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Abstract

Spin Coherence and Vibrational Tunneling in Coupled Quantum Dot Pairs

by

Cameron L. Jennings

Doctor of Philosophy in Physics

University of California, Merced, 2020

Professor Jay Sharping, Chair

Quantum dots (QDs) are semiconductor nanoparticles that trap electrons and
holes in all three dimensions, resulting in discrete energy levels with strong opti-
cal transitions. InAs/GaAs QDs are grown by molecular beam epitaxy of lattice-
mismatched InAs on a GaAs substrate, resulting in strain-induced island formation
on a two-dimensional wetting layer. In addition to optoelectronic applications such
as lasing, infrared detection, and photovoltaics, QDs are capable of hosting optically-
controlled spin qubits and emitting photonic qubits for quantum communication and
quantum computation.

This dissertation focuses on InAs/GaAs coupled quantum dot pairs (CQDs)
formed by strain-induced alignment of QDs in nearby layers, resulting in interdot
charge tunneling that can be controlled with an applied electric field. We use a com-
bination of theoretical modeling and optical spectroscopy to understand dynamical
processes of bound photoexcited charges, aiming to enhance their usefulness for quan-
tum information and sensing technologies and help overcome difficulties preventing
their implementation.

xv



We develop a model of electron and hole confinement in CQDs, including
Coulomb and spin interactions, phonon coupling, and optical transitions. This model
is used to simulate relaxation dynamics during neutral molecular biexciton cascades,
identifying parameter regimes where two-photon polarization entanglement can be
expected. While this process has been demonstrated in single QDs, we find that
charge separation in interdot states of CQDs allows for tunable emission energies and
a higher tolerance to anisotropic electron-hole exchange splitting.

Using low-temperature optical photoluminescence spectrosopy, we identify
charge and spin states in single CQDs and investigate their interactions. Two-laser
photoluminescence excitation spectroscopy demonstrates two-photon excitation into
the molecular biexciton state via a stepwise process, while calculations identify con-
ditions required for efficient simultaneous two-photon absorption. Further investiga-
tions find decoherence by electric field fluctuations from charged lattice defects, and
identify a novel enhancement of acoustic phonon coupling at hole tunneling resonances
from piezoelectric interactions.
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Chapter 1

Introduction

In the solid state, semiconductor materials (such as Si, GaAs, InAs, AlAs, etc.) sup-
port a series of continuous electronic bands with a band gap around the Fermi level,
resulting in a filled valence band and unfilled conduction band under equilibrium con-
ditions. Over the course of the last century, advances in semiconductor electronics
have led to unprecedented technological development. By layering different semicon-
ductors and/or intentionally doping them with impurity atoms, heterostructures can
be grown with precisely-engineered band structures. The development of solid-state
electronic devices such as diodes and transistors has enabled a multitude of appli-
cations which now power the modern world: communication, information processing
and storage, photodetection, sensing, light emission, and solid-state lasing, to name
a few.

The ever-increasing speed and capacity of such devices is primarily achieved by
miniaturizing the basic components to fit more of them on a smaller integrated chip.
The ultimate limits of this miniaturization are nanostructures which confine electrons
quantum mechanically, on a length scale smaller than their spatial extent (35 nm
for excitons in InAs). Full three-dimensional confinement is realized in quantum
dots (QDs), which can be fabricated in a monolithic planar geometry by epitaxial
deposition of atomic layers on a lattice-mismatched substrate (e.g. InAs on a GaAs
substrate) to form strain-induced islands on a two-dimensional wetting layer. While
other fabrication methods exist, such as chemical synthesis of colloidal nanoparticles,
epitaxially-grown QDs are particularly well-suited to integration in optoelectronic
devices as photoemitters, photodetectors, or other sensing elements.

Applications are being developed for QDs which leverage their unique capa-
bilities, including generation of useful quantum light (e.g. entangled photon
pairs) and sensitive detection of the solid-state environment (e.g. electric
field, lattice strain). Here we focus primarily on epitaxial InAs/GaAs dots grown
by molecular beam epitaxy. While InAs/GaAs QDs must be kept at cryogenic tem-
peratures (< 100 K) to prevent significant thermal broadening and carrier escape,
they show strong, stable optical transitions between exciton ground states in the
near-infrared wavelength range (900 − 1200 nm). In addition, dot size and density
can be precisely controlled by modifying growth parameters, individual dots can be
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CHAPTER 1. INTRODUCTION 2

addressed using lithographically-defined apertures, and dots can easily be integrated
in electrical diodes or photonic cavity structures.

As a result of their discrete energy levels with strong optical transitions, QDs
have been used to enhance existing optoelectronic and sensing technologies.[2, 3, 4]
QDs have been used as gain elements in lasers, achieving electrically-pumped room-
temperature emission at various wavelengths (including 1.31 µm and 1.55 µm emission
for fiber-based telecommunications applications) with lower threshold current density,
longer operation lifetime, and better temperature stability than quantum well-based
lasers.[5, 6] QDs have been used as absorptive elements in infrared photodetectors
operating in the 1−12 µm wavelength range, achieving higher-temperature operation
(up to ∼ 80 K) than comparable quantum well detectors, but lower responsivity than
quantum well or commercial HgxCd1−xTe detectors. QDs have been investigated for
intermediate-band solar cell applications, though theoretically predicted efficiency
enhancements have not yet been attained. QDs have shown promise in electronic
memory applications with hole storage times of 1.6 s at room temperature [7, 8], and
have been used for electric field sensing with a fiber-coupled scanning probe [9] and
lattice strain sensing with driven mechanical resonators [10, 11].

QDs can also be used for quantum information applications such as quantum
computation or quantum communication, with data represented as the state of a
localized spin qubit or an emitted photonic qubit.[12, 13, 7, 14, 15] Localized qubits
can be implemented using the spin state of a bound electron, hole, or electron-hole
pair in an optically dark state, with coherent control by pulsed optical excitation. QDs
can emit single photons on-demand by pulsed optical or electrical pumping of neutral
exciton states, with high single-photon purity and brightness when coupled to an
optical cavity or microlens structure.[16] Electrically-pumped single-photon emission
at room temperature has also been achieved using InGaN QDs.[17] Neutral biexciton
states can be generated by optical or electrical pumping, resulting in emission of
polarization-entangled photon pairs after cascaded recombination.[18, 19, 20]

QDs can be stacked during growth to form coupled quantum dot pairs (CQDs),
with two QDs separated by a thin (∼2− 15 nm) barrier to allow trapped charges to
tunnel between them. This results in a larger variety of accessible states with different
spatial configurations of bound charges. In particular, CQDs support interdot states
with charges separated between QDs, resulting in a high degree of tunability when
an electric field is applied during operation.

CQDs offer several advantages for quantum information applications as a re-
sult of charge separation in interdot states.[21] Electric field control allows tuning
of photon energies from interdot states, as well as magnetic field coupling strength,
exchange coupling strength, and radiative recombination rate. Two spin qubits can
be stored in separate QDs, allowing execution of single- or two-qubit logic gates by
pulsed laser excitation.[22] The possibility of generating extended entanglement in
two-dimensional cluster states of sequentially-emitted photons has also been theoret-
ically predicted.[23, 24]
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Since the size and composition of QDs and CQDs can be modified during
growth, external electric or magnetic fields can be applied as needed, and optical
spectroscopy can sensitively probe charge confinement and interactions, these sys-
tems constitute an ideal test bed for studying the behavior and interactions of in-
dividual charged particles trapped in a semiconductor environment. By advancing
our understanding of CQDs, we hope to enhance their usefulness for quantum in-
formation and sensing technologies and help overcome difficulties preventing their
implementation.[21]

This dissertation focuses on InAs/GaAs CQDs, using a combination of theoret-
ical modeling and optical spectroscopy to understand dynamical processes of bound
photoexcited charges. In particular, we use simulations to investigate the genera-
tion of polarization-entangled photon pairs from a two-step cascaded emission pro-
cess requiring undisturbed coherent evolution of spin states. We also investigate two
particular mechanisms by which coherent evolution is interrupted, with combined ex-
perimental and theoretical studies identifying a fluctuating local charge environment
and a novel enhancement of phonon coupling near tunneling resonances.

Chapter 2 develops the theoretical model used to understand the CQD system
and interpret the remainder of the research, starting with a description of electronic
conduction and valence bands in bulk semiconductors. A model of QD confinement
is then described and used to calculate energies and wavefunctions of bound electrons
and holes, followed by an explanation of interactions between multiple bound particles
and between bound particles and external electric fields. This finally leads to a
model of optical interactions and the calculation of absorption and emission spectra.
Portions of this model were published as part of a review of quantum technology
applications using CQDs [21].

Chapter 3 describes the growth process used to fabricate the CQD samples
and the structure of the samples presented in this dissertation. The various pro-
cedures used to perform optical spectroscopy on individual CQDs is described with
potential variations, followed by an analysis of bias-dependent spectroscopy guided by
the theoretical model and the description of a laser-scanning absorption spectroscopy
technique.

Chapter 4 details a method to obtain polarization-entangled photon pairs from
the radiative cascade of a neutral biexciton state in a CQD. A model of coherent
spin evolution in the presence of relaxation processes is described, with numerical
simulations of the fidelity of photon entanglement as a function of temperature and
electric field. This work was published in Physical Review B [25]. Calculations of
the two-photon absorption process needed to generate the initial biexciton state are
then presented, followed by experiments verifying absorption into the biexciton state
under two-laser excitation.

Chapter 5 discusses two types of decoherence processes observed experimen-
tally. First, local electric field fluctuations due to charge-trapping lattice defects are
seen to cause line wandering and broadening of optical transitions, with the method
verified by a series of Monte Carlo simulations. Second, phonon-assisted transitions
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between bound states are observed, with a novel phonon coupling enhancement ob-
served at tunneling resonances and reproduced in numerical simulations. This second
study was compiled into a manuscript, and is currently under peer review [26].

Chapter 6 concludes by summarizing the theoretical and experimental findings
of the preceding chapters, with suggested directions of future research relating to each
project. Appendix A lists all possible CQD charge configurations and their allowed
spin states for the case of neutral and ±1 charged states with up to two electron-hole
pairs for the case of hole tunneling only. Appendix B lists the values of material and
structural parameters used in numerical simulations.



Chapter 2

Theory of Optical Transitions in
CQDs

2.1 Electronic Band Structure

Under Stranski-Krastanov (SK) epitaxial crystal growth, InAs quantum dots (QDs)
grown on a GaAs (001) substrate form on top of a wetting layer driven by strain
from the lattice mismatch of 6.7% between the two crystal lattices. The InAs wetting
layer and the QD islands introduce both a localized strain field and a confinement
potential for excited electrons and holes due to the smaller band gap energy of InAs
relative to GaAs. QDs formed by strain-induced SK growth tend to self-assemble
into lens- or pyramid-shaped islands with faceted surfaces[27, 7] protruding from
a planar wetting layer when more than 1.5 monolayers of InAs is deposited on a
GaAs substrate.[28] The indium-flush technique is often used to precisely control
QD height through partial capping and annealing, producing flat QDs whose shape
resembles a disk, truncated lens, or truncated pyramid.[29, 1, 30] In addition, indium
migration during growth leads to a nonuniform profile of alloy composition, with a
higher indium concentration in the center of each QD forming an inverted cone or
trumpet distribution.[31, 32, 33, 34, 35]

Coupled quantum dot pairs (CQDs) are formed by depositing a second QD
layer on top of the first, with a tunneling barrier layer in between. The strain fields
due to QD formation in the first layer cause vertical alignment with QDs in the second
and any subsequent layers,[36, 37, 38, 39] though some degree of lateral misalignment
is often present in vertically-coupled QD pairs.[40] This strain field also results in an
asymmetry in the QD height and lateral width even under nominally identical growth
conditions for each layer, with the top QD in a pair being generally wider and thinner
than the bottom QD.[29, 30]

The equilibrium strain distribution in a given CQD nanostructure can be found
by varying the atomic displacements to minimize the total elastic energy. This mini-
mization is often performed numerically using the continuum elasticity model, achiev-
ing a satisfactory description comparable to atomistic valence force field or pseudopo-

5
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tential methods with considerably less computational complexity, and with a clear
connection to elasticity parameters measured accurately in bulk materials.[41, 42, 43]
Within the continuum elasticity model, the strain distribution is defined as

εij(~r) =
1

2

(
dui(~r)

drj
+
duj(~r)

dri

)
(2.1)

in terms of the atomic displacement field ~u(~r), with derivatives calculated as finite
differences within a symmetrization scheme averaging over each direction. With an
InxGa1−xAs alloy composition distribution described by x(~r) (where x = 0(1) corre-
sponds to GaAs (InAs)), the total elastic energy to be minimized can be expressed
as[42]

Ee =

∫
dV

[
1

2
C11(ε2

xx + ε2
yy + ε2

zz) +
1

2
C44(ε2

yz + ε2
xz + ε2

xy)

+ C12(εyyεzz + εxxεzz + εxxεyy)− x(~r)(C11 + 2C12)(εxx + εyy + εzz)ε0

]
,

(2.2)

where Cij are the components of the elastic stiffness tensor and the last term accounts
for the intrinsic strain ε0 = (aInAs−aGaAs)/aGaAs due to mismatched lattice constants
when represented in the coordinates of the GaAs barrier. The elastic stiffness varies
with material, and can be linearly interpolated with the composition as Cij(~r) =
CGaAs
ij + x(~r)(CInAs

ij − CGaAs
ij ).

Due to the lack of inversion symmetry in InAs and GaAs, shear strain induces
a piezoelectric polarization field. Including linear and quadratic contributions, this
field can be expressed in the case of zinc-blende lattices as [44, 45, 46]

~P (~r) = 2e14

εyzεxz
εxy

+ 2B114

εxxεyzεyyεxz
εzzεxy

+ 2B124

εyz(εyy + εzz)
εxz(εxx + εzz)
εxy(εxx + εyy)

+ 4B156

εxyεxzεxyεyz
εxzεyz

 ,

(2.3)
where e14 and Bijk are the material-dependent linear and quadratic piezoelectric co-
efficients, respectively. From this polarization, the piezoelectric charge distribution
can be calculated using Gauss’s law as ρp(~r) = −~∇ · ~P (~r), leading to a piezoelectric
potential

Vp(~r) =
1

4πε0εr

∫
d3~r ′

ρp(~r
′)

|~r − ~r ′|
(2.4)

acting on bound charges. This piezoelectric potential can be significant in QDs with
a pyramidal or otherwise faceted shape, but is not present in an axially symmetric
structure due to the lack of shear strain.

Electronic excitations can be described using several approaches with varying
degrees of complexity, including the single-band effective mass approximation, multi-
band ~k·~p methods, or atomistic tight-binding and pseudopotential methods.[47, 48]
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The single-band effective mass model is the simplest approximation, and describes
much of the essential physics of confined charges in QDs by treating the lowest en-
ergy conduction and heavy hole valence bands independently. Near the center of the
Brilluoin zone where the wave vector ~k = 0, each band labeled by α = (e, h) shows
a parabolic energy dispersion described by an effective mass mα. The effective mass
of each band is anisotropic, with a value of mα,z in the [001] direction and mα,r in
perpendicular directions, though this anisotropy is much weaker for the conduction
band and is often neglected.[47] In this single-band model, the wavefunction for each
particle in the i’th bound state with spin σ is written as Ψα

iσ(~r) = ψαi (~r)uασ(~r) in terms
of lattice-periodic zone-center Bloch wavefunctions uασ(~r) and envelope wavefunctions
ψαi (~r) which vary slowly compared to the lattice spacing. The single-particle energies
Eα
i and envelope wavefunctions ψαi (~r) are found by solving the Schrödinger equation[

−~2

2
~∇ 1

mα(~r)
~∇+ Vα(~r)

]
ψαi (~r) = Eα

i ψ
α
i (~r) (2.5)

for each band, where Vα(~r) is the confinement potential including band offset, strain-
induced shifts, and the piezoelectric potential, and the symmetric ordering of deriva-
tives ensures continuity with a spatially varying effective mass.[49, 50] Note that the
energies Eh

i of bound holes are defined such that a lower energy state is closer to
the band edge and more strongly confined. With this convention, the confinement
potentials are given by [51, 42, 48]

Ve(~r) = VCB(~r) + ac(εxx + εyy + εzz) + Vp(~r)

Vh(~r) = VV B(~r)− av(εxx + εyy + εzz)−
b

2
(εxx + εyy − 2εzz)− Vp(~r), (2.6)

where VCB (VV B) is the unstrained conduction (valence) band edge energy and ac,
av, and b are deformation potentials.

The multiband ~k·~p method incorporates the effects of coupling between bands
and has often been used to successfully explain experimental observations with min-
imal computational complexity compared to atomistic methods. In this method, the
wave function of a bound carrier is expressed as a superposition of N Bloch wavefunc-
tions Ψi(~r) =

∑
n ψi,n(~r)un(~r) with envelope wavefunction components ψi,n(~r). The

energies and envelope wavefunctions are found by solving the Schrödinger equation
for the coupled bands.[51, 47] The matrix elements of the Hamiltonian are expressed
in the chosen basis of Bloch wavefunctions un(~r) and evaluated by integrating over
a unit cell. The resulting matrix equation can be expressed in the eight-band basis
consisting of one conduction band |s〉 with an s-like atomic orbital and three valence
bands |x〉 , |y〉, and |z〉 with p-like orbitals, each with two spin states |↑〉 and |↓〉. The
spin-orbit interaction couples valence bands with different spin and orbital degrees of
freedom, and is diagonalized by a unitary transformation to the eigenstates |j,m〉 of
the total angular momentum operators J2 and Jz. In this basis, the resulting bands
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can be classified as electron
∣∣1

2
,±1

2

〉
, heavy hole (HH)

∣∣3
2
,±3

2

〉
, light hole (LH)

∣∣3
2
,±1

2

〉
,

and split-off
∣∣1

2
,±1

2

〉
, where the split-off band is 340 (380) meV away from the valence

band edge in bulk GaAs (InAs), with similar values in QD structures.[51]
When analyzing the dynamics of ground states relevant for coherent processes,

the coupling to distant bands is expected to have little impact. As a result, a four-
band model described by Luttinger and Kohn[52] is often used to describe valence
band coupling between HH and LH bands, with modifications due to strain described
by Bir and Pikus[53] and the conduction band treated independently. In the four-
band basis |m〉 =

{∣∣3
2

〉
,
∣∣1

2

〉
,
∣∣−1

2

〉
,
∣∣−3

2

〉}
, the valence band Hamiltonian is [51, 54]

Hh = Ev(~r)I −


P +Q −S R 0
−S∗ P −Q 0 R
R∗ 0 P −Q S
0 R∗ S∗ P +Q

 , (2.7)

where Ev(~r) is the unstrained valence band edge energy with identity matrix I, and
the remaining terms describe coupling to wave vector and strain with a similar form:

P =
~2

2m0

γ1(k2
x + k2

y + k2
z)− av(εxx + εyy + εzz)

Q =
~2

2m0

γ2(k2
x + k2

y − 2k2
z)−

1

2
b(εxx + εyy − 2εzz)

R =
~2

2m0

√
3
[
−γ2(k2

x − k2
y) + 2iγ3kxky

]
+

√
3

2
b(εxx − εyy)− idεxy

S =
~2

2m0

2
√

3γ3(kx − iky)kz − d(εxz − iεyz), (2.8)

where γ1, γ2, and γ3 are Luttinger parameters, and av, b, and d are deformation
potentials coupling to hydrostatic, biaxial, and shear strain, respectively. The ~k-
dependent terms are present in bulk semiconductors with cubic symmetry, leading to
degenerate valence bands when ~k = 0. InAs QDs typically have a large compressive
biaxial strain, which can split the HH and LH bands by 100-200 meV.[55, 47] HH-LH
coupling is mediated by shear strain or unequal lateral strain components, leading
to a ground state with 3-14% LH composition depending on QD shape and size.[45]
Since the hole ground states are primarily composed of HH bands, their spin states
can be labeled as |⇑〉 (|⇓〉), corresponding to m = 3

2
(−3

2
) with a small m = −1

2
(1

2
)

LH component. For many situations, considering the hole ground states as purely HH
with spin ±3

2
is entirely appropriate. However, the richness of the underlying band

structure can have observable consequences, such as the partial relaxation of optical
selection rules.[40]

Figure 2.1 shows the band energies of strained InAs and unstrained GaAs
calculated using the effective mass and multiband ~k · ~p models. We use the intrinsic
compressive strain value of 6.7% for InAs lattice-matched to the unstrained GaAs
substrate to approximate QD and barrier materials in the absence of strain relaxation.
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Figure 2.1: Energies of electronic bands for wavevectors along the [100] (x) and [001]

(z) directions calculated using the effective mass (black curves) and ~k · ~p (red curves)
models, for the case of (a) InAs under 6.7% compressive strain and (b) unstrained
GaAs.

The effective mass model is a good approximation for small wavevector values relevant
for bound states, though additional deviations occur in the in-plane [100] and [010]
directions when an isotropic value of effective mass is used.

2.2 Bound Exciton States

In CQDs, a series of single-particle bound states |i, σ〉α are formed with the electron
or hole localized in the bottom (B) or top (T) QD, labeled with respect to the growth
direction. This gives rise to a variety of potential charge configurations labeled by
QD occupancy

eB eT
hB hT X

q with total charge q. These states are subject to the Pauli
exclusion principle, so that each localized orbital can be populated by a maximum of
two electrons or two holes. With two charges in a single orbital, their spin state is
restricted to an antisymmetrized singlet state |S〉 = (|↑↓〉 − |↓↑〉)/

√
2, while a charge

in a singly occupied orbital retains its spin degree of freedom.
The multiparticle Hamiltonian can be written in the general form

H = He +Hh +HCoulomb +Hexchange +HStark(~F ) +HZeeman( ~B), (2.9)

with each component expressed in the basis of localized single-particle states with
annihilation (creation) operators cαiσ (c†αiσ).



CHAPTER 2. THEORY OF OPTICAL TRANSITIONS IN CQDS 10

2.2.1 Single-Particle States

The energies and envelope wavefunctions of bound single-electron or single-hole states
can be found within the single-band effective mass model by solving the time-inde-
pendent Schrödinger equation in the form of Eq. 2.5. We model the confinement
potential of each QD as a finite well in the growth (z) direction due to strained
band-edge offsets between materials, with InAs inside the QD and GaAs outside. We
use different effective mass values in each region, matching those measured for pure
crystals of each material. Confinement in the lateral (x− y) directions is determined
by strain-induced self-assembly and is not well-controlled during QD growth, so we
model this as a harmonic oscillator with InAs effective mass values and angular fre-
quency ωα determined by the experimentally measured energy spacing ~ωα between
the ground and first excited states of electrons or holes. To allow for in-plane asym-
metry, we introduce a parameter β to scale y-direction confinement to have energy
spacing β~ωα. Setting the origin at the center of the QD results in the confinement
potential

Vα(x, y, z) = EαΘ

(
|z| − h

2

)
+

1

2
mαω

2
α(x2 + β2y2), (2.10)

where Eα is the confinement energy due to strained band-edge offset, h is the height
of the QD, and Θ(x) is the Heaviside step function.

Eq. 2.5 can then be solved using separation of variables with

ψαlmn(x, y, z) = Xα
l (x)Y α

m(y)Zα
n (z), (2.11)

subject to the boundary conditions that the wavefunction and its slope is continuous
at material interfaces and decays to zero far from the QD. The lateral components
are determined by the similar differential equations

− ~2

2mα

d2Xα
l (x)

dx2
=

(
Eα
x,l −

1

2
mαω

2
αx

2

)
Xα
l (x) (2.12)

− ~2

2mα

d2Y α
m(x)

dx2
=

(
Eα
y,m −

1

2
mαω

2
αβ

2y2

)
Y α
m(y), (2.13)

with Hermite-Gaussian solutions being the product of a Hermite polynomial of order
l or m and a Gaussian function. Note that references to the effective mass constant
mα use the value for InAs, unless otherwise specified. The wavefunction component
in the growth direction is determined by

− ~2

2

d

dz

[
1

mα(z)

dZα
n (z)

dz

]
=

[
Eα
z,n − EαΘ

(
|z| − h

2

)]
Zα
n (z), (2.14)

with the solutions being a series of symmetric or antisymmetric piecewise functions
due to the symmetry and piecewise nature of the confinement potential in this di-
rection. For bound states, the solutions are sinusoidal within the InAs QD region
and exponentially decaying within the GaAs barrier region. To enforce continuity of
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the full wavefunction Ψα
i,σ(~r) = ψαi (~r)uασ(~r), the boundary conditions in terms of the

envelope wavefunction component Zα
n (z) with varying effective mass are expressed as

lim
z→(±h/2)−

Zα
n (z) = lim

z→(±h/2)+
Zα
n (z) (2.15)

lim
z→(±h/2)−

1

mα(z)

dZα
n (z)

dz
= lim

z→(±h/2)+

1

mα(z)

dZα
n (z)

dz
. (2.16)

The full solution for bound states of a single QD within this model is

ψαlmn(x, y, z) =AαlmnHl

(√
mαωα
~

x

)
Hm

(√
mαωαβ

~
y

)
× exp

[
−mαωα

2~
(x2 + βy2)

]
Zα
n (z),

(2.17)

where Hl(x) is the Hermite polynomial of order l and the constant Aαlmn is determined
by the normalization condition

∫
|ψαlmn(~r)|2 d3~r = 1. For symmetric solutions, the

wavefunction in the growth direction is given by

Zα
n (z) =


cos(knh/2)e−κn(z−h/2) if z > h/2

cos(knz) if |z| ≤ h/2

cos(knh/2)eκn(z+h/2) if z < −h/2
(2.18)

with kn determined by the transcendental equation

tan

(
knh

2

)
=

√
mα,InAs

mα,GaAs

(
k2

0

k2
n

− 1

)
(2.19)

obtained from the boundary conditions and the definitions k0 =
√

2mαEα/~ and
κn =

√
mα,GaAs/mα,InAs(k2

0 − k2
n). For antisymmetric solutions, the z-component

wavefunction is given by

Zα
n (z) =


sin(knh/2)e−κn(z−h/2) if z > h/2

sin(knz) if |z| ≤ h/2

− sin(knh/2)eκn(z+h/2) if z < −h/2
(2.20)

with kn determined by the alternate transcendental equation

− cot

(
knh

2

)
=

√
mα,InAs

mα,GaAs

(
k2

0

k2
n

− 1

)
. (2.21)

The total energy of each bound state is given by

Eα
lmn = Eα

x,l + Eα
y,m + Eα

z,n =
~2k2

n

2mα

+ ~ωα
[
(l +

1

2
) + β(m+

1

2
)

]
. (2.22)
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Figure 2.2: (a) Model band edge diagram of a single QD with 2 bound electron
states and 17 bound hole states, with relevant energies indicated (h = 2.9 nm, ~ωe =
100 meV, ~ωh = 18.6 meV, β = 1.64). (b) Energy levels of all 3 bound electron states
as a function of QD height, with values of (l,m, n) indices indicated. (c) Energy
levels of all 32 bound hole states as a function of QD height, with selected values
of (l,m, n) indices indicated. (d) Z-component wavefunction of the electron ground
state and hole ground and first excited states, with confinement potentials. (e) X-
component wavefunction of the electron ground state and hole ground and first two
excited states, with confinement potentials.

The x and y indices l and m can take values 0, 1, 2, . . ., while the z index n = 1, 2, 3, . . .
labels the solutions to the transcendental equations 2.19 and 2.21 in order of increasing
kn and energy. The three indices (l,m, n) are related to the single index i = 0, 1, 2, . . .
when sorted by increasing energy.

The model confinement potential and solutions for energy levels and wavefunc-
tions are shown in Fig. 2.2. These model calculations use averaged parameter values
obtained from a previous study of InAs/GaAs CQDs in a Schottky diode[30], with
height h = 2.9 nm and hole excited state spacing ~ωh = 18.6 meV corresponding to
the bottom QD, asymmetry parameter β = 1.64 extracted from the top QD, and an
estimated value of electron excited state spacing ~ωe = 100 meV. As the QD height
increases, the number of electron or hole bound states increases while each of their
energies decrease. Many more bound hole states are obtained than electron states as
a result of their difference in effective mass (mh/me = 8.1 in InAs) and the assumed
lateral confinement strengths. The ground state of each wavefunction component is
symmetric with a single peak at the center of the QD, while each additional level of
excitation introduces a node where the wavefunction crosses zero and the particle is
unlikely to be found.
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In the laterally symmetric case with β = 1, the ground state wavefunction can
be written in cylindrical coordinates as

ψα0 (r, φ, z) = Aα0 exp
[
−mαωα

2~
r2
]
Zα

1 (z). (2.23)

This expression greatly simplifies the evaluation of integrals for interaction matrix
elements between ground states, since the azimuthal coordinate φ can be factored
out to reduce the dimensionality of the problem.

The wavefunctions given in Eq. 2.17 for a single QD can be used to form CQD
wavefunctions in the localized basis, with the electron or hole localized entirely in
either the bottom (B) or top (T) QD. With the origin set at the center between the
two QDs, localized CQD wavefunctions are given by ψαB/T,i(x, y, z) = ψαi (x, y, z∓d/2)
with center-to-center QD separation d and the substitution h7→hB/T to account for
the different height of each QD. It is also possible for each QD to have a different
lateral confinement strength as a result of strain propagation during growth, which
can be included with the substitution ωα 7→ωα,B/T .

2.2.2 Tunnel Coupling

The single-particle terms of Eq. 2.9

He +Hh =
∑
α,i

Eα
i nαi −

∑
α,σ

∑
i∈B

∑
j∈T

tα,ij(c
†
αiσcαjσ + c†αjσcαiσ) (2.24)

give the energies of isolated charges with number operators nαi = c†αi↑cαi↑ + c†αi↓cαi↓
and the intrinsic interdot tunnel coupling −tα,ij = 〈Bi, σ|Hα |Tj, σ〉 due to wave-
function overlap between QDs. As tunnel-coupled energy levels are tuned into reso-
nance, they hybridize to form coherent symmetric and antisymmetric superpositions
(|Bi, σ〉α ± |Tj, σ〉α)/

√
2 with an energy splitting ∆Eij = |2tα,ij|, resulting in an anti-

crossing pattern. Since electrons have a much smaller effective mass than heavy holes,
they show a significantly larger wavefunction overlap and tunnel coupling energy. In-
terestingly, in the multiband ~k · ~p model, HH-LH coupling introduces an opposing
correction to tα which can change its sign and result in an antisymmetric ground
state above a critical interdot distance.[54, 56]

Tunneling resonances can be observed by applying an electric field in the
growth direction to control the relative alignment of energy levels between QDs via
the quantum-confined Stark effect. Assuming a constant electric field F in the vicin-
ity of the CQD, an additional term V F

α (~r) = −qαzF is added to the confinement
potential of each band with charge qe/h = ∓e. This additional term can be in-
cluded when solving Eq. (2.5) for single-particle eigenstates, or it can be treated as a
perturbation up to second order. In either case, the result is a quadratic Stark shift
∆Eα

i (F ) = −pαiF − 1
2
βαiF

2 with static dipole moment pαi = qα〈z〉i and polarizability
βαi along the direction of the applied field.[57] The corresponding Hamiltonian

HStark(F ) =
∑
α,i

∆Eα
i (F )nαi (2.25)
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simply modifies the energies of single-particle states. The energy levels in separate
QDs are shifted most dramatically by the built-in interdot dipole p0 = ed due to the
distance d between the center of each QD. As a result, interdot exciton states such
as 10

01X
0 ≡ iX0 show a strong linear field dependence with negligible polarizability,

allowing a high degree of tunability in CQDs compared to single QDs. By controlling
the CQD height asymmetry and electric field direction, a given device can be made
to exhibit electron and/or hole tunneling resonances.[1]

2.2.3 Multiparticle Interactions

Each pair of particles is coupled through the Coulomb interaction

HCoulomb =
1

2

∑
αβ

∑
ijkl

∑
σχ

V αβ
ijklc

†
αiσc

†
βkχcαjσcβlχ (2.26)

with matrix elements given by the integral

V αβ
ijkl =

qαqβ
4πε0εr

∫∫
d3~r d3~r ′

ψα∗i (~r)ψαj (~r)ψβ∗k (~r ′)ψβl (~r ′)

|~r − ~r ′|
, (2.27)

and a preceding factor of 1/2 to account for double counting as particle indices α and
β are varied. The largest contributions are the diagonal terms V αβ

ij = V αβ
iijj, which

shift the relative energies of multiparticle states and are responsible for the observed
energy ordering of excitons with different charge configurations.[58, 59] Off-diagonal
terms such as V αβ

ijkk with i 6=j contribute to tunnel coupling between states |i, σ〉α and
|j, σ〉α, increasing the tunnel coupling of charged exciton states relative to that of a
bare electron or hole.

Electrons and holes are additionally coupled through the pairwise exchange
interaction

Hexchange =
∑
ijkl

∑
σσ′χχ′

Jehiσ,jσ′,kχ,lχ′c
†
eiσc

†
hkχcejσ′chlχ′ (2.28)

with matrix elements defined similarly to the Coulomb interaction, but with an ex-
change of spatial coordinates and an additional spin dependence from the Bloch
wavefunction components:

Jehiσ,jσ′,kχ,lχ′ =
e2

4πε0εr

∫∫
d3~r d3~r ′

Ψe∗
iσ(~r)Ψe

jσ′(~r
′)Ψh∗

kχ(~r ′)Ψh
lχ′(~r)

|~r − ~r ′|
. (2.29)

The exchange interaction can be decomposed into a short-range component with ~r
and ~r ′ in the same unit cell of the lattice, and a long-range component with ~r and
~r ′ in different unit cells.[60, 61] The short-range component is typically dominant in
QDs, giving a matrix element

J
eh(SR)
iσ,jσ,kχ,lχ = Aehσσ′,χχ′

∫
d3~r ψe∗i (~r)ψej (~r)ψ

h∗
k (~r)ψhl (~r) (2.30)
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with the spin-dependent prefactor Aehσσ′,χχ′ determined by integration over the Bloch
wavefunctions within a unit cell. The short-range exchange introduces a splitting δ0

between optically bright states with antiparallel electron and hole spins and optically
dark states with parallel spins, as well as a coupling between the dark spin states
which forms new eigenstates split by δd. The long-range component can be expressed
in the form of a dipole-dipole interaction between interband transition dipole moments
~µσχ = 〈ueσ|~r

∣∣uhχ〉, giving the integral

J
eh(LR)
iσ,jσ′,kχ,lχ′ =

e2

4πε0εr

∫∫
d3~r d3~r ′ ψe∗i (~r)ψej (~r

′)ψh∗k (~r ′)ψhl (~r)

× ~µσχ · ~µσ′χ′ − 3(~µσχ · n̂)(~µσ′χ′ · n̂)

|~r − ~r ′|3
(2.31)

with unit vector n̂ in the direction of ~r − ~r ′.[60] The long-range exchange introduces
a coupling between the bright spin states to form new eigenstates split by δb, though
this component cancels to zero when the envelope wavefunctions are symmetric in
the lateral directions. The effects of the exchange interaction can be succinctly ex-
pressed by introducing a hole pseudospin Sh = 1

2
with Shz eigenstates

∣∣1
2

〉
= |⇓〉 and∣∣−1

2

〉
= |⇑〉, so that electron and hole spin operators are related to the Pauli matrices

by ~σα = 2~Sα. The anisotropic exchange Hamiltonian is then given by

Hexchange =
δ0

2
σezσ

h
z +

δb
4

(σexσ
h
x − σeyσhy ) +

δd
4

(σexσ
h
x + σeyσ

h
y ) (2.32)

in terms of the splitting parameters defined above for a single electron-hole pair.[62]
In CQDs, the nature of spin interactions in different charge states is revealed

by a characteristic spin fine structure pattern near tunneling resonances. A single-
particle state will form a simple anticrossing between states localized in each QD.
A neutral exciton state X0 with one electron and one hole will form a total of four
anticrossings between pairs of bright or dark spin states separated by exchange split-
tings. In a two-electron or two-hole charge state, the singlet spin states are coupled
by
√

2tα due to spin-conserving tunneling of either indistinguishable particle, while
the triplet states remain unaffected. The resulting singlet-triplet splitting, referred
to as kinetic exchange, arises solely from a combination of tunneling and the Pauli
exclusion principle.[63] In a three-particle trion state, the electron-hole and kinetic
exchange interactions combine to produce a more complex pattern.

A comprehensive list of charge configurations and spin states can be found in
Table A.1, for states with a total charge q = 0,±1, two or less electron-hole pairs, and
hole tunneling only, corresponding to the states observed experimentally in samples
presented in this report.

2.3 Optical Spectra

Optical transitions can be described by adding an interaction between bound charges
and propagating electromagnetic field modes—photons, when treated quantum me-
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chanically. The photon interaction Hamiltonian can generally be expressed within
the electric dipole approximation as

Hphoton = −~µ · ~E(t), (2.33)

with electric field ~E(t) and electric dipole moment operator ~µ = e~r in terms of
electron charge e and position operator ~r. For the case of calculating absorption or
stimulated emission under monochromatic excitation, the electric field can be treated
semiclassically with

~E(~r, t) = ~e E cos(ωt− ~k · ~r + φ), (2.34)

where ~k is the wavevector in the direction of propagation, ~e is the unit vector indicat-
ing polarization within the plane perpendicular to ~k, E is the field amplitude, ω is the
frequency, and φ is the phase shift relative to t = 0. For propagation in the ẑ direc-
tion, the polarization can be expressed in the linear basis with horizontal ~eH = x̂ and
vertical ~eV = ŷ components. The polarization can equivalently be transformed to the
circular basis, with right-circular ~eL = (x̂+ iŷ)/

√
2 and left-circular ~eR = (x̂− iŷ)/

√
2

components which rotate along the ẑ direction during propagation.
The maximum spatial extent of a typical CQD system is about 15 nm, as

determined by QD size and separation.[30] In comparison, the wavelength in GaAs
of photons relevant for QD optical transitions (~ωX ∼ 1.25 eV ) is on the order of
λ = 2πc/nGaAsωX = 280nm. Over the extent of the CQD, the magnitude of the
sinusoidal fields can change by a factor of 0.58%. We neglect this spatial variation
by employing the long-wavelength approximation and evaluating the fields at the
midpoint between the QDs, which we take as the origin of the coordinate system.

To analyze spontaneous emission of single photons, the electric field must be
regarded as an operator and quantized into modes l = (ωl, ~el) with frequency ωl and
polarization ~el, giving[64, 65]

~E(t) =
∑
l

i~elEl(ale−iωlt − a†l e
iωlt) =

∑
l

( ~E
(+)
l + ~E

(−)
l ), (2.35)

where al (a†l ) is the annihilation (creation) operator of a photon in mode l and

El =
√

~ωl/2εV is the vacuum field amplitude for mode volume V .
The dipole moment operator can be expanded in the basis of electron and hole

bound states as

~µ =
∑
ij

∑
σχ

〈i, σ| e~r |j, χ〉 (ceiσchjχ + c†eiσc
†
hjσ). (2.36)

The position operator acts most strongly on the lattice-periodic Bloch part of the
wavefunctions, giving the expression

〈i, σ| e~r |j, χ〉 ≈
(∫

d3~r ψe∗i (~r)ψhj (~r)

)(
1

Ω0

∫
Ω0

d3~r ue∗σ (~r) e~r uhχ(~r)

)
= Mij ~µσχ,

(2.37)
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where Ω0 is the volume of a lattice unit cell, Mij is the electron-hole envelope wave-
function overlap, and ~µσχ is the optical dipole moment of the corresponding bulk
interband transition.

While Eq. 2.36 in the single-particle basis clarifies the physical mechanism of
optical transitions, with an electron-hole pair being either created or destroyed, it is
more useful to transform to the basis of multiparticle charge and spin states for the
purposes of analyzing CQD optical transitions. In the basis of multiparticle bound
states indexed by n, the photon interaction is expressed

Hphoton =
∑
l

∑
nm

W l
nm(σnm + σmn)(ale

−iωlt − a†l e
iωlt), (2.38)

with interaction matrix element W l
nm = −iElMnm(~el · ~µnm) and transition operator

ωnm = |n〉 〈m| describing a transition from state |m〉 to state |n〉 with an additional
electron-hole pair.

The symmetry properties of the transition dipole moment integral ~el ·~µnm lead
to the selection rules ∆J = 1 and ∆Jz = ±1 for circularly polarized light and ∆Jz = 0
for linearly polarized light. This is simply an expression of angular momentum conser-
vation, since circularly-polarized photons carry angular momentum (J, Jz) = (1,±1)
and linearly-polarized photons carry angular momentum (J, Jz) = (1, 0) (represented
in units of ~, as with electrons and holes). Any transition that does not satisfy these
selection rules has W l

nm ∝ ~el · ~µnm = 0 and is forbidden by the electric dipole interac-
tion, though it could be partially allowed when valence band mixing or higher-order
electric or magnetic multipole transitions are considered.

The Hamiltonian of the electron-hole subspace H0 (Eq. 2.9) introduces an
oscillating phase to the transition operators, which can be seen by transforming to
the interaction picture HI

photon = exp(iH0t/~)Hphoton exp(−iH0t/~). The resulting
Hamiltonian

HI
photon =

∑
l

∑
nm

W l
nm(σnme

iωnmt + σmne
−iωnmt)(ale

−iωlt − a†l e
iωlt), (2.39)

with transition frequency ωnm = (En − Em)/~ > 0, has multiple terms with widely
varying oscillation frequencies. For photons near resonance with the transition fre-
quency ωl ∼ ωnm, cross-terms with e±i(ωl+ωnm)t oscillate quickly and average to zero
on timescales relevant for optical transitions. We therefore make the rotating-wave
approximation by neglecting these terms and keeping only the slowly-oscillating terms
to obtain

HRWA
photon =

∑
l

∑
nm

W l
nm(σnmale

−i(ωl−ωnm)t − σmna†l e
i(ωl−ωnm)t), (2.40)

describing photon absorption accompanied by electron-hole pair generation and pho-
ton emission accompanied by electron-hole pair recombination.

The absorption rate under quasi-resonant monochromatic excitation can be
determined using semiclassical perturbation theory. Assuming that the driving field
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is weak, so that the interaction Hamiltonian HI = Hphoton is small compared to H0,
the state of the system can be expanded in the numbers of transitions induced by the
field. We expect the first-order terms (with one interaction) to dominate the system
evolution, while second-order terms can be included to analyze two-photon transitions
(as in Section 4.2). To keep track of the different terms of the perturbation, we pull
out a small factor λ:

HI = W cos(ωt) ≡ λH ′, (2.41)

such that λ� 1 and the elements of H ′ are the same order of magnitude as H0.
In the basis of eigenstates |n〉 of the Hamiltonian, with

H0 |n〉 = En |n〉 = ~ωn |n〉 , (2.42)

the state of the system at time t can be written

|ψ(t)〉 =
∑
n

φn(t) |n〉 . (2.43)

The time-dependent Schrödinger equation applied to this state then yields

i~
d

dt
|ψ(t)〉 = (H0 + λH ′(t)) |ψ(t)〉 . (2.44)

Now, each coefficient can be expanded in powers of λ as φk =
∑∞

n=0 λ
nφ

(n)
k . Addition-

ally, we factor out evolution under H0 by replacing each |n〉 by e−iωnt |n〉 (equivalent
to transforming to the interaction picture in Eq. 2.39) and take an inner product with
an arbitrary state 〈k|, which gives

i~φ̇k = λ
∑
n

〈k|H ′ |n〉φn(t)eiωknt. (2.45)

Collecting terms with similar powers of λ gives a system of differential equations

i~φ̇(0)
k = 0

i~φ̇(1)
k =

∑
n

〈k|H ′ |n〉φ(0)
n (t)eiωknt.

(2.46)

With the initial condition |ψ(t = 0)〉 = |i〉, these equations can be solved iteratively
to obtain

φ
(0)
k (t) = δik

λφ
(1)
k (t) =

1

i~

∫ t

0

dt′ 〈k|H ′ |i〉 eiωknt.
(2.47)

With the above considerations, the probability of transitioning from state |i〉
to state |k〉 after a time T through one field-induced transition is given by

P
(1)
i→k(T ) = |〈k|ψ(T )〉(1)|2 =

1

~2

∣∣∣∣∫ T

0

dtWki cos(ωt)eiωkit
∣∣∣∣2 ,
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with transition matrix elements Wki = 〈k|W |i〉. Since this probability will only
increase with longer interaction times, and transitions between several states must be
accounted for, the more interesting quantity to extract is the transition rate, defined
as the transition probability per unit time. The identity cos(θ) = 1

2

(
eiθ + e−iθ

)
can

be used to rewrite the oscillatory terms as complex exponentials. Performing the
integration yields a general expression for the transition rate:

Γ
(1)
i→k(T ) =

P
(1)
i→k(T )

T
=

1

T

|Wki|2

4~2

∣∣∣∣ei(ω+ωki)T − 1

ω + ωki
− e−i(ω−ωki)T − 1

ω − ωki

∣∣∣∣2 (2.48)

This expression contains two terms with denominators ω ± ωki, accounting for reso-
nance/antiresonance of the laser with the transition of interest. When one of these
resonance conditions (or at least quasi-resonance) is satisfied, that term will dominate
the transition (equivalent to applying the rotating wave approximation in Eq. 2.39).
If ω ≈ ωki, the expression simplifies to

Γ
(1)
i→k ≈

1

T

|Wki|2

4~2

sin2(ω−ωki
2

T )(
ω−ωki

2
T
)2 T 2 ≡ 1

T

|Wki|2

4~2
gT (ω − ωki). (2.49)

As the interaction time T →∞, the function gT (ω) becomes a delta function
with amplitude 2πT . Therefore, the transition rate can be written

Γ
(1)
i→k ≈

π

2~2
|Wki|2 δT (ω − ωki),

where the function δT (ω) has width 2π/T and unit area, becoming a δ-function as
T → ∞. This is an expression of Fermi’s golden rule, where the transition rate due
to any interaction with a specified coupling matrix element follows the same general
form. Note that Γ

(1)
i→k = Γ

(1)
k→i = Γ

(1)
ik : a sinusoidal field is equally likely to cause

absorption or stimulated emission between two levels.
Real CQD systems are subject to relaxation and decoherence processes, so

that the coherent phase decays at a rate γ̃. As a result, each transition is broadened
from a delta function to a Lorentzian with frequency width 2γ̃. Ref. [66] uses a single-
particle Green’s function description of linear susceptibility within the electric dipole
and rotating wave approximations to obtain an expression for the optical absorption
spectrum as a sum of Lorentzian contributions

Iabs(ω) ∝
∑
n

|W0n|2
γ̃n(ω)

(ω − En/~)2 + γ̃n(ω)2
, (2.50)

where W0n is the interaction matrix element of transition |0〉 → |n〉. The general
expression for the energy linewidth of each exciton state

Γn(ω) = 2~γ̃n(ω) = ~
∑
m 6=n

γnm + ~γnn(ω) (2.51)
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contains contributions from real transitions to other states as well as virtual single-
state transitions associated with phonon-assisted optical absorption, resulting in
phonon sidebands around the Lorentzian zero-phonon line (ZPL) and pure dephas-
ing. The frequency-dependent pure dephasing rate is calculated as a phonon-assisted
transition rate, with the phonon energy determined by the detuning ∆ωn = ω − ωn
of the optical frequency from resonance:

γnn(ω) =
2π

~2
[nB(T,∆ωn) + Θ(∆ωn)] Jnn(∆ωn). (2.52)

The optical emission spectrum is also calculated similarly to the absorption spectrum,
with only the pure dephasing rates modified by changing the sign of detuning terms
∆ωn to −∆ωn to reflect the reversal of phonon absorption and emission processes.

Experimentally, the emission spectrum is detected using a spectrometer with
a finite resolution. As a result, the detected spectrum is convolved with the typically
Gaussian spectrometer response function of width Γspect, leading to a Voigt ZPL
profile with phonon sidebands. In the presence of a fluctuating electric field due to
many charged lattice defects near the CQD, an additional Gaussian broadening is
present, with a width Γfluct = ∆Ufluct|∂E/∂U | proportional to the bias slope of the
transition energy E(U). With both of these broadening mechanisms, the combined
Gaussian ZPL broadening is given by

Γg =
√

(Γfluct)2 + (Γspect)2. (2.53)



Chapter 3

CQD Growth and Spectroscopy

3.1 CQD Growth

Quantum dots can be grown by molecular beam epitaxy (MBE), a fabrication tech-
nique which allows precisely-controlled deposition of atomic layers on the surface of
a crystal substrate.[67, 68] By heating solid atomic sources in a vacuum chamber,
sublimation produces atomic vapor which can condense on the substrate and crystal-
lize to grow epitaxial layers. Crystal growth conditions can be tuned by controlling
the substrate temperature with an attached heating element, and the growth can be
monitored in-situ using Resonant High-Energy Electron Diffraction. Individual crys-
tal monolayers (MLs) can be deposited with appropriately designed source chambers
and automated shutters, at a rate of 1 ML per 1− 5 s. To obtain high-purity epitax-
ial crystals with minimal contaminants, the growth chamber must be maintained in
ultra-high vacuum conditions (∼10−10 Torr, or 10−13 atm). This places a series of
stringent requirements on an MBE apparatus, including cryogenic cooling and careful
choice of design and materials to prevent outgassing. MBE is therefore an expensive
fabrication technique to implement, though its atomic precision coupled with design
improvements for higher throughput have led to its widespread use in research and
commercial production of high-performance optical and magnetic sensing devices, as
well as quantum well lasers and other developing nanotechnology.

The morphology of epitaxial layer growth depends on the relative energy of
electrostatic interactions between the deposited layer and substrate surface. When the
deposited material is the same as the substrate, or forms a crystalline structure with
the same lattice spacing, surface atoms bind much more strongly to the substrate than
to each other. Growth then proceeds by sequential crystallization of planar atomic
layers covering the substrate, a phenomenon known as Frank-van der Merwe (FM) or
layer-by-layer growth. However, when a different material is deposited which has a
different lattice spacing than the substrate, strain due to lattice mismatch accumulates
at the material interface which counteracts surface adhesion. When deposited atoms

21
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are more strongly bound to each other than to the substrate, this effective surface
tension causes nucleation and growth of separate islands across the substrate surface,
a growth mode known as Volmer-Weber (VW) or island growth.

Under conditions of small lattice mismatch, such as InAs/GaAs with a 7 %
difference in lattice spacing, competition between surface tension and interface strain
leads to a combination of FM and VW growth modes. Initial growth takes place by
formation of a thin planar wetting layer (WL) on the substrate surface. At a critical
WL thickness (1.6 ML for InAs deposited on GaAs), the accumulated strain causes
the formation and growth of small islands on the WL surface, a process known as
Stranski-Krastanov (SK) or layer-plus-island growth. With properly chosen growth
conditions, SK growth produces coherently strained islands free of lattice defects and
of sufficiently small size to exhibit three-dimensional quantization of bound charge
states. These SK islands constitute self-assembled QDs with strong, discrete optical
transitions and relatively homogeneous size distributions.

When multiple QD layers are grown sequentially, separated by tunneling bar-
riers, propagation of lattice strain results in self-alignment of QDs in different layers
to form stacks of tunnel-coupled QDs (CQDs).[36, 37, 38, 39] Indium migration dur-
ing growth typically results in gradually expanding QD sizes as additional layers are
deposited. This effect is mitigated by using the indium-flush technique, wherein each
QD layer is partially capped and annealed to truncate QDs to a precisely controlled
height.[67]

3.2 Sample Structure

The experiments reported in this dissertation were performed on one of four
InAs/GaAs CQD samples, each grown in a diode structure on an n-doped substrate
with a larger bottom QD to produce hole tunneling resonances as the applied bias
is tuned. While many other QD and CQD samples were investigated, we limit the
discussion to those with the highest quality data and most extensive analysis for the
projects presented here.

Sample A (B) contains two InAs QD layers separated by a 4 nm (6 nm) barrier,
embedded in a planar n-type GaAs Schottky diode with interdot hole tunneling. The
layer structure is shown in Fig. 3.1(a). A 500 nm n-doped GaAs buffer layer is grown
on an n-doped GaAs substrate, with n-type doping achieved by introducing silicon
impurities during MBE growth. An 80 nm intrinsic (undoped) GaAs layer is then
deposited, followed by two nominally 2.5 nm InAs QD layers separated by a 4 nm (6
nm) GaAs tunnel barrier. Strain propagation and indium migration during growth
results in CQD asymmetry, with a slightly thicker (∼2.9 nm) bottom QD and a
slightly thinner (∼2.1 nm) top QD [30]. A 230 nm GaAs capping layer is then added,
followed by a 40 nm Al0.3Ga0.7As blocking layer, a final 10 nm GaAs layer, and a
transparent 8 nm titanium layer as the top Schottky contact. A 120 nm aluminum
shadow mask layer is then grown on top, with ∼1 µm apertures etched by electron-
beam lithography to allow individual CQDs to be optically addressed without external
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Figure 3.1: Layer structures of samples (a) A and B, and (b) C and D, not drawn
to scale. (c) Cross-sectional scanning electron micrograph of a typical suspended
membrane structure patterned onto sample D.

spatial filtering.
Sample C and D contain QDs separated by a 4 nm barrier, embedded in a

delta-doped nipip diode. The layer structure is shown in Fig. 3.1(b) A 950 nm n-
doped Al0.3Ga0.7As buffer layer is grown on an n-doped GaAs substrate, followed by
an additional 30 nm n-doped GaAs buffer layer. A 10 nm intrinsic GaAs layer is then
grown, following by delta doping with a 10 nm p-doped GaAs layer. Here, p-doping
is achieved using beryllium impurity atoms. Another 70 nm intrinsic GaAs layer is
grown, followed by the InAs CQD layers with a 2.8 nm bottom QD and 1.9 nm top
QD separated by a 4 nm GaAs tunneling barrier. A further 25 nm intrinsic GaAs
capping layer is then grown, followed finally by a 30 nm p-doped GaAs top layer to
form an nipip diode structure.

Sample C and D are grown identically, while sample D is further patterned by
electron beam lithography and inductively coupled plasma etching. This patterning
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is followed by an undercut with hydrofluoric acid to remove the sacrificial AlGaAs
layer and leave the top layers with CQDs suspended in a nipip diode membrane.
The result is a wide array of mechanical resonator structures, including diving-board
cantilevers with different lengths (∼5 − 15 µm) and widths (∼1 − 4 µm), all with
suspended CQD-embedded diode membranes as seen in Fig. 3.1(c).

3.3 Experimental Methods

The most basic requirements of single-CQD spectroscopy are a light source for opti-
cal excitation, a high-magnification objective lens to focus excitation light and max-
imize collection of photoluminescence (PL) emission, and a spectrally-dispersed de-
tection method. We use continuous-wave semiconductor diode lasers for excitation,
with most experiments presented here using one of two similar external cavity diode
lasers (Toptica DL Pro) with 890− 980 nm single-mode output tunable by changing
the angle of a motorized grating, and occasional experiments using separate diode
lasers fixed at 532 nm or 660 nm for excitation above bulk bandgap energies. We
use one of three 20/50/100× infinity-corrected objectives (Mitutoyo M Plan Apo
NIR) with high numerical aperture (NA = 0.4/0.42/0.5) and long working distance
(WD = 20/17/12 mm) to collect PL emission into a collimated beam.
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Figure 3.2: Schematic diagram of confocal spectroscopy setup, with fiber-coupled ex-
citation and detection, spectral filtering, polarization control, and white-light imaging
capability.
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Spectral detection is accomplished using a three-stage spectrometer (Princeton
Instruments TriVista) consisting of three Czerny-Turner monochromators with reflec-
tive diffraction gratings (900 mm−1 or 1100 mm−1 groove density) and 750 mm focal
length mirrors for collimation and focusing onto a liquid nitrogen-cooled 1340×100
CCD array detector with 20 × 20 µm pixels (Princeton Instruments Spec-10). The
spectrometer can be operated in one of three primary modes:

Single Spec uses only the final monochromator stage to maximize collection effi-
ciency with 80− 100 µeV spectral resolution.

Triple Additive uses all three monochromator stages with sequential dispersion to
maximize spectral resolution (25− 40 µeV) at the cost of collection efficiency.

Triple Subtractive uses the first and second monochromator stages with opposite
dispersion and a narrow exit slit width to minimize stray laser light and the
final monochromator stage for dispersion, giving a similar spectral resolution as
single spec with a slightly lower collection efficiency.

CQD samples must be cooled to prevent thermal excitation of bound electrons
and holes to excited states and maintain narrow ground-state PL linewidths with high
intensity. This can be ensured by keeping the temperature T such that the thermal
energy kBT (Boltzmann constant kB = 86.2 µeV/K) is far below the excited state
energy splitting ~ωα (T � 116 K for ~ωh = 10 meV). In practice we find that
ground-state PL transitions can be resolved below ∼80 K, with lower temperatures
preferable due to higher intensity and lower linewidth. This is accomplished using
a continuous-flow helium cryostat system (Cryo Industries Cryocool G2 with CFM
Microscopy Cryostat) capable of maintaining the sample at temperatures as low as
20 K for weeks at a time with a room-temperature supply of helium gas. The sample
is held in a high vacuum chamber pumped out to < 10−4 mbar using an external
turbopump (Pfeiffer HiCube 80 ECO) and mounted with vacuum grease to a copper
cold finger in contact with the cooled helium gas stream. The sample chamber has a
1.59 mm-thick quartz window on either side to allow optical access for laser excitation
and PL collection, and the connected helium transfer lines are flexible to minimize
vibration transfer from the compressor and refrigeration pumps.

Another requirement for single-CQD spectroscopy is the ability to adjust and
maintain alignment of all optical components for the duration of an experiment (from
∼1 minute to ∼10 hours depending on scanning parameters). To achieve this, all op-
tical components are attached to a heavy optical table with pneumatic vibration
damping on each leg and an array of tapped holes for reconfigurable rigid mounting.
Each mirror, beam splitter, and optical fiber coupler is held in a spring-loaded kine-
matic mount with two-axis thumbscrew control for stable angular and translational
alignment of each optical path. The cryostat sample chamber is mounted on two
linear translation stages for positioning in the lateral (x − y) directions and scan-
ning across the sample surface, while the objective lens is mounted on another linear
translation stage for focusing and collimation in the normal (z) direction.
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The laser excitation and spectrometer detection beams can be collimated and
directed through free space, or coupled through single-mode optical fibers (as in
Fig. 3.2) by focusing onto the 5 µm fiber core and re-collimating the output with small
anti-reflection-coated aspheric lenses. The fiber-coupled arrangement is convenient for
rapid exchange of excitation source or detector without significant misalignment, and
the small fiber core acts as a spatial filter limiting PL collection to a ∼1.5 µm spot
on the sample surface for confocal microscopy. However, cryostat pump vibrations
combined with 1−2 K fluctuations of laboratory room temperature leads to measured
sample drift up to 10 µm over minutes or hours, often limiting stable PL collection
times to 10 − 30 minutes for fiber-coupled confocal microscopy with this cryostat
setup. This situation was improved dramatically by switching to a new cryostat
(Attocube attoDRY1100) which has a mechanically isolated sample chamber with a
low-temperature objective lens and stacked piezoelectric translation stages for nm-
scale control of sample position in all three dimensions. The new cryostat was installed
and made functional within the last year, so most of the long-duration scans presented
here were performed using the old cryostat and free-space coupling.

Visual inspection of the sample surface was accomplished by coupling a white
light source (Schott KL200) into the excitation path and focusing onto an imaging
CCD (Watec WAT-902H2 Ultimate) in the detection path with beam splitters on
flip mounts to allow unimpeded PL signal transmission when not in use, with the
arrangement shown in Fig. 3.2. The white light excitation is focused onto the back
aperture of the objective lens using Köhler illumination, resulting in an unfocused
beam at the sample plane for even lighting without forming an image of the light
source. Once an individual CQD is identified spectroscopically, visual inspection is
used to mark its location on the sample by reference to scratches or other visible
surface features so it can be returned to for future study.

The laser wavelength is continuously monitored with a beamsplitter coupling
∼5% of the source power into a wavemeter (Bristol 621A), with the laser’s internal
grating angle tunable in energy steps as small as 80 µeV with motorized positioning
and 2 neV with piezoelectric positioning. Wavelength tuning is complicated by oc-
casional instability and hopping between stable output modes of the laser, so that
experiments scanning laser wavelength can miss some wavelength ranges where the
output could not be stabilized. The laser power is monitored using a power me-
ter (Thorlabs PM100) at the output of a beamsplitter with wavelength-calibrated
transmission and reflection spectra so the power transmitted to the sample can be
accurately estimated at each wavelength. A series of exchangeable neutral density
filters are used for coarse power control, cutting power at all wavelengths by orders of
magnitude as needed. When the excitation laser is coupled through an optical fiber,
the fiber coupling efficiency can be tuned through careful misalignment to give finer
control of transmitted power. Laser output power fluctuations of ∼5% were stabilized
to < 0.5% using a liquid crystal variable retarder (Meadowlark LVR-100) in combi-
nation with a linear polarizer as a custom power controller, giving stable output with
fine automated control over three orders of magnitude. Later experiments replaced
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this arrangement with a commercial power controller (Thorlabs NEL03) with better
frequency response and lower output fluctuations (< 0.05%).

Since the tunable diode laser can emit over a wide wavelength range, single-
mode emission is accompanied by a broad background spectrum with interference
due to the many suppressed modes, referred to as sideband emission. For standard
nonresonant PL experiments with the laser wavelength (890− 920 nm) far below the
expected range of CQD PL wavelengths (940− 960 nm), laser sideband emission can
still be strong enough to obscure PL signal in the absence of spectral filtering. The
laser sideband emission can be selectively blocked by placing a short-pass filter in the
excitation path, set to allow the main laser peak and block any sideband which would
interfere with PL detection. The remaining laser light can also interfere with PL
detection as stray light within the spectrometer, so this can be prevented by placing
a long-pass filter in the detection path to block the main laser peak while allowing as
much PL signal as possible. For experiments with the laser and PL wavelengths too
close for efficient edge-pass filtering (within ∼15 nm), we use the triple-subtractive
spectrometer detection mode to block laser light with a narrow transmission cutoff
(< 0.5 nm).

The polarization of photons involved in CQD optical transitions is closely re-
lated to the exciton spin states, with the intensity of PL with different polarization
orientations (left- or right-circular, or linear at some angle) indicating the population
of different spin states. The strength of a beam’s polarization is quantified by the
extinction ratio, the ratio of power transmitted through a polarizer oriented along
its polarization axis to the power transmitted through a perpendicularly-oriented po-
larizer. The laser output is polarized vertically with an extinction ratio of ∼5000,
and rotated 45◦ by a Faraday isolator (Thorlabs IO-5-TIS2-HP) to block reflected
light and prevent it from destabilizing the laser. The excitation polarization incident
on the sample and detection polarization of collected PL is controlled electronically
using a linear polarizer and liquid crystal variable retarder on each path (as shown
in Fig. 3.2), allowing access to orthogonal linear (vertical/horizontal) and circular
(left/right) polarization of each path without requiring realignment. Polarization-
maintaining single-mode optical fibers are used to maximize transmission of polar-
ized light for polarization-dependent experiments, while other experiments can use
standard single-mode optical fibers with no significant loss.

A cross-polarized configuration can also be used to help block laser sideband
emission in near-resonant PL experiments, with polarized excitation and oppositely-
polarized detection. Earlier experiments use a side-incidence geometry with the ex-
citation beam focused onto the sample at a 45◦ angle with a separate 50 mm lens
to minimize scattered laser light collected into the spectrometer, but we found that
depolarization from angled glass interfaces reduces the extinction ratio to ∼10 and
prevents cross-polarized sideband suppression. Near-resonant PL experiments are
made possible by using normal incidence (as shown in Fig. 3.2) with cross-polarized
detection, and ensuring a slight misalignment between excitation and detection paths
to prevent collection of specular reflections.
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Finally, an electric field is applied to diode-embedded CQDs by mounting the
sample in a ceramic chip header with electrical contact to the top and bottom con-
ductive layers. The electric field strength is controlled using a sourcemeter (Keithley
2611A) to apply a bias voltage across the sample with electrical feedthrough lines
into the sample chamber and measure the resulting current. Device parameters and
measurements are monitored and controlled during experiments using a graphical
programming software (LabVIEW) installed on a computer connected to each device
by USB (or RS232 serial connection converted to USB). Earlier experiments use a
simple looped sequence to change parameters and record the resulting data, with
the most common experiment measuring the PL spectrum as a function of applied
bias voltage. Later improvements extended this functionality to establish a standard
format (queued state machine) for parallel control of multiple instruments, allowing
continuous control during experiments (e.g. stabilization of laser power), remote con-
trol of devices connected to different computers, and simplified installation and usage
of new devices.

3.4 Photoluminescence Spectroscopy

Figure 3.3: Photoluminescence bias map of a CQD under nonresonant excitation at
909.4 nm, with intensity represented as color on a logarithmic scale. Each prominent
charge state is labeled by its anticrossings (red squares) and the involved transitions
in the localized basis (arrows).
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Basic non-resonant photoluminescence (PL) experiments use high-energy laser
excitation to generate electron-hole pairs in CQD excited states which quickly relax to
one of several ground states before recombining optically as detected PL. We typically
generate electron-hole pairs directly in CQD excited states with 890−920 nm excita-
tion, but higher-energy excitation of free excitons in the wetting layer or surrounding
GaAs barrier is also possible (requires subsequent capture into CQD states, reducing
efficiency). PL is typically seen with the diode under reverse bias, with minimal cur-
rent to allow generated charges to recombine optically rather than tunnel out of the
CQD. Any reference to bias voltages presented here should therefore be understood
as being applied in the reverse-bias direction. Since charge confinement is heavily
influenced by applied electric field, the bias is stepped through a range of values to
map out changes in the PL spectrum. At each bias value, the spectrally-dispersed PL
signal is recorded as the number of counts registered in each CCD pixel, with vertical
binning over the central 11 − 25 pixels where the detection beam is focused. These
spectra are then compiled into a two-dimensional PL bias map, showing the number
of counts on a chosen color scale as a function of PL energy and applied bias.

One example of a PL map with particularly clear and identifiable transitions
is shown in Fig. 3.3. The defining feature of QD PL is the presence of multiple narrow
transitions (linewidth < 500 µeV), indicating recombination from stable bound charge
states. Each transition is only visible over a limited range of bias voltages where the
associated charge states are stable. Outside of this range, excess charges tunnel into
or out of the QDs faster than they can recombine optically, with the QDs relaxing
to the lowest-energy stable charge state at each bias voltage. The nearby n-doped
GaAs buffer layer provides an excess of electrons at low bias voltages, while electrons
successively tunnel out in a series of charging steps as the bias voltage is increased.
Though many PL energies appear to remain constant with bias, a slight quadratic
shift due to the quantum-confined Stark effect can be seen in transitions with an
extended charge stability range. Each of these features is common to bias maps of
single QDs as well as CQDs.

CQDs can be identified by the presence of spatially indirect (interdot) transi-
tions with a large linear Stark shift in the PL bias map, in addition to the spatially
direct (intradot) transitions with a much smaller quadratic Stark shift. At the inter-
section of some pairs of direct and indirect transitions, the formation of an avoided
crossing—referred to as an anticrossing (AC)—indicates a tunnel coupling between
two of the involved charge states. Multiple ACs can be observed at different ener-
gies and bias values corresponding to different charge states, with the size of the AC
indicating the tunnel coupling strength (minimum energy difference ∆E = 2t). In
addition, transitions with two initial and two final states possible due to interdot tun-
neling form a connected pattern with two pairs of ACs, referred to as an X-pattern
due to its appearance on a bias map. Two of these X-patterns can be seen in Fig. 3.3
for recombination of neutral biexciton (XX0) and positive trion (X+) states, though
only one half of the positive trion X-pattern can be seen due to electron tunneling
from the n-doped substrate at the onset of forward bias.
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Some transitions are composed of multiple parallel peaks with a small energy
difference, indicating different spin states separated by a spin exchange interaction.
The behavior of these spin states near ACs can be used to uniquely identify the charge
states involved by matching observations to a theoretical model. The relative energy
shifts of 1 − 5 meV between direct transitions due to Coulomb interactions can also
help identify charge states, though the exact values of Coulomb shifts depend sen-
sitively on CQD geometry and confinement with significant variations even between
CQDs in the same sample.

1 1.2 1.4 1.6 1.8

Bias (V)

E
n
e
rg

y
 (

1
 d

iv
 =

 2
 m

e
V

)
E

n
e
rg

y
 (

1
 d

iv
 =

 2
 m

e
V

)

T
S

S

B

D

(a)

0 3

0
S

T

-1

-2

1

2

0

LR

Jz = -3

B

D

(b)

1 1.2 1.4 1.6 1.8

Bias (V)

1300

1302

1304

1306

1308

1310

E
n

e
rg

y
 (

m
e

V
)

(c)

Figure 3.4: (a) Calculated energies of neutral exciton and biexciton states as a func-
tion of bias, with charge and spin states labeled. (b) Spin states and allowed optical
transitions with left (blue) and right (red) circular polarizations. (c) Calculated tran-
sition energies of optically allowed (solid lines) and forbidden (dashed lines) as a
function of bias, with exciton (black) and biexciton (red) recombinations labeled.

The theoretical model of PL transitions resulting from the various possible
charge and spin states listed in Table 3.1 is outlined in Fig. 3.4 for the neutral exciton
and biexciton. The neutral exciton, with one electron and one hole, has two bright
spin states (Jz = ±1) with optical recombination to the ground state allowed and two
dark spin states (Jz = ±2) with optical recombination forbidden by conservation of
angular momentum (∆Jz = 0,±1). Neglecting the small exchange splitting between
bright states and between dark states, the interdot exchange splitting, and the Stark
shift of the direct exciton state, the neutral exciton Hamiltonian as a function of bias
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q nX Charge State
( eB eT
hB hT

)
Spin States Jz

0

0 g ( 0 0
0 0 ) |0〉 0

1
X0 ( 1 0

1 0 )
|↓⇑〉 , |↑⇓〉 ±1
|↑⇑〉 , |↓⇓〉 ±2

iX0 ( 1 0
0 1 )

|↓⇑〉 , |↑⇓〉 ±1
|↑⇑〉 , |↓⇓〉 ±2

2

XX0 ( 2 0
2 0 ) |↑↓S ⇑⇓S〉 0

iXX0 ( 2 0
1 1 )

|↑↓S ⇑⇓S〉 , |↑↓S ⇑⇓T 〉 0
|↑↓S ⇑⇑T 〉 , |↑↓S ⇓⇓T 〉 ±3

iXiX0 ( 2 0
0 2 ) |↑↓S ⇑⇓S〉 0

Table 3.1: List of all possible CQD charge and spin states with total charge q = 0
and number of excitons nX≤2, limited to ground-state orbitals and hole tunneling
only (electrons fixed in lower-energy bottom QD).

U can be written as

HX = EX +
δ0

2
−



|X0
B〉 |X0

D〉 |iX0
B〉 |iX0

D〉
∣∣iX0

1,B

〉
|iX0

1.D〉
0 0 th 0 th1 0
0 δ0 0 th 0 th1

th 0 p(U − U0) 0 0 0
0 th 0 p(U − U0) 0 0
th1 0 0 0 p(U − U1) 0
0 th1 0 0 0 p(U − U1)

,
(3.1)

with part of the exchange splitting factored out to simplify notation and for the
AC bias values to correspond to the observed bright state transitions. The various
parameters can be determined by fitting to the observed peak energies, including
the neutral exciton energy EX = 1307.0 meV, the bright-dark exchange splitting
δ0 = 200 µeV, the ground state hole tunnel coupling th = 292 µeV, the excited state
hole tunnel coupling th1 = 253 µeV, the indirect transition slope p = 17.79 meV/V,
the ground state AC bias U0 = 1.242 V, and the excited state AC bias U1 = 1.746 V.
Within the same approximations, the neutral biexciton Hamiltonian can be written
as

HXX = 2EX − Eb −


|XX0

S〉 |iXX0
S〉 |iXX0

T 〉
0

√
2th 0√

2th p(U − U2) 0
0 0 p(U − U2)

. (3.2)

The same experimental parameters are used, along with the biexciton Coulomb bind-
ing energy Eb = 1.98 meV and the biexciton AC bias U2 = 1.12 V. Note that the extra
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factor of
√

2 in the tunnel coupling results from the presence of two indistinguish-
able holes available for tunneling, while the spin-conserving nature of tunnel coupling
prevents tunneling between different spin states. As a result, the three iXX0

T triplet
spin states pass through the biexciton AC unaffected.

The calculated PL transition energies match the patterns observed in the ex-
perimental bias map, except where limited charge stability ranges prevent visibility of
transitions. Transitions resulting from direct recombination (X0

d , XX0
d , and iXX0

d)
and those resulting from indirect recombination (iX0

i , iX0
1,i, and iXX0

i ) are all visi-
ble. Even the indirect recombination of the direct biexciton state (XX0

i ), requiring
a two-step hole tunneling and optical recombination process and having an opposite
bias slope, is visible near the biexciton X-pattern with a much lower intensity. A
similar process can be followed to match the positive trion or any other observed X-
patterns to theoretical predictions to confirm their identification as particular CQD
charge states.

3.5 Photoluminescence Excitation Spectroscopy

X0

iX0

g

Laser PL

Phonon

(a) (b)

Figure 3.5: (a) Diagram of photoluminescence excitation experiment, exciting indirect
exciton and detecting direct exciton emission after phonon relaxation. (b) Series of
iX0 PLE spectra at different laser excitation energies.

Photoluminescence excitation (PLE) spectroscopy is performed by tuning the
excitation laser across a transition—directly, by changing the laser wavelength, or
indirectly, by changing the applied bias to Stark-shift the transition through resonance
with the laser—and monitoring a spectrally separate recombination pathway, such as
the LO phonon-assisted emission when probing direct exciton states, or direct exciton
emission following phonon-assisted tunneling when probing indirect exciton states
[69]. The resulting PLE spectrum indicates optical absorption, with a resolution
limited by the linewidth of the excitation laser (. 0.1 µeV) rather than the resolution
of the spectrometer (∼25−100 µeV). Figure 3.5 shows an example of iX0 PLE spectra
obtained by Stark-shifting the transition through resonance with the excitation laser
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at a series of different laser energies, detecting X0 PL at 1306.64 meV after relaxation
by phonon-assisted tunneling. Two-laser PLE is performed similarly, using two lasers
resonant with each step of a biexciton absorption pathway, tuning one laser through
a resonance (or tuning the bias to step both transitions through resonance) and
monitoring the recombination from a different pathway.



Chapter 4

Entanglement Generation

Quantum mechanics allows for the unique possibility of instantaneous non-local cor-
relation, or entanglement, between particles. Several technologies have emerged
which use quantum entanglement as a fundamental resource, including quantum
computation[70, 71, 13, 72, 73, 74] and cryptography,[13, 74, 75, 76, 77, 78] as well
as entangled-photon microscopy.[79] Quantum information technologies can be im-
plemented by using the orthogonal polarization states of a photon to encode binary
information in a “dual-rail” qubit scheme,[80] which allows for simple manipulation
and distribution of photonic qubits using linear optical elements,[81] or using spin
states of bound charges.[82] However, a source of entanglement between photons or
distant spins is needed to implement two-qubit gates or two-photon quantum cryp-
tography protocols.

Entangled photon pairs are routinely produced by nonlinear optical processes
such as spontaneous parametric downconversion (SPDC), in which one photon in-
teracts with a bulk crystal to produce two lower-energy photons with opposite po-
larizations. However, due to the probabilistic nature of such an interaction, SPDC-
based entangled photon sources can always produce zero, one, or multiple photon
pairs from each incident pulse, which can introduce errors in entanglement-based
quantum information.[83] Semiconductor quantum dots (QDs) are promising can-
didates for on-demand sources of entangled photon pairs, as well as spin-photon
entanglement.[84, 85] Two-photon emission can be achieved by optically exciting the
neutral biexciton state, consisting of two bound excitons. Radiative decay from this
state can proceed along one of two pathways corresponding to the two optically ac-
tive single-exciton spin states. Coherence between these two oppositely-polarized
(but otherwise indistinguishable) emission processes results in a pair of polarization-
entangled photons. In single QDs, however, the degeneracy of the intermediate exci-
ton spin states is often removed by the anisotropic electron-hole exchange splitting,
which is due to asymmetry in the self-assembled QD system.[86, 87, 88] If this splitting
is larger than the optical transition linewidths, the emitted photons are distinguish-
able by their energy and exhibit correlated—but not entangled—polarizations.[89]
Several techniques have been implemented to avoid this problem, including postse-
lection via spectral filtering[90] and minimization of the exchange splitting by post-

34
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growth thermal annealing[91] or application of external fields.[92, 93] Alternative QD
growth methods have also been demonstrated to exhibit a systematically smaller
exchange splitting, including interface fluctuation QDs[94] and QDs grown on the
(111) surface of GaAs.[95, 96] Aside from neutral biexciton decay, negatively-charged
states in QDs can also be used to create a chain of entangled photons in a one-
dimensional cluster state.[97] This procedure can be generalized to two dimensions
using two vertically-stacked coupled quantum dots (CQDs).[23] Here we discuss a
scheme in which entangled photon pairs are obtained straightforwardly through a
cascaded biexciton-exciton decay.

Section 4.1 describes a theoretical model of cascaded optical recombination
from an interdot biexciton state in a CQD in the presence of phonon-assisted tun-
neling and spin-flip relaxation processes, and the results of numerical simulations
identifying parameter regimes where two-photon polarization entanglement can be
expected. Section 4.2 outlines a theoretical model of two-photon absorption into the
interdot biexciton state under resonant two-laser driving, and describes the results of
initial experiments demonstrating two-photon absorption.

4.1 Molecular Biexciton Cascade

Figure 4.1: (a) Energy level diagram of the molecular biexciton radiative cascade,
depicting polarizations of all allowed recombination pathways, as well as spin-flip and
phonon-assisted hole tunneling channels. Thick vertical arrows indicate direct exciton
recombination, while thin vertical arrows indicate a slower interdot recombination.
Excitation and detection pathways are indicated by green shading. (b) Simulated
electric field-dispersed photoluminescence spectrum, mapping out each of the rele-
vant transition energies in the vicinity of the exciton and biexciton hole tunneling
resonances. Single-exciton hole tunneling resonance occurs at ∆ = 0 meV, while
biexciton hole tunneling resonances occur at ∆ = −1.9 and 27.2 meV.
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Our scheme for on-demand entangled photon pairs uses CQDs grown in an
electric field-effect structure, such as a Schottky diode.[98, 99, 100, 101] The CQD
structure permits two types of neutral excitons: direct excitons, with the electron
and hole in the same dot, and indirect excitons, with the electron and hole separated
in different dots. Because of their spatial charge separation, the energies of indirect
states can easily be tuned by applying an electric field.[102, 57, 103] In addition, spa-
tial charge separation greatly reduces both the short-range isotropic and long-range
anisotropic exchange splitting of indirect exciton spin states.[100, 63] This property
can potentially be used for generation of entangled photon pairs by preparing the
CQD in an indirect biexciton spin singlet state, with one direct (single-dot) exciton
and one indirect exciton. In an effort to determine the utility of this proposal, we
theoretically calculate the fidelity of entangled photon generation in a CQD system.

We consider an asymmetric CQD system of two vertically stacked, tunnel-
coupled, self-assembled InAs/GaAs QDs (referred to here as the bottom and top
dots) with respective heights hB and hT and center-to-center separation d, grown in a
diode structure to allow application of an electric field F along the growth direction.
Depending on the dot asymmetry and applied field direction, either electron or hole
levels can be tuned into resonance, causing electrons or holes to tunnel coherently.[1]
For the remainder of this work and without loss of generality we will assume a CQD
diode structure is chosen that promotes hole tunneling, with any excited electrons
confined to the bottom dot.

We restrict the CQD Hilbert space to that of the crystal ground state |g〉, direct
exciton |X〉, indirect exciton |iX〉, and molecular biexciton |iXX〉 (consisting of one
direct and one indirect exciton). Each of the single-exciton charge states can exist
in one of four spin states: two optically active bright states |H/V 〉 = |↓⇑ ± ↑⇓〉,
and two optically inactive dark states |Hd/Vd〉 = |↑⇑ ± ↓⇓〉 (single (double) ar-
rows denote spin-1/2 electrons (spin-3/2 heavy holes)). The molecular biexciton
can exist in a singlet |S〉 = |↑↓ − ↓↑〉 |⇑⇓ − ⇓⇑〉 or one of three triplet spin states
|T+〉 = |↑↓ − ↓↑〉 |⇑⇑〉, |T0〉 = |↑↓ − ↓↑〉 |⇑⇓ + ⇓⇑〉, or |T−〉 = |↑↓ − ↓↑〉 |⇓⇓〉.

While a CQD exhibits many optical transitions, we focus on the molecular
biexciton spin singlet state |iXX, S〉, which can produce correlated photon pairs by
sequential recombination to the ground state due to the optical selection rules. As
depicted in Fig. 4.1(a), this state is optically coupled to the ground state through the
bright spin states of the direct and indirect exciton, forming two pairs of oppositely-
polarized decay pathways.

Photon emission events can be described within the CQD and photon sub-
spaces using transition operators σ̂1H/V,D/I (σ̂2H/V,D/I) and photon creation operators

â†H/V , which act on the system to produce the first (second) H/V -polarized photon

by direct/indirect recombination of the biexciton (exciton) state (see Table 4.1 for
details). Assuming that the system has been prepared in the molecular biexciton spin
singlet state |Ψ0〉 = |iXX, S〉 and that recombination occurs via the indirect exciton
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Table 4.1: List of incoherent processes included in the master equation, with cor-
responding transition rates and operators. Exciton spin states are indexed by
m = H,V,Hd, Vd.

Process Rate Operator

Recombination ΓX σ̂1H/V,D = |iX,H/V 〉 〈iXX, S|
σ̂2H/V,D = |g〉 〈iX,H/V |

ΓiX σ̂1H/V,I = |X,H/V 〉 〈iXX, S|
σ̂2H/V,I = |g〉 〈iX,H/V |

Phonon-assisted tunneling Γabs |X,m〉 〈iX,m|
Γem |iX,m〉 〈X,m|

Phonon-assisted spin-flip ΓXsf |X,Hd/Vd〉 〈X,H/V |, H.c.

ΓiXsf |iX,Hd/Vd〉 〈iX,H/V |, H.c.

Pure dephasing γXp
∑

m |X,m〉 〈X,m|
γiXp

∑
m |iX,m〉 〈iX,m|

pathway without nonradiative transitions, the first recombination produces the state

|Ψ1〉 =
1√
2

(â†H σ̂1H,D + â†V σ̂1V,D) |Ψ0〉

=
1√
2

(|H〉1 |iX,H〉+ |V 〉1 |iX, V 〉).
(4.1)

During the time τ before the second photon is emitted, the system undergoes coherent
evolution, acquiring a phase difference due to the exchange interaction:

|Ψ1(τ)〉 = e−iĤτ/~ |Ψ1(0)〉

=
1√
2

(|H〉1 |iX,H〉+ eiSIτ/~ |V 〉1 |iX, V 〉),
(4.2)

to within a global phase factor, where SI is the exchange splitting between indirect
exciton bright spin states. Finally, the second recombination results in

|Ψ2〉 =
1√
2

(â†H σ̂2H,I + â†V σ̂2V,I) |Ψ1(τ)〉

=
1√
2

(|H〉1 |H〉2 + eiSIτ/~ |V 〉1 |V 〉2) |g〉

≡ |Ψ2P 〉 |g〉 ,

(4.3)

with the two photons in a pure polarization-entangled state |Ψ2P 〉. However, since
recombination can occur via multiple pathways, the result is a mixed state, described
by the two-photon density matrix ρ̂2P .
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In the absence of anisotropic electron-hole exchange splitting, each pair of
oppositely-polarized decay pathways are energetically indistinguishable, resulting in
the maximally-entangled Bell state |Ψ+〉 = (|H〉1 |H〉2 + |V 〉1 |V 〉2)/

√
2 for the polar-

izations of the emitted photon pair.[104, 105] Under generic conditions, we quantify
the quality of entanglement by the fidelity of the two-photon polarization state to the
target Bell state. This fidelity is determined by the projection

F+ =
〈
Ψ+
∣∣ ρ̂2P

∣∣Ψ+
〉

=
1

2
(ρ|HH〉〈HH| + ρ|V V 〉〈V V |) + Re(ρ|HH〉〈V V |).

(4.4)

A fidelity higher than 0.5 indicates polarization entanglement, while a lower fidelity is
acheivable by classical correlation alone. Uncorrelated photons, such as background
light not originating from the CQD, give a baseline fidelity of 0.25.[105, 106]

The CQD system interacts with the finite-temperature phonon bath of the
surrounding crystal lattice, as well as the vacuum electromagnetic field via sponta-
neous emission. We assume Markovian behavior, such that the environment always
remains at equilibrium (emitted particles cannot be reabsorbed). This assumption
requires that any system-environment correlations decay on a much faster time scale
than the system dynamics, which could introduce some inaccuracies at the lowest
temperatures simulated (T = 1 K) due to long-lived reservoir correlations. Using the
Rotating Wave Approximation to average over quickly-oscillating terms, we can then
describe the dissipative dynamics of this open quantum system using the Lindblad
master equation[107] for the reduced density matrix ρ̂ of the system:

∂

∂t
ρ̂ =

1

i~
[Ĥ, ρ̂] +

∑
i

Γi

(
σ̂i ρ̂σ̂

†
i −

1

2
σ̂†i σ̂i ρ̂−

1

2
ρ̂σ̂†i σ̂i

)
(4.5)

We assume that an initial state of ρ̂(0) = |iXX, S〉 〈iXX, S| is prepared
by pulsed excitation, and do not explicitly include interaction with the opti-
cal pulse. By projecting onto the basis states, Eq. (4.5) can be written as
〈i| ˙̂ρ |j〉 ≡ ρ̇ij =

∑
klMij,klρkl, where the elements of the time-dependence tensor Mij,kl

contain the various coherent phase evolution, transition and decay rates. Vectorizing
the elements of ρ̂ results in the matrix differential equation ~̇ρ = M~ρ, leading to the
solution ~ρ(t) = eMt~ρ(0). In terms of the superoperator L ρ̂ = ∂tρ̂ defined by Eq. (4.5),
this solution can also be written as ρ̂(t) = eL τ ρ̂(0).

For a given decay pathway, with the first (second) photon generated by
α(β) = D/I recombination after a time delay τ , the density matrix element
〈ij| ρ̂2P (τ) |kl〉 in the two-photon linear polarization basis is related to the CQD dy-
namics by the two-time correlation function[108, 109]

g
(2)
ijkl,αβ(τ) = 〈σ̂†1i,α(0)σ̂†2j,β(τ)σ̂2l,β(τ)σ̂1k,α(0)〉

= Tr
[
σ̂2l,β e

L τ (σ̂1k,αρ̂(0)σ̂†1i,α) σ̂†2j,β

]
,

(4.6)
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where the last line follows from the quantum regression theorem.[107] These polariza-
tion correlations can be measured experimentally using time-correlated single-photon
counting in a Hanbury Brown-Twiss setup,[110] where each detection pathway con-
tains polarization optics and a monochromator to spectrally select the relevant tran-
sitions and perform polarization cross-correlation measurements.[90, 104] Since re-
combination can occur via several pathways with a random time delay, the elements
of ρ̂2P are calculated by using a time-averaged statistical mixture

ρ|ij〉〈kl| = A
∑

α,β=D,I

∫ Td

0

dτ P1αP2β(τ)g
(2)
ijkl,αβ(τ), (4.7)

where Td is the detection time window, A is a normalization constant set to enforce
the condition Tr (ρ̂2P ) = 1, P1D(I) = ΓX(iX)/(ΓX + ΓiX) is the probability of direct
(indirect) recombination of the first exciton, P2D(I)(τ) = ΓX(iX)nX(iX)(τ) is the prob-
ability per unit time of the second direct (indirect) recombination, and nX(iX)(τ) is
the population of bright states |X(iX),±1〉 at time τ . Transition rates for direct and
indirect exciton recombination are denoted by ΓX and ΓiX , respectively.

The critical dynamics determining photon entanglement occurs during the
time τ between photon emission events, when the dynamics is limited to the single-
exciton subspace. Truncating to the bright spin states, the simplified exciton Hamil-
tonian can be written

Ĥ =


|iX,H〉 |iX, V 〉 |X,H〉 |X, V 〉
SI/2 0 th 0

0 −SI/2 0 th
th 0 ∆ + SD/2 0
0 th 0 ∆− SD/2

, (4.8)

where ∆ = ed(F − F0) is the exciton detuning due to the applied electric field, F0

is the field value at the |X〉 − |iX〉 anticrossing, and th is the resonant hole tunnel
coupling including Coulomb correction. The magnitude of the exchange splitting
SD/I is a critical factor for entangled photon emission, as a splitting larger than
the radiative linewidth of the corresponding exciton is expected to render the two
decay pathways distinguishable and prevent entanglement. The bright-state exchange
splitting is approximated using the dipole interaction term of the long-range multipole
expansion:[60]

SD(I) ≈
1

πε

∫∫
d3~r d3~r ′

~µ†↑⇓(1− n̂n̂†)~µ↓⇑
|~r − ~r ′|3

× ψe∗B (~r)ψeB(~r ′)ψh∗B(T )(~r
′)ψhB(T )(~r),

(4.9)

where ε is the average permittivity of InAs and GaAs, 1 is the 3× 3 identity matrix,
n̂ is a unit vector in the direction of (~r − ~r ′), and ~µσχ = e 〈ueσ| ~̂r

∣∣uhχ〉 is the inter-
band transition dipole moment. Since SD varies widely in self-assembled QDs in the
range 0− 100 µeV depending on detailed growth conditions, we leave it as a variable
parameter in the model and numerically evaluate Eq. (4.9) to obtain SI/SD.
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Incoherent transitions, described by operators σ̂i and occuring at rates Γi,
include optical recombination, phonon-assisted hole tunneling, spin-flip, and pure
dephasing (see Table 4.1). These transitions are incoherent in the sense that they
occur at random times, because we trace over the photonic and phononic environment
degrees of freedom to obtain the reduced density matrix of the CQD system. We
assume a direct exciton recombination rate ΓX = 1 ns−1 similar to experimentally
observed rates in InAs/GaAs QDs. Indirect recombination rates ΓiX are found to be
slower than direct recombination by a factor of (MBT/MBB)2 ∼ 100− 1000 due to a
smaller electron-hole wavefunction overlap Mij =

〈
ψei |ψhj

〉
for the interdot state.[111]

Holes undergo incoherent spin-conserving tunneling transitions via emission
or absorption of a phonon, causing transitions between direct and indirect exciton
states at rates given by Fermi’s golden rule as

Γabs =
2π

~
J(∆)nB(∆, T ) (4.10)

Γem =
2π

~
J(∆)(nB(∆, T ) + 1), (4.11)

where J(E) =
∑

~q | 〈X| Ĥel−ph |iX〉 |2δ(E~q − E) is the phonon spectral density of the

interdot transition, nB(E, T ) = 1/(eE/kBT − 1) is the Bose distribution, giving the
population of phonon modes at energy E and temperature T , ~q denotes the phonon
wave vector, Ĥel−ph is the electron-phonon interaction Hamiltonian, and we use a
linear dispersion relation E~q = ~cLA|~q| for acoustic phonons. We assume here that
∆ ≡ EX − EiX > 0, so that tunneling to the direct exciton is partially suppressed,
requiring absorption of a phonon. Since the detuning in the region of interest is much
less than the LO phonon energy in GaAs, we consider only acoustic phonon-mediated
transitions and neglect coupling to LO phonons. Including only interaction via the
acoustic deformation potential, which is usually found to dominate for electronic
transitions in quantum dots, leads to the expression[112]

J(∆) =
∆a2

V

16π3ρc2
LA

∫
d3~q

∣∣∣∣∫ d3~r ψ∗hBe
i~q·~rψhT

∣∣∣∣2 δ(E~q −∆), (4.12)

where aV is the valence-band deformation potential, ρ is the mass density of the
crystal, cLA is the speed of the LA phonon mode in GaAs, and ψhα is the single-
particle wavefunction for a hole localized in dot α = B, T . We note that multiphonon
and LO-phonon tunneling transitions are not included, which may become important
at higher temperatures and exciton detunings than considered here.

Spin-flip transitions are also known to occur between exciton spin states, via
phonon and spin-orbit coupling.[113, 114, 115, 116] In particular, spin relaxation oc-
curs in direct (indirect) excitons primarily via phonon-assisted transitions between

bright and dark spin states at a rate Γ
X(iX)
sf . Since our two-band effective mass model

does not account for spin-orbit coupling, we include spin relaxation phenomenologi-
cally. We include only transitions between bright and dark spin states, since bright-
bright and dark-dark transitions are at least an order of magnitude slower due to their
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smaller transition energies.[113] We use the temperature-dependence of the spin-flip
rate measured by Fras et al.[117], scaled to fit the behavior measured by Hudson et
al.[105]: ΓXsf (T ) = (0.27 ns−1) + (0.29 µs−1 K−2)T 2, corresponding to a thermally-
activated two-phonon process. In the low-temperature regime where single-phonon
transitions dominate and for small bright-dark splittings ∆

D(I)
bd , Γ

X(iX)
sf is given by

Fermi’s golden rule as in Eq’s (4.10) and (4.11), with J(∆
D(I)
bd ) ∝ (∆

D(I)
bd )3 and

n(∆
D(I)
bd , T ) ≈ kBT/∆

D(I)
bd .[118] Since the bright-dark splitting scales with electron-

hole wavefunction overlap, we predict the relationship ΓiXsf = (MBT/MBB)2 ΓXsf be-
tween direct and indirect spin-flip rates.

The Coulomb interaction energy between particles α and β in dots i and j,
respectively, is given by

V αβ
ij =

e2

4πε

∫∫
d3~r d3~r ′

|ψαi(~r)|2|ψβj(~r ′)|2

|~r − ~r ′|
, (4.13)

where e is the charge of an electron, ε is the average permittivity of InAs and GaAs,
and the 6-dimensional integral is directly evalutated by numerical integration over a
Cartesian grid. The Coulomb interaction terms modify the energy of multiparticle
exciton states, as does the local electric field F due to the large permanent dipole
moment p = ed of indirect exciton states. The energies of the various charge states
considered are then

EX =Eg + EeB + EhB − V eh
BB

EiX =Eg + EeB + EhT − V eh
BT − edF

EiXX =2Eg + 2EeB + EhB + EhT

+ V ee
BB + V hh

TT − 2V eh
BB − 2V eh

BT − edF,

(4.14)

where Eg is the band gap of the strained InAs comprising each QD.
Eq. (4.9) is expanded using the interband dipole moments

~µ↑⇓(↓⇑) =
µ√
2

(±1,−i, 0) (4.15)

to obtain the expression

SD(I) =
µ2

2πε

∫∫
d3~r d3~r ′

2∆z2 −∆x2 −∆y2 + 6i∆x∆y

∆r5

× ψ∗eB(~r)ψeB(~r ′)ψ∗hB(T )(~r
′)ψhB(T )(~r),

(4.16)

where ∆~r = ~r − ~r ′. Since the exchange splitting varies widely between QDs and
small values are required for entanglement generation, we choose values of SD and
numerically integrate Eq. (4.16) to obtain the ratio SI/SD.

We use the value of ΓX listed in Table B.1 and the electron-hole wavefunction
overlap

Mij =

∫
d3~r ψ∗ei(~r)ψhj(~r) (4.17)
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obtained by numerical integration to calculate ΓiX = ΓX(MBT/MBB)2. The phonon-
assisted tunneling rates Γabs and Γem are calculated using Eq’s 5.18, 5.19 and 5.20,
where the phonon wave vector ~q is expressed in spherical coordinates and its magni-
tude is constrained by the delta function to be q = ∆/~cLA. To calculate the phonon-
assisted spin-flip rate of the direct exciton, we use the experimentally-determined tem-
perature dependence ΓXsf = (.27 ns−1)+(.29 µs−1K−2)T 2 [117], and from it determine
the indirect exciton spin-flip rate ΓiXsf = ΓXsf (MBT/MBB)2. For the pure dephasing
rate, we use the empirical temperature dependence ~γXp = (71 µeV)nB(6 meV, T ) +
(4.5 meV)nB(28 meV, T ) [119] corresponding to phonon-assisted pure dephasing pro-
cesses involving excited hole states, and assume the same pure dephasing rate for
indirect excitons: γiXp = γXp .

By projecting Eq. 4.5 onto each combination of basis states, it becomes
ρ̇ij =

∑
klMij,klρkl and we determine the elements of the time-dependence tensor

Mij,kl. We then vectorize ρ̂ by mapping the matrix elements ρij to a one-dimensional
vector ~ρ. The time-dependence tensor Mij,kl is then transformed into a matrix Mij,
and the solution is expressed by a matrix exponential as ~ρ(τ) = eLτ~ρ(0) = eMt~ρ(0).
With this matrix exponential describing time evolution of the CQD density matrix,
we use Eq’s 4.6 and 4.7 to calculate the various elements of the two-photon polariza-
tion density matrix ρ̂2P in the linear polarization basis {|HH〉 , |HV 〉 , |V H〉 , |V V 〉},
averaging over delay times up to Td = 200 ns. With these density matrix elements,
the fidelity to the entangled Bell state is finally calculated using Eq. 4.4.

The results of the numerical simulation are summarized in Fig. 4.2. The
fidelity approximately exhibits a Lorentzian dependence on the direct exciton ex-
change splitting SD, similar to the behavior reported in the case of a single
QD.[105, 109, 120, 121, 122] To characterize this behavior, we record the maximum
fidelity F+

max at SD = 0 and the fidelity width ∆F+
.9 , defined as the largest value of

|SD| with F+ > .9. By plotting these fidelity characteristics as a function of the
experimentally tunable exciton detuning ∆ and temperature T , we obtain a map of
possible behaviors observable in a single CQD pair. In general, we observe that the
quality of entanglement depends primarily on the total dephasing rate

γiXd = ΓiX + Γabs + ΓiXsf (4.18)

describing decay of the indirect exciton bright state coherence 〈iX,+1| ρ̂ |iX,−1〉, as
well as the effective decay rate Γeff of the indirect exciton population 〈iX| ρ̂ |iX〉,
determined by an exponential fit of the bright state density matrix dynamics. For
low temperatures (T < 40 K) and large detunings (∆ > 3 meV), entanglement
fidelity can reach values above 0.99 for small exchange splittings, with a width
∆F+

.9 ≈ 1.5− 2.7 µeV. Note that the CQD system exhibits this high-fidelity be-
havior with SD values up to a factor of 5 greater than in the single QD case
(∆F+

.9,SQD ≈ 0.4 − 0.6 µeV). In this region, the decoherence is radiatively-limited

(γiXd < 2 ΓiX), allowing coherent evolution between photon emission events. With
increasing lattice temperature, the overall fidelity decreases due to phonon-assisted
tunneling and spin-flip. At detuning values below 3 meV, the large dephasing rate
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Figure 4.2: (a) Dependence of entanglement fidelity on direct exciton bright state
splitting at T = 20 K, th = 0.2 µeV, and ∆ = 7 meV (green, top curve) and
∆ = 3 meV (red, bottom curve), compared to the analogous SQD case. (b) Maxi-
mum fidelity and (c) width of F+(SD) curve as a function of exciton detuning and
temperature.

(γiXd > 100 ΓiX) prevents photon entanglement even in the absence of anisotropic
exchange splitting, giving a maximum fidelity near 0.5.

Fig’s 4.3(a) and (b) isolate the effect of exciton detuning and temperature,
respectively, on the different fidelity characteristics. Fig’s 4.3(c) and (d) show the de-
phasing rate γiXd over the same ranges, along with each of the contributing transition
rates and the effective indirect exciton population decay rate Γeff . As in Fig. 4.2,
regions of high fidelity correlate with a radiatively-limited dephasing rate. The sig-
nificant drop in fidelity at low exciton detunings is therefore due to a phonon-assisted
hole tunneling rate which surpasses radiative emission by up to 3 orders of magnitude.
Note that the oscillations in the tunneling rates are due to the phase ei~q·~r appearing
in the phonon coupling (Eq. (5.11)), and depend on the distance d between QDs.[123]
The peak in fidelity width as a function of temperature occurs when Γeff increases,
while γiXd remains low. The increased decay rate of the indirect exciton causes the
time-integration in Eq. (4.7) to sample shorter time delays, maintaining high fidelity
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Figure 4.3: (a) (b) Dependence of fidelity parameters F+
max (black, left y-axis) and

∆F+ (red, right y-axis) on (a) detuning and (b) temperature, with th = 0.2 µeV. (c)
(d) Total dephasing rate γiXd of the indirect exciton bright state coherence, including
contributions from incoherent transitions, as a function of detuning and temperature,
respectively. Also included is the effective |iX〉 population decay rate Γeff .

over a larger range of exchange splittings. While hole tunneling can be adequately
suppressed by simply maintaining a large enough detuning between exciton states or
increasing the tunnel barrier, phonon-assisted spin-flip surpasses radiative emission
and reduces fidelity at temperatures above ∼ 50 K.

Fig. 4.4 shows the fidelity characteristics as a function of hole tunnel coupling
and temperature, at a fixed exciton detuning. The effective indirect exciton decay rate
Γeff depends strongly on both temperature and tunnel coupling, and is demonstrated
to have a substantial effect on the entanglement fidelity. F+

max remains higher than
0.9 where Γeff < 30 ΓiX , which occurs at low temperature and tunnel coupling values.
The fidelity width ∆F+

.9 peaks at intermediate values of Γeff (Γeff ≈ 5− 10 ΓiX) and
increases with decreasing tunnel coupling, reaching values above 3.0 µeV at small
tunnel couplings (th ≤ .1 meV) and temperatures up to 70 K. As tunnel coupling
increases, the indirect exciton gains more of a direct exciton character, decreasing the
fidelity width and requiring lower temperatures to suppress recombination.

Our results indicate that by maintaining a large enough exciton detuning to
suppress phonon-assisted tunneling, CQD-based entangled photon sources can pro-
duce entangled photon pairs with higher fidelity than single QD-based sources, over
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Figure 4.4: (a) Maximum fidelity and (b) width of F+(SD) curve as a function of
hole tunnel coupling and temperature, with ∆ = 7 meV.

a wider range of direct exciton exchange splittings. While this helps reduce the strict
symmetry requirement for entanglement generation, the photons are separated by a
relatively long time delay of 100− 1000 ns due to the low indirect exciton recombina-
tion rate. In the intermediate state, however, the indirect exciton spin is entangled
with the polarization of the first emitted photon (Eq. 4.2). As a result, this scheme
could potentially be used to entangle spins in remote CQDs by tuning each of the
first emitted photons into resonance via electric or strain fields and performing a joint
polarization correlation measurement.[124, 125, 85]

We have used a simple theoretical model to simulate the radiative cascade
of the molecular biexciton state in a vertically stacked tunnel-coupled quantum dot
pair. The entanglement fidelity of the resulting two-photon polarization state is
determined, accounting for phonon-assisted tunneling and spin-flip processes. From
numerical simulations, we find an approximately Lorentzian dependence of fidelity on
anisotropic electron-hole exchange splitting and mapped the behavior over a range
of electric field and temperature values. Our results show that near-unity maximum
fidelity can be achieved over a range of exchange splittings |SD| < 2.7 µeV at large
exciton detunings and low temperatures, where dephasing due to phonon-assisted hole
tunneling and spin-flip processes is suppressed. This suggests that coupled quantum
dots can generate photon pairs with a high degree of entanglement and over a wider
range of exchange splittings compared to single dots, provided the tunnel coupling is
low enough to maintain charge separation in the indirect exciton state. In addition,
the spin-photon entanglement generated by the first recombination could be used to
entangle spins in remote CQDs.

A similar radiative biexciton cascade has been shown to produce entangled
photon pairs in single QDs, but only those with a sufficiently small exchange cou-
pling between the |±1〉 bright spin states.[90, 105, 126] The primary advantage of
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CQDs in this respect is the significant reduction of exchange coupling in the indi-
rect exciton state, in addition to the stronger tunability of interdot transitions by
electric field. The remaining challenge is then the low recombination rate of the in-
terdot transition, which generally decreases with electron-hole wavefunction overlap
proportionally to the exchange coupling, except in the case of simultaneous electron
and hole tunnel coupling.[99] This issue could be addressed effectively by tuning the
interdot transition into resonance with a photonic cavity to enhance the recombina-
tion rate. Phonon-assisted relaxation to the direct exciton must also be suppressed,
which can be achieved by working in the electric field range where the indirect ex-
citon is sufficiently lower in energy.[25] An alternate scheme can also be used which
relies on relaxation to the direct exciton state, though an additional nearby charge
sensor would be needed to measure and compensate for the phase shift introduced by
intradot exchange, increasing the complexity of potential implementations.[98]

4.2 Two-Photon Absorption

In order to use the molecular biexciton radiative cascade in CQDs as a source of
polarization-entangled photon pairs, the system must be reliably prepared in the
molecular biexciton spin singlet state |iXX, S〉. The non-resonant excitation used to
excite wetting layer continuum or CQD excited states for PL spectroscopy is insuffi-
cient, since each CQD charge and spin state is populated randomly by charge capture
and phonon-assisted relaxation. A resonant excitation method is desired which can
selectively transfer the system from the ground state to the required biexciton state.
Inadvertent population of the single-exciton states can be avoided by utilizing a simul-
taneous two-photon absorption process, rather than a sequential process of exciting
into the single-exciton state followed by a second excitation into the biexciton state.
Such a two-photon absorption process is commonly implemented with a single laser
tuned to half the required transition energy, allowing efficient population of biexci-
ton states in single QDs[126, 18] as well as spin-selective excitation into the |iXX, S〉
state in CQDs.[127] It can also be implemented using two lasers, detuned from single-
photon transitions, whose energies add up to the required transition energy from the
ground state to the biexciton state.

Two-photon transitions are amplified when the driving laser is near resonance
with one or more intermediate single-photon transitions. To fully utilize the tunability
of transition energies in CQDs with applied bias, one can use two lasers independently
tuned near resonance with the changing energies of each transition. We seek to under-
stand this two-photon absorption process in the general case of two-laser excitation,
with the scheme shown in Fig. 4.5. We use a semiclassical perturbation model similar
to that shown in Section 2.3 to describe transitions, with the addition of a second
driving field and the inclusion of terms up to second-order in the photon coupling
interaction to allow two-photon transitions.
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Figure 4.5: (a) Illustration of CQD charge configurations and optical transitions, with
two-laser excitation and detection pathways for entangled photon pair emission. (b)
PL map with two-laser excitation and detection transitions identified.

Within the long-wavelength approximation, the time-varying electric fields of
the two excitation lasers at the position of the CQD can be written as

~E1(t) =~e1E1 cos(ω1t+ φ1)

~E2(t) =~e2E2 cos(ω2t+ φ2),
(4.19)

with frequencies ω1/2, relative phase shifts φ1/2, polarizations ~e1/2, and amplitudes
E1/2. For simplicity, we consider the case of co-linear horizontal polarization such
that ~e1 = ~e2 = ~eH = x̂. The electric dipole interaction Hamiltonian HI = Hphoton can
then be separated into two terms

HI = W1 cos(ω1t+ φ1) +W2 cos(ω2t+ φ2) ≡ λH ′ (4.20)

describing dipole interaction with each driving field, with the small factor λ�1 and
the elements of H ′ of the same order of magnitude as H0 as in the single-laser pertur-
bation theory. The interaction matrix elements between eigenstates |i〉 and |k〉 due
to laser 1/2 are given by

W1/2,ik = −iE1/2Mik(~e1/2 · ~µik), (4.21)

where Mik is the electron-hole envelope wavefunction overlap and ~µik is the bulk
optical dipole moment between the spin state of |i〉 and |k〉. We consider the scenario
where the driving lasers are quasi-resonant with the exciton and molecular biexciton
transitions, so that the Hilbert space can be truncated to include only stationary
states involved in H-polarized transitions of the molecular biexciton cascade: crystal
ground state |g〉, H-polarized bright direct exciton spin state |X〉 = |X0, H〉, H-
polarized bright indirect exciton spin state |iX〉 = |iX0, H〉, and molecular (indirect)
biexciton spin singlet state |iXX〉 = |iXX0, S〉.
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We expand the time-dependent state vector in the basis of eigenstates |n〉 of
the CQD Hamiltonian H0, giving

|ψ(t)〉 =
∑
n

an(t) |n〉 . (4.22)

Exactly as in Section 2.3, the time-dependent Schrödinger equation

i~
d

dt
|ψ(t)〉 = (H0 + λH ′(t)) |ψ(t)〉 (4.23)

can be expanded in powers of λ as ak =
∑∞

n=0 λ
na

(n)
k . Transforming to the interaction

picture by replacing each state |n〉 by e−iωnt |n〉 gives

i~
d

dt
ak(t) = λ

∑
n

〈k|H ′ |n〉 an(t)eiωknt, (4.24)

where ωkn = ωk − ωn is the transition frequency. Expanding the coefficients up to
second order in the interaction Hamiltonian gives the system of differential equations

i~
d

dt
a

(0)
k (t) =0 (4.25)

i~
d

dt
a

(1)
k (t) =

∑
n

〈k|H ′ |n〉 a(0)
n (t)eiωknt (4.26)

i~
d

dt
a

(2)
k (t) =

∑
n

〈k|H ′ |n〉 a(1)
n (t)eiωknt. (4.27)

With the initial condition |ψ(t = 0)〉 = |i〉, these equations can be solved iteratively
to obtain

a
(0)
k (t) =δik (4.28)

λa
(1)
k (t) =

1

i~

∫ t

0

dt′ 〈k|H ′(t) |i〉 eiωkit (4.29)

λ2a
(2)
k (t) =

(
1

i~

)2 ∫ t

0

dt′
∫ t′

0

dt′′
∑
n

〈k|H ′(t′) |n〉 〈n|H ′(t′′) |i〉 eiωknt′ eiωnit′′ . (4.30)

The two-photon transition rate can be found by solving for the second-order
expansion of wavefunction coefficients, defined by

Γ
(2)
ik =

P
(2)
i→k(T )

T
=
|〈k |ψ(T )〉(2) |2

T
. (4.31)

The probability amplitude for this transition is found by expanding Equation 4.30 to
obtain

λ2φ
(2)
k (t) =

(
1

i~

)2 ∫ t

0

dt′
∫ t′

0

dt′′
∑
n

[W1,kn cos(ω1t
′ + φ1) +W2,kn cos(ω2t

′ + φ2)]

× [W1,ni cos(ω1t
′′ + φ1) +W2,ni cos(ω2t

′′ + φ2)] eiωknt
′
eiωnit

′′
. (4.32)
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Expanding the cosines into complex exponentials and performing the first integration
yields

λ2φ
(2)
k (t) =

i

4~2

∫ t

0

dt′
∑
n

[
W1,kn

(
ei[(ω1+ωkn)t′+φ1] + e−i[(ω1−ωkn)t′+φ1]

)
+W2,kn

(
ei[(ω2+ωkn)t′+φ2] + e−i[(ω2−ωkn)t′+φ2]

)]
×
[
W1,ni

(
ei[(ω1+ωni)t

′+φ1] − e−iφ1
ω1 + ωni

+
e−i[(ω1−ωni)t′+φ1] − e−iφ2

ωni − ω1

)
+W2,ni

(
ei[(ω2+ωni)t

′+φ2] − e−iφ2
ω2 + ωni

+
e−i[(ω2−ωni)t′+φ2] − e−iφ2

ωni − ω2

)]
. (4.33)

This expression contains 32 terms for each intermediate exciton state, each with a
different set of resonance conditions. Among these, resonances associated with the
following processes can be identified:

|g〉 ω1←→ |X〉 ω2←→ |iXX〉 (4.34)

|g〉 ω1←→ |iX〉 ω2←→ |iXX〉 (4.35)

|g〉 ω2←→ |iX〉 ω1←→ |iXX〉 (4.36)

Picking out these resonant terms and performing the final integration gives

λ2φ
(2)
iXX(t) =

i

4~2
ei(φ1+φ2)

[
W1;X,gW2;iXX,X

δ1

(
e−iδ12t − 1

δ12

− e−iδ2t − 1

δ2

)
+
W1;iX,gW2;iXX,iX

χ1

(
e−iδ12t − 1

δ12

− e−iχ
′
2t − 1

χ′2

)
+
W2;iX,gW1;iXX,iX

χ2

(
e−iδ12t − 1

δ12

− e−iχ
′
1t − 1

χ′1

)]
, (4.37)

where we have defined the various detunings δ1 = ω1 − ωX,g, δ2 = ω2 − ωiXX,X ,
χ1/2 = ω1/2− ωiX,g, χ′1/2 = ω1/2− ωiXX,iX , and δ12 = δ1 + δ2 = ω1 + ω2− ωiXX,g. Due
to the quasi-resonant driving of the direct transitions, the δ detunings are assumed
to be small. The χ detunings are approximately given by the difference in direct and
indirect exciton energies, which is tuned with an applied electric field. In the regime
of interest, where ωiX ≈ ωiXX/2, this detuning is on the order of 2-5 meV. In any
case, δi � χj.

To differentiate between transitions through direct and indirect exciton states,
we pick out the leading terms associated with each process when calculating the total
second-order transition rate, such that Γ

(2)
g,iXX = Γ

(2)
X +Γ

(2)
iX . Keeping only the leading-

order terms in δ/χ, we end up with an expression for the two-photon transition rate
through the direct exciton states

Γ
(2)
X ≈

π

8~4

|W1;X,g|2|W2;iXX,X |2

δ2
1

[δT (δ12) + δT (δ2)− 2QT (δ12, δ2)] (4.38)
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and through the indirect exciton states

Γ
(2)
iX ≈

π

8~4

∣∣∣∣W1;iX,gW2;iXX,iX

χ1

+
W2;iX,gW1;iXX,iX

χ2

∣∣∣∣2 δT (δ12). (4.39)

In these expressions, the function

δT (δA) =
sin2(δAT )

δ2
A

(4.40)

expressing the resonance condition δA = 0 has unit area and approaches a delta func-
tion as the interaction time T→∞, but with interaction limited to a finite coherence
time its width is given by 2π/T . The function

QT (δA, δB) =
1 + cos(δA − δB)T − cos δAT − cos δBT

πTδAδB
(4.41)

arises from cross terms when taking the modulus squared. It behaves much like δT (ω),
but with two frequencies: its maximum value is T/π as δA, δB → 0, and it quickly
becomes zero as δA or δB are detuned from zero. In the case δB = δA, it reduces to
δT (δA).

From these calculations, we can see that efficient two-photon absorption re-
quires resonance conditions δ12 ≈ 0 (the sum of laser energies matches the two-photon
transition energy) or δ2 ≈ 0 (the second laser matches the second transition energy),
while the transition rate decays with detuning from the first resonance as δ−2

1 . If both
conditions are satisfied, the third term 2QT (δ12, δ2) reduces the two-photon transition

rate near zero while the single-photon transition rate Γ
(1)
g,X is maximized, resulting

primarily in stepwise rather than simultaneous two-photon absorption.
We have measured two-photon absorption by performing two-laser PLE spec-

troscopy, using two continuous-wave lasers to excite the molecular biexciton state
|iXX〉 and detecting the resulting PL. With one laser resonantly exciting the direct
exciton state, absorption into |iXX〉 can be measured by tuning the wavelength of the
second laser and ideally monitoring emission along the other recombination pathway.
However, our results thus far have been limited by insufficient rejection of the laser
sidebands while detecting PL from transitions ∼ 2 meV away from the excitation
lasers; we have only been able to clearly detect absorption through the reduction in
phonon-assisted emission intensity of the direct exciton (denoted X-1LO) ∼ 36 meV
below the excitation laser.

The original motivation for this experiment was to measure indirect transitions
without the additional broadening due to electric field fluctuations. Whenever an
electric field fluctuation δF shifts the energy of the X → iXX transition (denoted
iXXi) by an amount greater than its linewidth, the resonance conditions are not
satisfied and no excitation into iXX occurs. In this way, we hoped to measure the
fluctuation-free indirect exciton linewidth.
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(a) (b)

Figure 4.6: Series of X0 −1LO PLE bias spectra under two-laser resonant excitation,
varying (a) X0 driving laser power and (b) iXX0 laser driving power.

The experimental PLE spectra are shown in Fig. 4.6 for a series of excitation
powers used for each laser, with Stark-shift bias tuning and detection on the X-1LO
transition. Absorption into |X〉 appears as a broad peak due to the small bias slope
of the Xd transition. Excitation into the |iXX〉 state is evidenced by two dips in the
PLE peak, corresponding to excitation into one of the singlet or triplet spin states
upon resonance with the second laser, resulting in a reduction of |X〉 population and
X-1LO PLE intensity under continuous-wave excitation. The experiment achieved
some success in reducing the measured linewidth from 85.0 ± 3.3 µeV with PL to
47.0± 4.3 µeV with two-laser PLE, revealing separate transitions involving the iXX
singlet and triplet spin states which are obscured in the PL spectrum. As the power of
the first laser driving the Xd transition is increased, the total PLE signal is increased
and dips due to the second laser are made more visible. As the power of the second
laser driving the iXXi transition is increased, the dips in PLE signal become more
prominent and eventually broaden to obscure the spin fine structure.
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We model these experimental results using a simple rate equation model for
the population dynamics of the involved states, with stepwise excitation by single-
photon transitions only. Including effective pumping rates P1 and P2 due to each
laser, recombination rates ΓX , ΓiX , ΓXX , and ΓiXX , and phonon-assisted tunneling
rates Γabs and Γem between exciton states and Γ′abs and Γ′em between biexciton states
yields the following system of equations for the populations ni:

d

dt


ng
nX
niX
nXX
niXX

 = M


ng
nX
niX
nXX
niXX

 , (4.42)

with

M =
−P1 ΓX ΓiX 0 0
P1 −(P2 + ΓX + Γabs) Γem ΓXX 0
0 Γabs −(ΓiX + Γem) 0 ΓiXXd
0 0 0 −(ΓXX + Γ′abs) Γ′em
0 P2 0 Γ′abs −(ΓiXXd + Γ′em)

 .

(4.43)

(a) (b)

Figure 4.7: (a) Simulated population dynamics under two-laser resonant excitation at
0.97 V applied bias, with initial state |g〉. (b) Simulated steady state |X〉 population,
proportional to PLE bias spectrum.

The steady-state populations are found by setting rate of change of each
population to zero, d/dt(ni) = 0. The resulting population dynamics are shown
in Fig. 4.7(a), assuming initialization in the ground state. The calculated steady-
state population nX , proportional to the detected X-1LO PLE intensity, is shown
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in Fig. 4.7(b) as a function of applied bias. The dip feature and its intensity rel-
ative to the broader peak is reproduced, though only a single dip is seen since
the additional |iXX〉 spin states and their singlet-triplet splitting were neglected
in the model. These simulations use effective pumping rates P1 = ΓX = 1 ns−1 and
P2 = 0.0432P1 = 20ΓiX , and absorption linewidths γX = 10 µeV and γiXX = 40 µeV.
The bias dependence is taken from

The fact that this model reproduces the experimental results indicates that
stepwise excitation by single-photon transitions was the dominant process in these
observations. This situation is not ideal for entangled photon pair generation, since
a significant portion of the population is driven into the single exciton state, produc-
ing single photons and reducing the potential two-photon entanglement fidelity. The
experiment could be improved by detuning both lasers from the single-photon transi-
tions while keeping the sum of their energies resonant with the two-photon biexciton
transition, thus suppressing stepwise single-photon transitions while maintaining two-
photon excitation. The experiment could be further improved by using pulsed laser
excitation rather than continuous-wave, enabling coherent Rabi oscillation to effi-
ciently populate the biexciton state rather than the small steady-state component
left after relaxation processes.[128, 129, 126, 130]



Chapter 5

Decoherence Mechanisms

QDs show great promise as resources for quantum information technology, either as
hosts of solid-state electron or hole spin qubits or as sources of single or entangled
photon polarization qubits.[12, 18, 16, 131] CQDs offer additional benefits due to their
enhanced tunability of energy levels and coupling strengths, as well as their expanded
space of charge and spin states.[21] However, each of these applications requires that
bound charges initialized into a particular state will evolve coherently in time until
read out by optical recombination or acted on by a control pulse.

According to the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 , (5.1)

a system prepared in an eigenstate |Ψ(0)〉 = |n〉 with H |n〉 = En |n〉 will undergo
coherent evolution |Ψ(t)〉 = e−iEnt/~ |n〉 with a complex oscillating phase. Quantum
information technologies require that a second qubit system prepared simultaneously
in a similar eigenstate, or a second indistinguishable decay pathway in the case of en-
tangled photon emission, will evolve with a fixed phase relationship relative to the first
to enable the desired quantum interference effects. This coherent phase evolution can
be interrupted by several types of decoherence processes which randomize the phase,
broadening optical transition linewidths and preventing quantum interference effects
with similarly prepared states. The first class of decoherence mechanism results from
transitions to other states |m〉 6= |n〉 at rates γnm, with the state |n〉 having a finite
lifetime τn = (

∑
m γnm)−1. The second class of decoherence mechanism results from

variations in the energy En(t) due to interactions with phonon modes or fluctuating
external fields. This mechanism is referred to as pure dephasing, with no population
transfer and an effective dephasing rate γnn.

Section 5.1 describes experimental measurements of pure dephasing due to
a fluctuating local electric field, with simulations supporting a hypothesis of charge
trapping at nearby defect sites. Section 5.2 presents measurements of phonon-assisted
transitions between exciton states, with a theoretical model explaining phonon cou-
pling mechanisms and simulations suggesting enhanced coupling at tunneling reso-
nances.

54
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5.1 Charge Fluctuations

The energy of exciton states, both direct and indirect, depends quadratically on the
electric field F across the CQD due to the quantum-confined Stark effect:[57]

EX(F ) = E0 + pF + βF 2.

Indirect excitons, though, exhibit a much larger permanent dipole moment p = −ed
as a result of charge separation d between dots. This allows indirect exciton transition
energies to be tuned linearly with applied field over a wide range, as can be seen in
the field-dispersed PL map of Fig. 3.3(c). It could also enable detection of individual
nearby charges using resonant optical excitation. Conversely, however, indirect ex-
citons are particularly susceptible to fluctuations in transition energy δE ≈ −ed δF
due to a small electric field fluctuation δF .

Previous studies of charge noise in similar semiconductor QD heterostructures
have determined the primary source of electric field fluctuations to be charges trapped
at the interface nearest to the QDs, fluctuating on a time scale of milliseconds or
longer.[132, 133, 134, 135]

5.1.1 Line Wandering

When charge fluctuations occur on a timescale longer than the experimental integra-
tion time of Tint = 1 s, the resulting change in energy can be seen as a changing
peak energy in PL spectra. This has been observed primarily in patterned samples
with CQDs in suspended membrane or cantilever structures. In these samples, the
sacrificial AlGaAs layer removed by chemical undercutting leaves an exposed surface
near the CQD layers (within 120 nm) where lattice defects are more likely to form.
The formation of defects and their population and depopulation by optical excitation
and charge tunneling are both stochastic processes, so even within similar structures
across a single sample there can be significant variation in the distribution of charge
traps and the strength of line wandering effects.

Some examples of this observation are shown in Fig. 5.1 for CQD D1 near the
base of a suspended membrane structure. CQD D1 shows dramatic shifts in the energy
of multiple PL peaks during each of the five-minute observation periods. PL peaks
remain stable for ∼1 − 30 s, with discrete shifts up to 1 meV resulting in variations
up to ∼5 meV on timescales of minutes. The assignment of these shifts as local
electric field fluctuations due to charge trap occupation is supported by the presence
of multiple PL transitions from the same CQD which all undergo identical shifts in
energy. In addition, PL transitions from a second nearby CQD (with lower intensity
due to relative misalignment) undergo discrete shifts mostly at the same times, but
with different magnitudes and directions due to its slightly different position and local
electric field value.
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Figure 5.1: (a) Scanning electron micrograph of suspended membrane structure of
sample D, indicating position of CQD D1 with severe charge fluctuations. (b) (c)
Subsequent PL spectra as a function of time for CQD D1.

5.1.2 Interdot Broadening

Experimental PL and PLE spectra of interdot transitions often show a smooth, ap-
proximately Gaussian broadened lineshape. This situation can arise if the local elec-
tric field fluctuates at a rate slower than the exciton lifetime (1-100 ns) yet much
faster than the measurement duration (1− 30 s for PL, 1− 20 minutes for PLE), so
that the narrow lifetime-limited Lorentzian lineshape is averaged over a distribution
of resonance energies.

If we assume that the interdot transition of interest has a narrow lifetime-
limited Lorentzian PL spectrum

IiX(E, t) = IiX

[
1 +

4(E − EiX(t))2

Γ2
iX

]−1

(5.2)

with lifetime τiX = Γ−1
iX and peak intensity IiX , then the spectrum detected experi-

mentally over the integration time Tint is given by

ĪiX(E) =

∫ Tint

0

IiX(E, T ) dt. (5.3)
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If charge fluctuations are due to many randomly-distributed charge traps, they can
be approximated by a Gaussian probability density function

P (δF ) =
1

σ
√

2π
exp

(
−δF

2

2σ2

)
(5.4)

with standard deviation σ corresponding to a full-width at half-maximum (FWHM)
of 2
√

2 ln 2σ ≈ 2.35σ. When many charge fluctuations occur rapidly, the system
approaches the ergodic limit where the entire probability distribution is explored
within each spectrum acquisition. In this limit, the experimentally detected spectrum
is given by the Voigt lineshape (convolution of Gaussian and Lorentzian)

ĪiX(E) =

∫ ∞
−∞

P (δF ) IiX(E − edδF ) d(δF ). (5.5)

Finally, if the standard deviation edσ of the energy shifts due to field fluctuations is
much larger than the lifetime-limited linewidth ΓiX , the detected spectrum is almost
entirely given by the distribution of field fluctuations around the average energy 〈EiX〉:

ĪiX(E) ≈ IiX P [−(E − 〈EiX〉)/ed] . (5.6)
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Figure 5.2: Experimental PL emission and PLE absorption lineshapes of X0 and iX0

transitions, with Gaussian fits (solid lines) and spin components (dotted lines) where
visible.

Fig. 5.2 shows the experimentally detected optical spectra of the direct and
indirect exciton transitions in a CQD, with the emission spectrum probed by PL and
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the absorption spectrum probed by PLE. Since indirect excitons have the electron
and hole trapped in separate QDs, their optical recombination rate is much slower and
their lifetime much longer than direct excitons. In the absence of charge fluctuations,
we would therefore expect indirect transitions to have a much narrower spectrum
than direct transitions. However, experimental observations reveal the opposite—PL
spectroscopy shows a linewidth of 47.8±0.5 µeV (limited by spectrometer resolution)
for the direct transition and 92± 6 µeV for the indirect transition, while PLE spec-
troscopy shows a linewidth of 12.7± 0.2 µeV (for each of two resolved spin states) for
the direct transition and 60.1± 0.4 µeV for the indirect transition.

In each case, the indirect transition is broader than the direct transition, point-
ing to charge fluctuations as the primary broadening mechanism. The additional
broadening in PL relative to PLE means that charge traps are occupied more often
under higher-energy optical excitation, resulting in larger electric field fluctuations.
The smooth Gaussian shapes of experimentally observed spectra indicate a large num-
ber of distant charge traps, such as those formed during growth at a heterojunction
interface.
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Figure 5.3: Experimental iX0 PLE linewidth as a function of power density for
multiple CQDs on different samples, with fits to saturation and power law models.

Fig. 5.3 shows the PLE linewidths of indirect transitions as a function of power
density of the resonant excitation laser, compiled for multiple CQDs across two sim-
ilar Schottky diode samples. While no single CQD was measured over the entire
range of power densities, the combined data shows a common trend of increasing
linewidth with power density. One common explanation for power broadening is sat-
uration of a two-level system, which would yield a linewidth of Γ(P ) = Γ0

√
1 + P/P0
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with a low-power linewidth Γ0 and significant broadening past the saturation power
density P0. However, the data much more closely follows a power law dependence
Γ(P ) = Γ0 + AP x with x = 0.16±0.02. While the exact mechanism is not fully under-
stood, this trend suggests that charge fluctuations are generated by optical excitation,
even under resonant conditions.

5.1.3 Monte Carlo Simulations

Al.3Ga.7Asn-GaAs

GaAs

V

InAs CQDs

230 nm

Excitation

Laser

Defect States

Figure 5.4: Band edge diagram of CQD diode structure, with illustration of defect
charging mechanisms under resonant excitation.

Fig. 5.4 illustrates some potential mechanisms of defect charging under reso-
nant CQD excitation, with a laser energy below the bandgap of bulk GaAs. Charge
traps can be formed by lattice defects at the material interface between GaAs and
AlGaAs layers, with states either just below the conduction band edge to trap elec-
trons or just above the valence band edge to trap holes. In addition to the targeted
interband transitions between CQD bound states, the laser can excite conduction
electrons from the n-doped substrate into higher-energy conduction states, enabling
them to migrate through the intrinsic region of the diode and tunnel into defect states.
Alternatively, valence-band holes can tunnel out of CQD bound states and migrate
to the AlGaAs barrier, forming a two-dimensional hole gas or becoming trapped in
localized defect states.

Markov chain Monte Carlo simulations of charged lattice defects were per-
formed to reproduce experimental observations of CQDs in different diode structures,



CHAPTER 5. DECOHERENCE MECHANISMS 60

giving insight into their spatial distribution and dynamics. Following the approach of
Kuhlmann et al.[133], we model the charge traps as identical two-state systems (unoc-
cupied |0〉 or occupied |1〉) with a constant lifetime τ0 and τ1 for each state. The time-
averaged occupation probability is determined by the lifetimes as p1 = τ1/(τ0 +τ1), so
that only two of these three quantities can be set independently. The time evolution
of an ensemble of charge traps is simulated using the Markov Chain Monte Carlo
method, where a random number generator is used to set the initial state of each
trap according to a given occupation probability and to update the state of each trap
at every subsequent time step. The probability that a charge capture transition will
occur during each time step δt is given by

p0→1(δt) = 1− τ0 + τ1 e
−δt(τ−1

0 +τ−1
1 )

τ0 + τ1

, (5.7)

while the probability of a charge escape transition during the same time step is given
by

p1→0(δt) = 1− τ1 + τ0 e
−δt(τ−1

0 +τ−1
1 )

τ0 + τ1

. (5.8)

Figure 5.5: (a) Simulated probability distribution of electric field fluctuations for de-
fects located at the GaAs/AlGaAs interface 230 nm above the CQDs, with varying
defect densities and average occupation probabilities. (b) Simulated probability dis-
tribution of electric field fluctuations for 320 µm−2 defect density and 32% occupation
probability, compared to experimental iX0 PLE spectrum. (c) Relative electric field
as a function of time for the simulation shown in (b).

To model interface charge fluctuations, we randomly distribute an ensemble
of charge traps within a plane at a distance d = 230 nm from the quantum dots,
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corresponding experimentally to the GaAs/AlGaAs interface, with a chosen average
in-plane density Nd of defects. Since the permanent dipole moment of an interdot
exciton is primarily oriented in the growth direction, only the component of electric
field in this direction will contribute to the observed Stark shift. In a dielectric
medium with relative permittivity εr (12.9 in GaAs), each charge trap at an in-plane
distance r from the CQD axis will contribute an electric field component

∆Fz =
−e

4πε0εr

d

(r2 + d2)3/2
(5.9)

when occupied by a single hole. To limit the number of simulated charge traps, we
consider only those within a 1µm in-plane distance from the CQD axis.

With the charge escape time fixed at τ1 = 30 ms, corresponding to the findings
of Kuhlmann et al., we vary the defect density Nd and occupation probability p1

and observe the simulated probability distribution of electric field values averaged
over a duration T = 1 s. As shown in Fig. 5.5(a), the width of the electric field
distribution increases with Nd or p1, as additional charge traps are present and they
change state more often. While not shown here, the trend in occupation probability
is inverted at higher values, with a maximum distribution width at p1 = 50 %. The
experimental interdot PLE transition lineshape is most closely reproduced with the
values Nd = 320µm−2 and p1 = 32 %, as shown in Fig. 5.5(b) and (c).

The close correspondence of simulations and experiments support the idea
that the observed broad lineshape of indirect transitions is due to fluctuating charge
states of many defect sites located at the nearest material interface, with a high aver-
age occupancy. Low-power resonant excitation minimizes charge fluctuations, while
higher-power excitation results in photoinduced current and defect charging. The dis-
tance between the CQD and the nearest material interface is a critical parameter for
determining charge noise in diode structure design, with a closer interface resulting
in much larger field fluctuations.

5.2 Phonon Interactions

5.2.1 Phonon Coupling Theory

Coupling between single bound charges and lattice phonons can be described using
the general Hamiltonian

He−ph =
∑
s,~q

(bs,~q + b†s,−~q)

×

[∑
ij

c†icjF
e
s,ij(~q)−

∑
kl

d†kdlF
h
s,ij(~q)

]
,

(5.10)

with creation (annihilation) operators b†s,~q (bs,~q) for phonon modes with polarization

s = {LA,TA1,TA2} and wave vector ~q, c†i (ci) for electrons in state |i〉, and d†k (dk)



CHAPTER 5. DECOHERENCE MECHANISMS 62

for holes in state |k〉. The phonon coupling constants are expanded into bulk and
localized contributions as Fα

s,ij(~q) = gαs (~q)Fαnm(~q), with bulk coupling matrix elements
gαs (~q) depending on phonon mode and coupling mechanism and geometric form factors

Fαij(~q) = 〈αi| ei~q·~r |αj〉 =

∫
ψα∗i (~r)ei~q·~rψαj (~r) d3~r (5.11)

describing overlap of the envelope wavefunctions of involved states modulated by the
phonon mode phase.

Since we are interested in transitions between the two lowest-energy neutral
exciton states near a tunneling resonance, the relevant energy differences are less than
15 meV, so coupling to optical phonons at energies of 30-40 meV is neglected. The
relevant phonon coupling mechanisms which contribute to the bulk matrix element
gαs (~q) therefore include deformation potential (DP) coupling to LA phonons, given by

g
e/h(DP )
LA (~q) =

√
~q

2ρV cLA
ac/v, (5.12)

and piezoelectric (PE) coupling to LA and TA phonons, given by

gα(PE)
s (~q) = −i

√
~

2ρV csq

dP e

ε0εr
Ms(q̂). (5.13)

In equations (5.12) and (5.13), ρ is the mass density of the crystal, V is the crystal
volume used for normalization of phonon modes (cancels out after summation over
wave vectors), cs is the propagation velocity of phonon mode s, ac/v is the deformation
potential of the conduction/valence band, dP is the piezoelectric constant of the
crystal, ε0εr is the electric permittivity of the crystal, and the directional dependence
of the PE coupling is given in terms of the phonon mode polarization vectors ês,~q as

Ms(q̂) = 2 [q̂x(ês,~q)y q̂z + q̂y(ês,~q)z q̂x + q̂z(ês,~q)xq̂y] . (5.14)

Note that these bulk coupling matrix elements assume a constant value of each ma-
terial parameter, without taking into account variations in composition due to the
CQD structure. Previous studies therefore assume that these parameters are de-
termined entirely by the GaAs barrier material, or by assuming a uniform effective
composition.[112, 66] Using the orthonormal set of phonon mode polarization vectors

êLA,~q ≡ q̂ = (cosφ sin θ, sinφ sin θ, cos θ)

êTA1,~q = (− sinφ, cosφ, 0)

êTA2,~q = (cosφ cos θ, sinφ cos θ,− sin θ),

(5.15)

equation (5.14) for each phonon mode becomes

MLA(q̂) =
3

2
sin(2φ) sin(2θ) sin θ

MTA1(q̂) = cos(2φ) sin(2θ)

MTA2(q̂) = sin(2φ) sin θ(3 cos2 θ − 1).

(5.16)
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Evaluation of the geometric form factors Fαij(~q) defined in Eq. (5.11) involves
integration over a three-dimensional grid of spatial coordinates for each value of the
phonon wave vector on a separate three-dimensional grid, thereby constituting a ma-
jor bottleneck in numerical calculations. Ref. [112] uses the cylindrical symmetry of
the envelope wavefunctions to simplify these integrals by separating variables and
evaluating the angular integral in terms of m’th-order Bessel functions of the first
kind Jm(a). For the separable ground-state wavefunctions defined in Eq. (2.23) and
phonon wave vectors defined in cylindrical coordinates as ~q = (qr, φ, qz), this expres-
sion becomes

Fαij(~q) =2π

∫ ∞
0

e−mαωαr
2/~J0(qrr) rdr

×
∫ ∞
−∞

Zi(z)eiqzzZj(z) dz.

(5.17)

The rate of phonon-assisted tunneling transitions from state |n〉 to state |m〉
due to first-order coupling is given by Fermi’s golden rule as

γnm =
2π

~2
[nB(T, |ωnm|) + Θ(ωnm)] Jnm(|ωnm|), (5.18)

where the phonon spectral density

Jnm(ω) =
∑
s,~q

∣∣FX
s,nm(~q)

∣∣2 δ(ω − ωs,~q) (5.19)

measures the coupling to phonon modes at the transition frequency
ωnm = (En − Em)/~ to ensure energy conservation, the temperature-dependent
phonon mode population is given by the Bose distribution nB(T, ω) = (e~ω/kBT−1)−1,
and the step function Θ(ωnm) = 0 (1) for phonon absorption (emission). The sum-
mation over phonon modes can be represented in spherical coordinates ~q = (q, φ, θ)
as an integral over wave vectors with a fixed magnitude:

Jnm(ω) =
V

(2π)3

∑
s

ω2

c3
s

×
∫ π

0

∫ 2π

0

∣∣FX
s,nm (ω/cs, φ, θ)

∣∣2 sin θ dφdθ,

(5.20)

where the dispersion relation E = ~ω = ~csq is used to relate wave vector magnitude
to the mode-dependent group velocity vs, and the mode volume V cancels with the
corresponding factor in the bulk coupling constants gαs (~q).

5.2.2 Anticrossing Enhancement

Here, we focus our analysis on the spectral broadening of the neutral exciton optical
transitions, which generate the two most prominent lines in the electric field dispersed
PL spectrum of Fig. 5.6a. The two transitions form an anticrossing (AC) in the
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Figure 5.6: (a) Electric field dispersed emission spectra of CQD 1 measured at 20
K near a neutral exciton hole tunneling resonance. Inset shows CQD geometry with
QD heights and interdot barrier width. (b) Line profiles of direct (X0, black squares)
and indirect (iX0, red circles) optical transitions at 1.1 V compared with the upper
branch tunneling resonance (AC, blue triangles) at 1.24 V, with Voigt fits (solid lines)
and FWHM linewidth values indicated.

center of the image. This anticrossing is a result of a hole level resonance between
a direct exciton (X0), with an electron and hole in the bottom dot, and an indirect
exciton (iX0), with an electron in the bottom dot and hole in the top dot. The PL
emission energy of the direct exciton shows a weak dependence on electric field, while
that of the indirect exciton shows a strong electric field dependence. This difference
in response to the electric field is a result of the static dipole moment p = ±ed,
defined by the elementary charge e and the spatial separation d of electron and hole.
The avoided crossing is the spectral signature of the formation of molecular states,
i.e. the symmetric and anti-symmetric mixing of the direct and indirect excitons
wavefunctions, |ψ〉 = α |X〉 ± β |iX〉.[56] The resulting exciton state, |ψ〉, should
exhibit properties in between that of the direct and the indirect exciton. For example,
at the center of the anticrossing the Stark shift is the average of the Stark shift
observed for the direct and indirect excitons. Likewise, the radiative lifetime at
the center of the anticrossing can be expected to be the arithmetic average of the
lifetimes of both exciton states. Consequently, if we were to measure the linewidth
of the exciton transition as we follow one of the anticrossing branches through the
anticrossing region, i.e. from the direct exciton to the indirect exciton, we expect the
linewidths to gradually and monotonically decrease in the absence of nonradiative
broadening mechanisms.

The line profiles for three different exciton states X0, iX0, and tunneling
resonance are shown in Figure 5.6b. The solid lines are pseudo-Voigt fits to the
experimental data, evaluated as a linear combination of Lorentzian and Gaussian
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Figure 5.7: (a) Measured linewidth of the lower (black squares) and upper (red circles)
branches of the X0 anticrossing in CQD 1 at 20 K as a function of bias, with fits
to Eq. (5.29) (solid lines), the results of numerical simulations (dash-dotted lines),
and Gaussian broadening components (dashed lines). (b) Relative intensity of each
branch, normalized to the sum of the two intensities at each bias value. (c) Measured
bias slope of each branch, with fits to Eq. (5.25) (solid lines).

lineshapes. The linewidth of the direct exciton corresponds to the resolution limit of
our experimental setup, 41.4 ± 0.1 µeV. In contrast, we find that the PL linewidth
of the indirect exciton is 83 ± 5 µeV, while the linewidth at the upper branch of
the anticrossing is 130 ± 3 µeV. In resonant measurements, resolution limited by
the laser linewidth, such as described by Czarnocki et al.,[69] we have been able to
show that the actual transition linewidth of the direct exciton is on the order of
a few µeV, consistent with the typical radiative lifetimes for InAs/GaAs QDs.[136]
For the indirect exciton one would expect a much-reduced linewidth, due to the
reduced overlap of the electron and hole wavefunctions. That the indirect exciton
transitions exhibit the opposite, a larger linewidth than the direct exciton transitions,
has been attributed to charge fluctuations near the CQDs and the larger static dipole
moment.[57, 137, 134] Regardless of this inverted behavior of the linewidths, we expect
a gradual and monotonic change of the exciton transition linewidth as we follow one
of the branches through the anticrossing.

In contrast to the expected behavior, we find a non-monotonic change of
the PL linewidth. Towards the center of the anticrossing the linewidth increases
to values significantly above that of the indirect exciton. In the example shown in
Fig. 5.7a, the linewidth of the upper branch broadens at the tunneling resonance to
139± 1 µeV compared to 42.5 ± 0.6 µeV in the limit of the direct exciton transi-
tion and 80.6 ± 0.6 µeV in the limit of the indirect exciton transition, with similar
values for the lower branch. We investigated more than 20 molecules and observed
linewidth broadening up to ∼ 300 µeV at the tunneling resonance. Theoretical work
by Daniels et al. suggests that the linewidth broadening at the anticrossing is the
result of enhanced phonon coupling.[66] They find that at the tunneling resonances
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Figure 5.8: Measured temperature-dependent ZPL linewidths for (a) CQD 1 and (b)
CQD 2 at and away from the center of the anticrossing, with linear and phonon-
activated broadening fits (solid lines).

where the two involved exciton states come closest in energy to each other, transition
rates between the two branches assisted by the emission or absorption of phonons are
enhanced.

The relative intensities of the upper and lower exciton branches are shown in
Fig. 5.7b. The intensity of each branch is equal near the tunneling resonance, where
the wavefunction overlap is maximized. The indirect exciton becomes significantly
weaker in intensity away from the tunneling resonance, leading to increased uncer-
tainty of linewidth fit values. The slope (change in exciton peak energy as a function
of applied bias) of the upper and lower branches is shown in Fig. 5.7c, and follows
the predicted dependence of Eq. 5.25 with equal slopes at the tunneling resonance.

The temperature dependence of the PL linewidth is shown in Fig. 5.8 for two
CQDs on the same sample, with the theoretical dependence given by Eq’s. (5.18)
and (2.51). At low temperatures, the linewidth is determined by the one-phonon
transition rate between the lowest two eigenstates, with the temperature dependence
entering through the phonon mode population nB(T, ω21) at the transition frequency.
The energy splitting ~ω21 at the anticrossing is significantly smaller than the thermal
energy kBT in these measurements, leading to the observed linear broadening for the
upper branch

∂Γ2

∂T
≈ π

~
kB
~ω21

J12(ω21). (5.21)

The slope of this linear broadening, measured as 4.5 ± 0.4 µeV/K for CQD 1
and 7.9 ± 2.1 µeV/K for CQD 2, is therefore proportional to the interdot phonon
coupling strength through the spectral density J12(ω21) at the transition frequency.
We expect that the linewidth at the anticrossing would approach a constant value at
lower temperatures between 5− 15 K where the thermal energy decreases below the
energy splitting.
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Figure 5.9: Phonon broadening and corresponding transition rates of the lower (black
squares) and upper (red circles) branches of the X0 anticrossing for 7 CQDs at 20 K
as obtained from fitting to Eq. (5.29), compared with numerical simulations (solid
lines) of perfectly aligned QDs at a fixed interdot barrier width of 4 nm. Shaded
regions show simulations for a range of coupling parameters matching observations.

The effect of energy splitting between exciton branches on the phonon-induced
linewidth broadening for 7 CQDs is shown in Fig. 5.9. The value of phonon broadening
Γph1/2 for each branch is obtained by fitting the bias-dependent linewidth to Eq. 5.29 to
remove the effects of Gaussian broadening due to charge fluctuations and spectrometer
resolution. The results are compared with numerical simulations of perfectly aligned
QDs with an interdot barrier width of 4 nm, predicting a maximum broadening of
100 µeV at 0.9 meV for the upper branch and 60 µeV at 0.8 meV for the lower
branch. This corresponds to a maximum transition rate of 150 ns−1 (90 ns−1) for
phonon emission (absorption). The experimental data appears to follow the simulated
curve with variations of up to ±28% from predictions using average phonon coupling
strength.

Near the ground state hole tunneling resonance of the neutral exciton
state, the spatially direct and indirect excitons expressed in the localized basis as
|X〉 = |eB〉 |hB〉 and |iX〉 = |eB〉 |hT 〉, respectively, are coupled to form new eigen-
states

|1〉 = a11 |X〉+ a12 |iX〉
|2〉 = a21 |X〉+ a22 |iX〉 .

(5.22)

The coefficients aij are found by diagonalizing the Hamiltonian matrix

HX =

(
EX(U) −th
−th EiX(U)

)
, (5.23)



CHAPTER 5. DECOHERENCE MECHANISMS 68

(a) (b)

Figure 5.10: (a) Simulated dephasing rate away from the anticrossing and (b) tran-
sition rate at the center of the anticrossing, with contributions from deformation po-
tential and piezoelectric coupling. Insets depict the relevant dephasing or transition
process.

where th is the hole tunnel coupling energy and EX(iX)(U) is the experimentally
determined energy of state |X〉 (|iX〉) as a function of bias voltage U applied to the
diode. The eigenstate energies

E1/2 =
EX(U) + EiX(U)

2
∓

√(
EX(U)− EiX(U)

2

)2

+ t2h (5.24)

form an avoided crossing, or anticrossing, with the minimum energy difference at
resonance given by ∆Emin = 2th. Using the linear approximation of Stark shift near
an anticrossing centered at UAC , the eigenstate energies are given by EX(U) = E0

and EiX(U) = E0 − p(U − UAC), leading to the bias-dependent slopes

∂E1/2

∂U
= −p

2

(
1± U − UAC√

(2th/p)2 + (U − UAC)2

)
(5.25)

for each eigenstate.
The single-particle phonon coupling Hamiltonian given by Eq. (5.10) can be

transformed to the diagonalized exciton basis as

HX−ph =
∑
nm

∑
s,~q

FX
s,nm(~q) |n〉 〈m| (bs,~q + b†s,−~q), (5.26)

where the exciton-phonon coupling constants FX
s,nm are obtained by projecting

Eq. (5.10) onto the diagonalized eigenstates. Transitions between states |1〉 and |2〉
necessarily involve hole tunneling, such that electron-phonon coupling does not con-
tribute. Pure dephasing processes |n〉 → |n〉 with no population transfer, describing
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Figure 5.11: Simulated upper branch phonon broadening at 20 K, as a function of
anticrossing energy and (a) interdot barrier width and (b) lateral offset between QD
centers. Dashed lines in the upper plots show anticrossing energy values expected
from previous experimental observations,[1] while lower plots show simulated phonon
broadening for these expected anticrossing energies as a function of (c) barrier width
and (d) lateral offset.

phonon-assisted optical transitions, can occur by electron- or hole-phonon coupling.
Taking these properties into account, the exciton-phonon coupling constants are given
in terms of the localized single-particle coupling constants as

FX
s,11 =F e

s,BB − a2
11F

h
s,BB − a2

12F
h
s,TT − 2a11a12F

h
s,BT

FX
s,22 =F e

s,BB − a2
21F

h
s,BB − a2

22F
h
s,TT − 2a21a22F

h
s,BT

FX
s,12 =− a11a21F

h
s,BB − a12a22F

h
s,TT

− (a11a22 + a12a21)F h
s,BT .

(5.27)

For numerical simulations, each integral is converted to a sum over a grid of
values with a sufficient number of grid points to achieve satisfactory convergence.
Since the system is assumed to have cylindrical symmetry, single-particle localized
ground state wavefunctions are calculated using Eq. (2.23) and represented in cylin-



CHAPTER 5. DECOHERENCE MECHANISMS 70

drical coordinates ~r = (r, φ, z) as a product of r- and z-dependent components
ψαB/T (~r) = Rα

0 (r)Zα
1 (z∓d/2). Both r and z values are represented as 100-point grids,

covering 30 nm in the r direction and 20 nm in the z direction. For simulations vary-
ing lateral offset between QDs (Fig. 5.11b and 5.11d), wavefunctions are represented
in Cartesian coordinates with a 25-point grid in each dimension since cylindrical
symmetry is broken. Due to the delta function in Eq. (5.19) which enforces energy
conservation, it is most convenient to express phonon wavevectors in terms of energy
in spherical coordinates ~qs = (E/~cs, φ, θ). Both angular coordinates are represented
as 200-point grids covering a full 4π solid angle, with the azimuthal coordinate φ from
0 to 2π and the polar coordinate θ from 0 to π. Form factors are calculated from
the envelope wavefunctions using Eq. (5.17), with the transformations qr = q sin θ
and qz = q cos θ to express the phonon wavevector in cylindrical coordinates. Due to
the cylindrical symmetry, the directional dependence of piezoelectric phonon coupling

Ms(q̂) is averaged over the azimuthal coordinate as M̄s(θ) =
(∫ 2π

0
Ms(φ, θ)

2 dφ/2π
)1/2

to obtain

M̄LA(θ) =

√
9

8
sin(2θ) sin θ

M̄TA1(θ) =
1√
2

sin(2θ)

M̄TA2(θ) =
1√
2

sin θ(3 cos2 θ − 1).

(5.28)

Finally, single-particle coupling constants Fα
s,ij(~q), calculated using the obtained form

factors and bulk coupling constants given by Eqs. (5.12) and (5.13), are represented
for each particle α = {e, h} and set of QD locations {i, j} = {B, T} as a function of
phonon mode s, phonon energy E, and polar angle θ.

At each value of the bias voltage U , the tunneling Hamiltonian given by
Eq. (5.23) is diagonalized to obtain the eigenstate coefficients aij. These are used
to obtain the phonon coupling constants FX

nm and optical dipole matrix elements Mn

in the eigenstate basis. The phonon spectral density can then be calculated using
Eq. (5.20), allowing calculation of the optical transition rates and absorption and
emission spectra using Eq. (2.50). As a final step, Gaussian convolutions are applied
to the optical transition spectra in the energy and bias directions to reproduce broad-
ening due to the spectrometer response and local charge fluctuations, respectively.
The values of material and structural parameters used in the simulations are listed
in Table B.1, except where otherwise noted.

The non-monotonic bias dependence of linewidth in Fig. 5.7a, together with
the additional temperature-dependent broadening in Fig. 5.8, indicate a significant
enhancement of phonon-assisted transition rates between eigenstates at tunneling
resonances. The bias-dependent ZPL linewidth can be fit to the predicted form of
Gaussian broadening in Eq. 2.53 with an additional phonon-induced broadening with
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a Lorentzian shape, resulting in the function

Γ1/2(U) =

√√√√(p∆Ufluct
2

)2
(

1± U − UAC√
(2th/p)2 + (U − UAC)2

)2

+ (Γspect)2

+
Γph1/2

1 +
(
U−UAC

2th/p

)2

(5.29)

for each branch, with fit parameters UAC , th, and p describing the position and shape
of the anticrossing energy levels and ∆Ufluct, Γspect, and Γph1/2 describing the strength of
broadening due to charge fluctuations, spectrometer resolution, and phonon-assisted
transitions, respectively.

The theory predicts an asymmetry in peak linewidths of the upper and lower
branches, with the upper branch being more broad due to a faster phonon emission
process compared to phonon absorption, resulting in a shorter lifetime for state |2〉.
Fits to observed spectra appear to show an additional broadening of the lower branch
just past the center of the anticrossing, to a level higher than the peak linewidth
of the upper branch. However, the region with increased fit linewidth of the lower
branch corresponds to where a second faintly visible peak merges with it. This peak
appears to be due to a weakly-allowed recombination from the dark exciton spin state
due to spin-orbit coupling, with an exchange splitting of 225 ± 14 µeV far from the
anticrossing.[66, 40]

Fig. 5.10 shows the calculated phonon-assisted transition and pure dephasing
rates at the anticrossing for each coupling mechanism at 20 K, as a function of phonon
energy. Transitions between eigenstates are dominated by piezoelectric coupling at
low energies, with a maximum at 0.8 meV for phonon absorption from the lower
branch. The linewidth broadening effect is therefore predicted to be strongest for
CQDs with an anticrossing splitting energy of 0.8−0.9 meV. The sideband-producing
pure dephasing process is dominated by deformation potential coupling, with a maxi-
mum at 1.2 meV. The experimental spectra should therefore give a measure of piezo-
electric coupling strength through the ZPL linewidth at the anticrossing and defor-
mation potential coupling through the intensity and distribution of acoustic phonon
sidebands, which are more prominent away from the anticrossing where the ZPL is
narrower. The oscillatory decay of transition and dephasing rates as a function of
phonon energy is a known feature of CQDs, arising from resonances in the phonon cou-
pling form factor (Eq. 5.11) between phonon wavelength and QD separation.[112, 123]
The phonon coupling strength FX

s,12(~q), primarily due to the piezoelectric interaction,
was initially too high when calculated using the material parameters for GaAs listed
in Table B.1. This was reduced to match observed peak anticrossing linewidths by
using effective InxGa1−xAs composition values of x = 32 ± 12% when calculating
phonon coupling constants, with material parameters varying linearly between GaAs
(x = 0) and InAs (x = 1). The deformation potential parameters ac and av were both
increased by a factor between 1.27 and 2.22 relative to the values listed in Table B.1
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to match observed sideband intensities between 0.6% and 1.4% of ZPL intensity, since
literature values of these parameters are highly inconsistent. The coupling strength
could also be modified more weakly through the form factor Fαij(~q) by changing the
QD charge confinement and single-particle wavefunctions.

The variations in phonon coupling strength can potentially be explained by
differences in CQD geometry throughout the sample, with simulated dependence on
interdot barrier width and lateral misalignment shown in Fig. 5.11. While the interdot
barrier width is expected to be quite uniform throughout each sample, variances
in CQD alignment have been observed and could significantly reduce the phonon
coupling depending on the lateral confinement within each QD.[40] Since the value
of tunnel coupling and anticrossing energy is proportional to wavefunction overlap
between localized states, we calibrate the value of anticrossing energy expected in
each case using previous measurements on a series of CQD samples grown similarly
with different interdot barrier widths to obtain the curves in the lower plots.[1] The
simulations predict maximum phonon broadening for interdot barrier widths near
4 nm, and a decrease in phonon broadening with lateral QD misalignment.

While the data and simulations presented in this report focus on the hole
tunneling resonance of the neutral exciton state, we expect that the enhancement of
phonon coupling at tunneling resonances is a more general effect which can apply
to different charge states as well. The geometric phonon coupling form factor is
increased by the formation of delocalized eigenstates, which occurs at any tunneling
resonance regardless of the configuration of resident charges. The bulk PE coupling
constant (Eq. 5.13) is equal for electrons and holes, so the effect can occur regardless
of which charge carrier is tunneling. The only remaining requirement for strong
phonon coupling enhancement is that the AC splitting energy lies near the maximum
of the phonon spectral density for PE coupling, a condition which depends on the size
and confinement potential of the QDs. Electron tunneling ACs typically have a much
larger energy splitting due to their lower effective mass, inhibiting this effect since PE
coupling is strongly weighted towards lower phonon energies.[1] Initial observations
indicate a similar level of phonon broadening at hole tunneling resonances in positive
trion and neutral biexciton transitions, though the presence of additional optically
active spin states makes the fitting procedure more complicated and the results less
reliable.
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To conclude, we have measured the linewidths of direct exciton, indirect ex-
citon and tunneling resonance states for CQDs. We have confirmed that pure de-
phasing, phonon relaxation and charge fluctuations in the CQDs lead to linewidth
broadening. The existence of phonon transitions between the molecular-like excitons
in the system cause the linewidth to broaden beyond the charge fluctuation-induced
broadening of the indirect exciton state. The transition of linewidths from direct to in-
direct exciton state is non-monotonic near tunneling resonances and phonon-induced
broadening up to 100 µeV is reported at 20 K, corresponding to phonon-assisted
transition rates up to 150 ns−1. These measurements are in good agreement with
theoretical calculations of linewidth broadening at tunneling resonances including
phonon-assisted transitions due to PE and DP coupling.



Chapter 6

Conclusion

In this dissertation, we have developed a theoretical model of electron and hole con-
finement in CQDs, including Coulomb and spin interactions, phonon coupling, and
optical transitions. Simulations of relaxation dynamics during neutral molecular biex-
citon cascades indicate that polarization-entangled photon pairs can be generated
with a high degree of entanglement fidelity. While this process has been demonstrated
in single QDs, we find that charge separation in interdot states of CQDs allows for
tunable emission energies and a higher tolerance to anisotropic electron-hole exchange
splitting.

Using low-temperature optical PL spectrosopy, we identify charge and spin
states in single CQDs and investigate their interactions. Two-laser PLE spectroscopy
demonstrates two-photon excitation into the molecular biexciton state via a step-
wise process, while calculations identify conditions required for efficient simultaneous
two-photon absorption. Further investigations find decoherence by electric field fluc-
tuations from charged lattice defects, and identify a novel enhancement of acoustic
phonon coupling at hole tunneling resonances from piezoelectric interactions.

The theoretical model could be enhanced by the inclusion of coupling between
valence bands within the multiband ~k · ~p model, as described in Chapter 2. Hole
spin states could then by described as a spinor with a small but significant light-hole
component, allowing for a consistent description of phonon-assisted spin-flip transi-
tions rather than relying on fits to reported experimental observations. In addition, a
full three-dimensional model of CQD confinement including strain relaxation, piezo-
electric polarization, and random alloy fluctuations would improve the accuracy of
wavefunction and tunnel coupling calculations. Finally, the Markov approximation
neglecting re-absorption of emitted photons and phonons, implicit in the derivation of
the Lindblad equation used in Chapter 4, can be relaxed by employing one of several
methods for calculating non-Markovian dynamics of open quantum systems [138].

Experimentally, collection of photons from the neutral biexciton cascade un-
der resonant two-photon excitation would be enabled by enhanced suppression of
scattered laser light. This could be achieved using confocal fiber-coupled excitation
and collection with triple-subtractive detection, with further improvement possible
by guiding the excitation light through an in-plane optical waveguide coupled to the
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CQD. Biexciton cascade emission could be measured by time-correlated single photon
counting (TCSPC) with a pair of avalanche photodiode detectors, while full control
over detected polarization states would allow quantum state tomography to determine
the two-photon polarization state and monitor entanglement. TCSPC would also en-
able an investigation of charge fluctuation dynamics in combination with spectral
filtering [139] or laser frequency scanning [133].

The enhanced acoustic phonon coupling effect observed at hole tunneling res-
onances also invites further study; initial experiments could unambiguously measure
resonant phonon broadening in only one CQD sample with a 4 nm interdot tunneling
barrier, limiting the range of observed anticrossing energy splitting values. While
measurements of other CQD samples also showed indications of resonant phonon
broadening, the lower intensity of interdot transitions combined with a higher level
of charge fluctuation broadening resulted in difficulties obtaining consistent linewidth
fits and isolating the phonon-induced component of broadening. Further experiments
could reduce charge fluctuation broadening by modifying sample structures to in-
crease the distance between the CQD and defect-prone material interfaces, allowing
accurate investigations of phonon coupling in samples with different tunneling bar-
rier thickness and anticrossing energy splitting to verify the model calculations. The
effect might also be seen at electron tunneling resonances if the anticrossing splitting
energy can be sufficiently reduced to the ∼ 1 meV range where piezoelectric coupling
is maximized, possibly by the inclusion of AlxGa1−xAs or another higher-bandgap
material in the interdot barrier. Additionally, the resonant acoustic phonon coupling
enhancement has the potential to increase strain sensing and actuation capabilities
for CQDs embedded in micro-mechanical resonator structures [11].

To conclude, this dissertation describes a model of coherent spin interactions
and relaxation processes in CQDs, allowing an understanding of their behavior and
potential usage in quantum information and sensing technologies. While the model
has room for improvement in several key areas, it captures the essential properties to
allow a simulation of spin dynamics and entangled photon emission. Experimental
PL and PLE spectroscopy reveals decoherence mechanisms which are important to
understand and avoid for development of CQD-based quantum technologies, includ-
ing pure dephasing by charge fluctuations and phonon-assisted tunneling. Finally, an
enhancement of acoustic phonon coupling between delocalized charge states at hole
tunneling resonances was observed, indicating a novel piezoelectric coupling mecha-
nism which might occur more generally in other systems with a delocalized charge
distribution.



Appendix A

CQD Charge States

76



APPENDIX A. CQD CHARGE STATES 77

q nX Charge State
( eB eT
hB hT

)
Spin States Jz

0

0 g ( 0 0
0 0 ) |0〉 0

1
X0 ( 1 0

1 0 )
|↓⇑〉 , |↑⇓〉 ±1
|↑⇑〉 , |↓⇓〉 ±2

iX0 ( 1 0
0 1 )

|↓⇑〉 , |↑⇓〉 ±1
|↑⇑〉 , |↓⇓〉 ±2

2

XX0 ( 2 0
2 0 ) |↑↓S ⇑⇓S〉 0

iXX0 ( 2 0
1 1 )

|↑↓S ⇑⇓S〉 , |↑↓S ⇑⇓T 〉 0
|↑↓S ⇑⇑T 〉 , |↑↓S ⇓⇓T 〉 ±3

iXiX0 ( 2 0
0 2 ) |↑↓S ⇑⇓S〉 0

+1

0
h+
B ( 0 0

1 0 ) |⇑〉 , |⇓〉 ±3/2
h+
T ( 0 0

0 1 ) |⇑〉 , |⇓〉 ±3/2

1

X+ ( 1 0
2 0 ) |↑ ⇑⇓S〉 , |↓ ⇑⇓S〉 ±1/2

iX+ ( 1 0
1 1 )

|↑ ⇑⇓S〉 , |↓ ⇑⇓S〉 ±1/2
|↑ ⇑⇓T 〉 , |↓ ⇑⇓T 〉 ±1/2
|↓ ⇑⇑T 〉 , |↑ ⇓⇓T 〉 ±5/2
|↑ ⇑⇑T 〉 , |↓ ⇓⇓T 〉 ±7/2

iiX+ ( 1 0
0 2 ) |↑ ⇑⇓S〉 , |↓ ⇑⇓S〉 ±1/2

2

XX+ ( 2 0
3 0 ) |↑↓S ⇑⇓S ⇑〉 , |↑↓S ⇑⇓S ⇓〉 ±3/2

iXX+ ( 2 0
2 1 ) |↑↓S ⇑⇓S ⇑〉 , |↑↓S ⇑⇓S ⇓〉 ±3/2

iXiX+ ( 2 0
1 2 ) |↑↓S ⇑⇓S ⇑〉 , |↑↓S ⇑⇓S ⇓〉 ±3/2

iiXiX+ ( 2 0
0 3 ) |↑↓S ⇑⇓S ⇑〉 , |↑↓S ⇑⇓S ⇓〉 ±3/2

-1

0 e− ( 1 0
0 0 ) |↑〉 , |↓〉 ±1/2

1
X− ( 2 0

1 0 ) |↑↓S ⇑〉 , |↑↓S ⇓〉 ±3/2
iX− ( 2 0

0 1 ) |↑↓S ⇑〉 , |↑↓S ⇓〉 ±3/2

2

XX− ( 3 0
2 0 ) |↑↓S ↑ ⇑⇓S〉 , |↑↓S ↓ ⇑⇓S〉 ±1/2

iXX− ( 3 0
1 1 )

|↑↓S ↑ ⇑⇓S〉 , |↑↓S ↓ ⇑⇓S〉 ±1/2
|↑↓S ↑ ⇑⇓T 〉 , |↑↓S ↓ ⇑⇓T 〉 ±1/2
|↑↓S ↓ ⇑⇑T 〉 , |↑↓S ↑ ⇓⇓T 〉 ±5/2
|↑↓S ↑ ⇑⇑T 〉 , |↑↓S ↓ ⇓⇓T 〉 ±7/2

iXiX− ( 3 0
0 2 ) |↑↓S ↑ ⇑⇓S〉 , |↑↓S ↓ ⇑⇓S〉 ±1/2

Table A.1: List of all possible CQD charge and spin states with total charge q = 0,±1
and number of excitons nX≤2, limited to ground-state orbitals (except when filled)
and hole tunneling only (electrons fixed in lower-energy bottom QD).
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Simulation Parameters

GaAs InAs
Material Parameters

Electron effective mass (m0) [140] me 0.059 0.042
Hole effective mass (m0) [140] mh 0.37 0.34
Conduction band edge (eV) [140] Ec 1.518 1.057
Valence band edge (eV) [140] Ev 0 0.192
CB deformation potential (eV) [112] ac -9.3
VB deformation potential (eV) [112] av -0.7
Piezoelectric constant (C/m2) [112] dP 0.16 0.045
Relative dielectric constant [112] εr 12.9 15.15
Crystal density (kg/m3) [112] ρ 5300 5670
LA phonon velocity (m/s) [112] cLA 5150
TA phonon velocity (m/s) [112] cTA 2800

Quantum Dot Parameters
Bottom QD height (nm) [30] hB 2.9
Top QD height (nm) [30] hT 2.1
QD center separation (nm) d 6.5
e− excited state spacing (meV) ~ωe 100
h+ excited state spacing (meV) [30] ~ωh 21.2
h+ tunnel coupling (µeV) th 330.5
Exciton intensity ratio IX/IiX 17.09
Bias fluctuation width (mV) ∆Ufluct 3.58

Experiment Parameters
Temperature (K) T 20
Spectrometer resolution (µeV) Γspect 37.0

Table B.1: Numerical values of physical parameters used in all simulations, except
where otherwise noted. Values are taken from references where specified.
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