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Abstract A search for pair production of heavy scalar lep-
toquarks (LQs), each decaying into a top quark and a τ lep-
ton, is presented. The search considers final states with an
electron or a muon, one or two τ leptons that decayed to
hadrons, and additional jets. The data were collected in 2016
in proton–proton collisions at

√
s = 13 TeV with the CMS

detector at the LHC, and correspond to an integrated lumi-
nosity of 35.9 fb−1. No evidence for pair production of LQs is
found. Assuming a branching fraction of unity for the decay
LQ → tτ , upper limits on the production cross section are set
as a function of LQ mass, excluding masses below 900 GeV
at 95% confidence level. These results provide the most strin-
gent limits to date on the production of scalar LQs that decay
to a top quark and a τ lepton.

1 Introduction

Leptoquarks (LQs) are hypothetical particles that carry non-
zero baryon and lepton quantum numbers. They are charged
under all standard model (SM) gauge groups, and their possi-
ble quantum numbers can be restricted by the assumption that
their interactions with SM fermions are renormalizable and
gauge invariant [1]. The spin of an LQ state is either 0 (scalar
LQ) or 1 (vector LQ). Leptoquarks appear in theories beyond
the SM such as grand unified theories [2–4], technicolor mod-
els [5,6] and other compositeness scenarios [7,8], and R-
parity-violating (RPV) supersymmetric models [9,10].

Third-generation scalar LQs (LQ3s) have recently rec-
eived considerable theoretical interest, as their existence can
explain the anomaly in the B → Dτν and B → D∗τν

decay rates reported by the BaBar [11,12], Belle [13–15], and
LHCb [16] Collaborations. These decay rates deviate from
the SM predictions by about four standard deviations [17],
and studies of the flavor structure of LQ couplings reveal
that large couplings to third-generation quarks and leptons
could explain this anomaly [18–21]. Third-generation LQs

� e-mail: cms-publication-committee-chair@cern.ch

can appear in models in which only third-generation quarks
and leptons are unified [22,23] and therefore their existence
is not constrained by proton decay experiments. All models
that predict LQs with masses at the TeV scale and sizable
couplings to top quarks and τ leptons can be probed by the
CMS experiment at the CERN LHC.

In proton–proton (pp) collisions LQs are mainly pair pro-
duced through the quantum chromodynamic (QCD) quark-
antiquark annihilation and gluon-gluon fusion s- and t-
channel subprocesses as shown in Fig. 1. There are also
lepton-mediated t- and u-channel contributions that depend
on the unknown lepton-quark-LQ Yukawa coupling, but
these contributions to LQ3 production are negligible at the
LHC as they require third-generation quarks in the initial
state. Hence, the LQ pair-production cross section can be
taken to depend only on the assumed values of the LQ
spin and mass, and on the center-of-mass energy. The cor-
responding pair production cross sections have been cal-
culated up to next-to-leading order (NLO) in perturbative
QCD [24].

This paper presents the first search for the production of an
LQ3 decaying into a top quark and a τ lepton at

√
s = 13 TeV.

The search targets LQ3s with electric charges −5/3 e and
−1/3 e, where e is the proton charge, and with various pos-
sible weak isospin configurations, depending on the model. A
previous search for this channel at

√
s = 8 TeV by the CMS

Collaboration resulted in a lower mass limit of 685 GeV for
an LQ3 with branching fraction B = 1 into a top quark and
a τ lepton [25]. Other searches for an LQ3 have targeted the
decays LQ3 → bν and LQ3 → bτ [26–39]. The results of
the search presented here are also interpreted in the context
of RPV supersymmetric models, where the supersymmetric
partner of the bottom quark (bottom squark) decays into a
top quark and a τ lepton via the RPV coupling.

We consider events with at least one electron or muon
and at least one τ lepton, where the τ lepton undergoes a
one- or three-prong hadronic decay, τh → hadron(s)+ντ . In
LQ3LQ3 events, τ leptons arise directly from LQ3 decays, as
well as from W bosons in the top quark decay chain. Electrons
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Fig. 1 Dominant leading order Feynman diagrams for the production
of leptoquark pairs in proton–proton collisions

and muons are produced in leptonic decays of W bosons or τ

leptons. Two search regions are used in this analysis: a di-τ
region with the signature �τhτh+jets and small background
levels from SM processes, which provides high sensitivity
for LQ3 masses below 500 GeV, and a region with a single
τ lepton in the final state, �τh+jets, which has higher sen-
sitivity for LQ3 masses above 500 GeV because of a larger
signal efficiency. Here, � denotes either an electron or a muon.
The dominant backgrounds in this search come from tt+jets
and W + jets production, with jets misidentified as hadron-
ically decaying τ leptons. These backgrounds are estimated
through measurements in control regions and extrapolated to
the signal region.

In this paper, Sect. 2 describes the CMS detector, while
Sect. 3 discusses the data samples and the properties of sim-
ulated events utilized in the analysis. Section 4 outlines the
techniques used for event reconstruction and Sect. 5 describes
the selection criteria applied in each analysis channel. The
method used for the background estimation is reported in
Sect. 6, and systematic uncertainties are detailed in Sect. 7.
Finally, Sect. 8 contains the results of the analysis, and Sect. 9
summarizes this work.

2 The CMS detector

The central feature of the CMS apparatus [40] is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapid-
ity (η) coverage provided by the barrel and endcap detectors.
Electron momenta are estimated by combining the energy
measurement in the ECAL with the momentum measure-
ment in the tracker. Muons are measured in gas-ionization
detectors embedded in the steel flux-return yoke outside the

solenoid. A more detailed description of the CMS detector,
together with a definition of the coordinate system used and
the relevant kinematic variables, can be found in Ref. [40].

Events of interest are selected using a two-tiered trigger
system [41], where the first level is composed of custom
hardware processors and selects events at a rate of around
100 kHz within a time interval of less than 4µs. The second
level, known as the high-level trigger, uses a version of the
full event reconstruction software optimized for fast process-
ing, and reduces the event rate to around 1 kHz before data
storage.

3 Data sample and simulated events

The search for LQ3s presented here uses pp collisions at√
s = 13 TeV recorded with the CMS detector in 2016.

The data sample corresponds to an integrated luminosity of
35.9 fb−1 [42].

The leading order (LO) Monte Carlo (MC) program
pythia 8.205 [43] is used to simulate the LQ3 pair production
signal process. Both LQ3s are required to decay into a top
quark and a τ lepton, and polarization effects from the chiral-
ities of the top quark and the τ lepton have been neglected.
The signal samples are generated for LQ3 masses ranging
from 200 to 2000 GeV.

The principal background processes, top quark pair pro-
duction (tt) via the strong interaction and electroweak sin-
gle top quark production in the t-channel and tW processes,
are simulated with the NLO generator powheg (v1 is used
for the single top tW processes and v2 for the single top
t-channel and tt processes) [44–49]. The s-channel process
of single top quark production is generated at NLO using
the program MadGraph5_amc@nlo (v2.2.2) [50]. Other
background processes involve W and Z boson production in
association with jet radiation. These processes are generated
with MadGraph5_amc@nlo (v2.2.2), with W boson pro-
duction at NLO and Z boson production at LO level. The
matrix element generation of W and Z boson production
is matched to the parton shower emissions with the Fred-
erix and Frixione [51] and MLM [52] algorithms, respec-
tively. Background processes from QCD multijet production
are simulated with pythia 8.205. For all generated events,
pythia 8.205 is used for the description of the parton shower
and hadronization. In the parton shower, the underlying event
tune CUETP8M1 [53,54] has been applied for all samples
except for tt and single top quark production in the t-channel,
which use the underlying event tune CUETP8M2T4 [53,54].
The event generation is performed using the NNPDF 3.0 par-
ton distribution functions (PDFs) [55], for all events. The
detector response is modeled with the Geant4 [56] suite of
programs.
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4 Event reconstruction

Event reconstruction is based on the CMS particle-flow (PF)
algorithm [57], which combines information from all subde-
tectors, including measurements from the tracking system,
energy deposits in the ECAL and HCAL, and tracks recon-
structed in the muon detectors. Based on this information, all
particles in the event are reconstructed as electrons, muons,
photons, charged hadrons, or neutral hadrons.

Interaction vertices are reconstructed using a determinis-
tic annealing filtering algorithm [58,59]. The reconstructed
vertex with the largest value of summed physics-objects
p2

T is taken to be the primary pp interaction vertex. The
physics objects are jets, clustered using the jet finding algo-
rithm [60,61] with the tracks assigned to the vertex as inputs,
and the associated missing transverse momentum, taken as
the negative vector sum of the pT of those jets. Charged par-
ticles associated with other interaction vertices are removed
from further consideration.

Muons are reconstructed using the information collected
in the muon detectors and the inner tracking detectors, and
are measured in the range |η| < 2.4. Tracks associated with
muon candidates must be consistent with muons originating
from the primary vertex, and are required to satisfy a set of
identification requirements. Matching muon detector infor-
mation to tracks measured in the silicon tracker results in a
pT resolution for muons with 20 < pT < 100 GeV of 1.3–
2.0% in the barrel and better than 6% in the endcaps. The pT

resolution in the barrel is better than 10% for muons with pT

up to 1 TeV [62].
Electron candidates are reconstructed in the range |η| <

2.5 by combining tracking information with energy deposits
in the ECAL. Candidates are identified [63] using informa-
tion on the spatial distribution of the shower, the track quality
and the spatial match between the track and electromagnetic
cluster, the fraction of total cluster energy in the HCAL, and
the level of activity in the surrounding tracker and calorimeter
regions. The transverse momentum pT resolution for elec-
trons with pT ≈ 45 GeV from Z → ee decays ranges from
1.7% for nonshowering electrons in the barrel region to 4.5%
for electrons showering in the endcaps [63].

Jets are clustered using PF candidates as inputs to the
anti-kT algorithm [60] in the FastJet 3.0 software pack-
age [61], using a distance parameter of 0.4. For all jets, cor-
rections based on the jet area [64] are applied to the energy
of the jets to remove the energy contributions from neutral
hadrons from additional pp interactions in the same or adja-
cent bunch crossings (pileup collisions). Subsequent cor-
rections are used to account for the nonlinear calorimetric
response in both jet energy and mass, as a function of η and
pT [65]. The jet energy resolution amounts typically to 15%
at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV [66]. Correc-
tions to the jet energy scale and the jet energy resolution are

propagated to the determination of the missing transverse
momentum [66]. Jets associated with b quarks are identified
using the combined secondary vertex v2 algorithm [67,68].
The working point used for jet b tagging in this analysis has
an efficiency of ≈65% (in tt simulated events) and a mistag
rate (the rate at which light-flavor jets are incorrectly tagged)
of approximately 1% [68].

Hadronically decaying τ leptons are reconstructed with
the hadron-plus-strips (HPS) algorithm [69] and are denoted
by τh. The HPS algorithm is based on PF jets and addition-
ally includes photons originating from neutral pion decays.
Energy depositions in the ECAL are reconstructed in “strips”
elongated in the direction of the azimuthal angle φ, to
take account of interactions in the material of the detec-
tor and the axial magnetic field. These deposits are asso-
ciated with one or three charged tracks to reconstruct vari-
ous hadronic decay modes of τ leptons. To suppress back-
grounds from light-quark or gluon jets, a τh candidate is
required to be isolated from other energy deposits in the
event. The isolation criterion is based on the scalar pT

sum Iτ of charged and neutral PF candidates within a cone
of radius

√
(Δη)2 + (Δφ)2 = 0.5 around the τh direction,

excluding the τh candidate. The isolation criterion is Iτ <

1.5 GeV [70].
The energies and resolutions as well as the selection

efficiencies for all reconstructed jets and leptons are stud-
ied in data and simulated events [62,63,66,68,70]. Based
on these studies, the simulation is corrected to match the
data.

5 Event selection and categorization

In the online trigger system, events with an isolated muon
(or electron) with pT > 24 (27) GeV and |η| < 2.4 (2.1)

are selected in the muon (electron) channel. We select events
offline containing exactly one isolated muon (or electron)
with pT > 30 GeV and |η| < 2.4 (2.1). For the electron
channel, a veto is applied to events with a muon to avoid
overlap between the two channels. At least one τh lepton with
pT > 20 GeV and |η| < 2.1 and at least two jets with pT >

50 GeV and |η| < 2.4 are required. Events are selected if a
third jet with pT > 30 GeV and |η| < 2.4 is present, and any
additional jets are only considered if they have pT > 30 GeV.
The magnitude of the missing transverse momentum, pmiss

T ,
is required to be above 50 GeV. Further, the events are divided
into two categories corresponding to the number of observed
LQ candidates, allowing the sensitivity to be enhanced over a
broad range of LQ masses. The event selection was chosen to
maximize the expected significance of a possible LQ signal.
A summary of the selection criteria for both categories is
given in Table 1 and described below.
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Table 1 Summary of selection criteria in event categories A (�τh +
jets) and B (�τhτh + jets), where � = μ, e. In category A, the two
subcategories, OS and SS, are defined by the charge of the �τh pair. The
fit variable used in each category is also shown

ByrogetaCAyrogetaC
OS �τh + jets SS �τh + jets OS �τhτh + jets

Jet selection ≥4 jets ≥3 jets ≥3 jets
pmiss
T selection pmiss

T > 100GeV pmiss
T > 50GeV pmiss

T > 50GeV
τh selection pT > 100GeV pτ1

T > 65GeV, pτ2
T > 35GeV

b tagging ≥1 b tag —
ST selection — ST > 350GeV
Fit variable pt

T in two ST bins number of events

5.1 Category A: �τh + jets

In this category, exactly one τh lepton is required in addition
to the presence of one electron or muon. High pT require-
ments are applied to maximize the sensitivity at high LQ
masses. The leading jet is required to have pT > 150 GeV.
In addition we define two subcategories based on the electric
charges of the particles in the �τh pair: opposite-sign (OS) and
same-sign (SS). Events passing the OS �τh pair requirement
must contain at least four jets and have pmiss

T > 100 GeV.
For both subcategories, we require that the leading tau lep-
ton has pT > 100 GeV and that there is at least one b-tagged
jet. Finally the events are divided into two regions of ST,
where ST is the scalar pT sum of all selected jets, leptons,
and pmiss

T . In the low (high)-ST search regions, events must
satisfy ST < 1200 (≥ 1200) GeV. This division adds sensi-
tivity for LQ3 masses of 600 GeV and higher.

The top quarks originating from the decay of a heavy LQ3
are expected to be produced with larger pT than the top quarks
produced in background processes. Therefore, the transverse
momentum distribution of the top quark candidate decaying
into hadronic jets (pt

T) gives discrimination power between
background and signal events, and a measurement of the pt

T
spectrum is performed in category A.

A kinematic reconstruction of the top quark candidate is
performed by building top quark hypotheses using between
one and five jets. Because of the presence of multiple
hypotheses in each event, we choose the hypothesis in which
the reconstructed top quark mass is closest to the value of
172.5 GeV.

The statistical evaluation in this category is performed
through a template-based fit to the measured pt

T distribution.

5.2 Category B: �τhτh + jets

In this category events are required to have at least two τh

leptons and one electron or muon. This requirement of two τh

leptons removes a large fraction of the SM background pro-
cesses. The exception to this exclusion of SM backgrounds
are diboson production events that contain one or more τh

leptons, but the cross sections for these processes are small.
The selection criteria in this category are adapted to provide
good sensitivity for low LQ masses.

Each event is required to contain an OS τhτh pair. If the
event contains more than one τhτh pair, the OS pair with the
largest scalar pT sum is selected. Moreover, the leading and
subleading τh must satisfy pT > 65 and 35 GeV, respectively.

In this category a counting experiment is performed, as
the number of expected background events is too small for
results to benefit from a shape-based analysis.

6 Background estimation

The background in this analysis consists of samples of events
that are selected because of jets misidentified as τh leptons
and events with one electron or muon together with one or
more τh leptons.

In the following, events from tt and W + jets production
that contain at least one misidentified τh lepton are obtained
from control regions (CRs) separately defined for the two
search regions (SRs) A and B. We consider the following con-
tributions: the tt background that consists of only misidenti-
fied τh leptons (or exactly one misidentified τh lepton as in
category A), denoted by ttf , the tt background that consists
of (at least) one τh lepton and (at least) one misidentified τh

lepton (only used in category B), denoted by ttp+f , and the
tt background that consists of one τh lepton, denoted by ttp.

An extrapolation method is used to derive the background
due to misidentified τh leptons. The normalization, and in
category A also the shape, of the tt background is estimated
using

N tt, data
SR =

(
N data

CR − N other, MC
CR

) N tt, MC
SR

N tt, MC
CR

, (1)

where N is the total number of events for the respective
process in the signal region or control region and where
“other” denotes all non-tt background processes that are esti-
mated from simulation. The contribution to the background
from events with τh leptons only is estimated from simulated
events.

6.1 Backgrounds in category A

In each subcategory of category A, the largest fraction of
background events originates from tt production. The second
largest source of background events arises from W + jets
production, while minor contributions come from single top
quark and Z + jets production.

The ttf background and the W + jets background that
contain a misidentified τh lepton are derived from a single
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Fig. 2 Shape comparison between the category A signal region and
the corresponding control region, as a function of pt

T, for simulated tt
and W + jets events. Events with an opposite-sign μτh pair are shown
in the upper panel, while those with a same-sign μτh pair are shown in
the lower panel. The full selection is applied and the ST categories are
combined. All histograms are normalized to the total number of entries.
Uncertainties of the signal region and control region are indicated by
red error bars and gray hatched areas, respectively. The gray band in
the ratio plot corresponds to the statistical uncertainty in the simulated
samples

control region (CRA), which is defined through the same
selection requirements as for the SR, but with an inverted
isolation requirement for the τh lepton.

The shape of the pt
T distribution is compared between the

CRA and SR in simulated tt and W + jets events. Since the
inversion of the τh isolation criterion introduces kinematic
differences between the SRs and CRs, the jet multiplicity
and pt

T are corrected in order to reproduce the shape of the tt
and W+jets backgrounds in the SRs [71], as shown in Fig. 2.

tt̄f

tt̄f

tt̄p+f

SR

CRB1 CRB2

Fig. 3 Strategy for the background estimation in category B. The ttf
background in the signal region is derived from the control region CRB1.
The ttp+f background in the signal region is derived from the control
region CRB2. To obtain an estimate of the ttf background in the control
region CRB2, the control region CRB1 is used

Once the kinematic distributions in the CRA are corrected,
we use Eq. (1) to extrapolate the tt and W + jets back-
ground yields to the SR. In this equation, we replace N tt

with N tt, W+jets for category A.

6.2 Backgrounds in category B

In category B, the dominant background also originates from
tt production. As the fraction of misidentified electrons and
muons was found to be negligible in this analysis, at least one
of the two τh leptons is mimicked by a jet. Thus, background
events from tt production consist either of only misidentified
τh leptons or one τh lepton and one misidentified τh lepton,
plus an electron or a muon. A separate CR is defined for each
component. The strategy for determining this background in
category B is shown in Fig. 3.

The first control region (CRB1) is defined by inverting
the isolation criterion for all τh leptons with respect to the
isolation criterion applied in the SR. The region CRB1 is
used to extrapolate the ttf background to the SR. In contrast
to the SR, the charge criterion on the τh lepton is removed
and the leading τh lepton must have pT < 100 GeV to avoid
overlap between the control region CRB1 and control region
CRA. The ttf background normalization is then derived as in
Eq. (1).

A second control region (CRB2) to estimate the ttp+f back-
ground is defined, in which at least one isolated and at least
one nonisolated τh lepton are required. In contrast to the SR,
the charge criterion on the τh lepton is removed and the lead-
ing τh lepton must have pT < 45 GeV. The event must have
an opposite-sign �τh pair. For this requirement, the pair with
the largest summed pT is chosen. In addition, the events must
satisfy MT(�, pmiss

T ) > 100 GeV, where MT(�, pmiss
T ) is the

transverse mass of the lepton- �pmiss
T system and defined as

MT(�, pmiss
T ) =

√
2p�

T p
miss
T

(
1 − cos[Δφ( �p �

T, �pmiss
T )]).

The largest non-ttp+f fraction in control region CRB2 arises
from the ttf events. The estimate of this background is derived
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from the control region CRB1 and extrapolated to the control
region CRB2 by using the extrapolation method as in Eq. (1).
Once the ttf background is estimated from CRB1, it is sub-
tracted from CRB2. The ttp+f background is extrapolated to
the SR by using the extrapolation method as in Eq. (1).

7 Systematic uncertainties

Systematic uncertainties can affect both the overall normal-
ization of background components, and the shapes of the pt

T
distributions for signal and background processes. Uncer-
tainties in the MC simulation are applied to all simulated
events used in the signal and in the various control regions.
For each systematic uncertainty, the background estimation
procedure described in Sect. 6 is repeated to study the impact
of the respective systematic variation on the final result of
the analysis. In the following, the systematic uncertainties
applied to the analysis are summarized.

– The uncertainty in the integrated luminosity measure-
ment recorded with the CMS detector in the 2016 run at√
s = 13 TeV is 2.5% [42].

– The following uncertainties in the normalization of the
background processes are included:

– 5.6% in the tt production cross sect. [72] for tt events
that include τ leptons,

– 10% for single top quark [73–75], W+jets, and Z+jets
production [76],

– 20% for diboson production [77–79].

– The estimation of pileup effects is based on the total
inelastic cross section. This cross section is determined
to be 69.2 mb. The uncertainty is taken into account by
varying the total inelastic cross section by 5% [80].

– Simulated events are corrected for lepton identification,
trigger, and isolation efficiencies. The corresponding
scale factors are applied as functions of |η| and pT.
The systematic uncertainties due to these corrections are
taken into account by varying each scale factor within its
uncertainty.

– The scale factors for the jet energy scale and the jet energy
resolution are determined as functions of |η| and pT [66].
The effect of the uncertainties in these scale factors are
considered by varying the scale factors within their uncer-
tainties. These variations are propagated to the measure-
ment of the pmiss

T .
– Scale factors for the b tagging efficiencies are applied.

These scale factors are measured as a function of the
jet pT [68]. The corresponding uncertainty is taken into
account by varying the scale factors within their uncer-
tainties.

– Various uncertainties in the τ lepton reconstruction are
considered. An uncertainty of 5% in the τ lepton iden-
tification is applied, with an additional uncertainty of
0.2 pT/(1 TeV). An uncertainty of 3% in the τ lepton
energy scale is taken into account, and an uncertainty in
the charge misidentification rate of 2% is applied [70].

– Parton distribution functions from the NNPDF 3.0 set
are used to generate simulated events for both back-
ground and signal samples. The uncertainties in the PDFs
are determined according to the procedure described in
Ref. [81]. The associated PDF uncertainties in the signal
acceptance are estimated following the prescription for
the LHC [81].

– We consider uncertainties in the renormalization (μR)
and factorization (μF) scales by varying the respective
scales, both simultaneously and independently, by factors
between 0.5 and 2.

– We apply an uncertainty in the background estimation
method by varying the extrapolation factors for back-
ground processes without τ leptons within their uncer-
tainties. An additional uncertainty due to the correction
factors used to reweight events in control region CRA is
applied.

The systematic uncertainties with the largest effects on
the most important background processes and on the signal
are summarized in Table 2. The most important background
processes are the ttf , ttf and W+ jets, and ttp+f backgrounds
derived from data, and the ttp background taken from sim-
ulation. Also shown is the systematic uncertainty associated
with the signal produced by an LQ3 whose mass is 700 GeV.
The impact of the different sources of uncertainty varies for
different processes. The uncertainty due to the variation in
the scales μR and μF has a large impact on the ttp back-
ground, and is derived from simulation. The uncertainty in
the τ lepton identification has the largest effect on the signal
sample. For the backgrounds derived from several CRs, the
uncertainty in the extrapolation factor has the largest impact.

8 Results

The results of all search categories in the electron and
muon channels are combined in a binned-likelihood fit.
A statistical template-based analysis, using the measured
pt

T distributions in category A and a counting experi-
ment with the events measured in category B, is per-
formed by using the Theta software package [82]. Each
systematic uncertainty discussed in Sect. 7 is accounted
for by a nuisance parameter in the likelihood forma-
tion.

The post-fit pt
T distributions in the electron and muon

channels in category A are shown in Figs. 4 and 5, respec-
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Table 2 Summary of largest systematic uncertainties for the ttf (and
W + jets) and ttp+f backgrounds derived from data, for the ttp back-
ground obtained from simulation and for a leptoquark signal with a mass

of 700 GeV. Shown are the ranges of uncertainties, which are dependent
on the search regions and the lepton channel type

Uncertainty Category A Category B

ttp ttf + W+ jets LQ3 ttf ttp+f LQ3

Scales (μF, μR) (%) 26–42 1–7 – 5–7 2–6 –

τ ID (%) 8–9 0–1 9–11 0 5–6 18–20

Bkg. estimate (%) – 6–18 – 26–30 30–38 –
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Fig. 4 Distributions of pt
T for events in the electron channel passing the

full selection in category A. The events are separated into OS (upper),
SS (lower), low ST (left) and high ST (right) categories. The hatched
areas represent the total uncertainties of the SM background. In the bot-

tom panel, the ratio of data to SM background is shown together with
statistical (dark gray) and total (light gray) uncertainties of the total SM
background
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Fig. 5 Distributions of pt
T for events in the muon channel passing the

full selection in category A. The events are separated into OS (upper),
SS (lower), low ST (left) and high ST (right) categories. The hatched
areas represent the total uncertainties of the SM background. In the bot-

tom panel, the ratio of data to SM background is shown together with
statistical (dark gray) and total (light gray) uncertainties of the total SM
background

tively. Contributions from tt and W + jets production with a
misidentified τh lepton are derived from control region CRA,
whereas SM backgrounds with a τh lepton and other small
backgrounds are taken from simulation.

In Table 3, the total number of events from background
processes and signal processes in category B is summarized.
No significant deviation from the SM prediction is observed
in the data in either category A or category B.

A Bayesian statistical method [82,83] is used to derive
95% confidence level (CL) upper limits on the product of
the cross section and the branching fraction squared for
LQ3 pair production. Pseudo-experiments are performed to
extract expected limits under a background-only hypothe-

sis. For the signal cross section parameter, we use a uni-
form prior distribution. For the nuisance parameters, log-
normal prior distributions are used. These are randomly var-
ied within their ranges of validity to estimate the 68 and
95% CL expected limits. Correlations between the system-
atic uncertainties across all channels are taken into account.
The statistical uncertainties of simulated samples are treated
as an additional Poisson nuisance parameter in each bin of
the pt

T distribution.
The 95% CL upper limits on the product of the cross sec-

tion and the branching fraction squared B2 as a function of
LQ3 mass and the 95% CL upper limits on the LQ3 mass as a
function of B are shown in Fig. 6 (top). The cross section for

123



Eur. Phys. J. C (2018) 78 :707 Page 9 of 26 707

Table 3 Final event yield in category B in the muon and electron chan-
nels for different leptoquark mass hypotheses, the background pro-
cesses, and data. The total uncertainties for the signal and the back-
ground processes are shown

Process eτhτh + jets μτhτh + jets

LQ3 (300 GeV) 97+25
−24 167+36

−37

LQ3 (400 GeV) 73+14
−13 98+19

−17

LQ3 (500 GeV) 34.1+6.6
−6.2 44.9+8.5

−7.9

LQ3 (600 GeV) 14.1+2.8
−2.7 21.1+4.1

−3.8

LQ3 (700 GeV) 7.3+1.5
−1.4 7.1+1.5

−1.4

LQ3 (800 GeV) 3.2+0.7
−0.7 4.4+1.0

−0.9

LQ3 (900 GeV) 1.5+0.4
−0.3 1.9+0.4

−0.4

LQ3 (1000 GeV) 0.8+0.2
−0.2 0.9+0.2

−0.2

ttf 2.5+0.8
−1.2 3.2+1.5

−1.2

ttp+f 1.5+0.8
−0.8 2.0+0.8

−0.9

Single t 0.3+0.3
−0.3 0.0+0.2

−0.0

W+jets 0.5+1.2
−0.5 0.4+0.7

−0.4

Z+jets 1.4+0.5
−0.5 1.0+0.4

−0.4

Diboson 1.6+1.7
−1.6 1.7+1.8

−1.7

Total background 7.9+2.4
−2.5 8.4+2.6

−2.3

Data 9 11

pair production of scalar LQs at NLO accuracy [24] is shown
as the dashed line. The dotted lines indicate the uncertainty
due to the PDFs and to variations of the renormalization and
factorization scales by factors of 0.5 and 2.

Production cross sections of 0.6 pb for LQ3 masses of
300 GeV and of about 0.01 pb for masses up to 1.5 TeV are
excluded at 95% CL under the assumption of B = 1 for LQ3
decays to a top quark and τ lepton. Comparing these limits
with the NLO cross sections, LQ3 masses up to 900 GeV
(930 GeV expected) can be excluded.

Exclusion limits with varying branching fractions B are
presented in Fig. 6 (bottom), where limits on the complemen-
tary LQ3 → bν (B = 0) decay channel are also included.
The results for B = 0 are obtained from a search for pair-
produced bottom squarks [38] with subsequent decays into b
quark and neutralino pairs, in the limit of vanishing neu-
tralino masses. Scalar LQ3s can be excluded for masses
below 1150 GeV for B = 0 and for masses below 700 GeV
over the full B range. For the assumptions of a LQ with sym-
metric couplings under the SM gauge symmetry and with
decays to only bν and tτ , B can only take values of 1 or
0.5. When these assumptions are lifted, B can take all pos-
sible values between 0 and 1. Note that if upper limits on
B are to be used to constrain the lepton-quark-LQ3 Yukawa
couplings, λbν and λtτ , kinematic suppression factors that
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Fig. 6 Upper limits at 95% confidence level on the product of the
cross section and the branching fraction squared (upper), and on the
leptoquark mass as a function of the branching fraction (lower), for the
pair production of scalar LQs decaying to a top quark and a τ lepton.
In the top plot, the theoretical curve corresponds to the NLO cross
section with uncertainties from PDF and scale variations [24], shown
by the dotted lines. The bottom plot additionally includes results from
a search for pair-produced bottom squarks [38]

favor bν decay over the tτ decay have to be considered as
well [26,27].

The results presented here can be directly reinterpreted
in the context of pair produced down-type squarks decaying
into top quark and τ lepton pairs. Such squarks appear in
RPV SUSY scenarios and correspond to LQs with B = 0.5.
These squarks are excluded up to a mass of 810 GeV, and the
decay mode is dominated by the RPV coupling λ′

333 [84].

9 Summary

A search has been conducted for pair production of third-
generation scalar leptoquarks (LQ3s) decaying into a top
quark and a τ lepton. Proton–proton collision data recorded
in 2016 at a center-of-mass energy of 13 TeV, corresponding
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to an integrated luminosity of 35.9 fb−1, has been analyzed.
The search has been carried out in the �τh+jets and �τhτh+jets
channels, where � is either an electron or muon and τh indi-
cates a tau lepton decaying to hadrons. Standard model back-
grounds due to misidentified τh leptons are derived from con-
trol regions. The measured transverse momentum distribu-
tions for the reconstructed top quark candidate are analyzed
in four search regions in the �τh+jets channel. The observed
number of events are found to be in agreement with the back-
ground predictions.

Upper limits on the production cross section of LQ3 pairs
are set between 0.6 and 0.01 pb at 95% confidence level for
LQ3 masses between 300 and 1700 GeV, assuming a branch-
ing fraction of B = 1. The scalar LQ3s are excluded with
masses below 900 GeV, for B = 1. This result represents
the most stringent limits to date on LQ3s coupled to τ lep-
tons and top quarks and constrains models explaining flavor
anomalies in the b quark sector through contributions from
scalar LQs.
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