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ABSTRACT OF THE DISSERTATION
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Beamformer adaptive spatial filters have been used extensively in the
field of magnetoencephalography (MEG) as tools to reconstruct functional
activation of the brain. Conventional single beamformer techniques suffer
from distortion in the presence of coherent activation of the cortex or are
difficult to use due to the need of a priori information. These qualities present
a major disadvantage to analyzing human brain responses, as coordinated
functional responses require a degree of synchronous activation in different
parts of the active cortex. In this dissertation, a novel beamformer technique,
the multi-core beamformer, is developed that is robust to source correlation

and does not require the use of a priori information. This novel approach is

XV



tested in both simulated and real experiments, including auditory and median-
nerve stimulation, which provide well-studied systems to gauge the
effectiveness of our new technique. Simulations show that the multi-core
beamformer can successfully determine source time-courses, source powers,
and source locations while minimizing or eliminating the distortion present in
other methods. Results from real-life experiments show that the multi-core
beamformer produces physiologically meaningful solutions that agree with
previous functional imaging and neurophysiology studies. The use of the
multi-core beamformer is expected to greatly contribute to the analysis of MEG
recordings and, in general, improve our understanding of functional brain

activity.
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INTRODUCTION

Magnetoencephalography (MEG) is a functional neuroimaging
technique capable of detecting neuronal activation on the millisecond time
scale with good spatial resolution. Though MEG is a relatively new
technology, it has already improved our understanding of the human brain in
both states of health and disease. MEG has been used for functional mapping
of the brain during various tasks designed to test somatosensory, motor,
auditory, visual, language, attention, and memory function. In states of
disease, MEG has played an important role in developing our understanding of
Schizophrenia, Traumatic Brain Injury (TBI), Stroke, Autism, Alzheimer’s
disease, and Post-traumatic Stress Disorder (PTSD) (Huang et al., 2009;
Huang et al., 2010; Hunter et al., 2011; Tsiaras et al., 2011; Wilson et al.,
2011; Zamrini et al., 2011). MEG has also been routinely used in clinical
settings for localizing seizure foci in epileptic patients and for pre-surgical
functional mapping in patients with brain tumors.

MEG offers several advantages over other imaging modalities.
Functional Magnetic Resonance Imaging (fMRI) provides a good description of
neural activity in space. However, the fMRI signal is based on the BOLD
response which detects the level of blood oxygenation present at each voxel.
The BOLD response, while a useful indicator of increased blood flow to
cortical areas during activation, is an indirect measure of neural activation.

Since the time-resolution of the BOLD response is in seconds, fMRI has



trouble detecting different sequences of neuronal activity in time domain and
differentiating bands of brain oscillations in frequency domain. Detecting such
properties of brain activity is highly important for understanding normal brain
function. To achieve such goals, high time-resolution functional imaging is
needed. Electroencephalography (EEG) is capable of millisecond temporal
resolution through directly detecting neuronal activity by means of the scalp
potential. However, EEG suffers from poor spatial resolution due to the spatial
distortion of head tissues and low conductivity of the skull. MEG, on the other
hand, directly detects neuronal activity (i.e. neuronal current) via neuronal
magnetic fields with millisecond time resolution and has better spatial
resolution than EEG since the magnetic permeability of the head is equal to
that of free space (i.e. no distortion due to head tissues) (Hamalainen et al.,
1993).

The most challenging issue of MEG is determining a solution for the
neuronal source configuration in the brain (MEG inverse problem) using the
sensor-space MEG measurements. In fact, the MEG inverse problem has no
unique solution for given sets of magnetic measurements. Because of this,
additional constraints on the neuronal sources (source models) are needed to
make the MEG inverse solution unique. The viability of a given MEG source
reconstruction technique (source model) directly impacts the general

applicability of MEG to studying neural activity in both health and disease.



Thus, the development of different techniques of source localization and
activity reconstruction is an active and important field of research in MEG.

One popular reconstruction method, the beamformer adaptive spatial
filter, has been used extensively in MEG studies. Such conventional
beamformer approaches assume different neuronal generators are
uncorrelated. As a result, these beamformer techniques suffer from time-
course distortion and source power suppression in the presence of coherent
activity in the brain. In fact, fully correlated generators are completely missed
during source localization (Van Drongelen et al., 1996; Van Veen et al., 1997,
Robinson and Vrba, 1998; Sekihara et al., 2004). This poses a serious
disadvantage as neural communication often requires coherent activity
between different parts of the brain. Nonetheless, the beamformer has been
widely used in brain connectivity studies (Brookes et al., 2011; Mantini et al.,
2011).

This dissertation describes the development of a new beamformer,
termed the multi-core beamformer (MCBF), an adaptive spatial filter capable
of reconstructing the activities of multiple correlated sources without source
suppression and without a priori information on source activity and location
(Diwakar et al., 2011a; Diwakar et al., 2011b). First, a background chapter is
presented to familiarize the reader with the MEG system, basic MEG physics,
and the mathematics of beamformer adaptive spatial filters. Next, each step

of the development of the MCBF, along with supporting results from both



simulation and real data, is presented. It is hoped that use of the MCBF
spatial filter in MEG analyses will improve our understanding of brain activity
by providing a better estimation of true source activity than conventional

beamformer technologies.
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CHAPTER 1
Background on Magnetoencephalography
1.1 Neuronal Generation of Magnetic Field Signals

The cellular mechanisms responsible for generating neuronal signals
must first be examined in any in-depth discussion of Magnetoencephalography
(MEG). The human brain is composed of, roughly, two distinct types of tissue.
White matter, which lies under the cortical surface, contains neuronal support
cells as well as axons, the cellular projections responsible for propagating
signals to downstream neurons. The axon is a single, long portion of the cell
which carries the nerve impulse away from the body (soma) of the cell,
generally located in the gray matter, the second type of tissue. Gray matter
mainly resides in the cortex, a thin layer at the surface of the brain, and is also
present in deeper subcortical structures. Gray matter consists of neural
support cells (glia), neuron bodies (somas), and dendrites, the neural cell
structure responsible for receiving nerve impulses. The cortical surface, or
gray matter, has a total surface area of about 2500 cm? and fits in the skull
due to a highly invaginated and folded structure. The hills of the cortex (gyri)
and the valleys (sulci) allow the human brain to house many more soma than

would a smooth surface (Kandel et al., 2000).

Interestingly, the structure of the cortex is conserved extremely well

across a particular species and has similar structure between species. Many



of the important functional areas of the human cortex have been mapped out
through various functional studies such as cortical electrode placement,
functional magnetic resonance imaging (fMRI), positron emission tomography
(PET), and MEG. Furthermore, many surface and depth cortical electrode
experiments performed on animal subjects are directly applicable to the

human brain due to conservation of structure.

The anatomy of the head is very important in the field of MEG. Cellular
structures determine how incredibly small electrical currents sum up to create
a detectable magnetic field. Furthermore, the macroscopic anatomy is
important as it provides structure to determine electromagnetic field
propagation through various layers of electrical conductivity. Finally, good
knowledge of functional anatomy can provide a priori information for aid in

solving the MEG inverse problem (Hillebrand and Barnes, 2003).

Important electrical currents are present in both the axons and
dendrites of neurons while they are active. The axonal current, which is
responsible for sending nerve impulses to downstream or efferent neurons, is
generated through active ion exchange, requiring the presence of a
membrane potential maintained by expenditure of adenosine triphosphate
(ATP). The axonal current is extremely fast, having a typical duration of 1 ms.
The current is quadrupolar in nature, propagating along the axon in all
longitudinal and radial directions. Once the axonal current reaches the tip of

the axon, neurotransmitters are released across the synaptic cleft to bind to



receptors on the dendritic portion of the efferent neuron. The bound receptors
then allow an influx of sodium ions which raises the membrane potential in the
dendrites. This membrane potential is passively propagated along the
dendrite until it reaches the soma. Since the dendritic (post-synaptic) current
is not actively generated, it is much slower, typically lasting tens of
milliseconds. [If the membrane potential near the junction of the soma and the
axon (axon hillock) reaches a high enough level, a new action potential is

generated along the axon (Hamalainen et al., 1993, Kandel et al., 2000).

The magnetic fields produced by these neuronal currents can be
predicted by the quasi-static approximations to the Maxwell Field Equations.
Because of the quadrupolar nature of the axonal current and the resulting
spatial cancellation, the magnetic field intensity decreases with distance from
the source as 1/r3. Due to this rapid reduction in magnetic field intensity and
the fast nature of the action potential, axonal currents in white matter are not

detectable by electroencephalography (EEG) and MEG.

The passively generated magnetic field from the dipolar post-synaptic
current, however, reduces with distance as 1/r2. Furthermore, the
microscopic structure of the cortical gray matter shows it is composed of
multiple highly-organized layers of neurons. The pyramidal cells in layers 4
through 6 of the cortex, in particular, are arranged in a parallel orientation and
fire synchronously in large functional groups (~100,000 neurons) known as

cortical columns. The spatial organization of these columns allows for
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temporal and spatial summation of the post-synaptic current, generating a
much larger magnetic field for a cortical patch than for a single neuron. Thus,
due to the combination of these factors, post-synaptic currents are the driving
force behind measurable MEG and EEG signals. Also, since these currents
are primarily located within the cortical gray matter, MEG is most sensitive to

activity in the cortex (Hamalainen et al., 1993; Kandel et al., 2000).

1.2  MEG Design and Detection of Magnetic Field

The typical magnetic field strength generated by an active cortical patch
of neurons is 50-500 femtoTesla, about 8 to 9 orders of magnitude smaller
than the earth’s own electromagnetic field. Thus, it is necessary to have
extremely sensitive magnetic field detectors in addition to a shielded
environment suitable for blocking out the earth’s static field. The detectors
used in magnetoencephalography are superconducting quantum interference
devices or SQUIDs. SQUIDs are composed of superconducting rings with one
or more weak junctions that limit current flow to an upper bound called the
maximum critical current. In order to be superconducting, the SQUIDs must
be at or below the critical superconducting temperature. Cooling is achieved
through the use of a liquid Helium bath which has a temperature of less than 4

Kelvin.

The neuromagnetic field is typically brought to the SQUIDs through the

use of flux transformers. Flux transformers are pickup coils which are used to
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limit the contribution of the background field to the signal detected by the
SQUIDs. Two types of flux transformers are used in MEG: gradiometers and
magnetometers. Gradiometers are mainly sensitive to nearby magnetic fields
(i.e. the neuronal magnetic fields generated by the cortex), but less sensitive
to magnetic fields from remote sources (i.e. subcortical gray matter and
artifacts from generators far from the sensor). In contrast, magnetometers are

sensitive to both nearby and remote sources.

To further ensure that static fields generated by the earth, power lines,
passing cars, etc. do not influence the neuromagnetic measurements, MEG
machines are housed in shielded rooms. At the University of California, San
Diego (UCSD), the MEG situated at the Radiology Imaging Laboratory has a
multiple layer shielded room with shielding factors of 65, 73, 108, and 160 dB
at 0.01, 0.1, 1, and 10 Hz respectively. The use of a well-shielded room is
essential in MEG as it significantly increases the signal-to-noise ratio (SNR) of

the magnetic recordings.

Though a single SQUID and flux transformer may be used to record the
magnetic field produced by neural activity, such a system is not ideal because
it requires moving the sensor around the head to sample a whole magnetic
field map. In many cases, such as in the detection of epileptic discharges,
events are not easily reproducible and do not allow the practice of moving the
sensor to different locations. Thus, recent developments in MEG design have

focused on implementing multiple SQUID and flux transformer arrays that
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provide good whole brain coverage. Such a system is much preferable as the
entire local magnetic field surrounding the skull can be detected
simultaneously, greatly reducing the time required to gather enough
information for neuronal activity reconstruction. The MEG housed at UCSD is
an Elekta VectorView system containing 102 magnetometers and 204
gradiometers, which provides whole-head coverage and more than adequate

sites of measurement for accurate reconstruction of brain activity.

1.3  Forward Modeling

The previous sections illustrated how magnetic fields are generated by
the brain during cellular activity and how we may design a system to detect
these weak fields. However, we do not yet have a description of the
characteristics of these generated fields. Maxwell’s Field Equations serve as
the basis for computing these generated fields. If the conductor profile of the
head is known, along with the neuronal current distribution, Maxwell’s
equations may be used to straightforwardly compute the expected magnetic

field pattern at the sensor locations.

The field equations are simplified in the case of MEG in two ways.
First, the magnetic permeability of tissue is the same as free space. Second,
we may employ the quasi-static approximation to Maxwell’s equations. In the
quasi-static approximation, induction terms which depend on the time-

derivative of the electric and magnetic fields are assumed to be zero. This
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assumption is valid because neuronal activity is generally less than 100 Hz,
resulting in induced fields that are too small to play a significant role in the

sensor measurements (Hamalainen et al., 1993).

When applying the quasi-static field equations to the brain, the neuronal
currents are split into two components. The primary current is the current
generated by the dendrites in active cortical patches and is the primary
measure of neural activity in both MEG and EEG. Since the charges in the
current must complete a circuit to maintain charge neutrality, current
propagates through the general medium in a distributed fashion (return
current). The volume current, J¥(r), is described by the electric field, E(r),

and conductivity profile, a(r) (Hamalainen et al., 1993):

J'(r) =o()E(r) (1.1)

The total current density, J(r), is composed of the primary current, JP(r), and

the return current:

Jr) =JP(@) + oc(ME@) =JP(r) —o(r)VV(r) (1.2)

In the quasi-static approximation, the divergence of the total current density is

zero. Simplifying Equation 1.2 under these conditions yields:

V-(oVV)=V-JP (1.3)

In developing the forward model, we are primarily interested in

developing a relationship between the primary currents (actual source activity)
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and the magnetic field distribution at each sensor while taking into account the
contributions from the volume current. Solving Equation 1.3 for the electric
potential allows straightforward computation of the magnetic field distribution

from the primary current using the Ampere-LaPlace Law:
Ho ’ Ny ’ R ’ ’
B(r) =i (]p(r)+V(r )\ a(r))xﬁdv ; R=r—r (1.4)

Primed coordinates indicate source space. In order to solve Equation 1.3 for
the electric potential, it is necessary to have a description of the conductivity
(head model) and a model for the primary currents, JP. Two common head
models, the spherical head model and boundary element method (BEM) head
model will be described in more detail in the coming sections. Using Equation
1.4, a lead-field matrix may be developed that describes the gain at each
sensor location to dipolar currents modeled across a source grid at various

locations.
1.3.1 Equivalent Current Dipole Model (ECD)

Since MEG detects signals from dendritic current, the continuous
primary current can be modeled as a set of discrete Dirac delta function

current dipoles (ECD or equivalent current dipole):

JP(r) = Q5(r —r1y) (1.5)
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Q describes the current strength and orientation while r, specifies the spatial
location of the ECD. Though, in reality, the current dipole generated by a
cortical patch has a finite thickness, the current dipole model provides a

simpler mathematical tool for both the forward and inverse problems.
1.3.2 Spherical Head Model

Though, realistically, the human skull geometry is complex with different
layers of conductivity, a simple and useful approximation is the spherical head
model. The spherical head model uses two, three, or more concentric
spherical shells of conductivity for computation of Maxwell’s equations.
Computation of the forward model from such a system can be accomplished
with simple analytic expressions, greatly reducing computational time. The
magnetic field response to a current dipole Q (described in Section 1.3.1) is

given by the Sarvas Formula (Ilmoniemi et al., 1985; Sarvas, 1987):

_ W FQXTg - (@ xry-1T)VF(r,19)
4m F(r, rQ)z

(1.6)

where
F(rirg) =a(ra+r?—ry-r) (1.7)
witha = (r—ry), a= la|, r =|r|

The number of concentric spherical shells is irrelevant since the forward

solution to the spherical MEG head model is independent of the conductivity
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values of each individual shell and is only a function of the center of the
sphere. Furthermore, Equation 1.6 also implies that electric potential does not
need to be explicitly computed for the spherical head model. Though the
forward model computed through the spherical head conductor geometry is
not fully accurate, especially in regions that do not conform well to the sphere
shape, the model is generally accurate enough to use for real magnetic

measurements.

Because of the spherical geometry, radially directed currents do not
affect the magnetic field pattern outside of the conductor (the cross-products in
Equation 1.6 vanish) (Grynszpan and Geselowitz, 1973; Hamalainen et al.,
1993). Thus, MEG is generally insensitive to radially directed dipolar currents,
but rather mostly detects non-radially oriented currents. In terms of brain
anatomy, this means that source activity in the gyri is difficult to detect,
whereas source activity in the sulci are readily detectable (Hillebrand and
Barnes, 2002). Fortunately, most of the important functional regions of the
brain contain plenty of activity in the sulci, ensuring that MEG is a useful

functional tool.

1.3.3 BEM Head Model

The BEM head model attempts to construct the MEG forward model
through the use of a piecewise homogenous conductor description. Typically,

this realistic head model uses two layers whose boundary is the inner-skull
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surface, which is usually obtained by segmentation of structural MRI images.
Unlike the spherical head model, the BEM model requires numerical
computation of the electric potential on the boundaries between layers.
Though computationally more intensive, the BEM model provides a realistic
subject-by-subject model that does not suffer from distortions near regions,
such as the inferior frontal lobe, that are not well described by a spherical
shape. The work presented in this dissertation uses a BEM forward model
developed in our laboratory (Meijs et al., 1987; Hamalainen and Sarvas, 1989;

Mosher et al., 1999; Huang et al., 2007).

The BEM head model assumes a piecewise homogenous conductor
model in which the conductivity of each layer is constant and the gradient of
the conductance is non-zero only at the layer boundaries. The layers or
regions of conductivity can be denoted G;,i = 1, ---, m, with their boundaries
denoted 0G;, and the surfaces between layers G; and G; denoted S;;. We may
re-write Equation 1.4 as the sum of two integrals:

_ﬂ D (4! E ’ ﬂ ASvi ’ E ’
BO) =42 [ ) X gy dv' + 52 [ VAo ) x e’ (18)

Defining B,(r) = Z—;f]p(r’) X %dv’ and writing the second integral in
Equation 1.8 as a sum of piecewise integrals while using the identity —V x

(VVa) = Vo x VV =V x (oVV) yields:
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B(r) =Bo(r)—Z—;z fVVXde (1.9)

i=1 G;

Converting the volume integral in Equation 1.9 into a surface integral yields

Geselowitz’ formula (Geselowitz, 1970):

B(r):Bo(r)+Z—7‘;Z(al 5) fV(r’)—de’ (1.10)

ij

Thus, computation of the magnetic fields at the sensors first requires
computation of the potential, V ('), at all surfaces S;;. Applying Equation 1.3
to these boundary constraints and letting r approach a value on the boundary
yields an expression that can be used to numerically compute these surface

potentials (Geselowitz, 1967; Vladimirov, 1971):
(O'i + aj)V(r) = 20,V (1) — —Z(O’l — 0]) J. V(r’)— ds;; (1.11)

where g, = 1/(Qm) and V, is the potential due to the primary current in an

infinite homogenous medium:

1 \vA .]P
Vo = dv’ 1.12
0 41100_[ R v ( )
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1.3.4 MEG Signal Equation

Let b(t) be an m x 1 vector of sensor measurements at time t, n(t) be
an m x 1 vector of sensor noise measurements, s(t) be a 2p x 1 matrix of
vector source amplitudes, and §(t) be a p x 1 matrix of scalar source
amplitudes, where m is the number of sensors and p is the number of pre-
defined dipolar sources. Let the lead-field matrix defined in two directions 6
and ¢ for the /" source be denoted by the m x 2 matrix L; = [lg; lg:]. Inthe
spherical MEG forward head model, 6 and ¢ represent the two tangential
orientations for each dipole location, whereas in a realistic MEG forward model
using the boundary element method (BEM), the 6 and ¢ orientations are
obtained as the two dominant orientations from the singular value
decomposition (SVD) of the m x 3 lead-field matrix for each dipole, as
previously documented (Huang et. al., 2006). If the orientations are known,
the vector lead-field matrix may be simplified into the m x 1 scalar lead-field
vector l; = L;n;, where 1; are the unit orientation vectors in the 8 and ¢

directions.

The lead-fields contain the multiplicative coefficients that describe the
magnetic field pattern imparted to the sensors by current dipoles located at
each of the p locations as computed by the forward model (Equation 1.5). The
vector composite lead-field matrix or gain matrix is defined as the m x 2p

matrix L=[Ly L, L3z -+ Lp]. The scalar composite lead-field matrix is
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definedasthe mxpmatrix L=[l; I, I3 - L,]. The MEG signal

equation can be written as (vector formulation):

b(t) = Ls(t) + n(t) (1.13)
or equivalently as (scalar formulation):

b(t) = L3(t) + n(t) (1.14)

Taking the covariance of Equation 1.13 and assuming that the noise and

signal are uncorrelated leads to the covariance relationship:
R, = LRYL" + R, (1.15)

R, is the m x m sensor covariance matrix, R? is the 2p x 2p source covariance

matrix, and R,, is the m x m noise covariance matrix.
1.4 Inverse Modeling for the Lead-field Approach

Up to this point, discussion has focused on the generation, detection,
and prediction of magnetic field patterns in MEG. However, for MEG to be a
truly useful technology, one must solve the “MEG inverse problem.” The
inverse problem consists of obtaining the underlying source current distribution
that generates a specific magnetic field pattern at the sensors. This is of
particular importance in real experiments as the only known parameters are
the conductivity profile of the head, the locations of the sensors, and finally the

sensor magnetic field measurements.
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Unfortunately, it was shown by Helmholtz that a solution to the
underlying current distribution inside a conductor cannot be determined
uniquely for any given field pattern. For example, radially oriented currents
are invisible to the MEG sensors. Thus, different source distributions with
different radially-directed currents may satisfy a given set of sensor
measurements. Due to this problem, additional constraints must be placed on
the source configuration (i.e. source modeling) in order to obtain a unique

solution for the source current distribution which represents brain activity.

Different constraints placed upon the system yield different solutions
with different qualities. For example, the L2-minimum norm approach seeks to
minimize the total source power across all p grid points while satisfying the
original sensor recordings. L2-minimum norm approaches tend to yield
spatially distributed reconstructions that have relatively low resolution.
However, time-courses generated from the L2-minimum norm reconstruction
are continuous in nature (Hamalainen and limoniemi, 1994; Dale et al., 2000;
Dale and Halgren, 2001; Marinkovic et al., 2003). The L1-minimum norm
approach seeks to minimize the absolute value of the source amplitude from
the p grid points while still fitting the sensor recordings. Such an approach
yields spatially focal reconstructions with high resolution but yields
discontinuous time-courses with activity oftentimes jumping from grid point to

grid point (Uutela et al., 1999; Vanni and Uutela, 2000; Tesche, 2000;
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Stenbacka et al., 2002; Pulvermuller et al., 2003; Osipova et al., 2005;

Auranen et al., 2005; Liljestrom et al., 2005).

1.5  Scalar Single Beamformer Solution

Another approach to the inverse problem is to use the covariance
matrix of the sensor recordings to design a spatial filter that individually
reconstructs source activities for each grid point sequentially. Like the L1- and
L2-minimum norm approaches, the spatial filtering approach has advantages
and drawbacks which will be described in full detail in the coming sections.
The original research presented in this dissertation focuses on developing an
adaptive spatial filter for the MEG that is less susceptible to many common

problems of this approach.

The basic adaptive spatial filtering approach was first described by the
single beamformer (Van Drongelen et al., 1996; Van Veen et al., 1997,
Robinson and Vrba, 1998; Sekihara et al., 2002). The scalar beamformer
spatial filter seeks to find an m x 17 weighting vector w for each source location
such that source time-courses are reconstructed as a linear combination of the
sensor waveforms. The source time-course estimate is modeled as (Van

Drongelen et al., 1996; Sekihara and Nagarajan, 2008):

3(t) = wTh(t) (1.16)

The source power |§|? is given by:
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1312 = G()$)T) = wTR,w (1.17)

The scalar weighting vector (w) depends on both the source location
and source orientation. Though source locations can be fixed through a
source grid covering the cortical space, source orientations are unknown and
depend upon the nature of source activation in the brain. The minimum-
variance solution for w seeks to minimize the total source power from the filter
pointing location while reducing the contributions of other sources and noise to
the filter output (Van Veen et al., 1997). Mathematically, this minimization is

stated as:

w = argminw?R,w subject to wTl =1 (1.18)

w

The constraint w'l = 1 ensures unit gain for the filter pointing location.
The solution to this problem may be obtained by Lagrangian minimization and
results in the following formulation of the weighting vector (Robinson and Vrba,

1998; Vrba and Robinson, 2001; Sekihara et al., 2004):
wl = (ITR;*D)I"R;? (1.19)

A source time-course for each filter pointing location is computed with
Equation 1.16. Ideally, such source time-courses could be used to produce a
volumetric 4-D image of brain activity spanning the whole brain. However, it is
well known that signal-to-noise ratio decreases with increasing depth of

sources. Furthermore, forward modeling may generate inaccurate estimates
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of the lead-field at each filter pointing location. Thus, a measure of source
space signal-to-noise (SNR) can be computed to aid in localizing brain activity
and removing bias associated with the lead-fields. Similarly to Equation 1.17,
an estimate of noise power at each location can be computed (Robinson and

Vrba, 1998; Vrba and Robinson, 2001; Sekihara et al., 2004):

A2 = (A(OAE)T) = wTR,w (1.20)

Dividing the source power estimate by the noise power estimate, yields

the traditional pseudo-Z-score, a measure of source space SNR:

g 151> w'R,w (121)
SBE A2 T wTR,w '

The scalar beamformer assumes that each source orientation is known.
Source pseudo-Z-score and time-course estimates are contingent on the
orientation chosen for the lead-fields (1) and therefore the orientation chosen
for the beamformer weight (w). In reality, source orientation is not known a
priori. However, choosing the correct source orientation is expected to
maximize the source space SNR. Thus, the source orientation for each filter
pointing location can be found through maximization of Zsz, as a function of

orientation (7):

Z;gzi = mﬁax (Zspr) (1.22)
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The optimized orientation can then be used to compute the optimum
pseudo-Z-score ZZPk and time-course for each pointing location. Typically,

non-linear search algorithms are used to compute the optimal orientations and

represent a time-consuming step of source reconstruction.
1.5.1 Correlated Source Problem

The minimization step in Equation 1.18 is directly responsible for
beamformer distortion in the presence of correlated sources (Sekihara and

Nagarajan, 2008). Expanding the minimized expression w’R,w, we find that:

wi (r)R,w(r)
P P T
= (|wT(r) z s(r, t)l(rj)] le(ri) Z s(r;, O)I(r)| ) (1.23)
j=1 j=1

By applying the unit-gain constraint, the above expression reduces to:

wi (r)R,w(r;) = (s(r;, t))?
+ z@(rp £))?[w' (rl(r;)]
i#j

+ z (s(r;,, O)s(ry, OIWT @ DU(r; YU (r;,) w(r) (1.24)

J1#J2
The third term in the above expression only vanishes if source activities are

uncorrelated, i.e. (s(rj,, t)s(r;,,t)) = 0. The second term in the above

expression vanishes as minimization ensures w’ (r)I(r;) = 0. Thus, for the
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beamformer weight to satisfy w” (r;)R,w(r;) = (s(r;, t))? and only reflect the
intended source power, source activities must be uncorrelated. When source
activities are correlated, the third term does not vanish and creates significant
distortion in both power and time-course estimates at the filter pointing
location. Since neural activity typically requires a degree of communication
and hence synchrony between active sources, application of the unmodified
beamformer to real experiments does not generate ideal reconstructions of

source activity.
1.6 Dual Source Beamformer

As explained in Section 1.5.1, a significant issue affecting source power
and time-course estimates from the scalar single beamformer is distortion in
the presence of spatially separate yet temporally correlated sources. Brookes
and colleagues tackled this problem through increasing the size of the scalar
single beamformer filter to account for two locations simultaneously. This
approach allows two temporally correlated sources to be modeled
simultaneously in order to avoid power suppression and allow localization of

temporally correlated sources.

The dual source beamformer (DSBF) spatial filter is designed to pass
the signals of two separate spatial locations in its output (Brookes et al., 2007).
The filter is designed such that it is responsive to a combined lead-field of two

sources denoted [;,:
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llZ = Olll + (1 - a)lz (125)

The combined lead-field for the two sources is defined as a linear
combination of the individual lead-fields weighted by the weighting factor a
which depends on the source power ratio of the two locations being examined.
The solution to the combined dual source weighting vector w,, is obtained

identically to the single source scalar beamformer:
wl, = (I,R,; ) HT,R;,? (1.26)
The resulting scalar time-course for the two sources is given by:
5(t) = wi,b(t) (1.27)

The dual-source pseudo-Z-score, a measure of combined source-space SNR

is given by:

wl,R,w
_ Wi kpwy, (1.28)

12 — T
Wi, R, Wi,

The dual source pseudo-Z-score is a function of the two source
orientations 17; and 7, as well as the source power weighting factor a. In
practice, time-consuming non-linear searches must be carried out over these
three parameters to optimize the dual-source pseudo-Z-score for a particular
combination of two source locations. Furthermore, if the two optimal source
locations are not known a priori, a computationally expensive search must be

carried out for the dual-source combination that yields the maximum Z,,.
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Since typical source grids consist of 7000-9000 points, exhaustive
computation of all possible optimized combined dual-source pseudo-Z-scores
is expensive and impractical. Finally, since l;, is a single-ranked linear
combination of lead-field vectors, individual source time-courses, power

estimates, and source correlation cannot be computed with the DSBF.

1.7 Minimum Variance Vector Beamformer

The vector beamformer spatial filter seeks to find an m x 2 weighting
vector W for each source location in a pre-defined basis spanned by 6 and ¢
such that source time-courses are reconstructed as a linear combination of the
sensor waveforms (Van Veen et al., 1997; Robinson and Vrba, 1998; Vrba
and Robinson, 2001; Sekihara et al., 2002; Sekihara et al., 2004; Sekihara

and Nagarajan, 2008). The vector source time-course estimate is modeled as:

5(t) = WTh(¢) (1.29)

while the scalar source time-course estimate is obtained as:

8(t) = TWTh(t) (1.30)

717 is a 2 x 1 unit vector containing the source orientation. The source power

|3]2 is given by:

1312 = G(©OST) = TTWTR, W7 = tr(WTR,W) (1.31)
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The minimum-variance solution for W seeks to minimize the source
power from the filter pointing location while reducing the contributions of other
sources and noise to the filter output. Mathematically, this minimization is

stated as:

W = argmintr{WTR,W } subject to WTL =1 (1.32)
w

The solution to this problem may be obtained by Lagrangian minimization and

results in the following formulation of the weighting vector:
W™ = (LTR;'L)'L"R;* (1.33)

Since the 2 x 2 matrix product Q= = WTR,W = (L"R;'L)™* contains
source power estimates in both the 8 and ¢ directions, the eigenvector
corresponding to the minimum eigenvalue of Q! provides the optimum source
orientation 17 as shown previously (Sekihara et al., 2004). Thus, the vector
implementation of the beamformer eliminates the need to search for source
optimal orientations. A source time-course for each filter pointing location can
then be computed with Equation 1.29. Since signal-to-noise ratio decreases
with increasing depth of sources, and forward modeling may generate
inaccurate estimates of the lead-field at each filter pointing location, a measure
of source space signal-to-noise (SNR) can be computed to aid in localizing

brain activity and removing bias associated with the lead-fields similarly to the
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scalar beamformer. First, a 2 x 2 matrix representing the source-space SINR
can be computed (Sekihara et al., 2004):

_W'R,W _ L'R;'R,R;'L

K= =
WTR,W L"R;'L

(1.34)

The optimum pseudo-Z-score can then be straightforwardly computed

as the inverse of the minimum eigenvalue of this matrix:

7Pt = (min(eig(K)))_1 (1.35)

Though the minimum variance vector beamformer handles
determination of source orientation admirably, it is still subject to the same
distortions created by the presence of coherent source activity as described in

Section 1.5.1.
1.8  Nulling Beamformer and Coherent Source Suppression Model

The nulling beamformer (NB) and the coherent source suppression
model (CSSM) are two independently developed single vector beamformer
modifications designed to address the problem of correlated interference in
beamformer reconstruction (Dalal et al., 2006; Hui and Leahy, 2006; Hui and
Leahy, 2010; Quuran and Cheyne, 2010). The NB and CSSM modify the
vector beamformer by applying additional nulling constraints to known nulling

locations denoted ;. The solution to the NB is obtained by minimizing

Equation 1.31 while applying the standard unit gain constraint WTL = I for the
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location of interest along with nulling constraints W7 (r;)L(r;) = 0. This leads

to the following solution of the weighting vector:

WT:(‘I) (1) 8)([LL(rj>]TR;1[LL(rj>1)‘1[LL(r,-)]TRal (136)
0O 0 O

The nulling beamformer is able to successfully remove the distortion
caused by correlated sources by preventing the correlated sources from
having any impact on the weighting vector for the filter pointing location.
Although it has been demonstrated that this method is successful, application
to real experiments is difficult as a priori information about the nulling
constraints is required. Furthermore, matrix inverses become unstable if
extensive regions are chosen for nulling constraints due to loss of degrees of

freedom in the system.
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CHAPTER 2

Dual-Core Beamformer for Obtaining Highly Correlated Neuronal

Networks in MEG

2.1 Abstract

The “Dual-Core Beamformer” (DCBF) is a new lead-field based MEG
inverse-modeling technique designed for localizing highly-correlated networks
from noisy MEG data. Conventional beamformer techniques are successful in
localizing neuronal sources that are uncorrelated under poor signal-to-noise
ratio (SNR) conditions. However, they fail to reconstruct multiple highly-
correlated sources. Though previously published dual-beamformer techniques
can successfully localize multiple correlated sources, they are computationally
expensive and impractical, requiring a priori information. The DCBF is able to
automatically calculate optimal amplitude-weighting and dipole orientation for
reconstruction, greatly reducing the computational cost of the dual-
beamformer technique. Paired with a modified Powell algorithm, the DCBF
can quickly identify multiple sets of correlated sources contributing to the MEG
signal. Through computer simulations, we show that the DCBF quickly and
accurately reconstructs source locations and their time-courses under widely
varying SNR, degrees of correlation, and source strengths. Simulations also
show that the DCBF identifies multiple simultaneously active correlated

networks. Additionally, DCBF performance was tested using MEG data in

36
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humans. In an auditory task, the DCBF localized and reconstructed highly-
correlated left and right auditory responses. In a median-nerve stimulation
task, the DCBF identified multiple meaningful networks of activation without
any a priori information. Altogether, our results indicate that the DCBF is an
effective and valuable tool for reconstructing correlated networks of neural

activity from MEG recordings.

2.2 Introduction

The beamformer methodology is a spatial-filtering approach wherein
the MEG sensor signal is filtered by different beams based on lead-field
vectors corresponding to specific source-grid points (Robinson and Vrba,
1998; Sekihara et al., 2002a; Van Drongelen et al., 1996; Van Veen et al.,
1997). Each of these operations generates a pseudo-Z-statistic, which can be
maximized to find the most highly-contributing source-grid dipoles. The
beamformer method has low computational cost, although the orientation
angle of each dipole must be optimized. The beamformer approach generally
works well for MEG data with a low SNR. However, the conventional
beamformer suppresses source-power estimates from source-grid dipoles that
have highly correlated time-courses, as the method assumes that source time-
courses from different generators are uncorrelated (Van Veen et al., 1997;
Sekihara et al., 2002b). Variants of the beamformer method, including the
coherently combining signal-to-interference plus noise ratio (CC-SINR)

beamformer and the constant modulus algorithm (CMA) beamformer, address
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reconstruction of correlated sources, but have been met with moderate
success (Kim et al., 2006; Nguyen and Ding, 1997). Likewise, the coherent
source suppression model (CCSM) and the independently developed nulling
beamformer (NB) accurately reconstruct correlated sources but require a priori
information of interfering source locations. Furthermore, all sources cannot be
simultaneously identified since correlated sources are suppressed to
reconstruct a single source of interest (Dalal et al., 2006; Hui and Leahy, 2006;

Hui and Leahy, 2010; Quuran and Cheyne, 2010).

Brookes et al. developed a dual-beamformer approach to address the
problem of identifying highly-correlated generators by constructing a spatial
filter from a linear combination of lead-field vectors from two source dipoles
(Brookes et al., 2007). Two source dipoles that generate a signal can be
found by non-linearly optimizing the orientation angles of the two source
dipoles, optimizing the weighting between the two sources, and searching over
all combinations of source dipoles. This approach has a high computational
cost, which greatly limits its application in practice. Furthermore, only the two
source dipoles with most highly-correlated time-courses are found, while other
correlated source networks that may exist are not identified. To make the
method more useful, Brookes et al. suggest using a priori information to fix the
position of one of the two beams; however, this solution limits the method’s
application to well-understood neurobehavioral networks or requires

information from other functional neuroimaging techniques (e.g., fMRI).
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In the present study, we propose a new formulation of the beamformer
technique that addresses many previous limitations of beamformer
approaches. By using a spatial filter that contains the lead-fields of two
simultaneous dipole sources (i.e., rather than the linear combination of the two
as for the approach by Brookes and colleagues), our vector Dual-Core
Beamformer (DCBF) can directly compute and obtain optimal source
orientations and weights between two highly-correlated sources. In effect, this
renders non-linear optimization and non-linear searching for optimal
orientations and weighting unnecessary, thereby reducing the computational
time of the dual beamformer method and making it a much more useful MEG
inverse-modeling technique. At the same time, the DCBF retains many
desirable characteristics of the dual-beamformer approach proposed by
Brookes et al. For example, our computer simulations demonstrate that DCBF
successfully localizes dipole sources at very low SNR (SNR of 0.25), which is

useful for many MEG recordings.

In the present approach, we use a modified Powell search to find the
optimal pseudo-Z-score, which not only greatly reduces the computational
time required for source localization, but also identifies other local maxima. All
maxima, consisting of two sources each, are defined as pathways. With
simulations, we show how such a search can find multiple pairs of correlated

sources present in a single MEG data set. In a median-nerve stimulation
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experiment, we present how these pathways may be meaningful and are not

simply a byproduct of DCBF.

2.3 Materials and Methods

2.3.1 New Dual-Core Beamformer Approach (DCBF)

A major limitation of the dual-beamformer method proposed by Brookes
and colleagues is the necessity to optimize the orientation of both beams and
their relative weighting. Their approach requires non-linear optimizations
which increase the computational complexity of the dual beamformer
approach many-fold when compared to the single beamformer approach. In
the present study, we show that the optimal orientations and weighting of both
beams can be directly computed, instead of searched, by using a vector
formulation of the dual beamformer approach. First, we start with lead-field
vector for each dipole as an m x 3 matrix expressed in a pre-defined
coordinate basis with three axes. Alternatively, since MEG is insensitive to
radially-directed currents, the lead-field vector for each dipole can be
decomposed by singular value decomposition (SVD) and expressed instead
as an m x 2 matrix to reduce the inverse problem to two spatial dimensions
(Huang et al., 2006). Then, we define the combined lead-field vectors from
both dipoles in the dual beamformer as an m x 4 matrix, instead of a linear

combination of two lead-fields:

Ly =[L; L,] 2.1
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The new L, is therefore a spatial filter with two cores rather than one.
Such a description of the spatial filter allows eigenvalue analysis to analytically
determine optimal orientations of each beam and optimal weighting between
each beam. Similar to the pseudo-Z-statistic computation for the single vector

beamformer in Section 1.7, we define the 4 x 4 matrix K ;:
Ky= (L, R," L)Ly  (Ry" R, *Ry") - Ly) (2.2)

By diagonalizing K; with eigenvalue decomposition and inverting the
smallest eigenvalue, we obtain the best possible pseudo-Z-score for the two

dipoles.

Z&y = (min(eig(Kd)))_1 (2.3)

This step is an extension of the approach used in the single
beamformer in Equation 1.35 (Sekihara et al., 2004). We can also define a
matrix analogous to Q for the single beamformer in Section 1.7 to estimate the

source powers and orientations:
Qi=Li Ry Ly (2.4)

By diagonalizing Q, with eigenvalue decomposition, we can obtain the
optimum beamformer power, the optimum orientations, and the optimum

weighting of the two source dipoles as follows (Sekihara et al., 2004):

Pd,, = (min(eig(Qa)) (25)
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(Z;) = Vnmin (2.6)

VU.in IS defined as the four-component eigenvector associated with the
minimum eigenvalue of Q,. The first two elements of v,,,;,, contain the optimal
beam 1 weighting in the two different basis directions. The last two elements
contain the optimal beam 2 weighting in its basis directions. The elements
corresponding to beam 1 (n,) and the elements corresponding to beam 2 (n,)
are scaled such that relative weighting between the beams is optimal. The
cost of computation is low because the eigenvalue decompositions are
performed on matrices (K; and Q,) with low dimensions (4 by 4). Since the
DCBF is a vector formulation of the previous dual beamformer method
(Brookes et al., 2007), reconstructed dipole orientations and weighting should
be the same for both methods. To examine the computational efficiency
(speed) resulting from directly computing orientations and weights instead of
performing a non-linear search, 100 direct computations and 100 Nelder-Mead

non-linear simplex searches were performed and timed.
The reconstructed time-course for the source dipoles is given by:
~ — _ _ T
S(t) = Vnin "~ (ngt ) Rb1 "Ly~ vmin) ’ b(t) (2-7)

s(t), the source time-courses, is a 4 x t matrix whose first two rows comprise
the time-course for the first source and whose last two rows comprise the

time-course for the second source. Each row contains the component of the
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time-course along each axis. An assumption of signal reconstruction is that
both signals are highly correlated. As a result, only one time-course is actually
reconstructed. However, this time-course is weighted appropriately to

generate a time-course for each component of each source.

Since the optimal weighting, orientations, and pseudo-Z-statistic are
computed directly, the only parameter left to optimize is the specific
combination of dipoles that leads to the maximum pseudo-Z-score. As noted
before, this can be accomplished by an exhaustive brute-force search over all
possible dipole combinations (Brookes et al., 2007). In this scenario, if p is the
number of dipoles, one would have to compute p(p + 1)/2 pseudo-Z-scores to
find the best dipole combination. To circumvent the long computational time of
a brute-force search, a priori information can be used to fix the location of one
dipole (Brookes et al., 2007). However, this method is not ideal when

knowledge of sources is not widely accepted or is unavailable.

In the present study, a modified Powell search algorithm was
implemented to find the best dipole combination without performing a brute-
force calculation and without requiring a priori information. Let [ry, ;] be the
two coordinate axes on which the search is performed. The r; axis
corresponds to the index of the first dipole in a given source grid, while r,
corresponds to the index of the second dipole. Let the function that we are

searching over be defined as:
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flr,m) = ngt(rl'rz) (2.8)

Suppose 17 is a dipole picked randomly from a given source grid. The
profile f (2, 7,) is calculated and then maximized to find the corresponding

r,P* value. Subsequently, the profile f(r;,7,7") is calculated to find an

optimized r; value. This process is repeated until stable Z&,,, 7", and r,P*
are reached. Since this search may converge to a local maximum, the
process may be iterated multiple times using random initializations of dipoles.
In this manner, r,’*° and r;?*, or the optimal dipole combination can be
reached more quickly than the brute-force method. In our reconstructions, the
Powell search was also implemented with a taboo list to reduce computational

time by interrupting the search every time a dipole combination that had

already been traversed was selected again.

The results of all Powell search iterations (pairs of correlated sources)
were saved as they are local maxima of zgg,?l. These local maxima, or

pathways of cortical activation, represent different highly-correlated networks

that co-exist in the data.
2.3.2 Setup for Computer Simulations

Computer simulations were performed in order to examine the
performance of both the dual-core spatial filter and the non-linear modified

Powell search portions of the DCBF. The simulator was programmed to test
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up to three pairs of source dipoles under differing conditions of frequency,
cross-correlation, and amplitude. The base signal for each dipole was
programmed to be a simple sinusoidal wave in a specific direction. In addition,
the noise simulation was programmed so that the SNR of each simulation
could be chosen manually by adding uncorrelated random noise. The
searchable source space was simulated with a fixed-source grid based on the
gray-matter boundary obtained from a healthy subject’s T1-weighted MRI
using Freesurfer (Dale et al., 1999; Fischl et al., 2004) and a grid spacing of 7
mm. The boundary element method (BEM) was used for the MEG forward
model calculation with the BEM mesh (5 mm mesh size) being the inner-skull
surface from the MRI. In each case, SVD was used to reduce the lead-field
vectors to m x 2 matrices (Huang et al, 2006). In each simulation, the search
was given 1000 random re-starts. Performance was evaluated by average
time to find the correct solution or equivalently, the number of searches

required on average to find the solution.

To evaluate the performance of our reconstruction under differing levels
of noise, simulations were performed with the following control conditions: 1
pair of sources, 30 Hz frequency, 100% intra-pair correlation, and 1:1
amplitude ratio for the two source dipoles. Reconstruction was evaluated at
SNRs of 4.0, 3.0, 2.0, 1.0, 0.50, 0.33, and 0.25. In our simulations, we defined
SNR in sensor domain as the total power of the signal divided by the total

power of the noise that was added to the signal. To examine the effects of
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source signals containing more than one frequency component, the 0.25 SNR
test condition was repeated for 1 pair of 100% correlated sources with a
dominant 30 Hz component and a half-amplitude 20 Hz component. The 0.25
SNR test condition was also repeated to test DCBF performance in the
presence of correlated noise at 10 Hz. Correlated noise was introduced by
means of a single noise source of same amplitude oscillating at a frequency of

10 Hz throughout the entire simulation.

To evaluate the performance of our reconstruction under differing
correlations within the source pair, simulations were performed with the control
conditions: 1 pair of sources, 30 Hz frequency, 1:1 source amplitude ratio, and
SNR of 2.0. The following intra-pair correlations were simulated as the
variable condition: 86.6%, 75%, and 50%. To evaluate the performance of our
reconstruction under differing source amplitudes, simulations were performed
with the control conditions: 1 pair of sources, 30 Hz frequency, 100% intra-pair
correlation, and SNR of 2.0. The following amplitude ratios were simulated as
the variable condition: 1:1, 2:1, and 3:1. To evaluate the performance of our
reconstruction in a more realistic scenario and for multiple dipoles, three
source-pairs were selected with frequencies of 20 Hz, 30 Hz, and 40 Hz.

Each source dipole had differing amplitudes. Each pair of dipoles was
programmed with slightly different intra-pair correlations. The dipoles were

also uncorrelated across pairs. The SNR was set to 0.6075.
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To evaluate the performance of our reconstruction in the presence of
three correlated sources, three sources were given a sinusoidal signal with a
frequency of 30 Hz at a SNR of 0.25. The second and third sources were
phase-shifted 22.5 degrees and 45 degrees from the first source. Activation
maps were generated for the pathway with highest pseudo-Z-score from the

formula:

7 _ max(Z,) - [Z; —min(Z,)] = max(Z,) - [Z; — min(Z;)]
comb —

max(Z,) — min(Zy) max(Z,) — min(Z,) (2.9)

Z,contains the pair-wise pseudo-Z-scores for the first optimal dipole
with all other dipole sources. Z, contains the pair-wise pseudo-Z-scores for
the second optimal dipole with all other dipole sources. Monte Carlo
simulations were used to obtain a distribution of pseudo-Z-scores produced by
noise. A kernel-smoothed density-estimate was computed to produce a
continuous distribution. Statistical significance of pseudo-Z-scores for all

activation maps was determined by integration of the continuous distribution.

2.3.3 Setup for Auditory Steady-State MEG Response

An auditory stimulus experiment was designed to test DCBF
reconstruction of correlated sources in an actual MEG measurement. The
experiment consisted of 200 epochs of evoked responses to a stereo test file.
The test file consisted of an 1800 ms pre-stimulus noise measurement period

and a 2000 ms post-stimulus period. The stimulus was a 500 Hz pure tone
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with a 40 Hz envelope modulated at 100% level. The intensity of the stimulus
was balanced between left and right ears. The start and end of the stimulus
were smoothed with a cosine roll-off to prevent any artifacts from the stimulus.
Magnetic fields evoked by auditory stimulation were measured using an
Elekta/Neuromag™ whole-head MEG system (VectorView) with 204
gradiometers and 102 magnetometers in a magnetically shielded room
(IMEDCO-AG, Switzerland). EOG electrodes were used to detect eye blinks
and eye movements. An interval of 1900 ms post-stimulus data was recorded,
using 1500 ms of pre-stimulus data for noise measurement. Data were
sampled at 1000 Hz and run through MaxFilter to remove environment noise
(Taulu et al., 2004; Taulu and Simola, 2006; Song et al., 2008; Song et al.,
2009). 188 artifact-free MEG responses were averaged with respect to the
stimulus trigger. A BEM mesh of 5-mm mesh size for the subject was
generated from the inner-skull surface using a set of T1 MRI images taken on
a 1.5 T GE scanner. A fixed source grid with 7-mm spacing was generated
from the gray-white matter boundary of the T1 image by Freesurfer. Lead-field
vectors for each dipole source were reduced to m x 2 matrices by ignoring the
weakest orientation (Huang et al., 2006), reducing all reconstructed time-
courses to two components. Registration of MRl and MEG was performed
using data obtained from the Isotrack system prior to subject scanning in the
MEG machine. The signal (gradiometers only) was then reconstructed using

the dual-core beamformer approach coupled to the non-linear modified Powell
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search. Activation maps were generated in the same fashion as in Equation
2.9. Source time-courses were low-pass filtered under 50 Hz to display the

auditory response. Time-frequency (TF) analysis of the source time-courses
with Morelet wavelets (5 cycle width) was performed between 1 and 50 Hz to

identify transient and steady-state auditory responses.
2.3.4 Setup for Right Median Nerve Stimulation MEG Response

The performance of the DCBF was further examined using human MEG
responses to right median nerve stimulation. This task is widely used to study
the somatosensory system and provides a useful standard for analyzing DCBF
performance since the location of activated dipole sources is easily
predictable. We conducted MEG recordings for this experiment on 6 healthy
subjects (men, ages 20-42) as they underwent right median-nerve stimulation.
All subjects signed the consent forms approved by the Institutional Review
Board of the University of California at San Diego. Each subject’'s median
nerve was stimulated using a bipolar Grass™ constant-current stimulator. The
stimuli were square-wave electric pulses of 0.2 ms duration delivered at a
frequency of 1 Hz. The inter-stimulus-interval (ISI) was between 800 and
1200 ms. The intensity of the stimulation was adjusted until robust thumb
twitches were observed. A trigger was designed to simultaneously send a
signal to the MEG for every stimulus delivery to allow averaging over evoked
trials. Magnetic fields evoked by median nerve stimulation were measured

using the Elekta/Neuromag™ whole-head MEG system. EOG electrodes
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were used to detect eye blinks and eye movements. An interval of 500 ms
post-stimulus was recorded, using 300 ms of pre-stimulus data for noise
measurement. Data were sampled at 1000 Hz and run through a high-pass
filter with a 0.1 Hz cut-off and through MaxFilter to remove environmental
noise (Taulu et al., 2004; Taulu and Simola, 2006; Song et al., 2008; Song et
al., 2009). A minimum of 150 artifact-free MEG responses (gradiometers only)
per subject were averaged with respect to the stimulus trigger. BEM mesh
generation, source grid generation, MRI-MEG registration, and source time-
course reconstruction were carried out in the same manner as in the auditory
steady-state MEG response experiment. Activation maps were generated in

the same fashion as in Equation 2.9.
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24 Results
2.4.1 Computer Simulations
2411 Computational Time for Obtaining the Optimal Dipole

Orientations and Weights

To examine the difference in computational costs between the non-
linear search approach from Brookes and colleagues and our analytical
approach, we performed 100 Nelder-Mead non-linear simplex searches and
100 eigenvalue decompositions to obtain the optimal dipole orientations and
optimal dipole weighting for two simulated dipoles. Non-linear searching and
eigenvalue decomposition both resulted in accurate reconstruction of
orientations and weighting with less than 1% difference. The average times
for reconstruction were 0.0142 s and 1.4 - 10~* s for the simplex search and
the eigenvalue decomposition, respectively, resulting in a speed up of 100
times using our approach. Performing the exhausted analysis for all
combinations of two-dipole pairs in a 5000 dipole-grid would take
approximately 50 hours using the non-linear search approach from Brookes
and colleagues. In contrast, our direct computation approach based on
eigenvalue decomposition would take approximately 30 minutes. As we show
later in this section, the modified Powell approach further speeds up the

analysis by bypassing the exhaustive analysis of all dipole combinations.
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2412 SNR

The results from the simulations designed to test performance under
varying SNR are listed in Table 2.1. In each test, the dipole-pair locations
reconstructed with the highest pseudo-Z-score were identical to the dipole-pair
locations that were originally programmed with the signal. Thus, even under
an SNR of 0.25, the reconstruction was able to localize the sources perfectly.
Under all levels of SNR, the orientations were recovered faithfully (0.27% <
£ < 2.56%). Orientation error, &, was defined as the mean of the fractional
errors of the individual dipole orientation ratios. Source amplitudes were
reconstructed accurately across all levels of SNR (6.8% < € < 7.2%).
Reconstructed amplitudes were determined by finding the intensity of the
Fourier transform for the reconstructed time-course at the appropriate
frequency. When source dipoles contained signals of two frequencies, the
accuracy of reconstructing each frequency component’s amplitude was similar
to the single frequency scenario (e59 = 7.24%, &, = 7.70%). In the presence
of correlated noise, source dipole locations were reconstructed accurately and
quickly, though the amplitude error (¢ = 8.5%) and orientation error (¢ =
4.29%) were slightly higher. Interestingly, the average number of searches
and the average time taken to find the optimum dipole pair are reduced
linearly as the SNR decreases, but saturate as the SNR approaches zero

(rszearch = 0.9608; rtzime = 09599)
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2413 Signal Correlation

The results from the simulations designed to test performance under
varying signal correlations are displayed in Table 2.2. In each case, the dipole
pair reconstructed was identical to the original source dipoles. Thus, even
under a correlation of only 50%, the reconstruction was able to localize the
sources perfectly. The reconstructed amplitudes in each of these simulations
faithfully matched the original source amplitudes (¢ = 12.5%; oz = 5.1%) and
became linearly more accurate as the pair correlation increased (r? =
0.99905). The reconstructed orientations also faithfully matched the original
source orientations and exhibited little dependence on the correlation (&€ =
0.40% ; oz = 0.18%). Interestingly, the proper dipole pair was found more
immediately, repeatedly, and quickly for non-perfectly correlated than
perfectly-correlated sources. For each non-perfectly correlated simulation,
decreasing the original source correlation led to a concomitant linear decrease

in the pseudo-Z-score (r? = 0.99998).

2414 Source Amplitude Ratio

The results from the simulations designed to test performance under
varying amplitude ratios within a pair of dipoles are shown in Table 2.3. The
reconstructed amplitude ratios in each simulation closely reflect the original
source amplitude ratio (1.97% < € < 4.48%). In the reconstruction, the

orientations faithfully represent the original source orientations (0.34% < ¢ <
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1.63%). As one increases the relative amplitude ratios within each pair of
dipoles from 1 to 2 to 3, the number of searches and the time required to find
the dipole pair decrease linearly (r2 = 0.908; 74,,, = 0.905). The

earch —

amplitude ratio did not affect the computed pseudo-Z-scores.
2415 Three Pairs of Dipoles

The results for the six dipole (3 source-pair) simulation are presented in
Table 2.4. All six sources were reconstructed in an average of 4.8 minutes
and 143 searches. Increasing the number of correlated two-source networks
in the simulation did not result in an unmanageable increase in computational
time. Even with the low SNR (0.6075), differing intra-pair correlations, and
differing amplitudes both inside and outside of each dipole pair, all of the
dipoles were reconstructed to the proper spatial position. The three inter-pair
correlations in this study were all zero. Furthermore, the twelve reconstructed
amplitudes closely represented the original source amplitudes (& =
11.32%; oz = 5.67%). Reconstruction of each source’s orientation was

reasonably accurate (¢ = 3.16% ; gz = 2.22%).
2416 A Third Correlated Source

Two of the three sources in the simulation were reconstructed
accurately in an average of 1.03 searches and 0.04 minutes. As expected, the
amplitudes of the reconstructed sources were suppressed by 47.29% due to

the third correlated source. Figure 2.1 shows the activation map of the three



95

reconstructed sources, which was derived by combining the dipole pseudo-Z-
scores. Red values were thresholded at P < 0.05, and yellow values were
thresholded at P < 10>. The combined pseudo-Z-score for all three dipoles

was significant (P < 107%).

2.4.2 Applying DCBF to Human Auditory MEG Responses

MEG data were obtained for the 500 Hz tone auditory stimulus tests
(Brookes et al., 2007). All data were subsequently processed with MaxFilter
(Taulu et al., 2004; Taulu and Simola, 2006; Song et al., 2008; Song et al.,
2009) and the signal was reconstructed utilizing our new DCBF approach
coupled with the modified Powell search restricted to inter-hemispheric
searches. To enhance the SNR of the relatively weak auditory response, 188
responses were averaged. Figure 2.2 displays the pseudo-Z-scores of the
local maxima, or pathways, found by the modified Powell search algorithm.
After 1000 starts, the optimum pathway had a pseudo-Z-score of 1.0791
(P < 1.3-107°), indicating that two highly correlated dipoles had been found.
Out of the 3 identified pathways, this pathway was also found most often,
taking an average of 1.1 searches or 0.0305 minutes. Figure 2.3 displays the
cortical activation map derived from plotting the combined correlations of each
optimal dipole with all other dipoles in the brain. For both hemispheres, red
values were thresholded at P < 0.05, and yellow values were thresholded at

P < 0.005. Figure 2.3 also shows that the activity is localized to Brodmann
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Areas 41 and 42 (primary and association auditory cortices) in both left and
right hemispheres. Pathways with low pseudo-Z-scores localized to deep
sources. Figure 2.4 displays the time-courses of the transient and steady-
state auditory responses. The left to right hemisphere source amplitude ratio
was 1.11. Wavelet transform time-frequency (TF) analysis was performed on
the reconstructed signal to identify the transient and steady-state responses.
TF analysis between 4 and 12 Hz revealed a focal region of power
immediately following stimulus delivery, corresponding to the auditory transient
response. TF analysis of the source signal in the 32-48 Hz band indicated the
presence of power throughout the entire stimulus period centered at 40 Hz,
corresponding to the auditory steady-state response (Herdman et al., 2003b;

Ross et al., 2005; Simpson et al., 2005).

2.4.3 Applying DCBF to Human Median Nerve Stimulation MEG Responses

MEG data were obtained from six healthy subjects for the right median
nerve stimulus test. Individual trials were averaged to enhance the SNR of the
MEG evoked-response. All data were subsequently processed with MaxFilter
(Taulu et al., 2004; Taulu and Simola, 2006; Song et al., 2008; Song et al.,
2009), and spatial locations were reconstructed utilizing the DCBF approach.
Figure 2.5 shows the multiple pathways found by DCBF sorted according to

pseudo-Z-score or correlation for a single representative subject (Subject #1).
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The plateaus in Figure 2.5 designate searches that yielded the same
result multiple times, which are considered to be important pathways or
networks of activation. Figure 2.6 shows activation maps computed with (17)
for three of these selected networks along with similar networks reconstructed
from other subjects. The activation maps were computed in the same manner
as for the auditory-response analysis. All subjects had a common network of
activation in the primary somatosensory cortex (S1, including Brodmann Areas
1, 2, and 3) and the secondary somatosensory cortex (S2) (Figure 2.6a).
Three subjects showed common networks involving the primary
somatosensory cortex (S1) and Brodmann Area 5 of the posterior parietal lobe
(Figure 2.6b). Three subjects also had a common network of activation
involving the primary motor cortex (M1) and parts of the somatosensory cortex
(S1 or S2) (Figure 2.6¢). Two subjects showed a previously observed network
of activation involving the primary somatosensory cortex (S1) and the

temporal-parietal junction, a poly-sensory area (Huang et al., 2006).



58

2.5 Discussion

In the present study, we implemented a novel and powerful dual-
beamformer method that was paired with the modified-Powell search to create
the DCBF. Our DCBF approach addressed various shortcomings of the
earlier dual-beamformer method, the CCSM, and the NB. Instead of using a
spatial filter or lead-field vector consisting of a linear combination of lead-field
vectors from two dipoles, we chose to concatenate the lead-field vectors from
the two dipoles together, which simultaneously covered two spatial locations at
once. We were also able to perform eigenvalue decomposition and analysis
of the low-dimensional K; matrix to analytically find the optimal pseudo-Z-
score of two dipoles directly, without having to search for their best
orientations non-linearly. In addition, we performed eigenvalue decomposition
of another low-dimensional @, matrix to analytically recover the most
favorable weighting between dipoles and the best orientation of the dipoles
that optimized the pseudo-Z-score (Sekihara et al., 2004) without the need for
a time-consuming non-linear search process that takes approximately 100
times longer. Optimal source dipoles were found by our modified non-linear
Powell search instead of through exhaustive brute-force search, which is
about three times slower. The Powell search also enabled analysis without a
priori information about any of the dipole positions. Thus, we were able to
identify multiple highly-correlated neuronal networks that were associated with

meaningful local maxima of pseudo-Z-scores.
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We conducted a series of computer simulations to test the robustness
and performance of the DCBF with regards to variations in several important
parameters. We showed that decreased SNR leads to faster localization of
the source dipoles during the modified Powell search. A Powell search has
the best probability of finding peaks with broad bases. Thus, we believe that
lower SNR leads to a broader peak in pseudo-Z-score, which allows the
optimal dipole combination to be identified more readily. In fact, the
reconstruction performed reliably even under conditions of 0.25 SNR for both
single and dual frequency sources and for both uncorrelated and correlated
band-limited noise. At every SNR tested, our reconstruction technique
successfully located the source dipoles without error. For spontaneous
recordings, the MEG signal can often have a very low SNR, especially since
the data cannot be averaged. For evoked recordings, a higher SNR can be
obtained from averaging. Our computer simulations show that the DCBF may
be applied for both types of recordings, since the method operates over a wide

range of SNR.

By varying source correlation, we found that the DCBF successfully
identified sources even when their signals were only 50% correlated. In fact,
non-purely correlated sources were localized much more quickly than 100%
correlated sources because the pseudo-Z-score solution space is less sharply
peaked around the global maximum for non-purely correlated sources than for

fully correlated sources.
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To test the performance of our direct computation of optimal dipole
weighting, we performed computer simulations with source dipoles emitting
signals at varying ratios of amplitudes. Interestingly, as we increased the
disparity in amplitude between signals, the reconstruction was able to localize
the source dipoles more quickly. Differing source amplitudes likely led to a
broader peak in pseudo-Z-score, allowing the optimal dipole combination to be
identified more readily. The primary purpose of the amplitude simulations,
however, was to examine if the reconstructed signals still maintained the
proper amplitude weighting. Reconstructed amplitude ratios were indeed quite
close to the original source amplitude ratios, confirming that our approach to

obtaining optimal weighting was successful.

To determine whether the DCBF could perform in real-world conditions,
we designed one simulation with three pairs of non-purely correlated dipoles.
All three pairs of correlated sources were localized accurately within an
average of 5 minutes. Furthermore, the amplitude ratios and orientations were
reconstructed with only minor error, demonstrating that the DCBF can
accurately reconstruct multiple simultaneously-activated networks of

correlation.

Another simulation was designed at low SNR to test the ability of the
DCBF to reconstruct three correlated dipoles. Only two sources could be
located with the Powell search, and their amplitudes were suppressed. The

suppression occurred due to the underlying assumption that only two sources
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are correlated. Thus, the effect was similar to suppression of the conventional
single beamformer in the presence of a second correlated source. However,
the generated activation map shows that the DCBF successfully localized all

three correlated-source in a significant manner (Figure 2.1).

By applying our novel method to the analysis of bilateral auditory-
stimulation data in humans, we showed that the DCBF could quickly (< 20
sec) and accurately reconstruct correlated sources in a real experiment.
Analysis of the pathway most frequently found and with highest pseudo-Z-
score revealed sources located in the primary auditory cortices, as expected.
In addition, time-frequency analysis of the reconstructed signal showed both

the expected 40 Hz steady-state response and the transient response.

To explore the idea of finding multiple networks, we also applied the
DCBF approach in an analysis of right median-nerve stimulation data from six
healthy subjects. A plot of the number of searches as a function of pseudo-Z-
scores showed different local maxima that were found multiple times,
indicating the presence of different pathways. We found that the most
common pathway among subjects corresponded to activation in the primary
somatosensory area (S1, including BA 1, 2, and 3) and the secondary
somatosensory area (S2). Two other pathways identified in half of the
subjects included S1 and a classic sensory-transduction area (Brodmann Area

5), and S1 or S2 and the dorsal aspect of the primary motor area (M1). The
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activations in S1, S2, and M1 evoked by median-nerve stimuli are well-

documented by MEG (see review in Huang et al., 2000, 2005).

2.5.1 Summary

The most important features of the DCBF approach arise from
incorporating the lead-field vectors of two simultaneously-activated neuronal
sources into a single spatial filter. With this novel beamformer, we were able
to successfully compute optimal dipole weights, orientations, and pseudo-Z-
scores, eliminating time-consuming searches that hindered the previous dual-
beamformer approach. In addition, by utilizing a powerful Powell search with a
taboo list, we were able to reconstruct optimal source dipoles quickly without
the use of a priori information. The changes and optimizations we made
decreased the total computing time from tens of hours (Brookes et al., 2007)
to less than 15 minutes, making the DCBF a viable and useful MEG source
localization method for correlated sources. Future directions include
extending the DCBF framework to three or four beams to find tightly correlated
and complex networks of activity. The DCBF can also be migrated from a
time-domain analysis to a frequency domain or time-frequency (wavelet)

domain analysis to reduce the effects of noise and phasing.

26  Acknowledgments

This work was supported in part by a research grant from the

McDonnell Foundation (220020185) via the Brain Trauma Foundation (PI:



63

Jamshid Ghajar, site Pls: Lee and Huang), Merit Review Grants from the
Department of Veterans Affairs to Huang (051455 and 060812), Lee (E4477-
R), and Harrington (1101CX000146-01 and B501R), and from the NIH to
Srinivasan (R01-MH068004) and to Shu Chien (5T32HL007089-34). We
would also like to thank Jamshid Ghajar for his encouragement and support
and Omer Tal for many helpful discussions. In addition, we would like to thank
three anonymous reviewers’ constructive suggestions that substantially

strengthened the present study.

Chapter 2, in part, is a reprint of the material as it appears in
Neurolmage 54, pp. 253-263, 2011. Diwakar, Mithun; Huang, Ming-Xiong;
Srinivasan, Ramesh; Harrington; Deborah L.; Robb, Ashley; Angeles,
Annemarie; Muzzatti, Laura; Pakdaman, Reza; Song, Tao; Theilmann,
Rebecca J.; Lee, Roland R. The dissertation author was co-first author of this

publication.



64

g0l Geoo 2 /6¥'0 | L0S0| G0 G0 |/2GL|82]G9L|€8|0C|0L]|0C|0Ol| %00S
oLl €e00 | /6¥°0|1L0S0| G0 g0 L1'2ZL |68 |2./L|68|0C|0L|0C|0l| %0SG.
el 7€0°0 2 /6¥'0 | L0S0| S0 G0 |82L|88|C8L|1L6|0C|0L|0C|0L| %998
L'LL GL0'L l'l¢ | 86¥0|C0S0| G0 G0 |¥8L |26 |88L|¥6|02|0L|0C|0l| %00l
zaqg|idaglzadg|Ladg| zda L dig zaqg | Lda
al109s-7 | (uiw) | yoseag oney (wyu) apnyidwy
-ophasd | awi]l | #OAyY | uoneusuQ oney P31oNI3SuU023y (wyu) | uoneld
YNV pajonu}s uoneusO apnyijdwy -1109)
-u023y

uone|a.lod a2inos Bulhiea Japun aouewlouad 4990 :2°Z d19eL

7’6 6500 vl €8¥'0 | 60G0| G0 | S0 | 921 |98 |86L | L0L|0C]| 0L |0OC]| Ol | SCO0
66 c¢0L'0 €¢ /8v0| /060| GO | G0 | 8/2L |/.8|G6L| 66 |0C| 0L |0OC]| Ol | €EO0
€0l 1620 1A 16’0 | GOS0 | S0 | GO | L'GL |63 | €6L | L6 |0C| 0L |0C| 0L | 050

60l 9110 eyl G6¥'0 | €060 | G0 | S0 | €QL |16 |68L| §G6 |0C| 0L |0OC|OL| O
L'LL GL0'L l'l¢ /6¥'0 | ¢0G0| G0 | SO | ¥8L |C6|88L | ¥6 |0 | 0Ol | 0C | Ol | OC
'Ll Liv'L 9'8¢ 86%'0 | LOG0| G0 | S0 | G8L |Z6|/.8L | ¥6 |0C | 0L | 0OC | Ol | O€
el 205’1 gle 86v'0 | LOG0O| G0 | G0 | S8L |26 | /2L8L | ¥6 |0C | 0OL | 0OC| Ol | OF

zadqg | tdag | ¢ l z dg L dig z da L dig
dig | dig
al09s-7 | (uiw) | youeasg oney oney (wyu) apnyjdwy
-opnasd | awill | # oAy uonejuso uonejus pajonusuooay (wyu) epnyidwy | YNS
oAy uoos9y -0

YNS Buikiea Jspun souewlouad 4904 :1°Z @lqel




65

602 08ty | 98¢l 6780 €€8'0 | ¢lol 6S'8 Zl 0l 014 6596 9
602 08ty | 98'¢hl GGc'l €eel | vl | 0621 Gl 0¢ oy 6596 S
16'8 00 0c'l Syl 005} 069 1.6 8 Zl 0¢ 11°G6 14
16'8 00 0c'l 4 00G'L | 868l | 0€'8C | 0OC 0¢ 0€ L1°G6 €
yApA LZ'0 €9 6.G°0 0090 | /6'€EC | 88'¢El Gc Gl 0c 6€'C6 [4
yASWA LZ'0 €9 80G°0 0050 | g9l 9Z'8 0¢ 0l 0c 6€°C6 }
cd Laag | cdg | LA
(urw) oney
9109s-7 | awl] | yoJeag | uoneualiQ oney (wnyu) (zH) (%) | xapuj
-opnasd OANY | # OAY pajonu}s uolje apny)ijdwy (wyu) | Aouan | uoneld | 8dinog
-U023y | -JudLIQ | PAYONIISU0IdY | apnydwy | -baiq | -1109H
slied 921n0Ss 931y} YuM aouewlopad 4900 'Z @|9el
Ay G900 Gl 86%'0 | 8050 S0 G0 18°¢C L€
Ay .20 19 /6v'0 | S0S°0 S0 G0 €6'l (4
'Ll G0l L'lc .6v'0 | ¢0S°0 S0 G0 86°0 Ll
cdg | rag |czaqg | Ldag
oney
9109s-7 (wiw) | youeag oney apnjijdwy | oney
-opnhasd swi] | #oAy uonejuaLQ oney pajonuys | apnj|
ANy pajoniisuooay uonejusalQ -u023y | -dwy

onje. spnyijdwe 82inos Bulkiea Jepun souewiopad 4900 :€°Z 8l9el




66

Figure 2.1: Activation Map for Three Correlated Sources. The red arrows on

the activation map indicate the position of the three source dipoles. The map
was thresholded such that red indicates P < 0.05 and yellow indicates

P <1073,
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Figure 2.2: Stereo auditory stimulation in a human subject: pathways with
associated pseudo-Z-scores. Plateaus in the plot denote searches that
yielded the same result (local maximum) multiple times. Results that were
found multiple times were considered important pathways. Only 300 out of
1000 searches are shown to emphasize the transition between pathways. The
pathway with maximum correlation (pseudo-Z-score) and maximum size
involved both primary auditory cortices. Its activation map is depicted in

Figure 2.3.
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Figure 2.3: Cortical activation map during stereo auditory stimulation

a) Left hemisphere: The cortical activation map shows activation in the

left primary auditory cortex.

b) Right hemisphere: The cortical activation map shows activation in the

right primary auditory cortex.
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Figure 2.4: Stereo auditory-stimulation signal time-courses. The top panel
shows the averaged sensor waveform for the auditory response. The second
panel shows the auditory response for both right hemisphere (blue) and left
hemisphere (green). The third panel shows the transient auditory-response
between 4 and 12 Hz with time-frequency analysis. The fourth panel shows

the steady-state auditory centered at 40 Hz with time-frequency analysis.
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Figure 2.5: Right median-nerve stimulation for human subject #1: pathways
with associated pseudo-Z-scores. Plateaus in the plot above denote searches
that yielded the same result (local maximum) multiple times. Results that were
found multiple times were considered important pathways. Figure 2.6 depicts

the activation maps of selected pathways for subject #1 and other subjects.
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Figure 2.6: Right median-nerve stimulation activation maps for six human
subjects. Pathway 6a - Activity in primary somatosensory area (S1) and
secondary somatosensory area (S2) (shown with red arrows). Pathway 6b —
Activity in S1 and somatosensory association cortex (Brodmann Area 5).
Pathway 6¢ — Activity in S1 and/or S2 and the dorsal aspect of the primary
motor area (M1). Red regions were thresholded at P < 0.05 and yellow
regions were thresholded at P < 0.001. Subject ID numbers are shown to the

bottom-left of each cortical map.
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CHAPTER 3

Accurate Reconstruction of Temporal Correlation for Neuronal Sources

using the Enhanced Dual-core MEG Beamformer

3.1 Abstract

Beamformer spatial filters are commonly used to explore the active
neuronal sources underlying magnetoencephalography (MEG) recordings at
low signal-to-noise ratio (SNR). Conventional beamformer techniques are
successful in localizing uncorrelated neuronal sources under poor SNR
conditions. However, the spatial and temporal features from conventional
beamformer reconstructions suffer when sources are correlated, which is a
common and important property of real neuronal networks. Dual-beamformer
techniques, originally developed by Brookes and colleagues to deal with this
limitation, successfully localize highly-correlated sources and determine their
orientations and weightings, but their performance degrades at low
correlations. They also lack the capability to produce individual time-courses
and therefore cannot quantify source correlation. In this chapter, we present
an enhanced formulation of our earlier dual-core beamformer (DCBF)
approach that reconstructs individual source time-courses and their
correlations. Through computer simulations, we show that the enhanced
DCBF (eDCBF) consistently and accurately models dual-source activity

regardless of the correlation strength. Simulations also show that a multi-core
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extension of eDCBF effectively handles the presence of additional correlated
sources. In a human auditory task, we further demonstrate that eDCBF
accurately reconstructs left and right auditory temporal responses and their
correlations. Spatial resolution and source-localization strategies
corresponding to different measures within the eDCBF framework are also
discussed. In summary, eDCBF accurately reconstructs source spatio-
temporal behavior, providing a means for characterizing complex neuronal

networks and their communication.

3.2 Introduction

Our recently developed dual-core beamformer (DCBF) addresses many
of the limitations of the dual-source beamformer (DSBF) developed by
Brookes and colleagues (Diwakar et al., 2011). The DCBF implements the
DSBF with a vector description, eliminating the need for non-linear searches of
source orientations and source weighting. Furthermore, pairing the DCBF with
a Powell search optimization algorithm allows quick localization of the
correlated source pairs. However, our simulations demonstrated that the
estimation of source amplitudes with DCBF grows inaccurate as correlation
values decrease since time-course reconstruction only generates a single
signal (scaled accordingly for each source). Though DCBF provides an
effective way to identify source pairs, the measurement statistic (pseudo-Z-
score) obtained is dependent on both source power and source correlation

and does not exclusively quantify correlation between sources.
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Ideally, in addition to localizing active sources, a quantitative measure
of correlation is desired to obtain a more complete understanding of neuronal
networks. Such a measure (e.g. power correlation) would more completely
characterize highly sophisticated networks. In this chapter, we propose an
enhanced dual-core beamformer (eDCBF), which is capable of accurately
estimating the source covariance matrix from multiple sources, providing a
proper measure of correlation in addition to individual source time-courses
without amplitude suppression. Once sources are localized, their correlation
can be found without time-course reconstruction, allowing the eDCBF to
handle large datasets quickly and requiring little memory. If desired, the
eDCBF also provides a simple way of computing correlations in frequency
bands of interest. Moreover, eDCBF’s improved design offers robustness to a
wide range of both source correlations and SNR. Finally, the eDCBF
framework may be generalized to effectively account for the presence of

multiple sources.

The mathematical formulation of the eDCBF and extension to the multi-
core beamformer (MCBF) are first presented to fully demonstrate the design of
the new spatial filter. In simulations we demonstrate that the eDCBF spatial
filter is robust to a wide range of correlations, SNRs, source locations, and
various source temporal dynamics. Using a three-core MCBF filter, we further
demonstrate how additional sources of interference can be accounted for once

source localization is performed. Finally, we cross-validate our findings from
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the simulations in an analysis of a human MEG recording during a stereo-
auditory stimulation task, showing that the eDCBF produces meaningful

correlation estimations and accurate time courses.
3.3 Methods
3.3.1 Previous Dual-core Beamformer Formulation (Diwakar et al., 2011)

The DCBF was developed assuming the presence of two sources. Let
L, and L, define the lead-field matrices of the two sources of interest. The
dual-core lead-field matrix is expressed as the m x 4 matrix L; = [L; L;].
The DCBF weighting matrix is then defined as the m x 1 vector W, designed

such that:
s@) = vminwgb(t) 3.1

where §(t) represents the 4 x 1 vector of estimated source time-courses in
both the 6 and ¢ directions. v,,;, is defined as a 4 x 7 vector containing both
optimal non-normalized 2 x 71 source orientations n; and n,:

Vpnin = (Zi) (3.2)

V..in IS Obtained by computing the eigenvector associated with the
weakest eigenvalue of Q; = LLR,*L,, where the dual-source power Pgipt is
represented by the inverse of the eigenvalue. The DCBF solution for the

weighting matrix was shown to be (Diwakar and Huang et al., 2011):
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W, = ngtRl;lLdvmin (3.3)

The DCBF orientations from Equation 3.2 reduce L, to a rank 1 scalar
lead-field matrix leading to an m x 1 beamformer weight (Equation 3.3),
resulting in scaled copies of a single time-course to represent both sources.
Furthermore, a single eigenvector of Q; (v,,;,) can only capture either the
correlated or uncorrelated part of the signal and is not sufficient to span the
entire signal subspace, leading to incorrect estimates of source amplitude in

the presence of correlated sources.
3.3.2 Enhanced Dual-core Beamformer Formulation

The enhanced Dual-core Beamformer (eDCBF) offers a novel solution
to overcome the deficits of the previous DCBF. The eDCBF dual-core lead-
field matrix is expressed identically to the original DCBF (Diwakar and Huang
et al., 2011). Instead of using the DCBF m x 7 weighting vector, the eDCBF
weighting matrix is defined as the m x 4 matrix W, = [W; W], where W; are
the individual weighting matrices for each source, ensuring no reduction in
rank and enabling the computation of unique source time-courses and

correlation. The eDCBF weighting matrix is designed such that:
5(t) = Wib(t) (3.4)

s(t) is the 4 x 1 vector of unique estimated dual-source time-courses in

both the 6 and ¢ directions. As a measure of source strength and activity, the
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4 x 4 eDCBF estimated dual-source covariance matrix R; is determined by

taking the covariance of Equation 3.4:
R; = (3(8()") = WiR,W, (3.5)

The constraints of the vector minimum-variance beamformer,
consistently shown to produce accurate beamformer reconstruction with single
sources (Sekihara et al., 2004; Spencer et al., 1992; Van Veen et al., 1997),

may be used to derive the eDCBF weighting matrix W ;:

W, = argmintr{WTR,W,} subjectto WIL, = I (3.6)
Wa

The matrix product W7 L, represents the spatial filter output from two
unit-magnitude impulse currents. The linear constraint W% L, = I ensures that
each weighting vector W, passes signal from its respective source while not
passing signal from the second source. Furthermore, the trace of the
beamformer output source power W’ R, W, is minimized to suppress both
noise and additional source contributions. However, no assumptions are
made about the correlation between the two sources of interest. In fact, the
correlation can take on any value from 0O for uncorrelated sources to 1 for
completely synchronized sources. The solution for the minimization problem

may be obtained by minimizing the Lagrangian with Lagrange multiplier k:

LWy, k) =tr{WIR,W, + WLL, — Dk} (3.7)
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The derivative of the Lagrangian may be computed using the matrix

derivative identities %tr{XTA} =A and ;—Xtr{XTAX} =AX + ATX:

aL(Wdl K)
a—'/Vd = 2wad + LdK =0 (38)
R,'Lyx
w,=-—=2 > d (3.9)

Substituting the unit-gain constraint WL, = I into Equation 3.9 yields:
Kk =—2(LTR;'Ly)™? (3.10)
Wy =R, Lq(LiR, Ly)™" (3.11)

The eDCBF estimated dual-source covariance matrix R;, which is equal
to the inverse of the DCBF Q,,4;, may be obtained by substituting the derived

eDCBF beamformer weight (Equation 3.11) into Equation 3.5:
Ry = WiR,W, = (LgR," L)~ (3.12)

The eDCBF time-courses are obtained by substituting the derived

eDCBF beamformer weight from Equation 3.11 into Equation 3.4:
8(t) =Wgb(t) = (LgR,'La) ' LR, b(t) = RsLGR,'b(t)  (3.13)

The eDCBF uses the full dual-source covariance matrix (R; or Q;1)
instead of a single eigenvector when determining the weighting matrix,

preventing undesired amplitude suppression and allowing reconstruction of
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unique time-courses. Thus, the eDCBF makes it possible to define and

compute source correlation.
3.3.3 eDCBF Estimated Correlation Reconstruction

The eDCBF estimated vector covariance matrix R; can be expressed
as:

_ [ ®s@ymnt (31(©3.))mn;

T 5 08,OMAT (3,(03,(0),5 (3.14)

s

where §;(t) are the estimated scalar source time-courses and 7i; are the 2 x 1
normalized orientations for the two sources. The two diagonal 2 x 2 sub-
matrices of R; are of the same form as SBF vector covariance matrices
(Sekihara et al., 2004). Thus, the eigenvectors corresponding to the maximum
eigenvalues (signal-related) of these sub-matrices contain the source
orientations, while the eigenvectors corresponding to the minimum
eigenvalues (noise-related) contain the noise orientations. The 4 x 2 source
orientation matrix ¥ is used to reduce the 4 x 4 vector source covariance

matrix to the 2 x 2 estimated dual-source scalar covariance matrix R;:

_ (T O
v=% ) (3.15)
R; =y Rsyp (3.16)

The orientation matrix also allows scalar source time-course recovery:
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5(t) =Y "WIb(t) (3.17)

The estimated dual-source power correlation j;, may be computed
from:

R:(1,2)?

T R(LDR:(2,2) (3.18)

X12

Amplitude correlation y7, can be computed as the square root of

Equation 3.18.
3.3.4 eDCBF Transformed Correlation Reconstruction

Often, it is desirable to examine the source activity in a certain
frequency band or envelope of the source signals. The eDCBF weighting
matrix W, can be derived from either the transformed or original sensor
recordings. Use of the original recordings allows determination of source
orientations and W, based on the complete source power spectrum, which is
more representative of true source activity. Furthermore, the eDCBF provides
a straightforward way to compute correlations and time courses when W, has

been derived from the original signal. 5;(t), the transformed time courses of

s(t), are defined by transforming Equation 3.13 in the time-domain:
3:(8) = §[8()] = Wig[b(D)] = Wabg(t) (3.19)

where b;(t) are the transformed sensor time-courses and ¢ is the operator of

the transformation. The transformed source covariance matrix Rg may be
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computed with the transformed sensor covariance matrix Ri = (bf(t)bg(t)T)

without computation of source time-courses:
RS = (3;(1)3;(t)T) = WIRS W, (3.20)

The estimated correlation may be computed from the transformed
source covariance matrix in the same fashion as Equations 3.16 and 3.18.
Furthermore, Equations 3.19 and 3.20 hold for any linear transformations in

the time domain.
3.3.5 eDCBF Regularized Correlation Reconstruction

Use of the regularized beamformer has greatly improved the quality of
beamformer signal time-course reconstruction (Robinson and Vrba, 1998; Van
Veen et al., 1997; Hillebrand et al., 2005). The eDCBF beamformer weight

can be reformulated to obtain the regularized beamformer weight W7,
Wi =R, +yD 'Ly(LG(R, +yD™'Ly)™! (3.21)

where y is the regularization parameter that increases the full-width half-
maximum of the beamformer point-spread function while reducing the amount

of uncorrelated noise. Source time-courses may be reconstructed as:

§,(t) = W"h(t) (3.22)
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Source correlation may be computed from the regularized estimated
source covariance matrix R} without computation of time courses using

Equations 3.16 and 3.18.
Ry = (8, ()3, (D) = W"R, W} (3.23)

Correlation and time courses in specific frequency bands may be
computed by using the regularized beamformer weight W, in conjunction with

Equations 3.19 and 3.20.
3.3.6 eDCBF Noise-corrected Correlation Reconstruction

The estimated dual-source covariance matrix can be heavily biased by
the presence of noise, making true prediction of correlation difficult. Further
investigation reveals that this bias can be corrected using the sensor noise
covariance R,,. The expression for R, from Equation 1.15 may be equivalently
written as R, = LRYLT + R,,, where the scalar composite lead-field matrix is
gvenbyL=1[l; I, - L,]and RY is the p x p scalar source covariance
matrix. The m x 1 vectors I; that comprise L are the scalar lead-fields for
each source along its true orientation 17; where l; = L;n;. By substituting this
expression for R, into Equation 3.5, it is evident that the estimated source
covariance matrix R; is composed of a noise-free component (first term on the
right-hand-most side of Equation 3.24) and a noise-related component

(second term on the right-hand-most side of Equation 3.24):
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R; = (3(0)s()T) = WIR,W, = WILRYL™W, + WIR, W, (3.24)

The process of minimization and application of linear constraints result
in weight vectors that satisfy W1, = 0 for i: 3 - p by assuming that the
corresponding sources are uncorrelated with each other as well as the two
sources of interest (Sekihara et al., 2002). The noise-free component then

reduces to the 4 x 4 true dual-source vector covariance matrix R;:
WLLRPL™W, = R, (3.25)

Equation 3.25 also remains valid when only two sources are present.
When additional partially correlated sources exist, the multi-core extension

presented in the next section must be used. Equation 3.24 then simplifies to:
R: =R, + WIR, W, (3.26)

Substituting the derived beamformer weight Equation 3.11 into

Equation 3.26 and solving for R, yields:
R, = (I — R;LLR;'R, R, LR, (3.27)

To obtain the noise-corrected correlation, an unbiased estimate of the
noise covariance R,, is essential. The true dual-source vector covariance
matrix can then be reduced using the derived orientations to the 2 x 2 true
dual-source scalar covariance matrix R, to compute the noise-corrected

correlation value y,:
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R, =y"Ry (3.28)

_ R,(1,2)?
~ R,(1,DR,(2,2)

X12 (3.29)

Using the definition of the matrix K = WiR, W (W R,W )™t =
R:LTR;*R,R; 'L, from the original DCBF (Diwakar and Huang et al., 2011),

Equation 3.27 can be written as:
R, = (I — K)R; (3.30)

Thus, the relationship between the true dual-source vector covariance
and the estimated dual-source vector covariance is dependent on the K
matrix, which is inversely proportional to the source space SNR. As shown
previously, the K-related dual-source pseudo-Z-score (ZX) may be obtained
by inverting the minimum eigenvalue of the K matrix (Robinson and Vrba,

1998; Vrba and Robinson, 2001; Sekihara et al., 2004; Diwakar et al., 2011):
7K = 74 . = min(eig(K)) ™" (3.31)

This pseudo-Z-score can be used as a measure of relative source
activity. Alternatively, the power pseudo-Z-score may be computed by dividing
the dual source power by the noise power (Van Veen et al., 1997):

tr{Rs}

P frm
tr{(LgRy"La) ™"}

(3.32)
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The differences in the spatial profile of ZX and Z” will be investigated in

the Results.
3.3.7 Extension to Multi-core Beamformer (MCBF)

We previously demonstrated that using DCBF to model two sources is
sufficient to reveal complex neuronal networks with many sources due to only
partial suppression of the pseudo-Z-score (Diwakar and Huang et al., 2011).
However, as shown by Equation 3.25, the eDCBF can only account for two
correlated sources in the presence of other uncorrelated sources. When
multiple correlated sources exist, the correlation coefficient and time-course
reconstruction are affected severely. Therefore, the model needs to be

expanded to handle such environments.

A multi-core beamformer (MCBF) can be developed to account for
additional sources. The technique can be described by a straightforward
extension of the eDCBF. Starting from Equation 1.15, the multi-core lead-field
vector is defined as the m x 2¢ matrix L,, = [L; L, - L.], where cis the
desired number of sources to be modeled. The corresponding multi-core
weighting vector is then defined as the m x 2¢ matrix
w,,=[W, W, -- W¢,]. The solution to the multi-core weighting vector,

W,,, is derived in an equivalent manner to Equations 3.6 through 3.11:

W = Ry Ly (LT, R, L) ™ (3.33)
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The derivations presented from Equations 3.12 to 3.29 can be then
applied to the multi-core beamformer to obtain the 2c x 2c estimated multi-
core vector covariance matrix R;, the 2c x 2c true multi-core vector covariance
matrix R, the ¢ x ¢ estimated multi-core scalar covariance matrix R;, and the ¢
X ¢ true multi-core scalar covariance matrix R;. The orientation vector v is

defined as:

Wi, 0 0
p=| 2 ™ 0 (3.34)
0 0 .

The estimated pair-wise correlation ¥;; and the noise-corrected pair-

wise power correlation y;; between the " and " sources are given by:

. R p?
0= RaG DR G ) (335)
R, ))? (3.36)

X = R OR. G, ))

Amplitude correlation can be computed as the square root of Equations
3.35 and 3.36. The formulation of the MCBF is similar to that of the NB and
CSSM except that instead of deriving the beamformer weight for only one
source of interest at a time, the MCBF applies additional constraints to
simultaneously find weights for all modeled sources (Dalal et al., 2006; Hui

and Leahy, 2006; Hui and Leahy, 2010; Quuran and Cheyne, 2010). This
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feature allows correlation reconstruction of multiple interfering sources at the
same time. The MCBF requires three degrees of freedom for spatial location
and two degrees of freedom for orientation per core. Theoretically, if all
signals from m sensors are linearly independent and signal-related (achieved
at infinite SNR), the MCBF can model a maximum of m/5 sources. However,
at the typical SNR of real measurements recorded on a modern MEG system,
the number of signal-related independent spatial modes is approximately 40-
50, allowing the MCBF to model a maximum of 8-10 sources. The MCBF is
most appropriately used to determine source activity for a given set of sources
that already have been accurately localized by methods utilizing a metric such

as the DCBF pseudo-Z-score (Diwakar and Huang et al., 2011).

3.3.8 General Setup for Simulations

To measure the performance of the eDCBF spatial filter for both
correlation and temporal reconstruction, a series of computer simulations were
conducted with a simulator designed to allow variation of the sources present
(number, location, orientation) and their corresponding waveforms (frequency,
amplitude, lag, duration, SNR), thereby providing vast flexibility for simulation

execution.

The source space was simulated with a grid covering the cortical gray
matter with homogenous 5 mm spacing in the x, y, and z directions. The

cortical boundaries were obtained from a healthy subject’s T1-weighted



93

anatomical MRI. The sensor configuration was based on the
Elekta/Neuromag™ whole-head MEG system (VectorView), in which 306
sensors are arranged on a helmet-shaped surface (204 gradiometers and 102
magnetometers). The source-sensor configuration is shown in Figure 3.1

(inner-skull surface represented by gray mesh).

To compute the forward model, the boundary element method (BEM)
was employed where the inner-skull surface (from MRI) served as the BEM
mesh (size 5mm). SNR levels were adjusted by adding uncorrelated random
Gaussian noise to the sensor waveforms, where the SNR was defined as the
ratio of the Frobenius norm of the signal vector to that of the noise vector
calculated over the interval with signal. Using the simulator, eDCBF
correlation and time-course reconstruction were inspected over varying source
coherence, SNRs, and temporal dynamics. Additional simulations were
designed to test the eDCBF at various source separations as well as to

investigate correlation estimation for the three-core MCBF-.
3.3.9 Setup for SNR, Correlation, and Time-course Simulations

Two source dipoles were placed in the left and right hemisphere
auditory cortices (Figure 3.1). Their signals were composed of a 6-second
inactive period followed by 6 seconds of a sinusoidal wave with amplitude of 5
nAm and frequency of 30 Hz (sampling rate 1000 Hz). The phase shift of the

second source was varied from 0° to 90° in steps of 10° to test a wide range of
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correlations. Reconstruction of the estimated correlation and the noise-
corrected correlation was carried out at SNRs of 4, 2, 1, 0.5, 0.25, and 0.167.
Estimation of source amplitudes was carried out by FFT examination of
extended length (50x) source time-course reconstructions over all phase lags
and SNRs. To test time-course recovery of a more complicated signal, a
linear chirp was utilized, wherein the frequency was varied from 5 to 10 Hz
(and back) over a period of 5 seconds and the amplitude was modulated by a
0.1 Hz sinusoid. Noise-corrected correlation was computed for all SNRs and
for source time-lags of 0.05, 0.1, 0.4 and 1 second. Source time-courses and
RMS amplitudes were calculated at all time-lags and at an SNR of 4. Finally,
Monte Carlo methods were employed to properly quantify the results’

probability distribution (1000 simulations unless otherwise noted).

3.3.10 Setup for Location Simulations

To test eDCBF reconstruction at varying source locations, the
sinusoidal simulation from the previous section was performed for two
additional sets of sources. Noise-corrected correlation values were computed
for distantly-placed sources in the left and right hemisphere primary motor
cortices with a separation of 70 mm and for closely-placed sources in the left
and right posterior cingulate cortex (PCC) with a separation of 5 mm (Figure
3.1). A set of 1000 randomly chosen source pairs was also tested for noise-

corrected correlation accuracy at a fixed SNR of 4.
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3.3.11  Setup for Three-core MCBF Simulation

An additional simulation was designed to test MCBF performance for a
core size of three. Sources were placed in the PCC and the left and right
primary motor cortices. The right motor cortex source’s phase lag ranged from
45° to 90° (in steps of 5°) whereas the PCC source’s phase lag decreased
from 45° to 0° (in steps of 5°), creating a variety of correlation conditions. The
simulation was executed 1000 times to compute the noise-corrected

correlation for the full SNR and correlation ranges.

3.3.12 Setup for Human MEG Auditory Study

A stereo auditory test stimulus was designed to compare eDCBF
correlation and time-course reconstruction in actual MEG measurements (200
epochs of evoked responses) to reconstruction using two-dipole fit, a method
known to adequately represent neuronal activity in the auditory cortices
(Mosher et al., 1992; Mosher and Leahy 1998; Mosher et al., 1999; Huang et
al., 1998). The test sound file consisted of 1800 ms of pre-stimulus silence
followed by a 2000 ms stereo stimulus period. The stimulus consisted of a
500-Hz pure tone with a 40-Hz envelope modulated at 100% level. The
modulation envelopes between the left and right channels were designed to
be fully correlated. The intensities of the left and right channels were balanced
for equal sensitivity for the left and right ears. The start and end of the

stimulus epochs were smoothed with a cosine roll-off to prevent any artifacts.
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Magnetic fields evoked by auditory stimulation were measured using an
Elekta/Neuromag™ whole-head MEG system (VectorView) with 204
gradiometers and 102 magnetometers in a magnetically shielded room
(IMEDCO-AG, Switzerland). EOG electrodes were used to detect eye blinks

and eye movements.

Intervals of 1400 ms of post-stimulus data and 200 ms of pre-stimulus
data were used for analysis (gradiometers only). Data were sampled at 1000
Hz and processed by MaxFilter to remove environment noise (Taulu et al.,
2004; Taulu and Simola, 2006; Song et al., 2008; Song et al., 2009). Artifact-
free MEG responses (n=181) were averaged with respect to the stimulus
trigger. A BEM mesh of 5-mm size for the subject was generated from the
inner-skull surface using a set of T1-weighted MRI images takenona 1.5 T
MRI scanner. Registration of MRl and MEG was performed using data

obtained from the Polhemus Isotrak system prior to MEG scanning.

Reconstructions of MEG auditory recordings with the eDCBF, SBF, and
dipole-fit modeling were compared to assess the accuracy and validity of the
eDCBF reconstruction. SVD was used to separate the original sensor
measurements into signal and noise components. The top eight singular
modes were chosen as a conservative estimate of the noise-free signal based
on manual inspection of the elbow-shaped region of the singular value
spectrum. The remaining singular modes were considered to contain only the

noise-related signal. The noise components were removed and replaced with
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white noise of the same power, resulting in an estimated SNR of 3.7 and
allowing construction of a noise covariance matrix. A regularization parameter
equal to 4% of the largest eigenvalue of R, was used for reconstruction with
both the eDCBF and the vector SBF (Van Veen et al., 1997; Sekihara et al.,

2002; Sekihara et al., 2004).

Dual-source localization was performed with a Nelder-Mead downhill
simplex search for the maximum power pseudo-Z-score. The eDCBF
regularized beamformer weight W/, was computed and used with Equations
3.22, 3.19, and 3.17 to generate unfiltered and low-pass filtered (< 50 Hz)
regularized time-courses for each source. Inter-hemispheric correlation values
were computed from filtered time-courses, from the source covariance matrix
presented in Equation 3.20, and from the noise-corrected source covariance
matrix. Vector-based SBF was also used to reconstruct unfiltered and filtered
regularized time-courses for the source locations identified by the eDCBF.
Inter-hemispheric correlations were computed with the reconstructed filtered

regularized SBF time-courses for comparison.

Localization was also performed using a multi-start downhill simplex
dipole-fit algorithm with a spherical head model (Huang et al., 1998). The
fitted locations were further refined with a BEM forward model. The dipole-fit
source time-course reconstruction was obtained by multiplying the pseudo-
inverse of the gain matrix for the fitted dipoles and the sensor measurements.

Inter-hemispheric correlations were computed with unfiltered and low-pass
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filtered dipole-fit source time-courses (< 50 Hz). Correlations were also
computed between filtered regularized reconstructions (eDCBF and SBF) and
filtered time-courses obtained from dipole fit as a measure of time-course

similarity.

34 Results

3.4.1 Analysis of eDCBF Across Entire Correlation Range

To test the performance of eDCBF across the entire range of possible
correlations, a phase lag was introduced to the sinusoid of the second source.
The simulation was performed with an SNR of 4, minimizing noise effects so
that the eDCBF’s sensitivity to correlation was emphasized. Source
reconstruction was completed using estimated correlation reconstruction.
Table 3.1 shows that eDCBF estimates of the sources’ time-course
correlations are highly accurate (¢ < 0.003,0 < 0.0013, where ¢ is the error,
and o is the standard deviation across Monte Carlo iterations) regardless of
the actual value of the correlation. In addition, the low standard deviation
demonstrates eDCBF’s exceptional stability. Accuracy of source localization
was not examined here, as it was already confirmed with the original DCBF

(Diwakar and Huang et al., 2011).
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3.4.2 Examination of eDCBF Performance Across SNR Range

Real-world noise commonly dominates the underlying signal, frequently
posing a problem for beamformers. Therefore, we characterized eDCBF
performance across a range of SNR values. The following simulation allowed
comparison of the estimated and noise-corrected correlation reconstruction
from Equations 3.18 and 3.29. We observed that even though the estimated
correlation works well initially, as SNR drops below 1, the accuracy of eDCBF
estimated correlations fell to unacceptable levels. By a SNR level of 0.167, the
filter became practically ineffective and was unable to appropriately resolve
the underlying signal (¢ < 0.32), where ¢ is the averaged correlation error over
all phase shifts for a given SNR. From the noise time-courses (added to
sensor waveforms to create the desired SNR), an unbiased estimate of the
noise covariance matrix was used to examine the noise-corrected correlation.
The correction allowed the beamformer to perform successfully at the entire
range of SNR and correlation values (¢ < 0.0008,5 < 0.011), where & is the
averaged Monte Carlo standard deviation across all phase shifts in a given
SNR (Figure 3.2), rendering eDCBF an extremely robust and flexible
beamformer filter given a reasonably accurate estimation of the noise

covariance.
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3.4.3 Validation of eDCBF Performance Regardless of Source Location

The sensitivity of the eDCBF filter to the location of the two sources was
investigated by examining three cases: a pair of distantly-spaced dipoles, a
pair of closely spaced dipoles, and a pair of randomly placed dipoles. For
distant dipoles, we observed that the correlation reconstruction worked
precisely throughout the entire SNR and correlation ranges (¢ < 0.0005,7 <
0.009). When dipoles were closely placed (PCC dipoles spaced only 5 mm
apart), a hindrance for beamformer operation at low SNR, the eDCBF still
performed effectively. At SNRs at or above 0.5, the eDCBF was reasonably
accurate (¢ < 0.005,5 < 0.036), while at SNRs of 0.25 or lower it slightly
overestimated the correlation value (¢ < 0.027,6 < 0.11) due to bias in the
noise covariance estimate at very low SNRs (Figure 3.3). Finally, the eDCBF
filter still performed accurately when dipole pairs were chosen randomly

(€ < 0.0002,0 < 0.003).

3.4.4 Time-course Reconstruction — Sinusoid/Chirp Source Waveforms

For most of the simulations, a sinusoid wave was used to construct the
source signal. To investigate the precision of the reconstructed waveform, we
examined the accuracy of the reconstructed amplitude as the SNR and phase
lag were varied, which is another concern associated with previous dual
beamformers. Figure 3.4 shows a set of reconstructed waveforms (for the

entire range of phase shifts) at SNR of 4 computed from Equation 3.17. As
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shown in Table 3.2, eDCBF reconstructed the amplitude with the same
success regardless of SNR or correlation value, underestimating by more than
1% only in a single case. The small bias in amplitude estimation occurs due to
a rank deficient sensor covariance matrix before the addition of noise.
Amplitudes estimated from the eDCBF were far more accurate than those
from the previous DCBF, which were suppressed by an average of 12.5%

(Diwakar and Huang et al., 2011).

Since neuronal signals typically contain complex features, a more
sophisticated waveform in the form of a linear chirp was also considered. To
simulate various correlations, a series of time lags were introduced to the chirp
present in the second source. Figure 3.5 shows an example of the
reconstructed waveform for a one-second time-lag at a SNR of 4 for the
sensor waveforms. To quantitatively asses the reconstruction, an RMS
amplitude measure was employed. When comparing the original waveform’s
amplitude with the reconstructed waveform (for the example above), it was
accurate to 99.9%. The accuracy of the correlation computation was also
tested (1000 Monte Carlo simulations). Figure 3.6 shows that the eDCBF
successfully estimates the correlation for any combination of SNR and time lag

(£ < 0.0004,5 < 0.007).
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3.4.5 Three-source Simulation with MCBF

The last simulation examined the performance of the MCBF filter when
reconstructing three simultaneously-active correlated sources. Currently, no
beamformer method is able to properly address this issue. MCBF performance
in reconstructing the source correlation values for all three dipole combinations
can be seen in Figure 3.7. For any given condition, MCBF properly

reconstructed all correlation values (¢ < 0.005,5 < 0.04).

3.4.6 Human Auditory Reconstruction Results

The two-dipole-fit reconstruction of the evoked MEG auditory response
to the 500-Hz pure tone with a 40-Hz envelope (Figure 3.8) showed bilateral
activation of both the left and right auditory cortices. The left hemisphere
neuronal source (blue) showed a large transient response followed by a
steady-state response with a weak 40-Hz component. The right hemisphere
neuronal source (green) revealed a slightly smaller transient response with

strong 40-Hz steady-state oscillations from 500 ms to 1400 ms.

During eDCBF reconstruction of the auditory response, maximizing the
power pseudo-Z-score (34) appropriately localized sources to the left and right
auditory cortices (Figure 3.9). Though the K-related pseudo-Z-score provides
a valid method of localization at low SNRs as shown previously (Diwakar and
Huang et al., 2011), its spatial distribution at high SNR is sharply peaked,

rendering it unsuitable for grid spacing of a few millimeters. However, the
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power pseudo-Z-score provides a suitable measure of detection for high SNR
recordings (Figure 3.10). Localization of the auditory response found by
dipole-fit and the eDCBF differed by less than 2.5 mm for each hemisphere

(Figure 3.9).

The eDCBF regularized recovery of source time-courses (Figure 3.11 —
left panels) showed individual signals for the left (blue) and right (green)
hemisphere neuronal sources. Furthermore, examination of both right and left
source signals showed well-defined transient and steady-state responses that
closely resembled the time courses obtained from dipole-fit as indicated by
high correlations (/' = 0.9630; yg = 0.9614). In contrast, SBF regularized
time-courses (Figure 11 — right panels) correlated poorly with those obtained
from dipole-fit (y#* = 0.5018; yf = 0.4946). In fact, even features such as the
larger, left-sided transient response and the stronger, right-sided 40-Hz
steady-state response were preserved with the eDCBF. The errors in the SBF
reconstruction were due to inaccurate determination of source orientations and

the false assumption that sources are uncorrelated.

Correlations for dipole-fit time-courses showed strong coherence

between the left and right auditory cortices (y* = 0.9535, x%;, = 0.9567).
The eDCBF noise-corrected correlation ()(ﬂeg = 0.9349) and the filtered
eDCBF correlation (5, s = 0.9385) agreed with these values (Ax* < 3%).

However, the SBF-predicted correlation (ﬂegf”t = 0.6119) was quite poor
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(Ax® =~ 35%). Correlations computed from eDCBF time-courses and from the

appropriate source covariance matrices were identical.

3.5 Discussion

The present study provides an improved implementation of our
previously introduced DCBF, which was unable to accurately estimate source
amplitudes or produce unique time-courses and correlations to characterize
source activity (Diwakar and Huang et al., 2011). The eDCBF provides a
novel approach designed to reconstruct the source power covariance matrix
R; between multiple sources. With this matrix, individual time-courses and
correlations for sources can be determined in low SNR conditions, overcoming

the deficits of the DCBF.

Computationally, multiple source beamformers (e.g. DSBF, DCBF,
eDCBF) require some searching for the optimum source configuration unlike
traditional beamformers. Single beamformers may therefore appear more
attractive as quick scanning methods but are less accurate due to the strict
assumption of non-correlated sources (Robinson and Vrba, 1998; Sekihara et
al., 2002; Van Drongelen et al., 1996; Van Veen et al., 1997). Furthermore,
unlike beamformer spatial filters that are designed to work in a correlated
environment (e.g. NB, CSSM, and AGMN-RUG), the eDCBF requires only a

single computation of the weight matrix for accurate correlation determination
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(Dalal et al., 2006; Hui and Leahy, 2006; Hui and Leahy, 2010; Quuran and

Cheyne, 2010; Kumihashi and Sekihara, 2010).

For complex signals, the mathematical formulation of eDCBF flexibly
enables examination of correlations in envelopes and frequency bands of
interest without too much additional computational load, thereby permitting a
more detailed investigation of neuronal communication. Moreover, the eDCBF
correlation analysis can be naturally extended to the MCBF spatial filter to

account for the presence of multiple correlated sources.

A variety of simulations were conducted to examine the performance of
the eDCBF by quantifying the robustness of computed correlations across a
range of SNRs (4 to 0.167), source locations, time lags, and waveform shape
for two sources. The eDCBF reconstructed correlations with a high degree of
accuracy even at a source spacing of only 5 mm. The results also showed
that the eDCBF could handle both fully correlated and uncorrelated neuronal
sources. Source time-course reconstructions resulted in accurate and
individual time-courses regardless of the degree of correlation between
sources. Furthermore, the amplitudes of time courses were accurately
reproduced irrespective of the correlation between sources, which is a notable
shortcoming of previous dual-beamformer approaches (Brookes et al., 2007;
Diwakar and Huang et al., 2011). The spatial width of the eDCBF localization

peaks using different measures (ZX and Z?) under different SNR conditions
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was also investigated. We observed that ZX provides a suitable width for low

SNR data while Z? is preferable for high SNRs.

As a proof of principle, our investigation of the MCBF spatial filter
showed accurate correlation reconstruction across a wide variety of source
correlations and SNRs in the presence of three correlated sources. In reality,
MEG signals can have many active sources. As such, future developments
should include an optimization algorithm to determine the proper MCBF core-
number to use for reconstruction, which would prevent inaccurate estimation
of source activities due to under-modeling. For example, DCBF localization
and pseudo-Z-score statistical thresholding can be used to determine MCBF
core-number. Furthermore, typical SNR levels for real recordings must be

considered, which limits the MCBF core-size to 8-10 sources in practice.

We also applied the eDCBF spatial filter to human MEG measurements
from a stereo auditory tone paradigm to cross-validate reconstruction
performance from our simulations. Localization with the power pseudo-Z-
score showed activity in both auditory cortices. The SBF and eDCBF
reconstructions were compared to a two-dipole-fit reconstruction. The eDCBF
time-courses for both right and left hemisphere auditory cortices closely
resembled dipole-fit time-courses, maintaining both transient and steady-state
components of the signal. In contrast, reconstruction with SBF showed
malformed and inaccurate time courses. Source localization with eDCBF was

used for SBF reconstruction due to the SBF’s inability to properly localize
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correlated neuronal sources (Brookes et al., 2007). Inter-hemispheric
correlations computed from eDCBF and dipole-fit estimated time-courses were
very close; however, the SBF predicted correlation was underestimated,
confirming that the eDCBF offers a more robust reconstruction than the SBF in
correlated source environments. Furthermore, strong correlation between
eDCBF time-courses and dipole-fit results showed that the two methods yield

very similar waveforms.

In summary, the present results indicate that the eDCBF spatial filter
provides a viable method for exploring complex neuronal networks and their

communication, promoting the use of MEG to investigate brain activity.
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Table 3.1: Estimated correlation reconstruction for auditory dipoles (SNR=4).

Correlation averages and standard deviations determined using 1000 Monte

Carlo simulations.

e. X . X (e}

Shift | (Actual) | (Estimated)

0° 1.000 0.997 3.83E-05
10° 0.970 0.967 1.96E-04
20° 0.883 0.881 4.44E-04
30° 0.750 0.748 7.96E-04
40° 0.587 0.585 1.03E-03
50° 0.413 0.412 1.22E-03
60° 0.250 0.250 1.21E-03
70° 0.117 0.117 9.85E-04
80° 0.030 0.030 5.47E-04
90° 0.000 0.000 1.07E-04

Table 3.2: Amplitude values for left auditory cortex dipole (results equivalent

for right dipole). Amplitude values determined using 100 Monte Carlo

simulations.

SNR
0 Shift | y(Actual) | 4 | 2 [ 1 | 05 ]0.25
Amplitude
0° 1.000 | 4.99 [4.99 [ 4.99 | 4.99 | 4.99
10° 0.970 [4.99 |5.00 | 4.99 | 4.99 | 4.99
20° 0.883 | 4.99 | 4.99 | 5.00 | 4.99 | 4.99
30° 0.750 | 4.99 | 5.00 | 5.00 | 4.99 | 4.99
40° 0.587 |4.99|4.99 |4.99 |4.99 | 4.99
50° 0413 [4.99 |4.99 | 5.00 | 4.99 | 4.99
60° 0.250 | 4.99 | 4.99 | 5.00 | 4.99 | 4.98
70° 0.117 | 4.99 | 5.00 | 4.99 | 4.99 | 4.98
80° 0.030 [4.99|4.99|4.99 |4.99|4.97
90° 0.000 |4.99|4.99|4.99]4.99]4.93
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Figure 3.1: Source and Sensor Model. Green — MEG sensor groups. Blue —
Posterior Cingulate Cortex dipoles. Black — Motor Cortex dipoles. Red —

Auditory Cortex dipoles.



111

Noise Correction of Estimated Correlation

Average Correlation Error

1 1 1

B 2 1 0.5 0.25 0.167
Signal-to-Noise Ratio
Figure 3.2: Estimated (blue) and Noise-corrected (red) correlation
reconstruction errors and standard deviations (error bars) for auditory dipoles.

Correlation values determined using 1000 Monte Carlo simulations.
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Location-Dependent eDCBF Correlation

015 v ' T T T T
01 e e et e, .
005_ ...................................................................................... . -

Bl
\

Average Correlation Error

o = = — -
SO | P ..
_0.1 1 1 1 1 1 1

- 2 1 0.5 0.25 0.167

Signal-to-Noise Ratio

Figure 3.3: Noise-corrected correlation reconstruction errors and standard
deviations (error bars) for auditory cortex (red), motor cortex (green), and
posterior cingulate cortex (blue) dipoles. Correlation values determined using

1000 Monte Carlo simulations.
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Criginal Source Time-courses
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Figure 3.4: Sinusoidal Time-course Reconstruction at phase shifts ranging
from 0 to 90 degrees. Top panel — simulated source waveforms. Bottom

panel — eDCBF time-courses.
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Chirp Original Source Time-courses
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Figure 3.5: Chirp Time-course Reconstruction at 1 second time lag. Top panel
— original source waveforms. Bottom panel — eDCBF time-courses. Blue —

left auditory cortex. Green — right auditory cortex.
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Chirp Waveform - eDCBF Correlation
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Figure 3.6: Noise-corrected correlation reconstruction errors and standard
deviations (error bars) for chirp waveforms at different time-lags. Correlation

values determined using 1000 Monte Carlo simulations.
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MCBF Correlation
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Figure 3.7: Pair-wise three-core MCBF noise-corrected correlation
reconstruction errors and standard deviations (error bars). Blue — left motor
cortex and posterior cingulate cortex. Green — left motor cortex and right
motor cortex. Red — right motor cortex and posterior cingulate cortex.

Correlation values determined using 1000 Monte Carlo simulations.
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Two-Dipole-Fit Source Time-courses (<50 Hz)
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Figure 3.8: Normalized dipole-fit source time-course reconstruction.
Reconstruction of time courses shows a transient and steady-state response
in both left (blue) and right (green) auditory cortices. The left transient
response is higher in amplitude, while the right 40-Hz steady-state oscillations

are more pronounced.
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Figure 3.9: a) Coronal view of left and right auditory response localization. b)
Sagittal view of left and right auditory response localization. Green — eDCBF

localization. Red — dipole-fit localization.
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Normalized K-related Pseudo-Z-score Normalized Power Pseudo-Z-score
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Figure 3.10: SNR dependence of pseudo-Z-scores. Left Panel — The K-
related pseudo-Z-score peaks sharply at high SNR but provides a reasonable
profile for localization at lower SNR. Right Panel - The power pseudo-Z-score
has much broader peaks, providing an appropriate tool for localization in

evoked recordings.
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eDCBF Regularized Source Time-courses SBF Regularized Source Time-courses
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Figure 3.11: Normalized eDCBF and SBF source time-course reconstruction.
eDCBF reconstruction of time courses shows a transient and steady-state
response in both left (blue) and right (green) auditory cortices. The left
transient response was higher in amplitude while the right steady-state
response was more visible. SBF reconstruction of time courses shows

distortion and features that are difficult to identify.
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CHAPTER 4

An Algorithm for Neuronal Source Localization using the Multi-core

Beamformer in MEG Recordings

4.1 Abstract

In this chapter, we introduce a method that incorporates the multi-core
beamformer (MCBF) to perform successful source activity reconstruction for
biomagnetic measurements recorded by magnetoencephalography (MEG).
Beamformers have been widely used for determining source activity in MEG
applications but have limitations. Notably, conventional single beamformers
(SBF) have difficulty detecting neuronal sources with correlated time-courses,
causing correlation-dependent time-course distortion and amplitude
suppression. The MCBF, while able to handle multiple correlated sources and
overcoming many limitations of the conventional dual-source beamformer, is
more challenging to use than the SBF as it requires searching for optimum
solutions and, as formulated, only determines activity for locations specified by
the cores. In our method, we introduce a way of efficiently and reliably
searching the source space for the optimum MCBF solution without a priori
information, thereby preventing the distortion common with conventional
beamformers while arriving at a solution in a reasonable time-frame.
Furthermore, we show that time-course estimates can be found for the entire

source space, a feature lacking in prior multi-source beamformer formulations.
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We have validated and demonstrated the success of our approach through
application to simulated data as well as to evoked median-nerve stimulation

MEG data.

4.2 Introduction

Due to the underdetermined nature of the lead-field type of inverse
problem, different techniques have been proposed as a means of generating
viable solutions. However, none can address all characteristics of complex
brain activity in a practical manner for all cases. In this chapter, we put
forward a novel source localization technique, which employs the abilities of
the multi-core beamformer (MCBF) to overcome the inherent limitations of

previous single and multi-source adaptive spatial filters (beamformers).

The most frequently used beamformer to obtain a solution to the
inverse problem is the single beamformer filter (SBF). The minimum-variance
constraint used by the SBF incorporates the sensor covariance matrix,
allowing it to attain very high spatial resolution for uncorrelated source
reconstructions (Robinson and Vrba, 1998; Sekihara et al., 2002; Van
Drongelen et al., 1996; Van Veen et al., 1997). However, this beamformer fails
to resolve coherent sources, leading to the suppression of source amplitudes
and distorted time-courses (Sekihara and Nagarajan, 2008). In addition,
although the SBF is capable of generating time-courses and power estimates

on a voxel-by-voxel basis, neural activity generally involves synchronous
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communication between multiple sources (Singer, 1999), rendering the SBF

inadequate for analyzing high-level brain activity.

To address these shortcomings, the enhanced dual-core beamformer
(eDCBF) was developed, allowing accurate determination of unique source
time-courses (i.e. allowing coherence analysis) and source amplitudes
(Diwakar et al., 2011b). Reconstructions of auditory evoked recordings with
the eDCBF showed its capability to produce high-fidelity solutions with real
data. To deal with data containing more than two coherent sources, an
extension of the eDCBF, dubbed the multi-core beamformer (MCBF), was
introduced. Though the MCBF offers many advantages over other
beamformers, source localization is difficult, requiring multi-dimensional
searches. Furthermore, time-courses are only generated for the sources
included in the spatial filter and not for other locations in the brain, preventing

whole-brain connectivity studies.

In this chapter, we introduce a novel MCBF localization search
algorithm that finds feasible solutions in the timescale of minutes with no a
priori information required. The algorithm exploits under-modeled solutions to
gradually increase the MCBF core size until the correct number of sources is
modeled. The search algorithm operates by using a newly developed pseudo-
Z-score statistic that describes total source-by-source signal-to-noise ratio
(SNR). We further demonstrate that over-modeled and under-modeled

solutions can be detected so that the optimum MCBF core number can be
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determined. By exploring the parallels between the MCBF and the nulling
beamformer, we also demonstrate MCBF’s ability to generate volumetric
source time-courses and whole-brain power maps that can be used for
investigation of brain coherence. MCBF reconstructions as well as the
proposed source localization algorithm were tested with complex six-dipole
simulations and with real neuromagnetic measurements recorded during a
median-nerve stimulation task, showcasing MCBF’s ability to accurately

determine source activity for highly complex neuronal networks.

4.3 Materials and Methods

In this section, we first review MCBF mathematics, after which we
develop the new metric and methodology used to obtain the optimum source
solution as well as describe the generation of volumetric activity maps.
Finally, we describe the simulated and median-nerve stimulation experiments

used to test our proposed search algorithm and quality of maps created.

4.3.1 Multi-core Beamformer

To develop a suitable multi-dimensional search statistic and search
algorithm, we begin by exploring the mathematical description of the MCBF.
The multi-core lead-field vector is defined as the m x 2¢ matrix L,,, =
[Ly L, - L], where cisthe desired number of sources to be modeled.
The corresponding multi-core weighting vector is defined as the m x 2c matrix

w,=[W, W, -- W], designed such that:
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$(t) = WLb(t) (4.1)

where §(t) represents the estimated source time-courses. The solution to the
multi-core weighting vector, W,,, is obtained by computing the minimum

variance solution (Diwakar et al., 2011b):
W = Ry Ly (L Ry L) ™" (4.2)

To prevent erroneous weighting near the center of the head, array-gain
constraints may be applied by normalizing each column of L,, (Kumihashi and
Sekihara, 2010; Sekihara and Nagarajan, 2008). The MCBF estimated vector

covariance matrix R; is then given by:
R; = WLR,W,, = (L3R, L) ™ (4.3)

The MCBF estimated source vector covariance matrix R; can be expressed

as.:
<§1(t)§1(t)>ﬁ1ﬁf (§1(t)§2(t))ﬁ1ﬁ£ (§1(t)§c(t)>ﬁ1ﬁg
R, = | ©OKOWAT (SO8OTAT - (SOODAL | (44
G OK O GO&HOTA (GOSNl

where §;(t) are the estimated scalar source time-courses and i; are the 2 x 1
estimated normalized orientations. The diagonal 2 x 2 sub-matrices of R; are
of the same form as SBF vector covariance matrices (Sekihara et al., 2004).

Thus, source power estimates can be obtained by simply computing the trace
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of the respective diagonal submatrix (Diwakar et al., 2011b). An equivalent

covariance matrix for source noise R; can be expressed as:

R, =WIR,W,,

(A OBOT] (A (OR(OGTE maoma»gﬁ\
B QUNOUNON X ARIACLAG) & AR I OLN OGN & 4

(4.5)
RO OFZ ROROFLL - mxwm&»aa/
where 7;(t) are the estimated scalar source noise time-courses and {; are the
2 x 1 estimated normalized noise orientations. In a similar manner, source
noise estimates can be computed as the trace of each submatrix of R,;. The
signal-to-noise ratio of each source can then be determined by:

, tr((3:; (O8O — tr((A;(OR(D)E:ET)
' tr((ﬁi(t)ﬁi(t))?iz?)

_ r&@soma;)
tr((A;(O)A;()):4])

(4.6)

In practice, the submatrices of R; and R; are sufficient to compute
individual source pseudo-Z-scores, and it is not necessary to determine
individual source powers and orientations. Such a pseudo-Z-score has been
shown to be robust to variations in the lead-fields, providing a useful statistic to
model source activity (Sekihara et al., 2002; Sekihara et al., 2004; Van Veen
et al., 1997). Therefore, we use the pseudo-Z-score to guide MCBF
localization, assuming that the optimum solution is attained when the sum of

all individual pseudo-Z-scores (Z;) is maximized.
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Zy =%Z; (4.7)

4.3.2 Algorithm for Maximizing Z,

The sum of Z-scores (Z,) is a function of all core locations. A typical
source grid that is used for inverse MEG solution computation contains
approximately 7000-9000 sources. While performing exhaustive enumeration
of all possible values of Z, would yield the optimum MCBF solution, this
becomes computationally impractical as the MCBF core increases in size.
Therefore, a non-linear search algorithm was developed capable of finding an
adequate solution within a reasonable timeframe (Figure 4.1). As a starting
point for modeling the core, the algorithm employs the two-source MCBF
solution. This solution is obtained by performing Powell searches with
randomly selected dipole pairs to find the pair with the highest Z,, similar to the
DCBF approach previously documented (Diwakar et al., 2011a), with search
distance limited to a 3 cm radius. Next, the two main stages of the search
algorithm, (1) core development and (2) core refinement, are performed until
Z, stabilizes. Core development is accomplished by adding a new source,
satisfying a minimum SNR (Z; > 0.05) and chosen from the global dipole grid,
to the existing core that maximizes the total pseudo-Z-scores of all cores (Z;).
During core refinement, each source in the core is locally adjusted within a
radius of 3 cm such that Z, is maximized. The cores are sequentially adjusted

(in order of highest to lowest single source pseudo-Z-score (Z;)) in each
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iteration of the core refinement stage. Core refinement is completed once no

more adjustments are made, i.e. a stable core configuration is found.

Core development halts when Z; remains stable or reaches a plateau
(i.e. |1Zy — Zy1q| < € repeatedly, where € is 1% of Z,,;;). If a stable plateau is
not achieved, a maximum core size should be used as a stopping criterion.
Given that typical MEG recordings contain 40-50 independent modes and
each core is described by a rank 2 lead-field matrix (i.e. DoF =2), the MCBF
can support approximately 20-25 cores per covariance matrix before matrix
inversion becomes unstable. A lower maximum core size may be used to
decrease computational cost. However, one should ensure that the maximum
core size is not set too low, so that enough data points may be collected to

sufficiently account for all sources present.

4.3.3 Generation of Volumetric Activity Maps

Mathematically, the cores present in the MCBF core-set act in the same
fashion as nulling constraints imposed using the nulling beamformer (Dalal et
al., 2006; Diwakar et al., 2011b; Hui and Leahy, 2006; Hui and Leahy, 2010;
Quuran and Cheyne, 2010), except they are determined without the use of
prior information. For each given source (core) a respective volumetric power
map (pseudo-Z-score per grid point) and time-course map (time-course per
grid point) can be computed. This is done by using all the remaining cores in

the weight vector solution with an additional “free” core (beamformer pointing
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location) that scans through every grid point to calculate the corresponding
pseudo-Z-score and time-course. Map construction is mathematically identical
to applying ¢ - 7 nulling constraints with the NB. Repeating this process for
each core results in a total of ¢ source power and ¢ source time-course maps
(i.e. applying single NB c times with ¢ - 7 constraints). The individual source
power maps may then be combined to form a collective power map by taking,
for each grid point, the largest pseudo-Z-score across all individual maps. In
a similar manner, a collective time-course map can be generated; the time-
course is chosen for each grid point from the time-course map corresponding
to the core whose power map resulted in the largest pseudo-Z-score at that

grid point.

This method of combining individual maps ensures that the collective
power and time-course maps reflect the combination of nulling constraints
yielding the highest source-space SNR at each grid point. Furthermore,
individual power maps have little spatial overlap of source-containing regions,
ensuring that collective time-courses in a local patch of activity all arise from
the same set of nulling constraints. In order to provide a quantitative measure
for thresholding power and time-course maps, a continuous estimation of the
distribution of pseudo-Z-scores across the source grid can be constructed with
kernel-smoothing density estimation of the collective power map pseudo-Z-
scores. P-values for pseudo-Z-scores are then obtained by integration of this

continuous distribution.
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4.3.4 General Setup for Simulations

The source space was simulated with a grid covering the cortical gray
matter with 7 mm spacing. The cortical boundaries were obtained from a
healthy subject’s T1-weighted anatomical MRI and subsequent Freesurfer
segmentation (Dale et al., 1999; Fischl et al., 2004). The sensor configuration
was based on the Elekta/Neuromag™ whole-head MEG system (VectorView),
in which 306 sensors are arranged on a helmet-shaped surface (204

gradiometers and 102 magnetometers).

To compute the forward model, the boundary element method (BEM)
was employed where the inner-skull surface (from MRI) was used to generate
a BEM mesh (size 5mm) (Huang et al., 2007; Mosher et al., 1999). SNR levels
were adjusted by adding uncorrelated random Gaussian noise to the sensor
waveforms, where the SNR was defined as the ratio of the Frobenius norm of
the signal vector to that of the noise vector calculated over the interval with

signal.
4.3.5 Six Dipole Simulation (3 highly-correlated networks)

To test the ability of the MCBF localization algorithm to correctly identify
sources in a highly correlated environment, three distinct pairs of correlated
sources were simulated. The pairs were placed in the left and right

hemisphere auditory, motor, and posterior parietal cortices (Figure 4.2).
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Each pair of signals was composed of a 6-second inactive period
followed by 6 seconds of a sinusoidal wave. The auditory cortex pair was
simulated with amplitude of 8 nAm and frequency of 25 Hz (sampling rate
1000 Hz); the motor cortex pair was simulated with amplitude of 10 nAm and
frequency of 35 Hz; and the posterior parietal cortex pair was simulated with
amplitude of 9 nAm and frequency of 45 Hz. The phase shift of the second
source in each pair was set at 10° to produce a correlation of 0.97 within pairs
(during the active portion of the waveforms), creating in total three
independent highly-correlated inter-hemispheric networks. The simulated
sensor waveform was computed using the BEM forward model. Random
Gaussian noise was added to set the sensor space SNR at 4. An estimate of
R, from gradiometers only was computed from the six-second active period,
while an estimate of R,, was obtained from the inactive period. Localization
was performed with the MCBF search algorithm. Time-courses were low-pass
filtered at 100 Hz with a 10 Hz transition width to remove high-frequency
noise. Fourier transform amplitude values for reconstructed time-courses and
simulated time-courses were also compared as a measure of reconstructed
source strength reliability (Diwakar et al., 2011b). MCBF time-courses and
power maps were compared against a SBF reconstruction of the same data

set.
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4.3.6 Six Dipole Simulation (2 partially-correlated networks)

MCBF localization was tested further in a highly intricate environment:
correlated sources were more closely spaced; more sources were placed
within each correlated network; and varying degrees of correlation were
simulated within networks. We constructed two source networks, each
composed of three partially correlated intra-hemispheric sources. The six
dipoles were placed in the same locations as in the previous simulation
(Figure 4.2). Each signal was composed of a 6-second inactive period
followed by 6 seconds of a sinusoidal wave. To create two partially correlated
intra-hemispheric networks while ensuring no inter-hemispheric correlation,
the left hemisphere sources were given a frequency of 30 Hz and the right
hemisphere sources were set at 40 Hz. The auditory cortex sources were
simulated with amplitude of 8 nAm and 0° phase shift, while the motor cortex
sources were set at amplitude 10 nAm and 15° phase shift (0.97 correlation to
auditory dipoles), and the parietal sources had amplitude 9 nAm and 75°
phase shift (0.26 correlation to auditory dipoles and 0.50 to motor dipoles).
Forward modeling, localization, time-course estimation, and amplitude
comparison were carried out identically to the three-network simulation.
MCBF time-courses and power maps were compared against a SBF

reconstruction of the same data set.
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4.3.7 Median-Nerve Stimulation Task

The performance of the MCBF localization algorithm with real data was
examined using human MEG responses to right median nerve stimulation.
This widely-used approach to studying the somatosensory system provides a
useful standard for analyzing MCBF performance since the location of activity
has been well documented (Huang et al., 2005, 2006). Furthermore, median-
nerve stimulation produces a complex network of closely-spaced and
correlated source activation, thereby providing a challenging scenario for

MCBF source localization.

MEG recordings were obtained from a single healthy male subject. The
subject’s median nerve was stimulated using a bipolar Grass™ constant-
current stimulator. The stimuli were square-wave electric pulses of 0.2 ms
duration delivered at a frequency of 1 Hz. The inter-stimulus-interval (I1SI) was
between 800 and 1200 ms. The intensity of the stimulation was adjusted until
robust thumb twitches were observed. A trigger was designed to
simultaneously send a signal to the MEG for every stimulus delivery to allow
averaging over evoked trials. Magnetic fields evoked by median nerve
stimulation were measured using the Elekta/Neuromag™ whole-head MEG
system. Electrooculogram (EOG) electrodes were used to detect eye blinks
and eye movements. An interval of 500 ms post-stimulus was recorded, using
300 ms of pre-stimulus data for noise measurement. An interval of 30 ms

centered on the stimulus was discarded due to the presence of stimulus-
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related artifacts. Data were sampled at 1000 Hz and run through a high-pass
filter with a 0.1 Hz cut-off and through MaxFilter to remove environmental

noise (Song et al., 2008; Song et al., 2009; Taulu and Simola, 2006; Taulu et
al., 2004). We averaged 512 artifact-free MEG responses with respect to the

stimulus trigger.

A BEM mesh of 5-mm size for the subject was generated from the
inner-skull surface using volumetric T1-weighted MRI images acquired on a
1.5 T MRI scanner. To co-register MEG with MRI, we used data obtained
from the Polhemus Isotrak system prior to MEG scanning. A cortical source
grid of 7 mm spacing was defined using the cortical boundaries from
FreeSurfer segmentation of the anatomical MRI (Dale et al., 1999; Fischl et

al., 2004).

The sensor covariance matrix, R,;, was constructed using the post-
stimulus interval and a diagonal estimate of R,, was computed using the pre-
stimulus interval (gradiometers only). Manual examination of the L-shaped
region of the eigenvalue spectrum of R;, indicated that the top 10 eigenvalues
could be used as a conservative estimate of the signal-related subspace
(Figure 4.3). A regularization parameter equal to the eleventh largest
eigenvalue of R, was used for localization and time-course estimation with the
MCBF (Sekihara et al., 2002; Sekihara et al., 2004; Van Veen et al., 1997).

The regularization parameter was approximately equal to 1% of the largest
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eigenvalue of R, lying just above the noise-related eigenvalues (Figure 4.3).
The MCBEF localization algorithm was run until a stable plateau of Z, was
determined. A maximum collective source power map was computed to
display the localization results and source time-courses were generated.
MCBF time-courses and power maps were compared against a SBF

reconstruction of the same data set.

4.4 Results

4.4.1 Six Dipole Simulation (3 correlated networks)

The MCBF source localization algorithm performed in an efficient
manner, computing the solution for 10 cores in a little over a minute on a dual
quad-core Xeon (X5550 @ 2.66GHz) Linux workstation. Furthermore, the
source localization algorithm determined the correct locations of all six
simulated sources. Figure 4.4 shows a plot of Z, at each core-size. Itis
evident from this figure that Z, plateaus once the correct number of sources
has been modeled. Over-modeling also did not cause any errors in simulated
source reconstruction; over-modeled cores were found in random locations
with Z; = 0 (i.e. noise cores). The collective source power maps in Figure 4.5a
show localized activities in the left and right auditory, motor, and posterior
parietal cortices that peak precisely at the simulated locations (Figure 4.2).
Figure 4.6 shows a comparison of the simulated time-courses with the

reconstructed time-courses. Time-course amplitude estimate errors were less
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than 5% for all sources, further confirming that reasonable estimates of the
source time-courses can be obtained by MCBF even in the presence of

multiple pairs of highly-correlated sources.

SBF reconstruction of the source power map (Figure 4.5b) showed
successful localization of activity only in the left and right posterior parietal and
motor cortices. Auditory sources were not localized. Furthermore, a clear set
of false sources was localized between the MC and AC dipoles in the left right
hemispheres. The SBF predicted time-courses (Figure 4.6) were highly
distorted with suppressed amplitude as compared to both the simulated

signals and the MCBF reconstruction.

4.4.2 Six Dipole Simulation (2 correlated networks)

Once again, the MCBF source localization algorithm performed
efficiently computing the solution to 10 cores in slightly over a minute.
Furthermore, the source localization algorithm determined the correct
locations of all six simulated sources. As in the previous simulation, Z,
plateaued once the correct number of sources had been modeled (Figure 4.7).
The collective source map (Figure 4.8a) showed successful localization of the
six dipoles to the left and right auditory, motor, and posterior parietal cortices
in good agreement with the simulated locations. Figure 4.9 shows a
comparison of the simulated time-courses with the reconstructed time-

courses. The MCBF reconstruction of the six time-courses closely resembles
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the true simulated signals. Time-course amplitude errors were less than 5%
for all sources, indicating that MCBF performs well in a partially-correlated

source environment.

SBF reconstruction of the source power map (Figure 4.8b) showed
successful localization of activity only in the left and right posterior parietal
cortices. Auditory and motor sources were not localized. Furthermore, a clear
set of false sources was localized between the MC and AC dipoles in both left
and right hemispheres. The SBF predicted time-courses (Figure 4.9) were
highly distorted with suppressed amplitude as compared to both the simulated

signals and the MCBF reconstruction.

4 4.3 Median-Nerve Stimulation Task

The MCBF source localization algorithm computed the solution to a
core size of 18 within 10 minutes. Figure 4.10 shows that Z, continued to
increase up to a core size of 14, when it clearly began to plateau. The 14-core
solution (highest value of Z,) was chosen to compute time-courses and
activity. Examination of collective power maps computed from the MCBF

solutions higher than 14 cores showed no significant changes.

MEG and other functional imaging studies have established that
sensory stimulation typically activates the thalamus (Huang et al., 2006;
Kandel et al., 2000), BA 1, 2, and 3b of the primary somatosensory cortex (S-I)

(Forss and Jousmaki, 1998; Forss et al., 1994; Hari and Forss, 1999; Hari et
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al., 1993; Huang et al., 2000, 2004, 2005, 2006; Jousmaki and Forss, 1998;
Kandel et al., 2000; Kawamura et al., 1996; Mauguiere et al., 1997a,b; Wood
et al., 1985), BA 5 of the parietal lobe (Boakye et al., 2000; Forss et al., 1994;
Huang et al., 2006; Jones et al., 1978; Jones et al., 1979; Kandel et al., 2000;
McGlone et al., 2002; Waberski et al., 2002), and BA 23 and 40 of the
secondary somatosensory cortex (S-Il) (Forss and Jousmaki, 1998; Fujiwara
et al., 2002; Hari and Forss, 1999; Hari et al., 1993; Huang et al., 2005, 2006;
Kandel et al., 2000; Simoes et al., 2003). The collective power map produced
by the MCBF localization (Figure 4.11a) shows activation in these regions as
well as in others, including the insular cortex (IC), in the parietal-occipital
junction, and the cingulate gyrus. SBF reconstruction of the same data set
(Figure 4.11b) showed only activity in areas BA 1, 2, and 3b of the primary
somatosensory cortex (S-1) and the parietal-occipital junction while missing
expected neuronal sources in BA 5 of the posterior parietal lobe and in the

secondary somatosensory cortex.

MCBF time-course reconstruction was examined as well (Figure 4.12).
The S-I activation (BA 3b) showed a strong transient response 20 ms following
stimulation. The S-IlI activation showed a much smaller transient response
with a large delayed response peaking at about 90 ms. The latencies of these
peak activations as well as the general wave-shape agree with previous
neurological studies (Boakye et al., 2000; Forss and Jousmaki, 1998; Hari and

Forss, 1999; Huang et al., 2006). Furthermore, the strong similarity between
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recorded and predicted sensor waveforms indicates that the MCBF solution
reasonably explains the underlying source configuration. SBF time-course
reconstruction (Figure 4.13), on the other hand, showed only transient activity
for both the S-1 and S-Il activations. Slower components of the response
visible in the MCBF reconstruction (50 — 175 ms) were lost in the noisier
waveforms. Furthermore, comparison of the predicted and actual sensor
waveforms as generated by the SBF indicates that the SBF predicted source
activity is insufficient to explain the underlying neuronal source distribution,

especially between 50 and 175 ms post-stimulus.

4.5 Discussion

Our computer simulations and analyses of real data demonstrated that
the MCBF is capable of reconstructing source locations and correlated
activities with minimal distortion and suppression, resolving complex networks
using the proposed localization algorithm. We showed its capacity to handle a
multi-dimensional search problem with ease. The MCBF search algorithm
required no a priori information and reduced processing time to the order of
minutes (instead of hours or even days when applying a brute-force
approach), as well as accurately reconstructed source activity maps and time-

courses.

To test the limits of MCBF as well as the search algorithm, challenging

simulations were designed. Instead of the three sources typically used in
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beamformer simulations, we employed six sources to examine both inter-
hemispheric and intra-hemispheric networks that contained varying degrees of
correlation. Sources were resolved accurately to the correct grid points within
minutes, with their respective time courses closely mirroring the simulated
signals (< 5% error). These findings confirmed the MCBF’s promising
capacity to recover underlying network activity accurately and quickly with
minimal distortion. The simulation results also demonstrated the algorithm’s
robustness to the possibility of over-modeling. Not only was the occurrence
easily detectable by means of a visually observable plateau in Z;, but the
simulated source configuration itself remained stable despite the additional
cores. Furthermore, SBF reconstructions of the same simulations showed that
the conventional beamformer, unlike the MCBF, is unable to properly localize

and predict time-courses of correlated neuronal activity.

The algorithm was further tested with a real MEG recording to confirm
its localization performance in complex scenarios. Evoked recordings of right-
hand median-nerve stimulation provided a challenging environment containing
many correlated sources within close proximity to each other. The MCBF
algorithm once again performed well, providing an easily detectable Z, plateau
that was used for obtaining a final solution. The locations as well as the time-
courses of the resolved sources agreed with previous observations of median-
nerve activity (Huang et al., 2006; Kandel et al., 2000). Source activities

appeared to be linear combinations of the sensor waveforms (Figure 4.12), an
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important physical characteristic of the MEG system, confirming that a
meaningful solution was derived. Moreover, forward modeling of the
reconstructed source activity showed close agreement to the recorded sensor
waveforms. SBF reconstruction, on the other hand, was unable to attain the
same degree of detail in localization or dynamics of source activity. In fact, the
SBF predicted sensor waveforms poorly resembled recorded sensor
waveforms unlike the MCBF. Finally, the MCBF reconstruction was performed
without the use of any prior knowledge, demonstrating its advantage over the
NB and CSSM when handling correlated source activities (Dalal et al., 2006;

Hui and Leahy, 2006; Hui and Leahy, 2010; Quuran and Cheyne, 2010).

Our results further suggest that the application of MCBF in functional
connectivity analyses holds promise as it offers the ability to compute
volumetric time-course and power maps, which is a novel property unavailable
in previously developed multi-source beamformers that could only determine
time-courses at the core locations (Brookes et al., 2007; Diwakar et al., 2011a;
Diwakar et al., 2011b). Similar to the nulling beamformer, volumetric activity
maps can be computed and combined for each set of constraints present in
the MCBF core. Volumetric time-courses can be used in various analyses
such as computation of coherence maps for resting state network data
(Brookes et al., 2011; Mantini et al., 2011; de Pasquale et al., 2010). Since
each nulling constraint reduces time-course distortion and the MCBF

optimizes the selection of these constraints, MCBF derived time-courses
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better replicate true source activity, improving the ability of beamformers to

investigate neural communication.

In conclusion, we have developed a search algorithm for source
localization with MCBF, an advanced spatial filter capable of handling intricate
networks of correlated sources. The algorithm quickly finds stable and
accurate solutions for the MCBF in both simulated and real experiments.
Though some beamformer variations (e.g. NB and CSSM) can resolve
correlated sources, the MCBF is the first beamformer capable of handling
complex datasets without any a priori information. The MCBF also produces
volumetric source activity estimates that can be used to study neural
connectivity. In our current approach, MCBF utilizes a dipole-activation model
that is appropriate for focal sources such as those found in evoked MEG
recordings. In the future, we plan to further develop MCBF to allow use of a
patch activation model that is suitable for distributed sources such as those
found in spontaneous MEG recordings. This will create a beamformer more fit
for the investigation of resting-state activity, a topic at the forefront of current
neuroimaging studies (Brookes et al., 2011; Mantini et al., 2011; de Pasquale

et al., 2010).
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Figure 4.1: MCBF search algorithm flowchart. Variables are denoted in black

font. Squares = actions. Hexagons = decisions.
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BEM, Sensor, and Source Grid

Figure 4.2: Source placement. Axial (top left), coronal (top right), and sagittal
(bottom) views of the simulated source placement, BEM mesh, and sensor
integration points. Red = Motor cortex dipoles; Green = Auditory cortex

dipoles; Blue = Posterior parietal cortex dipoles.
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eigenvalues = signal-related; red eigenvalues = noise-related; red line =

regularization parameter.
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Figure 4.4: Total pseudo-Z-score per MCBF core-size for the three correlated
network simulation. A stable plateau is achieved at the correct model order of

six cores.
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a) Multi-core Beamformer

b) Single Beamformer

Figure 4.5: MCBF and SBF source activity maps for the left and right
hemisphere from the three network simulation. MCBF maps were computed
by taking the maximum pseudo-Z-score of the individual source maps at each
grid point. The threshold for pseudo-Z scores in regions color-coded red is p
< 0.008. Yellow markers denote the original simulated locations. MC = motor

cortex; AC = auditory cortex; PPC = posterior parietal cortex.
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MCBF SBF Simulation
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Figure 4.6: Reconstructed time-courses for the three network simulation. Left
panels display the MCBF reconstructed waveforms. Center panels display the
SBF reconstructed waveforms. Right panels display the true simulated

waveforms. Blue = left hemisphere; Green = right hemisphere.
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Figure 4.7: Plot of Z, at each core-size for the two network simulation. A

stable plateau is found at the correct model order of six cores.
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a) Multi-core Beamformer

b) Single Beamformer

Figure 4.8: MCBF and SBF source activity maps for the left and right
hemispheres from the two network simulation. MCBF maps were computed
by taking the maximum pseudo-Z-score of the individual source maps at each
grid point. The threshold for pseudo-Z scores in regions color-coded red is p <
0.008. Yellow markers denote the original simulated locations. MC = motor

cortex; AC = auditory cortex; PPC = posterior parietal cortex.
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Figure 4.9: Reconstructed time-courses for the two network simulation. Left
panels display the MCBF estimated waveforms. Center panels display the
SBF reconstructed waveforms. Right panels display the simulated waveforms.
Green = auditory cortex dipoles; Red = motor cortex dipoles; Blue = posterior

parietal cortex dipoles.
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Figure 4.10: Median-nerve total pseudo-Z-scores per MCBF core size. A

stable plateau was achieved at 14 cores.
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a) Multi-core Beamformer
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Figure 4.11: Median-nerve MCBF and SBF source activity maps. The
threshold for regions color-coded red and yellow is p < 0.02 and p < 0.005,
respectively. |IC = insular cortex; S-1 = primary sensory cortex; S-Il =
secondary sensory cortex; BA = Brodmann area; P-O = parietal-occipital; PCC

= posterior cingulate cortex.
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Figure 4.12: MCBF reconstructed median-nerve time-courses. Right panels
display the S-1 (BA 3b) and S-Il area time-courses. Left panels display the
recorded and predicted sensor gradiometer waveforms computed from the

time-courses of the regions shown in Figure 4.11a.
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Figure 4.13: SBF reconstructed median-nerve time-courses. Right panels
display the S-1 (BA 3b) and S-Il area time-courses. Left panels display the
recorded and predicted sensor gradiometer waveforms computed from the

time-courses of the regions shown in Figure 4.11b.
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CHAPTER 5
Conclusions

Magnetoencephalography is a rapidly developing and useful functional
imaging technique for detecting neuronal activity. The major problem with
MEG concerns developing an accurate inverse solution that truly represents
underlying source activity computed from real magnetic measurements. Many
different types of constraints may be applied to the sensor recordings in order
to generate solutions. One such method, the minimum variance beamformer,
is formulated as an adaptive spatial filter that employs the sensor covariance
matrix to attain high spatial resolution. Furthermore, the beamformer is quick
to compute and avoids the large number of parameters present in other
methods (Van Drongelen et al., 1996; Van Veen et al., 1997; Robinson and
Vrba, 1998; Sekihara et al., 2004). Unfortunately, the conventional
beamformer assumes that the different neuronal sources are uncorrelated,
hence, suffers large errors in source localization and distortion in both power
and time-course estimation in the presence of correlated source activity. In
the case of highly correlated sources, the conventional beamformer
approaches fail to detect sources completely (Sekihara et al., 2002; Sekihara
and Nagarajan, 2008).

In real experiments, it is expected that neuronal sources communicate
and are therefore at least partially correlated. For example, in auditory evoked

fields (AEFs), highly synchronous bilateral activation is commonplace. In spite
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of its limitation with correlated sources, single beamformers are still applied
widely in studying neural responses. Recently, there has been a growing
trend to analyze resting state spontaneous recordings and compare the
resulting brain activity to well-characterized resting state networks in fMRI (de
Pasquale et al., 2010; Brookes et al., 2011; Mantini et al., 2011). However,
such analyses may miss highly correlated neuronal sources and suffer
distortion of time-courses.

Different techniques have been proposed to address this issue. The
nulling beamformer (NB) and coherent source suppression model (CSSM)
deal with correlated sources by imposing nulling constraints. However, as a
practical tool, the NB and CSSM require a priori knowledge of source
locations, making it difficult to analyze novel data (Dalal et al., 2006; Hui and
Leahy, 2006; Hui et al., 2010; Quuran and Cheyne, 2010). Another approach
to dealing with the correlated source problem involves pointing the
beamformer spatial filter at multiple locations at once. The first such
beamformer developed, the dual-source beamformer (DSBF), is capable of
accurate source localization in the presence of two correlated sources without
a priori information. However, the DSBF suffered from the inability to
reconstruct individual source time-courses and required multiple and
computationally time-consuming non-linear searches (Brookes et al., 2007).

In this dissertation, a logical progression of developing the multi-core

beamformer (MCBF) which does not suffer from the disadvantages of the
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DSBF, NB, or CSSM is presented. By incorporating the vector formulation into
the DSBF, the dual-core beamformer (DCBF) is able to successfully
reconstruct simulated and real data without the need for many of the
expensive non-linear searches required by the DSBF, greatly speeding up and
making reconstruction far more practical (Diwakar et al., 2011a). Further
development of the DCBF led to the formulation of the enhanced dual-core
beamformer (eDCBF), which further improves reconstructions by allowing
computation of source correlation, accurate power estimates, and accurate
and individual time-course estimates (Diwakar et al., 2011b). However, the
presence of more than two correlated sources creates the same type of
distortion present in the single beamformer.

The eDCBF was naturally extended to the multi-core beamformer
(MCBF) which is capable of handling a large number of correlated sources
(Diwakar et al., 2011b). However, due to the increased dimensionality of the
MCBF, source localization becomes a difficult problem. To handle this issue,
we also developed an MCBF source localization algorithm that was shown to
successfully localize sources and detect the correct number of sources in both
simulated and real experiments. Finally, detailed examination of MCBF and
NB mathematics showed a very close relationship between the methods (Dalal
et al., 2006). This relationship was exploited in order to allow the MCBF to
reconstruct source time-courses across the entire brain region, a quality that

was unavailable with the previous multi-source techniques (DSBF, DCBF,
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eDCBF). In fact, mathematically, the MCBF solution is as accurate as the NB
solution but also provides an automated method of determining nulling
constraints, preventing the need for a priori information.

The development of the MCBEF is significant to the field of MEG inverse
modeling. Since the beamformer can accurately deal with correlated sources,
it can be used in place of conventional beamformers in many applications. For
example, we expect that use of the MCBF in brain connectivity analyses
instead of the vector beamformer will greatly improve detection of resting-state
networks in MEG. The MCBF can also play a significant role in the
reconstruction of low SNR recordings, as it is not as susceptible to noise as
non-beamforming time-point-by-time-point methodologies such as the L1-
minimum norm, L2-minimum norm, and VESTAL.

In the future, we plan to modify the MCBF model so that it accounts for
patch activation and the presence of non-dipolar sources. Such a modified
model will allow better source localization and activity estimation in
experiments where large parts of the cortex are simultaneously active.
Furthermore, we plan to use the MCBF to analyze spontaneous recordings to
develop a better understanding of resting-state networks in MEG and their
correlates in fMRI. The MCBF provides an important and needed tool for the
advancement of our understanding of brain activity in states of both health and

disease.
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