ∀µ, i < j ∃ a∗ ≥ F−1
j,µ (1/2), s.t. ∀ a < (>)a∗ : Fi,µ(a) ≤ (≥)Fj,µ(a).

Part (a) of this assumption means that there is an unambiguous order of signal realiza-

tions within an information type, where a “better” signal means that the candidate’s pos-

terior productivity distribution first-order dominates all posteriors with “worse” signals

(conditional on the information type of the candidate). Parts (b) and (c) of this assump-

tion require a stronger order of information structures than the Blackwell order. Besides

requiring that the signal for a group j be a garbling of the signal for a group i < j, it

requires that each posterior Fj,µ be a single-mean-preserving spread of Fi,µ and have a

fatter lower tail than Fi,µ.

Many common prior distributions and information structures satisfy this assumption, in-

cluding (1) normal prior distribution with normal signals of various precision (parametric

example A); (2) the Pareto prior distribution with various numbers of uniform signals on

[0, a] (parametric example B); and (3) any information structure with posteriors that can be

expressed as µ+ σiε, where ε is a symmetric mean-zero random variable.

2.3.2 The First-Best, Equilibrium, and Suggestion Decisions

First-Best. We define the first-best benchmark as a hypothetical situation where the firm

possesses the recruiter’s private information about the candidate and makes the hiring

decision directly based on this information.
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In the first-best benchmark (shortened to “first-best”), there is no need for the firm to

worry about the payments to the recruiter when making the termination decision. The

firm terminates the candidate only if a < 0 because the hiring cost is already paid. The

firm’s ex post value from a candidate with known productivity a is max{a, 0}. The firm’s

expected value from hiring a candidate with information type i and expected productivity

µ is equal to E[max{a, 0}|i, µ]. Thus the firm suggests (and hires) a candidate if and only

if: E[max{a, 0}|i, µ] ≥ c.

The first-order stochastic order in µ implies monotonicity of posterior truncated expecta-

tions in µ. We denote the lowest-posterior-expectation candidate from group i whom the

firm suggests in the first-best as µ∗(i) = infm{m|E[max{a, 0}|i, µ = m] ≥ c}. Then the firm

suggests a candidate (i, µ) if and only if µ ≥ µ∗(i). We focus our attention on non-trivial

cases where the firm prefers to screen out a positive share of candidates in the first-best.11

Equilibrium. We begin our analysis of equilibrium by considering the firm’s decision

to terminate or retain the candidate. In the commitment case, the firm terminates the

candidate if and only if the realized productivity a is below the termination threshold γ.

In the no-commitment case, because the firm cannot commit to a termination rule, the

decision is made after the contract is designed, hiring costs are sunk, and the firm has

fully learned the productivity of the candidate. Thus the firm retains the candidate if

the realized productivity exceeds the refund (β) that could be obtained from termination:

a ≥ β. This is the firm’s incentive-compatible retention rule (IC). Thus, the termination

threshold is given by γ = β in the no-commitment case. For now, we proceed with a

general γ (not necessarily IC).

Anticipating the firm’s termination or retention decision, the recruiter has an ex post

value from suggesting a candidate with known productivity a that is α − βIa<γ . The

recruiter’s expected value from suggesting a candidate with information type i and ex-

pected productivity µ is equal to α − β · Pr(a < γ|i, µ). Thus the recruiter suggests (and

the firm hires) a candidate if and only if the interim value exceeds the recruiter’s out-

11If the firm prefers not to screen anyone out in the first-best, then the solution is trivial and is imple-
mentable in equilibrium.
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side option: α − β · Pr(a < γ|i, µ) ≥ ū. The recruiter’s decision to suggest a candidate

in equilibrium is therefore fully determined by whether a given candidate’s termination

probability is above or below a threshold: Pr(a < γ|i, µ) < p∗, where p∗ = α−ū
β

.

With these results established, and recalling that our assumptions imply monotonicity of

Pr(a < γ|i, µ) in µ, we denote the lowest-posterior-expectation candidate from group i

whom the recruiter suggests under a refund contract with parameters (α, β, γ) as µα,β,γ(i)

= infm{m|Pr(a < γ|i, µ = m) < α−ū
β

}. Then the recruiter suggests a candidate (i, µ) if and

only if µ ≥ µα,β,γ(i). We focus on non-degenerate cases where the firm’s optimal contract

induces some screening in equilibrium.12

2.3.3 Individual and Group Statistical Discrimination

In this section, we define individual and group statistical discrimination and show how

delegation to the recruiter can generate both. We demonstrate that while the firm is en-

dogenously risk-loving in the first-best, refund contracts often make the recruiter endoge-

nously risk-averse.

We define individual discrimination based on how two candidates with the same ex-

pected productivity (µ) but different information types are treated.

Definition 4 A decision maker engages in individual statistical discrimination in favor of more

(less) information for candidates with expected productivity µ and information types i < j if the

candidate with the more (less) informative type i (j) is always suggested whenever the candidate

with the less (more) informative type j (i) is suggested.

To make this definition concrete, suppose there are two candidates (label them 1 and 2)

from different information types (say, 1 and 2) but identical posterior productivity means:

(1, µ) and (2, µ). Because candidate 1 comes from a lower information type, we are more

informed about candidate 1. Specifically, F2,µ(a) is a single-mean-preserving spread of

12If the firm prefers not to screen anyone out in the equilibrium, then the solution is trivial and leads to
the recruiter suggesting all candidates and the firm retaining those with productivity above zero.
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F1,µ(a). If candidate 1 being suggested implies that candidate 2 is suggested but not the

other way around, then there is individual statistical discrimination in favor of less in-

formation. Intuitively, candidate 1 gives a higher value to the decision maker than does

candidate 2. The next result establishes that individual statistical discrimination is quite

different in the first-best compared to delegation via refund contracts.

Proposition 3

1. In the first-best, the firm always engages in individual statistical discrimination in favor of

less information (for all µ, i, j).

2. In equilibrium, the recruiter engages in individual statistical discrimination in favor of more

(less) information if γ ≤ (≥)a∗, where a∗ : Fi,µ(a
∗) = Fj,µ(a

∗).

Proof. The first-best result follows directly from the fact that, due to the firm’s ability to

terminate candidates, the firm’s value from a candidate in the first-best is a convex func-

tion of realized productivity (max{0, a}). The refund contract result follows from the fact

that information types are single-mean-preserving spreads and under refund contracts

the recruiter value from a candidate depends only on the probability that a candidate is

below a threshold. This value is exactly the CDF, so which candidate the recruiter prefers

depends only on the termination threshold relative to the single-crossing point a∗.■

Proposition 3 captures the key tension which drives misalignment. Absent delegation, the

firm is endogenously risk-loving; it appreciates the option value of uncertain candidates

because of its ability to terminate candidates. However, refund contracts frequently cause

the recruiter to be endogenously risk-averse. Specifically, the recruiter receives no addi-

tional reward for suggesting candidates with outstanding productivity but is penalized

for suggesting candidates whose productivity falls below a threshold.

Whether the recruiter statistically discriminates in one direction or the other about a par-

ticular pair of candidates depends on the termination threshold. When the termination

threshold γ is low (relative to the single crossing-point for that particular pair), the re-

cruiter statistically discriminates in favor of candidates that the recruiter understands

better. When the firing threshold γ is high (relative to the single crossing-point for that
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particular pair) the recruiter statistically discriminates in favor of candidates the recruiter

understands less. This situation happens precisely because the recruiter’s goal is to mini-

mize the probability of termination for the suggested candidate.

The relation between the termination threshold (γ) and the single-crossing point a∗ deter-

mines the amount of screening in the second stage of the hiring process (after the candi-

date was suggested). If γ is high (low) relative to a∗, a candidate is more (less) likely to be

terminated (screened out) after being suggested by the recruiter. With little second-stage

screening, the recruiter prefers less noise and more certainty in the candidate’s productiv-

ity to make sure that it likely exceeds the threshold γ. With a lot of second-stage screening

and many candidates that are unlikely to make the cut, the recruiter prefers more noise in

the candidate’s productivity, to have at least some chance of a high realization exceeding

the threshold γ.

This result about individual discrimination is incomplete. The misalignment between the

firm and the recruiter over any particular candidate depends on the termination threshold

γ relative to the single-crossing point a∗. When this threshold is low, there is misalign-

ment; when it is high, there is not. Because the single-crossing point between any two

candidates (a∗) depends on the expectation and information type of those candidates, it

is unclear how this individual alignment or misalignment of discrimination, which dif-

fers across specific pairs of candidates, translates into systemic differential treatment of

groups of candidates.

To address these concerns, we introduce the notion of group discrimination. Recall that

µ∗(i) is the lowest-posterior-expectation candidate from group i that is suggested in the

first-best, while µα,β,γ(i) is the lowest-posterior-expectation candidate from group i that

is suggested by the recruiter under a refund contract with parameters (α, β, γ).

Definition 5 A decision maker engages in group statistical discrimination in favor of more (less)

information in the first-best if µ∗(i) is increasing (decreasing) in i, and in equilibrium under refund

contract (α, β, γ) if µα,β,γ(i) is increasing (decreasing) in i.
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Group statistical discrimination captures whether the “hiring bar” differs across groups

of candidates. The next result characterizes when differential group statistical discrimi-

nation occurs across the first-best and equilibrium.

Proposition 4

1. In the first-best, the firm always engages in group statistical discrimination in favor of less

information.

2. In equilibrium, the recruiter engages in group statistical discrimination in favor of more

information if α−ū
β

< 1
2
.

Proof. The fact that the first-best favors groups of candidates with less information fol-

lows directly from the previous proposition. For equilibrium, consider that the recruiter

suggests any candidate when the recruiter’s payoff from suggestion exceeds the outside

option:

α− βPr(a < γ|i, µ) ≥ ū ↔ α− ū

β
≥ Pr(a < γ|i, µ).

The threshold µ(i) is given by the points where this inequality holds with equality. When
α−ū
β

< 1
2
, all candidates with less informative types will have a higher threshold µ(i) ≤

µ(j) due to single-crossing.■

Figure 2.1 illustrates Proposition 4 for α−ū
β

< 1
2
.

Figure 2.1: Candidate Types Hired in Equilibrium vs. First-Best
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Proposition 4 shows that under a range of contracts, there are opposite types of statistical

discrimination not only across individual pairs of candidates but also across groups of

candidates. The firm sets a lower hiring bar for groups the firm understands less, while

the recruiter sets a lower hiring bar for groups the recruiter understands more. Whenever

this result holds, some groups will be disadvantaged in terms of hiring by delegated

recruitment relative to direct recruitment.

The second part of Proposition 4 specifies that misalignment occurs under contracts where
α−ū
β

< 1
2
. One way to interpret this condition is that the recruiter offers an economically

significant refund. Notice that β is exactly the part of the contract that induces first-stage

screening, i.e., screening in the suggestion decision. When β = 0, the recruiter suggests

all candidates. When β → ∞, the recruiter suggests only candidates that are retained

with certainty. If β is high and therefore α−ū
β

is low, many candidates are screened out in

the first stage by the recruiter, and few of them are terminated after the probation period.

Similar to individual discrimination, the key condition for misalignment with respect

to group discrimination is little second-stage screening implied by the strong first-stage

screening incentives.

An important observation from this condition is that the termination threshold does not

directly determine whether group statistical discrimination in favor of more information

occurs in equilibrium. However, the termination threshold will impact the way the firm

designs the other contract parameters, so it will still play an indirect role. For this reason,

in the next few sections, we analyze how the equilibrium contract is designed.

2.3.4 Contract Design in Equilibrium

The analysis up to this point treats the features of the contract (α, β, γ) as exogenous pa-

rameters. In this section, we discuss the key forces which determine how the contract is

designed in equilibrium. We will also discuss the tensions between these forces that arise

due to information heterogeneity within the candidate pool.

Corollary 1.
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1. µα,β,γ(i) is decreasing in α (with or without commitment),

2. µα,β,γ(i) is increasing in β (with or without commitment),

3. µα,β,γ(i) is increasing in γ (with commitment).

From the contract designer’s (the firm’s) perspective, the contract serves three purposes.

We first consider the case where the firm can commit to a termination threshold (γ is a

parameter of the contract). We conclude the section discussing the differences that arise

without commitment (γ = β).

First-Stage Screening. The contract determines the set of candidates the recruiter sug-

gests to the firm. The firm wishes to design the contract so that the equilibrium set of

suggested candidates is close to the first-best set of suggested candidates. By increasing

the suggestion payment α, the firm expands the set of candidates suggested across all

information types. By increasing the refund β or the termination threshold γ, the firm

shrinks the set of candidates suggested across all information types.

Replicating the first-best is often not possible because of the coarseness of refund con-

tracts. They give the firm only three choice variables with which to control the suggestion

or hiring region. This leads to a mechanical impossibility of achieving the first-best for

more than three information types with commitment or more than two information types

without commitment. Although we numerically verify that the first-best suggestion re-

gion is feasible with two information types, the firm does not choose to implement the

first-best region in this case.

Second-Stage Screening. After hiring a candidate and paying the cost c, the firm fully

learns the candidate’s productivity and makes a termination decision (either mechani-

cally with commitment or endogenously without). This can be viewed as a perfect but

costly second stage of screening. The firm wishes to design the contract to minimize inef-

ficient terminations: candidates with positive productivity (a ≥ 0) that are hired at cost c

and then terminated. Holding fixed the set of suggested candidates, reducing the positive

termination threshold γ reduces these inefficient terminations.

59



Since the termination threshold γ affects both the hiring region (first-stage screening) and

the termination threshold (second-stage screening), there is tension when choosing the

optimal two-stage screening procedure. Raising the termination threshold improves first-

stage screening but requires the firm to inefficiently terminate candidates after they are

hired.

Surplus Extraction. Because the recruiter selects into the contract after observing signals

about the candidate, the recruiter has information rents. One goal of the contract is to

extract surplus from the recruiter and transfer it to the firm. This goal is generally in

tension with the first-stage screening goal. Intuitively, trying to approximate the first-best

suggestion region requires setting β > 0 and α > ū, which means that the recruiter gets

the outside option for the candidates on the boundary of the suggestion region but gets a

strictly greater expected utility for all other suggested candidates. As we show in Section

2.6, although many specifications of the model allow the firm to extract all surplus, the

first-best is still not achieved.

Commitment. When the firm can commit to a termination rule, γ is an additional degree

of freedom that can be used to navigate the tensions outlined previously. However, when

the firm cannot commit, γ = β because the firm terminates low-productivity candidates

in order to obtain the refund. In this case several equilibrium forces compete to determine

β.

Recall that β relative to α − ū is a measure of the recruiter’s incentive to screen candi-

dates. With commitment, as β rises, the recruiter engages in more intense screening.

Without commitment, increasing β has two additional impacts. First, it amplifies screen-

ing incentives because it increases not just the refund the recruiter has to pay but also

the probability the recruiter has to pay the refund. Second, increasing β shifts the firm’s

payoff from individual candidates because the firm’s ex post value function is max{a, β}.
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2.4 Parametric Analysis without Commitment

In this section, we make a parametric assumption under which there is a unique equilib-

rium contract without commitment, which we obtain in closed-form. We illustrate that

the misalignment discussed in Section 2.3 occurs even though the firm designs the equi-

librium contract to maximize total surplus.

Assumption 3 The prior distribution of the candidate’s productivity is a ∼ Pareto(ā, k). Con-

ditional on productivity a, signals are drawn i.i.d. from a uniform distribution with minimum 0

and maximum a. Information type i has τi signals: x = (x1, ...xτi), where τ1 > τ2 > ... > τN .

Conditional on observing signal x for a candidate with information type i, the recruiter’s

posterior belief about productivity is Pareto(max{ā, {xt}τit=1}, τi + k). 13 Under this infor-

mation structure, the recruiter’s posterior belief about a candidate depends only on the

maximum of the observed signals and the number of signals. This information structure

satisfies our nonparametric ordering assumption in Section 2.3.

The candidate’s information type matters only in determining the number of signals ob-

served about the candidate (τi). For this reason, we occasionally suppress the information

type subscript i and consider an arbitrary information type with τ signals. The posterior

distribution depends only on the maximum of observed signals and ā, an object we de-

note by xτ
max := max{ā, {xt}τt=1}. Whenever we observe a maximum signal of xτ

max, we

know for sure that the candidate’s productivity is at least xτ
max.

Given xτ
max, the posterior mean productivity is equal to E[a|xτ

max] =
τ+k

τ+k−1
· xτ

max. For the

same maximum signal xτ
max, the posterior distribution keeps the same minimum (xτ

max)

regardless of τ , but the expected productivity decreases in τ via the shape parameter of

the posterior distribution (τ+k). Intuitively, if we observe more productivity signals with

the same overall maximum, we become more pessimistic about the candidate’s produc-

tivity.

13It is well-known in the statistics literature that a Pareto prior and uniform signals are a conjugate
family, meaning beliefs remain Pareto after updating (Fink (1997)). For completeness, we provide a proof
in Appendix Section 2.8.1.
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2.4.1 First-Best Suggestion Region

Recall that µ∗(i) is the lowest-posterior-expectation candidate from group i that the firm

suggests in the first-best. Under this information structure we have that

µ∗(i) = inf
m
{m|E[max{a, 0}|i, µ = m] ≥ c} = c.

The firm suggests and hires only candidates it expects to be worth the hiring cost c. Thus

the hiring bar in terms of expected productivity is the same across all information types,

and the firm is endogenously risk-neutral. In terms of group-based statistical discrimina-

tion, the firm is also neutral, technically engaging in both types of statistical discrimina-

tion.

2.4.2 The Equilibrium Contract

Recall that µα,β,γ(i) is the lowest-posterior-expectation candidate from group i whom the

recruiter suggests under a refund contract with parameters (α, β, γ). Under this informa-

tion structure we have that

µα,β,γ(i) = inf
m

{
m

∣∣∣∣Pr(a < γ|i, µ = m) <
α− ū

β

}
= γ

τi + k

τi + k − 1

(
1− α− ū

β

) 1
τi+k

.

Without commitment, the firm terminates all candidates with productivity below (γ = β),

and we have that

µα,β(i) = β
τi + k

τi + k − 1

(
1− α− ū

β

) 1
τi+k

.

This expression shows that as the termination threshold (γ) rises, the suggestion threshold

of the recruiter is scaled up for all information types. In general, the upfront fee must

exceed to outside option (α > ū), so as the refund β rises, the suggestion threshold rises.

Notice that τi+k
τi+k−1

is increasing in i, while
(
1 − α−ū

β

) 1
τi+k

is weakly decreasing in i. As a

result, the direction of group-based statistical discrimination is ambiguous: µα,β(i) can be

either upward sloping or downward sloping in information type i. In the first-best, µ(i)
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is constant in i. This is the tension between first-stage screening, inefficient terminations,

and surplus extraction outlined in Section 2.3.4. If the firm wants to approximate the

shape of the first-best suggestion region, the firm must set α > ū. However, this requires

both leaving surplus for the recruiter and hiring candidates who are terminated with no

realized benefit to the firm. There is a uniquely optimal way to navigate this trade-off.

Theorem 2 The unique equilibrium contract is a refund contract with

β∗ =

Eτ

[
τ

τ+k

]
Eτ

[
τ

τ+k−1

]c, α∗ = ū.

A candidate is suggested if and only if the candidate’s maximum signal exceeds β∗, that is, when

the candidate’s posterior expected productivity exceeds µα∗,β∗(i) := τi+k
τi+k−1

β∗.

Proof of Theorem 2.

• Transfers are positive. When specifying the contract space, we did not restrict the

sign of the refund or the suggestion payment. We now show that in equilibrium,

the transfer from the firm to the recruiter for suggestion is at least the outside option

(α ≥ ū) and the transfer from the recruiter back to the firm is weakly positive (β ≥ 0).

Suppose for the sake of contradiction that in an optimal contract β < 0. Because the

firm cannot commit to a termination rule, the firm terminates candidates only when

a ≥ β. This means all candidates are not terminated if they were suggested by a

recruiter. Anticipating this situation, the recruiter either suggests all candidates if

α ≥ ū, yielding negative profit, or suggests no candidates if α ≤ ū, yielding at most 0

profit. The firm can obtain strictly positive profit by offering an alternative contract

α′ = ū, β′ = c, which leaves the recruiter with 0 surplus and induces the recruiter to

suggest all candidates who have productivity above the hiring cost. This contradicts

optimality.

Suppose for the sake of contradiction that in an optimal contract α < ū. Because

β ≥ 0, even if the recruiter knows for sure the candidate will not be terminated,
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the recruiter will not suggest the candidate, because α − β · 0 < ū. Therefore, no

candidates are suggested, yielding 0 profit for the firm. The firm can obtain strictly

positive profit by offering the alternative contract α′ = ū, β′ = c. This contradicts

optimality.

• Full surplus extraction. We now argue that any equilibrium contract extracts all

surplus from the recruiter, by setting α = ū. In Appendix Section 2.8.2 we show that

profit is strictly decreasing in α for all β. Therefore, α = ū in any profit-maximizing

contract. When α = ū,

µα,β(i) = β
τi + k

τi + k − 1
.

Note that the posterior mean maps to the maximum of τ signals in the following

way: µ = τ+k
τ+k−1

xτ
max. Thus we have that the minimum suggested posterior expec-

tation implies a minimum suggested maximum signal that is the same across all

information types (xEQ):

xEQ =
τi + k − 1

τi + k
µα,β(i) = β

τi + k

τi + k − 1

τi + k − 1

τi + k
= β.

Since only candidates with a maximum signal above xEQ are suggested, this has the

additional implication that only candidates who are retained for sure are suggested.

Thus the recruiter’s payoff is ū, all surplus is extracted, and the firm maximizes total

surplus:

E[I{xτ
max ≥ β}(I{a ≥ β}a+ I{a ≤ β}β−c−α)] = E[I{xτ

max ≥ xEQ}(a−c− ū)]. (2.1)

• Optimal payments. To complete the proof, we derive the unique refund payment

(β∗) which maximizes (2.1). We do this by solving the first-order condition for β

when α = ū. We then show the second-order condition is satisfied at β∗. Appendix

Section 2.8.2 contains these calculations.■
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All three forces from Section 2.3.4 (first stage screening, second stage screening and sur-

plus extraction) play a role in determining the unique equilibrium contract. By setting

β∗ to be the ratio of two expectations, the firm approximates the first-best suggestion re-

gion as best it can given the other two goals and the coarseness of the contract. By setting

α = ū, β > 0 the firm simultaneously extracts all surplus from the recruiter and eliminates

inefficient terminations.

Strong screening incentives are key to full surplus extraction and elimination of inefficient

terminations. The suggestion payment is exactly equal to the recruiter’s outside option,

and the refund is economically meaningful (close to the hiring cost). The recruiter sug-

gests only candidates the recruiter is certain will not be terminated. Because screening

incentives are strong, the condition for group statistical discrimination in favor of more

information is satisfied:
α∗ − ū

β∗ = 0 <
1

2
.

Corollary 2.1 The firm engages in group statistical discrimination in favor of less information

in the first-best, and the recruiter engages in group statistical discrimination in favor of more

information under the unique equilibrium contract.

Under the unique equilibrium contract, the directions of statistical discrimination are mis-

aligned in the first-best and equilibrium. In the first-best, the firm suggests and hires all

candidates with posterior expectations above the hiring cost. In equilibrium, the recruiter

suggests and the firm hires candidates with posterior expectations that exceed group-

specific hiring bars. The bar is higher for groups that are less well-understood by the

recruiter.

Beyond refund contracts themselves, a pivotal ingredient in preventing achievement of

the first-best is information heterogeneity across candidates. To see this, note that when

there is no information heterogeneity (i.e., there is only one group with τ signals), we

can drop the expectation operators on the numerator and denominator of β∗, yielding

β∗ = τ+k−1
τ+k

c:

µα∗,β∗(i) = β∗ τ + k

τ + k − 1

τ + k − 1

τ + k
c = c.
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Thus when the pool of candidates is homogeneous in terms of information quality, the

recruiter suggests only candidates with posterior expectations above the hiring cost, and

the first-best is achieved.14

2.4.3 Hiring Outcomes by Group

Because the Pareto-uniform information structure without commitment yields a unique

closed-form equilibrium contract, we can make stronger statements about how delegation

impacts candidate groups differently. We present and discuss these results in this section,

after defining the following cutoff.

Definition 6 The cutoff number of signals τ ∗ is such that

τ ∗ + k − 1

τ ∗ + k
c = β∗.

A few observations follow immediately: (1) any information type with τi equal to τ ∗ will

be hired at the same rates in the first-best and equilibrium; (2) τ ∗ is always unique and

well-defined; (3) τ ∗ can be non-integer, but the analysis can be generalized to τi ∈ R+, via

a completion of the analysis for integer τi ∈ Z+; (4) τ ∗ is strictly between τN and τ1.

The equilibrium contract from Theorem 1 and the first-best hiring threshold generate

misalignment between the two suggestion regions. Further, delegation systematically

improves the hiring outcomes of groups of candidates who are better understood by re-

cruiters.

Theorem 3 All information types with more signals than τ ∗, i.e., i < min{i′|τi′ ≤ τ ∗}, are hired

with higher probability in equilibrium than in the first-best, while all information types with fewer

signals than τ ∗, i.e., i > max{i′|τi′ ≥ τ ∗}, are hired with lower probability than in the first-best.

14There is full surplus extraction, and the first-best outcome is generally achieved in equilibrium when
there is only one information type.
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The complete proof is provided in Appendix Section 2.8.4. Under the equilibrium con-

tract, there is a common threshold for hired candidates in terms of the maximum observed

signal: the refund payment (β∗). This corresponds to the horizontal line in Figure 2.2. We

show via induction that this threshold is both strictly below the first-best threshold for

the information type with the most signals and strictly above the first-best threshold for

the information type with the least signals. This implies that the blue and red regions in

Figure 2.2 are not empty.

There is a positive share of candidates who are not hired in equilibrium but that the firm

would like to hire because their maximum signal is high enough given the small number

of signals observed. These candidates are depicted as the “Firm Only” (blue) region in

Figure 2.2. There is also a positive share of candidates who are hired in equilibrium that

the firm would prefer not to hire because their maximum signal is not high enough given

the large number of signals observed. These candidates are depicted as the “Recruiter

Only” (red) region in Figure 2.2.

Figure 2.2: Types of Candidates Hired
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Note: The space of candidates is depicted in terms of their information type (number of signals) and

expected productivity. The green region includes all candidates hired in both the first-best and

equilibrium. The red region includes candidates hired only in equilibrium. The blue region includes

candidates hired only in the first-best.
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In the first-best benchmark only candidates with posterior expected productivity greater

than the hiring cost (c) are hired. In equilibrium, the trade-offs induced by delegation are

such that the firm optimally sets the suggestion bar to a common threshold in terms of

signals. Because different signal realizations imply different expected productivity across

information types, the recruiter suggests some candidates with posterior expected pro-

ductivity less than c and does not suggest some candidates with expected productivity

above c. First-stage screening is distorted in equilibrium relative to the first-best.

To better understand this result, in Figure 2.3 we depict the set of suggested and hired

candidates in terms of their information types and posterior means, (i, µ). The key mis-

alignment is that the equilibrium suggestion region excludes candidates who have high

posterior expected productivity but a high residual uncertainty in less informative groups

(so-called diamonds in the rough, depicted in blue in Figure 2.3), and includes candidates

who have low posterior expected productivity and a low residual uncertainty from more

informative groups (so-called safe bets, depicted in red in Figure 2.3). The optimal con-

tract always generates a positive share of the two types of candidates.
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Figure 2.3: Candidate Types Hired in Equilibrium vs. First-Best

Firm Only
(Diamonds)

Agreement

Recruiter Only
(Safe Bets)

Information Type

Po
st

er
io

r
M

ea
n

Note: Candidates are depicted in terms of their posterior expectation and information type. Diamonds in

the rough are candidates that are poorly understood (high information type) but are expected to have high

productivity. Safe bets are candidates that are well-understood (many signals) but are expected to have

low productivity. The green region includes all candidates hired in both the first-best and equilibrium. The

red region includes candidates hired only in equilibrium. The blue region includes candidates hired only

in the first-best.

2.5 Comparative Statics

In the baseline model, underlying productivity (ā) is distributed similarly across informa-

tion types. In this section we relax this assumption and allow candidate types to vary in

the scale parameter of their prior productivity (āi). We also ask how improvements in in-

formation, group size, and productivity of one information type impact the other types.

We show that in the first-best, hiring outcomes of information types are independent,

while in equilibrium delegation via refund contracts causes spillovers.

We begin by considering the first-best. Following the same logic as in the baseline model,

in the first-best, the firm hires a candidate if µ∗(i) = c.
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Theorem 1’ The unique equilibrium contract is a refund contract with

β∗ =

E
[

āki τi
τi+k

]
E
[

āki τi
τi+k−1

]c, α∗ = ū.

The proof of Theorem 1’ requires only minor additions to the proof of Theorem 2 and is

given in Appendix Section 2.8.3. A key observation is that heterogeneity in prior produc-

tivity essentially re-weights information types within the expectations that determine the

optimal refund. Notice that α∗−ū
β∗ = 0 < 1

2
and thus we have group statistical discrimi-

nation in favor of more information as in the baseline model. We now analyze how an

increase in information for one information type affects the other types in the population.

Proposition 5 Suppose more signals become available for information type i with τi > τ ∗, i.e.,

τi increases. Then, β∗ increases and candidates from any type that is not i are hired with lower

unconditional probability (for all other information types together, each type separately, or any

given candidate of any ability and of any type that is not i).

The proof is provided in Appendix Section 2.8.5.1. In equilibrium, additional information

for one information type spills over onto other information types because it raises the

refund payment. In the first-best, each type has its own threshold signal and information

improvements for one type do not impact the other types. Consider the case when there

are only two information types, one with many signals and one with few. If we add a

signal to the information type that already has many signals, we increase the threshold

we require of all types, further widening the difference in hiring probabilities between

the first-best and equilibrium for the low type. This happens because of two forces acting

in the same direction: (1) more signals increase the individual first-best threshold for this

type, increasing the “average” equilibrium threshold; (2) by improving information for

the type, we make correctly screening the type more important, which means that we

should put “more weight” on this individual type first-best threshold, which is above the
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“average” equilibrium threshold. In this sense, we increase delegation-based statistical

discrimination.

Second, we analyze how first-order stochastic improvements of ability in one information

type affect the hiring probabilities for all other information types. The proofs for the

remaining two results are provided in Appendix Section 2.8.5.2.

Proposition 6 Suppose the prior productivity of information type i improves, i.e., āi increases. If

τi is greater (less) than τ ∗, then β∗ increases (decreases) and candidates from any other type (not i)

are hired with lower (higher) unconditional probabilities (for all other information types together,

each type separately, or any given candidate of any productivity and of any type that is not i).

This comparative static highlights that the equilibrium contract is always attempting to

balance the inclusion of safe bets and the exclusion of diamonds in the rough. In any

equilibrium, diamonds in the rough come exclusively from information types below the

cutoff τ ∗, while safe bets come exclusively from information types above the cutoff. A

productivity improvement for an information type below the cutoff makes excluding di-

amonds in the rough more expensive, and the firm responds by reducing β in order to

reduce screening. A productivity improvement for an information type above the cutoff

makes including safe bets more expensive, and the firm responds by increasing β in order

to improve screening.

Finally, we analyze how a change in the size of an information type impacts the hiring

probabilities of the other information types.

Proposition 7 Assume that information type i becomes larger relative to the other information

types, i.e., pi increases and all other pj proportionally decrease. If τi is greater (less) than τ ∗,

then β∗ increases (decreases) and candidates from any other type (not i) are hired with lower

(higher) unconditional probabilities (for all other types together, each type separately, or any given

candidate of any productivity and of any type that is not i).

The similarity between Propositions 6 and 7 illustrates that productivity improvements

have similar effects to changing the relative sizes of information types. The intuition for
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this result is similar in spirit to Proposition 6. Increasing the size of information types

below the cutoff means there are more diamonds in the rough, so the firm reduces screen-

ing. Increasing the size of information types above the cutoff means that there are more

safe bets, so the firm improves screening.

2.6 Robustness and Extensions

In this section, we show that the qualitative results derived under the parametric infor-

mation structure without commitment are robust. We do this by considering several vari-

ations of the model. Without commitment, if the contract space is enriched to include a re-

tainer payment which can be used to extract all surplus, the first-best is still not achieved.

When the recruiter has a choice over an intensive margin of screening (modeled using

costly sequential search), misalignment and different types of statistical discrimination

still arise. With commitment, full extraction generally occurs, but misalignment persists

due to the fundamental tension between first- and second-stage screening.

2.6.1 Three-Part Contracts without Commitment

In this subsection we consider the case without commitment (γ = β), and we show the

need to use (α, β) to extract surplus is not pivotal in preventing the achievement of the

first-best. To do this, we enrich the space of contracts to include an additional transfer

which is paid out prior to the recruiter observing the information type and productivity

signals of candidates. This additional transfer functions as a form of retainer, and it can

be used directly by the firm to extract all surplus from the recruiter, freeing up other

parts of the contract (α, β) to play other roles. We continue to assume the Pareto-uniform

information structure for this result.

Proposition 8 Suppose the firm designs three-part contracts, with an additional transfer before

the recruiter sees the productivity signals. Then the following are true:

1. Profit is weakly higher than in the baseline equilibrium.
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2. The first-best profit and set of hired and suggested candidates are not achieved.

Proof. Recall that the recruiter cannot commit to a suggestion decision rule, because the

signals are not contractible. In the model we consider, ū is the outside option for rejecting

the contract and also the outside option for not suggesting any candidate after the contract

is accepted. So, if the recruiter accepts the contract but does not suggest a candidate, the

recruiter’s payoff is the upfront transfer plus ū. The firm can replicate the profit from the

baseline model by setting the additional transfer to be 0 and setting the other contract

payments to be the same. Therefore, the firm’s profit is weakly higher.

The additional transfer occurs before the signals are realized, so it impacts only whether

the recruiter accepts the contract. In any equilibrium, the firm sets this transfer such that

the recruiter’s expected utility is equal to the recruiter’s outside option ū. This implies

the firm maximizes total surplus in order to maximize profit. Since total surplus depends

only on the set of candidates suggested and terminated, achieving the first-best requires

achieving the same set of suggested and terminated candidates.

Suppose for the sake of contradiction that the first-best hiring and suggestion regions

are achieved. In the first-best, all candidates who are suggested are not terminated. To

achieve this scenario in equilibrium, the recruiter must not suggest anyone who is later

terminated. This requires β > 0 and the upfront payment equal to the outside option α =

ū. However, this implies that the suggestion threshold in terms of signals xτ
EQ(α, β) = β,

which is the same for all information types. This is a contradiction, because in the first-

best the suggestion thresholds are different for different types: xτ
FB = τ+k−1

τ+k
c.■

The proposition demonstrates that the need to extract rent is not pivotal in terms of pre-

venting achievement of the first-best. The proof of the proposition further confirms that

the deeper tension is between achieving the first-best termination level and achieving the

first-best suggestion region.
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2.6.2 Multiple Candidates and Delegated Search

In our baseline model, the recruiter either suggests the candidate or not. This situation,

which can be viewed as screening along an extensive margin, captures many realistic

scenarios where the recruiter has a candidate in hand who they can choose to suggest for

an opportunity. In other situations, the recruiter may have the ability to search more or

less hard for a candidate that will satisfy the firm’s hiring requirements. This situation

can be viewed as screening along an intensive margin.

Consider a model where the recruiter can pay a search cost to sample additional candi-

dates. After sampling a candidate, the recruiter views the candidate’s information type

and signals. In such a situation, the refund contract determines not just the set of sug-

gested candidates but also the amount of costly effort the recruiter spends searching for

candidates. How does this impact misalignment and statistical discrimination?

In such a sequential search model with normal signals and two information types, the

spirit of our results continues to hold. The candidate from the more uncertain group is

hired more often in the first-best and equilibrium. Intuitively, adding an intensive margin

introduces moral hazard issues. The contract must have strong incentives not just so that

the right candidates are chosen but also so that enough search effort is exerted by the

recruiter. In general, the firm will choose to encourage less search in this setting because

the selection of candidates is distorted.

2.6.3 Nonparametric Full Surplus Extraction with Commitment

In this subsection, we show the equilibrium contract with commitment extracts all sur-

plus from the recruiter for any information structure which satisfies our nonparametric

ordering assumption. We also discuss how despite full surplus extraction, the tension

between first- and second-stage screening generally persists and prevents achievement of

the first-best. This illustrates that the full extraction and failure to achieve the first-best

that we observe in our parametric analysis without commitment is a robust feature of

equilibrium contracts.
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Proposition 9 The optimal contract with commitment features full extraction. 15

Proof

• Transfers are positive. We prove that in equilibrium, the transfer from the firm to

the recruiter for suggestion of a candidate is at least the outside option (α ≥ ū),

and the transfer from the recruiter back to the firm is weakly positive (β ≥ 0) by

contradiction. Suppose that in an optimal contract β < 0. Then the recruiter will

suggest a candidate with termination probability above threshold p∗ = α−ū
β

, or µ <

µi, which yields a negative selection among suggested candidates and contradicts

optimality.

If β=0, then the recruiter either suggests any candidate if α ≥ ū or suggests no

candidate otherwise. Either situation is suboptimal by assumption. If α < ū and

β ≥ 0, the recruiter will never suggest the candidate, because α− β Pr(a < γ|i, µ) <

ū. Thus, the contract yields 0 profit for the firm, which again contradicts optimality.

• Refund is equal to zero and the firm extracts the total surplus. Assume any con-

tract with β > 0, α > ū, and some γ. The recruiter suggests all candidates with

the equilibrium termination probability Pr(a < γ|i, µ) ≤ p∗ = α−ū
β

and gets strictly

positive expected utility for those candidates with termination probability strictly

below p∗. We propose increasing the firm’s profit by a sequence of contracts with

the same suggestion and termination rules (and thus the surplus) that converges to

full extraction of the surplus from the recruiter:

(βm, αm = ū+ βm · α− ū

β
, γm = γ)∞m=1

and lim
m→∞

βm = 0 (βm > 0 ∀m). Each of these contracts has p∗m = p∗ and thus leads

to the same suggesting decisions. Moreover, γ is fixed across all contracts, which

means that the sets of hired and the set of retained candidates do not change. Finally,

15There is a sequence of contracts that converges to the firm’s supremum profit and features full extrac-
tion in the limit.
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the recruiter’s overall expected utility decreases and converges to ū (as it is bounded

between ū and α), which, given the fixed surplus, implies that the firm’s expected

payoff increases. ■

The proposition confirms that under commitment, all equilibria feature full surplus ex-

traction. The proof holds economic insight: The firm can vary β, α in such a way that it

fully extracts all surplus while maintaining the same set of suggested candidates.

We can interpret this result in light of the three goals of the firm outlined in Section 2.3.4:

first-stage screening, second-stage screening, and surplus extraction. Proposition 9 im-

plies that with commitment the firm can perfectly extract all surplus and still be left with

two degrees of freedom to accomplish the other two goals. However, the remaining two

goals are still in conflict. Replicating the first-best suggestion region generally requires

inefficient terminations compared to the first-best. Thus, the first-best will not generally

be achieved even with commitment.

2.7 Conclusion

This paper asks how refund contracts, which are used to delegate recruitment to re-

cruiters, shape the types of candidates ultimately hired by the firm. We show that relative

to a first-best benchmark where a firm recruits directly, delegation induces endogenous

risk aversion. Refund contracts make the recruiter less likely to suggest and the firm less

likely to hire candidates that are less well-understood by the recruiter.

We call this statistical discrimination in favor of more information. We show that it oc-

curs under many refund contracts and many variants of the model. In the first-best, the

firm generally statistically discriminates in favor of less information, because it can termi-

nate poor performers. Despite this result, we show that in one tractable case, the unique

equilibrium contract features misalignment. Thus, the firm is typically unable to design

a contract which avoids misalignment of statistical discrimination.
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We show that the presence of information differences across candidates is a main driver

of misalignment. When candidates are all understood equally well, the first-best can be

achieved using refund contracts. This could give rise to a vicious cycle, the nature of

which we sketch here but leave the study of for future work. Suppose candidates that are

not hired get discouraged and exit an industry. Suppose also that firms can recruit directly

at an opportunity cost or hire a recruiter. Because candidates about whom recruiters are

less informed are less likely to be hired, they will exit at higher rates. In subsequent

periods, the pool of candidates will be more homogeneous, and delegation will become

attractive for a greater share of firms. This would then encourage more firms to delegate,

thus continuing the cycle.

We see two veins for future work. First, the theoretical impact of refund contracts should

be tested empirically using a two-sided audit study, where recruiters are hired to fill a

position, and the experiment varies both the types of candidates the recruiters have ac-

cess to and the type of compensation scheme. Second, how candidates behave in the

presence of widespread delegation should be explored. Job candidates often make costly

choices about which signals to acquire, and these choices are shaped by the labor market

returns to these signals. We have shown in this paper that delegated recruitment changes

the return to additional signals. It remains unclear if job candidates strategically change

how they build their resumes and careers as recruiters and headhunters become more

common.

2.8 Appendix

2.8.1 Bayesian Updating Under Pareto-Uniform Information Structure

To derive the posterior distribution, note that x|a ∼ U [0, a]. Therefore the joint probability

density function of τ signals given a is:

τ∏
t=1

fx|a(xt) =
1

aτ

τ∏
t=1

I{xt ≤ a}
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Notice that
∏τ

t=1 I{xt ≤ a} = 1 if and only if xτ
max ≤ a. Therefore we can re-write as:

τ∏
t=1

fx|a(xt) =
1

aτ
I{xτ

max ≤ a}

The joint distribution of a, {xt}τt=1 is then the product of this distribution and the prior

distribution of a:

f(a, {xt}τt=1) =
1

aτ
I{xτ

max ≤ a}I{a ≥ ā} kāk

ak+1

=
kāk

aτ+k+1
I{max{xτ

max, ā} ≤ a}

Notice that this depends only on the maximum signal. Therefore xτ
max is a sufficient statis-

tic for {xt}τt=1 for a. Note that the conditional PDF will be proportional to the joint PDF

for any fixed xτ
max. We can then solve for the multiplicative constant A that makes the

conditional PDF integrate to 1 over the support:

f(a|{xt}τt=1) =

∫ ∞

max{xτ
max,ā}

A

aτ+k+1
da ↔ A

(τ + k)max{xτ
max, ā}τ+k

= 1

A = (τ + k)max{xτ
max, ā}τ+k ↔ f(a|{xt}τt=1)

= I{max{xτ
max, ā} ≤ a}(τ + k)max{xτ

max, ā}τ+k

aτ+k+1

Thus, a|{xt}τt=1 ∼ Pareto(max{xτ
max, ā}, τ + k).

2.8.2 Derivations for the Proof of Theorem 2

This section proves that under refund contracts, firm profit is strictly decreasing in α. It

then shows that after α = ū, β∗ given in the theorem solves the first-order condition. It

concludes by showing that β∗ satisfies the second-order condition. For historical reasons

and to reduce algebra, derivations are performed by making the change of variables:

α̃ = β−α+ ū, β̃ = β. β̃ is a bonus, and α̃ is an upfront payment incorporating the outside
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option. The recruiter suggests a candidate if β̃P r(a ≥ β|xτ
max) − α̃ ≥ 0, where note α̃ is

taken from the recruiter. The restriction that α be weakly greater than the outside option

translates to β ≥ α̃. We now suppress the tilde notation. The firm chooses a contract to

maximize profit:

max
β≥0,α≤β,

E
[
I{xτ

max ≥ xτ
EQ(α, β)}

(
I{a ≥ β}(a− β)− c+ α

)]

This can be broken into three parts. First, the expected productivity benefit of hiring a

candidate:

E[I{xτ
max ≥ xτ

EQ(α, β)}I{a ≥ β}a]

Second, the expected suggestion costs:

E[I{xτ
max ≥ xτ

EQ(α, β)}(α− c)]

Third, the expected bonus cost:

−E[I{xτ
max ≥ xτ

EQ(α, β)}I{a ≥ β}β]

The productivity benefit (2.8.2) can be written as:

E[I{a > β}I{xmax
τ ≥ β

(
α

β

) 1
τ+k

}a]

=
τ

τ + k − 1

kāk

k − 1
β1−k +

kāk

τ + k − 1
β1−τ−k

[
βτ −

(
β

(
α

β

) 1
τ+k
)τ]

= āk
k

τ + k − 1
β1−k

[
τ

k − 1
+ 1−

(
α

β

) τ
τ+k
]

= β

(
ā

β

)k
k

τ + k − 1

[
τ

k − 1
+ 1−

(
α

β

) τ
τ+k
]
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The expected suggestions costs (2.8.2) can be written as:

(−c+ α)Pr(xmax
τ ≥ β

(
α

β

) 1
τ+k

) =
τ

τ + k

(
ā

α
1

τ+k

)k

β
k

τ+k
−k(−c+ α) (2.2)

=
τ

τ + k

(
ā

β

)k(
β

α

) k
τ+k

(−c+ α) (2.3)

=

(
α

β

) τ
τ+k

β

(
ā

β

)k
τ

τ + k
− c

τ

τ + k

(
ā

β

)k(
β

α

) k
τ+k

(2.4)

The expected bonus cost (2.8.2) can be written as:

− βPr(a ≥ β, xmax
τ ≥ xτ

EQ(α, β)) (2.5)

= −βPr(xτ
max ≥ β)− βPr(xτ

EQ(α, β) ≤ xmax
τ ≤ β, a ≥ β) (2.6)

= −β
τ

τ + k

(
ā

β

)k

− β

∫ β

β(α
β
)

1
τ+k

(
x

β

)τ+k
kτ āk

(τ + k)xk+1
dx (2.7)

= −β
τ

τ + k

(
ā

β

)k

− τβkāk

(τ + k)βτ+k

∫ β

β(α
β
)

1
τ+k

xτ−1dx (2.8)

= −β
τ

τ + k

(
ā

β

)k

− βk

τ + k

(
ā

β

)k(
1−

(
α

β

) τ
τ+k
)

(2.9)

= β

(
ā

β

)k[
− 1 +

k

τ + k

(
α

β

) τ
τ+k
]

(2.10)

Profit is the sum of (2.2), (2.4), and (2.10):

β

(
ā

β

)k[(
α

β

) τ
τ+k τ − 1

τ + k − 1
+

1

k − 1
− c

β

τ

τ + k

(
β

α

) k
τ+k
]

Note that this expression is strictly increasing in α, and it is strictly increasing in α for all

valid values of τ , therefore total profit is increasing in α. Thus in the optimal contract the

upfront payment is set to its maximal possible value: α = β. The expression now becomes

only a function of β:

β

(
ā

β

)k[
τ − 1

τ + k − 1
+

1

k − 1
− c

β

τ

τ + k

]
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Simplifying:

πi =

(
ā

β

)k[
τk

(k − 1)(τ + k − 1)
β − cτ

τ + k

]
The first order condition for profit from information type i is:

∂πi

∂β
=

−k

β

(
ā

β

)k[
τk

(k − 1)(τ + k − 1)
β − cτ

τ + k

]
+

(
ā

β

)k
τk

(k − 1)(τ + k − 1)

= k

(
ā

β

)k{
c

β

τ

τ + k
+

τ

(k − 1)(τ + k − 1)
− τk

(k − 1)(τ + k − 1)

}
= k

(
ā

β

)k{
c

β

τ

τ + k
− τ(k − 1)

(k − 1)(τ + k − 1)

}
= k

(
ā

β

)k{
c

β

τ

τ + k
− τ

τ + k − 1

}

∂πi

∂β
= k

(
ā

β

)k{
c

β

τ

τ + k
− τ

τ + k − 1

}
Taking the weighted average of the first order condition for each information type gives

the total profit first-order condition:

∑
i

pik

(
ā

β

)k[
− τi

τi + k − 1
+

c

β

τi
τi + k

]
= k

(
ā

β

)k[
−
∑
i

pi
τi

τi + k − 1
+

c

β

∑
i

pi
τi

τi + k

]

= k

(
ā

β

)k(
− E

[
τi

τi + k − 1

]
+

c

β
E
[

τi
τi + k

])
= 0

Which yields the optimal value of β:

β =

E
[

τi
τi+k

]
E
[

τi
τi+k−1

]c
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Returning to our original change of variables, β̃ = β and α̃ = β̃ thus α = ū. We show the

second-order condition is satisfied at β∗ for the case with prior productivity heterogeneity

(which nests the baseline model) in the next section.

2.8.3 Optimal Contract with Prior Heterogeneity

Suppose additionally that information types also differ in prior productivity. That is they

differ in their Pareto shift parameter āi in addition to the number of signals. We can still

use the same argument as above to say that α = β because the argument is true for each

information type individually regardless of the values of ā, k. We can adapt the first-order

condition (2.8.2) to incorporate heterogeneity:

∑
i

pik

(
āi
β

)k{
c

β

τi
τi + k

− τi
τi + k − 1

}
= 0

∑
i

pi

[
āki τi

τi + k − 1
β − āki cτi

τi + k

]
= 0

β
∑
i

pi
āki τi

τi + k − 1
=
∑
i

pi
āki cτi
τi + k

β∗ =

∑
i pi

āki cτi
τi+k∑

i pi
āki τi

τi+k−1

β∗ =

E
[

āki τi
τi+k

]
E
[

āki τi
τi+k−1

]c

We can also check the second-order condition, to make sure that the solution is a local

maximum. It is then also the global maximum, since the function is everywhere differen-

tiable, and the solution to the first-order condition is unique.

∂2π

∂β2
=
∑
i

pikτi
β

·
(
āi
β

)k{
− c

β

k + 1

τi + k
+

k

τi + k − 1

}
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Now we can show that for any β < c and for any i, the expression inside the brackets

is negative, which will imply that the second-order derivative is negative, the function is

concave, and the second-order condition is satisfied.

c

β
· k + 1

τi + k
>

k + 1

τi + k
=

k + 1

(τi + k − 1) + 1
>

k

τi + k − 1

■

2.8.4 Proof of Theorem 3

Recall that information types are indexed by their number of signals (τi) from most to

least signals. Then we have that:

τ1 + k − 1

τ1 + k
> ... >

τi + k − 1

τi + k
> ... >

τN + k − 1

τN + k

Therefore:
p1

τ1
τ1+k

p1
τ1

τ1+k−1

> ... >
pi

τi
τi+k

pi
τi

τi+k−1

> ... >
pN

τN
τN+k

pN
τN

τN+k−1

Note that:
a

b
>

c

d
=⇒ a

b
>

a+ c

b+ d
>

b

d

Therefore:
p1

τ1
τ1+k

p1
τ1

τ1+k−1

>
p2

τ2
τ2+k

p2
τ2

τ2+k−1

=⇒

p1
τ1

τ1+k

p1
τ1

τ1+k−1

>
p1

τ1
τ1+k

+ p2
τ2

τ2+k

p1
τ1

τ1+k−1
+ p2

τ2
τ2+k−1

>
p2

τ2
τ2+k

p2
τ2

τ2+k−1

We can then repeat this process with information type 3:

p1
τ1

τ1+k
+ p2

τ2
τ2+k

p1
τ1

τ1+k−1
+ p2

τ2
τ2+k−1

>
p3

τ3
τ3+k

p3
τ3

τ3+k−1

=⇒

p1
τ1

τ1+k
+ p2

τ2
τ2+k

p1
τ1

τ1+k−1
+ p2

τ2
τ2+k−1

>
p1

τ1
τ1+k

+ p2
τ2

τ2+k
+ p3

τ3
τ3+k

p1
τ1

τ1+k−1
+ p2

τ2
τ2+k−1

+ p3
τ3

τ3+k−1

>
p3

τ3
τ3+k

p3
τ3

τ3+k−1
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Continuing until the final information type N we have that:

p1
τ1

τ1+k

p1
τ1

τ1+k−1

>

∑
i pi

τi
τi+k∑

i pi
τi

τi+k−1

>
pN

τN
τN+k

pN
τN

τN+k−1

The middle expression is the ratio of expectations observed in the equilibrium suggestion

threshold. With this realization, we can multiply all expressions by the hiring cost c to

obtain:

x1
FB =

τ1 + k − 1

τ1 + k
c >

E
[

τi
τi+k

]
E
[

τi
τi+k−1

]c > τN + k − 1

τN + k
c = xN

FB (2.11)

Thus we have that the first-best threshold for the information type with the most signals

is greater than the equilibrium threshold while the first-best threshold for the information

type with the least signals is less than the equilibrium threshold. Now consider the ratio of

the probability of hire in the second best compared to the first-best for a given information

type i:

Ri :=
PrEQ

i (hire)

PriFB(hire)
=

(
xi
FB

xEQ

)k

The denominator is the same for all information types and k is a positive power, therefore

the ratio is monotone decreasing in i (information type 1 has the highest ratio). From

(2.11) we know that x1
FB/xEQ > 1 and xN

FB/xEQ < 1. Thus the information type with

the most signals are hired at higher rates in the equilibrium than the first-best, while

the information type with the least is hired less in the equilibrium than the first-best.

Further, because the ratio is monotone decreasing in the number of signals, all types with

a number of signals above some cut-off will be hired at higher rates, while all those below

some cut-off will be hired at lower rates.■
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2.8.5 Proofs for Comparative Statics

2.8.5.1 Proof of Proposition 5

Consider all information types but i, and denote τ ∗−i the threshold τ for these information

types.

β∗ =
(1−pi)∗

τ∗−i
τ∗−i

+k
+pi∗

τi
τi+k

(1−pi)∗
τ∗−i

τ∗−i
+k−1

+pi∗
τi

τi+k−1

dβ∗

dτi
=

pi

(1− pi) ∗
τ∗−i
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+ pi ∗ τi
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∗
∂ τi
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−

(
(1− pi) ∗
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τ∗−i+k
+ pi ∗ τi

τi+k

)
∗ pi(

(1− pi) ∗
τ∗−i

τ∗−i+k−1
+ pi ∗ τi

τi+k−1

)2 ∗
∂ τi

τi+k−1

∂τi

∝
∂

τi
τi+k

∂τi

∂
τi

τi+k−1

∂τi

− x∗
EQ

=
k ∗ (τi + k − 1)

(k − 1) ∗ (τi + k)
· xi

FB − x∗
EQ

> xi
FB − x∗

EQ > 0

since τi > τ ∗ and k ∗ (τi + k − 1) > (k − 1) ∗ (τi + k). This implies that dβ∗

dτi
> 0. ■

2.8.5.2 Proof of Propositions 6 and 7

β∗ =

E
[

āki τi
τi+k

]
E
[

āki τi
τi+k−1

]c =
∑

i piā
k
i ·
[

τi
τi+k

]
∑

i piā
k
i ·
[

τi
τi+k−1

]c

85



Let us define the following measure function over i: p̃i = piā
k
i . Then β∗ is given by the

formula for the homogeneous ā case

β∗/c =

Ep̃

[
τi

τi+k

]
Ep̃

[
τi

τi+k−1

]
Increase in pi or āi is equivalent to increase in p̃i. Assume p̃i increased to p̃′i. The following

inequalities are equivalent.
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(p̃′i − p̃i) ∗
τi

τi+k
τi

τi+k−1

> (p̃′i − p̃i) ∗
τ∗−i

τ∗−i+k

τ∗−i

τ∗−i+k−1

(p̃′i − p̃i) ∗
( τi

τi+k
τi

τi+k−1

−
τ∗−i

τ∗−i+k

τ∗−i

τ∗−i+k−1

)
> 0
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(
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−

τ ∗−i + k − 1

τ ∗−i + k

)
> 0

(p̃′i − p̃i) ∗ (τi − τ ∗−i) > 0

Since xτ
FB is increasing in τ . Therefore an increase in pi or āi increases x∗

EQ iff τi > τ ∗−i,

which is equivalent to τi > τ ∗. ■

2.8.6 Qualitative Interviews

We conducted three recorded interviews with people in the recruiting industry. The inter-

views occurred in 2019 and lasted around one hour each. The interviews asked a series of

open-ended questions about recruiting in general and did not focus on the refund contract
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in particular. Audio recordings are available but require approval from the interviewees

prior to release.

One interview was with an early career recruiter who works for an external recruiting

firm. One interview was with a mid-career headhunter who at the time managed his

own external recruiting firm. One interview was with an early career internal recruiter

and human resource professional. The interview with the internal recruiter did not yield

much information about external recruiters so it is not discussed much in this paper.

Both the mid-career external headhunter and the early-career external recruiter stated

that they utilized a contract structure where they got a fee that was contingent on the

candidate staying for a certain period of time. Here is the excerpt from the mid-career

headhunter:

Jacob (Author): “Do you ever consider the probability of termination or probability of

leaving or retention when you are choosing who to suggest? Because you are paid based

on placement but is it contingent on them staying for a certain period of time?”

Headhunter: “Yes most of the time it is anywhere from a 30 day to 90 day replacement.

Sometimes it is full replacement no cost, sometimes it is a refund. We as recruiters may

get paid 16,000 for a fee. But we can’t..you know. You just don’t want to send that money.

Or you just won’t get paid until those 90 days are up.”

Here is the excerpt from the early-career recruiter:

Jacob (Author): “Do you consider probability of termination, probability of separation or

retention when you are considering someone?”

Recruiter: “Yes.”

Jacob (Author): “What is the window you get paid for generally?”

Recruiter: “Generally it is 90 days. We get paid upfront. One of two things happen. We

either have the next placement for free or we return the money.”

Jacob (Author): ”And that’s if they leave for what reasons?”

Recruiter: “Any reason.”
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Jacob (Author): “Even if the company fires them?”

Recruiter: “Yes.”

Jacob (Author): ”Do you ever contest why the company fired them?”

Recruiter: “No because the amount of times; I do not know if in my two years if we have

ever had a candidate fired in the first 3 months.”

Jacob (Author): “It is usually because they left or something else like that?”

Recruiter: “But even then it has happened only a few times. If a candidate leaves after

the 90 day mark there are times when we may provide a discount on the next placement.

But we are not tied to it by any means”

Jacob (Author): “Do you have any idea why it is 90 days?”

Recruiter: “It is just our good faith policy to our clients who we work with to say that hey

we trust the candidates we are putting in front of you.”

Jacob (Author): “It seems like everyone is 90 days, so. Like of all the people I have talked

to, it seems like everyone is 90 days. Is there a reason for that number?”

Recruiter: “I have never had a conversation about it, my understanding would likely

just be that turnover in tech is just so high we wodont want it to be past 3 months, but 3

months is enough time for someone to get caught up to speed and get to work and get

connected.”

Jacob (Author): “One month is too short?”

Recruiter: “One month is too short. Six months is. . . there is too many reasons things

could fall apart.”

Additionally, when asked why companies use recruiter, one reason the early-career re-

cruiter gave is: “Another reason is essentially we are free to use unless success happens.

It doesn’t cost any money unless they want to hire someone.”
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2.8.7 Proof of General Risk Attitudes

Proof. The firm’s payoff for a suggested candidate with productivity a is equal to max{a, 0

}− c, which is a convex function. Let us take a candidate (µ, σ), which the firm decides to

suggest. Then any candidate to the upper right from this one, with µ′ ≥ µ and σ′ ≥ σ is

also suggested since the firm’s payoff function is increasing and convex, and therefore a

FOSD shift and an MPS increase its expectation. Thus, the firm suggests everyone above

some threshold µ̃FB(σ) that is decreasing in σ. This means that the firm is risk-loving

since it prefers candidates with a mean-preserving spread of productivity. ■

Proof. The recruiter suggests anyone with (µ, σ) such that

α− β Pr(a < β|µ, σ) ≥ ū

Pr(a < β|µ, σ) ≤ α− ū

β
≤ q

Pr(a < β|µ, σ) is the conditional CDF of a given µ, σ, which we denote F(µ,σ)(a). Then we

have that: β ≤ F−1
(µ,σ)(q). Then for a fixed σ, consider all candidates with µ = µ̃EQ(σ) and

σ′ < σ. Since the candidates are q-lower-tail-risk ordered and β ≤ F−1
(µ,σ)(q):

Pr(a < β|µ, σ′) < Pr(a < β|µ, σ) < q

And the (µ, σ′) candidate should also be suggested. All candidates with σ and µ′ > µ̃EQ(σ)

are also suggested since the FOSD implies

Pr(a < β|µ′, σ) < Pr(a < β|µ, σ) < q

This together implies that if a candidate (µ, σ) is suggested then all candidates to the up-

per left, (µ′ ≥ µ, σ′ ≤ σ) should also be suggested, which implies that µ̃EQ(σ) is increasing

in σ. This result, on the other hand, can be thought of as risk aversion because the re-

cruiter who suggests a candidate (µ, σ) would also suggest any other candidate (µ′, σ′)

that second-order stochastically dominates (µ, σ) candidate. ■
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CHAPTER 3

Efficient Information Aggregation in DeGroot Model

Solo-authored1

3.1 Introduction

People have different influence on the society. Social influence of an individual is largely

defined by one’s position in the social network. One can influence people directly or

through other individuals in the network. Social influence of individual may be mathe-

matically described by the centrality of the corresponding node in the graph characteriz-

ing the network.

1We are grateful for insightful comments from Moritz Meyer-ter-Vehn, Simon Board, Ichiro Obara,
Tomasz Sadzik, Sushil Bikhchandani, and William Zame. We thank participants in the UCLA theory pros-
eminar where this work was presented.
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Figure 3.1: Social network and node centrality 2

In social learning models, the node/individual centrality defines how much the individ-

ual’s opinion matters for the others. Fully rational agents could aggregate the information

efficiently regardless of the structure of the network, however this requires the agents to

be highly sophisticated. Trying to avoid this difficult computational problem, people tend

to act according to some simpler heuristic learning rules. In this case the social importance

of one’s private information is no more defined by its quality but by the centrality of this

person in the network.

One of conventionally accepted heuristic learning models in Economics is DeGroot model.

For DeGroot model it has been shown that eigenvector centrality reflects the individuals’

opinions importance in the society (Golub and Jackson, 2010). The information aggre-

gation may be suboptimal if the centrality of the individual does not correspond to the

quality of this individual’s information. This would mean that people listen and pay a

lot of attention to somebody who is not very knowledgeable in the question, but they

2https://en.wikipedia.org/wiki/Network theory
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ignore somebody who is rather advanced in the subject. Recent experience of learning

details about Covid’19 illustrates this idea rather well. It happened that among central

(influential) people in the society – like politicians – there are a few who did not possess

deep knowledge about the medical aspects of the pandemic, however still disseminated

some false or inaccurate facts about it, and those inaccurate opinions spread widely in

the society due to the high centrality of their sources. On the other hand, the medical

professionals were not heard by the public since they are not the central individuals in

the society.

Individuals may have difficulties with considering the network structure which affects

the correlation of the opinions or news that they observe. They also may not know with

certainty who provides more and who provides less accurate facts about the matter. A

Facebook (or any other online social network) user may not know if her friends are con-

nected, and therefore their opinions are correlated. In this case, considering their opinions

independent would be wrong as well as updating her own opinion based on this assump-

tion. The user may also not know how trustworthy her friends are when sharing their

opinions, and therefore make a mistake on how much weight to assign to their opinions

too. Hence, the question I address in this paper is whether a benevolent Social Planner

knowing the network structure and the knowledgeability of individuals can improve the

results of the heuristic learning in this network.

More precisely, I consider that given an exogenous observational network Social Planner

tries to improve the time asymptotic results of the DeGroot model. SP cannot create new

links in the network but only can affect the weights individuals assign to each others’

opinions for a given set of people they can observe. Facebook can choose which posts of

my friends to show at the top and which of them at the bottom; what users to ban at all

for spreading disinformation. Amazon (any internet retail platform) may genuinely care

whether the customers efficiently learn about the quality of different items since it helps

to increase sales volume. In order to do it, Amazon can show reviews from seemingly

trustworthy users and ban those who apparently posts fake reviews. Some ways of cen-

sorship may also speak to the situation, if SP tries to prevent untrustworthy individuals
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from sharing their opinions. We will focus on a situation where social planner knows

how precise the private individual signals are and can reassign the individual’s attention

across her neighbors in the network.

The crucial assumption in this paper is that SP cannot create new links in the network.

If it was not a case, apparently connecting everyone to everyone and assigning every-

one a weight corresponding to the individual signal quality/precision would allow to

aggregate information perfectly and immediately. (If the graph is not complete, it is not

generally optimal to assign weights proportional to the information quality.) This how-

ever means that SP can make an individual to believe some strangers, and this is a too

strong requirement. It is much easier to believe that in some cases SP can reshape the

individual’s attention across the other individuals she knows (her neighbors in the net-

work).

To approach solving SP’s problem, I start with characterization of the first best learning

(the best possible learning given the private signals). The main contribution of this paper

is demonstration that in any connected finite network it is always possible to achieve the

first best learning. I provide an algorithm solving this problem and discuss the degrees

of freedom in the construction of the solution. I also discuss a benchmark with simple

average-based updating learning, where SP is only free to delete links between individu-

als in the network. In this model for homogeneous initial signals, the first best learning is

attainable if and only if the initial graph contains a connected regular subgraph in it. Fi-

nally, I introduce a method of increasing the speed of convergence for a fixed asymptotic

result.

Another view on the contribution of the paper may be considered in a pure statistical area.

Since DeGroot interaction matrices are closely related to Markov processes the results

may be interpreted as follows. For any connected aperiodic Markov process, changing the

probabilities for existing transitions between states may help to establish any stationary

probability distribution.
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The rest of the paper is organized as follows. Section 2 discusses the related literature and

the contribution to it. Section 3 introduces the model and relevant definitions distinguish-

ing social network from interaction matrix. In section 4, I define the first best learning and

discuss its relation to SP’s problem solution. Section 5 contains the main results regard-

ing achieving the first best learning. Section 5.2 addresses a problem under average-based

updating learning and characterizes the necessary and sufficient conditions for achieving

the first best learning. Section 6, I introduce a method of increasing the speed of conver-

gence in DeGroot model. Section 7 concludes and discusses the limitations of the paper

and the possibilities for the future research.

3.2 Literature

Social learning has been an important topic in Economic Theory for the last 30 years. A

significant strand of the literature was focused on large population asymptotic analysis

in rational sequential learning models. Starting with classic papers Banerjee (1992) and

Bikhchandani et al. (1992), researchers were analyzing the properties of information ag-

gregation and asymptotic behavior. In these models agents observe their own private

signals and actions of some of the previous agents before choosing their own action. The

structure of observational network, boundedness of signals, and coarseness of actions

play crucial role for such asymptotic properties in sequential learning as herding, wis-

dom of crowds, information diffusion, and others. Smith and Sørensen (2000) show the

asymptotic learning in the complete network happens if and only if the beliefs based on

private signals are unbounded. Acemoglu et al. (2011) show that information diffuses if

learning subnetworks length diverge and they are independent (even if the private beliefs

are bounded).

Another strand of literature focuses of repeated learning in social networks, which fea-

tures better tractability in many situations. Due to the complexity of Bayesian updating

and strategic interaction, heuristic learning is often a more appealing choice for the anal-

ysis in repeated updating models. DeGroot model introduced by DeGroot (1974) is one
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of the most common heuristic learning models. After receiving private signals at the

beginning of the time, agents use weighted average of their neighbors beliefs to update

their own belief every day. DeMarzo et al. (2003) provide a micro foundation for DeG-

root model, which follows as a result of naive Bayesian repeated updating in their model.

Convergence to consensus in DeGroot model follows closely from the Markov chain prop-

erties and was stated in many papers including DeGroot (1974), DeMarzo et al. (2003),

and Golub and Jackson (2010). This results show that social influence of an individual is

defined by her eigenvector centrality in the network. For a sequence of expanding net-

works, the necessary and sufficient condition for the wisdom of crowd is that everyone’s

centrality converges to zero, i.e. there remain now overinfluential people in the network

Golub and Jackson (2010). Many papers including Golub and Jackson (2010) also show

that the speed of convergence to the consensus is bounded by a number proportional to

the second largest eigenvalue and the size of the network. DeMarzo et al. (2003) demon-

strate that in the fully rational model with jointly Gaussian distribution of the true state

and the private signals the agents would aggregate information in at most n2 periods.

This paper differs from the previously mentioned in two directions. Firstly, I will focus

on the finite population learning quality. Considering DeGroot model I will analyze the

quality of the time asymptotic information aggregation comparatively to the best possi-

ble aggregation given the private signals. Secondly, since the learning is generally sub-

optimal, I will introduce a Social Planner, who aims to improve the asymptotic learning

subject to a give observational network constraint. The problem of increasing the speed

of learning by SP will be also addressed in this paper.

3.3 Model

A social network consists of n individuals, observational links between them and is given

by an undirected graph G = (N,E), where N = {1, ..., n}. The links define a possibility

of observational learning between individuals, i.e. (i, j) ∈ E means that individual i can

pay attention to j’s opinion and vice versa. Also, the graph contains loops on every node
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– (i, i) ∈ E – which simply indicates that every individual has a memory about her own

past opinion on a subject. A set of the nodes connected to i will be called i’s neighborhood

in the rest of the paper and denoted by Ni.

As in Golub and Jackson (2010), DeGroot learning is defined as a mechanical updating of

unidimensional opinions. An individual i updates her opinion xi ∈ R over time accord-

ing to a linear formula with time-independent weights of attentions she pays to her neigh-

bors’ yesterday opinions. These weights are given by an interaction matrix W , where Wi,j

means how much weight individual i puts on individual j’s yesterday opinion.

xi(t) =
∑

j = 1nWi,j ∗ xj(t− 1) (3.1)

Time is discrete t ∈ {0, 1, 2, ...}, and therefore the vector of all opinions evolves according

to the following formula

x(t) = W ∗ x(t− 1) = W t ∗ x(0) (3.2)

The initial opinions x(0) are noisy signals about the true state of the world θ. θ has an

improper uniform distribution, and individual signals xi(0) = θ + ϵi include individual

conditionally independent normal errors εi ∼ N(0, σ2
i ) ⊥ (θ, {εj}j∈N\{i}).

As described above, social interactions are given by two different objects – network G and

interaction matrix W . The network G is a primitive fundamental element of the setup,

which is defined exogenously and cannot be changed. However, learning improvement

will involve changing the interaction matrix W subject to the given network. This means

that the social planner can reshape attention people assign across their neighbors in order

to improve learning, but cannot make individuals pay attention to somebody who they

are not connected to in the network.

Definition 7 An interaction matrix W compatible with network G is a positive valued matrix,

such that
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1. Wi,j = 0 if (i, j) /∈ E,

2. ∀ i,
n∑

j=1

Wi,j = 1

Even though, G is undirected, a compatible with G matrix W is not required to be sym-

metric, e.g. i can put a different weight on j than j puts on i.

Definition 8 The average-based updating interaction matrix W of the network G is defined as

Wi,j =
1{(i, j) ∈ E}

n∑
k=1

1{(i, k) ∈ E}
=

1{j ∈ Ni}
#Ni

which in fact means that today individual’s opinion is equal to a simple average of her neighbors’

(including herself) yesterday opinions.

These two definitions formally describe the ways social planner can affect learning. Sub-

ject to the given social network and DeGroot learning model, SP can correct the weights

one assigns to the opinions of people she knows. This models the assumption that learn-

ing remains heuristic and the individuals are not sophisticated for Bayesian learning;

however, SP can consider the information and the network structure and change the in-

teraction matrix in order to improve learning results. The main feature of both Definition

1 and 2 is that SP cannot make individuals pay attention to somebody who they are not

connected in the original network. SP can reshape one’s attention across her neighbors –

people she knows – but cannot make her listen to somebody she does not know/trust.

This way of correcting the interaction matrix speaks to numerous examples. Social net-

works on the internet may affect the way they show me my friends’ posts and choose

which of them to show at the top and which of them to show at the bottom, or even not

to show at all. They can completely ban users who spread some unreliable or poor infor-

mation. Internet retail platforms may choose which reviewers are the most trustworthy,

in order to show their opinions first and help other consumers’ to learn better.

I will consider two benchmarks with respect to the freedom of choosing the interaction

matrix. The first benchmark allows complete freedom of choosing the weights people
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assign to their neighbors’ opinions (there can not be a positive weight put on an absent

link in the graph). This benchmark corresponds to Definition 1 of W compatible with

G. The second benchmark is more restrictive and allows less freedom in choosing the

weights. Particularly, I will consider that given a set of neighbors, an agent will always

use a simple average-based updating rule. Therefore, the only freedom Social Planner

has in correcting W is deleting links between agents. This corresponds to Definition 2 of

the average-based updating interaction matrix W of G. The difference may be illustrated

by the following example.

Figure 3.2: Social network G

W ′ =



0.5 0.3 0.2 0 0 0

0.4 0.6 0 0 0 0

0 0 0 1 0 0

0 0 0 0.5 0.5 0

0 0 0 0.3 0.4 0.3

1 0 0 0 0 0


W ′ is an example of an interaction matrix compatible with G. It is also worth to notice

that the presence of the link does not require to put a positive weight on it. W ′′ is another

compatible with G interaction matrix, which also can be obtained as an average-based

updating interaction matrix of G after deleting links (3, 4) and (1, 6) from it.
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W ′′ =



1/3 1/3 1/3 0 0 0

1/2 1/2 0 0 0 0

1/3 0 1/3 0 1/3 0

0 0 0 1/2 1/2 0

0 0 1/4 1/4 1/4 1/4

0 0 0 0 1/2 1/2


Finally, it is worth mentioning why the sum of weights an agent puts on yesterday neigh-

bors’ opinions is equal to 1 (every row in the interaction matrix adss up to 1). This is a

natural assumption corresponding to the fact that the opinion/estimate of the true state

of the world should not inflate or deflate over time. This requirement also allows for a

clear analysis of the time asymptotic results of the DeGroot learning, which I am going to

focus on.

The problem that SP solves is to minimize the following loss function

L =
∑
i

[
lim sup
t→∞

E[(xi(t)− θ)2]

]
(3.3)

In other words, SP tries to minimize the sum of individual asymptotic mean square errors

about the true state of the world. The fact that SP weights all individuals equally does not

matter in terms of the results; however, considering time asymptotic results is crucial. It

gives a lot of tractability since it is important to aggregate as much information from the

individuals’ signals as possible eventually. This also allows using of the previous results

and characterization of time asymptotic opinions in DeGroot model (Golub and Jackson,

2010).

Golub and Jackson (2010) also show that in expanding networks individuals will learn the

true state if everyone’s influence vanishes as the network gets bigger. In this paper, on the

other hand, I analyze finite networks and the question of how to make time asymptotic

learning as precise as it can be. I also focus on the construction of interaction matrices

solving this problem.
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Lastly, I am considering that the initial signals have possibly heterogeneous precision, but

contain uncorrelated errors. Heterogeneity of the private signals precision is interesting

since it allows me to model the situations when there are more and less knowledgeable

individuals. In the average-based updating benchmark, I consider only homogeneous

signals due to the limitations on choosing W .

3.4 First best learning

For solving SP’s problem in the next section, it is useful to derive the upper bound on

the learning quality and under which conditions this upper bound can be attained. In

order to do this, I will ignore the learning process and characterize the best information

aggregation from the private signals, that minimizes SP’s loss function. As it was said

before, the true state θ ∼ U [−∞; +∞] and the initial signals are independent normal

unbiased estimates of θ

(x1(0), ..., xn(0))
T ∼ N((θ, ..., θ)T , diag(σ2

1, ..., σ
2
n))

min
f

E[(f(x(0))− θ)2]

The solution of the reduced problem is the true state conditional expectation on all initial

signals, i.e. the best possible learning is if every individual opinion will converge to this

conditional expectation.

lim
t→∞

xi(t) = E[θ|x(0)] =
n∑

i=1

(
σ−2
i

n∑
j=1

σ−2
j

∗ xi(0)

)
(3.4)

The solution follows from the joint distribution of the signals and the state of the world; it

can be interpreted as follows. Since every signals is an unbiased estimate of the true state,

then any weighted average of them will be too. Thus, the only question is how to weight
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them in order to make the result the least noisy, and the optimal way to do it is to assign

weights proportional to the precision of the signals, which is captured by (4). This defines

the best possible inference from the signals (in terms of mean square error minimization),

and sets the lower bound on the value of the SP’s loss function.

Definition 9 The first best learning is π∗ · x(0), where

π∗ =

(
σ−2
1∑

j

σ−2
j

, ...,
σ−2
n∑

j

σ−2
j

)
(3.5)

Proposition 10 SP’s loss function L takes the lowest possible value if and only if all individual

opinions converge to the first best learning.

This is a simple result giving a base for the next analysis of improving DeGroot learning

results. It also gives a clear comparison of the DeGroot and Bayesian time asymptotic

results for a fixed network and information structure. DeMarzo et al. (2003) and Mossel

et al. (2016) show that the myopic Bayesian learners will converge to the first best learning

in at most n2 periods. Therefore, the first best learning becomes a major baseline for

comparison. In the next section I show that given any connected social network, SP can

correct the interaction matrix to attain the first best learning. I also provide an algorithm

constructing the solution to this problem.

Finally, it is useful to illustrate what is the first best learning on two examples. First, let

us suppose that there are only two agents 1 and 2, with independent noise in their signals

x1(0) = θ + N(0, 1) and x2(0) = θ + N(0, 2). Given that, precisions of their signals are 1

and 1/2 respectively, and therefore the first best learning is (2/3) ∗ x1(0) + (1/3) ∗ x2(0)

and π∗ = (2/3, 1/3). In the other important example we will often consider later, we will

suppose that all agents receive signals with IID errors (homogeneous signals). Since the

precision of their signals is identical, the first best learning is a simple average of their

signals and π∗ = (1/n, ..., 1/n).
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3.5 Improving DeGroot

To proceed with solving SP’s problem, it is useful to recall the results regarding conver-

gence in DeGroot model (these or similar results are demonstrated in many papers in-

cluding Golub and Jackson (2010), DeMarzo et al. (2003), and DeGroot (1974)). Since the

first best learning is the the best potential solution to SP’s problem, we will try to identify

under which conditions opinions in DeGroot model converge to the first best learning.

The first best learning assigns a positive weight on every private signal. Therefore, for

every opinion to converge to the first best learning, it is necessary that there is a path

between every two nodes (every private signal reaches every node through the network).

Thus, we require the graph to be connected (or strongly connected in case of directed

graph). If it is not, there exist two nodes with no path from the first to the second one,

and therefore the signal from the first one will never reach the second one through the

network. The social network was introduced as an undirected graph earlier; however,

since the interaction matrix compatible with the network is asymmetric and can also have

zero weights on some links, the eventual graph may become directed. Therefore, strong

connectedness of W is required for achieving the first best learning.

After we limit the analysis to strongly connected interaction matrices, Golub and Jackson

(2010) state that if the interaction matrix is aperiodic3 then all opinions always converge

to the consensus defined below

xi(∞) =
(
lim
t→∞

W t · x(0)
)
i
= π · x(0) (3.6)

Where π is a unique left eigenvector of W corresponding to eigenvalue 1 with sum of

elements equal to 1.

3An interaction matrix is periodic if all cycles in it have a common divisor greater than one. In this case
some information will just travel around with common periodicity but the opinions will not settle down to
a consensus. The existence of at least one self-loop resolves this problem since it creates a cycle of length 1
and makes the matrix aperiodic. Since the introduced network contains all self-loops, to keep at least one
of them will not be a problem.
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π ·W = π

Vector π can is a vector of eigenvector centralities of nodes in a graph defined by inter-

action matrix W , where πi is the centrality of node i. (This remark can be made with the

only adjustment that in this case I take a left rather than a right eigenvector. Given that

interaction matrix is very similar to Markov process matrix, it becomes apparent the the

spectral radius of W is equal to 1 and π is an eigenvector corresponding to the maximum

eigenvalue.) With sum of elements of π normalized to one, we can think of it as a vector of

social influences of individuals in the network, where πi is the weight of i’s initial opinion

in the asymptotic social consensus.

The individual eigenvector centrality/social influence πi depends on the network struc-

ture, however it may be excessively large for some individuals whose initial opinions are

not very accurate but small for those whose information is actually rather precise. An-

other possible scenario is that everybody’s private signals are identically precise, but the

network structure is such that there are individuals much more central and influential

than others. In this case, the information aggregation (results if learning) will be also

suboptimal. Example 1 will illustrate such situation.

Example 1 Let us consider a quite extreme example of social structure capturing natural varia-

tion in individual centralities – a star network. For n = 7 the network looks like in Figure 2.

Figure 3.3: Star network (n = 7)
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Let us consider that the private signals have identical precision σ−1
i = 1 and that the individuals

use a simple average-based updating rule, so that the interaction matrix is

W =



1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/2 1/2 0 0 0 0 0

1/2 0 1/2 0 0 0 0

1/2 0 0 1/2 0 0 0

1/2 0 0 0 1/2 0 0

1/2 0 0 0 0 1/2 0

1/2 0 0 0 0 0 1/2


Given this interaction matrix we can derive the eigenvector centrality vector.

π =

(
7

19
,
2

19
,
2

19
,
2

19
,
2

19
,
2

19
,
2

19

)
Now let us see how this network aggregates information comparatively to the first best learning.

All opinions will converge over time to the consensus π · x(0) and its mean square error about the

true state is equal to E[(π ·(ε1, ..., ε7))2] = 73/361, which is equivalent that the social learning has

precision equal to 469
73

. This is close to the precision of the efficient aggregation of 5 independent

individual signals. The first best learning here is a simple average aggregation of all private signals

π∗ = (1/7, ..., 1/7) (since they are equally precise), and therefore the precision of the first best

learning is equal to the sum of the individual precisions, which is equal to 7. Hence, the actual

learning looses 2 signals out of 7 in terms of precision comparatively to the first best learning.

Unfortunately, it is quite frequent that individual’s centrality does not reflect her knowledgeability.

This brings us to the question of how to correct the interaction matrix in order to fix this learning

inefficiency.

In this section, I will consider two ways of achieving the first best learning in the DeGroot

model. Firstly, I will analyze the general problem with full freedom in changing the in-

teraction matrix compatible with the network, and after that, I will analyze the situation
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when the agents only use simplified average-based learning and SP can only delete the

links in order to affect W .

3.5.1 Correcting the Interaction Matrix

To approach the problem, I first analyze the situation with identically precise individual

signals (initial opinions). It is a simple version of the problem considered later however

capturing the main features of both of them. The preview of results is that in both prob-

lems the first best learning is attainable, therefore the question can be reduced to how to

match the social influence vector π to the first best learning vector π∗, or, in other words,

how to construct the interaction matrix W compatible with the network G, such that

π∗ ·W = π∗ (3.7)

This means that it is desired to construct a non-negative valued matrix W with every

row’s elements adding up to 1, and positive elements only corresponding to the links

in the network G, but 0 on the positions corresponding to the pairs of nodes that are

not connected directly, such that π∗ is an eigenvector of W corresponding to the unit

eigenvalue. We will solve equation (7) for W by matching the LHS entries (depending

on W ) to the RHS one by one. It is also crucial to preserve strong connectedness and

aperiodicity of W , so that all opinions converge to consensus.

Remark 1 If all elements of RHS equation (7) are equal to the corresponding RHS elements except

for maybe one, then this last element is also equalized. This can be proved by the following logic. A

proper interaction matrix is also a proper Markov probability transition matrix. Thus the operation

on the LHS of (7) is a probability transition in Markov chain and a proper probability distribution

today transits to a proper probability distribution tomorrow. This implies that the sum of LHS

entries must be equal one. Therefore, if all except one of them are the same as the RHS entries, then

this last element is also the same and π∗ is a proper stationary distribution for W .
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In terms of solving equation (7), Remark 1 means that going over the interaction ma-

trix and correcting its columns and therefore LHS vector elements is a valid strategy –

it will work until the last column, which there is no freedom to change anymore due to

the restrictions on W , but there will be no need to do this since the last element will be

equalized automatically.

Proposition 11 For any connected graph G (with all selfloops) there exists a strongly connected

aperiodic interaction matrix W , s.t. the DeGroot time asymptotic results are the same as the first

best learning, if the initial signals are identically precise.

Proof. In case of identical precise signals, the first best learning is given by π∗ = (1/n, ...,

1/n). For the simplicity of future notations, lets us denote by Wi, and W,j row i and

column j of interaction matrix W respectively. Then we can rewrite equation (7) as

(1/n, ..., 1/n) ·W,j = 1/n

Or

n∑
i=1

Wij = 1

For every i. This condition does not seem to be very restrictive, which suggests that

solution will not be unique. However, we do not aim to characterize all of them, but

rather to find at least one of them to show that the first best learning is attainable. Thus, a

simple algorithm described below is sufficient for the proof.

1. Fill in all possibly positive elements in the first row with equal numbers adding up

to 1.

2. Transpose it to the first column.

3. Fill in the rest of the possibly positive elements in the second row by the same prin-

ciple. Transpose.
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4. Iterate until the last row/column.

This is a well defined algorithm, which makes every column of W add up to 1 by the

construction, and therefore, produces W solving (7). Also, it does not remove any links

from the original network, so it remains connected and aperiodic. ■

To see how it works we run it for the Example 1.

W =



1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 6/7 0 0 0 0 0

1/7 0 6/7 0 0 0 0

1/7 0 0 6/7 0 0 0

1/7 0 0 0 6/7 0 0

1/7 0 0 0 0 6/7 0

1/7 0 0 0 0 0 6/7


For W constructed by the algorithm, DeGroot learning leads to the first best learning

π = π∗ = (1/7, ..., 1/7).

3.5.1.1 Heterogeneous signals

Now, as we captured the idea of how to solve equation (7) and the flavor of how the

algorithm may work, we can move to a general case with heterogeneously precise signals.

We first introduce Lemma 1 allowing us to reduce the problem to subgraphs and to make

the induction step later.

Lemma 6 Let graph G can be parted into two intersecting subgraphs G1 and G2 on the sets of

nodes {1, ..., i} and {i, ..., n} such that there are no links between {1, ..., i− 1} and {i + 1, .., n},

i.e. the subgraphs are connected only through node i. Let π1 = (π1, ...πi) and π2 = (πi, ...πn)

be parts of the first best learning vector π∗; centrality vector conditional on subgraph Gk is π̃k =
πk∑

j∈V k πk
j

, and W 1 and W 2 are proper (strongly connected and aperiodic) interaction matrices

compatible with G1 and G2 solving the conditional parts of equation (7) on the subgraphs
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π̃k ·W k = π̃k (3.8)

for k = 1, 2. Then there exists strongly connected aperiodic W compatible with G solving equation

(7).

Proof. Firstly, let us notice that equation (8) is equivalent to the following

πk ·W k = πk

Then, W solving equation (7) can be constructed from W 1 and W 2 as follows. Merge W 1

and W 2 in a diagonal block matrix intersecting on the cell Wi,i, with zero elements off the

blocks. Adjust W ∗
i,i = 1 −

∑
j ̸=i

Wi,j , so that row i elements add up to 1 as well as for every

other row

W =



W 1
1,1 ... ... W 1

1,1 0 ... 0

... ... ... ... ... ... ...

W 11i−1,1 ... ... W 1
i−1,i 0 ... 0

W 1
i,1 ... W 1

i,i−1 W ∗
i,i W 2

i,i+1 ... W 2
i,n

0 ... 0 W 2
i+1,i ... ... W 2

i+1,n

... ... ... ... ... ... ...

0 ... 0 W 2
n,i ... ... W 2

n,n


For all elements j = 1, ..., i− 1, since W 1 solved the equation (8) on subgraph G1

π ·W,j = π1 ·W 1
,j = π1

j = πj

The same can be told for j = i+1, ..., n, so that in equation (7) the constructed W equalizes

all elements of the LHS and RHS except for maybe i. Moreover, Remark 1 then implies

that entry i is equalized too since every row’s elements of W sum up to 1. So W solves

equation (7) and is strongly connected and aperiodic as soon as W 1 and W 2 are.
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The last issue with the construction is that W ∗
i,i may be negative. This does not violate the

previous arguments, but questions whether W is positive valued and therefore a proper

interaction matrix. If this element is negative, then by construction W ∗
i,i ≥ −1. Therefore,

there exists α ∈ [1/2, 1] such that W ′ = α · W + (1 − α) · I is positive valued (where I is

identity matrix) and still solves equation (7)

π ·W ′ = π · (α ·W + (1− α) · I) = α · π ·W + (1− α) · π · I = α · π + (1− α) · π = π

This last corrections guarantees that W ′ is a strongly connected aperiodic interaction ma-

trix compatible with G maintaining the first best learning. (All requirements to W remain

satisfied after weighting with identity matrix since it simply inflates diagonal elements

and deflates the rest. The positive elements remain being positive, and all self-loops are

preserved in graph G.) ■

Example 2 To illustrate how Lemma 1 and the algorithm in it works let us consider the following

example.

Figure 3.4: Graph G

Let the vector of the signals’ variances is (σ2
1, ..., σ

2
6) = (3, 3, 6, 2, 6, 6) and therefore the first best

learning is defined by π∗ = (0.2, 0.2, 0.1, 0.3, 0.1, 0.1).

Let i = 1 and subgraphs G1 and G2 contain nodes {1, 2, 3} and {3, 4, 5, 6} respectively. Then the

conditional centrality vectors are π1 = (0.4, 0.4, 0.2) and π2 = (1/6, 1/2, 1/6, 1/6). Let also W 1

and W 2 given below solve the problems on the subgraphs
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W 1 =


0.4 0.4 0.2

0.4 0.4 0.2

0.4 0.4 0.2



W 2 =


1/2 1/2 0 0

1/6 1/2 1/6 1/6

0 1/2 1/2 0

0 1/2 0 1/2


Then according to Lemma 1, firstly we can construct

W =



0.4 0.4 0.2 0 0 0

0.4 0.4 0.2 0 0 0

0.4 0.4 −0.3 1/2 0 0

0 0 1/6 1/2 1/6 1/6

0 0 0 1/2 1/2 0

0 0 0 1/2 0 1/2


This W solves equation (7) but it is not actually a proper interaction matrix since W3,3 = −0.3 <

0. The we will make a last step and take a convex combination of this matrix with the identity to

eliminate the issue

W ′ =
1

2
·W +

1

2
· I =



0.7 0.2 0.1 0 0 0

0.2 0.7 0.1 0 0 0

0.2 0.2 0.35 1/4 0 0

0 0 1/12 3/4 1/12 1/12

0 0 0 1/4 3/4 0

0 0 0 1/4 0 3/4


This is a well-defined strongly connected aperiodic interaction matrix which leads to the first best

learning in the example.
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Figure 3.5: Graph G′′

For the next proofs it is also important to notice that for graph G′′ (that contains graph G and

some additional edges) Lemma 1 can be also applied in a slightly modified way. G1 and G2 are still

connected aperiodic subgraphs in G′ connected between each other through vertex 3. Therefore,

we can construct the same interaction matrix W ′ for G′ as before, even though there are some

additional edges between G1 and G2. In this case these edges – (2, 5) and (1, 4) – will be just

automatically deleted from the graph (the resulting interaction matrix).

We discussed the induction step for the next proof, so we can state Theorem 1 and prove

it.

Theorem 4 For any connected graph G (with all selfloops) and for any vector of initial signal

variances (σ2
1, ...σ

2
n), there exists a strongly connected aperiodic interaction matrix W compatible

with G, s.t. the DeGroot time asymptotic results are the same as the first best learning.

Proof. To prove Theorem 1 it is just needed to understand how to apply Lemma 1 to

reduce solving equation (7) on some degenerate subgraphs. One of the ways to do it is

to pick any tree containing all the vertices of G (together with self-loops), to solve (7) for

every link connecting two vertices in this tree, and to solve equation (7) for the whole

graph by induction, adding nodes one by one and applying Lemma 1 for every iteration.

Firstly, since G is connected it contains at least one tree on all its nodes as a subgraph.

Choosing this tree is the first element of freedom in the construction of W resulting in the

first best learning.
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Second, the reduced problem (on a subgraph) can be solved easily for any clique (sub-

graph which is complete) including a clique of only two adjacent nodes – an edge. Let 1′

and 2′ be two adjacent nodes in the original graph and G′ be a graph containing only this

two nodes (together with the link between them and the self-loops). Let π′ = (π′
1′ , π

′
2′) ≡(

π1′

π1′ + π2′
,

π2′

π1′ + π2′

)
be the conditional on G′ desired centrality vector. The the reduced

problem is

π′ ∗

W ′
1′,1′ W ′

1′,2′

W ′
2′,1′ W ′

2′,2′

 = π′

or equivalently

W ′
1′,2′

W ′
2′,1′

=
π′
2′

π′
1′

Solving this equation is the second element of freedom in the construction of W . How-

ever, for the proof it is just enough to notice that the following interaction matrix will

solve it for the subgraph

W ′ =

π′
1′ π′

2′

π′
1′ π′

2′


The final step of the proof is to formalize an induction step. Given any connected subtree

in the tree (including one link) for which the problem is already solved, we can choose

another link in the tree adjacent to this subtree and connect them, applying Lemma 1 in

order to solve conditional (7) in this bigger subtree. Lemma 1 here can be applied since

we always can reorder the nodes in the subgraphs to satisfy the conditions for the lemma,

and it is true that every additional adjacent link to a subtree is connected to it only through

one node. Also, in step 2 of the proof we have already shown how to solve a problem for

one link, and since we have a tree this algorithm will eventually include all nodes in it

and therefore in the initial graph.
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Therefore, we constructed a strongly connected aperiodic W compatible with G (since it

is compatible with the tree in it) solving (7) and leading to the first best learning. ■

Just to illustrate what results the algorithm can produce let us consider Example 1 again

(which is very symmetric) and introduce the heterogeneity in the signals precision –

(σ2
1, ..., σ

2
7) = (6, 1, 1.5, 1.5, 3, 3, 6). In this case the first best learning is defined by π∗ =

(0.05, 0.3, 0.2, 0.2, 0.1, 0.1, 0.05), which intuitively seems to be hardly implementable in

this graph – the centrality of the central node should be reduced below all the periph-

eral nodes’ centralities, that also differ drastically. However, Theorem 1 states that it is

possible and the algorithm in the proof explains how to do it. One of possible solutions

implementing the first best learning is provided in Figure 6.

Figure 3.6: Reweighted star network

Finally, it is important to notice that besides for the freedom in construction mentioned

in the proofs of Theorem 1 and Lemma 1, many more solutions of the problem can be

obtained as convex combinations of other interaction matrices produced by the algorithm.

3.5.2 Deleting Links

In this subsection I will consider a more restricted DeGroot model of average-based up-

dating learning. Saying this, I mean that SP is not free to choose any interaction matrix
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anymore since given the corrected network individuals use the average-based updating

rule

xi(t) =

∑
j∈Ni

xj(t− 1)

#Ni

(3.9)

Thus, social planner who cannot create new social connections (edges) can only delete

them in order to improve the learning results. This stylized assumption captures that the

individuals perform some stubbornness in their learning rules, but SP still can restrict

information spreading through some channels.

Given this learning model, DeGroot time asymptotic results can be characterized more

clear in terms of the graph structure, rather than the interaction matrix which is less in-

teresting in this setup since it is obtained mechanically from the graph. Let us denote by

the node degree di = #Ni the number of the nodes it connected too, possibly including

itself. This is slightly different from the conventional definition of the vertex degree in

undirected graph since according to the definition in this paper, a self-loop on the node

adds only 1 to its degree rather than 2.

Lemma 7 Let G be an undirected connected graph. Then the eigenvector centralities vector for

the average-based updating interaction matrix W of graph G is

π =

(
d1∑
i di

, ...,
dn∑
i di

)
(3.10)

Proof. The interaction matrix is given by Wi,j =
1{j ∈ Ni}

di
. Then we can verify that π

defined in (10) is actually an eigenvector centrality of average-based updating interaction

matrix W of G:

πi = π ·W,j =
∑
j∈Ni

1

dj
∗ πj =

∑
j∈Ni

1

dj
∗ dj∑

k dk
=
∑
j∈Ni

1∑
k dk

=
di∑
k dk

■

Lemma 2 states that in average-based updating learning processes the social influence

of the node is simply proportional to its degree centrality – how many individuals one
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connected to. This is a natural concept of social influence in graphs however implies

some restrictions on the asymptotic learning. Particularly it is easy to notice that vector

π changes very discretely and clearly cannot take all possible real values. In a directed

multigraph any interaction matrix from Section 5.1 could be attained by duplicating or

deleting directed links; however, we will exclude such possibility from the analysis and

focus on undirected simple graphs. Given that, obviously the first best learning is not

always attainable for heterogeneous signals and thus we will simplify the analysis re-

stricting it to homogeneous signals case. To characterize the results it will be useful to

remember the definition of regular graph.

Definition 10 The graph is regular if every vertex has the same degree.

Proposition 12 Let G be an undirected connected graph and the initial signals are identically

precise. Then under average-based updating learning, the first best learning is attainable by delet-

ing some links from G if and only if there exists a regular connected subgraph in G including all

vertices of G.

Proof. The proposition is quite straightforward from Lemma 2. As soon as there is a reg-

ular connected subgraph, the rest of the links can be deleted and average-based updating

learning will lead to the first best learning. Moreover, if there is no such subgraph, the

now correction will lead to even degree distribution, and therefore, the first best learning

is unattainable under homogeneous signals. ■

Finally we can illustrate the condition from Proposition 3 on the difference between the

following two graphs:

(a) (b)
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The star network, graph (a), does not contain a connected regular subgraph on all of its

vertices – deleting any link causes disconnectedness, and the original graph is clearly

not regular. Therefore, SP cannot attain the first best learning by deleting links under

average-based updating. Graph (b) however can be corrected to result in the first best

learning. For instance, deleting links (2, 3) and (3, 4) leaves only Hamiltonian cycle, which

is clearly a regular graph. Every vertex degree is equal to 2, and the centrality vector is

π = (0.2, ..., 0.2) = π∗.

The latest example and Proposition 3 show that in case of average-based updating the

first best learning (in case of homogeneous signals) is attainable only if the structure of

network G is not too asymmetric. If some nodes have to high influence relatively to others

in the original network, it may be hard to reduce it without disconnecting the network or

reducing some other nodes’ centralities.

3.6 Speed of Convergence

It is also interesting to make a few remarks regarding possibility of increasing speed of

learning in DeGroot model. For this discussion it is important to recall the results on the

speed of convergence in the DeGroot model from Golub and Sadler (2017).In Proposition

8 of this paper, they state that the second largest eigenvalue of the interaction matrix W

is closely related to the speed of convergence (the largest eigenvalue is equal 1).

sup
x(0)∈[0,1]n

||x(t)− x(∞)||∞ ≤ (n− 1)|λ2|t

The smaller (in absolute value) the second largest eigenvalue is, the faster individual

opinions will converge to the consensus. Some theoretical results explaining it are pro-

vided below.

Given the properties of the interaction matrix it can be decomposed as

W = Π−1 · Λ · Π (3.11)
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Where Π is the row eigenvector matrix of W and Λ = diag(λ1, ..., λn) a diagonal matrix

of eigenvalues. For simplicity let reorder eigenvalues from the largest λ1 = 1 in absolute

value, to the smallest one. Then the convergence of the opinions in the DeGroot model

relies on the fact that

W t = Π−1 · Λt · Π = Π−1 · diag(λt
1, ..., λ

t
n) · Π

And the speed of convergence depends on how soon Λt → diag(1, 0, ...0), which depends

on the second largest eigenvalue (in absolute values), since the rest of them converge to

zero even faster. This also explains why the opinions converge to the consensus π · x(0)

lim
t→∞

W t ·x(0) = Π−1 ·diag(1, 0, 0, ..., 0) ·Π ·x(0) = Π−1
,1 ·π ·x(0) = (π ·x(0), ..., π ·x(0)) (3.12)

Which follows from Π−1
,1 = (1, ..., 1), since every other eigenvector except for π sums up

to 0 and Π · Π−1
,1 = (1, 0, ..., 0)T .

Now let us say the λ2 is the second largest eigenvalue for W and π′ is the corresponding

eigenvector

π′ ·W = λ2π
′

Let β be the minimal of the diagonal elements of W and α ∈
(

− β

1− β
, 1

)
, then the

following equation is true for the interaction matrix W ′ = (1− α) ∗W + α ∗ I

π′ ·W ′ = [(1− α)λ2 + α] · π′

So for the new interaction matrix W ′ the speed of convergence will be associated with

λ′
2 = (1 − α)λ2 + α. This eigenvalue is smaller than λ2 in absolute value if α ∗ λ < 0 is

119



negative and therefore the speed of convergence is higher. Let us illustrate it on the next

example.

Example 3

W =

5/6 1/6

1/3 2/3

 =

1 1/3

1 −2/3

 ·

1 0

0 1/2

 ·

2/3 1/3

1 −1


The second largest eigenvalue here λ2 = 1/2 and the smallest diagonal element is β = 2/3. So

let us pick α = −1 ∈ (−2, 1), for example. Then the new interaction matrix leading to the same

asymptotic learning will be

W ′ = 2 ·W − I =

2/3 1/3

2/3 1/3

 =

1 1/3

1 −2/3

 ·

1 0

0 0

 ·

2/3 1/3

1 −1


Now the speed of convergence is higher, more precisely the convergence to the same asymptotic

consensus is immediate since λ′
2 = 0 and for any t ≥ 1 xi(t) = 2/3 ∗ x1(0) + 1/3 ∗ x2(0).

The intuition of the method accelerating learning is as follows. If we take an interaction

matrix (with a positive second largest eigenvalue) leading to the first best learning and

take a convex combination of it with the identity matrix, it will slow down the learning

because all eigenvalues will take convexified with 1. So, if on the other hand we can

decompose a proper interaction matrix W as a convex combination of the identity ma-

trix and another proper interaction matrix W ′, then this W ′ will also lead to the first best

learning but faster. This is exactly the case shown by the Example 3.

Proposition 4. Let Wi,i ∈ (0, 1) ∀i and λ2 ̸= −λ3 (if n > 2). Then there exists W ′ such

that (1) opinions converge to the same consensus as for W , (2) asymptotic speed of con-

vergence to the consensus is higher than it is for W .
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More generally, such transformation may help speed up learning in two following way:

(1) decreasing self-weights can make “stubborn” individual learn faster from their neigh-

bors; (2) increasing self-weights can prevent from opinions circulating around the net-

work if individuals are too susceptible to other opinions.

3.7 Conclusion

Efficient learning in the networks is crucial for many economic outcomes in the modern

world. The paper shows the possibility of efficient asymptotic aggregation of information

in connected finite networks in DeGroot model. The algorithm from Section 5.1 constructs

an interaction matrix leading to the first best learning. I also address the problem of

increasing the speed of convergence. However, the paper has a number of limitations

opening the possibilities for the future research.

Firstly, the freedom to correct the weights in interaction matrix in any possible way may

be arguable. This may be a too strong assumption in real world, where SP for some rea-

son can be limited in the ways of controlling learning. The model considered in the paper

does not provide particular foundations for the naive learning with SP, therefore does not

explain how exactly SP can affect the attention individuals pay to each other’s opinion.

Introducing such a naive learning foundation model with SP and some particular meth-

ods of ”censoring” information can be a good start for improving theory in this direction.

Another limitation of this paper is that the analysis is mostly focused on time asymptotic

learning and has a little to say about making the convergence to the first best learning fast.

Section 6 provides one possible way of doing it, however does not tell much about the

fastest ways of learning. One problem that could be considered is what interaction matrix

leads to the first best learning with the highest possible asymptotic speed of convergence.

Another possible approach is to introduce a discounted loss function, which brings to the

speed of convergence issue automatically since such loss function includes earlier periods

in it.
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Finally, the paper considers that the agents are unsophisticated in the way the update

their opinions, and do not know much about the network structure. However, the paper

presumes that SP knows the network and the information structure perfectly. This is a

rather strong assumption, which can be a subject to questions. Hence, it could be inter-

esting to consider a naive learning model in the network where both individuals and SP

have limited information about the network and/or information structure. Addressing

this and latter extensions would provide important insights to the theory of centralized

improving the aggregation of information in naive learning models.
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