
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Supervised and Unsupervised Discovery of Structures in Large Data Archives

Permalink
https://escholarship.org/uc/item/48b029zq

Author
Hao, Yuan

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/48b029zq
https://escholarship.org
http://www.cdlib.org/


 

 

 

UNIVERSITY OF CALIFORNIA 

RIVERSIDE 

 

 

 

Supervised and Unsupervised Discovery of Structures in Large Data Archives 

 

 

A Dissertation submitted in partial satisfaction 

of the requirements for the degree of 

 

Doctor of Philosophy 

in 

Computer Science 

by 

Yuan Hao 

March 2014 

 

 

 

 

Dissertation Committee: 

Dr. Eamonn Keogh, Chairperson 

Dr. Neal Young 

Dr. Marek Chrobak  

Dr. Christian Shelton 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Yuan Hao 

2014 



The Dissertation of Yuan Hao is approved: 

 

 

                                        

 

 

                                           

      

 

                                  

 

 

             

                    

                      Committee Chairperson 

 

 

 

 

 

University of California, Riverside 

 

 

 

 



iv 

 

Acknowledgements 

 

Many people have helped me during the past couple of years. My greatest and 

sincerest gratitude goes to my advisor Dr. Eamonn Keogh for his guidance and patience. 

He brought me on a wonderful journey at University of California, Riverside and I will 

never forget the past four years, which has allowed me to learn from scratch and 

consistently improve. My work and even my life were deeply influenced by his 

enthusiasm, passion, and hard-working attitude in research. Eamonn, thank you for 

giving me an opportunity to work with you and I will always remember the following 

lessons I have learned from you: Always try simple ideas first, demonstrate ideas more 

expressively (through visualization), less tuning of algorithms, and take a more general 

approach to easily allow others to reproduce/extend your work.  

I would like to take this opportunity to thank all my committee members as well. Dr. 

Christian Shelton, Dr. Neal Young, and Dr. Marek Chrobak. I really enjoyed Dr. 

Shelton’s enthusiastic teaching when I took his course in machine learning. I greatly 

appreciate his time discussing research ideas and helpful advice for my work. I would 

also like to thank Dr. Young and Dr. Chrobak for providing the most fundamental and 

important class, design and analysis of algorithms, during my time here. I thank them for 

their generous support and suggestions in compiling this dissertation.  

I also owe many thanks to my friends who helped me to endure all the difficult times 

for the past four years. They are Qiang Zhu, Xiaoyue Wang, Lexiang Ye, Bilson 

Campana, Jin Shieh, Art Rakthanmanon, Abdullah Mueen, Liudmila Ulanova, 



v 

 

Mohammad Shokoohi-Yekta, Yan Wang, Michael Butkiewicz, Robert Halstead, Guowu 

Xie, and Zhen Qin.  

I had two internships with Google and LinkedIn. I worked with incredible people to 

whom I am greatly thankful. Dr. Grant Ye was my host in Google, he fully supported me 

and inspired my interest in other domains, such as image hashing and spam detection. I 

enhanced many skills during the time working with him. I would also like to thank Dr. 

Benjamin Arai, who was my manager when I was a data scientist intern in LinkedIn 

Corporation. Dr. Arai was one of the friendliest and most inspiring managers. He helped 

me with topic modeling algorithms to solve a very practical problem in LinkedIn, in 

addition to showing me how to be a good data scientist.  

Lastly, I would like to deeply thank my parents who always support me. No matter 

how far we are separated, where I am, I always know and always feel your caring and 

encouragement. You are and will be always my biggest motivation to pursue my dreams.  

 

 

 

 

 

 

 

 

 



vi 

 

ABSTRACT OF THE DISSERTATION 
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Dr. Eamonn Keogh, Chairperson 

 

 

Most domains of human interest now generate enormous, diverse data (text, time 

series, image, audio and video, etc) everyday.  Extracting useful knowledge from such 

data in an efficient manner is an essential task for data mining community. A general 

framework to discover useful structures without domain-dependent tuning can also 

mitigate the costly manual efforts for different area experts, such as biologist, 

neurologist, cardiologist, etc.  

This dissertation first discusses definitions and representations to find useful structures 

(for example, audio fingerprint, audio motifs) in audio archives, and further introduces 

scalable algorithms to allow application to diverse massive data archives. Audio 

fingerprints are “prototypical” subsequences that can represent a class, differentiate from 
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other classes and used to identify future unknown instances. We propose a supervised 

approach to classify animal sounds in the visual space, by treating the texture of their 

spectrograms as an acoustic fingerprint using a recently introduced parameter-free texture 

measure as a distance measure. Our audio fingerprint discovery bioacoustic framework 

assists biologists in automatically classifying different species of insects, (and, in follow 

up work by an independent research group) detect the presence of elephants in noisy 

environments, etc.  

Motif discovery in contrast is an unsupervised process to find occurrences of repeated 

patterns when lacking any prior knowledge of patterns, even the pattern length. The audio 

motif/near duplicate pairs are the most similar segments among all the subsequences in 

any audio stream, however, they must be carefully defined in order to prevent finding 

pathological solutions. We propose a novel probabilistic early abandoning approach to 

cast the search for audio motifs into Anytime framework. We demonstrate that our 

algorithm can apply to diverse domains (i.e. mice vocalization, wild animal sounds, 

music and human speech) without requiring any domain specific tuning.  

Lastly, we propose a never-ending learning framework for time series in which an 

agent examines an unbounded stream of data and occasionally asks a teacher (which may 

be a human or an algorithm) for a label. We demonstrate the utility of our ideas with 

experiments that consider real world problems in domains as diverse as medicine, 

entomology, wildlife monitoring, and human behavior analyses.  
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Chapter 1 

Introduction  

Many (or most) domains produce rich, numerous data, including text, time series, image, 

audio, and video, etc. The massive amount of data produced every day is a challenge not 

only for domain experts but also to the data mining researchers that support them. Social 

networks, for example, such as Facebook, LinkedIn or Twitter handle hundreds of 

millions of pieces of user information. Researchers analyze environmental biodiversity 

by monitoring various animal sounds, which can produce gigabytes of data per day. Long 

term daily human behavior tracking has shown great potential application for disease 

prevention using sleep monitoring [37], heartbeat studies [41] etc. Data mining experts 

have worked on such diverse, large-scale projects for at least a decade. However, most 

state-of-the-art algorithms are not very general, they provide solutions only under many 

assumptions (stated or unstated).  

Furthermore, mining even a fraction of these data using complex models (i.e. decision 

trees, neural networks, etc.) usually takes a long time. Secondly, most of these data is 

generated automatically without careful annotations (i.e. class labels), which is assumed 
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by most algorithms to achieve high accuracy. Therefore, building a general, online, 

“lightly-labeled” framework to analyze various, diverse domains data is still an open 

problem in many real world applications.  

In the next three sections of this chapter, we briefly introduce audio fingerprints, 

audio motif, and a novel never-ending learning system. In Chapter 2, we describe the 

audio fingerprint algorithm, and a general framework for monitoring animals’ behavior 

by the sounds they produce.  In Chapter 3, we discuss audio motifs, their utility in diverse 

domains and how they can be found efficiently. Both of these frameworks have already 

attracted attention by domain experts. For example, our sound fingerprint method was 

used by Zeppelzauer et al [97] to detect elephants in the wild. They noted “Experiments 

show that the selected templates clearly captured parts of the rumbles, which confirms 

that the template section works well”. In Chapter 4, we present a never ending learning 

system for time series data, which is an online, active learning framework to solve the 

problems we discuss above. Finally, we conclude with a summary and possible future 

work in Chapter 5.  

1.1 Supervised Discovery of Structures (Audio Fingerprints)  

Monitoring animals by the sounds they produce is an important and challenging task, 

whether the application is outdoors in a natural habitat [19], or in the controlled 

environment of a laboratory setting.  

In the former case the density and variety of animal sounds can act as a measure of 

biodiversity and of the health of the environment. Algorithms are needed here not only 
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because they are (in the long term) cheaper than human observers, but also because in at 

least some cases algorithms can be more accurate than even the most skilled and 

motivated observers [73]. 

In addition to field work, researchers working in laboratory settings frequently create 

control and treatment groups of animals, expose them to different interventions, and test 

for different outcomes. One possible manifestation of different outcomes may be changes 

in the bioacoustics of the animals. To obtain statistically significant results researchers 

may have to monitor and hand-annotate the sounds of hundreds of animals for days or 

weeks, a formidable task that is typically outsourced to students [76].  

There are also several important commercial applications of acoustic animal detection. 

For example, the US imports tens of billions of dollars worth of timber each year. It has 

been estimated that the inadvertent introduction of the Asian Longhorn Beetle 

(Anoplophora glabripennis) with a shipment of lumber could cost the US lumber industry 

tens of billions of dollars [75]. It has been noted that different beetle species have subtlety 

distinctive chewing sounds, and ultra sensitive sensors that can detect these sounds are 

being produced [65]. As a very recent survey of acoustic insect detection noted, “The 

need for nondestructive, rapid, and inexpensive means of detecting hidden insect 

infestations is not likely to diminish in the near future” [75]. 

With such a plethora of important applications, there have been significant efforts to 

build bioacoustic classification tools [19]. However, we argue that current tools are 

severely limited. They often require the careful tuning of many parameters (as many as 

eighteen [32]) and thus huge amounts of training data, they are too computationally 
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expensive for use with resource-limited sensors that will be deployed in the field [30], 

they are specialized for a very small group of species, or they are simply not accurate 

enough to be useful.  

In this thesis, we introduce a novel bioacoustic recognition/classification framework 

that mitigates or solves all of the above problems. We propose to classify animal sounds 

in the visual space, by treating the texture of their spectrograms as an acoustic 

“fingerprint” and using a recently introduced parameter-free texture measure as a 

distance measure. We further show that by searching for the smallest representative 

acoustic fingerprint (inspired by the shapelet concept in time series domain [93]) in the 

training set, we can significantly outperform other techniques in terms of both speed and 

accuracy.  

Note that monitoring of animal sounds in the wild opens up a host of interesting 

problems in sensor placement, wireless networks, resource-limited computation [30], etc. 

For simplicity, we gloss over such considerations, referring the interested reader to [19] 

and the references therein. In this work we assume all such problems have been 

addressed, and only the recognition/classification steps remain to be solved. 

1.2 Unsupervised Discovery of Structures (Audio Motif) 

The first step in most exploratory data mining endeavors is the discovery and 

enumeration of repeated structure. This has been true even for data analysis that predates 

computers. For example, the decipherment of documents written in ancient unknown 

languages first requires the discovery of repeated elements in the scripts [23]. Given this, 
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there has been significant research effort in the last decade focused on repeated pattern 

(motif/near-duplicate) discovery in text, DNA, graphs, time series, images, and video 

[47][55][58]. In contrast, the discovery of audio motifs, with the sole exception of music 

data, has not received much attention [49]. However, identifying structure in general 

audio sequences is an important and challenging task with applications in many diverse 

domains. Some representative examples include: 

 Acoustic wildlife monitoring has been shown to allow effective and non-invasive 

measurement of the health of ecosystems [88].  

 A powerful tool for investigating the role of genetics in human disorders modifies 

(“knocks out”) various genes in mice and examines their vocalizations for changes 

that may be linked to those genes, and hence the analogue genes in humans [83][95]. 

Figure 1.1 hints at the utility of this idea, which we will revisit in Section 3.4.4. In 

recent years this framework has emerged as an extremely promising tool for 

understanding human cognitive and memory disorders. 

 Audio content analysis has been shown to assist with video segmentation and 

summarization [47][55][77]. 

The above are in addition to the more obvious applications in the music domain, such 

as analysis, thumbnailing, retrieval, and summarization [11].  
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Figure 1.1: top) Seven seconds of audio produced by a male mouse. middle) We searched 

the spectrogram of this data for repeated patterns of length 0.5 seconds. bottom left, right) 

A zoom-in of the two repeated occurrences reveals their similarity. We will revisit this 

domain in Section 3.4.4. 

Thus far virtually all research efforts aimed at finding repeated patterns in audio 

sequences use feature extraction algorithms to produce low cardinality symbolic 

representations of the data and use suffix trees, hashing, or similar techniques to search 

these symbolic strings for approximately repeated elements [11]. The problem with this 

approach is that the feature extraction step must be highly tuned to the domain. For 

example, Zakaria et. al [95] demonstrate a technique to find motifs in vocalizations of a 

specific strain of lab mice called Fmr1-KO. However, it is not clear if this multi-stage 

algorithm (which requires significant human intervention) generalizes to other strains of 

mice, much less to other rodents.  

In contrast to these efforts, we propose an algorithm which is completely general, 

makes zero assumptions about the data, and is essentially parameter-free. We achieve this 

by leveraging off the growing realization that for at least some audio similarity problems, 

we can best measure similarity when the data is transformed into the image space (i.e. 
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spectrograms) [58]. Image processing algorithms themselves are not generally devoid of 

the need for feature extraction. However, we propose to use the CK distance measure 

[24], a recently introduced compression-based measure that avoids explicitly extracting 

any features, thus remains parameter-free. We will show that the CK distance measure is 

so efficient that even a brute-force implementation can run in about real-time for a typical 

song. For longer audio sequences we introduce two ideas to mitigate the time complexity. 

First, we show that we can cast the search for audio motifs into an anytime framework 

[61]. Second, we can derive confidence bounds that allow searches to return the optimal 

audio motifs with some bounded probability of error. As we shall show, even if we allow 

a very conservative probability of error, we can achieve a massive speedup. 

1.3 Never-Ending Learning of Time Series Streams 

Virtually all work on time series classification assumes a one-time training session in 

which multiple labeled examples of all the concepts to be learned are provided. This 

assumption is sometimes valid, for example, when learning a set of gestures to control a 

game or novel HCI interface. However, in many medical and scientific applications we 

initially may have only the vaguest understanding of what concepts need to be learned. 

Given this observation, and inspired by the Never-Ending Language Learning (NELL) 

research project at CMU [27], we propose a time series learning framework in which we 

observe streams forever, and we continuously attempt to learn new (or drifting) concepts.   

Our ideas are best illustrated with a simple visual example. In Figure 1.2 we show a 

time series produced by a light sensor at Soda Hall in Berkley. While the sensor will 
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produce data forever, we can only keep a fixed amount of data in a buffer. Here the daily 

periodicity is obvious, and a more careful inspection reveals two very similar patterns, 

annotated A and B.  

 

Figure 1.2: The light sensors at Soda Hall produce a never-ending time series, of which 

we can cache only a small subset main memory. 

As we can see in Figure 1.3.left and Figure 1.3.center, these patterns are even more 

similar after we z-normalize them [33]. Suppose that the appearance of these two similar 

patterns (or “motif”) causes an agent to query a teacher as to their meaning.  

 

Figure 1.3: left) A “motif” of two patterns annotated in Figure 1.2 aligned to highlight 

their similarity. center) We imagine asking a teacher for a label for the pattern. right) 

This allows us to detect and classify a new occurrence eleven days later.  

This query could be implemented in a number of ways; moreover the teacher need not 

necessarily be human. Let us assume here that an email is sent to the building supervisor 

with a picture of the patterns and any other useful metadata. If the teacher is willing to 

provide a label, in this case Weekday with no classes, we have learned a concept for this 

time series, and we can monitor for future occurrences of it.  

2,000 minutes ago 1,500 minutes ago 1,000 minutes ago 500 minutes ago now

time
A

B

Light Sensor 39-Soda Hall

0 300

A

15,840 minutes later 16,340 minutes later0 300

B

What is 

this?

Weekday with 

no classes

Weekday with no classes was detected
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An important generalization of the above is that the time series may only be a proxy 

for another, much higher dimensional streaming data source, such as video or audio. For 

example, suppose the classrooms are equipped with surveillance cameras, and we had 

conducted our monitoring at a finer temporal resolution, say seconds. We could imagine 

that our algorithm might notice a novel pattern of short-lived but dramatic spikes in light 

intensity. In this case we could send the teacher not the time series data, but some short 

video clips that bracket the events. The teacher might label the pattern Camera use with 

flash. This idea, that the time series is only a (more tractable) proxy for the real stream of 

interest, greatly expands the generality of our ideas, as time series has been shown to be a 

useful proxy of audio, video, text, networks, and a host of other types of data [25]. 

This example elucidates our aims, but suggested a wealth of questions. How can we 

detect repeated patterns, especially when the data arrives at a much faster rate, and the 

probability of two patterns from a rare concept appearing close together is very small? 

Assuming the teacher is a finite or expensive resource, how can we optimize the set of 

questions we might ask of it/him/her, and how do we act on this feedback? We will 

discuss all these questions in Chapter 4. 
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Chapter 2 

Monitoring and Mining Animal Sound in 

Visual Space 

This chapter discusses building a general bioacoustic framework to eliminate huge 

amount of manual effort to monitor animals by the sounds they produce. It is an 

important and challenging task, whether the application is outdoors in a natural habitat, or 

in the controlled environment of a laboratory setting.  

In the former case the density and diversity of animal sounds can act as a measure of 

biodiversity. In the latter case, researchers often create control and treatment groups of 

animals, expose them to different interventions, and test for different outcomes. One 

possible manifestation of different outcomes may be changes in the bioacoustics of the 

animals.  

With such a plethora of important applications, there have been significant efforts to 

build bioacoustic classification tools. However, we argue that most current tools are 

severely limited. They often require the careful tuning of many parameters (and thus huge 

amounts of training data), they are too computationally expensive for deployment in 
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resource-limited sensors, they are specialized for a very small group of species, or they 

are simply not accurate enough to be useful.  

In this work we introduce a novel bioacoustic recognition/classification framework 

that mitigates or solves all of the above problems. We propose to classify animal sounds 

in the visual space, by treating the texture of their spectrograms as an acoustic fingerprint 

using a recently introduced parameter-free texture measure as a distance measure. We 

further show that by searching for the most representative acoustic fingerprint we can 

significantly outperform other techniques in terms of speed and accuracy.  

2.1 Related Work and Background 

2.1.1 A Brief Review of Spectrograms 

As hinted at in Chapter 1.1, we intend to do recognition/classification in the visual space, 

by examining the spectrogram of the animal sounds. As shown in Figure 2.1, a 

spectrogram is a time-varying spectral representation that shows how the spectral density 

of a signal varies with time. 

 

Figure 2.1: A spectrogram of the call of an insect. Note the highly repetitious nature of 

the call.  In this case, capturing just two “busts” may be sufficient to recognize the insect.  
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There is a huge amount of literature leveraging off manual inspection of such 

spectrograms; see [48] and the references therein for some examples. However, as we 

shall see, algorithmic analysis of spectrograms remains an open problem, and an area of 

active research. Beyond the problems that plague attempts to define a distance measure in 

any domain, including invariance to offset, scaling, uniform scaling, non-uniform 

warping, etc., spectrograms almost always have significant noise artifacts, even when 

obtained in tightly controlled conditions in a laboratory setting. One avenue of research is 

to “clean” the spectrograms using various techniques [16], and then apply shape 

similarity measures to the cleaned shape primitives. Some types of specialized cleaning 

may be possible; for example, removing the 60Hz noise is commonly encountered
1
. 

However, algorithms to robustly clean general spectrograms seem likely to elude us for 

the foreseeable future.  

As we shall see in Section 2.3, our solution to this problem is to avoid any type of data 

cleaning or explicit feature extraction, and use the raw spectrogram directly.   

2.1.2 General Animal Sound Classification 

The literature on the classification of animal sounds is vast; we refer the interested reader 

to [6][70] for useful surveys. At the highest level, most research efforts advocate 

extracting sets of features from the data, and using these features as inputs to standard 

classification algorithms such as a decision tree, a Bayesian classifier or a neural 

                                                 
1
 American domestic electricity is at 60Hz (most of the rest of the world is 50Hz) and 

inadequate filtering in power transformers often allows some 60Hz signal to bleed into 

the sound recording.   
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network. As a concrete representative example, consider [78], which introduces a system 

to recognize Orthoptera (the order of insects that includes grasshoppers, crickets, 

katydids
2
 and locusts). This method requires that we extract multiple features from the 

signal, including distance-between-consecutive-pulses, pulse-length, frequency-contour-

of-pulses, energy-contour-of-pulses, time-encoded-signal-of-pulses, etc. However, 

robustly extracting these features from noisy field recordings is non-trivial, and while 

these features seem to be defined for many Orthoptera, it is not clear that they generalize 

to other insects, much less to other animals. Moreover, a significant number of 

parameters need to be set, both for the feature extraction algorithms, and the 

classification algorithm.   

For more complex animal sounds (essentially all non-insect animals), once again 

features are extracted from the raw data; however, because the temporal transitions 

between features are themselves a kind of meta-feature,  techniques such as Hidden 

Markov Models are typically used to model these transitions [6] [22][70]. This basic idea 

has been applied with varying degrees of success to birds [60], frogs and mammals [22]. 

One major limitation of Hidden Markov Model-based systems is that they require 

careful tuning of their many parameters. This in turn requires a huge amount of labeled 

training data, which may be difficult to obtain in many circumstances for some species. 

Many other approaches have been attempted in the last decade. For example, in a 

series of papers, Dietrich et al. introduce several classification methods for insect sounds, 

                                                 
2
 In British English, katydids are known as bush-crickets. 
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some of which require up to eighteen parameters, and which were trained on a dataset 

containing just 108 exemplars [32].  

It is important to note that our results are completely automatic.  Numerous papers 

report high accuracies for the classification of animal sounds, but upon careful reading it 

appears (or it is explicitly admitted) that human effort was required to extract the right 

data to give to the classifier. Many authors do not seem to fully appreciate 

that “extracting the right data” is at least as difficult as the classification step. 

For example, a recent paper on the acoustic classification of Australian anurans (frogs 

and toads) claims a technique that is “capable to identify the species of the frogs with an 

average accuracy of 98%.” [46]. This technique requires extracting features from 

syllables, and the authors note, “Once the syllables have been properly segmented, a set 

of features can be calculated to represent each syllable” (our emphasis). However, the 

authors later make it clear that the segmentation is done by careful human intervention. 

In contrast, we do not make this unrealistic assumption that all the data has been 

perfectly segmented. We do require sound files that are labeled with the species name, 

but nothing else. For example, most of the sound files we consider contain human 

voiceover annotations such as “June 23
th

, South Carolina, Stagmomantis carolina, 

temperature is ...” and many contain spurious additional sounds such as distant bird calls, 

aircraft, the researcher tinkering with equipment, etc. The raw unedited sound file is the 

input to our algorithm; there is no need for costly and subjective human editing. 
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2.1.3 Sound Classification in Visual Space 

A handful of other researchers have suggested using the visual space to classify sounds 

(see [66][67]). However, this work has mostly looked at the relatively simple task of 

recognizing musical instruments or musical genres [94], etc. More recent work has 

considered addressing problems in bioacoustics in the visual space. In [67] the authors 

consider the problem of recognizing whale songs using spectrograms. The classification 

of an observed acoustic signal is determined by the maximum cross-correlation 

coefficient between its spectrogram and the specified template spectrogram [67]. 

However, this method is rather complicated and indirect: a “correlation kernel” is 

extracted from the spectrogram, the image is divided into sections which are piecewise 

constant, and a cross-correlation is computed from some subsets of these sections and 

thresholded to obtain a detection event. Moreover, at least ten parameters must be set, 

and it is not clear how best to set them, other than using a brute force search through the 

parameter space. This would require a huge amount of labeled training data. In [66] the 

authors propose similar ideas for bird calls. However, beyond the surfeit of parameters to 

be tuned, these methods have a weakness that we feel severely limits their applicability. 

Both these efforts (and most others we are aware of) use correlation as the fundamental 

tool to gauge similarity. By careful normalization, correlation can be made invariant to 

shifts of pitch and amplitude. However, because of its intrinsically linear nature, 

correlation cannot be made invariant to global or local differences in time (in a very 

slightly different context, these are called uniform scaling and time warping, respectively 

[38]). There is significant evidence that virtually all real biological signals have such 
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distortions, and that unless it is explicitly addressed in the representation or classification 

algorithm, we are doomed to poor accuracy. As we shall show empirically in the 

experimental section below, our proposed method is largely invariant to uniform scaling 

and time warping. 

2.1.4 A Review of the Campana-Keogh (CK) Distance Measure 

The CK distance measure is a recently introduced measure of texture similarity [24]. 

Virtually all other approaches in the vast literature of texture similarity measures work by 

explicitly extracting features from the images, and computing the distance between 

suitably represented feature vectors.  Many possibilities for features have been proposed, 

including several variants of wavelets, Fourier transforms, Gabor filters, etc. [18]. 

However, one drawback of such methods is that they all require the setting of many 

parameters. For example, at a minimum, Gabor filters require the setting of scale, 

orientation, and filter mask size parameters. This has led many researchers to bemoan the 

fact that “the values of (Gabor filters parameters) may significantly affect the outcome of 

the classification procedures...”[18]. 

In contrast, the CK distance measure does not require any parameters, and does not 

require the user to create features of any kind. Instead, the CK measure works in the spirit 

of Li and Vitanyi’s idea that two objects can be considered similar if information 

garnered from one can help compress the other [59][62]. The theoretical implications of 

this idea have been heavily explored over the last eight years, and numerous applications 

for discrete data (DNA, natural languages) have emerged.  
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The CK measure expands the purview of the compression-based similarity 

measurements to real-valued images by exploiting the compression technique used by 

MPEG video encoding [24]. In essence, MPEG attempts to compress a short video clip 

by taking the first frame as a template, and encoding only the differences of subsequent 

frames. Thus, if we create a trivial “video” consisting of just the two images we wish to 

compare, we would expect the video file size to be small if the two images are similar, 

and large if they are not. Assuming x and y are two equally-sized images; Table 2.1 

shows the formula to achieve this. 

 dist = ((mpegSize(x,y) + mpegSize(y,x)) /( mpegSize(x,x) + mpegSize(y,y))) - 1; 

Table 2.1: The CK Distance Measure. 

It is worth explicitly stating that this is not pseudo code, but the entire actual Matlab 

code needed to calculate the CK measure. 

The CK measure has been shown to be very effective on images as diverse as moths, 

nematodes, wood grains, tire tracks, etc. [24]. However, this is the first work to consider 

its utility on spectrograms. 

2.2 Definitions 

In this section we define the necessary notation for our sound fingerprint finding 

algorithm. We begin by defining the data type of interest, an audio sequence: 

Definition 2.1 [AUDIO SEQUENCE] A audio sequence A of length m > 0 is a 

sequence A = (A1, A2, …, Am) of m real-valued numbers corresponding to the amplitude 
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at that time stamp. The data points are typically generated in temporal order and spaced at 

uniform time intervals.  

As with other researchers [66][67], we are interested in the audio sequence 

representation in the visual space, which is called the spectrogram.  

Definition 2.2 [SOUND SPECTROGRAM] A sound spectrogram S is an image of 

time-varying spectral representation, produced by applying the Short Fast Fourier 

Transform to successive overlapping frames of an audio sequence. The horizontal 

dimension corresponds to time and the vertical dimension corresponds to frequency. The 

relative spectral intensity of a sound at any specific time and frequency is indicated by 

the color/grayscale intensity of the image.  

A more detailed discussion of spectrograms is beyond the scope of this thesis, so we 

refer the reader to [6] and the references therein. 

We are typically interested in the local properties of the audio sequence rather than the 

global properties, because the entire audio sequence may be contaminated with 

extraneous sounds (human voice annotations, passing aircraft, etc.). Moreover, as we 

shall see, our ultimate aim is to find the smallest possible sound snippet to represent a 

species. A local subsection of a spectrogram can be extracted with a sliding window: 

Definition 2.3 [SLIDING WINDOW] A sliding window (W) contains the latest w data 

points (St-w+1, St-w+2,…, St) in the sound spectrogram S.  

Within a sliding window, a local subsection of the audio sequence we are interested in 

is termed as a subsequence.  
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Definition 2.4 [AUDIO SUBSEQUENCE] An audio subsequence of length n of an 

audio sequence A = (A1, A2, …, Am)  is a time series Ai,n = (Ai, Ai+1,…, Ai+n-1) for all 

integers i, where 0<i<m-n+1. 

Since our algorithm attempts to find the prototype of an audio sequence A, ultimately, 

a local audio subsequence Ai,n should be located with a distance comparison between A 

and Ai,n, which may be of vastly different lengths. Recall that the CK distance is only 

defined for two images of the same size. 

Definition 2.5 [DISTANCE] The distance d between a subsequence Ai,n and a longer 

audio sequence A is the minimum distance between Ai,n and all possible subsequences in 

A that are the same length as Ai,n.  

Our algorithm needs some evaluation mechanism for splitting datasets into two groups 

(target class, denoted as P, everything else, denoted as U). We use the classic machine 

learning idea of information gain to evaluate candidate splitting rules. To allow 

discussion of information gain, we must first review entropy: 

Definition 2.6 [ENTROPY] The entropy for a given audio sequence dataset D is E(D) 

= -p(X)log(p(X))-p(Y)log(p(Y)), where X and Y are the positive and universe classes in D, 

p(X) is the proportion of objects in class X and p(Y) is the proportion of objects in class Y.  

The information gain is for a given splitting strategy and is just the difference in 

entropy before and after splitting. More formally: 

Definition 2.7 [INFORMATION GAIN] The information gain of a partitioning of 

dataset D is: 

Gain = E(D) – E’(D), 



20 

 

where E(D) and E’(D) are the entropy before and after partitioning D into D1 and D2, 

respectively.   

E’(D) = f(D1)E(D1) + f(D2)E(D2), 

where f(D1) is the fraction of objects in D1, and f(D2) is the fraction of objects in D2.   

As noted above, we wish to find a sound fingerprint such that most or all of the objects 

in P of the dataset have a subsequence that is similar to the fingerprint, whereas most of 

the audio sequences in U do not. To find such a fingerprint from all possible candidates, 

we compute the distance between each candidate and every subsequence of the same size 

in the dataset, and use this information to sort the objects on a number line, as shown in 

Figure 2.2. Given such a linear ordering, we can define the best splitting point for a given 

sound fingerprint: 

Definition 2.8 [BEST SPLITTING POINT] Given an annotated (by one of two 

classes, P and U) linear ordering of the objects in D, there exists at most
3
 |D|-1 distinct 

splitting points which divide the number line into two distinct sets. The splitting point 

which produces the largest information gain is denoted as the best splitting point. 

In Figure 2.2 we illustrate the best splitting point with a bold/yellow vertical line.  

We are finally in a position to define the sound fingerprint using the above definitions: 

Definition 2.9 [SOUND FINGERPRINT] The sound fingerprint for a species is the 

subsequence from P, together with its corresponding best splitting point, which produces 

the largest information gain when measured against the universe set U.  

                                                 
3
 Note that there can be duplicate values in the ordering. 
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Note that we may expect ties, which must be broken by some policy. We defer a 

discussion of tie-breaking policies to later in this section. 

 

Figure 2.2: A candidate sound fingerprint, the boxed region in spectrogram 1, is 

evaluated by finding its nearest neighbor subsequence within both P and the four 

representatives of U and then sorting all objects on a number line. 

We can concretely illustrate the definition of a sound fingerprint using the example 

shown in Figure 2.2. Note that there are a total of nine objects, five from P, and four from 

U. This gives us the entropy for the unsorted data of:  

[-(5/9)log(5/9)-(4/9)log(4/9)] = 0.991 

If we used the split point shown by the yellow/bold vertical bar in Figure 2.2, then 

four objects from P are the only four objects on the left side of the split point. Of the five 

objects to the right of the split point we have four objects from U and just one from P. 

This gives us an entropy of: 

(4/9)[-(4/4)log(4/4)]+(5/9)[-(4/5)log(4/5)-(1/5)log(1/5)] = 0.401 

Thus, we have an information gain of 0.590 = 0.991-0.401. Note that our algorithm 

will calculate the information gain many times as it searches through the candidate space, 

and ties are very likely. Thus, we must define a tie-breaking policy. Here we have several 
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options. The intuition is that we want to produce the maximum separation (“margin”) 

between the two classes. We could measure this margin by the absolute distance between 

the rightmost positive and the leftmost universe distances. However, this measure would 

be very brittle to a single mislabeled example. To be more robust to this possibility 

(which frequently occurs in our data) we define the margin as the absolute distance 

between the medians of two classes. Figure 2.3 illustrates this idea. 

 

Figure 2.3: Two order lines that have the same information gain. Our tie-breaking policy 

reflects the intuition that the top line achieves less separation than the bottom line.   

Even though these two fingerprints have the same information gain of 0.590 as the 

example shown in Figure 2.2, the bottom one is preferable, because it achieves a larger 

margin between P and U.   

Before moving on, we preempt a possible question from the reader. Why optimize the 

information gain, rather than just optimizing the tie-breaking function itself? The answer 

is twofold. Just optimizing the tie- breaking function allows pathological solutions that do 

not generalize well. More critically, as we shall see later, optimizing the information gain 

will allow admissible pruning techniques that can make our algorithm two orders of 

magnitude faster.    

10

0 1
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2.3 Sound Fingerprints 

As the dendrogram we will later show in Figure 2.5 hints at, the CK measure can be very 

accurate in matching (carefully extracted) examples of animal sounds. However, our task 

at hand is much more difficult than this. We do not have carefully extracted prototypes 

for each class, and we do not have a classification problem where every sound must 

correspond to some animal we have previously observed.  

Rather, for each species we have a collection of sound files which contain within them 

one or more occurrences of a sound produced by the target. We do not know how long 

the animal call is, or how many occurrences of it appear in each file. Moreover, since 

most of the recordings are made in the wild, we must live with the possibility that some 

of the sound files are “contaminated” with other sounds. For example, a twenty-second 

recording of a frog we examined also contains a few seconds of Strigiform (owl) calls 

and several cricket chirps.  

In addition, as we later use our sound fingerprints to monitor audio streams we must 

generally expect that the vast majority of sounds are not created by any of the target 

species, and thus we have a large amount of data that could produce false positives.  

2.3.1 The Intuition of Sound Fingerprints 

We begin by expanding on the intuition behind sound fingerprints. For ease of exposition 

we will give examples using discrete text strings, but the reader will appreciate that we 

are really interested in streams of real-valued sounds. Assume we are giving a set of three 
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observations that correspond to a particular species, let us say Maua affinis (a cicada 

from South West Asia): 

Ma = {rrbbcxcfbb, rrbbfcxc, rrbbrrbbcxcbcxcf} 

We are also given access to the universe of sounds that are known not to contain 

examples of a Maua affinis.  

¬Ma = {rfcbc, crrbbrcb, rcbbxc, rbcxrf,..,rcc} 

In practice, the universe set may be so large that we will just examine a small fraction 

of it, perhaps just sounds that are likely to be encountered and could be confused for the 

target insect. Our task is to monitor an audio stream (or examine a large offline archive) 

and flags any occurrences of the insect of interest.   

Clearly it would be quite naive to examine the data for exact occurrences of the three 

positive examples we have been shown, even under a suitably flexible measure such as 

edit distance. Our positively labeled data is only guaranteed to have one or more samples 

of the insect call, and it may have additional sections of sounds from other animals or 

anthropogenic sounds before and/or after it.  

Instead, we can examine the strings for shorter substrings that seem diagnostic of the 

insect. The first candidate template that appears promising is T1 = rrbb, which appears 

in every Ma insect example. However, this substring also appears in the second example 

in ¬Ma, in crrbbrcb, and thus this pattern is not unique to Maua affinis. 

We could try to specialize the substring by making it longer; if we use T2 = rrbbc, 

this does not appear in ¬Ma, removing that false positive. However, rrbbc only appears 

in two out of three examples in Ma, so using it would incur a risk of false negatives.  As 
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it happens, the substring template T3 = cxc does appear in all examples in Ma at least 

once, and never in ¬Ma, and is thus the best candidate for a prototypical template for the 

class.  

As the reader may appreciate, the problem at hand is significantly more difficult that 

this toy example. First, because we are dealing with real-value data we cannot do simple 

tests for equality; rather, we must also learn an accept/reject threshold for the template. 

Moreover, we generally cannot be sure that every example in the positive class really has 

one true high-quality example call from the target animal. Some examples could be 

mislabeled, of very low quality, or simply atypical of the species for some reason. 

Furthermore, we cannot be completely sure that U does not contain any example from P. 

Finally, because strings are discrete, we only have to test all possible substrings of length 

one, then of length two, etc, up to the length of the shortest string in the target class. 

However, in the real-valued domain in which we must work, the search space is 

immensely larger. We may have recordings that are minutes in length, sampled at 

44,100Hz. 

Thus far we have considered this problem abstractly: is it really the case that small 

amounts of spurious sounds can dwarf the similarity of related sounds? To see this we 

took six pairs of recording of various Orthoptera and visually determined and extracted 

one-second similar regions. The group average hierarchical clustering of the twelve 

snippets is shown in Figure 2.4. 

The results are very disappointing, given that only one pair of sounds is correctly 

grouped together, in spite of the fact that human observers can do much better. 
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We believe this result is exactly analogous to the situation elucidated above with 

strings. Just as rrbbcxcfbb must be stripped of its spurious prefix and suffix to reveal 

cxc, the pattern that is actually indicative of the class, so too must we crop the 

irrelevant left and right edges of the spectrograms. 

 

Figure 2.4: A clustering of six pairs of one-second recordings of various katydids and 

crickets using the CK texture measure. Only one species pair {3,4} is correctly grouped. 

Ideally the pairs {1,2}, {5,6}, {7,8}, {9,10} and {11,12} should also be grouped together. 

For the moment, let us do this by hand. As the resulting images may be of different 

lengths, we have to slightly redefine the distance measure. To compute the distance 

between two images of different lengths, we slide the shorter one along the longer one 

(i.e. definition 2.5), and report the minimal distance.  Figure 2.5 shows the resulting 

clustering. 
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Figure 2.5: A clustering of the same data used in Figure 2.4, after trimming irrelevant 

prefix and suffix data. All pairs are correctly grouped, and at a higher level the 

dendrogram separates katydids and crickets.    

The trimming of spurious data produces a dramatic improvement. However, it 

required careful human inspection. In the next section we will show our novel algorithm 

which can do this automatically.  

2.3.2 Formal Problem Statement and Assumptions 

Informally, we wish to find a snippet of sound that is most representative of a species, on 

the assumption that we can use this snippet as a template to recognize future occurrences 

of that species. Since we cannot know the exact nature of the future data we must 

monitor, we will create a dataset which contains representatives of U, non-target species 

sounds. 

Given this heterogeneous dataset U, and dataset P which contains only examples from 

the “positive” species class, our task reduces to finding a subsequence of one of the 

GrylloideaTettigonioidea
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objects in P which is close to at least one subsequence in each element of P, but far from 

all subsequences in every element of U. Recall that Figure 2.2 shows a visual intuition of 

this.  

This definition requires searching over a large space of possibilities. How large of a 

space? Suppose the dataset P contains a total of k audio sequences. Users have the option 

to define the minimum and maximum (Lmin, Lmax) length of sound fingerprint candidates. 

If they decline to do so we default to Lmax= infinity and to Lmin= 16, given that 16 by 16 is 

the smallest size video MPEG-1 is defined for [24]. Assume for the moment that the 

following relationship is true: 

Lmax ≤ min(Mi) 

That is to say, the longest sound fingerprint is no longer than the shortest object in P, 

where Mi is the length of Si from P, 1≤ i ≤ k. 

The total number of sound fingerprint candidates of all possible lengths is then: 

max

min { }

( 1)
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M l
 

    

where l is a fixed length of a candidate. It may appear that we must test every integer 

pixel size from Lmin to Lmax; however, we know that the “block size” of MPEG-1 [24] in a 

CK measure is eight-by-eight pixels, and pixels remaining after tiling the image with 

eight-by-eight blocks are essentially ignored. Thus, there is no point in testing non-

multiples of eight image sizes. As a result, the above expression can be modified to the 

one below: 
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max min

8( 1) { }

( 1), 1,2,..., ( ) / 8
i

L

i
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M l i L L
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While this observation means we can reduce the search space by a factor of eight, 

there is still a huge search space that will require careful optimization to allow 

exploration in reasonable time.  

For concreteness, let us consider the following small dataset, which we will also use as 

a running example to explain our search algorithms in the following sections. We created 

a small dataset with P containing ten two-second sound files from Atlanticus dorsalis 

(Gray shieldback), and U containing ten two-second sound files from other random 

insects. If we just consider fingerprints of length 16 (i.e. Lmin= Lmax = 16), then even in 

this tiny dataset there are 830 candidate fingerprints to be tested, requiring 1,377,800 

calls to the CK distance function.  

2.3.3 A Brute-Force Algorithm 

For ease of exposition, we begin by describing the brute force algorithm for finding the 

sound fingerprint for a given species and later consider some techniques to speed this 

algorithm up.  

The brute force algorithm is described in Algorithm 2.1. We are given a dataset D, in 

which each audio sequence is labeled either class P or class U, and a user defined length 

Lmin to Lmax (optional: we default to the range sixteen to infinity). 

The algorithm begins by initializing bsf_Gain, a variable to track the best candidate 

encountered thus far, to zero in line 1. Then all possible sound fingerprint candidates Sk,l 

for all legal subsequence lengths are generated in the nested loops in lines 2, 4, and 5 of 

the algorithm. 
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As each candidate is generated, the algorithm checks how well each candidate Sk,l can 

be used to separate objects into class P and class U (lines 2 to 9), as illustrated in Figure 

2.2. To achieve this, in line 6 the algorithm calls the subroutine CheckCandidates() to 

compute the information gain for each possible candidate. If the information gain is 

larger than the current value of bsf_Gain, the algorithm updates the bsf_Gain and the 

corresponding sound fingerprint in lines 7 to 9. The candidate checking subroutine is 

outlined in the algorithm shown in Algorithm 2.2.  

Algorithm 2.1  SoundFPDiscovery(D, Lmin, Lmax) 

Require: A dataset D (P and U) of audio sequence’s spectrogram, user defined minimum 

length and maximum length of sound fingerprint. 

Ensure: Return the sound fingerprint.  

  1:  bsf_Gain ← 0  

  2:  for i ← 1 to |P| do{every spectrogram in P} 

  3:      S ← Pi 

  4:      for l ← Lmin to Lmax  do {every possible length} 

  5:          for k ← 1 to |S| - l + 1 do {every start position} 

  6:              gain ← CheckCandidates(D, Sk,l) 

  7:              if gain > bsf_Gain then 

  8:                  bsf_Gain ← gain 

  9:                  bsfFingerprint ← Sk,l 

10:  return bsfFingerprint 

In the subroutine CheckCandidates(), shown in Algorithm 2.2, we compute the order 

line L according to the distance from the audio sequence to the candidate computed in 

minCKdist() procedure, which is shown in Algorithm 2.3. In essence, this is the 

procedure illustrated in Figure 2.2. Given L, we can find the optimal split point 

(definition 2.8) in lines 10 to 15 by calculating all possible splitting points and recording 

the best.  



31 

 

While the splitting point can be any point on the positive real number line, we note 

that the information gain cannot change in the region between any two adjacent points. 

Thus, we can exploit this fact to produce a finite set of possible split positions. In 

particular, we need only test |D|-1 locations.  

In the subroutine CheckCandidates() this is achieved by only checking the mean value 

(the “halfway point”) of each pair of adjacent points in the distance ordering as the 

possible positions for the split point. In CheckCandidates(), we call the subroutine 

minCKdist() to find the best matching subsequence for a given candidate under 

consideration. 

Algorithm 2.2  CheckCandidates(D or Dist, candidate Sk,l) 

Require: A dataset D of spectrogram (or distance ordering), sound fingerprint 

candidate Sk,l. 

Ensure: Information Gain gain. 

  1:  L ← ∅ 
  2:  if first input is D 
  3:       for j ← 1 to |D| do {compute distance of every spectrogram to the candidate    

           sound fingerprint Sk,l} 

  4:          dist ← minCKdist(Dj, Sk,l )  

  5:          insert Dj into L by the key dist 

  6:  else  

  7:      dist ← Dist 

  8:  I(D) ← new information gain after split computed by def’ 7 

  9:  for split ← 1 to |D|-1do 

10:      Count N1, N2 for both the partitions 

11:      I’(D).split ← new information gain after split computed by def’ 7 

12:      gain(D) = max(I(D) – I’(D).split) 

13:  return gain(D) 

We do this for every spectrogram in D, including the one from which the candidate 

was culled.  This explains why in each order line at least one subsequence is at zero (c.f. 

Figure 2.2 and Figure 2.7). In minCKdist() (Algorithm 2.3), we use the CK measure [24] 
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as the distance measurement between a candidate fingerprint and a generally much longer 

spectrogram.  

Algorithm 2.3  minCKdist(Dj,candidate Sk,l) 

Require: A audio sequence’s spectrogram Dj, sound fingerprint candidate Sk,l. 

Ensure: Return the minimum distance computed by CK. 

1:  minDist ← Infinity 

2:  for i ← 1 to | Dj, i | - |Sk,l| + 1 do {every start position} 
3:      CKdist ← CK(Dj,i ,Sk,l) 

4:      if CKdist < minDist 

5:          minDist ← CKdist 

6:  return minDist 

In Figure 2.6 we show a trace of the brute force algorithm on the Atlanticus dorsalis 

problem. 

 

Figure 2.6: A trace of value of the bsf_Gain variable during brute force search on the 

Atlanticus dorsalis dataset. Only sound fingerprints of length 16 are considered here for 

simplicity.  

Note that the search continues even after an information gain of one is achieved in 

order to break ties. The 1,377,800 calls to the CK function dominate the overall cost of 

the search algorithm (99% of the CPU time is spent on this) and require approximately 8 

hours.  This is not an unreasonable amount of time, considering the several days of effort 

needed for an entomologist to collect the data in the field. However, this is a tiny dataset. 
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We wish to examine datasets that are orders of magnitude larger. Thus, in the next 

section we consider speedup techniques.   

2.3.4 Admissible Entropy Pruning 

The most expensive computation in the brute force search algorithm is obtaining the 

distances between the candidates and their nearest matching subsequences in each of the 

objects in the dataset. The information gain computations (including the tie breaking 

computations) are inconsequential in comparison. Therefore, our intuition in speeding up 

the brute force algorithm is to eliminate as many distance computations as possible.  

Recall that in our algorithm, we have to obtain the annotated linear ordering of all the 

candidates in P. As we are incrementally doing this, we may notice that a particular 

candidate looks very unpromising. Perhaps when we are measuring the distance from the 

current candidate to the first object in U we find that it is a small number (recall that we 

want the distances to P to be small and to U large), and when we measure the distance to 

the next object in U we again find it to be small. Must we continue to keep testing this 

unpromising candidate? Fortunately, the answer may be “no”. Under some circumstances 

we can admissibly prune unpromising fingerprints; without having to check all the 

objects in the universe U.   

The key observation is that we can cheaply compute the upper bound of the current 

partially computed linear ordering at any time. If the upper bound we obtain is less than 

the best-so-far information gain (i.e. the bsf_Gain of Algorithm 2.1), we can simply 
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eliminate the remaining distance computations in U and prune this particular fingerprint 

candidate from consideration.   

To illustrate this pruning policy, we consider a concrete example. Suppose that during 

a search the best-so-far information gain is currently 0.590 and we are incrementally 

beginning to compute the sound fingerprint shown in Figure 2.2. Assume that the 

partially computed linear ordering is shown in Figure 2.7.  We have computed the 

distances to all five objects in P, and to the first two objects in U. 

 

Figure 2.7: The order line of all the objects in P and just the first two objects in U.  

Is it possible that this candidate will yield a score better than our best-so-far? It is easy 

to see that the most optimistic case (i.e., the upper bound) occurs if all of the remaining 

objects in U map to the far right, as we illustrate in Figure 2.8. 

 

Figure 2.8: The logically best possible order line based on the distances that have been 

calculated in Figure 2.7. The best split point is shown by the yellow/heavy line.  

Note that of the three objects on the left side of the split point, all three are from P. Of 

the six objects on the right side, two are from P and four are from U.  Given this, the 

entropy of the hypothetical order line shown in Figure 2.8 is:  

(3/9)[-(3/3)log(3/3)]+(6/9)[-(4/6)log(4/6)-(2/6)log(2/6)] = 0.612 

0 1

0 1
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Therefore, the best possible information gain we could obtain from the example shown 

in Figure 2.7 is just 0.612, which is lower than the best-so-far information gain. In this 

case, we do not have to consider the ordering of the remaining objects in U. In this toy 

example we have only pruned two invocations of the CheckCandidates() subroutine 

shown in Algorithm 2.2. However, as we shall see, this simple idea can prune more than 

95% of the calculations for more realistic problems.  

The formal algorithm of admissible entropy pruning is shown in Algorithm 2.4. After 

the very first sound fingerprint candidate check, for all the remaining candidates, we can 

simply insert EntropyUBPrune() in line 4 of Algorithm 2.2, and eliminate the remaining 

CK distance and information gain computation if the current candidate satisfies the 

pruning condition, as we discussed in this section. EntropyUBPrune() takes the best-so-

far information gain, current distance ordering from class P and class U, and  remaining 

objects in U, and returns the fraction of the distance measurements computed to see how 

much elimination we achieved.  

Algorithm 2.4  EntropyUBPrune (Um, currentDist, Sk,l, bsf_Gain) 

Require: A audio sequence’s spectrogram Um, current distance ordering, sound 

fingerprint candidate Sk,l, best-so-far information gain.  

Ensure: Return fraction of distance computations in U. 

  1:  fraction ← 0 
  2:  counter ← 0 
  3:  rightmostDist ← largest distance value in currentDist + 1                    

  4:  bestDist ← Add rightmostDist for Um to currentDist  

  5:  gain ← CheckCandidates(bestDist,  Sk, l) 

  6:  if gain > bsf_Gain 

  7:      return false and increment counter 

  8:  else 

  9:      return true 

10:  return fraction ← counter/|U|, gain 
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We can get a hint as to the utility of this optimization by revisiting the Atlanticus 

dorsalis problem we considered above. Figure 2.9 shows the difference entropy pruning 

makes in this problem.  

 

Figure 2.9: A trace of the bsf_Gain variable during brute force and entropy pruning 

search on the Atlanticus dorsalis dataset. 

Note that not only does the algorithm terminate earlier (with the exact same answer), 

but it converges faster, a useful property if we wish to consider the algorithm in an 

anytime framework [92].  

2.3.5 Euclidean Distance Ordering Heuristic 

In both the brute force algorithm and the entropy-based pruning extension introduced in 

the last section, we generate and test candidates; from left to right; and top to bottom 

based on the given lexical order of the objects’ label (i.e., the file names used by the 

entomologist).  

There are clearly other possible orders we could use to search, and it is equally clear 

that for entropy-based pruning, some orders are better than others. In particular, if we 

find a candidate which has a relatively high information gain early in the search, our 

pruning strategy can prune much more effectively.  
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However, this idea appears to open a “chicken and egg” paradox. How can we know 

the best order; until we have finished the search? Clearly, we cannot. However, we do not 

need to find the optimal ordering; we just need to encounter a relatively good candidate 

relatively early in the search. Algorithm 2.5 outlines our idea to achieve this. We simply 

run the entire brute force search using the Euclidean distance as a proxy for the CK 

distance, and sort the candidates based on the information gain achieved using the 

Euclidean distance. 

Concretely, we can insert EuclideanOrder() between lines 4 and 5 in Algorithm 2.1 to 

obtain a better ordering to check all the candidates.  

Algorithm 2.5  EuclideanOrder (D, minLen, maxLen) 

Require: A dataset D (P and U) of audio sequence’s spectrogram, user defined 

minimum/maximum length of sound fingerprint. 

Ensure: Return the new order of candidates. 

1:  Replace CK measure with Euclidean distance measure  

2:  newGain ← CheckCandidates (D or Dist, candidate Sk,l) 

3:  newOrder ← sort the candidates by decreasing newGain  

4:  return newOrder 

Running this preprocessing step adds some overhead; however, it is inconsequential 

because the Euclidean distance is at least two orders of magnitude faster than the CK 

distance calculation. For this idea to work well, the Euclidean distance must be a good 

proxy for the CK distance calculation. To see if this is the case, we randomly extracted 

1,225 pairs of insect sounds and measured the distance between them under both 

measures, using the two values to plot points in a 2D scatter plot, as shown in Figure 

2.10. The results suggest that Euclidean distance is a very good surrogate for CK 

distance.  
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To measure the effect of this reordering heuristic we revisited our running example 

shown in Figure 2.6/Figure 2.9. 

 

Figure 2.10: The relationship between Euclidean and CK distance for 1,225 pairs of 

spectrograms. 

The Euclidean distance reordering heuristic is shown in Figure 2.11. 

 

Figure 2.11: A trace of value of the bsf_Gain variable during brute force, entropy 

pruning, and reordering optimized search on the Atlanticus dorsalis dataset. 

As we can see, our heuristic has two positive effects. First, the absolute time to finish 

(with the identical answer as a brute force search) has significantly decreased. Secondly, 

we converge on high quality solution faster. This is a significant advantage if we wanted 

to cast the search problem as an anytime algorithm [92]. As impressive as the speedup 
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results are, as we shall show in the next section, they are pessimistic due to the small size 

of our toy problem.  

2.3.6 Disjunctive Sound Fingerprints 

A single species of insect can produce a variety of sounds for different functions, such as 

attracting mates, claiming territory, repelling aggressors, etc. In addition, their sounds can 

be affected by external factors such as ambient temperature [36][52]. Thus far, we have 

only considered using a single sound fingerprint to represent a class. However, it is easy 

to imagine situations where it may not be possible to use a single sound fingerprint to 

separate classes.  

To illustrate this, we consider a toy example as shown in Figure 2.12.left. We can 

easily differentiate Species A from Species B with a single sound fingerprint A. In 

particular, every object within threshold TA belongs to Species A, otherwise, it belongs to 

Species B. In contrast, as we show in Figure 2.12.center, we may have a situation in 

which both the males and females of a species sing (In most Orthoptera only the males 

sing, but in some cases, such as the Magicicada septendecim, the females also sing [36]), 

as in Species C in our toy example. Moreover, as insects are often sexually dimorphic 

[36], these songs may be rather different. 

In that case, Species C contains two well-defined distributions, if we attempt to use 

only one sound fingerprint to separate Species C from Species D, almost half of the 

instances could be misclassified into Species D as shown in Figure 2.12.center.Note that 

if we increase the threshold (i.e. expand the radius of the gray circle), we will capture 
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more true positives only at the expense of capturing more false positives (labeling 

Species D as into Species C). 

How can we solve this non-linear separation problem? Inspired by the similar nearest 

centroid algorithm [64], we propose to use multiple fingerprints to represent each species 

(when necessary). As shown in Figure 2.12.right, we can use multiple fingerprints (C1 

and C2) to represent the single concept of Species C. 

 

Figure 2.12: left) A toy problem showing instances of crickets (Species A) and katydids 

(Species B). In this case a single sound fingerprint A can separate the two classes. center) 

In contrast, Species C is an example where a single sound fingerprint cannot separate the 

classes, perhaps because the insects are sexually dimorphic with the males and females 

singing differently. right) Two sound fingerprints C1 and C2 connected by an OR 

operation can better separate the classes. 

The intuition behind this is that we can augment the representational power of sound 

fingerprints with the logical OR operator. Intuitively, we say that a candidate sound is of 

class X, if it is similar to sound fingerprint1 OR sound fingerprint2 …OR sound 

fingerprintk. We call such a representation Disjunctive Sound Fingerprints. Each sound 

fingerprint may correspond to a different behavior for the animal, e.g., mating calls, 

aggressive utterances, mother-pup interactions, etc. In addition, for insects, the multiple 

sound fingerprints may correspond to different external conditions which influence their 
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sound production apparatus. For instance, for some insects, especially in Orthoptera, it is 

well known that the external temperature greatly affects the sounds the insects produce 

[36]. Thus, in this case, three or four sound fingerprints could represent the sound a 

particular insect produces at, say 10 to 20 degrees, 21 to 30 degrees, etc. While we have 

some such domain knowledge, it is important to note that we do not propose to “hand-

craft” the disjunctive sound fingerprints. We wish to preserve the black-box nature of our 

algorithms.  

During the search process, we wish to avoid finding redundant fingerprints, that is to 

say, minor-variations of previously discovered sound fingerprints. To achieve this, 

objects that are already “explained” (i.e., correctly classified) by a fingerprint are 

removed before rerunning the search on a now smaller set of data objects. This continues 

until either we cannot find any sound fingerprint to separate P from U or there are less 

than two objects left in P. 

For instance, in Figure 2.12.center, our algorithm learned C1 as the first sound 

fingerprint, however, almost half of the objects are still not classified correctly. Thus a 

second sound fingerprint C2 is learned after removing objects which can be described by 

C1, as shown in Figure 2.12.right. However, there are still three remaining objects, which 

are not encompassed by the gray circles as shown in Figure 2.12.right. We can keep 

searching for another sound fingerprint, but this opens the possibility of overfitting, given 

there is so little data remaining.  If these three objects cannot be described by another 

sound fingerprint that separates them from Species D, they are unclassified and the search 

for sound fingerprints of Species C is terminated.  Thus, our algorithm finds between zero 
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to K sound fingerprints for a given class. Finding zero fingerprints signals the user that 

the dataset cannot be represented by a single sound fingerprint and has no exploitable 

structure.  

The formal algorithm to learn multiple fingerprints is shown in Algorithm 2.6.  

In DisjuntFPDiscovery(), we call the SoundFPDiscovery() procedure with entropy-

based pruning and Euclidean distance ordering heuristic speed up techniques to find the 

first sound fingerprint (line 2). When the first sound fingerprint is found, we check to see 

if P has at least two objects to the right of the distance threshold, because that means 

using a single sound fingerprint cannot represent P sufficiently to separate it from U.  

Given the CK distance ordering currentDist and the threshold, if there is more than 

one object of P with distances larger than the threshold, another sound fingerprint is 

required to learn to represent these objects. After finding the new sound fingerprint we 

test the information gain to see if it can separate the two classes further. If the separation 

improves, we look for a new Pj and continue as before. Once there are less than two 

objects left in P or we cannot achieve better separation, we terminate 

SoundFPDiscovery() routine and return sound fingerprint(s). 
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Algorithm 2.6  DisjuntFPDiscovery (D, Lmin, Lmax) 

Require: A dataset D (P and U) of audio sequence’s sonogram, user defined minimum 

length and maximum length of sound fingerprint.  

Ensure: Return a set of sound fingerprints(can be an empty set). 

  1:  for index = 1 to |P|+|U|-1 

  2:      soundFP, currentDist, threshold, bsf_infoGain = SoundFPDiscovery(D, Lmin,  

           Lmax) with speedup techniques 

  3:  for j = 1 to |currentDist|                    

  4:      if currentDist(j) > threshold 

  5:          newP = Pj 

  6:      if |newP|>1 and |Pj|-|newP|>1 and bsf_infoGain will not increase {number of 

           objects in newP, number of objects whose distance to the current fingerprint less  

           than threshold should larger than 1} 

  7:          recursive call SoundFPDiscovery(newP&U, Lmin, Lmax) 

  8:          increment index 

  9:          append new sound fingerprint to soundFP  
10:      else 
11:           break 

12:  return soundFP 

2.4 Experimental Evaluation 

We have created a supporting webpage [5], which contains all code/data used in this 

work. Moreover, the webpage contains addition experiments, along with videos and 

sounds files from [3] that allow the interested reader to get a better appreciation of the 

scale and complexity of the data we are working with. 

2.4.1 CK as a Tool for Taxonomy 

We begin by noting that beyond the utility of our ideas for monitoring wildlife, the CK 

measure may be useful as a taxonomic tool. Consider the insect shown in Figure 2.13. As 

noted in a National Geographic article, “the sand field cricket (Gryllus firmus) and the 

southeastern field cricket (Gryllus rubens) look nearly identical and inhabit the same 
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geographical areas” [4]. Thus, even if handling a living specimen, most entomologists 

could not tell them apart without resorting to DNA analysis.  

We suspected that we might be able to tell them apart by sound
4
. While we do not 

have enough data to do forceful and statistically significant experiments, we can do two 

tentative tests. As shown in Figure 2.13, we projected twenty-four examples from the two 

species into two-dimensional space using multi-dimensional scaling, and we also 

clustered eight random examples, four from each class. 

 

Figure 2.13: top left) An insect found in Florida: is it a G. rubens or G. firmus?  top right) 

Projecting one-second snippets of songs from both insects into 2D space suggests they 

are almost linearly separable, a possibility reflected by their clusterability (bottom). 

The results suggest that these congeneric
5
 species are almost linearly separable in two-

dimensional space (they are linearly separable in three-dimensional space).  

                                                 
4
 In brief, it is well known that the acoustic behavior of insects is important in insect 

speciation, especially for sympatric speciation, where new species evolve from a single 

ancestral species while inhabiting the same geographic region [91].     
5
 Species belonging to the same genus are congeneric. 
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2.4.2 Insect Classification 

There are currently no benchmark problems for insect classification. Existing datasets are 

either too small to make robust claims about accuracy, or were created by authors 

unwilling to share their data. To redress this we created and placed into the public domain 

a large classification dataset [5]. The data consists of twenty species of insects, eight of 

which are Gryllidae (crickets) and twelve of which are Tettigoniidae (katydids)
6
. Thus, 

we can treat the problem as either a twenty-class species level problem, or two-class 

genus level problem. For each class we have ten training and ten testing examples. It is 

important to note that we assembled these datasets before attempting classification, 

explicitly to avoid cherry-picking. Note that because of convergent evolution, mimicry 

and the significant amounts of noise in the data (which were collected in the field) we 

should not expect perfect accuracy here. Moreover, this group of insects requires some 

very subtle distinctions to be made; for example, Neoconocephalus bivocatus, 

Neoconocephalus retusus, and Neoconocephalus maxillosus are obviously in the same 

genus, and are visually indistinguishable at least to our untrained eye.  Likewise, we have 

multiple representatives from both the Belocephalus and Atlanticus genera. 

We learned twenty sound fingerprints using the algorithm in Section 2.3. We then 

predicted the testing exemplars class label by sliding each fingerprint across it and 

recording the fingerprint that produced the minimum value as the exemplar’s nearest 

neighbor. The classification accuracies are shown in Table 2.2. 

                                                 
6
 A full description of the data is at [5]. 
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species-level problem genus-level problem 

default rate fingerprint default rate fingerprint 

10 species 0.10 0.70 0.70 0.93 

20 species 0.05 0.44 0.60 0.77 

Table 2.2: Insect Classification Accuracy. 

The results are generally impressive. For example, in the ten-class species-level 

problem the default accuracy rate is only 10%, but we can achieve 70%. It is worth 

recalling the following when considering these results. 

 The testing data does not consist of carefully extracted single utterances of an insect’s 

call. Rather, it consists of one or two-minute sound files known to contain at least one 

call, together with human voice annotations and miscellaneous environmental sounds 

that can confuse the classification algorithm. 

 As noted above, our dataset has multiple congeneric species; that, at least to our eyes 

and ears, look and sound identical. This is an intrinsically hard problem.  

 The reader can be assured that the results are not due to overfitting, because we did 

not fit any parameters in this experiment. These are “black box” results.  

 We can do a little better by weighting the nearest neighbor information with the 

threshold information (which we ignore in the above). Since this does introduce a 

(weighting) parameter to be tuned, in the interest of brevity, given page limits and our 

already excellent results, we defer such discussions to future work. 
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2.4.3 Monitoring with Sound Fingerprints 

To test our ability to monitor an audio stream in real time for the presence of a particular 

species of insects, we learned the sound fingerprints for three insect species of insects 

native to Florida. In each case we learned from training sets consisting of ten insects.   

To allow visual appreciation of our method, as shown in Figure 2.14 we produced an 

eight-second sequence of audio by concatenating snippets of four different species, 

including holdout (i.e. not seen in the training set) examples from our three species of 

interest.  While each fingerprint has a different threshold, for simplicity and visual clarity 

we show just the averaged threshold. As we can see in Figure 2.14, this method achieves 

three true positives, and more remarkably, no false positives. Recall that the CK distance 

measure exploits the compression technique used by MPEG video encoding, which is 

among the most highly optimized computer code available. Thus, we can do this 

monitoring experiment in real time, even on an inexpensive laptop. 

 

Figure 2.14: (Image best viewed in color) far left) Three insect sound fingerprints are 

used to monitor an eight- second  audio clip. In each case, the fingerprint distance to the 

sliding window of audio dips below the threshold as the correct species sings, but not 

when a different species is singing.  
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2.4.4 Scalability of Fingerprint Discovery 

Recall the experiments shown in Section 2.3, when our toy example had only ten objects 

in both P and U. We showed a speedup of about a factor of five, although we claimed this 

is pessimistic because we expect to be able to prune more aggressively with larger 

datasets. To test this, we reran these experiments with a more realistically-sized U, 

containing 200 objects from other insects, birds, trains, helicopters, etc. As shown in 

Figure 2.15, the speedup achieved by our reordering optimization algorithm is a factor of 

93 in this case.  

 

Figure 2.15: A trace of value of the bsf_Gain variable during brute force, entropy 

pruning, and reordering optimized search on the Atlanticus dorsalis dataset with the 200-

object universe. 

Similar to the experiment above, we also learned the sound fingerprints for three frog 

species, Bufo alvarius, Bufo canorus, and Pseudacris crucifer. We learned sound 

fingerprints from the training sets consisting of ten frogs for each species. 

To allow visual appreciation of our method, as shown in Figure 2.16 we produced a 

fourteen-second sequence of audio by concatenating snippets of seven different species, 

including holdout (i.e. not seen in the training set) examples from our three species of 

interest.  Again, while each fingerprint has a slightly different threshold, for simplicity 
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and visual clarity we show just the averaged threshold. As we can see in Figure 2.16, this 

method also achieves three true positives, and more significantly, no false positives.  

 

Figure 2.16: (Image best viewed in color) Three frog sound fingerprints are again used to 

monitor a fourteen-second audio clip on the left. In each case, the fingerprint distance to 

the sliding window of audio dips below the threshold as the correct species sings, but not 

when a different species is singing. 

2.4.5 Robustness  

No matter how carefully the animal audio dataset is obtained, we must resign ourselves to 

the possibility of mislabeled data. We claim our algorithm is robust to mislabeled data so 

long as the majority of data in P is correctly labeled. To test our algorithm’s robustness to 

mislabeled training data, we will give a simple example using one katydid data 

(Atlanticus dorsalis).  

There are ten objects in P and ten objects in U; we ran our algorithm and found the 

sound fingerprints shown on the left of Figure 2.17.top. To simulate mislabeled training 

data, we randomly swapped two objects in P with two objects in U, creating 20% 

mislabeled training data. We relearned sound fingerprints from this mislabeled data and 

discovered the sound fingerprint as shown on the left of Figure 2.17.middle. As in 

Section 2.3, we concatenated the testing data in P and U in a round-robin fashion to 
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obtain a forty-second long audio clip to test the monitoring accuracy of the two learned 

sound fingerprints.  

As shown in Figure 2.17, the fingerprint learned from the correctly labeled data 

achieves nine (out of ten) true positives and one false negative. The fingerprint learned 

from the mislabeled data also achieves nine (out of ten) true positives and a single false 

negative, although the location of false negative is different. 

 

Figure 2.17: top, middle) Sound fingerprint of Atlanticus dorsalis is used to monitor a 

twenty-second testing audio clip without (with) mislabeled data in P. The fingerprint 

distance to the sliding window of audio dips below the threshold as the correct species 

sings, but not when a different species is singing. bottom) Forty second sequence of audio 

by concatenating snippets of testing audio clips from P and U alternatively. 

These results suggest that our algorithm is largely invariant to small amounts of 

mislabeled data. 

2.4.6 Insect Classification with Disjunctive Sound Fingerprints 

To this point, we have evaluated single sound fingerprint representation. We will now 

test the expressive power of disjunctive sound fingerprints. Recall the toy example in 
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Figure 2.12. We showed that our dataset may have multiple “clusters” of sound within a 

single species, and further proposed a technique to learn multiple sound fingerprints to 

represent the class concept. We will consider two examples to demonstrate the utility of 

the disjunctive sound fingerprint discovery algorithm for improving classification 

accuracy. 

Insect Dataset I 

The first dataset consists of two classes, which are Crickets (Anaxipha litarena and 

Anurogryllus celerinictus) and Katydids (Amblycorypha carinata and Neoconocephalus 

bivocatus). Note that there are intrinsically two subclasses in each class, although our 

algorithm is not “aware” of this. 

There are twenty training and twenty testing objects for each class, all of which are 

two-seconds long. We ran the disjunctive sound fingerprints discovery algorithm on this 

problem. We find that two sound fingerprints described the class Crickets. Gratifyingly, 

the two sound fingerprints correspond to the two subclasses of crickets, the first came 

from A.celerinictus and the second from A.litarena. However, we only find one sound 

fingerprint to describe Katydids, presumably this is because the two subclasses of 

Katydids were more similar to each other.  

We predicted the testing data class labels by sliding each fingerprint across each object 

and recording the fingerprint that produced the minimum value as the exemplar’s nearest 

neighbor. Disjunctive sound fingerprints reduced the classification error rate from 0.325 

(with a single sound fingerprint, as in Section 2.3.) to 0.175. 
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Insect Dataset II 

The second dataset also has two classes, which we again labeled as Crickets (A.litarena, 

A. celerinictus, Gryllus fultoni, and Velarifictorus micado) and Katydids (A.carinata, 

Atlanticus dorsalis, Belocephalus sabalis, and Neoconocephalus retusus). There are 

intrinsically four subclasses in each class, but as before our algorithm does not have 

access to this information. 

We have forty training and forty testing two-second instances for each class. After 

running the disjunctive sound fingerprint discovery algorithm in Algorithm 2.6, we find 

that four sound fingerprints represented the class Crickets. The first one is from 

A.litarena, the second one is from A. celerinictus, the third one is from G. fultoni, and the 

fourth one is from V. micado. However, we only find three sound fingerprints to 

represent Katydids. The first one is from A.carinata, the second one is from N.retusus, 

and the third one is from B.sabalis. As before we suspect that the reason is that two 

species A.carinata and A. dorsalis are similar to each other. Once again the disjunctive 

sound fingerprints reduced the classification error rate, this time from 0.45 (with a single 

sound fingerprint, as in Section 2.3) to 0.325.  

Insect Dataset III 

To test the disjunctive sound fingerprints discovery algorithm to find an appropriate 

number of sound fingerprints for a given class, we will provide a simple example to show 

that our algorithm did not find redundant fingerprints. This dataset also has two classes, 

Crickets (A.litarena) and Kaytdids (A. dorsalis). We have ten training and ten testing 

objects for each class. By visual, manual inspection alone, the diversity among each class 
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is not large so a single sound fingerprint should be able to represent one class. To test our 

prediction, we run the disjunctive sound fingerprint discovery algorithm in Algorithm 

2.6. We found only one sound fingerprint for each class and the classification error rate 

was 0.15. The result suggests that our disjunctive sound fingerprint algorithm can both 

avoid overfitting and help to reduce the classification error rate.  

Beyond improving the classification accuracy, disjunctive fingerprints may also be 

useful for exploratory data mining, telling us something about the data that would 

otherwise be difficult to discover.  

2.5 Conclusion 

In this chapter we have introduced a novel bioacoustic recognition/classification 

framework. We feel that unlike other work in this area, our ideas have a real chance to be 

adopted by domain practitioners, because our algorithm is essentially a “black box”, 

requiring only that the expert can label some data. We have shown through extensive 

experiments that our method is accurate, robust and efficient enough to be used in real 

time in the field. 
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Chapter 3 

Parameter-Free Audio Motif Discovery in 

Large Data Archives 

The discovery of repeated structure, i.e. motifs/near-duplicates, is often the first step in 

exploratory data mining. As such, the last decade has seen extensive research efforts in 

motif discovery algorithms for text, DNA, time series, protein sequences, graphs, images, 

and video. Surprisingly, there has been less attention devoted to finding repeated patterns 

in audio sequences, in spite of their ubiquity in science and entertainment. While there is 

significant work for the special case of motifs in music, virtually all this work makes 

many assumptions about data (often to the point of being genre specific) and thus these 

algorithms do not generalize to audio sequences containing animal vocalizations, 

industrial processes, or a host of other domains that we may wish to explore. 

In this work we introduce a novel technique for finding audio motifs. Our method does 

not require any domain-specific tuning and is essentially parameter-free. We demonstrate 

our algorithm on very diverse domains, finding audio motifs in laboratory mice 

vocalizations, wild animal sounds, music, and human speech. Our experiments 
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demonstrate that our ideas are effective in discovering objectively correct or subjectively 

plausible motifs. Moreover, we show our novel probabilistic early abandoning approach 

is efficient, being two to three orders of magnitude faster than brute- force search, and 

thus faster than real-time for most problems.  

The rest of this chapter is organized as follows. In Section 3.1 we review related work. 

In Section 3.2 we introduce the necessary notation to formalize our algorithm in Section 

3.3. Section 3.4 sees a detailed empirical evaluation of our ideas on diverse domains, and 

we offer conclusions and directions for future work in Section 3.5. 

3.1 Related Work and Background 

Researchers have devoted an enormous amount of effort to the acoustic analysis domain 

for decades, mostly focused on human speech recognition and music analysis [82]. For 

example, Automatic Speech Recognition (ASR) has been an active research field and that 

accomplished much throughout the last decades (i.e. the success of Apple’s Siri). Apart 

from work on mitigating resource limitations (time and memory), most of research can be 

divided four disciplines: preprocessing, representations and similarity measurement, 

feature extraction, and advanced algorithms [12][42]. The performance levels of most 

current ASR degrade significantly in a noisy environment, which is common in real 

world recordings [42]. Therefore, preprocessing is a necessary for audio processing. 

Energy normalization (i.e. apply pre-emphasis radiation filter in order to equalize the 

effect of the propagation of speech though air), various signal processing filters to 

improve signal to noise ratio, domain transformation (discrete Fourier Transformation 
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(DFT), mel-scaled cepstrum coefficients (MFCC)), in which the combinations of signal 

and noise sources can be considered additive, therefore, relatively easier to separate them. 

A more detailed survey can be found [42]. 

As noted in Section 2.1.3, in addition to extracting features directly after domain 

transformation, analyzing audio streams in visual space allows people to consider  

domains that take advantage by mature computer vision techniques [58][95]. In speech 

recognition domain, there are four general features: continuous (pitch-related, formants, 

energy-related, timing features, etc), Qualitative (voice level, voice pitch, phrase, 

phoneme, temporal structures, etc), spectral (linear predictor coefficients (LPC), MFCC, 

Log-frequency power coefficients (LFPC)), etc. It is also common to apply feature 

selection and transformation afterwards, for example, dimension reduction, principle 

component analysis, linear discriminate analysis, etc.  

Lastly, researchers typically use traditional algorithms to the extracted features, such 

as Hidden Markov Model (HMM), Gaussian Mixture model (GMM), neural networks, 

and support vector machines, or multiple classifiers techniques [12][87].  Among all 

these classifiers, HMM is most commonly used more advanced applications, such as 

speech emotion recognition, speech recognition for mobile devices, etc. [12][96].  

Complex animal sounds (birds, whales, insects, etc) have been receiving more 

attention because they can be used to measure the health of the ecosystem and its 

biodiversity [40][86]. However, most of the current work simply took off-the-shelf 

techniques from human speech, music analysis, and focus on some specific target animal 

songs, requiring with huge amount of manual effort [97] and domain expertise.  
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Now we discuss more related work about the specific task for this thesis, finding 

repeated patterns in audio streams. By far the most common approach to finding repeated 

patterns in audio is to “use string-matching techniques on a symbolic representation 

learned from the data” [11]. Given a high quality symbolic representation of the data, the 

problem becomes much simpler; we can just use an off-the-shelf symbolic repeated 

pattern discovery tool. This approach has been used in music [11] and in mice 

vocalizations [95]. However, it is obvious that the symbol extraction algorithms used for 

pop songs are unlikely to generalize to classical music, much less mice or insects [95]. 

Likewise, it is not clear that the symbol extraction method discussed in [95] will 

generalize to other strains of mice, much less other mammals. It is difficult to overstate 

how poorly existing audio motifs discovery algorithms can be expected to generalize. For 

example, [81] introduces an algorithm that is specialized for just Hindustani vocal music 

compositions.  

There is, however, research work in the speech recognition community that is very 

close in spirit to our work. For example, in a recent but highly cited paper, the authors ask 

how well we can do in finding repeated speech elements with “zero resources” [53]. By 

zero resources they mean that they assume no “models or training data for the target 

language.” Note, however, that even here researchers assume human speech. We would 

like to remove even that assumption, and have a completely unsupervised, parameter-

free, and zero resource algorithm that can detect repeated sounds in sources as diverse as 

human speech, wildlife surveillance, music, and industrial applications. 
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It is important to recognize that the framing of our problem precludes many apparent 

solutions. For example, there is significant work in very fast audio search for commercial 

music applications. Such work is often called audio thumbnailing or audio fingerprinting 

[26]. One might imagine that such techniques and representations could be adapted to the 

task at hand. However, most such methods assume that there is a “platonic ideal” sound 

snippet, say a master recording of a song. The instances matching this idealized template 

might not be bit-for-bit identical due to different encodings, or in the case of 

Shazam/SoundHound
7
, corruption by background noise as the user records the music 

with a mobile device. Nevertheless, the problem reduces to matching two objects that are 

essentially identical, except that one has minor noise/distortions. Most critically, the two 

snippets are assumed to be aligned perfectly in time. 

In contrast, we consider the more general case where the two similar sounds are 

different physical (not digital) instantiations of a “process”. Here the process could be 

two bird calls, two belt slip screeches from an overloaded industrial machine [98], or two 

repetitions in a mouse’s song (cf. Figure 1.1). Thus, we are interested in finding 

repetitions in the face of a much broader set of noise and distortions, including time 

scaling (global shrinking/stretching), local time warping, pitch shifts, and echos, etc. 

The most important difference between our work and previous audio motif discovery 

approaches is that our algorithm finds repeated objects in audio sequences without 

making any assumptions about the intrinsic properties of the objects. For example, we did 

                                                 
7
 Shazam/SoundHound is commercial mobile phone based music identification services. 

A cell phone’s built-in microphone is used to gather a brief sample of music being 

played. An acoustic fingerprint is created based on the sample, and is compared against 

a central database for a match. 
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not need domain knowledge of rodent physiology to find the motifs discovered in the 

mice vocalizations shown in Figure 1.1 [95]. For the task of music motif discovery, 

researchers have considered a huge number of possible features, including static music 

information (key, beat, and tempo), acoustic information (loudness, duration, pitch, 

bandwidth, and brightness), thematic features (melodies, rhythms, and chords), and 

higher-level composite features (i.e. hierarchical rules, Markov models) [49]. These 

features may be helpful for motif discovery, but they require a huge amount of feature 

engineering and there is evidence that they do not generalize across music genres [81], 

much less generalize to the diverse domains we consider.  

Non human-produced sounds offer no fewer difficulties. For example, in [40], 

researchers attempt to find repeated patterns in bird songs. Their algorithm requires 

extracting features from syllables, and the authors bemoan the effort of human 

intervention: “Syllable templates were formed by aligning and averaging four to five 

manually chosen clips corresponding to each syllable…,” “…manually chosen based on 

visual inspection,” etc.  It is exactly this kind of manual tweaking that we wish to avoid. 

Our algorithm leverages off the idea of analyzing sounds directly in the image space 

(i.e. spectrograms). This idea has been increasing in popularity recently [58][95]. For 

example, [58] analyzes music data by computer vision techniques; however, current work 

is limited to query-by-content, not motif discovery, and is explicitly specialized to music 

data.  
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3.2 Definitions 

Before describing our audio motif discovery algorithm, we provide the necessary 

definitions based on the definitions in Section 2.2. 

Informally, audio motifs are the most similar subsequences within a longer audio 

sequence. Thus, we must compute similarity with some measure of distance: 

Definition 3.1 [DISTANCE BETWEEN SUB AUDIO SEQUENCE] The distance 

between a subset of sound spectrogram S, comprised of spectrogram subset Si,n and 

another subset Sj,n is the CK distance [24], denoted dist(Si,n, Sj,n). 

The CK distance measure is a relatively new, compression-based similarity measure, 

which exploits MPEG video encoding to measure the similarity between real-valued 

images [24]. The distance between two equal-sized images (denoted as x and y) is 

calculated as:  

dist(x,y)=((mpegSize(x,y)+mpegSize(y,x))/(mpegSize(x,x)+mpegSize(y,y)))-1 

In Section 3.4, we will explain and justify the choice of this particular distance 

function [24].  

We are finally in a position to define audio motifs more formally. To find the audio 

motif pair of (a user given) length w in a long audio sequence, we consider the pair-wise 

distances between each subsequence and all others. The pair with the smallest distance is 

the audio motif: 

Definition 3.2 [AUDIO MOTIF] The audio motif of an audio sequence is the 

unordered pair of subsequences {Ai,n, Aj,n} of a long audio sequence A of length n that is 
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the most similar. More formally, ∃i,j ∀a,b, the pair {Ai,n, Aj,n} is the audio motif iff 

dist(Ai,n, Aj,n) ≤ dist(Aa,n, Ab,n), |i-j|≥ w and |a-b|≥w (i≠j, a≠b)for w>0, where w is the 

audio motif length. 
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Note that we refer to audio motifs even though we are searching the image space (the 

spectrograms). In Figure 3.1, we illustrate an example of an audio motif pair (leftmost 

and rightmost boxes) together with the other concepts introduced in this section. 

Note that our audio motif definition excludes trivial matches of audio subsequences 

that match a part of a sound with itself, such that i=j or |i-j|< w. Thus the motif pair must 

be strictly non-overlapping.Our experience analyzing real world audio has shown us that 

sections of pure silence (which we denote as Sps, shown as pure black section in Figure 

3.1) are quite common in scientific data [1]. These silent elements (not to be confused 

with simply quiet but non-zero time periods) may be caused by disconnected wires or 

data deliberately written with zero energy to denote the beginning/ending of an event. 

These sections can be problematic since all silences “sound” the same, and thus allow for 

perfect yet meaningless audio motifs. 
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Figure 3.1: An illustration of our definitions. 

Another special case we have to consider is that of a constant background sound 

(denoted as Sbg, and illustrated in the area surrounded by the red box in Figure 3.1), 

which occurs everywhere in audio sequence. For example, if we are interested in finding 

audio motifs near a highway on a rainy day, then the entire background will have the 

sound of rain, which we would like to ignore. We exclude both pure silence and regions 

containing only the background sound if they last more than one motif length w. 

It is important to note that our definition of closest pair does not preclude other 

possible definitions. For example, for some applications it might be convenient to 

consider the K closest pairs, or all objects within a user-given radius R. As noted in [72] 

in the context of time series motifs, if one can solve the closest pair problem efficiently, 

then the K closest pairs and user-given radius variants can also be solved using the closest 

pair subroutine with some linear time post processing. In particular, we have explored 

finding the top K motifs (for K equals up to 10) in the birds dataset discussed in Section 

3.4.2; this required just a few minutes modifying the code, and took less than twice as 
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long as finding the closest pair (or K = 2). Nevertheless for clarity of presentation and 

consistency we limit discussion and experiments to the closest pair case in this work. 

3.3 Finding Audio Motifs 

We outline a detailed formal explanation and statement of our audio motif discovery 

algorithm in Section 3.3.2. However, for simplicity and clarity, we give some simple 

intuitions behind our ideas in the next section.   

3.3.1 Intuition behind Audio Motif Discovery 

Our entire approach is predicated on the following assumption. Similar sounds will 

produce similar images when transformed into spectrograms, and we can efficiently and 

effectively compute the similarity in the visual space. The idea that audio patterns can be 

revealed and measured in the image space has been exploited in some specialized 

domains [13][58][95]. However, these works require domain-specific feature extraction 

techniques to allow the similarity computation, a step we are anxious to avoid in order to 

create a universal and highly usable tool.  

To be clear, using the spectrogram representation is, by itself, not the solution to our 

problem. To see this, we performed a simple clustering experiment using Scale-Invariant 

Transform Features (SIFT) [6][63] on a small dataset. SIFT is arguably the state-of-art 

for image matching, and the most obvious strawman to compare against [51].  

In Figure 3.2 , we show seven pairs of two-second audio snippets of diverse sounds 

produced by coyotes, crickets, squirrels, katydids, ravens, owls, and explosions. For all 
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images we extract SIFT features to form a feature description using Lowe’s algorithm 

[63]. We use the number of matched keypoints/features points as a similarity measure 

between two images
8
.  Figure 3.2 shows the clustering of the seven pairs using SIFT; the 

results are only slightly better than random.   

 

Figure 3.2: A clustering of seven pairs of two-second audio recordings of various sounds 

using SIFT. Only one pair {13,14} is correctly clustered (katydids). 

These results are not promising. In contrast, we tested the same dataset shown in 

Figure 3.2 using CK distance measure, and the result is shown in Figure 3.3. 

 

                                                 
8
 This (carefully annotated) code, along with all code and data used in this work is 

archived at [5]. 
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Figure 3.3:  A clustering of the dataset used in Figure 3.2 with CK distance measure. All 

pairs are correctly clustered, and the explosion sound is an outlier to animal sounds. No 

parameters were adjusted here. 

This result highly suggests that the CK distance measure on spectrogram images is 

measuring similarity in a way that maps to human notions of sound similarity.  

Surprisingly, the CK distance measure can be very effective even on human speech, 

which is obviously the most studied audio source [26][45][53]. To see this, in Figure 3.4, 

we show a reading of A Dream within a Dream by Edgar Allan Poe. We naturally expect 

repeated structure in most poetry [39], and although this short poem only has 24 lines in 

two stanzas, we do find two obvious repetitions as the audio motif (the last line of both 

verses). 

5 6 7 8 9 10 13 14 11 12 3 4 1 2

Two Seconds
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Figure 3.4: top) A performance of A Dream Within A Dream has a motif of length seven 

seconds. bottom left, right) A zoom-in of the two occurrences and the corresponding 

sentences. The reader can go to [5] to hear the original sound file and the discovered 

motifs. 

As the audio motif shown in Figure 3.4 demonstrates, the CK distance measure can 

accurately find the only repeated pattern (“…see or seem (is) but a dream within a 

dream”) of this audio recording. Note that the distance measure was exactly the same as 

used in Figure 3.3, no tuning or adjustments were necessary to go from (mostly) animals 

to poetry. 

In this example, generating and testing all possible motifs to find the best one (cf. 

definition 3.2) requires about 15 minutes, although the audio clip is barely a minute long. 

Such languor may be tenable for music and other relatively short audio files; however, in 

scientific domains we need to be able to find motifs in datasets that are orders of 

magnitude longer. In the next section, we will outline our strategy for making motif 

discovery tenable even in such massive datasets. 
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3.3.2 A Formal Description of our Algorithm 

Given a spectrogram S transformed from a long audio sequence A, and a user specified 

length w, our goal is to find audio motifs as described in definition 3.2. 

For ease of exposition we will begin by explaining the generic search algorithm, and 

then we will introduce the modifications that make it more tractable. 

In Algorithm 3.1 Line 1, our algorithm begins by initializing the best-so-far CK 

distance corresponding to the audio motif pair to infinity. In Line 2 we generate all N 

subsections D. This consists of all subsections except those excluded because they are Sps 

or Sbg (cf. Section 3.2). One pair (with indices differing by at least w) from this set will 

eventually become the motif pair.           

In Line 4 we are finally in a position to test the N(N-1)/2 possible pairings of 

subsections for the pair that minimizes the CK distance, our audio motif. However, in 

what order should we search? Clearly, if we search exhaustively then the order makes no 

difference. However, there are two reasons why we may want to avoid exhaustive search 

and terminate early. The first is to respond to a user request to stop, so the user can treat 

the algorithm as an Anytime search algorithm [10]. The other reason is that we may wish 

to frame the search probabilistically, supporting a user request of the type “stop searching 

when there is only a one in a thousand chance that the current best-so-far is not the true 

motif.”  

As we will shortly show, we can support these useful variants by using different 

heuristic functions as defined in Sections 3.3.3, 3.3.4, 3.3.5 and 3.3.6.  
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Algorithm 3.1  AduioMotifDiscovery (S, w, p) 

Require: A Spectrogram S transformed from original audio archive A, Audio motif 

length w, Early abandoning probability threshold p.  

Ensure: Return Audio motif pair D. 

  1:  best-so-far ← Inf 

  2:  Discard Sps and  Sbg area from S and generate only meaningful subsequences into D. 

(i.e. no  

       silence and no common background sounds) 

  3:  N ← |D|                   

  4:  for loopCnt ← 1 to N(N-1)/2 do 

  5:      [i, j, stopFlag] ← heuristicFunction(loopCnt, type, p, best-so-far) 

  6:      distance ←dist(Di, Dj) 

  7:      if distance < best-so-far and |i-j| ≥ w then 

  8:          best-so-far ← distance  

  9:          Pos1 ← i 

10:          Pos2 ← j 

11:      if stopFlag == True then 

12:          break out of the loop  
13:  return DPos1, DPos2 

Returning for a moment to the generic version of our algorithm, in Line 6 we measure 

the CK distance between the two candidate subsections and in Line 7 we check to see if 

this pair of audio subsequences has a smaller distance than the current best-so-far 

distance.  If that is the case, we update the best-so-far distance, and record the relevant 

locations (Lines 8 to 10).  

Having seen the generic algorithm we now consider four variants produced by using 

different heuristic functions and stopping criteria. 

3.3.3 Brute-force Algorithm 

The brute-force heuristic is outlined in Algorithm 3.2. This heuristic simply lists every 

possible combination of pairs of audio subsequences {Pos1, Pos2} in lexical order and 
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allows search to exhaustion.  Note the last two arguments are just place-keeping dummy 

variables.  

Algorithm 3.2  heuristicFunction (index, bruteForce, dummy, dummy) 

Require: A Spectrogram S transformed from original audio archive A, Audio motif 

length w, Early abandoning probability threshold p.  

Ensure: Return Audio motif pair D. 

1:  Generate testing candidates in a lexical order, which is from left to right with the  

     sliding window 

2:  [idxi, idxj, False] ← Return an array containing the candidates’ positions  

Run to completion this heuristic clearly lists the pair of audio subsequences {(DPos1, 

DPos2)} that are optimal.  

Note that for many real world problems there may be many motifs that are of high 

quality, and finding any pair may be sufficient. For example, if a full day’s recording in a 

forest in Kenya has dozens of the stereotypical calls of the Common Scimitarbill (cf. 

Section 3.4.1.1) then reporting any pair as a motif will suffice for many applications. 

However, if the recording started at midnight, and the bird is most vocal just before dusk, 

then the linear-ordered brute-force search will not produce a good motif (i.e. have a low 

best-so-far value) until very late in the search process. As we show in the next section, 

we can mitigate this with a random ordered search. 

3.3.4 Random Search Algorithm 

In contrast to lexical-ordered search discussed in the previous section, we can consider 

random ordered search, which has long been used to guard against pathological situations 

where an iterative improvement algorithm (i.e. best-so-far linear search) does not 

improve much until the last few iterations [57]. 
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The speed at which the best-so-far decreases does not matter if we run to completion.  

But if we allow the user to interrupt the search and peek at the best current motif, then we 

can expect that random search as shown in Algorithm 3.3 to do better on average, as its 

best-so-far value will converge much faster. 

Algorithm 3.3  heuristicFunction (index, Random, dummy, dummy) 

Require: A Spectrogram S transformed from original audio archive A, Audio motif 

length w, Early abandoning probability threshold p.  

Ensure: Return Audio motif pair D. 

1:  Generate testing candidates in a random order, which is produced by random     

     permutation. 

2:  [idxi, idxj, False] ← Return an array containing the candidates’ positions  

 The idea of supporting interruptions (possibly followed by continuations) of an 

algorithm is known as creating an anytime algorithm, and anytime algorithms have seen a 

recent surge of interest in the data mining community [6][61]. As we shall empirically 

show in Section 3.4, random ordering does greatly improve the “early returns” property 

of our search. However, in the next section we show that we can do even better. 

3.3.5 Euclidean Distance Ordering Algorithm 

Anytime algorithms for searching tend to work best if they can test promising solutions 

early. This seems to open a chicken-and-egg type paradox, since we do not know if a pair 

of subsequences will make a good motif until after we test them. However, if we had an 

approximate test of quality that was much faster than the CK distance itself, then we 

could sort by that measure and increase our chances of seeing good solutions early on. In 

the most general case, CK distance measure has resisted attempts at fast approximation 

[51]. However, in our previous work we have shown that in the special case of 
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spectrograms, the Euclidean distance between the images is a reasonable approximation 

of CK distance measure, but can be computed at least three orders of magnitude faster. 

Moreover, the Euclidean distance computations are amenable to many tried-and-tested 

speedup techniques including early abandoning, triangular inequality, and indexing.  

Given a spectrogram image S with size M×N, S can be written as S = {S
1
, S

2
,…, S

MN
} 

according to the gray levels of each pixel. The Euclidean distance distE (S1, S2) between 

two images S1 and S2 is defined as  

2

1 2 1 2 1 2 1 2

1

( , ) ( ) ( ) ( )S S S S S S S S
MN

k k T

E

k

dist
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Thus, as shown in Algorithm 3.4 we propose to sort the pairs returned by the heuristic 

in ascending order (denoted as Z) of their Euclidean distance.   

Algorithm 3.4  heuristicFunction (index, ED, dummy, dummy) 

Require: A Spectrogram S transformed from original audio archive A, Audio motif 

length w, Early abandoning probability threshold p.  

Ensure: Return Audio motif pair D. 

1:  sortOrder τ ← Sort all the subsection pairs by the Euclidean distance between them  

     in an ascending order 

2:  stopFlag ← DidUserRequestAnInteruption()  

3:  [idxi, idxj, False] ← Return an array containing the candidates’ positions based on τ  

     and stopFlag. 

The high degree of correlation between the Euclidean distance and CK distance is 

hinted at in Figure 3.5.left. 

Before moving on, it is critical to note that while the Euclidean distance and the CK 

distance are correlated, we cannot simply use the Euclidean distance to directly find 

motifs. For example, it does not produce the correct answers for the examples shown in 

Figure 3.3 and Figure 3.4 (we shown this in [5]). Nevertheless, as we show in the next 
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section, we can use the Euclidean distance as a heuristic to both guide the search order, 

and to tell us when we can abandon the search with a small, user-defined probability of 

missing the optimal answer. 

3.3.6 Probabilistic Motif Discovery Algorithm 

As noted above, the anytime algorithm framework is gaining increasing acceptance by 

both the data mining community and domain practitioners. However, at least some of the 

latter may be reluctant to use anytime algorithms as intended. Nevertheless, most 

biologists are much more comfortable with the idea of statistical significance, the idea of 

considering if a result could be explained by a chance at a given probability cutoff (i.e. 

the significance level). We can support this type of worldview by allowing the user to 

specify the probability of returning a non optimal motif pair. In essence, we propose to 

allow queries of the form “stop searching when there is only a one in a million chance 

that the current best-so-far is not the true motif.”  

By exploiting the Euclidean distance ordering heuristic, introduced in the previous 

section, we can support such queries. As we shall see later in our experimental section, 

we can trade a small probability of a slightly suboptimal result for several orders of 

magnitude speedup. 

The intuition behind the Probabilistic Early Abandoning Audio Motif Discovery 

(PEAMD) algorithm is to internally estimate the likelihood that the current best-so-far 

motif is optimal, and signal to abandon the search once this likelihood exceeds the user’s 

tolerance for a sub-optimal result.  This signal is passed into the generic search algorithm 
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in Line 5 of Algorithm 3.1. How can we estimate this probability? Figure 3.5 gives a 

visual intuition. In Figure 3.5.left we show the relationship between the Euclidean 

distance and CK (estimated from the dataset shown in Figure 3.4).  

Let Pd(best-so-far) be the probability that the remaining pairs of subsequences in the 

Euclidean searching order Z (the y-axis ordering of Figure 3.5.left) contains a better 

match than the match represented by the current best-so-far. Given that the two measures 

are highly correlated, we can estimate Pd(best-so-far), which is monotonically non-

decreasing as we search because the best-so-far can only decrease by definition (i.e. the 

red bsf_dist bar shown in Figure 3.5.right can only move leftwards), and the positive 

correlation means that the mean of the distribution of estimated values of untested pairs 

can only move rightwards. 

 

Figure 3.5: left) The empirical relationship between Euclidean and CK distance. right) As 

we search in Euclidean order (the y-axis order), from bottom to top. The best-so-far 

distance moves leftwards and the mean of the Gaussian distribution moves rightwards.  
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Concretely, we compute d, the CK distance for the ε items below the lowest dash-line 

in Figure 3.5.left to form the histogram shown at the bottom right of Figure 3.5. Here   is 

a small number, enough to learn a Gaussian (we use   = 50).   

(( 1) 1: ,1) (( 1) 1: ,2)( , )k k k k kd dist Z Z          
 

This property of the distance distribution can be realized by a Gaussian process (GP). 

The probability vector {φk} is drawn from a GP as φk ~ N( k,  k
2
), where μk is the mean 

of and variance  k
2
, shown as the gray “bell” curve. For example, the best-so-far distance 

decreases from 0.453 to 0.413 and the corresponding Pd(best-so-far) of the distance 

distribution changes from 0.048 to 0.002 as shown in Figure 3.5.right. The area below the 

gray curve, left of the best-so-far marker, is the probability that there exists an untested 

pair of subsections with distance less than the best-so-far distance. If Pd(best-so-far) is 

less than the user threshold (denoted as p) then we simply set the stopFlag to be true, and 

the invoking generic search algorithm will terminate. The formal algorithm of PEAMD is 

outlined in Algorithm 3.5. 

Algorithm 3.5  heuristicFunction (index, PEAMD, p, best-so-far) 

Require: A Spectrogram S transformed from original audio archive A, Audio motif 

length w, Early abandoning probability threshold p.  

Ensure: Return Audio motif pair D. 

  1:  Call the procedure Euclidean distance measure order search in Algorithm 3.4  

  2:  Z ← heuristicFunction(index, ED) 

  3:  for k ← |Z| do                   

  4:      for j ← 1 to ε  do 

  5:          dk ← Compute CK distance for pair k+j-1 based on Z 

  6:      dk ~ N(μ, σ2) //Build Gaussian distribution over dk 

  7:      prob ← Pd(best-so-far) // CDF of the current best-so-far distance 

  7:      if prob < p then 

  8:          stopFlag ← True 

11:  [idxi, idxj, stopFlag] ← Return an array containing the candidates’ positions and  

       stopFlag 
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Our probabilistic framework makes some assumptions that are strongly empirically 

warranted (i.e., that “slices” of the cloud of data points in Figure 3.5.left are 

approximately Gaussian), and some that are less realistic (i.e. the independence of the 

“slices”). However, all such assumptions tend to make our algorithm err only on the 

conservative side.   

3.4 Experiments 

We have designed all our experiments to ensure that they are very easy to reproduce. A 

supporting webpage [5] contains all the code, datasets, and raw data spreadsheets used in 

this work. Moreover, although this work is completely self-contained, the webpage 

contains additional experiments and video/sound files to allow an interested reader to 

directly see and hear the motifs discovered and the original source sounds. 

3.4.1 Motif Discovery in Human Speech 

Human speech is surely the most studied sound source [28]. Recurrences in human 

speech have implications for studying linguistics, cognitive disorders, and pragmatic 

applications in indexing speech [54], etc. Thus, we will test our algorithm with a familiar 

audio book in Section 3.4.1.1 and show a comparison with a state-of-the-art tool in 

section 3.4.1.2. 
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3.4.1.1 Motif Discovery in an Audio Book 

A famous example of reoccurring text can be found in the book The Cat in the Hat by Dr. 

Seuss [34]. It is an impressive feat of wordplay that this 1629 word book contains only 

236 distinct words, and this is suggestive of significant repetition. The experiment shown 

in Figure 3.6 demonstrates that our algorithm finds a meaningful motif pair (three 

seconds long) from an audio performance of story (professional male actor). Note that 

our algorithm is robust to the fact that one occurrence contains an additional word 

(“ball”). 

 

Figure 3.6: top) A performance of The Cat in the Hat has a motif three seconds long. 

bottom) A zoom-in of the two occurrences and corresponding sentences [34]. 

3.4.1.2 Comparison with state-of-the-art Work 

The utility of “black-box” CK distance on human speech may be surprising, given that 

most human speech processing algorithms are highly optimized with domain knowledge 

of linguistics, phonetics, etc. To further explore this, we attempted to reproduce a result 

in a recent state-of-the-art work [54]. Here the data is a nine second snippet of telephone 
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quality audio. We take the same spoken query of word “California” as [54], and build the 

same type of dot-plot, but use the CK distance measure as shown in Figure 3.7. 

 

 

Figure 3.7:  top) A screenshot from [54] of a state-of-the-art human speech recognition 

algorithm correctly matching two utterances of “California” (red box). bottom) Our re-

creation of the experiment using only the CK distance measure. 

While the interpretation of the results is somewhat subjective, our simple approach 

does seem at least competitive with current human speech processing methods without 

the need for tuning the nine parameters used in [54]. Note that we are only comparing on 

effectiveness here; [54] does not make claims on efficiency. 

3.4.2 Motif Discovery in Bird Songs 

Complex songs produced by animals (bats, whales, mice, birds) have been receiving 

increasing attention because summaries of these sounds can be a measure of the health of 

the ecosystem and its biodiversity. For example, The Long Island Sound Study, a six-year 

research project, is a notable effort devoted to protecting the environment [90].  Birds, 

though still a common sight even in cities, are facing threats from habitat reduction. 
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While bird songs have been explored in several research efforts [9][14], like  human 

sound processing, the algorithms tend to be very specialized and parameter-laden. How 

well can we do with no parameters? We tested our algorithm on audio sequences of the 

Common Scimitarbill from xeno-canto [7]. One representative experiment is shown in 

Figure 3.8. We obtained similarly intuitive results for many other diverse species. We 

encourage the interested reader to hear/see them at [5]. 

 

Figure 3.8: top) A 31-second excerpt of a two-minute audio performance of a Common 

Scimitarbill.  bottom) A zoom-in of the two one-second long audio motif occurrences. 

3.4.3 Motif Discovery in Music Data 

Algorithms for automatic discovery of repeated patterns in music data can be very useful; 

they have a number of applications for content-based retrieval, indexing, and audio-

thumbnailing (summarization) [11][49][58]. In the absence of formal benchmarks for 

music motif discovery, we will attempt to reproduce an experiment in a highly cited 

paper [11].  

We attempted to find motifs in André Bourvil’s song C'était bien [21]. As with [11], 

we set the motif length to three seconds and as shown in  Figure 3.9 we discover a motif 
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phase Et c'était bien, the song title itself. In contrast to the string-matching techniques on 

a derived symbolic representation used by [21] and almost all music motif efforts, we do 

not need to extract explicit features or tune any parameters. As before, the same 

algorithm works on mice and men, on birds and whales, with no human intervention. 

 

Figure 3.9: top) A performance of Bourvil’s song C'était bien has a three-second motif. 

bottom) A zoom-in of the two motif occurrences and corresponding lyrics.  

As a sanity check, we tested to see if music motif algorithms could be made to work 

for our bird/mice/whale data (to be fair, no one has claimed they might). After all, 

biologists do speak of mice courtship songs [43], bird choruses, and whale melodies, etc. 

However, in spite of significant effort, we could not make the music motif algorithms 

work for any biological datasets [5]. 

3.4.4 Motif Discovery in Mice Vocalization 

Mice have been extensively used as genetic models of human disease for almost four 

decades. They can produce ultrasonic vocalizations, inaudible to humans. These 

vocalizations are important to researchers who study human pathologies by testing the 
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effects of manipulating homologue genes in mice [95]. Analyzing vocal behaviors of 

mice models in this manner has lead to the discovery of the genetic cause of Autism [44], 

and has shown great promise for the study of Alzheimer’s disease [68].      

We applied our audio motif discovery algorithm to various subsets of the mice 

vocalization dataset studied in [95]. One such result is shown in Figure 1.1. We find that 

we can obtain similar results to [95] (and [43]) but without the need for explicitly 

extracting syllables, a painstaking and time consuming step. This experiment speaks 

volumes to the generalizability of our algorithm. 

In this section we hint at the actionability of audio motif discovery by showing that 

motifs, once discovered, can be used to test for changes in vocal repertoire that may be 

attributable to genes that were deliberately deleted (in genetics parlance “knocked out” or 

“KO”) from the mouse genome. 

We obtained six hours of vocalizations recorded during courtship/mating of various 

pairs of mice (only males vocalize). These sessions were annotated by the mice 

behaviors, from the set: {Defensive (D), Ejaculate (E), Grooming (G), 

Intromission (I), Mounting (M), No Contact (N), Rooting (R) and 

Sniffing (S)}. Neuroscience researchers at UCR want to know if vocal repertoire or 

frequency during these behaviors differ for different mice genomes. Below we hint at the 

answer to this question. 

We applied our algorithm to the data and found many instances of motif shown in 

Figure 3.10.top. Having discovered this motif, we used a sliding window to calculate its 

density over time. As shown in Figure 3.10.middle, this particular motif occurs about 4.1 
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times more frequently during Sniffing than during Rooting for this particular 

strain of KO mice.  Moreover, because we are able to automate this process (most similar 

research efforts resort to manual counting [43][68][95]) we can automatically search 

through a large space of motifs  behaviors  genomes, scoring the frequency differences 

by significant tests. 

 

Figure 3.10: top) Sample instances of a motif discovered from mice vocalizations by 

applying our algorithm. middle) Comparing the number of motifs during S and R 

behaviors for a sample recording of KO mice vocalization. bottom) Comparing the 

number of motifs during S and G behaviors for a sample recording of WT mice 

vocalization. 

In Figure 3.10.bottom, we show another example of a similarly significant contrasting 

pattern, this time in WT (wild type) mice. In this case we noted a dearth of the motif 

during Grooming. Note in [5] we show that the same algorithm that finds motifs in 

mice, expressed in about the 40 to 110 kHz range, also works for whales, expressed in a 

completely disjoint range of about 20 Hz to 24 kHz. The only difference in the two 

experiments was the suggested length of the motif was increased for the much larger 

whales, as suggested by allometry of vocal production [31].    
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3.4.5 Scalability of Audio Motif Discovery 

After demonstrating the utility of our algorithm, we now show the scalability of finding 

audio motifs with an example of human speech data, a ten-minute performance of “The 

Raven” as shown in Figure 3.11. 

 

Figure 3.11: top) A performance of “The Raven” has a motif of length seven seconds. 

bottom) A zoom-in of the two occurrences and the corresponding text.  

We compared the four algorithms (brute-force, random, Euclidean distance reordering 

heuristic, and PEAMD search) shown in Figure 3.12. The brute-force search takes 

twenty-two hours. Random search takes the same time, but converges more quickly, so if 

“anytime” interrupted after fourteen minutes it would have had the correct result [6][61].     
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Figure 3.12: A comparison of efficiency of four algorithms normalized to the 100% time 

taken for brute-force search. 

Euclidean ordered search converges to the optimal motif in a few minutes, and about a 

minute later PEAMD (allowing a 1 in 10,000 chance of a non-optimal answer) is 

confident enough to abandon the search and return the correct answer. Thus, using the 

PEAMD we can search audio files that are on the order of hours in real time. Examining 

day-long audio recordings does require more than a day (unless there are large time 

periods of silence, cf. Section 3.2). 

We have informally shown the accuracy of our algorithm in an intuitive fashion. For 

example in the ability to find the chorus of a poem/song (cf. Figure 3.6, Figure 3.9 and 

Figure 3.11). However, to formally evaluate the accuracy of the PEAMD algorithm, we 

compute the ratio of the motif distance returned by the brute-force linear search algorithm 

over the motif distance algorithm returned by our algorithm. Numbers approaching one 

indicate that there is little difference in the two algorithms output. As we can see in the 

second column in Table 3.1, this is strongly the case.   
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In addition, we compute the speedup of the PEAMD algorithm compared to the brute-

force algorithm for all the datasets we tested. The results are shown in the third column of 

Table 3.1.  

Dataset (Figure Number)        

          
 

       

          
 

A Dream within a Dream (3.5) 0.94 4,100 

Mice vocalization (3.1,3.11) 0.92 179 

The Cat in the Hat (3.7) 1.00 6,591 

Scimitarbill (3.9) 1.00 267 

C'était bien (3.10) 1.00 605 

The Raven (3.12) 1.00 525 

Table 3.1: Comparison between PEAMD and Brute-Force Algorithms. 

The results show a significant speedup for our PEAMD algorithm across diverse audio 

archives. Moreover, in four out of six cases the results returned are identical to the brute-

force algorithm.  

It is worth considering the two cases where our algorithm failed to return the optimal 

answer; in particular we can ask how badly did we fail? The answer can be seen directly 

in Figure 3.4. Here the two motifs are very slightly misaligned. One begins with “See or 

seem...” and the other begins “ee or seem...”. Thus the answer is semantically correct. 

Similar remarks can be made for the mice vocalization dataset. Due to the page 

limitations, we refer to [5] for more scalability analyses and experiments. 
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3.4.6 Sensitivity of User-Choice (Motif Length) 

The results shown in previous sections demonstrate the efficiency and effectiveness of 

our algorithm in finding motifs for a given user-defined length. However, the reader may 

wonder how critical this user choice is. Clearly, motifs can exist on different scales, for 

example repeated words, and repeated phrases in speech. However, it would be very 

undesirable if the results returned were very sensitive to tiny changes in this user choice.  

It is hard to make any strong claims about this issue, as one could construct an 

artificial dataset for which the motifs of length w-ɛ, w, and w + ɛ are disjoint. However, 

on real data we generally find that our algorithm will report the same essential concept 

when the motif length is within [w-σ, w+σ] for values of σ which are a significant 

fraction of w.  

For example, let us revisit the The Cat in the Hat dataset. The motif length used in 

Section 3.4.1.1 was three seconds; however, we found that our algorithm allows us to set 

σ anywhere in the range of [1.7 sec, 3.9 sec] (-43%~ 30%) to obtain motifs that 

correspond to the same basic phrase. This result suggests a simple way to explore a 

dataset for which one poor intuition about possible motif lengths. We can simply set w to 

be a small number and find motifs of length w, 2w, 4w, 8w, etc. The efficiency of the 

PEAMD algorithm makes such iterative doubling search tenable. 
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3.5 Conclusion  

In this chapter we introduced a scalable and extremely general framework for finding 

audio motifs. We have demonstrated the utility of audio motifs analysis in diverse 

domains including music, human speech, mice vocalizations, and bird songs. By 

comparisons to existing work (Figure 3.7, Figure 3.9) we have shown that the 

representative power of our general purpose distance measure is typically competitive 

with domain specialized measures. While there is no obvious rival strawman to compare 

to in terms of efficiency, we have shown that by using probabilistic early abandoning we 

can examine most realistic length scientific recordings in much less than real time.  

For brevity we have hinted at the utility of audio motifs only in the mice genetics 

domain; however, in data types as diverse as text, DNA, time series, and video, motif 

discovery is often leveraged for diverse types of analyses [47][55][58]. We believe this 

work has the potential to enable analogous analyses for audio.  

We have claimed that our method is essentially parameter free. The reader might 

object to this claim, noting for example that the algorithm that converts audio to a 

spectrogram representation requires several parameters to be set. This is true, but in most 

cases the best parameters have been determined by the community decades ago. For 

example, virtually all mouse researchers truncate below 20 Hz and above 100 kHz 

[40][68][95]. The best parameters for human vocalization research are even better 

understood [53].  
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In future work, we hope to leverage off the Minimum Description Length principle to 

automatically find the natural length for motifs, thus removing the need for this user 

input, the only true parameter we need to set. However, we note that even here, as we 

showed in Section 3.4.6, our algorithm is not particularly sensitive to this setting. 

Finally, we have made all code and data freely available in perpetuity so others can 

confirm, use, and extend our work [5].  
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Chapter 4 

Towards Never-Ending Learning from 

Time Series Streams 

Time series classification has been an active area of research in the data mining 

community for over a decade, and significant progress has been made in the tractability 

and accuracy of learning.  However, virtually all work assumes a one-time training 

session in which labeled examples of all the concepts to be learned are provided. This 

assumption may be valid in a handful of situations, but it does not hold in most medical 

and scientific applications where we initially may have only the vaguest understanding of 

what concepts can be learned. Based on this observation, we propose a never-ending 

learning framework for time series in which an agent examines an unbounded stream of 

data and occasionally asks a teacher (which may be a human or an algorithm) for a label. 

We demonstrate the utility of our ideas with experiments that consider real world 

problems in domains as diverse as medicine, entomology, wildlife monitoring, and 

human behavior analyses. 
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The rest of this chapter is organized as follows. In Section 4.1 we briefly discuss 

related work, before explaining our system architecture and algorithms in Section 4.2. 

We provide an empirical evaluation on a host of diverse domains in Section 4.3, and in 

Section 4.4 we offer conclusions and directions for future work. 

4.1 Related Work 

The task at hand requires contributions from, and an understanding of, many areas 

including; frequent item mining [29], time series classification [33], hierarchical 

clustering, crowdsourcing, active learning [84], semi-supervised learning, etc. It would be 

impossible to consider all these areas with appropriate depth in this work, thus we refer 

the reader to [5] where we have a detailed bibliography of the many research efforts we 

draw from. 

However, it would be remiss of us not to mention the groundbreaking NELL project 

lead by Tom Mitchell at CMU [27] which is the inspiration for the current work. Note 

however that the techniques used by NELL are informed by very different assumptions 

and goals. NELL is learning ontologies from discrete data that it can crawl multiple 

times. In contrast our system is learning prototypical time series templates from real-

valued data that it can only see once.  

The work closest in spirit to ours in the time series domain is [17]. Here the authors 

are interested in a (human) activity inference system with an application to psychiatric 

patient monitoring. They use time series streams from a wrist worn sensor to detect dense 

motifs, which are used in a periodic (every few weeks) retrospective interview/assessment 
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of the patient. However, this work is perhaps best described as a sequence of batch 

learning, rather than a true continuous learning system. Moreover, the system requires at 

least seven parameters to be set, and significant human intervention. In contrast, our 

system requires few (and relatively non-critical) parameters, and where humans are used 

as teachers, we limit our demands of them to providing labels only. 

4.2 Algorithms 

The first decision facing us is which base classifier to use. Here the choice is easy, there 

is near universal agreement that the special structure of time series lends itself 

particularly well to the nearest neighbor classifier [33][50][71]. This only leaves the 

question of which distance measure to use. There is increasing empirical evidence that 

the best distance measure for time series is either Euclidean Distance (ED), or its 

generalization to allow time misalignments, Dynamic Time Warping (DTW) [33]. DTW 

has been shown to be more accurate than ED on some problems; however it requires a 

parameter, the warping window width, to be carefully set using training data, which we 

do not have. 

Because ED is parameter-free, computationally more tractable, and allows several 

useful optimizations in our framework (triangular inequality etc), and works very well 

empirically [33][71], we use it in this work. However, nothing in our overarching 

architecture specifically precludes other measures. 
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4.2.1 Overview of System Architecture 

We begin by stating our assumptions:   

 We assume we have a never-ending
9
 data stream S. 

S could be an audio stream, a video stream, a text document stream, multi-dimensional 

time series telemetry etc. Moreover, S could be a combination of any of the above. For 

example, all broadcast TV in the USA has simultaneous video, audio, and text. 

 Given S, we assume we can record or create a real-time proxy stream P that is 

“parallel” to S. 

P is simply a single time series that is a low-dimensional (and therefore easy to 

analyze in real time), proxy for the higher dimensional/higher arrival rate stream S that 

we are interested in. In some situations P may be a companion to S. For example, in [20], 

which manually attempts some of the goal of this work, S is a night-vision camera 

recording sleeping postures and P is a time series stream from a sensor worn on the wrist 

of the sleeper. In other cases P could be a transform or low-dimensional projection of S. 

In one example we consider, S is a stereo audio stream recorded at 44,100Hz, and P is a 

single channel 100Hz Mel-frequency cepstral coefficient (MFCC) transformation of it. 

Note that our framework includes the possibility of the special case where S = P, as in 

Figure 1.2. 

 We assume we have access to a teacher (or Oracle [84]), possibly at some cost.  

                                                 
9
 For our purposes, a “never-ending” stream may only last for days or hours. The salient 

point is the contrast with the batch learning algorithms that the vast majority of time 

series papers consider [33].   
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The space of possible teachers is large. The teacher may be strong, giving only correct 

labels to examples, or weak, giving a set of probabilities for the labels. The teacher may 

be synchronous, providing labels on demand, or asynchronous providing labels after a 

significant delay, or at fixed intervals.  

Given the sparseness of our assumptions and the especially the generality of our 

teaching model, we wish to produce a very general framework in order to address a 

wealth of domains. However, many of these domains come with unique domain specific 

requirements. Thus, we have created the framework outlined in Figure 4.1 which 

attempts to divorce the domain dependent and domain independent elements. 

 

Figure 4.1: An overview of our system architecture. The time series P which is being 

processed may actually be a proxy for a more complex data source such as audio or video 

(top right). 

Recall that P itself may be the signal of interest, or it may just be a proxy for a higher 

dimensional stream S, such as a video or audio stream, as shown in Figure 4.1.top.right. 

Our framework is further explained at a high level in Algorithm 4.1. We begin in Line 

1 by initializing the class dictionary, in most cases just to empty. The dictionary format 

is defined in Section 4.2.2. We then initialize a dendrogram of size w. We will explain the 

now

time
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motivation for using a dendrogram in Section 4.2.4. This dendrogram is initialized with 

random data, but as we shall see, these random data are quickly replaced with 

subsequences from P as the algorithm runs. 

After these initialization steps we enter an infinite loop in which we repeatedly extract 

the next available subsequence from the time series stream P (Line 4), then pass it to a 

module for subsequence processing. In this unit domain dependent normalization may 

take place (Line 5), and we will attempt to classify the subsequence using the class 

dictionary. If the subsequence is not classified and is regarded as valid (cf. Section 4.2.3) 

then it is passed to the frequent pattern maintenance algorithm in Line 6, which attempts 

to maintain an approximate history of all data seen thus far. If the new subsequence is 

similar to previously seen data, this module may signal this by returning a new ‘top’ 

motif. In Line 7, the active learning module decides if the current top motif warrants 

seeking a label. If the motif is labeled by a teacher, the current dictionary is updated to 

include this now known pattern.  

Algorithm 4.1  NeverEndingLearning (S, P, w) 

Require: A high dimensional data stream S, proxy stream P, and number of time series 

contains in memory w.  

Ensure: Return dictionary containing concepts dict. 

  1:  dict ← initializeClassDictionary ()  

  2:  global dendro = createRandomDendrogramOfSize(w) 

  3:  for ever                   

  4:      sub ← getSubsequenceFromP() 

  5:      sub ← subsequenceProcessing(sub, dict) 

  6:      top ← frequentPatternMaintenance(sub) 

  7:      dict ← activeLearningSystem(top, dict) 

  8:  return dict 
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In the next four subsections we expand our discussion of the class dictionary and the 

three major modules introduced above. 

4.2.2 Class Dictionaries 

We limit our representation of a class concept i, to a triple containing: a prototype time 

series Ci, its associated threshold, Ti, and Counti, a counter to record how often we see 

sequences of this class. As shown in Figure 4.2.right, a class dictionary is a set of such 

concepts, represented by M triples.  

Unlabeled objects that are within Ti of Ci under the Euclidean distance are classified 

as belonging to that class. Figure 4.2.left illustrates the representational power of our 

model. Note that because a single class could be represented by two or more templates 

with different thresholds (i.e. Weekend in the Figure 4.2.right), this representation can in 

principle approximate any decision boundary. It has been shown that for time series 

problems this simple model can be very completive with more complex models [50], at 

least in the case where both Ci and Ti are carefully set. 

 

Figure 4.2: An illustration of the expressiveness of our model. 

It is possible that the volumes that define two different classes could overlap (as C1 

and C2 slightly do above), and that an unlabeled object could fall into the intersection. In 

Class Dictionary

C2 = W eekday no classes

T2 = 1.5

C3 = W eeken d

T3 = 1.3

C4 = W eeken d

T4 = 0.7

C1 = W eekday with classes

T1 = 3.7
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this case we assign the unlabeled object to the nearest center. We reiterate that this model 

is adopted for simplicity; nothing in our overall framework precludes more complex 

models, using different distance measures [33], using logical connectives, etc [71].  

As shown in Algorithm 4.1 Line 1 our algorithm begins by initializing the class 

dictionary. In most cases it will be initialized as empty, however, in some cases we may 

have some domain knowledge we wish to “prime” the system with. For example, as 

shown in Figure 4.3, our experience in medical domains suggests that we should initialize 

our system to recognize and ignore the ubiquitous flat lines caused by battery/sensor 

failure, patient bed transfers, etc.   

 

Figure 4.3: left) Sections of constant “flatline” signals are so common in medical domains 

that it is worth initializing the medical dictionaries with an example. right), thus 

suppressing the need to waste a query asking a teacher for a label for it.  

Whatever the size of the initial dictionary, it can only increase by being appended to 

by the active learning module, as suggested in Line 7 of Algorithm 4.1 and explained in 

detail in Section 4.2.5.   

4.2.3 Subsequence Processing 

Subsequence processing refers to any domain specific preprocessing that must be done to 

prepare the data for the next stage (frequent pattern mining). We have already seen in 

Figure 1.2 and Figure 1.3 that z-normalization may be necessary [33]. More generally 

Challenge 2010: 101a: ECG V 

“Flatline”

Class Dictionary

C1 = Flatline

T1 = 0.001

seconds0 10
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this step could include downsampling, smoothing, wandering baseline removal, taking 

the derivative of the signal, filling in missing values, etc. In some domains very specialist 

processing may take place. For example, for ECG datasets, robust beat extraction 

algorithms exist that can detect and extract full individual heartbeats, and as we show in 

Section 4.3.3, converting from the time to the frequency domain may be required [15]. 

As shown in Algorithm 4.2-Line 3, after processing we attempt to classify the 

subsequence by comparing it to each time series in our dictionary, and assigning its class 

label to its nearest neighbor, if and only if it is within the appropriate threshold. If that is 

the case we increment the class counter, and the subsequence is simply discarded without 

passing it to the next stage.  

Algorithm 4.2  subsequnceProcessing (sub, dict) 

Require: subsequence time series sub from P and initialized dictionary dict.  

Ensure: Return subsequence time series sub after processed. 

  1:  sub ← domainDependentProcessing()  

  2:  [dist, index] ← nearestNeighborInDictionary(sub, dict) 

  3:  if dist < Tindex     // Item can be classified 

  4:      disp (‘An instance of calss ‘index’ was detected’) 

  5:      countindex ← countindex + 1 

  6:      sub ← null    // return null to signal that no further processing is needed 

  7:  return sub 

Assuming the algorithm processes the subsequence and finds it is unknown, it passes 

it onto the next step of frequent pattern maintenance, which is completely domain 

independent.   
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4.2.4 Frequent Pattern Maintenance 

As we discuss in more detail in the next section, any attempt to garner a label must have 

some cost, even if only CPU time. Thus, as hinted at in Figure 1.2/Figure 1.3 we plan to 

only ask for labels for patterns which appear to be repeated with some minimal fidelity. 

This reflects the intuition that a repeated pattern probably reflects some conserved 

concept that could be learned.  

The need to detect repeated time series patterns opens a host of problems. Note that 

the problem of maintaining discrete frequent items from unbounded streams in bounded 

space is known to be unsolvable in general, and thus has opened up an active area of 

research in approximation algorithms for this task [29]. However, we have the more 

difficult task of maintaining real-valued and high dimensional frequent items. The 

change from discrete to real-valued causes two significant difficulties.  

 Meaningfulness: We never expect two real-valued items to be equal, so how can we 

define a frequent time series? 

 Tractability: The high dimensionality of the data objects, combined with the inability 

to avail of common techniques and representations for discrete frequent pattern 

mining (hashing, graphs, trees and lattices [29]) seems to bode ill for our hopes to 

produce a highly tractable algorithm. 

Fortunately these issues are not as problematic as they may seem. Frequent item 

mining algorithms for discrete data must handle million-plus Hertz arrival rates [29]. 

However, most medical/human behavior domains have arrival rates are rarely more than 
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a few hundred Hertz. Likewise, for meaningfulness, a small Euclidean distance between 

two or more time series tells us that a pattern has been (approximately) repeated.  

We begin with the intuition of our solution to these problems. For the moment 

imagine we can relax the space and time limitations, and we could buffer all the data seen 

thus far. Further imagine, as shown in Figure 4.4, that we build a dendrogram for all the 

data. Under this assumption, frequent real-valued patterns would show up as dense 

subtrees in the dendrogram. 

Given this intuition, we have just two problems to solve. The first is to produce a 

concrete definition of “unusually dense subtree”. The second problem is to efficiently 

maintain a dendrogram in constant space with unbounded streaming data. 

While our constant space dendrogram can only approximate the results of the 

idealized ever-growing dendrogram, we have good reason to suspect this will be a good 

approximation. Consider the dense subtree shown in Figure 4.4; even if our constant 

space algorithm had thrown out any two of the four sequences in this clade, we would 

still have a dense subtree of size two that would be sufficient to report the existence of a 

repeated pattern. We will revisit this intuition with more rigor below. 
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Figure 4.4: A visual intuition of our solution to the frequent time series subsequence 

problem. The elements in a dense subtree (or clade) can be seen as a frequent pattern.    

We will maintain a dendrogram of size w in a buffer, where w is as large as possible 

given the space or (more likely) time limitations imposed by the domain. At most once 

per each time step
10

, the Subsequence Processing Module will hand over a subsequence 

for consideration. After this happens a subsequence from the dendrogram will be 

randomly chosen to be discarded in order to maintain constant space. At all times our 

algorithm will maintain the top most significant patterns in the dendrogram, and it is only 

this top-1 motif that will be visible to the active learning module discussed below. 

In order to define most significant motif more concretely we must first define one 

parameter, MaxSubtreeSize. The dense subtree shown in Figure 4.4 has four elements; a 

dense subtree may have fewer elements, as few as two. However, what should be the 

maximum allowed number of elements? If we allowed the maximum to be a significant 

fraction of w, the size of the dendrogram, we can permit pathological solutions as a 

subtree is only dense relative to the rest of the tree. Thus, we define MaxSubtreeSize to be 

                                                 
10

 Recall from Section 4.2.3 that the Subsequence Processing Module may choose to 

discard a subsequence rather than pass it to Frequent Pattern Maintenance.   

Unusually dense subtree

Most of the dendrogram truncated for clarity
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a small constant. Empirically, the exact value does not matter, so we simply use six 

throughout this work.    

We calculate the significance of the top motif in the following way. Offline, we take a 

sample time series from the domain in question and remove existing patterns by 

permuting the data. We use this “patternless” data to create multiple dendrograms with 

the same parameters we intend to monitor P under. We examine these dendrograms for 

all possible sizes of subtrees from two to MaxSubtreeSize, and as shown in Figure 4.5 we 

record the mean and standard deviation of the heights of these subtrees.  

 

Figure 4.5: left) The (partial) dendrogram shown in Figure 4.4 has its subtrees of size four 

ranked by density. right) The observed heights of the subtrees are compared to the 

expected heights given the assumption of no patterns in the data.   

These distributions tell us what we should expect to see if there are no frequent 

patterns in the new data stream P, as clusters of frequent patterns will show up as 

unusually dense subtrees. These distributions allow us to examine the subtrees of the 

currently maintained dendrogram and rank them according to their significance, which is 

simply defined as the number of standard deviations less than the mean is the height of 

the ancestor node. Thus, the significance of subtreei which is of size j is:   
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For example, in Figure 4.5.right we see that Subtree1 has a score of 3.42, suggesting it 

is much denser than expected. Note that this measure makes different sized subtrees 

commensurate.  

There are two issues we need to address to prevent pathological solutions. 

 Redundancy:  Consider Figure 4.5.left. If we report Subtree1 as the most significant 

pattern, it would be fruitless to report a contained subtree of size two as the next most 

significant pattern. Thus, once we find the i
th

 most significant subtree, all its 

descendant and ancestor nodes are excluded from consideration for the i
th

+1 to K most 

significant subtrees. 

 Overflow: Suppose we are monitoring an accelerometer on an individual’s leg. If she 

goes on a long walk, we might expect that single gait cycles might flood the 

dendrogram, and diminish our ability to detect other behaviors. Thus, we allow any 

subtree in the current list of the top K to grow upto MaxSubtreeSize. After that point, if 

a new instance is inserted into this subtree, we test to see which of the MaxSubtreeSize 

+ 1 items can be discarsded to create the tightest subtree of size MaxSubtreeSize, and 

the outlying object is discarded.  

In Algorithm 4.3 we illustrate a high level overview of the algorithm. 
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Algorithm 4.3  frequentPatternMaintenance (sub) 

Require: subsequence time series sub from P.  

Ensure: Return dictionary containing top k most significant concepts. 

  1:  if sub == null     // If null was passed in, do nothing return 

  2:      top ← null; return 

  3:  else                   

  4:      dendro ← insert (dendro, sub)    // |dendro|  is now w + 1 

  5:      top ← findMostSignificantSubtree(dendro) 

  6:      dendro ← discardALeafNode(dendro)    // |dendro|  back to size w 

  7:  return top 

Our frequent pattern mining algorithm has only a single value, w the number of 

objects we can keep in the buffer, which affects its performance. This is not really a free 

parameter, as w should be set as large as possible, given the more restrictive of the time 

or space constraints. However, it is interesting to ask how large w needs to be to allow 

successful learning. A detailed analysis is perhaps worthy of its own paper, so we will 

content ourselves here with a brief intuition. Imagine a version of our problem, simplified 

by the following assumptions. One in one hundred subsequences in the data stream 

belong to the same pattern, everything else is random data. Moreover, assume that we can 

unambiguously recognize the pattern the moment we see any two examples of it. Under 

these assumptions how does the size of w effect how long we expect to wait to discover 

the pattern?  Figure 4.6 shows this relationship for several values of w. 
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Figure 4.6: The average number of time steps required to find a repeated pattern with a 

desired probability, for various values of w. All curves end when they reach 99.5%.   

If w is set to 10 we must wait about 5,935 time steps to have at least a 99.5% chance 

of finding the pattern. If we increase w by a factor of ten, our wait time does decrease, but 

only by a factor of 3.6. In other words, there are rapidly diminishing returns for larger 

and larger values of w. These results are borne out by experiments on real datasets (cf. 

Section 4.3). A pathologically small value for w, say w = 2, will almost never stumble on 

a repeated pattern. However, once we make w large enough, we can easily find repeated 

patterns, and making w larger again makes no perceptible difference. The good news is 

that “large enough” seems to be a surprisingly small number, of the order of a few 

hundred for the many diverse domains we consider. Such values are easily supported by 

off-the-shelf hardware or even smartphones. In particular, all experiments in this thesis 

are performed in real time on cheap commodity hardware. 

Finally, we note that there are clearly exists real-world problems with extraordinarily 

rare patterns that would push the limits of our current naive implementation. However, it 

is important to note that our description was optimized for clarity of presentation and 

brevity, not efficiency. We can take advantage of recent research in online [8] and 

incremental [74] hierarchical clustering to bring the cost per time step down to O(w). 
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4.2.5 Active Learning System 

The active learning system which exploits the frequent patterns we discovered must be 

domain dependent. Nevertheless, we can classify two broad approaches, depending on 

the teacher (oracle) available. Teachers may be: 

 Strong Teachers which are assumed to give correct and unambiguous class labels. 

Most, but not all, strong teachers are humans. Strong teachers are assumed to have a 

significant cost. 

 Weak Teachers which are assumed to provide more tentative labels. Most, but not all 

weak teachers are assumed to be algorithms, however, they could be input of a 

crowdsourcing algorithm, or a classification algorithm that makes errors but performs 

above the default rate. 

The ability of our algorithm to maintain frequently occurring time series opens a 

plethora of possibilities for active learning. Two common frameworks for active learning 

are Pool-Based sampling and Stream-Based sampling [84]. In Pool-Based sampling we 

assume there is a pool of unlabeled data available, and we may (at some cost) request a 

label for some instance, In Stream-Based sampling we are presented unlabeled examples 

one at a time and the learner must decide whether or not it is worth the cost to request its 

label. Our framework provides opportunities that can take advantage of both scenarios; 

we are both maintaining a pool of instances in the dendrogram, and we also see a 

continuous stream of unlabeled data.  

Because this step is necessarily domain dependent, we will content ourselves here with 

giving real world examples, and defer creating a more general framework to future work.   
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Given our dictionary-based model the only question that remains in when we should 

trigger a query to the teacher, and what action we should take given the teacher’s 

feedback. 

4.2.5.1 When to trigger queries  

Different assumptions about the teacher model and its associated costs can lead to 

different triggering mechanisms [84]. However, most frameworks can reduce to questions 

of how frequently we should ask questions. A conservative questioner that only asks 

questions rarely may miss opportunities to learn concepts, whereas an aggressive 

questioning policy will accumulate large costs and will frequently ask questions about 

data that are unlikely to represent any concept.  

For any given domain, we assume that the teacher will tell us how many queries on 

average they are willing to answer in a given time period. For example, our cardiologist 

(c.f. Section 4.3.3) is willing to answer two queries per day from a system recording a 

healthy adult patient undergoing a routine sleep study, but twenty queries per day from a 

system monitoring a child in an ICU who has had recent increase in her SOFA score [37].  

Let SR be the sampling rate of P, and QR be the mean number of seconds between 

queries that the teacher is willing to tolerate. We can then calculate the trigger threshold 

as: 

(1/ ( ))triggerthreshold probit SR QR    

We defer a detailed derivation to [5].  This equation assumes the distributions of 

heights of subtrees (e.g. Figure 4.5.right) are approximately Gaussian, a reasonable 

assumption when j ≪ w. 
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4.2.5.2 Learning a concept: Strong teacher case 

In Algorithm 4.4 the active learning system begins by comparing the significance (c.f. 

Section 4.2.4) of the top motif to this user supplied trigger threshold. If the motif 

warrants bothering the teacher, the get_labels function is invoked. The exact 

implementation of this is domain dependent, requiring the teacher to examine images, 

short audio or video snippets, or in one instantiation we discuss below, the bodies of 

insects, and provide labels for these objects.  Once the labels have been obtained, then in 

Line 5 the dictionary is updated.  

We have two tasks when updating the dictionary. First we must create the concept Ci, 

we can do this by either averaging the objects in the motif or choosing one randomly. 

Empirically, both perform about the same, which is unsurprising since the variance of the 

motif must be very low to pass the trigger threshold. The second thing we must do is 

decide on a value for threshold Ti. Here we could leverage off a wealth of recent 

advances in One-Class Classification [35], however, for simplicity we simply set the 

threshold Ti to three times the top subtree’s height. As we shall see, this simple idea 

works so well that more sophisticated ideas are not warranted, at least the domains we 

investigated.  
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Algorithm 4.4  activeLearningSystem (top, dict) 

Require: dictionary containing top k most significant concepts and the whole dictionary 

dict.  

Ensure: Return dictionary containing concepts dict. 

  1:  if (significance(top) < trigger threshold)    // The subtree is not worth investigating 

  2:      dict ← dict; return 

  3:  elseif inStrongTeacherMode 

  4:      labels ← getLabels(top) 

  5:      dict ← updateDictionary(dict, top, labels) 

  6:  else 

  7:      spawnWeakLearnerAgent(top) 

  8: return dict 

4.2.5.3 Learning a concept: Weak teacher case 

A weak teacher can leverage off side information. For concreteness we will give an 

illustration that closely matches an experiment we consider in Section 4.3.6, however, we 

envision a host of possible variants (hence our insistence that this phase be domain 

dependent). As illustrated in Figure 4.7.top, we can measure the X-axis acceleration on 

the wrist of the subject as he works with various tools. Moreover, RFID tags mounted on 

the tools can produce binary time series which record which tools are close to the user’s 

hand, although these binary sensors clearly cannot encode any information about whether 

the tool is being used or carried or cleaned, etc. At some point our active learning 

algorithm is invoked in weak teacher mode with pattern C1, which happens (although we 

do not know this) to correspond to an axe swing.  

The weak teacher simply wait for future occurrences of the pattern to be observed, and 

then, as shown in Figure 4.7.middle immediately polls the binary sensors for clues as to 

C1’s label. 
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In the example in shown in Figure 4.7.bottom after the first detection of C1 we have 

one vote for Axe, and one for Cat, and zero for Bar. However, by the third detection 

of C1 we have seen three votes for Axe, one for Bar and one for Cat. Thus we can 

compute that the most likely label for C1 is Axe, with a probability of 0.6 = 3 / (3 + 1 

+1). 

 

Figure 4.7: An illustration of a weak teacher. top) A stream P in which we detect three 

occurrences of the pattern C1. middle) At the time of detection we poll a set of binary 

sensors to see which of them are active.  bottom) we can use the frequency of 

associations between a pattern and binary “votes” to calculate probabilities for C1’s class 

label. 

This simple weak teaching scheme is the one we use in this work and we empirically 

evaluate it in Section 4.3.6. However, we recognize that more sophisticated formulations 

can be developed. For example, our approach assumes that the binary sensors are mostly 

in the off position. A more robust method would look at the prior probability of a sensor’s 

state, and the dependence between sensors. Our point here is simply to provide an 

existence proof of a system that can learn without human intervention.  
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Finally, note that the sensors polled do not have to be natively binary. They could be 

normally real-valued, for example, an accelerometer time series can be discretized to 

binary {has moved in the last 10-sec, has not moved in the last 10-sec}. 

4.3 Experiments 

We begin by noting that all code and data use in this thesis, together with addition details 

and many additional experiments are archived in perpetuity at [5].  

While true never-ending learning systems are our ultimate goal, here we content 

ourselves with experiments that last from minutes to days. Our experiments are designed 

to demonstrate the vast range of problems we can apply our framework to. 

We do not consider the effect of varying w on our results. As noted in Section 4.2.4, 

once it is set to a reasonable value (typically around 250) its value makes almost no 

difference, and we can process streams with such values in real-time for all the problems 

considered below. 

Because our system discards subsequences randomly, where possible, we test each 

dataset 100 times and report the average performance. For each class, we report the 

number of times the class is learned, as well as the average precision and recall [79]. To 

compute the average precision and recall, we count in each run the number of true 

positives, false positives and false negatives after the class is first added to the dictionary. 
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4.3.1 Activity Data 

We begin with a short but visually intuitive domain, the activity dataset of [89]. This 

dataset consists of a 13.3 minute 10-fps video sequence (thresholded to binary by the 

original authors) of an actor performing one of eight activities. From this data the original 

authors extracted 721 optical flow time series. We randomly chose just one of these time 

series to act as P, with S being the original video. 

We set our trigger threshold to 3.5, which is the value that we expect to spawn about 

three requests for labels on each run, and we assume a label is given after a delay of ten 

second. Figure 4.8.left shows the first query shown to the teacher on the first run. 

 

Figure 4.8: left) A query shown to the user during a run on the activity dataset, the 

teacher labeled it Pushing and a new concept C1 was added to the dictionary. right) 

About 9.6 minutes later the classifier detected a new example of the class.  

The teacher labeled this Pushing, and the concept was inserted into the dictionary. 

About 9.6 minutes later, this classifier correctly claimed to spot a new example of this 

class as shown in Figure 4.8.right.  This dataset has the interesting property that the actor 

starts in a canonical pose and returns to it after completing the scripted action at eight-

second intervals. This means that we can permute the data so long as we only “cut and 
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paste” at multiples of eight seconds. This allows us to test over one hundred runs and 

smooth our performance estimates. 

Averaged over one hundred runs we achieved an impressive 41.8% precision and 

87.96% recall on the running concept. On some other concepts we did not fare so 

well. For example, we only achieved 19.87% precision and 51.01% recall on the 

smoking concept. However, this class has much higher variably in its performance, and 

recall that we only used a single time series of the 721 available for this dataset. 

4.3.2 Invasive Species of Flying Insects 

Recently it has been shown that it is possible to accurately classify the species
11

of flying 

insects by transforming the faint audio produced by their flight into a periodogram and 

doing nearest neighbor time series classification on this representation [15]. Figure 4.9 

demonstrates the practicality of this idea. 

 

Figure 4.9: top) An audio snippet of a female Cx. stigmatosoma pursued by a male. 

bottom left) An audio snippet of a common house fly.  bottom right) If we convert these 

sound snippets into periodograms we can cluster and classify the insects. 

                                                 
11
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This allows us to classify known species, for example species we have raised in our 

lab to obtain training data. However, in many insect monitoring settings we are almost 

guaranteed to encounter some unexpected or invasive species; can we use our framework 

to detect and classify them? At first blush, this does not seem possible. The S data source 

is a high quality audio source, and while entomologists could act as our teachers, at best 

they could recognize the sound at the family level, i.e.  some kind of Apoidea (bee). We 

could hardly expect them to recognize which of the 21,000 or so species of bee they 

heard.  

We had considered augmenting S with HD video, and sending the teacher short video 

clips of the novel insects. However, many medically and agriculturally important insects 

are tiny, for example, some species of Trichogramma (parasitic wasps) are just 0.2 mm, 

about the size of the period at the end of this sentence.  

Our solution is to exploit the fact that some insect traps can physically capture the 

flying insects themselves and recorded-their time of capture [69]. Thus, the S data source 

is audio snippets of the insects as they flew into the trap, and the physical bodies of 

insects. Naturally this causes a delay in the teaching phase, as we cannot digitally 

transmit S to the teacher, but must wait till she comes to physically inspect the trap, once 

a day. 

Using insects raised from larvae in our lab we learned two concepts: Culex 

stigmatosoma male (Cstig♂) and female (Cstig♀). These concepts are just the 

periodograms shown in Figure 4.9 with the thresholds that maximized cross-validated 

accuracy. 



113 

 

With the two concepts now hard coded into our dictionary, we performed the 

following experiments. On day one we released 500 Cx. stigmatosoma of each sex, 

together with two members of an invasive species. If we cannot detect the invasive 

species, we increase their number for the next day, and try again until we do detect them. 

After we have detected the invasive species, the next day we release 500 of them with 

500 Cx. stigmatosoma of each sex and measure the precision/recall of detection for all 

three classes. We repeated the whole procedure for three different species to act as our 

invasive species. Table 4.1 shows the results.  

Number of insects before detection Precision / Recall 

invasive species name invasive species Cstig♂ Cstig♀ 

Aedes aegypti ♀ 3 0.91 / 0.86 0.88/0.94 0.96/0.92 

Culex tarsalis ♂ 3 0.57 / 0.66 0.58/0.78 1.00/0.95 

Musca domestica  ♂ and ♀ 7 0.98 / 0.73 0.99/0.95 0.96/0.94 

Table 4.1: Our Ability to Detect then Classify Invasive Insects. 

Recall that the results for Cstig♂ and Cstig♀ test only the representational power of 

dictionary model, as we learned these concepts offline. However, the results for the three 

invasive species do reflect our ability to learn rare concepts (just 3 to 7 sub-second 

occurrences in 24 hours), and having learned these concepts we tested our ability to use 

the dictionary to accurately detect further instances. The only invasive species for which 

we report less than 0.9 precision is Cx. tarsalis ♂, which is a sister species of the Cx. 

stigmatosoma and thus it is not surprising that our precision falls to a (still respectable) 

0.57. 
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4.3.3 Long Term Electrocardiogram  

We investigated BIDMC Dataset ch07, a 20-hour long ECG recorded from a 48-year old 

male with severe congestive heart failure [1][41]. This record has 17,998,834 data points 

containing 92,584 heartbeats. As shown in Table 4.2, the heartbeats have been 

independently classified into five types.  

Name Abbreviation Frequency (%) 

Normal N 97.752 

R-on-T Premature Ventricular Contraction r 1.909 

Supraventricular Premature or Ectopic Beat S 0.209 

Premature Ventricular Contraction V 0.104 

Unclassifiable Beat Q 0.025 

Table 4.2: The ground truth frequencies of beats in BIDMCch07. 

In Figure 4.10, we can see this data has both intermittent noise and a wandering 

baseline, we did not attempt to remove either. 

 

Figure 4.10: A small snippet (0.0065%) of BIDMCch07 Lead 1. 

Let us consider a single test run. After 45 seconds the system asked for a label for the 

pattern shown in Figure 4.11.left. Our teacher, Dr. Criley
12

 gave the label Normal(N). 

                                                 
12

 Dr. John Michael Criley, MD, FACC, MACP is Professor Emeritus at the David 

Geffen School of Medicine at UCLA. 
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Just two minutes later the system asked for a label for the pattern shown in Figure 

4.11.center, here Dr. Criley annotated the pattern as R-on-T PVC (r).  

These two requests happened so quickly that the attending physician that hooked up 

the ECG apparatus will be in the same room and able to answer the queries directly. The 

next request for a label does not occur for another 9.5 hours, and we envision it being 

sent by email to the teacher. As shown in Figure 4.11.right our teacher labeled it PVC 

(V). 

 

Figure 4.11: left to right) Three patterns discovered in our ECG experiment. top to 

bottom) The motif discovered and used to query the teacher. The learned concept. Some 

examples of true positives. Some examples of false positives.  

In this run the class (S) was also learned, but just thirty minutes before the end of the 

experiment. We did not discover class (Q), however it is extremely rare and as hinted at 

by its name (Unclassifiable Beat) very diverse in it appearance. 

Because the data has being independently annotated beat-by-beat by an algorithm, we 

can use this ground truth as a virtual teacher and run our algorithm 100 times to find the 

average precision and recall, as shown in Table 4.3. We note however that our 

cardiologist examined some of the “false positives” of our algorithm and declared them 

to be true positives, suggesting that some of the annotations on the original data are 
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incorrect. In fairness, [1] notes the data was “prepared using an automated detector and 

has not been corrected manually.” Thus, we feel the numerical results here are 

pessimistic.       

Class Detection Rate Precision Recall 

Normal (N) 100% 0.9978 0.9948 

R-on-T PVC (r) 100% 0.9147 0.8080 

Supraventricular (S) 100% 0.5028 0.4141 

PVC (V) 100% 0.2342 0.6775 

Unclassifiable (Q) 0% - - 

Table 4.3: Results on BIDMCch07. 

Beyond the objectively correct cardiac dysrhythmias discovered by our system, we 

frequently found our algorithm has the ability to surprise us. For example, after eighteen 

minutes of monitoring BIDMC-chf07-lead 2 [1], the algorithm asked for a label for the 

extraordinary repeated pattern shown in Figure 4.12. 

 

Figure 4.12: A pattern (green/bold) show with surrounding data for context, discovered in 

lead 2 of BIDMCch07. 

The label given by the teacher, Dr. Criley was “Interference from nearby electrical 

apparatus:  probably infusion pump”. Having learned this label our algorithm detected 

fifty nine more occurrences of it in the remaining twenty hours of the trace. A careful 

retrospective examination of the data suggests that the algorithm had perfect 

precision/recall on this unexpected class. 

275,500 One Second 277,500
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4.3.4 Bird Song Classification 

Recently a worldwide citizen science project called Bat Detective [2] has being using 

crowdsourcing to attempt to count bat populations by having volunteers classify sounds 

as one of {bat, insect, mechanical} (the latter class is a umbrella term for sounds 

created by human activities). In our efforts to volunteer for this project we noted that the 

majority of signals the system asked us to classify are wind noise or other low interest 

signals (see [5] for sample screenshots. We wondered if our framework would allow 

more useful queries to be sent to the users, thus making more effective use of their time.  

We do not have ready access to bat sounds, so we produced a similar system for bird’s 

sounds. To produce a dataset for which we had ground truth we did the following. We 

recorded an hour at midnight at the UCR botanical gardens on January 12 2012. A careful 

human annotation of the sound file reveals wind noise, voices in the distance, low volume 

rumbles from aircraft, etc, but no obvious wildlife calls. Using data from xeno-canto.org 

we randomly embedded ten examples of short (about 3 seconds) calls of a Tawny Owl in 

the data. Using the raw audio as S, and a single 100Hz Mel-Frequency Cepstral 

Coefficient (MFCC) as P, we ran our algorithm on this data.  As Figure 4.13 shows our 

system can easily recover the patterns. 
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Figure 4.13: The motif discovered in the first run on the bird dataset. right) One snippet 

in three representations, bottom-to-top a spectrogram, an oscillogram and the MFCC we 

used.  

The snippets may be heard at [5], they are easily identifiable as an owl, and however, it 

is less clear if an ornithological crowdsourcing community could identify them as a 

Tawny Owl. 

4.3.5 Understanding Sapsucking Insect Behavior 

Insects in the order Homoptera feed on plants by using a feeding tube called a stylet to 

suck out sap. This behavior is damaging to the plants, and it has been estimated that 

species in this order cause billions of dollars of damage to crops each year. Given their 

economic importance, hundreds of researchers study these insects, and increasingly they 

use a tool called an Electrical Penetration Graph (EPG), which as shown in Figure 4.14, 

adds the insect to an electrical circuit and measures the minuscule changes in voltage that 

occur as the insect feeds [56]. 

While there are now about ten widely agreed upon behaviors that experts can 

recognize in the EPG signals, little progress has been made in automatic classification in 

this domain. One reason for this is that the 32,000 species that make up order Homoptera 

are incredibly diverse; for example their size ranges over at least three orders of 
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magnitude. Thus, for many species an expert could claim of a given behavior “I know it 

when I see it”, but they could not expect a template from even a related species to match.  

As such, this is perfect application for our framework, and several leading experts on 

this apparatus agreed to help us by acting as teachers. 

 

Figure 4.14: left) A tethered brown leafhopper. right) A schematic diagram of the circuit 

for recording EPGs. bottom) A snippet of data produced during one of our experiments.  

Let us consider a typical run on a dataset consisting of a Beet Leafhopper (Circulifer 

tenellus) recorded by Dr. Greg Walker of UCR Entomology Department. Dr. Elaine 

Backus of the USDA, one of the co-inventors of the EPG apparatus, agreed to act as the 

teacher. She was only given access to the requests from our system; she could not see the 

whole time series or the insect itself. After 65 seconds the system requested a label for 

the three patterns shown in Figure 4.15.top.left. Dr. Backus labeled the pattern: phloem 

ingestion with interruption for salivation. After 13.2 minutes the system requested a 

label for behavior shown in Figure 4.15.top.right. Dr Backus labeled this pattern: 

transition from non-probing to probing. The former learned concept went on to classify 
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twenty-four examples, and the latter concept classified six. Examples of both can be seen 

in Figure 4.15.bottom. 

 

Figure 4.15: top-row) The two concepts discovered in the EPG data. bottom-row) 

Examples of classified patterns.  

A careful retrospective study of this dataset suggests that we had perfect precision and 

recall on this run. Other runs on different datasets in this domain had similar success [5].  

4.3.6 Weak Teaching Example: Elder Care 

The use of sensors placed in the environment and/or on parts of human body has shown 

great potential in effective and unobtrusive long term monitoring and recognizing the 

activities of daily living [85][80]. However, labeling accelerometer and sensor data is still 

a great challenge and requires significant human intervention. In [80] the authors 

bemoaned the fact that high quality annotation is an order of magnitude slower than real-

time, “A 30-minutes video footage requires about 7-10 hours to be annotated.” In this 

example we leverage off our weak teacher framework to explore how well the framework 

can label the sensor data without any human intervention. 
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We consider the dataset of [85] in which comes from an activity monitoring and 

recognition system is created using a 3D accelerometer and RFID tags mounted on 

household objects. A sensor containing both an RFID tag reader and a 3D accelerometer 

is mounted on the dominant wrist. Volunteers were asked to perform housekeeping 

activities in any order of their choosing to the natural distribution of activities in their 

daily life. Thus, the dataset is multidimensional time series with three real-valued and 38 

binary dimensions.   

For our experiment, we consider the just the X-axis acceleration sensor. The active 

learning algorithm is set in weak teacher mode. After 24 seconds the system finds a 

concept C1, worth exploring (Figure 4.16.top.left). As we can see in Figure 4.16, our 

algorithm waited for the next occurrence of the pattern (it happens that three occur close 

together) and it polls the 38 binary RFID-detected sensors to see which are on. 

 

Figure 4.16: top) After we have learned the concept C1 our system monitors for future 

occurrences of it. Here it sees three examples in a row. bottom) By polling the binary 

RFID sensors when a “hit” for C1 is detected, we can learn that the concept is associated 

with ‘glove’. 

Our algorithm found an additional ten subsequences similar to the template. For six of 

these subsequences only the RFID tag sensor labeled glove was on. Of the remaining 
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four hits, just the iron was on for three times and just fan was on once. Thus, we end 

up with the probabilities shown in Figure 4.17.right.  

 

Figure 4.17: top) A zoom-out of the time series shown in Figure 4.16. bottom) The 

probability of concept C1 been associated with various items. Of 38 possibilities only 3 

have non zero entries.  

In Figure 4.18, we show the relevant subsequences. Here, the true positives are 

subsequences that voted for glove, and the false positives voted for iron or fan. After 

a careful check of the original data we discovered that the pattern actually corresponds to 

dishwashing, which is the only behavior for which the participant wore gloves.  

 

Figure 4.18: top-left) The motif discovered in our Elder care sensor experiment and 

averaged into concept C1 (bottom-left). Examples of true positives and false positives. 
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4.4 Conclusion 

In this chapter, we introduce the first never-ending framework for real value time series 

streams. We show our system is scalable, able to handle 250Hz with ease (cf. Section 

4.3.3) and that it is robust to significant noise (cf. Figure 4.15 and Figure 4.18). 

Moreover, by applying it to very diverse domains we have shown it is a very general and 

flexible framework. In future work, we hope to remove the few assumption/parameters 

we have and apply our ideas to year-plus length streams. We have made all our code and 

data freely available [5] and hope to see our work built upon and applied to an even 

richer set of domains. 
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Chapter 5 

Conclusion 

Discovery of structures from rich, diverse data is a challenging task, and thanks to rapid 

improvements in data mining/machine learning community, many proposed robust 

system can effectively solve different domain problems. For example, audio processing is 

one of the most difficult but highly demanded tasks to be solved. Automatic speech 

recognition system, for example, has been applied to healthcare, military, telephony 

areas, and is very convenient for our daily lives. Speech recognition and music analysis 

have achieved impressive improvements so far, however, most research on monitoring 

animal sound to measure the health level of the ecosystem still just replies on human 

speech techniques, which are ill-suited for the task. Therefore, it is essential to build 

unified frameworks because tuning parameters is not easy for domain experts. Moreover, 

processing high speed streaming data efficiently is an essential task for many practical 

applications in various domains.  

In this thesis, we first discussed the utilization of audio fingerprint, which is a 

powerful primitive representation to investigate animal sounds, and allows us to achieve 

different level species classification, and recognize rare species animals. Moreover, the 
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algorithm provides interpretable evaluation, therefore, can give domain experts better 

intuition of their disorganized data collections.  

We introduced a scalable and general approach to find repeated patterns in large audio 

data archives by an anytime framework in Chapter 3, where we demonstrated our 

algorithm on various domains, such as finding audio motifs in human speech, music, 

laboratory mice vocalization, wild animal sounds, etc. We demonstrated that our 

algorithm can find semantically meaningful patterns in human speech, corresponding 

animal behaviors by checking the with domain experts.  

Lastly, we introduced the first, scalable, never-ending learning framework for real 

valued time series streams, which could be a proxy for high dimensional data, such as 

audio, image, video, etc. We demonstrated our framework in diverse domains, including 

data generated from human motion capture/monitoring, ECG, EPG, animal sounds, etc.  

 

 

 

 

 

 

 



126 

 

  

Bibliography 

[1] A. Goldberger et al. Physionet, accessed Feb-04-2013.   

physionet.ph.biu.ac.il/physiobank/database/chfdb/ 

[2] K. Jones (2012).  www.batdetective.org 

[3] Macaulay Library, Cornell Lab of Ornithology, www.macaulaylibrary.org/index.do 

[4] J. Roach, Cricket, Katydid Songs Are Best Clues to Species' Identities. National 

Geographic News, (URL), news.nationalgeographic.com/news/2006/09/060905-

crickets.html 

[5] Supporting webpage contains datasets, source code, slides, and other related 

resources. www.cs.ucr.edu/~yhao 

[6] A. Vedaldi. www.vlfeat.org/~vedaldi/index.html 

[7] Xeno-canto. www.xeno-canto.org/ 

[8] E. Achtert, C. Bohm, H-P. Kriegel, P. Kröger. Online Hierarchical Clustering in a 

Data Warehouse Environment Data Mining. ICDM, pp.10–17, 2005. 

[9] S. E. Anderson, A. S. Dave, and D. Margoliash. Template-based automatic 

recognition of birdsong syllables from continuous recorderings. Acoustic Society of 

America Journal, 100: 1209-19, Aug 1996. 

[10] I. Assent, P. Kranen, C. Baldauf, T. Seidl. AnyOut: Anytime Outlier Detection on 

Streaming Data. DASFAA (1), 228-242, 2012. 

[11] J.-J. Aucouturier and M. Sandler. Finding repeating patterns in acoustic musical 

signals: applications for audio thumbnailing. In AES 22
nd

 Int’ Conference, 2002. 

[12] M. E. Ayadi, M. S. Kamel, F. Karray. Survey on Speech emotion recognition: 

Features, classification schemes, and databases. Pattern Recognition. vol 44, 3, 572-

587, 2011. 

[13] S. Baluja, M. Covell. Waveprint Efficient wavelet-based audio fingerprinting. 

Pattern Recognition 41, 3467-80, 2008. 

[14] R. Bardeli. Similarity search in animal sound databases. IEEE Transactions on 

Multimedia, vol. 11, no. 1, pp. 68–76, 2009. 



127 

 

[15] G.  Batista, E. Keogh, A. Mafra-Neto, E. Rowton: Sensors and software to allow 

computational entomology, an emerging application of data mining. KDD, 761-764, 

2011. 

[16] Y. Beiderman, Y. Azani, Y. Cohen, C. Nisankoren, M. Teicher, V. Mico,  J. 

Garcia, Z. Zalevsky. Cleaning and quality classification of optically recorded voice 

signals. Recent Patents on Signal Proc’ 6-11, 2010. 

[17] E. Berlin and K. Laerhoven. Detecting leisure activities with dense motif discovery.  

Proceedings of the Intl Conference on Uniquitous Computing. pp. 250-59, 2012. 

[18] F. Bianconi, A. Fernandez. Evaluation of the effects of Gabor filter parameters on 

texture classification. Pattern Recognition, 40(12), 3325–35, 2007. 

[19] D. T. Blumstein et.al. Acoustic monitoring in terrestrial environments using 

microphone arrays: applications, technological considerations, and prospectus. J. 

Appl Ecol 48:758–767, 2001. 

[20] M. Borazio and K. Laerhoven. Combining Wearable and Environmental Sensing 

into an Unobtrusive Tool for Long-Term Sleep Studies”. 2
nd

 ACM SIGHIT 2012. 

[21] Bourvil. C’etait bien (le petit bal perdu). Lyrics: R. Nyel, Music: G. Verlor, 

Editions Bagatelle. 1961. 

[22] J. C. Brown, P. Smaragdis. Hidden Markov and Gaussian mixture models for 

automatic call classification. J.  Acoust. Soc. Am, (6):221–22, 2009. 

[23] N. A. Butinov, Y. Knorozov. Preliminary Report on the Study of the Written 

Language of Easter Island. Journal of the Polynesian Society 66 (1): 5–17, 1957. 

[24] B. J. L. Campana, E. J. Keogh. A compression-based distance measure for texture. 

Statistical Analysis and Data Mining, SDM, 3(6): 381-398, 2010.  

[25] A.S.L.O. Campanharo, M.I. Sirer, R.D. Malgren, F.M. Ramos, L.A.N Nunes. 

Duality between time series and networks. Plos One, 6, p. e23378, 2011. 

[26] P. Cano, E. Battle, T. Kalker, J. Haitsma. A review of audio fingerprinting. The 

Journal of VLSI Signal Processing, pp. 271-284, 2005. 

[27] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr. and T.M. 

Mitchell. Toward an Architecture for Never-Ending Language Learning. In Proc’ 

AAAI, 2010. 

[28] R. Cole, J. Mariani, H. Uszkoreit, G. B. Varile, A. Zaenen, A. Zampolli. Survey of 

the State of the Art in Human Language Technology. Cambridge University Press, 

1998.  

[29] G. Cormode, M. Hadjieleftheriou. Methods for finding frequent items in data 

streams. VLDB J. 19(1): 3-20, 2010. 

[30] T. Dang, N. Bulusu, W. C. Feng, W. Hu. RHA: A Robust Hybrid Architecture for 

Information Processing in Wireless Sensor Networks, In 6
th

 ISSNIP, 2010. 



128 

 

[31] K. P. Dial, E. Greene, and D. J. Irschick. Allometry of behavior. Trends in Ecology 

and Evolution 23:394–401. 

[32] C. Dietrich, F. Schwenker, G. Palm. Classification of Time Series Utilizing 

Temporal and Decision Fusion. Proceedings of Multiple Classifier Systems (MCS), pp 

378-87, 2001. 

[33] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E. J. Keogh. Querying and 

mining of time series data. Experimental comparison of representations and distance 

measures. PVLDB 1(2): 1542-1552, 2008. 

[34] Dr. Seuss. The Cat in the Hat. ISBN 0-394-80001-X, Random House, 1957. 

[35] C. Elkan and K. Noto: Learning classifiers from only positive and unlabeled data. 

KDD: pp213-220, 2008. 

[36] L. Elliott, W. Hershberger. The Songs of Insects. Houghton-Mifflin Company, 2007 

[37] F. Ferreira, D. Bota, A. Bross, C. Mélot, J Vincent. Serial evaluation of the SOFA 

score to predict outcome in critically ill patients. JAMA Oct 10, 286(14):1754-8, 

2001. 

[38] A. Fu, E. Keogh, L. Lau, C. A. Ratanamahatana, R. C.-W. Wong. Scaling and time 

warping in time series querying. VLDB J. 17(4): 899-921, 2008. 

[39] P. Fussell. Poetic Meter and Poetic Form. Random House. 1965. 

[40] C. M. Glaze, T. W. Troyer. Behavioral Measurements of a Temporally Precise 

Moto Code for Birdsong. Journal of Neuroscience, 27(29): 7631-7639, July 18, 2007. 

[41] A. Goldberger et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a 

New Research Resource for Complex Physiologic Signals. Circulation 101(23):pp 

215-20 2000. 

[42] Y. Gong. Speech recognition in noisy environments: A survey. Speech 

Communication 16, 261-291, 1995.  

[43] J. M. S. Grimsley, J. J. M. Monaghan, J. J. Wenstrup. Development of Social 

Vocalizations in Mice. PLoS ONE 6(3): e17460, 2007.  

[44] R. J. Hagerman, et.al. Advances in the Treatment of Fragile X Syndrome. 

Pediatrics Vol. 123 No.1, January, pp 378–390 2009. 

[45] J. Haitsma, T. Kalker. A Highly Robust Audio Fingerprinting System. In 

Proceedings of International Conference on Music Information Retrieval, 2002. 

[46] N. C. Han, S. V. Muniandy, J. Dayou. Acoustic classification of Australian anurans 

based on hybrid spectral-entropy approach. Applied Acoustic. 72(9): 639-645, 2011. 

[47] C. Herley. ARGOS: Automatically Extracting Repeating Objects from Multimedia 

Streams. IEEE Transactions on multimedia, Vol.8, No.1, February 2006. 

[48] T. E. Holy, Z. Guo. Ultrasonic songs of male mice, PLoS Biol 3:e386, 2005. 

http://www.informatik.uni-ulm.de/ni/mitarbeiter/FSchwenker.html
http://www.informatik.uni-ulm.de/ni/mitarbeiter/GPalm.html


129 

 

[49] J.-L. Hsu, C.-C. Liu, A. L. P .Chen. Discovering nontrivial repeating patterns in 

music data. IEEE Trans. Multimedia, vol. 3, no. 3, pp. 311-25, Sep. 2001. 

[50] B. Hu, Y. Chen and E. J. Keogh. Time Series Classification under More Realistic 

Assumptions. SDM 2013. 

[51] B. Hu, T. Rakthanmanon, B. J. L. Campana, A. Mueen, E. J. Keogh. Image Mining 

of Historical Manuscripts to Establish Provenance. pp 804-815. SDM 2012. 

[52] Y. Jang, HC. Gerhardt. Temperature Effects on the Temporal Properties of Calling 

Songs in the Crickets: Gryllus fultoni and G.vernalis: Implications for Reproductive 

Isolation in Sympatric Populations. Journal of Insect Behavior, Vol.20, No.1, 2007. 

[53] A. Jansen, K. Church, H. Hermansky. Towards Spoken Term Discovery at Scale 

with Zero Resources. INTERSPEECH, 1676-1679, 2010. 

[54] A. Jansen, B. V. Durme. Indexing Raw Acoustic Features for Scalable Zero 

Resource Search. INTERSPEECH, 2012. 

[55] H. Jiang, T. Lin, H.-J. Zhang. Video segmentation with the assistance of audio 

content analysis. In Proc. ICME, New York, 2000. 

[56] S. Jin, Z. Chen, E. Backus, X. Sun, B. Xiao. 2012. Characterization of EPG 

waveforms for the tea green leafhopper on tea plants and their correlation with stylet 

activities. Journal of Insect Physiology. 58:1235-1244. 

[57] D. C. Karnopp. Random Search Techniques for Optimization Problems. 

Automatica, 1963. 

[58] Y. Ke, D. Hoiem, R. Sukthankar. Computer Vision for Music Identification. Proc. 

Computer Vision and Pattern Recognition, (CVPR), pp. 597-604, 2005. 

[59] E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S. Lee, J. Handley. 

Compression-based data mining of sequential data, DMKD, 14(1): 99-129, 2007. 

[60] J. A. Kogan, D. Margoliash. Automated recognition of bird song elements from 

continuous recordings using dynamic time warping and hidden markov models: a 

comparative study. J. Acoust. Soc. Am. 103(4):2185–219, 1998. 

[61] P. Kranen, M. Hassani, T. Seidl: BT*- An Advanced Algorithm for Anytime 

Classification. SSDBM: 298-315, 2012. 

[62] M. Li, X. Chen, X. Li, B. Ma, P. Vitanyi. The similarity metric. Proc’of the 14
th

 

Symposium on Discrete Algorithms, pp: 863 -72, 2003. 

[63] D. G. Lowe. Distinctive Image Features from Scale Invariant Key Point. 

International Journal of Computer Vision, vol.60, pp. 91-110, 2004. 

[64] J. B. MacQueen. Some Methods for Classification and Analysis of Multivariate 

Observations. Proceedings of 5
th

 Berkeley Symposium on Mathematical Statistics and 

Probability. University of California Press. pp.281-297. MR0214227. 

ZbI0214.46201, 2009. 



130 

 

[65] R. Mankin, D. Hagstrum, M. Smith, A. Roda, M. Kairo. Perspective and Promise: a 

Century of Insect Acoustic Detection and Monitoring. Amer. Entomol. 57: 30-44.  

[66] M. Marcarini, G. A. Williamson, L. de S. Garcia. Comparison of methods for 

automated recognition of avian nocturnal flight calls. ICASSP. 2029-32, 2008. 

[67] D. K. Mellinger, C. W. Clark. Recognizing transient low-frequency whale sounds by 

spectrogram correlation. J. Acoust. Soc. Am., 107: 6, pp. 3518-29, 2000. 

[68] C. Menuet, Y. Cazals, C. Gestreau, P. Borghgraef, L. Gielis, et al. (2011) Age-

Related Impairment of Ultrasonic Vocalization in Tau.P301L Mice: Possible 

Implication for Progressive Language Disorders. PloS ONE Jan; 6(10). 

[69] L. Mitchell. Time Segregated Mosquito Collections with a CDC Miniature Light 

Trap. Mosquito News. 42: 12, 1981. 

[70] D. Mitrovic, M. Zeppelzauer, C. Breiteneder. Discrimination and Retrieval of 

Animal Sounds. In Proc. of IEEE Multimedia Modelling Conference, Beijing, China, 

339-343, 2006. 

[71] A. Mueen, E. J. Keogh, N. Young: Logical-shapelets: an expressive primitive for 

time series classification. KDD: 1154-62, 2011. 

[72] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, M. Brandon Westover. Exact Discovery 

of Time Series Motifs. SDM 2009: 473-484  

[73] A. Celis-Murillo, J. L. Deppe, M. F. Allen. Using soundscape recordings to 

estimate bird species abundance, richness, and composition. Journal of Field 

Ornithology, 80, 64–78, 2009. 

[74] S. Nassar, J. Sander, C. Cheng: Incremental and Effective Data Summarization for 

Dynamic Hierarchical Clustering. SIGMOD Conference: 467-478, 2004. 

[75] D. J. Nowak, J. E. Pasek, R. A. Sequeira, D. E. Crane, V. C. Mastro. Potential 

effect of Anoplophora glabripennis on urban trees in the United States. Journal of 

Entomology. 94(1): 116-122, 2001.  

[76] J. B. Panksepp, K. A. Jochman, J. U. Kim, J. J. Koy, E. D. Wilson, Q. Chen, C. R. 

Wilson, G. P. Lahvis. Affiliative behavior, ultrasonic communication and social 

reward are influenced by genetic variation in adolescent mice, PLoS ONE 4:e351, 

2007. 

[77] S. Pfeiffer, S. Fischer, W. Effelsberg. Automatic Audio Content Analysis. ACM 

Multimedia 1996. 

[78] K. Riede, F. Nischk, C. Thiel, F. Schwenker. Automated annotation of Orthoptera 

songs: first results from analysing the DORSA sound repository, Journal of 

Orthoptera Research, 15(1), 105-113, 2006.  

[79] C. J. Van Rijsbergen. Information Retrieval, 2nd edition, London, England: 

Butterworths, 1979.   



131 

 

[80] D. Roggen et al. Collecting complex activity data sets in highly rich networked 

sensor environments, In Proc’ 7
th

 IEEE INSS, pp. 233-240, 2010. 

[81] J. C. Ross, Vinutha T. P., P. Rao. Detecting Melodic Motifs from Audio for 

Hindustani Classical Music. ISMIR, 2012. 

[82] A. I. Rudnicky, A. G. Hauptmann, K. F. Lee. Survey of Current Speech 

Technology. Communications of ACM, pp 52-57. 1994. 

[83] M. L. Scattoni, S. U. Gandhy, L. Ricceri, J. N. Crawley. Unusual Repertoire of 

Vocalizations in the BTBR T+tf/J Mouse Model of Autism. PLoS ONE 3: e3067, 

2008. 

[84] B. Settles. Active Learning. Morgan & Claypool, 2012. 

[85] M. Stikic, T. Huynh, K. V. Laerhoven and B. Schiele. ADL Recognition Based on 

the Combination of RFID and Accelerometer Sensing. PervasiveHealth, pp. 258–263, 

2008. 

[86] J. Sueur, S. Pavoine, O. Hamerlynck, S. Duvail. Rapid Acoustic Survey for 

Biodiversity Appraisal. PloS ONE. vol 3, 12, 2008.  

[87] E. Trentin, M. Gori. A survey of hybrid ANN/HMM models for automatic speech 

recognition. Neurocomputing. vol 37, 1-4, 91-126, 2001. 

[88] V. M. Trifa, L. Girod, T. Collier, D. T. Blumstein, C. E. Taylor. Automated 

Wildlife Monitoring Using Self- Sensor Networks Deployed in Natural Habits. AROB 

2007. 

[89] A. Veeraraghavan, R. Chellappa, A. K. Roy-Chowdhury, The Function Space of an 

Activity, Computer Vision and Pattern Recognition, 2006. 

[90] L. Wahle. Plants and Animals of Long Island Sound. Sea Grant, CT-SG-90-11. 

1990. 

[91] M. M. Wells, C. S. Henry. Songs, reproductive isolation, and speciation in cryptic 

species of insect: a case study using green lacewings. In Endless Forms: species and 

speciation, Oxford Univ. Press, NY, 1998. 

[92] X. Xi, K.Ueno, E. Keogh, D.J. Lee. Converting non-parametric distance-based 

classification to anytime algorithms. Pattern Anal. Appl. 11(3-4): 321-36, 2008. 

[93] L.Ye and E.Keogh. Time series shapelets: a new primitive for data mining. In 

Proceedings of the 15
th

 ACM SIGKDD international conference on Knowledge 

discovery and data mining, KDD, pages 947-956, 2009. 

[94] G. Yu, J.-J. Slotine. Audio classification from time-frequency texture, IEEE 

ICASSP, pp. 1677-80, 2009. 

[95] J. Zakaria, S. Rotschafer, A. Mueen, K. Razak, E. Keogh. Mining Massive 

Archives of Mice Sounds with Symbolized Representations. SIAM SDM, 2012. pp 

588-599.  



132 

 

[96] D. Zaykovskiy. Survey of the Speech Recognition Techniques for Mobile Devices. 

SPECOM, 25-29. 2006. 

[97] M. Zeppelzauer, A. S. Stöger, C. Breiteneder. Acoustic detection of elephant 

presence in noisy environments. Proceedings of the 2nd ACM international workshop 

on Multimedia analysis for ecological data. Pages 3-8, 2013. 

[98] Y. Zhang, S. Rajagopalan, M. Salman. A Practical Approach for Belt Slip 

Detection in Automotive Electric Power Generation and Storage System. In 

Aerospace Conference, IEEE pp.1-7, 2010. 

 

 

 




