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 Beamformer adaptive spatial filters have been used extensively in the 

field of magnetoencephalography (MEG) as tools to reconstruct functional 

activation of the brain.  Conventional single beamformer techniques suffer 

from distortion in the presence of coherent activation of the cortex or are 

difficult to use due to the need of a priori information.  These qualities present 

a major disadvantage to analyzing human brain responses, as coordinated 

functional responses require a degree of synchronous activation in different 

parts of the active cortex.  In this dissertation, a novel beamformer technique, 

the multi-core beamformer, is developed that is robust to source correlation 

and does not require the use of a priori information.  This novel approach is 
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tested in both simulated and real experiments, including auditory and median-

nerve stimulation, which provide well-studied systems to gauge the 

effectiveness of our new technique.  Simulations show that the multi-core 

beamformer can successfully determine source time-courses, source powers, 

and source locations while minimizing or eliminating the distortion present in 

other methods.  Results from real-life experiments show that the multi-core 

beamformer produces physiologically meaningful solutions that agree with 

previous functional imaging and neurophysiology studies.  The use of the 

multi-core beamformer is expected to greatly contribute to the analysis of MEG 

recordings and, in general, improve our understanding of functional brain 

activity. 
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INTRODUCTION 

 Magnetoencephalography (MEG) is a functional neuroimaging 

technique capable of detecting neuronal activation on the millisecond time 

scale with good spatial resolution.  Though MEG is a relatively new 

technology, it has already improved our understanding of the human brain in 

both states of health and disease.  MEG has been used for functional mapping 

of the brain during various tasks designed to test somatosensory, motor, 

auditory, visual, language, attention, and memory function.  In states of 

disease, MEG has played an important role in developing our understanding of 

Schizophrenia, Traumatic Brain Injury (TBI), Stroke, Autism, Alzheimer’s 

disease, and Post-traumatic Stress Disorder (PTSD) (Huang et al., 2009; 

Huang et al., 2010; Hunter et al., 2011; Tsiaras et al., 2011; Wilson et al., 

2011; Zamrini et al., 2011).  MEG has also been routinely used in clinical 

settings for localizing seizure foci in epileptic patients and for pre-surgical 

functional mapping in patients with brain tumors. 

 MEG offers several advantages over other imaging modalities.  

Functional Magnetic Resonance Imaging (fMRI) provides a good description of 

neural activity in space.  However, the fMRI signal is based on the BOLD 

response which detects the level of blood oxygenation present at each voxel.  

The BOLD response, while a useful indicator of increased blood flow to 

cortical areas during activation, is an indirect measure of neural activation.  

Since the time-resolution of the BOLD response is in seconds, fMRI has 
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trouble detecting different sequences of neuronal activity in time domain and 

differentiating bands of brain oscillations in frequency domain.   Detecting such 

properties of brain activity is highly important for understanding normal brain 

function.  To achieve such goals, high time-resolution functional imaging is 

needed.  Electroencephalography (EEG) is capable of millisecond temporal 

resolution through directly detecting neuronal activity by means of the scalp 

potential.  However, EEG suffers from poor spatial resolution due to the spatial 

distortion of head tissues and low conductivity of the skull.  MEG, on the other 

hand, directly detects neuronal activity (i.e. neuronal current) via neuronal 

magnetic fields with millisecond time resolution and has better spatial 

resolution than EEG since the magnetic permeability of the head is equal to 

that of free space (i.e. no distortion due to head tissues) (Hamalainen et al., 

1993). 

The most challenging issue of MEG is determining a solution for the 

neuronal source configuration in the brain (MEG inverse problem) using the 

sensor-space MEG measurements.  In fact, the MEG inverse problem has no 

unique solution for given sets of magnetic measurements.  Because of this, 

additional constraints on the neuronal sources (source models) are needed to 

make the MEG inverse solution unique.  The viability of a given MEG source 

reconstruction technique (source model) directly impacts the general 

applicability of MEG to studying neural activity in both health and disease.  



3 
 

Thus, the development of different techniques of source localization and 

activity reconstruction is an active and important field of research in MEG. 

One popular reconstruction method, the beamformer adaptive spatial 

filter, has been used extensively in MEG studies.  Such conventional 

beamformer approaches assume different neuronal generators are 

uncorrelated.  As a result, these beamformer techniques suffer from time-

course distortion and source power suppression in the presence of coherent 

activity in the brain.  In fact, fully correlated generators are completely missed 

during source localization (Van Drongelen et al., 1996; Van Veen et al., 1997; 

Robinson and Vrba, 1998; Sekihara et al., 2004).  This poses a serious 

disadvantage as neural communication often requires coherent activity 

between different parts of the brain.  Nonetheless, the beamformer has been 

widely used in brain connectivity studies (Brookes et al., 2011; Mantini et al., 

2011). 

This dissertation describes the development of a new beamformer, 

termed the multi-core beamformer (MCBF), an adaptive spatial filter capable 

of reconstructing the activities of multiple correlated sources without source 

suppression and without a priori information on source activity and location 

(Diwakar et al., 2011a; Diwakar et al., 2011b).  First, a background chapter is 

presented to familiarize the reader with the MEG system, basic MEG physics, 

and the mathematics of beamformer adaptive spatial filters.  Next, each step 

of the development of the MCBF, along with supporting results from both 
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simulation and real data, is presented.  It is hoped that use of the MCBF 

spatial filter in MEG analyses will improve our understanding of brain activity 

by providing a better estimation of true source activity than conventional 

beamformer technologies. 
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CHAPTER 1 

Background on Magnetoencephalography 

1.1 Neuronal Generation of Magnetic Field Signals 

The cellular mechanisms responsible for generating neuronal signals 

must first be examined in any in-depth discussion of Magnetoencephalography 

(MEG).  The human brain is composed of, roughly, two distinct types of tissue.  

White matter, which lies under the cortical surface, contains neuronal support 

cells as well as axons, the cellular projections responsible for propagating 

signals to downstream neurons.  The axon is a single, long portion of the cell 

which carries the nerve impulse away from the body (soma) of the cell, 

generally located in the gray matter, the second type of tissue.  Gray matter 

mainly resides in the cortex, a thin layer at the surface of the brain, and is also 

present in deeper subcortical structures.  Gray matter consists of neural 

support cells (glia), neuron bodies (somas), and dendrites, the neural cell 

structure responsible for receiving nerve impulses.  The cortical surface, or 

gray matter, has a total surface area of about 2500 cm2 and fits in the skull 

due to a highly invaginated and folded structure.  The hills of the cortex (gyri) 

and the valleys (sulci) allow the human brain to house many more soma than 

would a smooth surface (Kandel et al., 2000).   

Interestingly, the structure of the cortex is conserved extremely well 

across a particular species and has similar structure between species.  Many 
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of the important functional areas of the human cortex have been mapped out 

through various functional studies such as cortical electrode placement, 

functional magnetic resonance imaging (fMRI), positron emission tomography 

(PET), and MEG.  Furthermore, many surface and depth cortical electrode 

experiments performed on animal subjects are directly applicable to the 

human brain due to conservation of structure.    

The anatomy of the head is very important in the field of MEG.  Cellular 

structures determine how incredibly small electrical currents sum up to create 

a detectable magnetic field.  Furthermore, the macroscopic anatomy is 

important as it provides structure to determine electromagnetic field 

propagation through various layers of electrical conductivity.  Finally, good 

knowledge of functional anatomy can provide a priori information for aid in 

solving the MEG inverse problem (Hillebrand and Barnes, 2003). 

 Important electrical currents are present in both the axons and 

dendrites of neurons while they are active.  The axonal current, which is 

responsible for sending nerve impulses to downstream or efferent neurons, is 

generated through active ion exchange, requiring the presence of a 

membrane potential maintained by expenditure of adenosine triphosphate 

(ATP).  The axonal current is extremely fast, having a typical duration of 1 ms. 

The current is quadrupolar in nature, propagating along the axon in all 

longitudinal and radial directions.  Once the axonal current reaches the tip of 

the axon, neurotransmitters are released across the synaptic cleft to bind to 
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receptors on the dendritic portion of the efferent neuron.  The bound receptors 

then allow an influx of sodium ions which raises the membrane potential in the 

dendrites.  This membrane potential is passively propagated along the 

dendrite until it reaches the soma.  Since the dendritic (post-synaptic) current 

is not actively generated, it is much slower, typically lasting tens of 

milliseconds.  If the membrane potential near the junction of the soma and the 

axon (axon hillock) reaches a high enough level, a new action potential is 

generated along the axon (Hamalainen et al., 1993, Kandel et al., 2000). 

 The magnetic fields produced by these neuronal currents can be 

predicted by the quasi-static approximations to the Maxwell Field Equations.  

Because of the quadrupolar nature of the axonal current and the resulting 

spatial cancellation, the magnetic field intensity decreases with distance from 

the source as 1/ݎଷ.  Due to this rapid reduction in magnetic field intensity and 

the fast nature of the action potential, axonal currents in white matter are not 

detectable by electroencephalography (EEG) and MEG. 

The passively generated magnetic field from the dipolar post-synaptic 

current, however, reduces with distance as 1/ݎଶ.  Furthermore, the 

microscopic structure of the cortical gray matter shows it is composed of 

multiple highly-organized layers of neurons.  The pyramidal cells in layers 4 

through 6 of the cortex, in particular, are arranged in a parallel orientation and 

fire synchronously in large functional groups (~100,000 neurons) known as 

cortical columns.  The spatial organization of these columns allows for 
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temporal and spatial summation of the post-synaptic current, generating a 

much larger magnetic field for a cortical patch than for a single neuron.  Thus, 

due to the combination of these factors, post-synaptic currents are the driving 

force behind measurable MEG and EEG signals.  Also, since these currents 

are primarily located within the cortical gray matter, MEG is most sensitive to 

activity in the cortex (Hamalainen et al., 1993; Kandel et al., 2000). 

1.2 MEG Design and Detection of Magnetic Field 

The typical magnetic field strength generated by an active cortical patch 

of neurons is 50-500 femtoTesla, about 8 to 9 orders of magnitude smaller 

than the earth’s own electromagnetic field.  Thus, it is necessary to have 

extremely sensitive magnetic field detectors in addition to a shielded 

environment suitable for blocking out the earth’s static field.  The detectors 

used in magnetoencephalography are superconducting quantum interference 

devices or SQUIDs.  SQUIDs are composed of superconducting rings with one 

or more weak junctions that limit current flow to an upper bound called the 

maximum critical current.  In order to be superconducting, the SQUIDs must 

be at or below the critical superconducting temperature.  Cooling is achieved 

through the use of a liquid Helium bath which has a temperature of less than 4 

Kelvin. 

The neuromagnetic field is typically brought to the SQUIDs through the 

use of flux transformers.  Flux transformers are pickup coils which are used to 
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limit the contribution of the background field to the signal detected by the 

SQUIDs.  Two types of flux transformers are used in MEG: gradiometers and 

magnetometers.  Gradiometers are mainly sensitive to nearby magnetic fields 

(i.e. the neuronal magnetic fields generated by the cortex), but less sensitive 

to magnetic fields from remote sources (i.e. subcortical gray matter and 

artifacts from generators far from the sensor).  In contrast, magnetometers are 

sensitive to both nearby and remote sources. 

To further ensure that static fields generated by the earth, power lines, 

passing cars, etc. do not influence the neuromagnetic measurements, MEG 

machines are housed in shielded rooms.  At the University of California, San 

Diego (UCSD), the MEG situated at the Radiology Imaging Laboratory has a 

multiple layer shielded room with shielding factors of 65, 73, 108, and 160 dB 

at 0.01, 0.1, 1, and 10 Hz respectively.  The use of a well-shielded room is 

essential in MEG as it significantly increases the signal-to-noise ratio (SNR) of 

the magnetic recordings. 

Though a single SQUID and flux transformer may be used to record the 

magnetic field produced by neural activity, such a system is not ideal because 

it requires moving the sensor around the head to sample a whole magnetic 

field map.  In many cases, such as in the detection of epileptic discharges, 

events are not easily reproducible and do not allow the practice of moving the 

sensor to different locations.  Thus, recent developments in MEG design have 

focused on implementing multiple SQUID and flux transformer arrays that 
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provide good whole brain coverage.  Such a system is much preferable as the 

entire local magnetic field surrounding the skull can be detected 

simultaneously, greatly reducing the time required to gather enough 

information for neuronal activity reconstruction.  The MEG housed at UCSD is 

an Elekta VectorView system containing 102 magnetometers and 204 

gradiometers, which provides whole-head coverage and more than adequate 

sites of measurement for accurate reconstruction of brain activity. 

1.3 Forward Modeling 

The previous sections illustrated how magnetic fields are generated by 

the brain during cellular activity and how we may design a system to detect 

these weak fields.  However, we do not yet have a description of the 

characteristics of these generated fields.  Maxwell’s Field Equations serve as 

the basis for computing these generated fields.  If the conductor profile of the 

head is known, along with the neuronal current distribution, Maxwell’s 

equations may be used to straightforwardly compute the expected magnetic 

field pattern at the sensor locations.  

The field equations are simplified in the case of MEG in two ways.  

First, the magnetic permeability of tissue is the same as free space.  Second, 

we may employ the quasi-static approximation to Maxwell’s equations.  In the 

quasi-static approximation, induction terms which depend on the time-

derivative of the electric and magnetic fields are assumed to be zero.  This 



13 
 

assumption is valid because neuronal activity is generally less than 100 Hz, 

resulting in induced fields that are too small to play a significant role in the 

sensor measurements (Hamalainen et al., 1993). 

When applying the quasi-static field equations to the brain, the neuronal 

currents are split into two components.  The primary current is the current 

generated by the dendrites in active cortical patches and is the primary 

measure of neural activity in both MEG and EEG.  Since the charges in the 

current must complete a circuit to maintain charge neutrality, current 

propagates through the general medium in a distributed fashion (return 

current).  The volume current, ࡶ௩ሺ࢘ሻ, is described by the electric field, ࡱሺ࢘ሻ, 

and conductivity profile, ߪሺ࢘ሻ (Hamalainen et al., 1993): 

ሻ࢘௩ሺࡶ ൌ  ሺ1.1ሻ																																																				ሻ࢘ሺࡱሻ࢘ሺߪ

The total current density, ࡶሺ࢘ሻ, is composed of the primary current, ࡶሺ࢘ሻ, and 

the return current: 

ሻ࢘ሺࡶ ൌ ሻ࢘ሺࡶ  ሻ࢘ሺࡱሻ࢘ሺߪ ൌ ሻ࢘ሺࡶ െ  ሺ1.2ሻ																									ሻ࢘ሺܸሻ࢘ሺߪ

In the quasi-static approximation, the divergence of the total current density is 

zero.  Simplifying Equation 1.2 under these conditions yields: 

 ∙ ሺܸߪሻ ൌ  ∙  ሺ1.3ሻ																																																				ࡶ

In developing the forward model, we are primarily interested in 

developing a relationship between the primary currents (actual source activity) 
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and the magnetic field distribution at each sensor while taking into account the 

contributions from the volume current.  Solving Equation 1.3 for the electric 

potential allows straightforward computation of the magnetic field distribution 

from the primary current using the Ampere-LaPlace Law: 

ሻ࢘ሺ ൌ
ߤ
ߨ4

න൫ࡶሺ࢘′ሻ  ܸሺ࢘ᇱሻᇱߪሺ࢘′ሻ൯ ൈ
ࡾ
ܴଷ

′ݒ݀ ; ࡾ		 ൌ ࢘ െ  ሺ1.4ሻ															ᇱ࢘

Primed coordinates indicate source space.  In order to solve Equation 1.3 for 

the electric potential, it is necessary to have a description of the conductivity 

(head model) and a model for the primary currents, ࡶ.  Two common head 

models, the spherical head model and boundary element method (BEM) head 

model will be described in more detail in the coming sections.  Using Equation 

1.4, a lead-field matrix may be developed that describes the gain at each 

sensor location to dipolar currents modeled across a source grid at various 

locations. 

1.3.1 Equivalent Current Dipole Model (ECD) 

Since MEG detects signals from dendritic current, the continuous 

primary current can be modeled as a set of discrete Dirac delta function 

current dipoles (ECD or equivalent current dipole): 

ሻ࢘ሺࡶ ൌ ࢘൫ߜࡽ െ  ሺ1.5ሻ																																																		൯ࡽ࢘
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 specifies the spatial ࡽ࢘ describes the current strength and orientation while ࡽ

location of the ECD.  Though, in reality, the current dipole generated by a 

cortical patch has a finite thickness, the current dipole model provides a 

simpler mathematical tool for both the forward and inverse problems.  

1.3.2 Spherical Head Model 

Though, realistically, the human skull geometry is complex with different 

layers of conductivity, a simple and useful approximation is the spherical head 

model.  The spherical head model uses two, three, or more concentric 

spherical shells of conductivity for computation of Maxwell’s equations.  

Computation of the forward model from such a system can be accomplished 

with simple analytic expressions, greatly reducing computational time.  The 

magnetic field response to a current dipole ࡽ (described in Section 1.3.1) is 

given by the Sarvas Formula (Ilmoniemi et al., 1985; Sarvas, 1987): 

ሻ࢘ሺ ൌ
ߤ
ߨ4

ࡽܨ ൈ ࡽ࢘ െ ൫ࡽ ൈ ࡽ࢘ ∙ ,࢘൫ܨ൯࢘ ൯ࡽ࢘

,࢘൫ܨ ൯ࡽ࢘
ଶ 																											ሺ1.6ሻ 

where 

,࢘൫ܨ ൯ࡽ࢘ ൌ ܽ൫ܽݎ  ଶݎ െ ࡽ࢘ ∙  ሺ1.7ሻ																																				൯࢘

with ࢇ ൌ ൫࢘ െ ,൯ࡽ࢘ ܽ ൌ 	 ,|ࢇ| ݎ ൌ  |࢘|

The number of concentric spherical shells is irrelevant since the forward 

solution to the spherical MEG head model is independent of the conductivity 
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values of each individual shell and is only a function of the center of the 

sphere.  Furthermore, Equation 1.6 also implies that electric potential does not 

need to be explicitly computed for the spherical head model.  Though the 

forward model computed through the spherical head conductor geometry is 

not fully accurate, especially in regions that do not conform well to the sphere 

shape, the model is generally accurate enough to use for real magnetic 

measurements.   

Because of the spherical geometry, radially directed currents do not 

affect the magnetic field pattern outside of the conductor (the cross-products in 

Equation 1.6 vanish) (Grynszpan and Geselowitz, 1973; Hamalainen et al., 

1993).  Thus, MEG is generally insensitive to radially directed dipolar currents, 

but rather mostly detects non-radially oriented currents.  In terms of brain 

anatomy, this means that source activity in the gyri is difficult to detect, 

whereas source activity in the sulci are readily detectable (Hillebrand and 

Barnes, 2002).  Fortunately, most of the important functional regions of the 

brain contain plenty of activity in the sulci, ensuring that MEG is a useful 

functional tool. 

1.3.3 BEM Head Model 

The BEM head model attempts to construct the MEG forward model 

through the use of a piecewise homogenous conductor description.  Typically, 

this realistic head model uses two layers whose boundary is the inner-skull 
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surface, which is usually obtained by segmentation of structural MRI images.  

Unlike the spherical head model, the BEM model requires numerical 

computation of the electric potential on the boundaries between layers.  

Though computationally more intensive, the BEM model provides a realistic 

subject-by-subject model that does not suffer from distortions near regions, 

such as the inferior frontal lobe, that are not well described by a spherical 

shape.  The work presented in this dissertation uses a BEM forward model 

developed in our laboratory (Meijs et al., 1987; Hamalainen and Sarvas, 1989; 

Mosher et al., 1999; Huang et al., 2007). 

The BEM head model assumes a piecewise homogenous conductor 

model in which the conductivity of each layer is constant and the gradient of 

the conductance is non-zero only at the layer boundaries.  The layers or 

regions of conductivity can be denoted ܩ, ݅ ൌ 1,⋯ ,݉, with their boundaries 

denoted ߲ܩ, and the surfaces between layers ܩ and ܩ denoted ܵ.  We may 

re-write Equation 1.4 as the sum of two integrals:	

ሻ࢘ሺ ൌ
ߤ
ߨ4

නࡶሺ࢘′ሻ ൈ
ࡾ
ܴଷ

ᇱݒ݀ 
ߤ
ߨ4

නܸሺ࢘ᇱሻᇱߪሺ࢘′ሻ ൈ
ࡾ
ܴଷ

ᇱݒ݀ 											ሺ1.8ሻ 

Defining ሺ࢘ሻ ൌ
ఓబ
ସగ
 ሻ′࢘ሺࡶ ൈ

ࡾ

ோయ
 ᇱ and writing the second integral inݒ݀

Equation 1.8 as a sum of piecewise integrals while using the identity െ ൈ

ሺܸߪሻ ൌ ߪ ൈ ܸ ൌ  ൈ ሺߪVሻ yields: 
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ሻ࢘ሺ ൌ ሻ࢘ሺ െ
ߤ
ߨ4

ߪ න ᇱV ൈ
ீ



ୀଵ

ࡾ
ܴଷ

 ሺ1.9ሻ																																ᇱݒ݀

Converting the volume integral in Equation 1.9 into a surface integral yields 

Geselowitz’ formula (Geselowitz, 1970): 

ሻ࢘ሺ ൌ ሻ࢘ሺ 
ߤ
ߨ4

ሺߪ െ ሻߪ න ܸሺ࢘ᇱሻ
ࡾ
ܴଷ

ൈ ࡿ݀
ᇱ

ௌೕ

																									ሺ1.10ሻ 

 Thus, computation of the magnetic fields at the sensors first requires 

computation of the potential, ܸሺ࢘ᇱሻ, at all surfaces ܵ.  Applying Equation 1.3 

to these boundary constraints and letting ࢘ approach a value on the boundary 

yields an expression that can be used to numerically compute these surface 

potentials (Geselowitz, 1967; Vladimirov, 1971): 

൫ߪ  ሻ࢘൯ܸሺߪ ൌ ߪ2 ܸሺ࢘ሻ െ
1
ߨ2

൫ߪ െ ൯ߪ න ܸሺ࢘ᇱሻ
ࡾ
ܴଷ

∙ ࡿ݀
ᇱ

ௌೕ

														ሺ1.11ሻ 

where ߪ ൌ 1/ሺΩ݉ሻ and ܸ is the potential due to the primary current in an 

infinite homogenous medium: 

ܸ ൌ
1

ߪߨ4
න
′ ∙ ࡶ

ࡾ
′ݒ݀

ீ

																																										ሺ1.12ሻ 
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1.3.4 MEG Signal Equation 

Let ࢈ሺݐሻ be an m x 1 vector of sensor measurements at time t, ሺݐሻ be 

an m x 1 vector of sensor noise measurements, ࢙ሺݐሻ be a 2p x 1 matrix of 

vector source amplitudes, and ࢙ሺݐሻ be a p x 1 matrix of scalar source 

amplitudes, where m is the number of sensors and p is the number of pre-

defined dipolar sources.  Let the lead-field matrix defined in two directions ߠ 

and ߶ for the ith source be denoted by the m x 2 matrix ࡸ ൌ ሾఏ,  థ,ሿ.  In the

spherical MEG forward head model, ߠ and ߶ represent the two tangential 

orientations for each dipole location, whereas in a realistic MEG forward model 

using the boundary element method (BEM), the ߠ and ߶ orientations are 

obtained as the two dominant orientations from the singular value 

decomposition (SVD) of the m x 3 lead-field matrix for each dipole, as 

previously documented (Huang et. al., 2006).  If the orientations are known, 

the vector lead-field matrix may be simplified into the m x 1  scalar lead-field 

vector   ൌ  ߶ and ߠ are the unit orientation vectors in the ഥࣁ where ,ഥࣁࡸ

directions. 

The lead-fields contain the multiplicative coefficients that describe the 

magnetic field pattern imparted to the sensors by current dipoles located at 

each of the p locations as computed by the forward model (Equation 1.5).  The 

vector composite lead-field matrix or gain matrix is defined as the m x 2p 

matrix ࡸ ൌ ሾࡸଵ ଶࡸ ଷࡸ ⋯	  ሿ.  The scalar composite lead-field matrix isࡸ
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defined as the m x p matrix ࡸ෨ ൌ ሾଵ ଶ ଷ ⋯	  ሿ.  The MEG signal

equation can be written as (vector formulation): 

ሻݐሺ࢈ ൌ ሻݐሺ࢙ࡸ   ሺ1.13ሻ																																																								ሻݐሺ

or equivalently as (scalar formulation):  

ሻݐሺ࢈ ൌ ሻݐሺ࢙෨ࡸ   ሺ1.14ሻ																																																								ሻݐሺ

Taking the covariance of Equation 1.13 and assuming that the noise and 

signal are uncorrelated leads to the covariance relationship: 

ࡾ ൌ ௦ࡾࡸ
்ࡸ   ሺ1.15ሻ																																																				ࡾ

௦ࡾ , is the m x m sensor covariance matrixࡾ
 is the 2p x 2p source covariance 

matrix, and ࡾ is the m x m noise covariance matrix.   

1.4 Inverse Modeling for the Lead-field Approach 

Up to this point, discussion has focused on the generation, detection, 

and prediction of magnetic field patterns in MEG.  However, for MEG to be a 

truly useful technology, one must solve the “MEG inverse problem.”  The 

inverse problem consists of obtaining the underlying source current distribution 

that generates a specific magnetic field pattern at the sensors.  This is of 

particular importance in real experiments as the only known parameters are 

the conductivity profile of the head, the locations of the sensors, and finally the 

sensor magnetic field measurements. 
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Unfortunately, it was shown by Helmholtz that a solution to the 

underlying current distribution inside a conductor cannot be determined 

uniquely for any given field pattern.  For example, radially oriented currents 

are invisible to the MEG sensors.  Thus, different source distributions with 

different radially-directed currents may satisfy a given set of sensor 

measurements.  Due to this problem, additional constraints must be placed on 

the source configuration (i.e. source modeling) in order to obtain a unique 

solution for the source current distribution which represents brain activity. 

Different constraints placed upon the system yield different solutions 

with different qualities.  For example, the L2-minimum norm approach seeks to 

minimize the total source power across all p grid points while satisfying the 

original sensor recordings.  L2-minimum norm approaches tend to yield 

spatially distributed reconstructions that have relatively low resolution.  

However, time-courses generated from the L2-minimum norm reconstruction 

are continuous in nature (Hamalainen and Ilmoniemi, 1994; Dale et al., 2000; 

Dale and Halgren, 2001; Marinkovic et al., 2003).  The L1-minimum norm 

approach seeks to minimize the absolute value of the source amplitude from 

the p grid points while still fitting the sensor recordings.  Such an approach 

yields spatially focal reconstructions with high resolution but yields 

discontinuous time-courses with activity oftentimes jumping from grid point to 

grid point (Uutela et al., 1999; Vanni and Uutela, 2000; Tesche, 2000; 
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Stenbacka et al., 2002; Pulvermuller et al., 2003; Osipova et al., 2005; 

Auranen et al., 2005; Liljestrom et al., 2005). 

1.5 Scalar Single Beamformer Solution 

Another approach to the inverse problem is to use the covariance 

matrix of the sensor recordings to design a spatial filter that individually 

reconstructs source activities for each grid point sequentially.  Like the L1- and 

L2-minimum norm approaches, the spatial filtering approach has advantages 

and drawbacks which will be described in full detail in the coming sections.  

The original research presented in this dissertation focuses on developing an 

adaptive spatial filter for the MEG that is less susceptible to many common 

problems of this approach. 

The basic adaptive spatial filtering approach was first described by the 

single beamformer (Van Drongelen et al., 1996; Van Veen et al., 1997; 

Robinson and Vrba, 1998; Sekihara et al., 2002).  The scalar beamformer 

spatial filter seeks to find an m x 1 weighting vector ࢝ for each source location 

such that source time-courses are reconstructed as a linear combination of the 

sensor waveforms.  The source time-course estimate is modeled as (Van 

Drongelen et al., 1996; Sekihara and Nagarajan, 2008): 

ሻݐሺݏ̂ ൌ  ሺ1.16ሻ																																																							ሻݐሺ࢈்࢝

The source power |̂ݏ|ଶ is given by: 
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ଶ|ݏ̂| ൌ 〈ሻ்ݐሺݏሻ̂ݐሺݏ̂〉 ൌ  ሺ1.17ሻ																																						࢝ࡾ்࢝

The scalar weighting vector ሺ࢝ሻ depends on both the source location 

and source orientation.  Though source locations can be fixed through a 

source grid covering the cortical space, source orientations are unknown and 

depend upon the nature of source activation in the brain.  The minimum-

variance solution for ࢝ seeks to minimize the total source power from the filter 

pointing location while reducing the contributions of other sources and noise to 

the filter output (Van Veen et al., 1997).  Mathematically, this minimization is 

stated as: 

࢝ ൌ arg min
࢝

்࢝ subject to ࢝ࡾ்࢝ ൌ 1																																ሺ1.18ሻ 

The constraint ்࢝ ൌ 1 ensures unit gain for the filter pointing location.  

The solution to this problem may be obtained by Lagrangian minimization and 

results in the following formulation of the weighting vector (Robinson and Vrba, 

1998; Vrba and Robinson, 2001; Sekihara et al., 2004): 

்࢝ ൌ ሺࡾ்
ିଵሻିଵࡾ்

ିଵ																																														ሺ1.19ሻ 

A source time-course for each filter pointing location is computed with 

Equation 1.16.  Ideally, such source time-courses could be used to produce a 

volumetric 4-D image of brain activity spanning the whole brain.  However, it is 

well known that signal-to-noise ratio decreases with increasing depth of 

sources.  Furthermore, forward modeling may generate inaccurate estimates 



24 
 

of the lead-field at each filter pointing location.  Thus, a measure of source 

space signal-to-noise (SNR) can be computed to aid in localizing brain activity 

and removing bias associated with the lead-fields.  Similarly to Equation 1.17, 

an estimate of noise power at each location can be computed (Robinson and 

Vrba, 1998; Vrba and Robinson, 2001; Sekihara et al., 2004): 

| ො݊|ଶ ൌ 〈 ො݊ሺݐሻ ො݊ሺݐሻ்〉 ൌ  ሺ1.20ሻ																																												࢝ࡾ்࢝

Dividing the source power estimate by the noise power estimate, yields 

the traditional pseudo-Z-score, a measure of source space SNR: 

ௌܼி ൌ
ଶ|ݏ̂|

| ො݊|ଶ
ൌ
࢝ࡾ்࢝
࢝ࡾ்࢝

																																																			ሺ1.21ሻ 

The scalar beamformer assumes that each source orientation is known.  

Source pseudo-Z-score and time-course estimates are contingent on the 

orientation chosen for the lead-fields ሺሻ and therefore the orientation chosen 

for the beamformer weight ሺ࢝ሻ.  In reality, source orientation is not known a 

priori.  However, choosing the correct source orientation is expected to 

maximize the source space SNR.  Thus, the source orientation for each filter 

pointing location can be found through maximization of ௌܼி as a function of 

orientation ሺࣁഥሻ: 

ௌܼி
௧ ൌ max

ഥࣁ
	ሺ ௌܼிሻ																																																		ሺ1.22ሻ 
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The optimized orientation can then be used to compute the optimum 

pseudo-Z-score ௌܼி
௧  and time-course for each pointing location.  Typically, 

non-linear search algorithms are used to compute the optimal orientations and 

represent a time-consuming step of source reconstruction. 

1.5.1 Correlated Source Problem 

The minimization step in Equation 1.18 is directly responsible for 

beamformer distortion in the presence of correlated sources (Sekihara and 

Nagarajan, 2008).  Expanding the minimized expression ࡾ்࢝࢝, we find that: 

ሻ࢘ሺ࢝ࡾሻ࢘ሺ்࢝

ൌ 〈்࢝ሺ࢘ሻݏ൫࢘, ൯࢘൫൯ݐ



ୀଵ

 ்࢝ሺ࢘ሻݏ൫࢘, ൯࢘൫൯ݐ



ୀଵ



்

〉																																	ሺ1.23ሻ 

By applying the unit-gain constraint, the above expression reduces to: 

ሻ࢘ሺ࢝ࡾሻ࢘ሺ்࢝ ൌ ,࢘ሺݏ〉  ሻ〉ଶݐ

〈ݏ൫࢘, ൯ห࢘൫ሻ࢘ሺ்࢝൯〉ଶหݐ
ஷ

ଶ

  ,భ࢘൫ݏ〉 ,మ࢘൫ݏ൯ݐ ࢝〈൯ݐ
்ሺ࢘ሻ൫࢘భ൯

்൫࢘మ൯
భஷమ

 ሺ1.24ሻ																	ሻ࢘ሺ࢝

The third term in the above expression only vanishes if source activities are 

uncorrelated, i.e. 〈ݏ൫࢘భ, ,మ࢘൫ݏ൯ݐ 〈൯ݐ ൌ 0.  The second term in the above 

expression vanishes as minimization ensures ்࢝ሺ࢘ሻ൫࢘൯ ൌ 0.  Thus, for the 
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beamformer weight to satisfy ்࢝ሺ࢘ሻࡾ࢝ሺ࢘ሻ ൌ ,࢘ሺݏ〉  ሻ〉ଶ and only reflect theݐ

intended source power, source activities must be uncorrelated.  When source 

activities are correlated, the third term does not vanish and creates significant 

distortion in both power and time-course estimates at the filter pointing 

location.  Since neural activity typically requires a degree of communication 

and hence synchrony between active sources, application of the unmodified 

beamformer to real experiments does not generate ideal reconstructions of 

source activity. 

1.6 Dual Source Beamformer 

As explained in Section 1.5.1, a significant issue affecting source power 

and time-course estimates from the scalar single beamformer is distortion in 

the presence of spatially separate yet temporally correlated sources.  Brookes 

and colleagues tackled this problem through increasing the size of the scalar 

single beamformer filter to account for two locations simultaneously.  This 

approach allows two temporally correlated sources to be modeled 

simultaneously in order to avoid power suppression and allow localization of 

temporally correlated sources. 

The dual source beamformer (DSBF) spatial filter is designed to pass 

the signals of two separate spatial locations in its output (Brookes et al., 2007).  

The filter is designed such that it is responsive to a combined lead-field of two 

sources denoted ଵଶ: 
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ଵଶ ൌ ଵߙ  ሺ1 െ  ሺ1.25ሻ																																											ଶሻߙ

The combined lead-field for the two sources is defined as a linear 

combination of the individual lead-fields weighted by the weighting factor ߙ 

which depends on the source power ratio of the two locations being examined.  

The solution to the combined dual source weighting vector ࢝ଵଶ is obtained 

identically to the single source scalar beamformer: 

ଵଶ࢝
் ൌ ሺଵଶ

் ࡾ
ିଵଵଶሻିଵଵଶ

் ࡾ
ିଵ																																			ሺ1.26ሻ 

The resulting scalar time-course for the two sources is given by: 

ሻݐሺݏ̂ ൌ ଵଶ࢝
்  ሺ1.27ሻ																																																	ሻݐሺ࢈

The dual-source pseudo-Z-score, a measure of combined source-space SNR 

is given by: 

ܼଵଶ ൌ
ଵଶ࢝
் ଵଶ࢝ࡾ

ଵଶ࢝
் ଵଶ࢝ࡾ

																																																		ሺ1.28ሻ 

The dual source pseudo-Z-score is a function of the two source 

orientations ࣁഥଵ and ࣁഥଶ as well as the source power weighting factor ߙ.  In 

practice, time-consuming non-linear searches must be carried out over these 

three parameters to optimize the dual-source pseudo-Z-score for a particular 

combination of two source locations.  Furthermore, if the two optimal source 

locations are not known a priori, a computationally expensive search must be 

carried out for the dual-source combination that yields the maximum ܼଵଶ.  
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Since typical source grids consist of 7000-9000 points, exhaustive 

computation of all possible optimized combined dual-source pseudo-Z-scores 

is expensive and impractical.  Finally, since ଵଶ is a single-ranked linear 

combination of lead-field vectors, individual source time-courses, power 

estimates, and source correlation cannot be computed with the DSBF. 

1.7 Minimum Variance Vector Beamformer 

The vector beamformer spatial filter seeks to find an m x 2 weighting 

vector ࢃ for each source location in a pre-defined basis spanned by ߠ and ߶ 

such that source time-courses are reconstructed as a linear combination of the 

sensor waveforms (Van Veen et al., 1997; Robinson and Vrba, 1998; Vrba 

and Robinson, 2001; Sekihara et al., 2002; Sekihara et al., 2004; Sekihara 

and Nagarajan, 2008).  The vector source time-course estimate is modeled as: 

ሻݐොሺ࢙ ൌ  ሺ1.29ሻ																																																							ሻݐሺ࢈்ࢃ

while the scalar source time-course estimate is obtained as: 

ሻݐሺݏ̂ ൌ  ሺ1.30ሻ																																																			ሻݐሺ࢈்ࢃഥ்ࣁ

 ഥ is a 2 x 1 unit vector containing the source orientation.  The source powerࣁ

 :ଶ is given by|ݏ̂|

ଶ|ݏ̂| ൌ 〈ሻ்ݐሺݏሻ̂ݐሺݏ̂〉 ൌ ഥࣁࢃࡾ்ࢃഥ்ࣁ ൌ  ሺ1.31ሻ																			ሻࢃࡾ்ࢃሺݎݐ
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The minimum-variance solution for ࢃ seeks to minimize the source 

power from the filter pointing location while reducing the contributions of other 

sources and noise to the filter output.  Mathematically, this minimization is 

stated as: 

	ࢃ ൌ arg min
	ࢃ

ࡸ்ࢃ ሽ subject to	ࢃࡾ்ࢃሼݎݐ ൌ  ሺ1.32ሻ																			ࡵ

The solution to this problem may be obtained by Lagrangian minimization and 

results in the following formulation of the weighting vector: 

்ࢃ ൌ ሺࡾ்ࡸ
ିଵࡸሻିଵࡾ்ࡸ

ିଵ																																																ሺ1.33ሻ 

Since the 2 x 2 matrix product ିࡽଵ ൌ ࢃࡾ்ࢃ ൌ ሺࡾ்ࡸ
ିଵࡸሻିଵ contains 

source power estimates in both the ߠ and ߶ directions, the eigenvector 

corresponding to the minimum eigenvalue of ିࡽଵ provides the optimum source 

orientation ࣁഥ as shown previously (Sekihara et al., 2004).  Thus, the vector 

implementation of the beamformer eliminates the need to search for source 

optimal orientations.  A source time-course for each filter pointing location can 

then be computed with Equation 1.29.  Since signal-to-noise ratio decreases 

with increasing depth of sources, and forward modeling may generate 

inaccurate estimates of the lead-field at each filter pointing location, a measure 

of source space signal-to-noise (SNR) can be computed to aid in localizing 

brain activity and removing bias associated with the lead-fields similarly to the 
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scalar beamformer.  First, a 2 x 2 matrix representing the source-space SINR 

can be computed (Sekihara et al., 2004): 

ଵିࡷ ൌ
	ࢃࡾ்ࢃ
ࢃࡾ்ࢃ

ൌ
ࡾ்ࡸ

ିଵࡾࡾ
ିଵࡸ

ࡾ்ࡸ
ିଵࡸ

																																		ሺ1.34ሻ 

The optimum pseudo-Z-score can then be straightforwardly computed 

as the inverse of the minimum eigenvalue of this matrix: 

ௌܼி
௧ ൌ ൫min൫݁݅݃ሺࡷሻ൯൯

ିଵ
																																										ሺ1.35ሻ 

Though the minimum variance vector beamformer handles 

determination of source orientation admirably, it is still subject to the same 

distortions created by the presence of coherent source activity as described in 

Section 1.5.1. 

1.8 Nulling Beamformer and Coherent Source Suppression Model 

The nulling beamformer (NB) and the coherent source suppression 

model (CSSM) are two independently developed single vector beamformer 

modifications designed to address the problem of correlated interference in 

beamformer reconstruction (Dalal et al., 2006; Hui and Leahy, 2006; Hui and 

Leahy, 2010; Quuran and Cheyne, 2010).  The NB and CSSM modify the 

vector beamformer by applying additional nulling constraints to known nulling 

locations denoted ࢘.  The solution to the NB is obtained by minimizing 

Equation 1.31 while applying the standard unit gain constraint ࡸ்ࢃ ൌ  for the ࡵ
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location of interest along with nulling constraints ்ࢃ൫࢘൯ࡸ൫࢘൯ ൌ .  This leads 

to the following solution of the weighting vector:	

்ࢃ ൌ ൭
1 0 
0 1 
  

൱ ቀൣࡸ	ࡸ൫࢘൯൧
்
ࡾ
ିଵൣࡸ	ࡸ൫࢘൯൧ቁ

ିଵ
൯൧࢘൫ࡸ	ࡸൣ

்
ࡾ
ିଵ											ሺ1.36ሻ 

The nulling beamformer is able to successfully remove the distortion 

caused by correlated sources by preventing the correlated sources from 

having any impact on the weighting vector for the filter pointing location.  

Although it has been demonstrated that this method is successful, application 

to real experiments is difficult as a priori information about the nulling 

constraints is required.  Furthermore, matrix inverses become unstable if 

extensive regions are chosen for nulling constraints due to loss of degrees of 

freedom in the system. 

 

 

 

 

 

 

 



32 
 

1.9 References 

Auranen, T., Nummenmaa, A., Hamalainen, M.S., Jaaskelainen, I.P., 
Lampinen, J., Vehtari, A., Sams, M., 2005. Bayesian analysis of the 
neuromagnetic inverse problem with l(p)-norm priors. NeuroImage 26, 
870-884. 

Brookes, M.J., Stevenson, C.M., Barnes, G.R., Hillebrand, A., Simpson, 
M.I.G., Francis, S.T., Morris, P.G., 2007. Beamformer reconstruction of 
correlated sources using a modified source model. NeuroImage 34, 
1454-1465. 

Dalal, S.S., Sekihara, K., Nagarajan, S.S., 2006. Modified Beamformers for 
Coherent Source Region Suppression. IEEE Trans. Biomed. Eng. 53, 
1357-1363. 

Dale, A.M., Halgren, E., 2001. Spatiotemporal mapping of brain activity by 
integration of multiple imaging modalities. Curr. Opin. Neurobiol. 11, 
202-208. 

Dale, A.M., Liu, A.K., Fischl, B.R., Buckner, R.L., Belliveau, J.W., Lewine, J.D., 
Halgren, E., 2000. Dynamic statistical parametric mapping: combining 
fMRI and MEG for high-resolution imaging of cortical activity. Neuron 
26, 55-67. 

Geselowitz, D.B., 1967. On bioelectric potentials in an inhomogenous volume 
conductor. Biophys. J. 7, 1-11. 

Geselowitz, D.B., 1970. On the magnetic field generated outside an 
inhomogeneous volume conductor by internal current sources. IEEE 
Trans. Magn. MAG-6, 346-347. 

Grynszpan, F., Geselowitz, D.B., 1973. Model studies of the 
magnetocardiogram. Biophys. J. 13, 911-925. 

Hamalainen, M.S., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O., 
1993. Magnetoencephalography – theory, instrumentation, and 
applications to noninvasive studies of the working human brain. Rev. 
Mod. Physics 65, 413-497. 

Hamalainen, M.S., Ilmoniemi, R.J., 1994. Interpreting magnetic fields of the 
brain: minimum norm estimates. Med. Biol. Eng. Comput. 32, 35-42. 

Hamalainen, M.S., Sarvas, J., 1989. Realistic conductivity geometry model of 
the human head for interpretation of neuromagnetic data. IEEE Trans. 
Biomed. Eng. 36, 165-171. 



33 
 

Hillebrand, A., Barnes, G.R., 2002. A quantitative assessment of the sensitivity 
of whole-head MEG to activity in the adult human cortex. NeuroImage 
16, 638-650. 

Hillebrand, A., Barnes, G.R., 2003. The use of anatomical constraints with 
MEG beamformers. NeuroImage 20, 2302-2313. 

Huang, M., Dale, A.M., Song, T., Halgren, E., Harrington, D.L., Podgorny, I., 
Canive, J.M., Lewis, S., Lee, R.R., 2006. Vector-based spatial-temporal 
minimum L1-norm solution for MEG. NeuroImage 31, 1025-1037. 

Huang, M.X., Song, T., Hagler, D.J., Podgorny, I., Jousmaki, V., Cui, L., Gaa, 
K., Harrington, D.L., Dale, A.M., Lee, R.R., Elman, J., Halgren, E., 
2007. A novel integrated MEG and EEG analysis method for dipolar 
sources. NeuroImage 37, 731-748. 

Hui, H.B., Leahy, R.M., 2006. Linearly constrained MEG beamformers for 
MVAR modeling of cortical interactions. 3rd IEEE International 
Symposium on Biomedical Imaging: Nano to Macro, 2006, pp. 237–
240. 

Hui, H.B., Pantazis, D., Bressler, S.L., Leahy, R.M., 2010. Identifying true 
cortical interactions in MEG using the nulling beamformer. NeuroImage 
49, 3161-3174. 

Ilmoniemi, R.J., Hamalainen, M.S., Knuutila, J., 1985. “The forward and 
inverse problems in the spherical model” in Biomagnetism: Applications 
& Theory. New York, Pergamon, 278-282. 

Kandel, E.R., Schwartz, J.H., Jessell, T.M., 2000. Principles of Neural 
Science. McGraw Hill, New York. 

Liljestrom, M., Kujala, J., Jensen, O., Salmelin, R., 2005. Neuromagnetic 
localization of rhythmic activity in the human brain: a comparison of 
three methods. NeuroImage 25, 734-745. 

Marinkovic, K., Dhond, R.P., Dale, A.M., Glessner, M., Carr, V., Halgren, E., 
2003. Spatiotemporal dynamics of modality-specific and supra-modal 
word processing. Neuron 38, 487-497. 

Meijs, J.W.H., Bosch, F.G.C, Peters, M.J., da Silva, F.H.L, 1987. On the 
magnetic field distribution generated by a dipolar current source 
situated in a realistically shaped compartment model of the head. 
Electroencephalogr. Clin. Neurophysiol. 66, 286-298.  

Mosher, J.C., Leahy, R.M., Lewis, P.S., 1999. EEG and MEG: forward 
solutions for inverse methods. IEEE Trans. Biomed. Eng. 46, 245-259. 



34 
 

Osipova, D., Ahveninen, J., Jensen, O., Ylikoski, A., Pekkonen, E., 2005. 
Altered generation of spontaneous oscillations in Alzheimer’s disease. 
NeuroImage 27, 835-841. 

Pulvermuller, F., Shtyrov, Y., Ilmoniemi, R., 2003. Spatiotemporal dynamics of 
neural language processing: an MEG study using minimum-norm 
current estimates. NeuroImage 20, 1020-1025. 

Quuran, M.A., Cheyne, D., 2010. Reconstruction of correlated brain activity 
with adaptive spatial filters in MEG. NeuroImage 49, 2387-2400. 

Robinson, S., Vrba, J., 1998. Functional neuroimaging by synthetic aperture 
magnetometry. In: Yoshimoto, T., Kotani, M., Kuriki, S., Karibe, H., 
Nakasato, N. (Eds.), Recent Advances in Biomagnetism. Tohoku Univ. 
Press, Sendai, pp. 302-305. 

Sarvas, J., 1987. Basic mathematical and electromagnetic concepts of the 
biomagnetic inverse problem. Phys. Med. Biol. 32, 11-22. 

Sekihara, K., Nagarajan, S., 2008. Adaptive spatial filters for electromagnetic 
brain imaging. Berlin, Heidelberg: Springer-Verlag. 

Sekihara, K., Nagarajan, S., Poeppel, D., Marantz, A., 2002. Performance of 
an MEG adaptive-beamformer technique in the presence of correlated 
neural activities: effects on signal intensity and time course estimates. 
IEEE Trans. Biomed. Eng. 49 (12), 1534-1546. 

Sekihara, K., Nagarajan, S., Poeppel, D., Marantz, A., 2004. Asymptotic SNR 
of scalar and vector minimum-variance beamformers for neuromagnetic 
source reconstruction. IEEE Trans. Biomed. Eng. 51 (10), 1726-1733. 

Stenbacka, L., Vanni, S., Uutela, K., Hari, R., 2002. Comparison of minimum 
current estimate and dipole modeling in the analysis of simulated 
activity in the human visual cortices. NeuroImage 16, 936-943. 

Tesche, C., 2000. Evidence for somatosensory evoked responses in human 
temporal lobe. NeuroReport 11, 2655-2658. 

Uutela, K., Hamalainen, M., Somersalo, E., 1999. Visualization of 
magnetoencephalographic data using minimum current estimates. 
NeuroImage 10, 173-180. 

Van Drongelen, W., Yuchtman, M., Van Veen, B.D., Van Huffelen, A.C., 1996. 
A spatial filtering technique to detect and localize multiple sources in 
the brain. Brain Topogr. 9 (1), 39-49. 



35 
 

Van Veen, B.D., Van Drognelen, W., Yuchtman, M., Suzuku, A., 1997. 
Localisation of brain electrical activity via linearly constrained minimum 
variance spatial filtering. IEEE Trans. Biomed. Eng. 44 (9). 

Vanni, S., Uutela, K., 2000. Foveal attention modulates responses to 
peripheral stimuli. J. Neurophysiol. 83, 2443-2452. 

Vladimirov, V.S., 1971. Equations of Mathematical Physics. New York: Marcel 
Dekker.  

Vrba, J., Robinson, S.E., 2001. Signal processing in 
magnetoencephalography. Methods 25, 249-271. 

 



36 
 

CHAPTER 2 

Dual-Core Beamformer for Obtaining Highly Correlated Neuronal 

Networks in MEG 

2.1 Abstract 

The “Dual-Core Beamformer” (DCBF) is a new lead-field based MEG 

inverse-modeling technique designed for localizing highly-correlated networks 

from noisy MEG data.  Conventional beamformer techniques are successful in 

localizing neuronal sources that are uncorrelated under poor signal-to-noise 

ratio (SNR) conditions.  However, they fail to reconstruct multiple highly-

correlated sources.  Though previously published dual-beamformer techniques 

can successfully localize multiple correlated sources, they are computationally 

expensive and impractical, requiring a priori information.  The DCBF is able to 

automatically calculate optimal amplitude-weighting and dipole orientation for 

reconstruction, greatly reducing the computational cost of the dual-

beamformer technique.  Paired with a modified Powell algorithm, the DCBF 

can quickly identify multiple sets of correlated sources contributing to the MEG 

signal.  Through computer simulations, we show that the DCBF quickly and 

accurately reconstructs source locations and their time-courses under widely 

varying SNR, degrees of correlation, and source strengths.  Simulations also 

show that the DCBF identifies multiple simultaneously active correlated 

networks.  Additionally, DCBF performance was tested using MEG data in 
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humans.  In an auditory task, the DCBF localized and reconstructed highly-

correlated left and right auditory responses.  In a median-nerve stimulation 

task, the DCBF identified multiple meaningful networks of activation without 

any a priori information.  Altogether, our results indicate that the DCBF is an 

effective and valuable tool for reconstructing correlated networks of neural 

activity from MEG recordings. 

2.2 Introduction 

The beamformer methodology is a spatial-filtering approach wherein 

the MEG sensor signal is filtered by different beams based on lead-field 

vectors corresponding to specific source-grid points (Robinson and Vrba, 

1998; Sekihara et al., 2002a; Van Drongelen et al., 1996; Van Veen et al., 

1997).  Each of these operations generates a pseudo-Z-statistic, which can be 

maximized to find the most highly-contributing source-grid dipoles.  The 

beamformer method has low computational cost, although the orientation 

angle of each dipole must be optimized.  The beamformer approach generally 

works well for MEG data with a low SNR.  However, the conventional 

beamformer suppresses source-power estimates from source-grid dipoles that 

have highly correlated time-courses, as the method assumes that source time-

courses from different generators are uncorrelated (Van Veen et al., 1997; 

Sekihara et al., 2002b).  Variants of the beamformer method, including the 

coherently combining signal-to-interference plus noise ratio (CC-SINR) 

beamformer and the constant modulus algorithm (CMA) beamformer, address 
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reconstruction of correlated sources, but have been met with moderate 

success (Kim et al., 2006; Nguyen and Ding, 1997).  Likewise, the coherent 

source suppression model (CCSM) and the independently developed nulling 

beamformer (NB) accurately reconstruct correlated sources but require a priori 

information of interfering source locations.  Furthermore, all sources cannot be 

simultaneously identified since correlated sources are suppressed to 

reconstruct a single source of interest (Dalal et al., 2006; Hui and Leahy, 2006; 

Hui and Leahy, 2010; Quuran and Cheyne, 2010). 

Brookes et al. developed a dual-beamformer approach to address the 

problem of identifying highly-correlated generators by constructing a spatial 

filter from a linear combination of lead-field vectors from two source dipoles 

(Brookes et al., 2007).  Two source dipoles that generate a signal can be 

found by non-linearly optimizing the orientation angles of the two source 

dipoles, optimizing the weighting between the two sources, and searching over 

all combinations of source dipoles.  This approach has a high computational 

cost, which greatly limits its application in practice.  Furthermore, only the two 

source dipoles with most highly-correlated time-courses are found, while other 

correlated source networks that may exist are not identified.  To make the 

method more useful, Brookes et al. suggest using a priori information to fix the 

position of one of the two beams; however, this solution limits the method’s 

application to well-understood neurobehavioral networks or requires 

information from other functional neuroimaging techniques (e.g., fMRI).   
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In the present study, we propose a new formulation of the beamformer 

technique that addresses many previous limitations of beamformer 

approaches.  By using a spatial filter that contains the lead-fields of two 

simultaneous dipole sources (i.e., rather than the linear combination of the two 

as for the approach by Brookes and colleagues), our vector Dual-Core 

Beamformer (DCBF) can directly compute and obtain optimal source 

orientations and weights between two highly-correlated sources.  In effect, this 

renders non-linear optimization and non-linear searching for optimal 

orientations and weighting unnecessary, thereby reducing the computational 

time of the dual beamformer method and making it a much more useful MEG 

inverse-modeling technique.  At the same time, the DCBF retains many 

desirable characteristics of the dual-beamformer approach proposed by 

Brookes et al.  For example, our computer simulations demonstrate that DCBF 

successfully localizes dipole sources at very low SNR (SNR of 0.25), which is 

useful for many MEG recordings. 

In the present approach, we use a modified Powell search to find the 

optimal pseudo-Z-score, which not only greatly reduces the computational 

time required for source localization, but also identifies other local maxima.  All 

maxima, consisting of two sources each, are defined as pathways.  With 

simulations, we show how such a search can find multiple pairs of correlated 

sources present in a single MEG data set.  In a median-nerve stimulation 
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experiment, we present how these pathways may be meaningful and are not 

simply a byproduct of DCBF. 

2.3 Materials and Methods 

2.3.1 New Dual-Core Beamformer Approach (DCBF) 

A major limitation of the dual-beamformer method proposed by Brookes 

and colleagues is the necessity to optimize the orientation of both beams and 

their relative weighting.  Their approach requires non-linear optimizations 

which increase the computational complexity of the dual beamformer 

approach many-fold when compared to the single beamformer approach.  In 

the present study, we show that the optimal orientations and weighting of both 

beams can be directly computed, instead of searched, by using a vector 

formulation of the dual beamformer approach.  First, we start with lead-field 

vector for each dipole as an m x 3 matrix expressed in a pre-defined 

coordinate basis with three axes.  Alternatively, since MEG is insensitive to 

radially-directed currents, the lead-field vector for each dipole can be 

decomposed by singular value decomposition (SVD) and expressed instead 

as an m x 2 matrix to reduce the inverse problem to two spatial dimensions 

(Huang et al., 2006).  Then, we define the combined lead-field vectors from 

both dipoles in the dual beamformer as an m x 4 matrix, instead of a linear 

combination of two lead-fields: 

ௗࡸ ൌ ሾࡸଵ	ࡸଶሿ																																																										ሺ2.1ሻ 
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The new ࡸௗ is therefore a spatial filter with two cores rather than one.  

Such a description of the spatial filter allows eigenvalue analysis to analytically 

determine optimal orientations of each beam and optimal weighting between 

each beam.  Similar to the pseudo-Z-statistic computation for the single vector 

beamformer in Section 1.7, we define the 4 x 4 matrix ࡷௗ: 

ௗࡷ ൌ ሺࡸௗ
் ∙ ࡾ

ିଵ ∙ ௗሻିଵࡸ ∙ ሺࡸௗ
் ∙ ሺࡾ

ିଵ ∙ ࡾ ∙ ࡾ
ିଵሻ ∙  ሺ2.2ሻ																			ௗሻࡸ

By diagonalizing ࡷௗ with eigenvalue decomposition and inverting the 

smallest eigenvalue, we obtain the best possible pseudo-Z-score for the two 

dipoles. 

ܼ௧
ௗ ൌ ቀ݉݅݊൫݁݅݃ሺࡷௗሻ൯ቁ

ିଵ
																																							ሺ2.3ሻ 

This step is an extension of the approach used in the single 

beamformer in Equation 1.35 (Sekihara et al., 2004). We can also define a 

matrix analogous to ࡽ for the single beamformer in Section 1.7 to estimate the 

source powers and orientations: 

ௗࡽ ൌ ௗࡸ
் ∙ ࡾ

ିଵ ∙  ሺ2.4ሻ																																															ௗࡸ

By diagonalizing ࡽௗ with eigenvalue decomposition, we can obtain the 

optimum beamformer power, the optimum orientations, and the optimum 

weighting of the two source dipoles as follows (Sekihara et al., 2004): 

ܲ௧
ௗ ൌ ቀ݉݅݊൫݁݅݃ሺࡽௗሻ൯ቁ

ିଵ
																																		ሺ2.5ሻ 



42 
 

ቀ
ଵࣁ
ଶࣁ
ቁ 	ൌ  ሺ2.6ሻ																																																							ഥ࢜

 ഥ is defined as the four-component eigenvector associated with the࢜

minimum eigenvalue of ࡽௗ.  The first two elements of ࢜ഥ contain the optimal 

beam 1 weighting in the two different basis directions.  The last two elements 

contain the optimal beam 2 weighting in its basis directions.  The elements 

corresponding to beam 1 ሺࣁଵሻ and the elements corresponding to beam 2 ሺࣁଶሻ 

are scaled such that relative weighting between the beams is optimal.  The 

cost of computation is low because the eigenvalue decompositions are 

performed on matrices (ࡷௗ and ࡽௗ) with low dimensions (4 by 4).  Since the 

DCBF is a vector formulation of the previous dual beamformer method 

(Brookes et al., 2007), reconstructed dipole orientations and weighting should 

be the same for both methods.  To examine the computational efficiency 

(speed) resulting from directly computing orientations and weights instead of 

performing a non-linear search, 100 direct computations and 100 Nelder-Mead 

non-linear simplex searches were performed and timed. 

The reconstructed time-course for the source dipoles is given by: 

ሻݐොሺ࢙ ൌ ഥ࢜ ∙ ൫ ܲ௧
ௗ ∙ ࡾ

ିଵ ∙ ௗࡸ ∙ ൯ഥ࢜
்
∙  ሺ2.7ሻ																										ሻݐሺ࢈

 ሻ, the source time-courses, is a 4 x t matrix whose first two rows compriseݐොሺ࢙

the time-course for the first source and whose last two rows comprise the 

time-course for the second source.  Each row contains the component of the 
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time-course along each axis.  An assumption of signal reconstruction is that 

both signals are highly correlated.  As a result, only one time-course is actually 

reconstructed.  However, this time-course is weighted appropriately to 

generate a time-course for each component of each source.   

Since the optimal weighting, orientations, and pseudo-Z-statistic are 

computed directly, the only parameter left to optimize is the specific 

combination of dipoles that leads to the maximum pseudo-Z-score.  As noted 

before, this can be accomplished by an exhaustive brute-force search over all 

possible dipole combinations (Brookes et al., 2007).  In this scenario, if  is the 

number of dipoles, one would have to compute ሺ  1ሻ/2 pseudo-Z-scores to 

find the best dipole combination.  To circumvent the long computational time of 

a brute-force search, a priori information can be used to fix the location of one 

dipole (Brookes et al., 2007).  However, this method is not ideal when 

knowledge of sources is not widely accepted or is unavailable. 

In the present study, a modified Powell search algorithm was 

implemented to find the best dipole combination without performing a brute-

force calculation and without requiring a priori information.  Let ሾݎଵ,  ଶሿ be theݎ

two coordinate axes on which the search is performed.  The ݎଵ axis 

corresponds to the index of the first dipole in a given source grid, while ݎଶ 

corresponds to the index of the second dipole.  Let the function that we are 

searching over be defined as: 
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݂ሺݎଵ, ଶሻݎ ൌ ܼ௧
ௗ ሺݎଵ,  ሺ2.8ሻ																																															ଶሻݎ

Suppose ݎଵ
 is a dipole picked randomly from a given source grid.  The 

profile ݂ሺݎଵ
,  ଶሻ is calculated and then maximized to find the correspondingݎ

ଶݎ
௧ value.  Subsequently, the profile ݂൫ݎଵ, ଶݎ

௧൯ is calculated to find an 

optimized ݎଵ value.  This process is repeated until stable ܼ௧
ௗ ଵݎ ,

௧, and ݎଶ
௧ 

are reached.  Since this search may converge to a local maximum, the 

process may be iterated multiple times using random initializations of dipoles.  

In this manner, ݎଵ
௧ and ݎଶ

௧, or the optimal dipole combination can be 

reached more quickly than the brute-force method.  In our reconstructions, the 

Powell search was also implemented with a taboo list to reduce computational 

time by interrupting the search every time a dipole combination that had 

already been traversed was selected again.  

The results of all Powell search iterations (pairs of correlated sources) 

were saved as they are local maxima of ܼ௧
ௗ௨.  These local maxima, or 

pathways of cortical activation, represent different highly-correlated networks 

that co-exist in the data. 

2.3.2 Setup for Computer Simulations 

Computer simulations were performed in order to examine the 

performance of both the dual-core spatial filter and the non-linear modified 

Powell search portions of the DCBF.  The simulator was programmed to test 
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up to three pairs of source dipoles under differing conditions of frequency, 

cross-correlation, and amplitude.  The base signal for each dipole was 

programmed to be a simple sinusoidal wave in a specific direction.  In addition, 

the noise simulation was programmed so that the SNR of each simulation 

could be chosen manually by adding uncorrelated random noise.  The 

searchable source space was simulated with a fixed-source grid based on the 

gray-matter boundary obtained from a healthy subject’s T1-weighted MRI 

using Freesurfer (Dale et al., 1999; Fischl et al., 2004) and a grid spacing of 7 

mm.  The boundary element method (BEM) was used for the MEG forward 

model calculation with the BEM mesh (5 mm mesh size) being the inner-skull 

surface from the MRI.  In each case, SVD was used to reduce the lead-field 

vectors to m x 2 matrices (Huang et al, 2006).  In each simulation, the search 

was given 1000 random re-starts.  Performance was evaluated by average 

time to find the correct solution or equivalently, the number of searches 

required on average to find the solution. 

To evaluate the performance of our reconstruction under differing levels 

of noise, simulations were performed with the following control conditions: 1 

pair of sources, 30 Hz frequency, 100% intra-pair correlation, and 1:1 

amplitude ratio for the two source dipoles.  Reconstruction was evaluated at 

SNRs of 4.0, 3.0, 2.0, 1.0, 0.50, 0.33, and 0.25.  In our simulations, we defined 

SNR in sensor domain as the total power of the signal divided by the total 

power of the noise that was added to the signal.  To examine the effects of 
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source signals containing more than one frequency component, the 0.25 SNR 

test condition was repeated for 1 pair of 100% correlated sources with a 

dominant 30 Hz component and a half-amplitude 20 Hz component.  The 0.25 

SNR test condition was also repeated to test DCBF performance in the 

presence of correlated noise at 10 Hz.  Correlated noise was introduced by 

means of a single noise source of same amplitude oscillating at a frequency of 

10 Hz throughout the entire simulation. 

To evaluate the performance of our reconstruction under differing 

correlations within the source pair, simulations were performed with the control 

conditions: 1 pair of sources, 30 Hz frequency, 1:1 source amplitude ratio, and 

SNR of 2.0.  The following intra-pair correlations were simulated as the 

variable condition: 86.6%, 75%, and 50%.  To evaluate the performance of our 

reconstruction under differing source amplitudes, simulations were performed 

with the control conditions: 1 pair of sources, 30 Hz frequency, 100% intra-pair 

correlation, and SNR of 2.0.  The following amplitude ratios were simulated as 

the variable condition: 1:1, 2:1, and 3:1.  To evaluate the performance of our 

reconstruction in a more realistic scenario and for multiple dipoles, three 

source-pairs were selected with frequencies of 20 Hz, 30 Hz, and 40 Hz.  

Each source dipole had differing amplitudes.  Each pair of dipoles was 

programmed with slightly different intra-pair correlations.  The dipoles were 

also uncorrelated across pairs.  The SNR was set to 0.6075. 
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To evaluate the performance of our reconstruction in the presence of 

three correlated sources, three sources were given a sinusoidal signal with a 

frequency of 30 Hz at a SNR of 0.25.  The second and third sources were 

phase-shifted 22.5 degrees and 45 degrees from the first source.  Activation 

maps were generated for the pathway with highest pseudo-Z-score from the 

formula: 

ܼ ൌ
ሺܼଵሻݔܽ݉ ∙ ሾܼଵ െ ݉݅݊ሺܼଵሻሿ	
ሺܼଵሻݔܽ݉ െ ݉݅݊ሺܼଵሻ	


ሺܼଶሻݔܽ݉ ∙ ሾܼଶ െ ݉݅݊ሺܼଶሻሿ	
ሺܼଶሻݔܽ݉ െ ݉݅݊ሺܼଶሻ	

							ሺ2.9ሻ 

ܼଵcontains the pair-wise pseudo-Z-scores for the first optimal dipole 

with all other dipole sources.  ܼଶ contains the pair-wise pseudo-Z-scores for 

the second optimal dipole with all other dipole sources.  Monte Carlo 

simulations were used to obtain a distribution of pseudo-Z-scores produced by 

noise.  A kernel-smoothed density-estimate was computed to produce a 

continuous distribution.   Statistical significance of pseudo-Z-scores for all 

activation maps was determined by integration of the continuous distribution. 

2.3.3 Setup for Auditory Steady-State MEG Response 

An auditory stimulus experiment was designed to test DCBF 

reconstruction of correlated sources in an actual MEG measurement.  The 

experiment consisted of 200 epochs of evoked responses to a stereo test file.  

The test file consisted of an 1800 ms pre-stimulus noise measurement period 

and a 2000 ms post-stimulus period.  The stimulus was a 500 Hz pure tone 
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with a 40 Hz envelope modulated at 100% level.  The intensity of the stimulus 

was balanced between left and right ears.  The start and end of the stimulus 

were smoothed with a cosine roll-off to prevent any artifacts from the stimulus.  

Magnetic fields evoked by auditory stimulation were measured using an 

Elekta/NeuromagTM whole-head MEG system (VectorView) with 204 

gradiometers and 102 magnetometers in a magnetically shielded room 

(IMEDCO-AG, Switzerland).  EOG electrodes were used to detect eye blinks 

and eye movements.  An interval of 1900 ms post-stimulus data was recorded, 

using 1500 ms of pre-stimulus data for noise measurement.  Data were 

sampled at 1000 Hz and run through MaxFilter to remove environment noise 

(Taulu et al., 2004; Taulu and Simola, 2006; Song et al., 2008; Song et al., 

2009).  188 artifact-free MEG responses were averaged with respect to the 

stimulus trigger.  A BEM mesh of 5-mm mesh size for the subject was 

generated from the inner-skull surface using a set of T1 MRI images taken on 

a 1.5 T GE scanner.  A fixed source grid with 7-mm spacing was generated 

from the gray-white matter boundary of the T1 image by Freesurfer.  Lead-field 

vectors for each dipole source were reduced to m x 2 matrices by ignoring the 

weakest orientation (Huang et al., 2006), reducing all reconstructed time-

courses to two components.  Registration of MRI and MEG was performed 

using data obtained from the Isotrack system prior to subject scanning in the 

MEG machine.  The signal (gradiometers only) was then reconstructed using 

the dual-core beamformer approach coupled to the non-linear modified Powell 
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search.  Activation maps were generated in the same fashion as in Equation 

2.9.  Source time-courses were low-pass filtered under 50 Hz to display the 

auditory response.  Time-frequency (TF) analysis of the source time-courses 

with Morelet wavelets (5 cycle width) was performed between 1 and 50 Hz to 

identify transient and steady-state auditory responses. 

2.3.4 Setup for Right Median Nerve Stimulation MEG Response 

The performance of the DCBF was further examined using human MEG 

responses to right median nerve stimulation.  This task is widely used to study 

the somatosensory system and provides a useful standard for analyzing DCBF 

performance since the location of activated dipole sources is easily 

predictable.  We conducted MEG recordings for this experiment on 6 healthy 

subjects (men, ages 20-42) as they underwent right median-nerve stimulation.  

All subjects signed the consent forms approved by the Institutional Review 

Board of the University of California at San Diego.  Each subject’s median 

nerve was stimulated using a bipolar GrassTM constant-current stimulator.  The 

stimuli were square-wave electric pulses of 0.2 ms duration delivered at a 

frequency of 1 Hz.  The inter-stimulus-interval (ISI) was between 800 and 

1200 ms.  The intensity of the stimulation was adjusted until robust thumb 

twitches were observed.  A trigger was designed to simultaneously send a 

signal to the MEG for every stimulus delivery to allow averaging over evoked 

trials.  Magnetic fields evoked by median nerve stimulation were measured 

using the Elekta/NeuromagTM whole-head MEG system.  EOG electrodes 
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were used to detect eye blinks and eye movements.  An interval of 500 ms 

post-stimulus was recorded, using 300 ms of pre-stimulus data for noise 

measurement.  Data were sampled at 1000 Hz and run through a high-pass 

filter with a 0.1 Hz cut-off and through MaxFilter to remove environmental 

noise (Taulu et al., 2004; Taulu and Simola, 2006; Song et al., 2008; Song et 

al., 2009).  A minimum of 150 artifact-free MEG responses (gradiometers only) 

per subject were averaged with respect to the stimulus trigger.  BEM mesh 

generation, source grid generation, MRI-MEG registration, and source time-

course reconstruction were carried out in the same manner as in the auditory 

steady-state MEG response experiment.  Activation maps were generated in 

the same fashion as in Equation 2.9.   
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2.4 Results 

2.4.1 Computer Simulations 

2.4.1.1 Computational Time for Obtaining the Optimal Dipole 

Orientations and Weights 

To examine the difference in computational costs between the non-

linear search approach from Brookes and colleagues and our analytical 

approach, we performed 100 Nelder-Mead non-linear simplex searches and 

100 eigenvalue decompositions to obtain the optimal dipole orientations and 

optimal dipole weighting for two simulated dipoles.  Non-linear searching and 

eigenvalue decomposition both resulted in accurate reconstruction of 

orientations and weighting with less than 1% difference.  The average times 

for reconstruction were 0.0142	ݏ and 1.4 ∙ 10ିସ	ݏ for the simplex search and 

the eigenvalue decomposition, respectively, resulting in a speed up of 100 

times using our approach.  Performing the exhausted analysis for all 

combinations of two-dipole pairs in a 5000 dipole-grid would take 

approximately 50 hours using the non-linear search approach from Brookes 

and colleagues.  In contrast, our direct computation approach based on 

eigenvalue decomposition would take approximately 30 minutes.  As we show 

later in this section, the modified Powell approach further speeds up the 

analysis by bypassing the exhaustive analysis of all dipole combinations. 
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2.4.1.2 SNR 

The results from the simulations designed to test performance under 

varying SNR are listed in Table 2.1.  In each test, the dipole-pair locations 

reconstructed with the highest pseudo-Z-score were identical to the dipole-pair 

locations that were originally programmed with the signal.  Thus, even under 

an SNR of 0.25, the reconstruction was able to localize the sources perfectly.  

Under all levels of SNR, the orientations were recovered faithfully ሺ0.27% ൏

ߝ ൏ 2.56%ሻ.  Orientation error, ߝ, was defined as the mean of the fractional 

errors of the individual dipole orientation ratios.  Source amplitudes were 

reconstructed accurately across all levels of SNR ሺ6.8% ൏ ߝ ൏ 7.2%ሻ.  

Reconstructed amplitudes were determined by finding the intensity of the 

Fourier transform for the reconstructed time-course at the appropriate 

frequency.  When source dipoles contained signals of two frequencies, the 

accuracy of reconstructing each frequency component’s amplitude was similar 

to the single frequency scenario ሺߝଷ ൌ 7.24%, ଶߝ ൌ 7.70%ሻ.  In the presence 

of correlated noise, source dipole locations were reconstructed accurately and 

quickly, though the amplitude error ሺߝ ൌ 8.5%ሻ	and orientation error ሺߝ ൌ

4.29%ሻ were slightly higher.  Interestingly, the average number of searches 

and the average time taken to find the optimum dipole pair are reduced 

linearly as the SNR decreases, but saturate as the SNR approaches zero 

ሺݎ௦
ଶ ൌ ௧ݎ	;	0.9608

ଶ ൌ 0.9599ሻ. 
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2.4.1.3 Signal Correlation 

The results from the simulations designed to test performance under 

varying signal correlations are displayed in Table 2.2.  In each case, the dipole 

pair reconstructed was identical to the original source dipoles.  Thus, even 

under a correlation of only 50%, the reconstruction was able to localize the 

sources perfectly.  The reconstructed amplitudes in each of these simulations 

faithfully matched the original source amplitudes ሺ̅ߝ ൌ ఌതߪ	;	12.5% ൌ 5.1%ሻ and 

became linearly more accurate as the pair correlation increased ሺݎଶ ൌ

0.99905ሻ.  The reconstructed orientations also faithfully matched the original 

source orientations and exhibited little dependence on the correlation ሺ̅ߝ ൌ

ఌതߪ	;	0.40% ൌ 0.18%ሻ.  Interestingly, the proper dipole pair was found more 

immediately, repeatedly, and quickly for non-perfectly correlated than 

perfectly-correlated sources.  For each non-perfectly correlated simulation, 

decreasing the original source correlation led to a concomitant linear decrease 

in the pseudo-Z-score ሺݎଶ ൌ 0.99998ሻ. 

2.4.1.4 Source Amplitude Ratio 

The results from the simulations designed to test performance under 

varying amplitude ratios within a pair of dipoles are shown in Table 2.3.  The 

reconstructed amplitude ratios in each simulation closely reflect the original 

source amplitude ratio ሺ1.97% ൏ ߝ ൏ 4.48%ሻ.  In the reconstruction, the 

orientations faithfully represent the original source orientations ሺ0.34% ൏ ߝ ൏
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1.63%ሻ.  As one increases the relative amplitude ratios within each pair of 

dipoles from 1 to 2 to 3, the number of searches and the time required to find 

the dipole pair decrease linearly ሺݎ௦
ଶ ൌ 0.908	; ௧ݎ	

ଶ ൌ 0.905ሻ.  The 

amplitude ratio did not affect the computed pseudo-Z-scores. 

2.4.1.5 Three Pairs of Dipoles 

The results for the six dipole (3 source-pair) simulation are presented in 

Table 2.4.  All six sources were reconstructed in an average of 4.8 minutes 

and 143 searches.  Increasing the number of correlated two-source networks 

in the simulation did not result in an unmanageable increase in computational 

time.  Even with the low SNR (0.6075), differing intra-pair correlations, and 

differing amplitudes both inside and outside of each dipole pair, all of the 

dipoles were reconstructed to the proper spatial position.  The three inter-pair 

correlations in this study were all zero.  Furthermore, the twelve reconstructed 

amplitudes closely represented the original source amplitudes ሺ̅ߝ ൌ

ఌതߪ	;	11.32% ൌ 5.67%ሻ.  Reconstruction of each source’s orientation was 

reasonably accurate ሺ̅ߝ ൌ ఌതߪ	;	3.16% ൌ 2.22%ሻ.   

2.4.1.6 A Third Correlated Source 

Two of the three sources in the simulation were reconstructed 

accurately in an average of 1.03 searches and 0.04 minutes.  As expected, the 

amplitudes of the reconstructed sources were suppressed by 47.29% due to 

the third correlated source.  Figure 2.1 shows the activation map of the three 
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reconstructed sources, which was derived by combining the dipole pseudo-Z-

scores.  Red values were thresholded at ܲ ൏ 0.05, and yellow values were 

thresholded at ܲ ൏ 10ିହ.  The combined pseudo-Z-score for all three dipoles 

was significant ሺܲ ൏ 10ିହሻ. 

2.4.2 Applying DCBF to Human Auditory MEG Responses 

MEG data were obtained for the 500 Hz tone auditory stimulus tests 

(Brookes et al., 2007).  All data were subsequently processed with MaxFilter 

(Taulu et al., 2004; Taulu and Simola, 2006; Song et al., 2008; Song et al., 

2009) and the signal was reconstructed utilizing our new DCBF approach 

coupled with the modified Powell search restricted to inter-hemispheric 

searches.  To enhance the SNR of the relatively weak auditory response, 188 

responses were averaged.  Figure 2.2 displays the pseudo-Z-scores of the 

local maxima, or pathways, found by the modified Powell search algorithm.  

After 1000 starts, the optimum pathway had a pseudo-Z-score of 1.0791 

ሺܲ ൏ 1.3 ∙ 10ିହሻ, indicating that two highly correlated dipoles had been found.  

Out of the 3 identified pathways, this pathway was also found most often, 

taking an average of 1.1 searches or 0.0305 minutes.  Figure 2.3 displays the 

cortical activation map derived from plotting the combined correlations of each 

optimal dipole with all other dipoles in the brain.  For both hemispheres, red 

values were thresholded at ܲ ൏ 0.05, and yellow values were thresholded at 

ܲ ൏ 0.005.  Figure 2.3 also shows that the activity is localized to Brodmann 
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Areas 41 and 42 (primary and association auditory cortices) in both left and 

right hemispheres.  Pathways with low pseudo-Z-scores localized to deep 

sources.  Figure 2.4 displays the time-courses of the transient and steady-

state auditory responses.  The left to right hemisphere source amplitude ratio 

was 1.11.  Wavelet transform time-frequency (TF) analysis was performed on 

the reconstructed signal to identify the transient and steady-state responses.  

TF analysis between 4 and 12 Hz revealed a focal region of power 

immediately following stimulus delivery, corresponding to the auditory transient 

response.  TF analysis of the source signal in the 32-48 Hz band indicated the 

presence of power throughout the entire stimulus period centered at 40 Hz, 

corresponding to the auditory steady-state response (Herdman et al., 2003b; 

Ross et al., 2005; Simpson et al., 2005). 

2.4.3 Applying DCBF to Human Median Nerve Stimulation MEG Responses 

MEG data were obtained from six healthy subjects for the right median 

nerve stimulus test.  Individual trials were averaged to enhance the SNR of the 

MEG evoked-response.  All data were subsequently processed with MaxFilter 

(Taulu et al., 2004; Taulu and Simola, 2006; Song et al., 2008; Song et al., 

2009), and spatial locations were reconstructed utilizing the DCBF approach.  

Figure 2.5 shows the multiple pathways found by DCBF sorted according to 

pseudo-Z-score or correlation for a single representative subject (Subject #1).  
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The plateaus in Figure 2.5 designate searches that yielded the same 

result multiple times, which are considered to be important pathways or 

networks of activation.  Figure 2.6 shows activation maps computed with (17) 

for three of these selected networks along with similar networks reconstructed 

from other subjects.  The activation maps were computed in the same manner 

as for the auditory-response analysis.  All subjects had a common network of 

activation in the primary somatosensory cortex (S1, including Brodmann Areas 

1, 2, and 3) and the secondary somatosensory cortex (S2) (Figure 2.6a).  

Three subjects showed common networks involving the primary 

somatosensory cortex (S1) and Brodmann Area 5 of the posterior parietal lobe 

(Figure 2.6b).  Three subjects also had a common network of activation 

involving the primary motor cortex (M1) and parts of the somatosensory cortex 

(S1 or S2) (Figure 2.6c).  Two subjects showed a previously observed network 

of activation involving the primary somatosensory cortex (S1) and the 

temporal-parietal junction, a poly-sensory area (Huang et al., 2006). 
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2.5 Discussion 

In the present study, we implemented a novel and powerful dual-

beamformer method that was paired with the modified-Powell search to create 

the DCBF.  Our DCBF approach addressed various shortcomings of the 

earlier dual-beamformer method, the CCSM, and the NB.  Instead of using a 

spatial filter or lead-field vector consisting of a linear combination of lead-field 

vectors from two dipoles, we chose to concatenate the lead-field vectors from 

the two dipoles together, which simultaneously covered two spatial locations at 

once.  We were also able to perform eigenvalue decomposition and analysis 

of the low-dimensional ࡷௗ matrix to analytically find the optimal pseudo-Z-

score of two dipoles directly, without having to search for their best 

orientations non-linearly.  In addition, we performed eigenvalue decomposition 

of another low-dimensional ࡽௗ matrix to analytically recover the most 

favorable weighting between dipoles and the best orientation of the dipoles 

that optimized the pseudo-Z-score (Sekihara et al., 2004) without the need for 

a time-consuming non-linear search process that takes approximately 100 

times longer.  Optimal source dipoles were found by our modified non-linear 

Powell search instead of through exhaustive brute-force search, which is 

about three times slower.  The Powell search also enabled analysis without a 

priori information about any of the dipole positions.  Thus, we were able to 

identify multiple highly-correlated neuronal networks that were associated with 

meaningful local maxima of pseudo-Z-scores.   
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We conducted a series of computer simulations to test the robustness 

and performance of the DCBF with regards to variations in several important 

parameters.  We showed that decreased SNR leads to faster localization of 

the source dipoles during the modified Powell search.  A Powell search has 

the best probability of finding peaks with broad bases.  Thus, we believe that 

lower SNR leads to a broader peak in pseudo-Z-score, which allows the 

optimal dipole combination to be identified more readily.  In fact, the 

reconstruction performed reliably even under conditions of 0.25 SNR for both 

single and dual frequency sources and for both uncorrelated and correlated 

band-limited noise.  At every SNR tested, our reconstruction technique 

successfully located the source dipoles without error.  For spontaneous 

recordings, the MEG signal can often have a very low SNR, especially since 

the data cannot be averaged.  For evoked recordings, a higher SNR can be 

obtained from averaging.  Our computer simulations show that the DCBF may 

be applied for both types of recordings, since the method operates over a wide 

range of SNR.  

By varying source correlation, we found that the DCBF successfully 

identified sources even when their signals were only 50% correlated. In fact, 

non-purely correlated sources were localized much more quickly than 100% 

correlated sources because the pseudo-Z-score solution space is less sharply 

peaked around the global maximum for non-purely correlated sources than for 

fully correlated sources. 
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To test the performance of our direct computation of optimal dipole 

weighting, we performed computer simulations with source dipoles emitting 

signals at varying ratios of amplitudes.  Interestingly, as we increased the 

disparity in amplitude between signals, the reconstruction was able to localize 

the source dipoles more quickly.  Differing source amplitudes likely led to a 

broader peak in pseudo-Z-score, allowing the optimal dipole combination to be 

identified more readily.  The primary purpose of the amplitude simulations, 

however, was to examine if the reconstructed signals still maintained the 

proper amplitude weighting.  Reconstructed amplitude ratios were indeed quite 

close to the original source amplitude ratios, confirming that our approach to 

obtaining optimal weighting was successful. 

To determine whether the DCBF could perform in real-world conditions, 

we designed one simulation with three pairs of non-purely correlated dipoles.  

All three pairs of correlated sources were localized accurately within an 

average of 5 minutes.  Furthermore, the amplitude ratios and orientations were 

reconstructed with only minor error, demonstrating that the DCBF can 

accurately reconstruct multiple simultaneously-activated networks of 

correlation.   

Another simulation was designed at low SNR to test the ability of the 

DCBF to reconstruct three correlated dipoles.  Only two sources could be 

located with the Powell search, and their amplitudes were suppressed.  The 

suppression occurred due to the underlying assumption that only two sources 
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are correlated.  Thus, the effect was similar to suppression of the conventional 

single beamformer in the presence of a second correlated source.  However, 

the generated activation map shows that the DCBF successfully localized all 

three correlated-source in a significant manner (Figure 2.1). 

By applying our novel method to the analysis of bilateral auditory-

stimulation data in humans, we showed that the DCBF could quickly (< 20 

sec) and accurately reconstruct correlated sources in a real experiment.  

Analysis of the pathway most frequently found and with highest pseudo-Z-

score revealed sources located in the primary auditory cortices, as expected.  

In addition, time-frequency analysis of the reconstructed signal showed both 

the expected 40 Hz steady-state response and the transient response.    

To explore the idea of finding multiple networks, we also applied the 

DCBF approach in an analysis of right median-nerve stimulation data from six 

healthy subjects.  A plot of the number of searches as a function of pseudo-Z-

scores showed different local maxima that were found multiple times, 

indicating the presence of different pathways.  We found that the most 

common pathway among subjects corresponded to activation in the primary 

somatosensory area (S1, including BA 1, 2, and 3) and the secondary 

somatosensory area (S2).  Two other pathways identified in half of the 

subjects included S1 and a classic sensory-transduction area (Brodmann Area 

5), and S1 or S2 and the dorsal aspect of the primary motor area (M1).  The 
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activations in S1, S2, and M1 evoked by median-nerve stimuli are well-

documented by MEG (see review in Huang et al., 2000, 2005).  

2.5.1 Summary 

The most important features of the DCBF approach arise from 

incorporating the lead-field vectors of two simultaneously-activated neuronal 

sources into a single spatial filter.  With this novel beamformer, we were able 

to successfully compute optimal dipole weights, orientations, and pseudo-Z-

scores, eliminating time-consuming searches that hindered the previous dual-

beamformer approach.  In addition, by utilizing a powerful Powell search with a 

taboo list, we were able to reconstruct optimal source dipoles quickly without 

the use of a priori information.  The changes and optimizations we made 

decreased the total computing time from tens of hours (Brookes et al., 2007) 

to less than 15 minutes, making the DCBF a viable and useful MEG source 

localization method for correlated sources.  Future directions include 

extending the DCBF framework to three or four beams to find tightly correlated 

and complex networks of activity.  The DCBF can also be migrated from a 

time-domain analysis to a frequency domain or time-frequency (wavelet) 

domain analysis to reduce the effects of noise and phasing. 
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CHAPTER 3 

Accurate Reconstruction of Temporal Correlation for Neuronal Sources 

using the Enhanced Dual-core MEG Beamformer 

3.1 Abstract  

Beamformer spatial filters are commonly used to explore the active 

neuronal sources underlying magnetoencephalography (MEG) recordings at 

low signal-to-noise ratio (SNR).  Conventional beamformer techniques are 

successful in localizing uncorrelated neuronal sources under poor SNR 

conditions.  However, the spatial and temporal features from conventional 

beamformer reconstructions suffer when sources are correlated, which is a 

common and important property of real neuronal networks. Dual-beamformer 

techniques, originally developed by Brookes and colleagues to deal with this 

limitation, successfully localize highly-correlated sources and determine their 

orientations and weightings, but their performance degrades at low 

correlations.   They also lack the capability to produce individual time-courses 

and therefore cannot quantify source correlation.  In this chapter, we present 

an enhanced formulation of our earlier dual-core beamformer (DCBF) 

approach that reconstructs individual source time-courses and their 

correlations. Through computer simulations, we show that the enhanced 

DCBF (eDCBF) consistently and accurately models dual-source activity 

regardless of the correlation strength.  Simulations also show that a multi-core 
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extension of eDCBF effectively handles the presence of additional correlated 

sources. In a human auditory task, we further demonstrate that eDCBF 

accurately reconstructs left and right auditory temporal responses and their 

correlations.  Spatial resolution and source-localization strategies 

corresponding to different measures within the eDCBF framework are also 

discussed.  In summary, eDCBF accurately reconstructs source spatio-

temporal behavior, providing a means for characterizing complex neuronal 

networks and their communication.  

3.2 Introduction 

Our recently developed dual-core beamformer (DCBF) addresses many 

of the limitations of the dual-source beamformer (DSBF) developed by 

Brookes and colleagues (Diwakar et al., 2011).  The DCBF implements the 

DSBF with a vector description, eliminating the need for non-linear searches of 

source orientations and source weighting.  Furthermore, pairing the DCBF with 

a Powell search optimization algorithm allows quick localization of the 

correlated source pairs.  However, our simulations demonstrated that the 

estimation of source amplitudes with DCBF grows inaccurate as correlation 

values decrease since time-course reconstruction only generates a single 

signal (scaled accordingly for each source).  Though DCBF provides an 

effective way to identify source pairs, the measurement statistic (pseudo-Z-

score) obtained is dependent on both source power and source correlation 

and does not exclusively quantify correlation between sources. 
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Ideally, in addition to localizing active sources, a quantitative measure 

of correlation is desired to obtain a more complete understanding of neuronal 

networks.  Such a measure (e.g. power correlation) would more completely 

characterize highly sophisticated networks.  In this chapter, we propose an 

enhanced dual-core beamformer (eDCBF), which is capable of accurately 

estimating the source covariance matrix from multiple sources, providing a 

proper measure of correlation in addition to individual source time-courses 

without amplitude suppression.  Once sources are localized, their correlation 

can be found without time-course reconstruction, allowing the eDCBF to 

handle large datasets quickly and requiring little memory.  If desired, the 

eDCBF also provides a simple way of computing correlations in frequency 

bands of interest.  Moreover, eDCBF’s improved design offers robustness to a 

wide range of both source correlations and SNR.  Finally, the eDCBF 

framework may be generalized to effectively account for the presence of 

multiple sources. 

The mathematical formulation of the eDCBF and extension to the multi-

core beamformer (MCBF) are first presented to fully demonstrate the design of 

the new spatial filter.  In simulations we demonstrate that the eDCBF spatial 

filter is robust to a wide range of correlations, SNRs, source locations, and 

various source temporal dynamics.  Using a three-core MCBF filter, we further 

demonstrate how additional sources of interference can be accounted for once 

source localization is performed.  Finally, we cross-validate our findings from 
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the simulations in an analysis of a human MEG recording during a stereo-

auditory stimulation task, showing that the eDCBF produces meaningful 

correlation estimations and accurate time courses. 

3.3 Methods 

3.3.1 Previous Dual-core Beamformer Formulation (Diwakar et al., 2011) 

The DCBF was developed assuming the presence of two sources.  Let 

 ଶ define the lead-field matrices of the two sources of interest.  Theࡸ ଵ andࡸ

dual-core lead-field matrix is expressed as the m x 4 matrix ࡸௗ ൌ ሾࡸଵ   .ଶሿࡸ

The DCBF weighting matrix is then defined as the m x 1 vector ࢃௗ designed 

such that: 

ሻݐොሺ࢙ ൌ ௗࢃഥ࢜
 ሺ3.1ሻ																																																							ሻݐሺ࢈்

where ࢙ොሺݐሻ represents the 4 x 1 vector of estimated source time-courses in 

both the ߠ and ߶ directions.  ࢜ഥ is defined as a 4 x 1 vector containing both 

optimal non-normalized 2 x 1 source orientations ࣁଵ and ࣁଶ:  

ഥ࢜ ൌ ൬
ଵࣁ
ଶࣁ
൰																																																													ሺ3.2ሻ 

 ഥ is obtained by computing the eigenvector associated with the࢜

weakest eigenvalue of ࡽௗ ൌ ௗࡸ
ࡾ்

ିଵࡸௗ, where the dual-source power ܲ௧
ௗ  is 

represented by the inverse of the eigenvalue.  The DCBF solution for the 

weighting matrix was shown to be (Diwakar and Huang et al., 2011): 
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ௗࢃ ൌ ܲ௧
ௗ ࡾ

ିଵࡸௗ࢜ഥ																																																					ሺ3.3ሻ 

The DCBF orientations from Equation 3.2 reduce ࡸௗ to a rank 1 scalar 

lead-field matrix leading to an m x 1 beamformer weight (Equation 3.3), 

resulting in scaled copies of a single time-course to represent both sources.  

Furthermore, a single eigenvector of ࡽௗ ሺ࢜ഥሻ can only capture either the 

correlated or uncorrelated part of the signal and is not sufficient to span the 

entire signal subspace, leading to incorrect estimates of source amplitude in 

the presence of correlated sources. 

3.3.2 Enhanced Dual-core Beamformer Formulation 

The enhanced Dual-core Beamformer (eDCBF) offers a novel solution 

to overcome the deficits of the previous DCBF.  The eDCBF dual-core lead-

field matrix is expressed identically to the original DCBF (Diwakar and Huang 

et al., 2011).  Instead of using the DCBF m x 1 weighting vector, the eDCBF 

weighting matrix is defined as the m x 4 matrix ࢃௗ ൌ ሾࢃଵ   areࢃ ଶሿ, whereࢃ

the individual weighting matrices for each source, ensuring no reduction in 

rank and enabling the computation of unique source time-courses and 

correlation.  The eDCBF weighting matrix is designed such that: 

ሻݐොሺ࢙ ൌ ௗࢃ
 ሺ3.4ሻ																																																									ሻݐሺ࢈்

 ሻ is the 4 x 1 vector of unique estimated dual-source time-courses inݐොሺ࢙

both the ߠ and ߶ directions.  As a measure of source strength and activity, the 
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4 x 4 eDCBF estimated dual-source covariance matrix ࡾ௦̂ is determined by 

taking the covariance of Equation 3.4: 

௦̂ࡾ ൌ 	 〈ሻ்ݐොሺ࢙ሻݐොሺ࢙〉 ൌ ௗࢃ
 ሺ3.5ሻ																																												ௗࢃࡾ்

The constraints of the vector minimum-variance beamformer, 

consistently shown to produce accurate beamformer reconstruction with single 

sources (Sekihara et al., 2004; Spencer et al., 1992; Van Veen et al., 1997), 

may be used to derive the eDCBF weighting matrix ࢃௗ:  

ௗࢃ ൌ arg min
ࢃ

ௗࢃሼݎݐ
ௗࢃ ௗሽ subject toࢃࡾ்

ௗࡸ் ൌ  ሺ3.6ሻ																										ࡵ

The matrix product ࢃௗ
 ௗ represents the spatial filter output from twoࡸ்

unit-magnitude impulse currents.  The linear constraint ࢃௗ
ௗࡸ் ൌ  ensures that ࡵ

each weighting vector ࢃ passes signal from its respective source while not 

passing signal from the second source.  Furthermore, the trace of the 

beamformer output source power ࢃௗ
 ௗ is minimized to suppress bothࢃࡾ்

noise and additional source contributions.  However, no assumptions are 

made about the correlation between the two sources of interest.  In fact, the 

correlation can take on any value from 0 for uncorrelated sources to 1 for 

completely synchronized sources.  The solution for the minimization problem 

may be obtained by minimizing the Lagrangian with Lagrange multiplier ࣄ: 

ࣦሺࢃௗ, ሻࣄ ൌ ௗࢃሼݎݐ
ௗࢃࡾ்  ሺࢃௗ

ௗࡸ் െ  ሺ3.7ሻ																																	ሽࣄሻࡵ
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The derivative of the Lagrangian may be computed using the matrix 

derivative identities 
డ

డࢄ
ሽ்ࢄሼݎݐ ൌ   and  

డ

డࢄ
ሽࢄ்ࢄሼݎݐ ൌ ࢄ   :ࢄ்

߲ࣦሺࢃௗ, ሻࣄ

ௗࢃ߲
ൌ ௗࢃࡾ2  ࣄௗࡸ ൌ 																																							ሺ3.8ሻ 

ௗࢃ ൌ െ
ࡾ
ିଵࡸௗࣄ
2

																																																					ሺ3.9ሻ 

Substituting the unit-gain constraint ࢃௗ
ௗࡸ் ൌ  :into Equation 3.9 yields ࡵ

ࣄ ൌ െ2ሺࡸௗ
ࡾ்

ିଵࡸௗሻିଵ																																														ሺ3.10ሻ 

ௗࢃ ൌ ࡾ
ିଵࡸௗሺࡸௗ

ࡾ்
ିଵࡸௗሻିଵ																																								ሺ3.11ሻ 

The eDCBF estimated dual-source covariance matrix ࡾ௦̂, which is equal 

to the inverse of the DCBF  ࡽௗ௨, may be obtained by substituting the derived 

eDCBF beamformer weight (Equation 3.11) into Equation 3.5: 

௦̂ࡾ ൌ ௗࢃ
ௗࢃࡾ் ൌ ሺࡸௗ

ࡾ்
ିଵࡸௗሻିଵ																																ሺ3.12ሻ 

The eDCBF time-courses are obtained by substituting the derived 

eDCBF beamformer weight from Equation 3.11 into Equation 3.4: 

ሻݐොሺ࢙ ൌ ௗࢃ
ሻݐሺ࢈் ൌ ሺࡸௗ

ࡾ்
ିଵࡸௗሻିଵࡸௗ

ࡾ்
ିଵ࢈ሺݐሻ ൌ ௗࡸ௦̂ࡾ

ࡾ்
ିଵ࢈ሺݐሻ									ሺ3.13ሻ 

The eDCBF uses the full dual-source covariance matrix ሺࡾ௦̂	or	ࡽௗ
ିଵሻ 

instead of a single eigenvector when determining the weighting matrix, 

preventing undesired amplitude suppression and allowing reconstruction of 
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unique time-courses.  Thus, the eDCBF makes it possible to define and 

compute source correlation. 

3.3.3 eDCBF Estimated Correlation Reconstruction 

The eDCBF estimated vector covariance matrix ࡾ௦̂ can be expressed 

as: 

௦̂ࡾ  ൌ ቈ
ഥଵࣁഥଵࣁ〈ሻݐଵሺݏሻ̂ݐଵሺݏ̂〉

் ഥଶࣁഥଵࣁ〈ሻݐଶሺݏሻ̂ݐଵሺݏ̂〉
்

ഥଵࣁഥଶࣁ〈ሻݐଵሺݏሻ̂ݐଶሺݏ̂〉
் ഥଶࣁഥଶࣁ〈ሻݐଶሺݏሻ̂ݐଶሺݏ̂〉

்																												ሺ3.14ሻ 

where ̂ݏሺݐሻ are the estimated scalar source time-courses and ࣁഥ are the 2 x 1 

normalized orientations for the two sources.  The two diagonal 2 x 2 sub-

matrices of ࡾ௦̂ are of the same form as SBF vector covariance matrices 

(Sekihara et al., 2004).  Thus, the eigenvectors corresponding to the maximum 

eigenvalues (signal-related) of these sub-matrices contain the source 

orientations, while the eigenvectors corresponding to the minimum 

eigenvalues (noise-related) contain the noise orientations.  The 4 x 2 source 

orientation matrix ࣒ is used to reduce the 4 x 4 vector source covariance 

matrix to the 2 x 2 estimated dual-source scalar covariance matrix ࡾ෩௦̂: 

࣒ ൌ ൬
ഥଵࣁ 0
0 ഥଶࣁ

൰																																																							ሺ3.15ሻ 

෩௦̂ࡾ ൌ  ሺ3.16ሻ																																																									࣒௦̂ࡾ்࣒

The orientation matrix also allows scalar source time-course recovery:  
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ሻݐሺ࢙ ൌ ௗࢃ்࣒
 ሺ3.17ሻ																																																			ሻݐሺ࢈்

The estimated dual-source power correlation ߯̂ଵଶ may be computed 

from: 

߯̂ଵଶ ൌ
෩௦̂ሺ1,2ሻଶࡾ

෩௦̂ሺ2,2ሻࡾ෩௦̂ሺ1,1ሻࡾ
																																														ሺ3.18ሻ 

Amplitude correlation ߯̂ଵଶ
  can be computed as the square root of 

Equation 3.18. 

3.3.4 eDCBF Transformed Correlation Reconstruction 

Often, it is desirable to examine the source activity in a certain 

frequency band or envelope of the source signals.  The eDCBF weighting 

matrix ࢃௗ can be derived from either the transformed or original sensor 

recordings.  Use of the original recordings allows determination of source 

orientations and ࢃௗ based on the complete source power spectrum, which is 

more representative of true source activity.  Furthermore, the eDCBF provides 

a straightforward way to compute correlations and time courses when ࢃௗ has 

been derived from the original signal.  ࢙ොకሺݐሻ, the transformed time courses of 

 :ሻ, are defined by transforming Equation 3.13 in the time-domainݐොሺ࢙

ሻݐොకሺ࢙ ൌ ሻሿݐොሺ࢙ሾࣈ ൌ ௗࢃ
ሻሿݐሺ࢈ሾࣈ் ൌ ௗࢃ

 ሺ3.19ሻ																													ሻݐకሺ࢈்

where ࢈కሺݐሻ are the transformed sensor time-courses and ࣈ is the operator of 

the transformation.  The transformed source covariance matrix ࡾ௦̂
క may be 



86 
 

computed with the transformed sensor covariance matrix ࡾ
క ൌ  〈ሻ்ݐకሺ࢈ሻݐకሺ࢈〉

without computation of source time-courses: 

௦̂ࡾ
క ൌ 〈ሻ்ݐොሺ࢙ሻݐොሺ࢙〉 ൌ ௗࢃ

ࡾ்
కࢃௗ																																					ሺ3.20ሻ 

The estimated correlation may be computed from the transformed 

source covariance matrix in the same fashion as Equations 3.16 and 3.18.  

Furthermore, Equations 3.19 and 3.20 hold for any linear transformations in 

the time domain. 

3.3.5 eDCBF Regularized Correlation Reconstruction 

Use of the regularized beamformer has greatly improved the quality of 

beamformer signal time-course reconstruction (Robinson and Vrba, 1998; Van 

Veen et al., 1997; Hillebrand et al., 2005).  The eDCBF beamformer weight 

can be reformulated to obtain the regularized beamformer weight ࢃௗ
  

ௗࢃ
 ൌ ሺࡾ  ௗࡸௗሺࡸሻିࡵߛ

்ሺࡾ   ሺ3.21ሻ																										ௗሻିଵࡸሻିࡵߛ

where ߛ is the regularization parameter that increases the full-width half-

maximum of the beamformer point-spread function while reducing the amount 

of uncorrelated noise.  Source time-courses may be reconstructed as: 

ሻݐොሺ࢙ ൌ ሺࢃௗ
 ሻ்࢈ሺݐሻ																																																		ሺ3.22ሻ 
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Source correlation may be computed from the regularized estimated 

source covariance matrix ࡾ௦̂
 without computation of time courses using 

Equations 3.16 and 3.18. 

௦̂ࡾ
 ൌ 〈ሻ்ݐොሺ࢙ሻݐොሺ࢙〉 ൌ ሺࢃௗ

 ሻ்ࡾࢃௗ
 																																	ሺ3.23ሻ 

Correlation and time courses in specific frequency bands may be 

computed by using the regularized beamformer weight ࢃௗ
  in conjunction with 

Equations 3.19 and 3.20. 

3.3.6 eDCBF Noise-corrected Correlation Reconstruction 

The estimated dual-source covariance matrix can be heavily biased by 

the presence of noise, making true prediction of correlation difficult. Further 

investigation reveals that this bias can be corrected using the sensor noise 

covariance ࡾ.  The expression for ࡾ from Equation 1.15 may be equivalently 

written as ࡾ ൌ ෩௦ࡾ෨ࡸ
ࡸ෨்   , where the scalar composite lead-field matrix isࡾ

given by ࡸ෨ ൌ ሾଵ ଶ ⋯ ෩௦ࡾ ሿ and
 is the p x p scalar source covariance 

matrix.   The m x 1 vectors  that comprise ࡸ෨	are the scalar lead-fields for 

each source along its true orientation ࣁഥ where  ൌ  ഥ.  By substituting thisࣁࡸ

expression for ࡾ into Equation 3.5, it is evident that the estimated source 

covariance matrix ࡾ௦̂ is composed of a noise-free component (first term on the 

right-hand-most side of Equation 3.24) and a noise-related component 

(second term on the right-hand-most side of Equation 3.24): 
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௦̂ࡾ ൌ 	 〈ሻ்ݐොሺ࢙ሻݐොሺ࢙〉 ൌ ௗࢃ
ௗࢃࡾ் ൌ ௗࢃ

෩௦ࡾ෨ࡸ்
ࡸ෨்ࢃௗ ࢃௗ

 ሺ3.24ሻ																ௗࢃࡾ்

The process of minimization and application of linear constraints result 

in weight vectors that satisfy ࢃௗ
் ൌ  for ݅:	3 →  by assuming that the 

corresponding sources are uncorrelated with each other as well as the two 

sources of interest (Sekihara et al., 2002).  The noise-free component then 

reduces to the 4 x 4 true dual-source vector covariance matrix ࡾ௦:  

ௗࢃ
෩௦ࡾ෨ࡸ்

ࡸ෨்ࢃௗ ൌ  ሺ3.25ሻ																																																				௦ࡾ

Equation 3.25 also remains valid when only two sources are present.  

When additional partially correlated sources exist, the multi-core extension 

presented in the next section must be used.  Equation 3.24 then simplifies to:   

௦̂ࡾ ൌ ௦ࡾ ࢃௗ
 ሺ3.26ሻ																																																	ௗࢃࡾ்

Substituting the derived beamformer weight Equation 3.11 into 

Equation 3.26 and solving for ࡾ௦ yields: 

௦ࡾ ൌ ሺࡵ െ ௗࡸ௦̂ࡾ
ࡾ்

ିଵࡾࡾ
ିଵࡸௗሻࡾ௦̂																																					ሺ3.27ሻ 

To obtain the noise-corrected correlation, an unbiased estimate of the 

noise covariance ࡾ is essential.  The true dual-source vector covariance 

matrix can then be reduced using the derived orientations to the 2 x 2 true 

dual-source scalar covariance matrix ࡾ෩௦ to compute the noise-corrected 

correlation value ߯ଵଶ: 
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෩௦ࡾ ൌ  ሺ3.28ሻ																																																										࣒௦ࡾ்࣒

߯ଵଶ ൌ
෩௦ሺ1,2ሻଶࡾ

෩௦ሺ2,2ሻࡾ෩௦ሺ1,1ሻࡾ
																																															ሺ3.29ሻ 

Using the definition of the matrix ࡷ ൌ ௗࢃ
ௗࢃௗሺࢃࡾ்

ௗሻିଵࢃࡾ் ൌ

ௗࡸ௦̂ࡾ
ࡾ்

ିଵࡾࡾ
ିଵࡸௗ	from the original DCBF (Diwakar and Huang et al., 2011), 

Equation 3.27 can be written as: 

௦ࡾ ൌ ሺࡵ െ  ሺ3.30ሻ																																																			௦̂ࡾሻࡷ

Thus, the relationship between the true dual-source vector covariance 

and the estimated dual-source vector covariance is dependent on the ࡷ 

matrix, which is inversely proportional to the source space SNR.  As shown 

previously, the K-related dual-source pseudo-Z-score ሺܼሻ may be obtained 

by inverting the minimum eigenvalue of the ࡷ matrix (Robinson and Vrba, 

1998; Vrba and Robinson, 2001; Sekihara et al., 2004; Diwakar et al., 2011):   

ܼ ൌ ܼ௧
ௗ ൌ min൫݁݅݃ሺࡷሻ൯

ିଵ
																																									ሺ3.31ሻ 

This pseudo-Z-score can be used as a measure of relative source 

activity.  Alternatively, the power pseudo-Z-score may be computed by dividing 

the dual source power by the noise power (Van Veen et al., 1997): 

ܼ ൌ
௦̂ሽࡾሼݎݐ

ௗࡸሼሺݎݐ
ௗሻିଵሽࡸିଵࡾ்

																																											ሺ3.32ሻ 
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The differences in the spatial profile of ܼ and ܼ will be investigated in 

the Results. 

3.3.7 Extension to Multi-core Beamformer (MCBF) 

We previously demonstrated that using DCBF to model two sources is 

sufficient to reveal complex neuronal networks with many sources due to only 

partial suppression of the pseudo-Z-score (Diwakar and Huang et al., 2011).   

However, as shown by Equation 3.25, the eDCBF can only account for two 

correlated sources in the presence of other uncorrelated sources.  When 

multiple correlated sources exist, the correlation coefficient and time-course 

reconstruction are affected severely.  Therefore, the model needs to be 

expanded to handle such environments. 

A multi-core beamformer (MCBF) can be developed to account for 

additional sources. The technique can be described by a straightforward 

extension of the eDCBF.  Starting from Equation 1.15, the multi-core lead-field 

vector is defined as the m x 2c matrix ࡸ ൌ ሾࡸଵ ଶࡸ ⋯  ሿ, where c is theࡸ

desired number of sources to be modeled.  The corresponding multi-core 

weighting vector is then defined as the m x 2c matrix 

ࢃ ൌ ሾࢃଵ ଶࢃ ⋯  ,ሿ.  The solution to the multi-core weighting vectorࢃ

 :, is derived in an equivalent manner to Equations 3.6 through 3.11ࢃ

ࢃ ൌ ࡾ
ିଵࡸሺࡸ் ࡾ

ିଵࡸሻିଵ																																															ሺ3.33ሻ 
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The derivations presented from Equations 3.12 to 3.29 can be then 

applied to the multi-core beamformer to obtain the 2c x 2c estimated multi-

core vector covariance matrix ࡾ௦̂, the 2c x 2c true multi-core vector covariance 

matrix ࡾ௦, the c x c estimated multi-core scalar covariance matrix ࡾ෩௦̂, and the c 

x c true multi-core scalar covariance matrix ࡾ෩௦.  The orientation vector ࣒ is 

defined as: 

࣒ ൌ ൮

ഥଵࣁ 0 ⋯ 0
0 ഥଶࣁ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ഥࣁ

൲																																										ሺ3.34ሻ 

The estimated pair-wise correlation ߯̂ and the noise-corrected pair-

wise power correlation ߯ between the ith and jth sources are given by: 

߯̂ ൌ
,෩௦̂ሺ݅ࡾ ݆ሻଶ

,෩௦̂ሺ݅ࡾ ݅ሻࡾ෩௦̂ሺ݆, ݆ሻ
																																															ሺ3.35ሻ 

߯ ൌ
,෩௦ሺ݅ࡾ ݆ሻଶ

,෩௦ሺ݅ࡾ ݅ሻࡾ෩௦ሺ݆, ݆ሻ
																																															ሺ3.36ሻ 

Amplitude correlation can be computed as the square root of Equations 

3.35 and 3.36.  The formulation of the MCBF is similar to that of the NB and 

CSSM except that instead of deriving the beamformer weight for only one 

source of interest at a time, the MCBF applies additional constraints to 

simultaneously find weights for all modeled sources (Dalal et al., 2006; Hui 

and Leahy, 2006; Hui and Leahy, 2010; Quuran and Cheyne, 2010).  This 
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feature allows correlation reconstruction of multiple interfering sources at the 

same time.  The MCBF requires three degrees of freedom for spatial location 

and two degrees of freedom for orientation per core.  Theoretically, if all 

signals from m sensors are linearly independent and signal-related (achieved 

at infinite SNR), the MCBF can model a maximum of m/5 sources.  However, 

at the typical SNR of real measurements recorded on a modern MEG system, 

the number of signal-related independent spatial modes is approximately 40-

50, allowing the MCBF to model a maximum of 8-10 sources.  The MCBF is 

most appropriately used to determine source activity for a given set of sources 

that already have been accurately localized by methods utilizing a metric such 

as the DCBF pseudo-Z-score (Diwakar and Huang et al., 2011). 

3.3.8 General Setup for Simulations 

To measure the performance of the eDCBF spatial filter for both 

correlation and temporal reconstruction, a series of computer simulations were 

conducted with a simulator designed to allow variation of the sources present 

(number, location, orientation) and their corresponding waveforms (frequency, 

amplitude, lag, duration, SNR), thereby providing vast flexibility for simulation 

execution.  

The source space was simulated with a grid covering the cortical gray 

matter with homogenous 5 mm spacing in the x, y, and z directions.  The 

cortical boundaries were obtained from a healthy subject’s T1-weighted 
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anatomical MRI.  The sensor configuration was based on the 

Elekta/NeuromagTM whole-head MEG system (VectorView), in which 306 

sensors are arranged on a helmet-shaped surface (204 gradiometers and 102 

magnetometers). The source-sensor configuration is shown in Figure 3.1 

(inner-skull surface represented by gray mesh).  

To compute the forward model, the boundary element method (BEM) 

was employed where the inner-skull surface (from MRI) served as the BEM 

mesh (size 5mm). SNR levels were adjusted by adding uncorrelated random 

Gaussian noise to the sensor waveforms, where the SNR was defined as the 

ratio of the Frobenius norm of the signal vector to that of the noise vector 

calculated over the interval with signal.  Using the simulator, eDCBF 

correlation and time-course reconstruction were inspected over varying source 

coherence, SNRs, and temporal dynamics.  Additional simulations were 

designed to test the eDCBF at various source separations as well as to 

investigate correlation estimation for the three-core MCBF. 

3.3.9 Setup for SNR, Correlation, and Time-course Simulations 

Two source dipoles were placed in the left and right hemisphere 

auditory cortices (Figure 3.1).  Their signals were composed of a 6-second 

inactive period followed by 6 seconds of a sinusoidal wave with amplitude of 5 

nAm and frequency of 30 Hz (sampling rate 1000 Hz).  The phase shift of the 

second source was varied from 0 to 90 in steps of 10 to test a wide range of 
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correlations.  Reconstruction of the estimated correlation and the noise-

corrected correlation was carried out at SNRs of 4, 2, 1, 0.5, 0.25, and 0.167.  

Estimation of source amplitudes was carried out by FFT examination of 

extended length (50x) source time-course reconstructions over all phase lags 

and SNRs.  To test time-course recovery of a more complicated signal, a 

linear chirp was utilized, wherein the frequency was varied from 5 to 10 Hz 

(and back) over a period of 5 seconds and the amplitude was modulated by a 

0.1 Hz sinusoid.  Noise-corrected correlation was computed for all SNRs and 

for source time-lags of 0.05, 0.1, 0.4 and 1 second.  Source time-courses and 

RMS amplitudes were calculated at all time-lags and at an SNR of 4.  Finally, 

Monte Carlo methods were employed to properly quantify the results’ 

probability distribution (1000 simulations unless otherwise noted).   

3.3.10 Setup for Location Simulations 

To test eDCBF reconstruction at varying source locations, the 

sinusoidal simulation from the previous section was performed for two 

additional sets of sources.  Noise-corrected correlation values were computed 

for distantly-placed sources in the left and right hemisphere primary motor 

cortices with a separation of 70 mm and for closely-placed sources in the left 

and right posterior cingulate cortex (PCC) with a separation of 5 mm (Figure 

3.1).  A set of 1000 randomly chosen source pairs was also tested for noise-

corrected correlation accuracy at a fixed SNR of 4. 
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3.3.11 Setup for Three-core MCBF Simulation 

An additional simulation was designed to test MCBF performance for a 

core size of three.  Sources were placed in the PCC and the left and right 

primary motor cortices. The right motor cortex source’s phase lag ranged from 

45 to 90 (in steps of 5) whereas the PCC source’s phase lag decreased 

from 45 to 0 (in steps of 5), creating a variety of correlation conditions. The 

simulation was executed 1000 times to compute the noise-corrected 

correlation for the full SNR and correlation ranges. 

3.3.12 Setup for Human MEG Auditory Study 

A stereo auditory test stimulus was designed to compare eDCBF 

correlation and time-course reconstruction in actual MEG measurements (200 

epochs of evoked responses) to reconstruction using two-dipole fit, a method 

known to adequately represent neuronal activity in the auditory cortices 

(Mosher et al., 1992; Mosher and Leahy 1998; Mosher et al., 1999; Huang et 

al., 1998).  The test sound file consisted of 1800 ms of pre-stimulus silence 

followed by a 2000 ms stereo stimulus period.  The stimulus consisted of a 

500-Hz pure tone with a 40-Hz envelope modulated at 100% level.  The 

modulation envelopes between the left and right channels were designed to 

be fully correlated.  The intensities of the left and right channels were balanced 

for equal sensitivity for the left and right ears.  The start and end of the 

stimulus epochs were smoothed with a cosine roll-off to prevent any artifacts.  
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Magnetic fields evoked by auditory stimulation were measured using an 

Elekta/NeuromagTM whole-head MEG system (VectorView) with 204 

gradiometers and 102 magnetometers in a magnetically shielded room 

(IMEDCO-AG, Switzerland).  EOG electrodes were used to detect eye blinks 

and eye movements.  

Intervals of 1400 ms of post-stimulus data and 200 ms of pre-stimulus 

data were used for analysis (gradiometers only).  Data were sampled at 1000 

Hz and processed by MaxFilter to remove environment noise (Taulu et al., 

2004; Taulu and Simola, 2006; Song et al., 2008; Song et al., 2009).  Artifact-

free MEG responses (n=181) were averaged with respect to the stimulus 

trigger.  A BEM mesh of 5-mm size for the subject was generated from the 

inner-skull surface using a set of T1-weighted MRI images taken on a 1.5 T 

MRI scanner.  Registration of MRI and MEG was performed using data 

obtained from the Polhemus Isotrak system prior to MEG scanning. 

Reconstructions of MEG auditory recordings with the eDCBF, SBF, and 

dipole-fit modeling were compared to assess the accuracy and validity of the 

eDCBF reconstruction.  SVD was used to separate the original sensor 

measurements into signal and noise components.  The top eight singular 

modes were chosen as a conservative estimate of the noise-free signal based 

on manual inspection of the elbow-shaped region of the singular value 

spectrum.  The remaining singular modes were considered to contain only the 

noise-related signal.  The noise components were removed and replaced with 
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white noise of the same power, resulting in an estimated SNR of 3.7 and 

allowing construction of a noise covariance matrix.  A regularization parameter 

equal to 4% of the largest eigenvalue of ࡾ was used for reconstruction with 

both the eDCBF and the vector SBF (Van Veen et al., 1997; Sekihara et al., 

2002; Sekihara et al., 2004). 

Dual-source localization was performed with a Nelder-Mead downhill 

simplex search for the maximum power pseudo-Z-score.  The eDCBF 

regularized beamformer weight ࢃௗ
  was computed and used with Equations 

3.22, 3.19, and 3.17 to generate unfiltered and low-pass filtered (< 50 Hz) 

regularized time-courses for each source.  Inter-hemispheric correlation values 

were computed from filtered time-courses, from the source covariance matrix 

presented in Equation 3.20, and from the noise-corrected source covariance 

matrix.  Vector-based SBF was also used to reconstruct unfiltered and filtered 

regularized time-courses for the source locations identified by the eDCBF.  

Inter-hemispheric correlations were computed with the reconstructed filtered 

regularized SBF time-courses for comparison.   

Localization was also performed using a multi-start downhill simplex 

dipole-fit algorithm with a spherical head model (Huang et al., 1998).  The 

fitted locations were further refined with a BEM forward model.  The dipole-fit 

source time-course reconstruction was obtained by multiplying the pseudo-

inverse of the gain matrix for the fitted dipoles and the sensor measurements.  

Inter-hemispheric correlations were computed with unfiltered and low-pass 
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filtered dipole-fit source time-courses (< 50 Hz).  Correlations were also 

computed between filtered regularized reconstructions (eDCBF and SBF) and 

filtered time-courses obtained from dipole fit as a measure of time-course 

similarity. 

3.4 Results 

3.4.1 Analysis of eDCBF Across Entire Correlation Range 

To test the performance of eDCBF across the entire range of possible 

correlations, a phase lag was introduced to the sinusoid of the second source. 

The simulation was performed with an SNR of 4, minimizing noise effects so 

that the eDCBF’s sensitivity to correlation was emphasized.  Source 

reconstruction was completed using estimated correlation reconstruction.  

Table 3.1 shows that eDCBF estimates of the sources’ time-course 

correlations are highly accurate (ߝ ൏ 0.003, ߪ  0.0013, where ߝ is the error, 

and ߪ is the standard deviation across Monte Carlo iterations) regardless of 

the actual value of the correlation. In addition, the low standard deviation 

demonstrates eDCBF’s exceptional stability.  Accuracy of source localization 

was not examined here, as it was already confirmed with the original DCBF 

(Diwakar and Huang et al., 2011).  
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3.4.2 Examination of eDCBF Performance Across SNR Range 

Real-world noise commonly dominates the underlying signal, frequently 

posing a problem for beamformers.  Therefore, we characterized eDCBF 

performance across a range of SNR values. The following simulation allowed 

comparison of the estimated and noise-corrected correlation reconstruction 

from Equations 3.18 and 3.29. We observed that even though the estimated 

correlation works well initially, as SNR drops below 1, the accuracy of eDCBF 

estimated correlations fell to unacceptable levels. By a SNR level of 0.167, the 

filter became practically ineffective and was unable to appropriately resolve 

the underlying signal ሺ̅ߝ ൏ 0.32ሻ, where ߝ ̅is the averaged correlation error over 

all phase shifts for a given SNR. From the noise time-courses (added to 

sensor waveforms to create the desired SNR), an unbiased estimate of the 

noise covariance matrix was used to examine the noise-corrected correlation.  

The correction allowed the beamformer to perform successfully at the entire 

range of SNR and correlation values (̅ߝ ൏ 0.0008, തߪ ൏ 0.011), where ߪത is the 

averaged Monte Carlo standard deviation across all phase shifts in a given 

SNR (Figure 3.2), rendering eDCBF an extremely robust and flexible 

beamformer filter given a reasonably accurate estimation of the noise 

covariance.   
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3.4.3 Validation of eDCBF Performance Regardless of Source Location 

The sensitivity of the eDCBF filter to the location of the two sources was 

investigated by examining three cases: a pair of distantly-spaced dipoles, a 

pair of closely spaced dipoles, and a pair of randomly placed dipoles. For 

distant dipoles, we observed that the correlation reconstruction worked 

precisely throughout the entire SNR and correlation ranges ሺ̅ߝ ൏ 0.0005, തߪ ൏

0.009ሻ. When dipoles were closely placed (PCC dipoles spaced only 5 mm 

apart), a hindrance for beamformer operation at low SNR, the eDCBF still 

performed effectively.   At SNRs at or above 0.5, the eDCBF was reasonably 

accurate	ሺߝ ̅ ൏ 0.005, തߪ ൏ 0.036ሻ, while at SNRs of 0.25 or lower it slightly 

overestimated the correlation value ሺ̅ߝ ൏ 0.027, തߪ ൏ 0.11ሻ due to bias in the 

noise covariance estimate at very low SNRs (Figure 3.3).  Finally, the eDCBF 

filter still performed accurately when dipole pairs were chosen randomly 

ሺߝ ൏ 0.0002, ߪ ൏ 0.003ሻ. 

3.4.4 Time-course Reconstruction – Sinusoid/Chirp Source Waveforms 

For most of the simulations, a sinusoid wave was used to construct the 

source signal. To investigate the precision of the reconstructed waveform, we 

examined the accuracy of the reconstructed amplitude as the SNR and phase 

lag were varied, which is another concern associated with previous dual 

beamformers. Figure 3.4 shows a set of reconstructed waveforms (for the 

entire range of phase shifts) at SNR of 4 computed from Equation 3.17.  As 
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shown in Table 3.2, eDCBF reconstructed the amplitude with the same 

success regardless of SNR or correlation value, underestimating by more than 

1% only in a single case.  The small bias in amplitude estimation occurs due to 

a rank deficient sensor covariance matrix before the addition of noise.   

Amplitudes estimated from the eDCBF were far more accurate than those 

from the previous DCBF, which were suppressed by an average of 12.5% 

(Diwakar and Huang et al., 2011). 

Since neuronal signals typically contain complex features, a more 

sophisticated waveform in the form of a linear chirp was also considered. To 

simulate various correlations, a series of time lags were introduced to the chirp 

present in the second source. Figure 3.5 shows an example of the 

reconstructed waveform for a one-second time-lag at a SNR of 4 for the 

sensor waveforms.  To quantitatively asses the reconstruction, an RMS 

amplitude measure was employed. When comparing the original waveform’s 

amplitude with the reconstructed waveform (for the example above), it was 

accurate to 99.9%. The accuracy of the correlation computation was also 

tested (1000 Monte Carlo simulations). Figure 3.6 shows that the eDCBF 

successfully estimates the correlation for any combination of SNR and time lag 

ሺ̅ߝ ൏ 0.0004, തߪ ൏ 0.007ሻ.  
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3.4.5 Three-source Simulation with MCBF 

The last simulation examined the performance of the MCBF filter when 

reconstructing three simultaneously-active correlated sources. Currently, no 

beamformer method is able to properly address this issue. MCBF performance 

in reconstructing the source correlation values for all three dipole combinations 

can be seen in Figure 3.7. For any given condition, MCBF properly 

reconstructed all correlation values ሺ̅ߝ ൏ 	0.005, തߪ ൏ 0.04ሻ.  

3.4.6 Human Auditory Reconstruction Results 

The two-dipole-fit reconstruction of the evoked MEG auditory response 

to the 500-Hz pure tone with a 40-Hz envelope (Figure 3.8) showed bilateral 

activation of both the left and right auditory cortices.  The left hemisphere 

neuronal source (blue) showed a large transient response followed by a 

steady-state response with a weak 40-Hz component.  The right hemisphere 

neuronal source (green) revealed a slightly smaller transient response with 

strong 40-Hz steady-state oscillations from 500 ms to 1400 ms.   

During eDCBF reconstruction of the auditory response, maximizing the 

power pseudo-Z-score (34) appropriately localized sources to the left and right 

auditory cortices (Figure 3.9).  Though the K-related pseudo-Z-score provides 

a valid method of localization at low SNRs as shown previously (Diwakar and 

Huang et al., 2011), its spatial distribution at high SNR is sharply peaked, 

rendering it unsuitable for grid spacing of a few millimeters.  However, the 
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power pseudo-Z-score provides a suitable measure of detection for high SNR 

recordings (Figure 3.10).  Localization of the auditory response found by 

dipole-fit and the eDCBF differed by less than 2.5 mm for each hemisphere 

(Figure 3.9).   

The eDCBF regularized recovery of source time-courses (Figure 3.11 – 

left panels) showed individual signals for the left (blue) and right (green) 

hemisphere neuronal sources.  Furthermore, examination of both right and left 

source signals showed well-defined transient and steady-state responses that 

closely resembled the time courses obtained from dipole-fit as indicated by 

high correlations	ሺ߯
 ൌ 0.9630;	߯ோ

 ൌ 0.9614ሻ.  In contrast, SBF regularized 

time-courses (Figure 11 – right panels) correlated poorly with those obtained 

from dipole-fit ሺ߯
 ൌ 0.5018;	߯ோ

 ൌ 0.4946ሻ.  In fact, even features such as the 

larger, left-sided transient response and the stronger, right-sided 40-Hz 

steady-state response were preserved with the eDCBF.  The errors in the SBF 

reconstruction were due to inaccurate determination of source orientations and 

the false assumption that sources are uncorrelated.   

Correlations for dipole-fit time-courses showed strong coherence 

between the left and right auditory cortices ൫߯ ൌ 0.9535	, ߯௧
 ൌ 0.9567൯.  

The eDCBF noise-corrected correlation ൫߯ ൌ 0.9349൯ and the filtered 

eDCBF correlation ൫߯̂,௧
 ൌ 0.9385൯ agreed with these values ሺ∆߯ ൏ 3%ሻ.  

However, the SBF-predicted correlation ൫߯̂,௧
 ൌ 0.6119൯ was quite poor 
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ሺ∆߯ ൎ 35%ሻ.  Correlations computed from eDCBF time-courses and from the 

appropriate source covariance matrices were identical. 

3.5 Discussion 

The present study provides an improved implementation of our 

previously introduced DCBF, which was unable to accurately estimate source 

amplitudes or produce unique time-courses and correlations to characterize 

source activity (Diwakar and Huang et al., 2011).  The eDCBF provides a 

novel approach designed to reconstruct the source power covariance matrix 

 ௦̂ between multiple sources.  With this matrix, individual time-courses andࡾ

correlations for sources can be determined in low SNR conditions, overcoming 

the deficits of the DCBF.   

Computationally, multiple source beamformers (e.g. DSBF, DCBF, 

eDCBF) require some searching for the optimum source configuration unlike 

traditional beamformers.  Single beamformers may therefore appear more 

attractive as quick scanning methods but are less accurate due to the strict 

assumption of non-correlated sources (Robinson and Vrba, 1998; Sekihara et 

al., 2002; Van Drongelen et al., 1996; Van Veen et al., 1997).  Furthermore, 

unlike beamformer spatial filters that are designed to work in a correlated 

environment (e.g. NB, CSSM, and AGMN-RUG), the eDCBF requires only a 

single computation of the weight matrix for accurate correlation determination 
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(Dalal et al., 2006; Hui and Leahy, 2006; Hui and Leahy, 2010; Quuran and 

Cheyne, 2010; Kumihashi and Sekihara, 2010).   

For complex signals, the mathematical formulation of eDCBF flexibly 

enables examination of correlations in envelopes and frequency bands of 

interest without too much additional computational load, thereby permitting a 

more detailed investigation of neuronal communication. Moreover, the eDCBF 

correlation analysis can be naturally extended to the MCBF spatial filter to 

account for the presence of multiple correlated sources.   

A variety of simulations were conducted to examine the performance of 

the eDCBF by quantifying the robustness of computed correlations across a 

range of SNRs (4 to 0.167), source locations, time lags, and waveform shape 

for two sources.  The eDCBF reconstructed correlations with a high degree of 

accuracy even at a source spacing of only 5 mm.  The results also showed 

that the eDCBF could handle both fully correlated and uncorrelated neuronal 

sources.  Source time-course reconstructions resulted in accurate and 

individual time-courses regardless of the degree of correlation between 

sources.  Furthermore, the amplitudes of time courses were accurately 

reproduced irrespective of the correlation between sources, which is a notable 

shortcoming of previous dual-beamformer approaches (Brookes et al., 2007; 

Diwakar and Huang et al., 2011). The spatial width of the eDCBF localization 

peaks using different measures (ܼ and ܼ) under different SNR conditions 
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was also investigated.   We observed that ܼ provides a suitable width for low 

SNR data while ܼ is preferable for high SNRs. 

As a proof of principle, our investigation of the MCBF spatial filter 

showed accurate correlation reconstruction across a wide variety of source 

correlations and SNRs in the presence of three correlated sources.  In reality, 

MEG signals can have many active sources. As such, future developments 

should include an optimization algorithm to determine the proper MCBF core-

number to use for reconstruction, which would prevent inaccurate estimation 

of source activities due to under-modeling.  For example, DCBF localization 

and pseudo-Z-score statistical thresholding can be used to determine MCBF 

core-number.   Furthermore, typical SNR levels for real recordings must be 

considered, which limits the MCBF core-size to 8-10 sources in practice.  

We also applied the eDCBF spatial filter to human MEG measurements 

from a stereo auditory tone paradigm to cross-validate reconstruction 

performance from our simulations.  Localization with the power pseudo-Z-

score showed activity in both auditory cortices.  The SBF and eDCBF 

reconstructions were compared to a two-dipole-fit reconstruction.  The eDCBF 

time-courses for both right and left hemisphere auditory cortices closely 

resembled dipole-fit time-courses, maintaining both transient and steady-state 

components of the signal. In contrast, reconstruction with SBF showed 

malformed and inaccurate time courses.  Source localization with eDCBF was 

used for SBF reconstruction due to the SBF’s inability to properly localize 
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correlated neuronal sources (Brookes et al., 2007).  Inter-hemispheric 

correlations computed from eDCBF and dipole-fit estimated time-courses were 

very close; however, the SBF predicted correlation was underestimated, 

confirming that the eDCBF offers a more robust reconstruction than the SBF in 

correlated source environments. Furthermore, strong correlation between 

eDCBF time-courses and dipole-fit results showed that the two methods yield 

very similar waveforms. 

In summary, the present results indicate that the eDCBF spatial filter 

provides a viable method for exploring complex neuronal networks and their 

communication, promoting the use of MEG to investigate brain activity. 
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Table 3.1: Estimated correlation reconstruction for auditory dipoles (SNR=4). 

Correlation averages and standard deviations determined using 1000 Monte 

Carlo simulations.  

 

 

 

 

 

 

 

 

 

Table 3.2: Amplitude values for left auditory cortex dipole (results equivalent 

for right dipole). Amplitude values determined using 100 Monte Carlo 

simulations.  

 

 

 
Shift 

 
(Actual) 


(Estimated) 

 

0 1.000 0.997 3.83E-05 

10 0.970 0.967 1.96E-04 

20 0.883 0.881 4.44E-04 

30 0.750 0.748 7.96E-04 

40 0.587 0.585 1.03E-03 

50 0.413 0.412 1.22E-03 

60 0.250 0.250 1.21E-03 

70 0.117 0.117 9.85E-04 

80 0.030 0.030 5.47E-04 

90 0.000 0.000 1.07E-04 

 Shift  (Actual)
SNR 

4 2 1 0.5 0.25 
Amplitude 

0 1.000 4.99 4.99 4.99 4.99 4.99 
10 0.970 4.99 5.00 4.99 4.99 4.99 
20 0.883 4.99 4.99 5.00 4.99 4.99 
30 0.750 4.99 5.00 5.00 4.99 4.99 
40 0.587 4.99 4.99 4.99 4.99 4.99 
50 0.413 4.99 4.99 5.00 4.99 4.99 
60 0.250 4.99 4.99 5.00 4.99 4.98 
70 0.117 4.99 5.00 4.99 4.99 4.98 
80 0.030 4.99 4.99 4.99 4.99 4.97 
90 0.000 4.99 4.99 4.99 4.99 4.93 
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Figure 3.11
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CHAPTER 4 

An Algorithm for Neuronal Source Localization using the Multi-core 

Beamformer in MEG Recordings 

4.1  Abstract 

In this chapter, we introduce a method that incorporates the multi-core 

beamformer (MCBF) to perform successful source activity reconstruction for 

biomagnetic measurements recorded by magnetoencephalography (MEG).  

Beamformers have been widely used for determining source activity in MEG 

applications but have limitations.  Notably, conventional single beamformers 

(SBF) have difficulty detecting neuronal sources with correlated time-courses, 

causing correlation-dependent time-course distortion and amplitude 

suppression.  The MCBF, while able to handle multiple correlated sources and 

overcoming many limitations of the conventional dual-source beamformer, is 

more challenging to use than the SBF as it requires searching for optimum 

solutions and, as formulated, only determines activity for locations specified by 

the cores.  In our method, we introduce a way of efficiently and reliably 

searching the source space for the optimum MCBF solution without a priori 

information, thereby preventing the distortion common with conventional 

beamformers while arriving at a solution in a reasonable time-frame.  

Furthermore, we show that time-course estimates can be found for the entire 

source space, a feature lacking in prior multi-source beamformer formulations.  
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We have validated and demonstrated the success of our approach through 

application to simulated data as well as to evoked median-nerve stimulation 

MEG data. 

4.2 Introduction 

Due to the underdetermined nature of the lead-field type of inverse 

problem, different techniques have been proposed as a means of generating 

viable solutions.  However, none can address all characteristics of complex 

brain activity in a practical manner for all cases.  In this chapter, we put 

forward a novel source localization technique, which employs the abilities of 

the multi-core beamformer (MCBF) to overcome the inherent limitations of 

previous single and multi-source adaptive spatial filters (beamformers). 

The most frequently used beamformer to obtain a solution to the 

inverse problem is the single beamformer filter (SBF).  The minimum-variance 

constraint used by the SBF incorporates the sensor covariance matrix, 

allowing it to attain very high spatial resolution for uncorrelated source 

reconstructions (Robinson and Vrba, 1998; Sekihara et al., 2002; Van 

Drongelen et al., 1996; Van Veen et al., 1997). However, this beamformer fails 

to resolve coherent sources, leading to the suppression of source amplitudes 

and distorted time-courses (Sekihara and Nagarajan, 2008). In addition, 

although the SBF is capable of generating time-courses and power estimates 

on a voxel-by-voxel basis, neural activity generally involves synchronous 
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communication between multiple sources (Singer, 1999), rendering the SBF 

inadequate for analyzing high-level brain activity. 

To address these shortcomings, the enhanced dual-core beamformer 

(eDCBF) was developed, allowing accurate determination of unique source 

time-courses (i.e. allowing coherence analysis) and source amplitudes 

(Diwakar et al., 2011b).  Reconstructions of auditory evoked recordings with 

the eDCBF showed its capability to produce high-fidelity solutions with real 

data. To deal with data containing more than two coherent sources, an 

extension of the eDCBF, dubbed the multi-core beamformer (MCBF), was 

introduced. Though the MCBF offers many advantages over other 

beamformers, source localization is difficult, requiring multi-dimensional 

searches.  Furthermore, time-courses are only generated for the sources 

included in the spatial filter and not for other locations in the brain, preventing 

whole-brain connectivity studies. 

In this chapter, we introduce a novel MCBF localization search 

algorithm that finds feasible solutions in the timescale of minutes with no a 

priori information required.  The algorithm exploits under-modeled solutions to 

gradually increase the MCBF core size until the correct number of sources is 

modeled. The search algorithm operates by using a newly developed pseudo-

Z-score statistic that describes total source-by-source signal-to-noise ratio 

(SNR).  We further demonstrate that over-modeled and under-modeled 

solutions can be detected so that the optimum MCBF core number can be 
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determined.  By exploring the parallels between the MCBF and the nulling 

beamformer, we also demonstrate MCBF’s ability to generate volumetric 

source time-courses and whole-brain power maps that can be used for 

investigation of brain coherence.  MCBF reconstructions as well as the 

proposed source localization algorithm were tested with complex six-dipole 

simulations and with real neuromagnetic measurements recorded during a 

median-nerve stimulation task, showcasing MCBF’s ability to accurately 

determine source activity for highly complex neuronal networks. 

4.3 Materials and Methods 

In this section, we first review MCBF mathematics, after which we 

develop the new metric and methodology used to obtain the optimum source 

solution as well as describe the generation of volumetric activity maps.  

Finally, we describe the simulated and median-nerve stimulation experiments 

used to test our proposed search algorithm and quality of maps created.  

4.3.1 Multi-core Beamformer 

To develop a suitable multi-dimensional search statistic and search 

algorithm, we begin by exploring the mathematical description of the MCBF.  

The multi-core lead-field vector is defined as the m x 2c matrix ࡸ ൌ

ሾࡸଵ ଶࡸ ⋯   .ሿ, where c is the desired number of sources to be modeledࡸ

The corresponding multi-core weighting vector is defined as the m x 2c matrix 

ࢃ ൌ ሾࢃଵ ଶࢃ ⋯  :ሿ, designed such thatࢃ
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ሻݐොሺ࢙ ൌ ࢃ
்  ሺ4.1ሻ																																																						ሻݐሺ࢈

where ࢙ොሺݐሻ represents the estimated source time-courses.  The solution to the 

multi-core weighting vector, ࢃ, is obtained by computing the minimum 

variance solution (Diwakar et al., 2011b): 

ࢃ ൌ ࡾ
ିଵࡸሺࡸ் ࡾ

ିଵࡸሻିଵ																																								ሺ4.2ሻ 

To prevent erroneous weighting near the center of the head, array-gain 

constraints may be applied by normalizing each column of ࡸ (Kumihashi and 

Sekihara, 2010; Sekihara and Nagarajan, 2008).  The MCBF estimated vector 

covariance matrix ࡾ௦̂ is then given by: 

௦̂ࡾ ൌ ࢃ
் ࢃࡾ ൌ ሺࡸ் ࡾ

ିଵࡸሻିଵ																																			ሺ4.3ሻ 

The MCBF estimated source vector covariance matrix ࡾ௦̂ can be expressed 

as: 

௦̂ࡾ  ൌ

ۉ

ۇ

ഥଵࣁഥଵࣁ〈ሻݐଵሺݏሻ̂ݐଵሺݏ̂〉
் ഥଶࣁഥଵࣁ〈ሻݐଶሺݏሻ̂ݐଵሺݏ̂〉

் ⋯ ഥ்ࣁഥଵࣁ〈ሻݐሺݏሻ̂ݐଵሺݏ̂〉

ഥଵࣁഥଶࣁ〈ሻݐଵሺݏሻ̂ݐଶሺݏ̂〉
் ഥଶࣁഥଶࣁ〈ሻݐଶሺݏሻ̂ݐଶሺݏ̂〉

் ⋯ ഥ்ࣁഥଶࣁ〈ሻݐሺݏሻ̂ݐଶሺݏ̂〉

⋮ ⋮ ⋱ ⋮
ഥଵࣁഥࣁ〈ሻݐଵሺݏሻ̂ݐሺݏ̂〉

் ഥଶࣁഥࣁ〈ሻݐଶሺݏሻ̂ݐሺݏ̂〉
் ⋯ یഥ்ࣁഥࣁ〈ሻݐሺݏሻ̂ݐሺݏ̂〉

 ሺ4.4ሻ							ۊ

where ̂ݏሺݐሻ are the estimated scalar source time-courses and ࣁഥ are the 2 x 1 

estimated normalized orientations.  The diagonal 2 x 2 sub-matrices of ࡾ௦̂ are 

of the same form as SBF vector covariance matrices (Sekihara et al., 2004).  

Thus, source power estimates can be obtained by simply computing the trace 
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of the respective diagonal submatrix (Diwakar et al., 2011b).  An equivalent 

covariance matrix for source noise ࡾො  can be expressed as: 

ොࡾ ൌ ࢃ
் ࢃࡾ

ൌ

ۉ

ۇ

〈 ො݊ଵሺݐሻ ො݊ଵሺݐሻ〉ࣀതଵࣀതଵ
் 〈 ො݊ଵሺݐሻ ො݊ଶሺݐሻ〉ࣀതଵࣀതଶ

் ⋯ 〈 ො݊ଵሺݐሻ ො݊ሺݐሻ〉ࣀതଵࣀത்

〈 ො݊ଶሺݐሻ ො݊ଵሺݐሻ〉ࣀതଶࣀതଵ
் 〈 ො݊ଶሺݐሻ ො݊ଶሺݐሻ〉ࣀതଶࣀതଶ

் ⋯ 〈 ො݊ଶሺݐሻ ො݊ሺݐሻ〉ࣀതଶࣀത்

⋮ ⋮ ⋱ ⋮
〈 ො݊ሺݐሻ ො݊ଵሺݐሻ〉ࣀതࣀതଵ

் 〈 ො݊ሺݐሻ ො݊ଶሺݐሻ〉ࣀതࣀതଶ
் ⋯ 〈 ො݊ሺݐሻ ො݊ሺݐሻ〉ࣀതࣀത்ی

 ሺ4.5ሻ																		ۊ

where ො݊ሺݐሻ are the estimated scalar source noise time-courses and ࣀത are the 

2 x 1 estimated normalized noise orientations. In a similar manner, source 

noise estimates can be computed as the trace of each submatrix of ࡾො .  The 

signal-to-noise ratio of each source can then be determined by: 

ܼ ൌ
ഥࣁഥࣁ〈ሻݐሺݏሻ̂ݐሺݏ̂〉ሺݎݐ

்ሻ െ 〉ሺݎݐ ො݊ሺݐሻ ො݊ሺݐሻ〉ࣀതࣀത
்ሻ

〉ሺݎݐ ො݊ሺݐሻ ො݊ሺݐሻ〉ࣀതࣀത
்ሻ

ൌ
ഥࣁഥࣁ〈ሻݐሺݏሻ̂ݐሺݏ̂〉ሺݎݐ

்ሻ

〉ሺݎݐ ො݊ሺݐሻ ො݊ሺݐሻ〉ࣀതࣀത
்ሻ
െ 1																																																																				ሺ4.6ሻ 

In practice, the submatrices of ࡾ௦̂ and ࡾො  are sufficient to compute 

individual source pseudo-Z-scores, and it is not necessary to determine 

individual source powers and orientations.  Such a pseudo-Z-score has been 

shown to be robust to variations in the lead-fields, providing a useful statistic to 

model source activity (Sekihara et al., 2002; Sekihara et al., 2004; Van Veen 

et al., 1997).  Therefore, we use the pseudo-Z-score to guide MCBF 

localization, assuming that the optimum solution is attained when the sum of 

all individual pseudo-Z-scores ሺܼ௧ሻ is maximized. 
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ܼ௧ ൌ ∑ܼ																																																											ሺ4.7ሻ 

4.3.2 Algorithm for Maximizing ܼ௧ 

The sum of Z-scores ሺܼ௧ሻ is a function of all core locations.  A typical 

source grid that is used for inverse MEG solution computation contains 

approximately 7000-9000 sources.  While performing exhaustive enumeration 

of all possible values of ܼ௧ would yield the optimum MCBF solution, this 

becomes computationally impractical as the MCBF core increases in size.  

Therefore, a non-linear search algorithm was developed capable of finding an 

adequate solution within a reasonable timeframe (Figure 4.1).  As a starting 

point for modeling the core, the algorithm employs the two-source MCBF 

solution.  This solution is obtained by performing Powell searches with 

randomly selected dipole pairs to find the pair with the highest ܼ௧, similar to the 

DCBF approach previously documented (Diwakar et al., 2011a), with search 

distance limited to a 3 cm radius.  Next, the two main stages of the search 

algorithm, (1) core development and (2) core refinement, are performed until 

ܼ௧ stabilizes.  Core development is accomplished by adding a new source, 

satisfying a minimum SNR (ܼ  0.05ሻ and chosen from the global dipole grid, 

to the existing core that maximizes the total pseudo-Z-scores of all cores ሺܼ௧ሻ.  

During core refinement, each source in the core is locally adjusted within a 

radius of 3 cm such that ܼ௧ is maximized. The cores are sequentially adjusted 

(in order of highest to lowest single source pseudo-Z-score ሺܼሻ) in each 
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iteration of the core refinement stage.  Core refinement is completed once no 

more adjustments are made, i.e.  a stable core configuration is found. 

Core development halts when ܼ௧ remains stable or reaches a plateau 

(i.e. |ܼ௧ െ ܼௗ| ൏  is 1% of ܼௗ).  If a stable plateau is ߝ repeatedly, where ߝ

not achieved, a maximum core size should be used as a stopping criterion.  

Given that typical MEG recordings contain 40-50 independent modes and 

each core is described by a rank 2 lead-field matrix (i.e. DoF =2), the MCBF 

can support approximately 20-25 cores per covariance matrix before matrix 

inversion becomes unstable.  A lower maximum core size may be used to 

decrease computational cost.  However, one should ensure that the maximum 

core size is not set too low, so that enough data points may be collected to 

sufficiently account for all sources present. 

4.3.3 Generation of Volumetric Activity Maps 

Mathematically, the cores present in the MCBF core-set act in the same 

fashion as nulling constraints imposed using the nulling beamformer (Dalal et 

al., 2006; Diwakar et al., 2011b; Hui and Leahy, 2006; Hui and Leahy, 2010; 

Quuran and Cheyne, 2010), except they are determined without the use of 

prior information.  For each given source (core) a respective volumetric power 

map (pseudo-Z-score per grid point) and time-course map (time-course per 

grid point) can be computed. This is done by using all the remaining cores in 

the weight vector solution with an additional “free” core (beamformer pointing 
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location) that scans through every grid point to calculate the corresponding 

pseudo-Z-score and time-course. Map construction is mathematically identical 

to applying c - 1 nulling constraints with the NB.  Repeating this process for 

each core results in a total of c source power and c source time-course maps 

(i.e. applying single NB c times with c - 1 constraints).  The individual source 

power maps may then be combined to form a collective power map by taking, 

for each grid point, the largest pseudo-Z-score across all individual maps.   In 

a similar manner, a collective time-course map can be generated; the time-

course is chosen for each grid point from the time-course map corresponding 

to the core whose power map resulted in the largest pseudo-Z-score at that 

grid point.   

This method of combining individual maps ensures that the collective 

power and time-course maps reflect the combination of nulling constraints 

yielding the highest source-space SNR at each grid point.  Furthermore, 

individual power maps have little spatial overlap of source-containing regions, 

ensuring that collective time-courses in a local patch of activity all arise from 

the same set of nulling constraints.  In order to provide a quantitative measure 

for thresholding power and time-course maps, a continuous estimation of the 

distribution of pseudo-Z-scores across the source grid can be constructed with 

kernel-smoothing density estimation of the collective power map pseudo-Z-

scores.  P-values for pseudo-Z-scores are then obtained by integration of this 

continuous distribution. 



133 
 

4.3.4 General Setup for Simulations 

The source space was simulated with a grid covering the cortical gray 

matter with 7 mm spacing.  The cortical boundaries were obtained from a 

healthy subject’s T1-weighted anatomical MRI and subsequent Freesurfer 

segmentation (Dale et al., 1999; Fischl et al., 2004).  The sensor configuration 

was based on the Elekta/NeuromagTM whole-head MEG system (VectorView), 

in which 306 sensors are arranged on a helmet-shaped surface (204 

gradiometers and 102 magnetometers).  

To compute the forward model, the boundary element method (BEM) 

was employed where the inner-skull surface (from MRI) was used to generate 

a BEM mesh (size 5mm) (Huang et al., 2007; Mosher et al., 1999). SNR levels 

were adjusted by adding uncorrelated random Gaussian noise to the sensor 

waveforms, where the SNR was defined as the ratio of the Frobenius norm of 

the signal vector to that of the noise vector calculated over the interval with 

signal.   

4.3.5 Six Dipole Simulation (3 highly-correlated networks) 

To test the ability of the MCBF localization algorithm to correctly identify 

sources in a highly correlated environment, three distinct pairs of correlated 

sources were simulated.  The pairs were placed in the left and right 

hemisphere auditory, motor, and posterior parietal cortices (Figure 4.2).   
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Each pair of signals was composed of a 6-second inactive period 

followed by 6 seconds of a sinusoidal wave.  The auditory cortex pair was 

simulated with amplitude of 8 nAm and frequency of 25 Hz (sampling rate 

1000 Hz); the motor cortex pair was simulated with amplitude of 10 nAm and 

frequency of 35 Hz; and the posterior parietal cortex pair was simulated with 

amplitude of 9 nAm and frequency of 45 Hz.  The phase shift of the second 

source in each pair was set at 10 to produce a correlation of 0.97 within pairs 

(during the active portion of the waveforms), creating in total three 

independent highly-correlated inter-hemispheric networks.  The simulated 

sensor waveform was computed using the BEM forward model.  Random 

Gaussian noise was added to set the sensor space SNR at 4.  An estimate of 

 , from gradiometers only was computed from the six-second active periodࡾ

while an estimate of ࡾ was obtained from the inactive period.  Localization 

was performed with the MCBF search algorithm.  Time-courses were low-pass 

filtered at 100 Hz with a 10 Hz transition width to remove high-frequency 

noise.  Fourier transform amplitude values for reconstructed time-courses and 

simulated time-courses were also compared as a measure of reconstructed 

source strength reliability (Diwakar et al., 2011b).  MCBF time-courses and 

power maps were compared against a SBF reconstruction of the same data 

set. 

 



135 
 

4.3.6 Six Dipole Simulation (2 partially-correlated networks) 

MCBF localization was tested further in a highly intricate environment: 

correlated sources were more closely spaced; more sources were placed 

within each correlated network; and varying degrees of correlation were 

simulated within networks. We constructed two source networks, each 

composed of three partially correlated intra-hemispheric sources.  The six 

dipoles were placed in the same locations as in the previous simulation 

(Figure 4.2).  Each signal was composed of a 6-second inactive period 

followed by 6 seconds of a sinusoidal wave.  To create two partially correlated 

intra-hemispheric networks while ensuring no inter-hemispheric correlation, 

the left hemisphere sources were given a frequency of 30 Hz and the right 

hemisphere sources were set at 40 Hz.  The auditory cortex sources were 

simulated with amplitude of 8 nAm and 0 phase shift, while the motor cortex 

sources were set at amplitude 10 nAm and 15 phase shift (0.97 correlation to 

auditory dipoles), and the parietal sources had amplitude 9 nAm and 75 

phase shift (0.26 correlation to auditory dipoles and 0.50 to motor dipoles).  

Forward modeling, localization, time-course estimation, and amplitude 

comparison were carried out identically to the three-network simulation.  

MCBF time-courses and power maps were compared against a SBF 

reconstruction of the same data set. 
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4.3.7 Median-Nerve Stimulation Task 

The performance of the MCBF localization algorithm with real data was 

examined using human MEG responses to right median nerve stimulation.  

This widely-used approach to studying the somatosensory system provides a 

useful standard for analyzing MCBF performance since the location of activity 

has been well documented (Huang et al., 2005, 2006).   Furthermore, median-

nerve stimulation produces a complex network of closely-spaced and 

correlated source activation, thereby providing a challenging scenario for 

MCBF source localization.   

MEG recordings were obtained from a single healthy male subject.  The 

subject’s median nerve was stimulated using a bipolar GrassTM constant-

current stimulator.  The stimuli were square-wave electric pulses of 0.2 ms 

duration delivered at a frequency of 1 Hz.  The inter-stimulus-interval (ISI) was 

between 800 and 1200 ms.  The intensity of the stimulation was adjusted until 

robust thumb twitches were observed.  A trigger was designed to 

simultaneously send a signal to the MEG for every stimulus delivery to allow 

averaging over evoked trials.  Magnetic fields evoked by median nerve 

stimulation were measured using the Elekta/NeuromagTM whole-head MEG 

system.  Electrooculogram (EOG) electrodes were used to detect eye blinks 

and eye movements.  An interval of 500 ms post-stimulus was recorded, using 

300 ms of pre-stimulus data for noise measurement.  An interval of 30 ms 

centered on the stimulus was discarded due to the presence of stimulus-
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related artifacts.  Data were sampled at 1000 Hz and run through a high-pass 

filter with a 0.1 Hz cut-off and through MaxFilter to remove environmental 

noise (Song et al., 2008; Song et al., 2009; Taulu and Simola, 2006; Taulu et 

al., 2004).  We averaged 512 artifact-free MEG responses with respect to the 

stimulus trigger.   

A BEM mesh of 5-mm size for the subject was generated from the 

inner-skull surface using volumetric T1-weighted MRI images acquired on a 

1.5 T MRI scanner.  To co-register MEG with MRI, we used data obtained 

from the Polhemus Isotrak system prior to MEG scanning.  A cortical source 

grid of 7 mm spacing was defined using the cortical boundaries from 

FreeSurfer segmentation of the anatomical MRI  (Dale et al., 1999; Fischl et 

al., 2004). 

The sensor covariance matrix, ࡾ, was constructed using the post-

stimulus interval and a diagonal estimate of ࡾ was computed using the pre-

stimulus interval (gradiometers only).  Manual examination of the L-shaped 

region of the eigenvalue spectrum of ࡾ indicated that the top 10 eigenvalues 

could be used as a conservative estimate of the signal-related subspace 

(Figure 4.3).  A regularization parameter equal to the eleventh largest 

eigenvalue of ࡾ was used for localization and time-course estimation with the 

MCBF (Sekihara et al., 2002; Sekihara et al., 2004; Van Veen et al., 1997).  

The regularization parameter was approximately equal to 1% of the largest 
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eigenvalue of ࡾ, lying just above the noise-related eigenvalues (Figure 4.3).  

The MCBF localization algorithm was run until a stable plateau of ܼ௧ was 

determined.  A maximum collective source power map was computed to 

display the localization results and source time-courses were generated.  

MCBF time-courses and power maps were compared against a SBF 

reconstruction of the same data set. 

4.4 Results 

4.4.1 Six Dipole Simulation (3 correlated networks) 

The MCBF source localization algorithm performed in an efficient 

manner, computing the solution for 10 cores in a little over a minute on a dual 

quad-core Xeon (X5550 @ 2.66GHz) Linux workstation.  Furthermore, the 

source localization algorithm determined the correct locations of all six 

simulated sources.  Figure 4.4 shows a plot of ܼ௧ at each core-size.  It is 

evident from this figure that ܼ௧ plateaus once the correct number of sources 

has been modeled.  Over-modeling also did not cause any errors in simulated 

source reconstruction; over-modeled cores were found in random locations 

with ܼ ൎ 0 (i.e. noise cores).  The collective source power maps in Figure 4.5a 

show localized activities in the left and right auditory, motor, and posterior 

parietal cortices that peak precisely at the simulated locations (Figure 4.2).  

Figure 4.6 shows a comparison of the simulated time-courses with the 

reconstructed time-courses.  Time-course amplitude estimate errors were less 
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than 5% for all sources, further confirming that reasonable estimates of the 

source time-courses can be obtained by MCBF even in the presence of 

multiple pairs of highly-correlated sources.  

SBF reconstruction of the source power map (Figure 4.5b) showed 

successful localization of activity only in the left and right posterior parietal and 

motor cortices.  Auditory sources were not localized.  Furthermore, a clear set 

of false sources was localized between the MC and AC dipoles in the left right 

hemispheres.  The SBF predicted time-courses (Figure 4.6) were highly 

distorted with suppressed amplitude as compared to both the simulated 

signals and the MCBF reconstruction. 

4.4.2 Six Dipole Simulation (2 correlated networks) 

Once again, the MCBF source localization algorithm performed 

efficiently computing the solution to 10 cores in slightly over a minute.  

Furthermore, the source localization algorithm determined the correct 

locations of all six simulated sources.  As in the previous simulation, ܼ௧ 

plateaued once the correct number of sources had been modeled (Figure 4.7).   

The collective source map (Figure 4.8a) showed successful localization of the 

six dipoles to the left and right auditory, motor, and posterior parietal cortices 

in good agreement with the simulated locations.  Figure 4.9 shows a 

comparison of the simulated time-courses with the reconstructed time-

courses.  The MCBF reconstruction of the six time-courses closely resembles 
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the true simulated signals.  Time-course amplitude errors were less than 5% 

for all sources, indicating that MCBF performs well in a partially-correlated 

source environment. 

SBF reconstruction of the source power map (Figure 4.8b) showed 

successful localization of activity only in the left and right posterior parietal 

cortices.  Auditory and motor sources were not localized.  Furthermore, a clear 

set of false sources was localized between the MC and AC dipoles in both left 

and right hemispheres.  The SBF predicted time-courses (Figure 4.9) were 

highly distorted with suppressed amplitude as compared to both the simulated 

signals and the MCBF reconstruction. 

4.4.3 Median-Nerve Stimulation Task 

The MCBF source localization algorithm computed the solution to a 

core size of 18 within 10 minutes.  Figure 4.10 shows that  ܼ௧ continued to 

increase up to a core size of 14, when it clearly began to plateau.  The 14-core 

solution (highest value of ܼ௧) was chosen to compute time-courses and 

activity. Examination of collective power maps computed from the MCBF 

solutions higher than 14 cores showed no significant changes. 

MEG and other functional imaging studies have established that 

sensory stimulation typically activates the thalamus (Huang et al., 2006; 

Kandel et al., 2000), BA 1, 2, and 3b of the primary somatosensory cortex (S-I) 

(Forss and Jousmaki, 1998; Forss et al., 1994; Hari and Forss, 1999; Hari et 
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al., 1993; Huang et al., 2000, 2004, 2005, 2006; Jousmaki and Forss, 1998; 

Kandel et al., 2000; Kawamura et al., 1996; Mauguiere et al., 1997a,b; Wood 

et al., 1985), BA 5 of the parietal lobe (Boakye et al., 2000; Forss et al., 1994; 

Huang et al., 2006; Jones et al., 1978; Jones et al., 1979; Kandel et al., 2000; 

McGlone et al., 2002; Waberski et al., 2002), and BA 23 and 40 of the 

secondary somatosensory cortex (S-II) (Forss and Jousmaki, 1998; Fujiwara 

et al., 2002; Hari and Forss, 1999; Hari et al., 1993; Huang et al., 2005, 2006; 

Kandel et al., 2000; Simoes et al., 2003).  The collective power map produced 

by the MCBF localization (Figure 4.11a) shows activation in these regions as 

well as in others, including the insular cortex (IC), in the parietal-occipital 

junction, and the cingulate gyrus.  SBF reconstruction of the same data set 

(Figure 4.11b) showed only activity in areas BA 1, 2, and 3b of the primary 

somatosensory cortex (S-I) and the parietal-occipital junction while missing 

expected neuronal sources in BA 5 of the posterior parietal lobe and in the 

secondary somatosensory cortex.    

MCBF time-course reconstruction was examined as well (Figure 4.12). 

The S-I activation (BA 3b) showed a strong transient response 20 ms following 

stimulation.  The S-II activation showed a much smaller transient response 

with a large delayed response peaking at about 90 ms. The latencies of these 

peak activations as well as the general wave-shape agree with previous 

neurological studies (Boakye et al., 2000; Forss and Jousmaki, 1998; Hari and 

Forss, 1999; Huang et al., 2006).  Furthermore, the strong similarity between 



142 
 

recorded and predicted sensor waveforms indicates that the MCBF solution 

reasonably explains the underlying source configuration.  SBF time-course 

reconstruction (Figure 4.13), on the other hand, showed only transient activity 

for both the S-I and S-II activations. Slower components of the response 

visible in the MCBF reconstruction (50 – 175 ms) were lost in the noisier 

waveforms.  Furthermore, comparison of the predicted and actual sensor 

waveforms as generated by the SBF indicates that the SBF predicted source 

activity is insufficient to explain the underlying neuronal source distribution, 

especially between 50 and 175 ms post-stimulus. 

4.5 Discussion 

Our computer simulations and analyses of real data demonstrated that 

the MCBF is capable of reconstructing source locations and correlated 

activities with minimal distortion and suppression, resolving complex networks 

using the proposed localization algorithm. We showed its capacity to handle a 

multi-dimensional search problem with ease.  The MCBF search algorithm 

required no a priori information and reduced processing time to the order of 

minutes (instead of hours or even days when applying a brute-force 

approach), as well as accurately reconstructed source activity maps and time-

courses.  

To test the limits of MCBF as well as the search algorithm, challenging 

simulations were designed.  Instead of the three sources typically used in 
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beamformer simulations, we employed six sources to examine both inter-

hemispheric and intra-hemispheric networks that contained varying degrees of 

correlation.  Sources were resolved accurately to the correct grid points within 

minutes, with their respective time courses closely mirroring the simulated 

signals (< 5% error).  These findings confirmed the MCBF’s promising 

capacity to recover underlying network activity accurately and quickly with 

minimal distortion. The simulation results also demonstrated the algorithm’s 

robustness to the possibility of over-modeling.  Not only was the occurrence 

easily detectable by means of a visually observable plateau in ܼ௧, but the 

simulated source configuration itself remained stable despite the additional 

cores.  Furthermore, SBF reconstructions of the same simulations showed that 

the conventional beamformer, unlike the MCBF, is unable to properly localize 

and predict time-courses of correlated neuronal activity. 

 The algorithm was further tested with a real MEG recording to confirm 

its localization performance in complex scenarios.  Evoked recordings of right-

hand median-nerve stimulation provided a challenging environment containing 

many correlated sources within close proximity to each other.  The MCBF 

algorithm once again performed well, providing an easily detectable ܼ௧ plateau 

that was used for obtaining a final solution. The locations as well as the time-

courses of the resolved sources agreed with previous observations of median-

nerve activity (Huang et al., 2006; Kandel et al., 2000).  Source activities 

appeared to be linear combinations of the sensor waveforms (Figure 4.12), an 
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important physical characteristic of the MEG system, confirming that a 

meaningful solution was derived. Moreover, forward modeling of the 

reconstructed source activity showed close agreement to the recorded sensor 

waveforms.  SBF reconstruction, on the other hand, was unable to attain the 

same degree of detail in localization or dynamics of source activity.  In fact, the 

SBF predicted sensor waveforms poorly resembled recorded sensor 

waveforms unlike the MCBF.  Finally, the MCBF reconstruction was performed 

without the use of any prior knowledge, demonstrating its advantage over the 

NB and CSSM when handling correlated source activities (Dalal et al., 2006; 

Hui and Leahy, 2006; Hui and Leahy, 2010; Quuran and Cheyne, 2010). 

 Our results further suggest that the application of MCBF in functional 

connectivity analyses holds promise as it offers the ability to compute 

volumetric time-course and power maps, which is a novel property unavailable 

in previously developed multi-source beamformers that could only determine 

time-courses at the core locations (Brookes et al., 2007; Diwakar et al., 2011a; 

Diwakar et al., 2011b).  Similar to the nulling beamformer, volumetric activity 

maps can be computed and combined for each set of constraints present in 

the MCBF core.  Volumetric time-courses can be used in various analyses 

such as computation of coherence maps for resting state network data 

(Brookes et al., 2011; Mantini et al., 2011; de Pasquale et al., 2010).  Since 

each nulling constraint reduces time-course distortion and the MCBF 

optimizes the selection of these constraints, MCBF derived time-courses 
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better replicate true source activity, improving the ability of beamformers to 

investigate neural communication. 

 In conclusion, we have developed a search algorithm for source 

localization with MCBF, an advanced spatial filter capable of handling intricate 

networks of correlated sources.  The algorithm quickly finds stable and 

accurate solutions for the MCBF in both simulated and real experiments. 

Though some beamformer variations (e.g. NB and CSSM) can resolve 

correlated sources, the MCBF is the first beamformer capable of handling 

complex datasets without any a priori information. The MCBF also produces 

volumetric source activity estimates that can be used to study neural 

connectivity.  In our current approach, MCBF utilizes a dipole-activation model 

that is appropriate for focal sources such as those found in evoked MEG 

recordings.  In the future, we plan to further develop MCBF to allow use of a 

patch activation model that is suitable for distributed sources such as those 

found in spontaneous MEG recordings. This will create a beamformer more fit 

for the investigation of resting-state activity, a topic at the forefront of current 

neuroimaging studies (Brookes et al., 2011; Mantini et al., 2011; de Pasquale 

et al., 2010).  
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CHAPTER 5 

Conclusions 

Magnetoencephalography is a rapidly developing and useful functional 

imaging technique for detecting neuronal activity.  The major problem with 

MEG concerns developing an accurate inverse solution that truly represents 

underlying source activity computed from real magnetic measurements.  Many 

different types of constraints may be applied to the sensor recordings in order 

to generate solutions.  One such method, the minimum variance beamformer, 

is formulated as an adaptive spatial filter that employs the sensor covariance 

matrix to attain high spatial resolution.  Furthermore, the beamformer is quick 

to compute and avoids the large number of parameters present in other 

methods (Van Drongelen et al., 1996; Van Veen et al., 1997; Robinson and 

Vrba, 1998; Sekihara et al., 2004).  Unfortunately, the conventional 

beamformer assumes that the different neuronal sources are uncorrelated, 

hence, suffers large errors in source localization and distortion in both power 

and time-course estimation in the presence of correlated source activity.  In 

the case of highly correlated sources, the conventional beamformer 

approaches fail to detect sources completely (Sekihara et al., 2002; Sekihara 

and Nagarajan, 2008). 

In real experiments, it is expected that neuronal sources communicate 

and are therefore at least partially correlated.  For example, in auditory evoked 

fields (AEFs), highly synchronous bilateral activation is commonplace.  In spite 
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of its limitation with correlated sources, single beamformers are still applied 

widely in studying neural responses.  Recently, there has been a growing 

trend to analyze resting state spontaneous recordings and compare the 

resulting brain activity to well-characterized resting state networks in fMRI (de 

Pasquale et al., 2010; Brookes et al., 2011; Mantini et al., 2011).  However, 

such analyses may miss highly correlated neuronal sources and suffer 

distortion of time-courses. 

Different techniques have been proposed to address this issue.  The 

nulling beamformer (NB) and coherent source suppression model (CSSM) 

deal with correlated sources by imposing nulling constraints.  However, as a 

practical tool, the NB and CSSM require a priori knowledge of source 

locations, making it difficult to analyze novel data (Dalal et al., 2006; Hui and 

Leahy, 2006; Hui et al., 2010; Quuran and Cheyne, 2010).  Another approach 

to dealing with the correlated source problem involves pointing the 

beamformer spatial filter at multiple locations at once.  The first such 

beamformer developed, the dual-source beamformer (DSBF), is capable of 

accurate source localization in the presence of two correlated sources without 

a priori information.  However, the DSBF suffered from the inability to 

reconstruct individual source time-courses and required multiple and 

computationally time-consuming non-linear searches (Brookes et al., 2007).  

In this dissertation, a logical progression of developing the multi-core 

beamformer (MCBF) which does not suffer from the disadvantages of the 
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DSBF, NB, or CSSM is presented.  By incorporating the vector formulation into 

the DSBF, the dual-core beamformer (DCBF) is able to successfully 

reconstruct simulated and real data without the need for many of the 

expensive non-linear searches required by the DSBF, greatly speeding up and 

making reconstruction far more practical (Diwakar et al., 2011a).  Further 

development of the DCBF led to the formulation of the enhanced dual-core 

beamformer (eDCBF), which further improves reconstructions by allowing 

computation of source correlation, accurate power estimates, and accurate 

and individual time-course estimates (Diwakar et al., 2011b).  However, the 

presence of more than two correlated sources creates the same type of 

distortion present in the single beamformer. 

The eDCBF was naturally extended to the multi-core beamformer 

(MCBF) which is capable of handling a large number of correlated sources 

(Diwakar et al., 2011b).  However, due to the increased dimensionality of the 

MCBF, source localization becomes a difficult problem.  To handle this issue, 

we also developed an MCBF source localization algorithm that was shown to 

successfully localize sources and detect the correct number of sources in both 

simulated and real experiments.  Finally, detailed examination of MCBF and 

NB mathematics showed a very close relationship between the methods (Dalal 

et al., 2006).  This relationship was exploited in order to allow the MCBF to 

reconstruct source time-courses across the entire brain region, a quality that 

was unavailable with the previous multi-source techniques (DSBF, DCBF, 
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eDCBF).  In fact, mathematically, the MCBF solution is as accurate as the NB 

solution but also provides an automated method of determining nulling 

constraints, preventing the need for a priori information. 

The development of the MCBF is significant to the field of MEG inverse 

modeling.  Since the beamformer can accurately deal with correlated sources, 

it can be used in place of conventional beamformers in many applications.  For 

example, we expect that use of the MCBF in brain connectivity analyses 

instead of the vector beamformer will greatly improve detection of resting-state 

networks in MEG.  The MCBF can also play a significant role in the 

reconstruction of low SNR recordings, as it is not as susceptible to noise as 

non-beamforming time-point-by-time-point methodologies such as the L1-

minimum norm, L2-minimum norm, and VESTAL. 

 In the future, we plan to modify the MCBF model so that it accounts for 

patch activation and the presence of non-dipolar sources.  Such a modified 

model will allow better source localization and activity estimation in 

experiments where large parts of the cortex are simultaneously active.  

Furthermore, we plan to use the MCBF to analyze spontaneous recordings to 

develop a better understanding of resting-state networks in MEG and their 

correlates in fMRI.  The MCBF provides an important and needed tool for the 

advancement of our understanding of brain activity in states of both health and 

disease. 
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