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ABSTRACT OF THE THESIS 

The neuronal dynamics of decision making in the Superior Colliculus 

by 

Seong Hah Cho 

Master of Science in Physiological Science 

University of California, Los Angeles, 2017 

Professor Michele A. Basso, Co-Chair 

Professor Mark Arthur Frye, Co-Chair 

 

Recent studies in monkeys suggest that neurons in sensorimotor circuits involved in perceptual 

decision-making also play a role in decision confidence. Based on these studies, confidence is 

considered to be an optimal readout of the probability that a decision is correct, as confidence is 

often correlated with decision accuracy. Here, we record neuronal activity from a sensorimotor 

decision area, the superior colliculus (SC), during two different tasks to investigate whether 

population-level activity in this area signals different types of perceptual confidence.  In one task, 

decision accuracy and confidence co-vary, allowing us to determine if neural activity in the SC 

reflects “optimal confidence,” as previously demonstrated in cortical areas.  In our second task, 

we implement a novel motion discrimination task with stimuli that are matched for decision 

accuracy (and thus “optimal confidence”) but produce different behavioral reports about 

confidence (i.e., “subjective confidence”). In our first task, we predicted choices from neuronal 

population activity using a multivariate decoder and found that decoding performance increased 

as decision accuracy increased, indicating a role for the SC in optimal confidence. In our second 

task, across two conditions in which decision accuracy was matched, performance of the decoder 

was similar between high and low confidence conditions, indicating the SC is unlikely to be 

involved in subjective confidence. These results show that the SC signals optimal decision 
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confidence similar to area LIP of cortex and also motivate future investigations to determine where 

in the brain signals related to subjective confidence reside. 
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Introduction 

When we view the world, our experience often includes an assessment of how confident we are 

in our perceptual decisions.  For example, when driving on a foggy morning, there are moments 

when we can readily identify elements in our surroundings, and other moments when we are less 

sure about what lies ahead. Survival in any dynamic environment depends on being able to 

accurately assess how reliable our perceptions and decisions are in a given instance.  Here we 

ask, how is this subjective sense of confidence in our perceptual decisions represented in the 

brain?  

Work in monkeys reveals neuronal correlates of confidence in sensorimotor circuits 

involved in decision-making and action generation, such as the lateral intraparietal area (LIP) (1) 

and the supplementary eye fields (SEF) (2). One pioneering study of the neurophysiological 

underpinnings of confidence employed an “Opt-Out” perceptual decision-making task (1). In this 

task, monkeys made decisions about the primary direction of motion in random dot displays and 

reported those decisions by making a saccade to one of two targets located in the visual field, 

which corresponded to the dominant dot motion direction (right or left). On some trials, an Opt-

Out option appeared orthogonal to the other targets and was associated with a smaller but 

guaranteed reward; choosing the Opt-Out option indicates less confidence in the decision (3–6). 

In this task, neurons recorded from area LIP discharged with the highest rates when monkeys 

correctly chose targets associated with motion toward the response field (RF) and discharged 

with the lowest rates for correct, opposite RF choices (1). When monkeys chose to Opt-Out, LIP 

neurons discharged at intermediate levels. The results from these experiments lend support to 

the influential theoretical framework that proposes that our sense confidence is an approximately 

optimal read-out of the probability of a correct decision (7, 8).  

An issue arising from this LIP study and most other previous studies of confidence is that 

decision accuracy and confidence co-vary.  That is, since subjects are usually more confident 

when they perform better on a given task, purported neuronal correlates of confidence may signal 
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decision accuracy rather than subjective confidence per se.  Recent work indicates it is possible 

to dissociate the capacity to perform perceptual tasks from confidence reports by chemically 

inactivating the pulvinar (9) or orbitofrontal cortex (10), or psychophysically in humans (9-11). 

Therefore, we reasoned we could develop visual stimuli that would lead to similar decision 

accuracy (and therefore, similar levels of “optimal confidence”), but yield different levels of 

confidence as measured by behavioral reports on individual trials (i.e., “subjective confidence”).  

Creation of these stimuli would allow us to investigate the neuronal mechanisms of confidence by 

determining whether activity in a given area signals optimal confidence, subjective confidence, or 

both.   

Monkeys performed two sets of experiments. The first was an Opt-Out task similar to that 

performed previously for recordings in LIP (1), in which decision accuracy co-varied with 

confidence.  In the second experiment, building on innovative psychophysical work done in 

humans (11–13), we introduced a new version of the dot-motion direction discrimination task in 

which we dissociated reports of subjective confidence from decision accuracy on individual trials.  

Using this new task, we were able to successfully match decision accuracy (as defined by the 

signal detection theory measure d’ (14–16)), but produce different levels of confidence (defined 

as the probability of selecting the Opt-Out target when it was available).   

As monkeys performed these tasks, we recorded from multiple neurons simultaneously in 

the superior colliculus (colliculus), a subcortical structure that receives input from LIP and SEF 

and is involved in decision-making (17–23). We combined these behavioral paradigms and 

multineuron recordings with a machine learning approach (24) to decode population-level activity 

from hundreds of neurons recorded from the colliculus. We found that in the first task, a population 

decoder distinguished between high confidence and low confidence trials in much the same way 

as LIP (1), providing strong evidence that the SC contributes to decision-making and optimal 

confidence in a manner similar to LIP. However, in our novel task in which visual stimuli were 

matched for sensitivity (d’) but resulted in different reports of confidence, population-level activity 
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in the colliculus failed to distinguish between conditions with different degrees of subjective 

confidence. Together, these findings support the hypothesis that the colliculus signals optimal 

confidence in dot-motion discrimination tasks, rather than subjective confidence. These results 

also reveal important considerations for the interpretation of existing data on decision-making 

confidence in other brain regions, too. 
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Materials and Methods 

Surgical Procedures 

Two male rhesus monkeys (9-13 kg) were prepared for electrophysiological recordings 

and measurements of eye movements. Anesthesia was induced with an intramuscular injection 

ketamine (5.0 mg/kg) and midazolam (0.2 mg/kg) and atropine (0.04 mg/kg) was provided to limit 

salivation. Monkeys were then intubated and maintained at a general anesthetic plane with 

isoflurane. One hour before the procedure animals received buprenorphine (0.01 mg/kg) and the 

antibiotic Excede (20 mg/kg; 7 day slow release) and then meloxicam (0.3 mg/kg) at the 

conclusion of the procedure, and meloxicam (0.2 mg/kg) and buprenorphine (0.01mg/kg) for 3 

days post-surgically as analgesia. Monkeys were implanted with MRI compatible headposts and 

one (monkey H) was implanted with eye loops(38),(39). to measure eye position. In the other 

monkey (monkey P), eye position was measured with an iView camera (Sensomotoric 

instruments, Boston, MA). Both monkeys received MRI compatible recording chambers placed 

over the superior colliculus (AP +3, ML 0) and angled posteriorly at 38°. Precise placement of the 

post and chambers was performed using MRI-guided surgical software (BrainSight, Rogue 

Research, Montreal, CA). All surgical procedures were performed under general anesthesia using 

aseptic procedures. All experimental protocols were approved by the UCLA Chancellor’s Animal 

Research Committee and complied with and generally exceeded standards set by the Public 

Health Service policy on the humane care and use of laboratory animals. 

 

Eye Movement Recording Procedures 

We used a QNX-based real-time experimental data acquisition system and windows-

based visual stimulus generation system (“Rex” and “Vex”), developed and distributed by the 

Laboratory of Sensorimotor Research, National Eye Institute in Bethesda, MD(40) to create the 

behavioral paradigm, display the visual stimulus and acquire two channels of eye position data. 

Voltage signals proportional to horizontal and vertical components of eye position were filtered (8 
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pole Bessel -3dB, 180 Hz), digitized at 16-bit resolution and sampled at 1kHz (National 

Instruments; Austin, TX; PCI-6036E). The camera acquired eye position signals were filtered 

digitally using a built-in bilateral filter. We used an automated procedure to define saccadic eye 

movements using eye velocity (20°/s) and acceleration criteria (5000°/s2), respectively. The 

adequacy of the algorithm was verified and adjusted as necessary on a trial-by-trial basis by the 

experimenter.   

 

Electrophysiological Procedures 

We recorded multi-neuron activity from the intermediate layers of the superior colliculus 

using a platinum/iridium V Probe coated with polyimide (Plexon, Dallas TX) with an impedance of 

275 (±50) kΩ. The electrode was aimed at the colliculus perpendicular to its surface using guide 

tubes positioned with a grid system(41) and advanced using an electronic microdrive system 

controlled by a graphical user interface (Nan Instruments, Israel). Action potential waveforms 

were bandpass filtered (250 Hz - 5 kHz; 4 pole Butterworth), and amplified, using the BlackRock 

NSP hardware system controlled by the Cerebus software suite (BlackRock Microsystems, Utah). 

The voltage data were sampled and digitalized at 30 kHz with 16 bit resolution and saved to disk 

for offline sorting. For isolating neurons on-line, we used time and amplitude windowing criteria 

(Cerebus, Blackrock Inc., Utah). Waveforms satisfying these criteria generated TTL pulses 

indicating the time of occurrence of an action potential and were sampled and digitized at 1kHz 

with 16 bit resolution and saved to disk.   

 Action potential waveforms were sorted offline using the Plexon Offline Sorter (Offline 

Sorter, Plexon, Inc.) and classified into single neurons (n = 115) and multi-neuron (n = 660) 

activity. At the start of each recording session, we aimed to identify a recording site with at least 

one buildup neuron, in light of their established role in higher-level phenomena such as attention, 

selection and decision-making (reviewed in (42)).  We classified buildup neurons as those 

neurons having a significantly higher discharge rate during the stimulus period (200-600ms after 
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motion onset) compared to baseline (200-0ms before the stimulus appears).  While the recording 

procedure first focused on identifying buildup neurons before continuing with the experiment, all 

neurons that were recorded in a session (both buildup and non-buildup) were used in the decoding 

analysis for a given session.   

Response fields (RF) of collicular neurons were mapped online to provide an estimate of 

the center of the RF to place at least one choice target. We determined the general characteristics 

of the neuronal activity and an estimate of the center of the preferred RF by requiring monkeys to 

make saccades to different locations in the visual field. We made a qualitative assessment on-

line about the preferred location on the basis of maximal discharge determined audibly. We 

confirmed the center of the RF by plotting the discharge as a heat map across visual space. Only 

neurons with RF eccentricities between 7° and 20° were studied to ensure no overlap of the RF 

with the centrally-placed moving dot stimulus. 

The neurons we recorded from were different in each recording session; the neurons from 

the 19 stimulus-matched sessions which were used were different from the neurons from the 23 

sensitivity-matched sessions. 

 

Behavioral Task  

We used the same behavioral task in both the stimulus-matched and sensitivity-matched 

paradigms. Each trial in both paradigms began when monkeys acquired a centrally-located spot 

and remained fixated for 500ms. Then, the choice targets appeared. One choice target appeared 

in the center of the RF of at least one of the recorded neurons (Tin) and the other choice target 

appeared in the opposite hemifield (Tout). These positions were randomized on each trial. For both 

the stimulus-matched and the sensitivity-matched paradigms, half of the trials had only two choice 

targets (i.e., “Opt-Out unavailable”) and half had an Opt-Out choice target available.  These trial 

types were randomized in each session.  All targets, including the Opt-Out, were isoluminant. The 

location of the Opt-Out choice was orthogonal to the two motion choice targets (90°) and on these 
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trials, we also presented a fourth dot, irrelevant to the task, 180° opposite to the Opt-Out target 

location. This was included to control for possible lateral interactions (17, 43).  That is, to ensure 

any that differences between the Opt-Out waived and the Opt-Out unavailable trials were not 

driven by introducing an additional response target in an orthogonal location, we introduced a 

fourth dot to make the stimulus symmetrical, so that each possible target in the Opt-Out available 

condition was surrounded by a isoluminant targets at the same distance and relative locations.  

After the choice targets appeared and monkeys maintained fixation on the central spot for 

~500ms, the dot motion stimulus appeared centrally for 200ms.  Monkeys maintained fixation for 

another 500-600ms interval (the exact time was randomly selected between those two times from 

a uniform distribution), and then were cued to report their decision by removal of the fixation point. 

If the correct choice occurred, monkeys received a juice reward (0.2ml). If the incorrect choice 

occurred, monkeys received no reward and a time out of 2000ms. On trials in which monkeys 

selected the Opt-Out choice, they received a smaller but guaranteed reward (80% of the correct 

choice reward amount).  

 

Stimuli 

 For both tasks, the motion stimulus appeared on a CRT display operating at 60Hz.  The 

motion speed was 5°/s, and the same dots were maintained on the screen for the duration of the 

stimulus (200ms).  Some dots moved coherently in a single direction (coherence percentages 

described below), while the other dots moved with randomly-selected trajectories The radius of 

the motion stimulus was 3°, and the size of dots in the display were 0.05°.  The dot density in this 

both tasks was 50 dots per degree squared.  Each dot moved in the same direction for the duration 

of a given trial. For all motion stimuli, the total number of dots appearing on the display was kept 

constant to maintain isoluminance. 

 For the stimulus-matched paradigm, four motion coherence levels were tested for each 

monkey.  For Monkey P, we tested performance with 20%, 10%, 6% and 0% coherence.  For 
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monkey H, we tested performance with 50%, 10%, 6%, and 0% coherence.  Different coherence 

levels were used to yield approximately equivalent performance levels across the two monkeys.  

Dots moving in random directions were also included, and the total number of dots in all displays 

was the same. 

 For the sensitivity-matched paradigm, the dot coherence ratios characterized by positive 

evidence (motion favoring the correct choice) and negative evidence (motion favoring the 

incorrect choice) were customized for each monkey in each session to yield similar d’ values 

across two conditions on trials where the Opt-Out was unavailable, but different amounts of 

selecting the Opt-Out across those two conditions on trials when it was available.  For the eight 

d’-matched sessions for Monkey P, one d’-matched session included a 50%PE / 30%NE 

coherence ratio for HPE and 20%PE / 17%NE coherence ratio for LPE; two d’-matched sessions 

included 50%PE / 30%NE coherence ratio for HPE and 35%PE / 21%NE coherence ratio for LPE;  

four d’-matched sessions included a 50%PE / 30%NE coherence ratio for HPE and 20%PE / 

12%NE coherence ratio for LPE; one d’-matched session included a 50%PE / 34%NE coherence 

ratio for HPE and 20%PE / 9%NE coherence ratio for LPE.   

For the fifteen d’-matched sessions for Monkey H, one d’-matched session included a 

50%PE / 30%NE coherence ratio for HPE and 35%PE / 21%NE coherence ratio for LPE; two d’-

matched sessions included 50%PE / 33%NE coherence ratio for HPE and 20%PE / 5%NE 

coherence ratio for LPE; one d’-matched session included a 50%PE / 37%NE coherence ratio for 

HPE and 20%PE / 7%NE coherence ratio for LPE; one d’-matched session included a 50%PE / 

37%NE coherence ratio for HPE and 23%PE / 7%NE coherence ratio for LPE; nine d’-matched 

sessions included a 50%PE / 37%NE coherence ratio for HPE and 25%PE / 7%NE coherence 

ratio for LPE; one d’-matched session included 35% PE/ 30% NE coherence ratio for HPE and 

20%PE / 12%NE coherence ratio for LPE.   

 

Behavioral Data Analysis  
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We used signal detection theory to quantify the decision sensitivity of the monkeys in our 

behavioral task.  In this task, monkeys were presented with a dot motion stimulus, and had to 

make a discrimination judgment as to whether the primary motion direction was to the right or left.  

d’ is a measure of an observer’s capacity to perform a sensory task: a d’ score of 0 indicates a 

complete inability to discriminate left and right motion directions in this task, while d’ scores above 

0 quantify an observer’s sensitivity to make this type of discrimination.   As noted by Wickens (16), 

d’ in discrimination tasks can be computed by adding the Z-transformed correct-response 

probabilities for both stimulus types (p.116).  Thus, d’ was calculated as:  

  

(1) d’ = Z(pA) + Z(pB)  

 

where in this task, pA refers to the probability of a correct judgment for trials where the primary 

motion direction was towards the left, and pB refers to the probability of a correct judgment where 

the primary motion direction was to the right.  This equation yields the exact same d’ values as 

the standard d’ equation for detection tasks (Z(Hit Rate) - Z(False Alarm Rate)) but provides a 

more accurate characterization for discrimination judgments, as “false alarms” are not possible in 

this type of task, since a primary motion direction is present on every trial.  

The sensitivity-matched sessions included two different trial types: on some trials, the Opt-

Out was unavailable, and monkeys’ only choice was between the two response options. These 

trials allowed us to determine that our two evidence conditions were matched.  On other trials, 

the Opt-Out was available but could be waived, and these trials allowed us to infer different levels 

of confidence across these two conditions.  We only computed d’ from trials where the Opt-Out 

choice was unavailable, and focused the decoding analyses on these trials alone.  This was done 

to ensure that, should our subsequent decoding analyses identify a difference across conditions, 

this difference would not be driven solely by differences in the perceptual criterion used for each 

condition.  The two trial types were randomly interleaved in sensitivity-matched sessions, and 
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data from these different trial types is shown in Figure 3 and Figure S4.  We also note that in our 

sensitivity-matched sessions, we only analyzed days in which the d’ scores between our High 

Positive Evidence and Low Positive Evidence trials were within 0.7 of one another (see figure S4 

for individual session results). 

 

Decoding Analysis  

To investigate how population activity in the superior colliculus may be related to optimal and 

subjective confidence, we applied a decoding model to analyze time-varying neuronal activity, 

and performed our decoding analyses separately on the data from each recording session.  In 

each session, between 9-26 neurons were recorded from our V Probe recording device, and all 

units used in decoding for a given session were recorded simultaneously. 

We first quantified neuronal discharge rates across all electrodes with a sliding window 

analysis, computing the sum of action potentials occurring within 100ms time windows (step 

size=10ms). Next, we applied a logistic regression model using the fitclinear function in MATLAB 

(Mathworks, 2016).  The general idea behind this linear classification function is that on any given 

trial, the overall classification score f(x) can be predicted from the neuronal activity at a given time 

point using the following equation: 

 

(2) 𝑓 𝑥 = 	𝛽𝑥 + 𝑏 

 

In this equation, x is the vector of the summed spike counts for each neuron in a given time 

window, 𝛽 is a vector representing the linear coefficient estimates for each neuron, and	𝑏 is the 

scalar bias, reflecting the intercept estimate.  However, since our decoding analyses focused on 

categorical outcomes instead of continuous measures, we applied the “logistic” learner from 

fitclinear, which implements the ‘logit’ score transformation function to the raw classification 

scores to yield the probability of a given class (e.g., X), via the following equation: 
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(3) 𝑝(𝑋) 	= 	 ,
(,	-	./0123)

 

 

with the following loss function for classification, where y ∈{±1} : 

 

(4) 𝐿(	𝑦, 𝑓(𝑥)) 	= 	𝑙𝑜𝑔	(1	 + 	𝑒𝑥𝑝	(−𝑦𝑓(𝑥))) 

 

This implementation uses the following ridge regularization penalty to avoid overfitting in our 

procedure, with a lambda value of (1/number of neurons) in a given session: 

 

(5) ?
@

𝛽A@
B
AC,  

 

We also implemented a uniform prior in the fitclinear function over the two classes, which specified 

that the two classes being predicted were equally likely on each trial.  Finally, we estimated the 

posterior probabilities for class predictions on each trial using the predict function in MATLAB. 

 As has been noted previously, logistic regression classifiers find the best hyperplane that 

separates the population response patterns associated with the two classes that are being 

predicted (44). Therefore, the essential idea behind the aforementioned analysis is that for every 

trial, the decoder will produce not only a final prediction of, for example, whether the monkey 

chose the target located in the RF or the target out of the RF, but also a measure of the strength 

of the prediction (via the posterior probability metric), which corresponds to the prediction’s 

distance from the hyperplane. Critically, by comparing these measures across two conditions 

(e.g., Opt-Out waived, Opt-Out unavailable), we can evaluate whether the classifier can decode 

signals of decision sensitivity or confidence from superior colliculus activity, and we can compare 

our results with those previously reported from other cortical regions such as LIP and SEF (1, 2). 
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 The model was implemented using 5-fold cross validation at each time point, with 80% of 

the data as the “training set” for fitting the 𝛽 coefficients and 20% of the data as the “test set”.  In 

all figures and results, we report the average performance across all five test sets. Two metrics 

enabled us to assess performance of the model: first, we used area under the ROC curve (AUC) 

as our method to assess decoder accuracy.  The AUC has the advantage of being a measure 

that takes into account both the hit rate and false alarm rate in evaluating classifier performance.  

Second, we sorted each model’s predictions by trial type, and evaluated the posterior probability 

of particular class predictions over time.  This allowed us to assess the strength of the classifiers’ 

prediction for each trial type across time, within a range of 0 to 1.  Thus, the results we report are 

based on average AUC and posterior probabilities across the five test sets at each time point.   

Three time periods were of particular interest for our decoding procedure.  First, the time 

period around the onset of the targets, to determine whether the pre-stimulus activity held any 

predictive power for the monkeys’ upcoming decisions.  Second, the time period following onset 

of the motion stimulus, since this is the time when monkeys are forming their decisions and as 

such, the activity could signal both decision sensitivity and/or subjective confidence. Finally, the 

time period around the saccade is also informative, as this time window reflects the ceiling for 

classification performance based on the recorded neuronal activity. 

We note that recent work has demonstrated the utility of decoding approaches compared 

to single-neuron analyses (26, 44), and indeed, our own analysis revealed a stronger capacity to 

classify correct perceptual decisions by using population-level analyses compared to single 

neurons (Fig. S3).  While we do think that single neuron analysis of our data can also be 

informative, we think a machine learning approach is particularly advantageous, as decision 

confidence may be encoded by complex patterns of neuronal activity distributed across many 

neurons within a brain region, as has been shown in other recent work (32). 

 

Discriminability Index 
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 In order to assess each neuron’s discriminative capacity for Tin and Tout choices, we 

computed a “discriminability index.”  This metric produces a normalized value between -1 and 1 

specifying both the strength and direction of a neuron’s predictive power for a given two-class 

discrimination problem.  For example, in our initial analysis (see Fig. 2), we classified whether a 

given correct choice would be toward the RF (Tin) or away from the RF (Tout). We hypothesized 

that the ability to discriminate would change as a function of Opt-Out availability. Thus, we 

computed the discriminability index for each neuron for the Tin vs. Tout classification procedures in 

the following manner: 

                                                Opt-Out Waived       Opt-Out Unavailable 

(6)  Stimulus-Matched Discriminability Index = 		 DEFGDHIJ 						G						 DEFGDHIJ
			 DEFGDHIJ 					-						 DEFGDHIJ

 

                                       Opt-Out Waived     Opt-Out Unavailable 

  

Negative values mean that the neuronal activity is more discriminable for Tin compared to Tout 

when the Opt-Out is unavailable compared to when it is waived; positive values indicate that the 

neuronal activity is more discriminable between Tin compared to Tout when the Opt-Out is waived 

compared to when it is unavailable.  With the sensitivity–matched data, we computed the same 

discriminability index for trials from the High Positive Evidence condition and trials from the Low 

Positive Evidence condition using the following equation: 

                                                       HPE        LPE 

(7)      Sensitivity-Matched Discriminability Index = DEFGDHIJ 						G					 DEFGDHIJ
DEFGDHIJ 					-					 DEFGDHIJ

 

                                              HPE                 LPE 

 

Positive values indicate the neuronal activity is more discriminable for Tin compared to Tout for trials 

in the High Positive Evidence condition compared to trials from the Low Positive Evidence 

condition, and negative values indicate that the neuronal activity is more discriminable for Tin 
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compared to Tout for trials in the Low Positive Evidence condition compared to trials from the High 

Positive Evidence condition.  We declared neurons to exhibit confidence signals if they fell above 

0 on both of these discriminability index metrics (see Results and Fig. S3 for details). 

 In each experimental session, we computed the discriminability index in each time window 

from 190ms-650ms after motion onset, and averaged over the discriminability index values to 

yield a single number for each neuron.  This method allowed us to quantify each neuron’s ability 

to discriminate between the two classes during the main period of evidence accumulation during 

the trial. 
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Results 

We used a multivariate decoding approach to assess population-level representations of 

perceptual decisions and confidence in the superior colliculus using random dot motion 

discrimination tasks. We had two aims. Our first aim was to determine whether activity measured 

in the colliculus was similar to that observed previously in area LIP during performance of a 

confidence task (1). Our second aim was to arbitrate between two competing hypotheses: that 

neuronal activity in the colliculus primarily signals “optimal confidence,” as signals about 

confidence may correlate with decision accuracy, or alternatively, that activity in the colliculus 

signals “subjective confidence,” as neuronal signals may differentiate between conditions where 

d’ is matched, but confidence reports vary. We focus here on results obtained from a population 

decoding method. Further descriptions of neuronal activity and analyses will be reported in detail 

elsewhere.  

 We recorded neuronal activity in the colliculus using V-probe laminar electrodes 

containing 16 recording contacts (see Methods). We measured both single and multi-neuron 

activity while monkeys performed a dot-motion discrimination task (Fig. 1A, B).  Each trial began 

when the animal established fixation on a central dot. Then, either 2 or 4 choice targets appeared 

for 500ms. After this delay, the dot motion stimulus appeared at the center of the screen for 

200ms. When the motion stimulus disappeared, a delay-period, selected randomly from between 

500-600ms, ensued. The fixation dot then disappeared and monkeys indicated their motion 

direction decision by making a saccade to one of the choice targets, and they received a reward 

(sip of juice) for correct decisions. Importantly, on some trials there was an Opt-Out option. 

Choosing this target bypassed the motion discrimination question, and led to a guaranteed but 

smaller reward compared to that received for correct decisions.  

On trials when the Opt-Out option was available (Fig. 1B), we also included a fourth choice 

option which was opposite in location to the Opt-Out location to control for possible lateral 

interactions (see Methods for details). The fourth option never led to reward and was rarely 



	 16 

chosen (~6.3% of all trials in stimulus-matched sessions). For each session, at least one of the 

choice targets appeared in the response field (RF) of at least one neuron recorded from the 16 

contacts (black circle, Fig. 1A). The two trial types with (Fig. 1B) and without (Fig. 1A) the Opt-

Out option available and were randomly interleaved; because the properties of the random dot 

motion stimulus were identical between these trial types, we call these “stimulus-matched” 

sessions.    

 We reasoned that choices made with the Opt-Out unavailable occur with a mix of high and 

low confidence, as monkeys are forced to choose one of the two targets. In trials with the Opt-

Out option available however, monkeys could report their level of confidence: trials in which 

monkeys choose the Opt-Out target indicate low confidence, whereas trials in which monkeys 

waive the Opt-Out option and choose one of the targets corresponding to a direction of motion 

instead, indicate high confidence (1, 3–5). Figures 1C and 1D show the behavior measured in 

trials with and without the Opt-Out option available. The probability of selecting the Opt-Out 

option, when available, decreased as a function of motion coherence, consistent with higher 

confidence on higher motion coherence trials (all t-tests between conditions p < .05, Bonferroni 

corrected; Fig 1C). Comparing trials in which the Opt-Out option was available and unavailable 

shows that at intermediate motion strengths, monkeys have a higher probability of being correct 

when the Opt-Out option is available and waived compared to when it is unavailable, indicating 

higher confidence (Fig. 1D). 

To determine if neuronal ensemble activity in the colliculus correlates with the capacity to 

perform the task, we employed multivariate classifiers to evaluate how population-level activity 

emerged over time as monkeys made decisions in the Opt-Out available and unavailable trials. 

Previous work shows that LIP discharge rates differ when a correct choice is reported by making 

a saccade toward the target in the RF (Target-in, or “Tin”) or away from the RF (Target-out, or 

“Tout”) (1). Here, we used a similar approach by evaluating the classifier’s ability to predict correct 

Tin and Tout choices with the Opt-Out choice available (but waived) and unavailable.  
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Figure 2 shows that neuronal activity in the colliculus signals correct Tin and Tout choices, 

and that decoder performance is higher when the Opt-Out option is available but waived.  In this 

figure, we show the combined results across sessions for two monkeys, but we note that the 

decoding performance for both monkeys in this task was quite similar (see Fig S1 and S2). Using 

the area under the ROC curve (AUC) as a measure of decoder performance (see Methods), 

Figure 2A shows that neuronal activity more accurately discriminates correct Tin choices vs. 

correct Tout choices when the Opt-Out choice was available and waived, compared to unavailable 

(t-tests for all time windows > 230ms after motion onset in middle panel, t(18) > 2.8, p < 0.05).  To 

control for multiple comparisons throughout the entire motion onset period, we used the False 

Discovery Rate (FDR) method (25) to evaluate significance at each time point. With a false 

discovery rate of 0.01, while four time windows between 100-230ms were marginally significant, 

all time windows greater than 230ms after motion onset were highly significant.  

Sorting the classifier’s predictions by correct choices, Tin or Tout, allowed visualization of 

the strength of the classifier’s decision variables over time; i.e., the posterior probabilities for Tin 

and Tout choices (Figure 2B). Similar to what was shown using the AUC metric, differences 

between the posterior probabilities between Tin and Tout predictions were significantly greater for 

the Opt-Out waived trials starting approximately 230ms after motion onset (all time windows > 

230ms after motion onset in middle panel, t(18) > 2.8, p < .05). This result indicates that population 

activity in the colliculus contains signals related to more than just saccade preparation, since the 

same eye movements were made in both the Opt-Out waived and Opt-Out unavailable trials, but 

the neuronal activity leading up to the saccade was considerably different. 

 To demonstrate the utility of this decoding approach, we conducted comparisons 

between population-level decoding and single-neuron decoding (26).  Figure S3 shows that during 

the motion stimulus period, the decoding AUC score is much higher for the population-level 

activity than the AUC scores from representative single neurons that contain choice-related 
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activity. This indicates that more information about the decision is contained within the population 

activity than in single neurons with strong relationships to behavior. 

The results described above provide compelling evidence that the neuronal activity in the 

superior colliculus contains information about decision-making and decision confidence in much 

the same way as reported for area LIP (1). However, as noted, the task design used for both the 

colliculus and the LIP experiments leaves open the possible interpretation that the activity signals 

decision accuracy (and “optimal confidence”) rather than subjective confidence, since monkeys 

also perform better on the Opt-Out waived trials than on the Opt-Out unavailable trials. Therefore, 

we created a version of the dot-motion discrimination task in which decision accuracy was 

matched while confidence varied by manipulating the ratio of “positive evidence” (the amount of 

motion evidence towards the correct choice) to “negative evidence” (the amount of motion 

evidence towards the incorrect choice).  Previous work shows that while decision accuracy 

depends upon the ratio of positive to negative evidence, subjective confidence depends upon the 

overall magnitude of positive evidence (11–13).  Thus, we presented monkeys with trials 

containing different ratios of positive and negative evidence to match decision accuracy (defined 

as perceptual sensitivity, or d’, see Methods) across two conditions (Fig. 3A) while attaining 

different levels of subjective confidence, as measured by their reports of confidence by choosing 

to opt out or not.     

Figure 3B shows that this manipulation yielded statistically similar levels of decision 

sensitivity as measured by d’ (sign test, z = 0.83, p = 0.40), but different degrees of confidence, 

as indicated by the percentage of trials in which monkeys chose to Opt-Out (sign test, z = -4.59, 

p < 10-5).  In this new behavioral task, trials with and without the Opt-Out option were randomly 

interleaved, allowing us to compute d’ from trials without the Opt-Out (demonstrating that 

performance is adequately matched with these stimuli), while evaluating possible differences in 

subjective confidence from the proportion of trials the Opt-Out was selected when it was available.  

Data from individual sessions is shown in Figure S4. 
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Critically, by decoding Tin vs. Tout activity from the neural activity in the two “sensitivity-

matched” condition types (High Positive Evidence vs. Low Positive Evidence), we could determine 

whether the activity of superior colliculus neurons signaled subjective confidence per se, even 

when dissociated from sensitivity.  Figure 4 shows the decoding results for the sensitivity-matched 

task.  The neurons recorded in each of the sensitivity-matched sessions used in this decoding 

analysis were different from the neurons used in decoding the stimulus-matched sessions.  While 

trials with and without the Opt-Out were randomly interleaved in the sensitivity-matched sessions, 

we focused our decoding analyses solely on the Opt-Out unavailable trials (Fig. 4).  This was to 

ensure that, should the decoder identify a difference between the two conditions, this difference 

would not be driven by a potential difference in the perceptual criterion used for responding in 

each of these two conditions.  

Following motion onset, the decoder performance was statistically indistinguishable for 

both the High Positive Evidence (higher confidence) and Low Positive Evidence (lower 

confidence) conditions for nearly all time points (65/71 t-tests, t(22) < 2.1, p > 0.05).  Importantly, 

using a false discovery rate of 0.01 to correct for multiple comparisons, none of the time windows 

reached significance. We observed a similar pattern when comparing the posterior probabilities 

for the high and low confidence trials from the sensitivity-matched task (Fig. 4B). The temporal 

evolution of the strength of the predictions produced by the classifier were statistically 

indistinguishable for almost all time points (65/71 t-tests, t(22) < 2.1  p > 0.05), and using the 

False Discovery Rate method to account for false positives, no significant differences were found 

for any of the time windows following motion onset. 

To further assess whether there are distinct signals for subjective confidence in the activity 

of colliculus neurons, we performed a cross-generalization analysis. If neurons in the colliculus 

contain a distinct code for subjective confidence, the performance of a classifier that is trained on 

trials from the High Positive Evidence condition and tested on trials from the Low Positive 

Evidence condition should be reduced, compared to the performance of classifiers trained and 
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tested within the same condition. This is because, if we observe that information was substantially 

lost through the cross-generalization process, it would provide evidence for distinct neuronal 

signals for high and low confidence.  

On the other hand, if the neuronal activity signals optimal confidence instead of subjective 

confidence, the performance of this generalized classifier should be comparable to the 

performance of classifiers trained and tested within a single condition, as decision accuracy (i.e., 

sensitivity) is matched across two conditions. Figure 5 shows the performance of a classifier 

trained on trials from the High Positive Evidence condition and tested on trials from the Low 

Positive Evidence condition as measured by the AUC and posterior probability. This classifier 

showed similar performance to classifiers trained and tested on trials from a single condition (one-

way ANOVA, 70/71 time windows following motion onset, F(66) < 1, p > 0.05); since the ability to 

decode was equal across the two conditions, a comparison between training on Low Positive 

Evidence and testing on High Positive Evidence is unnecessary, as the informational content 

generalizes across conditions. Taken together, with differences in population neuronal activity in 

the colliculus during a stimulus-matched confidence task (Fig. 2) but similarity across conditions 

in a sensitivity-matched confidence task (Fig. 5), we conclude that colliculus likely reflects optimal 

confidence and not subjective confidence per se. 

 Although our decoding results suggest that, at the population level, collicular activity is 

similar between the high and low confidence conditions when sensitivity is matched, there may 

be individual neurons that contain subjective confidence signals. To investigate this possibility, 

we computed a normalized ‘discriminability index’ (see Methods) to determine how effectively 

individual neurons could discriminate between Tin and Tout choices as a function of confidence in 

the sensitivity-matched task, which included conditions that varied in terms of positive evidence 

level (High vs. Low), as well as conditions that varied in terms of Opt-Out availability, like in the 

original task (available vs. unavailable).  For a neuron to signal subjective confidence, it should 

show greater discriminability of Tin vs. Tout not only on trials in which the Opt-Out choice is 
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available but waived (compared to when it is unavailable), but also on trials from the High Positive 

Evidence condition; put simply, neurons that care about optimal confidence as defined by Opt-

Out availability should also care about subjective confidence based on evidence ratios if activity 

signals subjective confidence at all. Including both of these condition types in the sensitivity-

matched task allows us to assess this.     

The discriminability index ranges from -1 to +1. In the Opt-Out available & unavailable 

conditions (the “stimulus-matched” conditions), neurons that maximally discriminate Tin and Tout 

when the Opt-Out is available but waived have a value of +1; neurons that maximally discriminate 

Tin and Tout when the Opt-Out is unavailable have a value of -1. In the sensitivity-matched 

conditions, neurons that maximally discriminate Tin and Tout in the High Positive Evidence 

condition have a value of +1, whereas neurons that maximally discriminate Tin and Tout in the Low 

Positive Evidence condition have a value of -1.  Neurons with values near 1 on both 

discriminability indices are neurons that signal confidence. 

In line with the decoding results obtained for the original “stimulus-matched” task which 

only included two conditions that varied in terms of Opt-Out availability, we found a significant 

number of neurons with higher discriminability indices when monkeys waived the Opt-Out choice 

versus when the Opt-Out choice was unavailable (sign rank test, z = 13.87, p < 10-42). For the 

sensitivity-matched conditions, however, discriminability indices regarding capacities as a 

function of evidence level were distributed symmetrically around 0 (sign rank test, z = -0.78, p = 

0.44), indicating a lack of a significant number of neurons that discriminated choices more 

effectively in the High Positive Evidence trials. Figure S5A shows histograms of the 

discriminability indices for neurons recorded in sensitivity-matched sessions.   

Because there were some collicular neurons that gave the appearance of signaling 

confidence based on their discriminability index (Figure S5A), we also analyzed neurons with 

discriminability indices greater than 0 on both measures, to determine if this ability to discriminate 

Tin and Tout choices was stable across different trials. We divided each session’s dataset into “odd” 
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and “even” trials, and computed two discriminability indices; one for odd trials and one for even 

trials for each neuron. Figure S6A shows the possible confidence neurons - those falling in the 

upper-right quadrant when the discriminability index for the stimulus-matched and sensitivity-

matched conditions were computed from odd trials only. Computing these same two 

discriminability indices for the same neurons from even trials (Figure S6B,C), it became clear that 

while neurons were stable in their increased capacity to discriminate Tin and Tout as a function of 

Opt-Out availability (sign rank test, z = 9.82, p < 10-23), they were not stable in their capacity to 

discriminate these trial types in sensitivity-matched conditions (sign rank test, z = 0.29, p = 0.76).  

Thus, consistent with the population-level analysis, collicular activity appears better explained by 

optimal confidence than subjective confidence. 

In a final analysis, we assessed whether activity in the colliculus contains a signal of 

confidence regardless of the particular perceptual choices made (e.g., Tin or Tout).  That is, since 

our second task shows that subjects were overall more confident on HPE trials compared to LPE 

trials, the capacity to distinguish between these two conditions directly, regardless of specific 

perceptual choices, may reflect activity related to confidence.  As shown in Fig. S7A, the decoder 

revealed only slight differences between the HPE and LPE conditions. These differences 

appeared approximately 130ms following motion onset, and reached significance when compared 

with a permutation test using scrambled condition labels (all time windows 130ms after motion 

onset, p < .05).  Using a false discovery rate of 0.01 to correct for multiple comparisons, all of 

these time windows were still significant.  To determine whether these differences reflect small 

stimulus encoding differences or some neuronal correlate of confidence, we performed a 

generalization analysis to see whether classifiers trained to distinguish HPE vs. LPE conditions 

would generalize to classify opt-out waived and opt-out unavailable trials.  Fig. S7B shows that 

this decoder, when compared to a chance-level performance, was marginally significant from 380-

510ms (p < .05 for these time windows) after motion onset, but this signal was small in magnitude, 

and was not sustained throughout the duration of the trial.  Importantly, using a false discovery 
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rate of 0.01 to correct for multiple comparisons, none of these time windows were significantly 

different from chance-level performance.   Given that the differences were small and transient, 

and did not survive our correction for multiple comparisons, we think it is unlikely that the SC 

signals subjective confidence in a way that is used by the monkeys.  
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Discussion 

We combined psychophysics with multi-neuron recordings and population decoding 

methods to determine whether activity in the superior colliculus of monkeys signals decision 

confidence. Using a task similar to that used previously in conjunction with recordings in area LIP 

(1), we identified population-level activity in the colliculus that distinguished between different 

choices and different levels of confidence in much the same way as LIP, consistent with an 

interpretation that SC, like LIP, signals optimal confidence. However, when comparing collicular 

activity using a novel task that dissociates optimal from subjective confidence, we found that both 

population and single neuron activity was indistinguishable between high versus low confidence 

conditions. Additional analyses showed that classifiers trained on trials from the high confidence 

condition could generalize well to trials from the low confidence condition, indicating that there 

were no observable signals correlating with different levels of subjective confidence in the 

colliculus. These results lead to the conclusion that the colliculus primarily signals optimal rather 

than subjective confidence in a motion perceptual decision task.    

These results raise interesting questions regarding previous interpretations of studies of 

decision confidence. In an Opt-Out task (1), monkeys report their perceptual decisions by 

choosing targets associated with large rewards if correct, or they forego one of the two choice 

alternatives and instead Opt-Out to receive a smaller but guaranteed reward. Using this task, 

neuronal correlates of confidence have been found in LIP (1) and in the pulvinar (9). Similar 

findings were obtained in the SEF using a wagering task in which monkeys report their confidence 

by making ‘bets’ after each perceptual decision (2). Here, we found similar results in the superior 

colliculus, highlighting two things: the colliculus signals more than just eye movements, and the 

colliculus plays an important role in perceptual decision-making (17, 18, 21, 27–29). Importantly, 

however, when examining neuronal activity from our novel task that held sensitivity constant while 

varying confidence, we observed that the colliculus no longer showed a unique signal associated 

with subjective confidence.  Thus, the combined results from both tasks support the conclusion 
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that colliculus activity signals optimal confidence rather than subjective confidence. It is an open 

question whether similar findings would be found in cortical areas (LIP or SEF) previously 

implicated in decision confidence. 

Considering these results, it is important to note several differences between our paradigm 

and those used previously. Even though both our study and one previous study (1) adopted an 

‘Opt-Out’ design rather than wagering (2), in a previous investigation (1), monkeys were informed 

about the Opt-Out option only after the motion stimulus appeared and presumably after they made 

their decision. In our paradigm, the choice options appeared before the onset of the motion 

stimulus to avoid visual contamination of the neuronal activity during the stimulus period. Despite 

this difference, the ability of collicular neurons to distinguish Tin and Tout choices with different 

levels of confidence was surprisingly similar to the activity patterns seen in LIP.  

Despite similarities to previous studies, the neuronal ensemble activity in the superior 

colliculus did not pass our ‘sensitivity-matched’ tests for subjective confidence. However, there 

could be other neuronal signatures that differ between our two confidence conditions (such as 

those involving temporal patterns) that our analyses were unable to identify. But to the extent 

confidence is reflected by firing rate differences between Tin and Tout, as has been assessed by 

previous studies (1), such activity patterns across the population of neurons assessed seem 

highly similar between the HPE and LPE conditions, as the decoders generalize remarkably well 

between them (Fig. 5). To exercise further caution, we also conducted analysis of individual 

neurons (Figs. S5, S6). We found that to the extent that some neurons might show any difference 

in discriminability between these sensitivity-matched conditions, such differences are unlikely to 

be stable properties of the neurons.  Consistent with this, additional analyses showed that a 

decoder trained on HPE and LPE conditions and tested on Opt-Out waived vs. Opt-Out 

unavailable trials (Fig. S7B) exhibited marginally significant performance which was transient and 

small in magnitude, and thus unlikely to be linked to subjective confidence in a meaningful way. 
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These interpretations rest on the conceptual distinction between two notions of 

confidence.  In one influential theoretical framework, confidence can be defined as an 

(approximately) optimal read-out of the perceptual signal (7, 8), which directly reflects the 

probability of a correct decision. We can distinguish this kind of optimal confidence from another 

notion - what we here call subjective confidence - as characterized by behavioral reports. Though 

our results are compatible with the claim that ensemble activity in the superior colliculus may 

signal optimal confidence, they cast doubt on the hypothesis that it signals subjective confidence. 

Similarly, with this distinction we can also interpret previous findings in the SEF (2) and LIP (1) as 

primarily concerning optimal confidence. Using behavioral paradigms similar to the novel 

sensitivity-matched paradigm adopted here, future studies can address whether neurons in these 

regions reflect subjective confidence as well.  

Based on the human literature (30–32) as well as animal studies (10, 33), one intriguing 

possibility is that subjective confidence may reside in prefrontal cortex, even under sensitivity-

matched conditions. Although one previous study (2) recorded from the lateral prefrontal cortex 

as well as the frontal eye fields, and did not find neurons reflecting optimal confidence in these 

areas as defined above, it remains to be tested whether such neuronal signatures for subjective 

confidence may emerge when confidence is dissociated from sensitivity, or when an ‘Opt-Out’ 

task rather than a wagering task is adopted. In humans, under sensitivity-matched conditions, 

hemodynamic activity differs between conditions involving different levels of reported confidence 

(30–32). Applying magnetic stimulation or chemical inactivation to the prefrontal cortex alters 

confidence reports while sensitivity remains unchanged (10, 31, 33). In another study in monkeys, 

muscimol injection to the pulvinar impaired confidence reports, as assessed by an ‘Opt-Out’ task, 

while leaving decision accuracy unchanged (9). Such effects may involve the interactions 

between the known projections from the dorsal central pulvinar to the prefrontal cortex (34–36). 

The work in prefrontal cortex and pulvinar, like our work reported here, also argues strongly for a 

distinction between optimal confidence based on perceptual decisions and subjective confidence 
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that is dissociable from perceptual decisions. We propose that combining our new behavioral task 

with multi-neuron recordings in the prefrontal cortex and pulvinar may uncover representations of 

subjective confidence independent of optimal confidence. 

In summary, our findings highlight the important roles played by the superior colliculus in 

decision-making, beyond its well-known role in eye movements (37), and perhaps more 

importantly, they raise critical questions about the interpretation of previous findings and open up 

exciting possibilities for future studies of subjective confidence. 
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Figures 

 

Fig 1.  Stimulus-matched assessment of decision confidence in monkeys.  The behavioral 
task showing a trial in which the Opt-Out option was unavailable (A) and available (B). The trial 
types shown in A and B were randomly interleaved in each of the 19 stimulus-matched sessions. 
The red dot shows the fixation point, the grey dots show the possible choice targets, and the 
green dot shows the Opt-Out option. The black circle shows the RF. (C) The probability of 
choosing the Opt-Out option on trials when it was available (shown in B) is plotted as a function 
of motion coherence.  Circles show means across sessions, and bars show SEM across sessions.  
Note that monkeys chose the Opt-Out option more often when motion coherence was low, 
indicating they were less confident about the motion direction decision. The number of trials 
making up this data set is 14642, as it includes all trials where the Opt-Out was offered. (D) The 
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probability of correct choices is plotted against motion coherence for two monkeys using the same 
set of data as in C, but now plotting trials where an explicit decision about the motion direction 
was made (i.e., including trials with the Opt-Out unavailable, and excluding aborted trials, trials 
where the Opt-Out was selected, and trials where the lateral inhibition target was selected). The 
number of trials making up this data set is 13346. Circles show means across sessions, and bars 
show SEM. Grey filled circles show data when the Opt-Out option was available but waived (trials 
shown in B) and open circles show data when the Opt-Out option was unavailable (trials shown 
in A). Decision accuracy is higher for intermediate motion strengths, when the Opt-Out target was 
available but waived, presumably reflecting higher confidence (t-tests, Bonferroni corrected, *p < 
.01, **p < .001). 
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Fig. 2. Decoding perceptual decisions made with different levels of confidence for the 
same motion stimuli (stimulus-matched).  We trained and tested a decoding model using a 
100ms sliding window (step size = 10ms) beginning 50ms before the choice targets appeared 
through 200ms after the choice report, to predict whether a given correct trial involved a choice in 
the RF (“Tin”) or outside of the RF (“Tout”).  354 collicular neurons were used in this analysis, but 
the decoder was run independently on data from each session (which included 9-26 
simultaneously recorded neurons, see Methods). The leftmost panels are aligned to the onset of 
the choice targets, indicated by the dashed vertical line and upward arrow. The middle panels are 
aligned to the onset of the motion stimulus and the rightmost panels are aligned to the onset of 
the saccade.  Each data point represents classification performance of the midpoint of a given 
100ms time window (from 50ms before to 50ms after); the figure represents smoothed data using 
a 5-point moving average. (A) Mean (thin solid lines) and SEM (shaded areas) classifier 
performance across sessions shown as the AUC plotted against time for Opt-Out waived and 
Opt-Out unavailable conditions. The ability of the classifier to predict a Tin or Tout choice was better 
on trials in which the Opt-Out option was available but waived (blue) and monkeys were more 
confident, compared to when the Opt-Out option was unavailable (green) and monkeys had a mix 
of higher and lower confidence in their decisions. (B) Similar to A, but plotting the average 
posterior probability over time. The y-axis is the posterior probability of predicting a given trial 
contains a correct  “Tin” choice. This analysis is similar to the “decision variable” used in a previous 
study (24), and provides an estimate of the strength of the classifier’s predictions. 
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Fig 3. A novel task for dissociating sensitivity and confidence (sensitivity-matched).  (A) 
By manipulating the ratio of positive evidence (dot motion toward the correct decision; dark gray 
rightward arrows) to negative evidence (motion incompatible with the correct decision; light grey 
leftward arrows), it is possible to match sensitivity across two conditions, as measured by d’, but 
achieve different levels of confidence, as indexed by the proportion of trials the monkeys chose 
to Opt-Out.  Shown here is a representative example of two conditions that could achieve this 
result; please note that random dot motion is also included in these conditions, and the exact 
ratios of positive to negative evidence varied slightly in each session, but the overall number of 
dots remained constant (see Methods). The sequence of events for this paradigm was identical 
to the stimulus-matched paradigm described in Figure 1, but we refer to this task as “sensitivity-
matched.” (B) d’ and the percentage of Opt-Out choices (when the opt-out was available and was 
selected) are plotted for High Positive Evidence and Low Positive Evidence conditions. Across 23 
behavioral sessions from two monkeys, the results show statistically indistinguishable sensitivity 
(light grey bars) between High and Low Positive Evidence conditions (6910 trials in total), but 
different percentages of Opt-Out choices (dark grey bars, ***p < 10-5). Bars show averages across 
sessions and error bars are SEM. 
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Fig. 4.  Decoding perceptual decisions made with different levels of confidence and the 
same level of sensitivity. We trained and tested a decoding model using a 100ms sliding window 
(step size = 10ms) beginning 50ms before the choice targets appeared through 200ms after the 
choice report, to predict whether a given correct trial included a saccade toward the choice target 
in the RF (“Tin”) or outside of the RF (“Tout”). The data are from the ‘sensitivity-matched’ task shown 
in Figure 3, and contain 6910 trials from 421 neurons from 2 monkeys (23 total sessions).  The 
decoder was run separately on neurons from each recording session.  Each data point represents 
classification performance of the midpoint of a given 100ms time window (from 50ms before to 
50ms after); the figure represents smoothed data using a 5-point moving average. (A) The mean 
classifier performance as area under the curve (AUC) plotted against time in seconds (sec). (B) 
The mean posterior probability for Tin and Tout choices plotted against time in seconds; the y-axis 
reflects the posterior probability that a given trial contains a correct “Tin” choice. In all panels, the 
blue lines and shaded areas show the mean and SEM from the High Positive Evidence (HPE) 
condition (high confidence) and the green lines and shaded areas show the mean and SEM from 
the Low Positive Evidence (LPE) condition (low confidence).  
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Fig. 5.  Generalization analysis reveals little evidence for subjective confidence signals in 
the superior colliculus. Same as in Figure 4, with the addition of results from a linear classifier 
trained on trials from the High Positive Evidence condition (HPE; high confidence) and tested on 
trials from the Low Positive Evidence condition (LPE; low confidence), shown in red. Lines show 
averages and shaded areas show SEM. ‘Tin’ indicates correct trials in which the monkeys made 
a saccade toward the choice targets in the RF and ‘Tout’ indicates correct trials in which the 
monkeys made saccades toward choice targets outside of the RF.  
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Fig S1.  Decoding perceptual decisions made with different levels of confidence for 
Monkey H for the same motion stimuli (stimulus-matched).  (A) Plotting the area under the 
ROC curve (AUC) for the 11 stimulus-matched sessions for monkey H.  The thick line represents 
the average AUC across sessions, and the shaded area represents the SEM across sessions.  
(B) The average posterior probability across time.  The y-axis reflects the posterior probability of 
a given correct trial involving a “Tin” choice.  The thick line represents the average posterior 
probability across sessions, and the shaded area represents the SEM across sessions.   
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Fig S2.  Decoding perceptual decisions made with different levels of confidence for 
Monkey P for the same motion stimuli (stimulus-matched).   (A) Plotting the area under the 
ROC curve (AUC) for the 8 stimulus-matched sessions for monkey P.  The thick line represents 
the average AUC across sessions, and the shaded area represents the SEM across sessions.  
(B) The average posterior probability across time.  The y-axis reflects the posterior probability of 
a given correct trial involving a “Tin” choice.  The thick line represents the average posterior 
probability across sessions, and the shaded area represents the SEM across sessions. 
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Fig. S3.  Comparison of population and single neuron decoding of confidence. (A) Shown 
here are three different classifiers’ performance scores (AUC) for classifying Tin vs. Tout choices in 
stimulus-matched recording sessions when the Opt-Out was waived. The three different 
classifiers include a classifier using the activity from all recorded neurons (dark blue), a classifier 
using only the neuron that had the highest squared Beta value from the population-level result 
(orange), and a classifier using only the neuron with median squared beta value (pink) from the 
population-level result.  While Beta magnitude does not perfectly index the predictive power of a 
given neuron, these units still contain choice-related activity that is informative.  As can be seen 
in this panel, decoding population activity results in a much greater capacity to predict Tin and Tout 
choices. (B) Same as A, but showing classifier performance scores for trials when the Opt-Out 
was unavailable. The population line here represents decoding using all neurons in stimulus-
matched recording sessions (green), and single neurons that either had the highest squared Beta 
value from the population-level result (orange) or median squared beta value (pink) on these 
same trials. The data are aligned on the motion cue onset indicated by the upward arrow.  
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Fig. S4.  Individual session results from sensitivity-matched sessions.  Shown in this plot 
are the 23 individual session results from the sensitivity-matched sessions, which included all 
days when the difference between d’ between the high and low evidence condition was less than 
0.7.  Most sessions fell well within this cutoff, as the mean difference between High Positive 
Evidence and Low Positive Evidence for all sessions in this dataset was 0.02, and the median 
was 0.07.  The results for either the behavioral or decoding analyses did not significantly change 
even when using a more strict standard for d’ matching (e.g., differences between conditions < 
0.5).   
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Fig. S5.  Does the activity of some superior colliculus neurons signal confidence?  (A) 
Frequency histograms of discriminability indices (see Methods) for neurons recorded during 
accuracy-matched sessions. The plots include the data from the sensitivity-matched task, which 
includes conditions that vary in terms of Opt-Out availability (“stimulus-matched” dimension, on 
which both subjective confidence and decision capacity vary) as well as Positive Evidence level  
(i.e., HPE vs. LPE, the “sensitivity-matched” dimension, on which subjective confidence and 
physical stimuli vary). For the stimulus-matched dimension shown in blue, positive values indicate 
the neuron discriminates Tin vs. Tout more effectively when the Opt-Out is waived (indicating high 
confidence), compared to when it is unavailable and negative values indicate that the neuron 
discriminates better for Tin vs. Tout when the Opt Out is unavailable compared to when it is waived. 
In the sensitivity-matched dimension shown in orange, positive values indicate the neuron 
discriminates Tin vs. Tout choices more effectively for trials from the High Positive Evidence 
condition than trials from the Low Positive Evidence condition and negative values indicate that 
the neuron discriminates better for Tin vs. Tout for trials from the Low Positive Evidence condition 
compared to the High Positive Evidence condition. Indices around 0 indicate equal 
discriminability. (B) Sensitivity-matched discriminability indices plotted against stimulus-matched 
discriminability indices for individual neurons. For a neuron to show higher Tin vs. Tout 
discriminability with higher confidence under both sensitivity-matched and stimulus-matched 
conditions, it should fall within the upper right quadrant.  (C) Percentages of neurons in each 
quadrant from panel B. 
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Fig S6.  Instability of confidence signals in the superior colliculus. To evaluate whether the 
discriminability index was stable across time, we computed it separately for each neuron for both 
odd and even trials in the sensitivity-matched sessions, which included conditions that vary in 
terms of Opt-Out availability (“stimulus-matched” dimension, on which both subjective confidence 
and decision capacity vary) as well as Positive Evidence level  (i.e., HPE vs. LPE, the “sensitivity-
matched” dimension, on which subjective confidence and physical stimuli vary). (A) 
Discriminability index for neurons recorded in the sensitivity-matched conditions (HPE vs. LPE) 
is plotted against the discriminability index for those same neurons in the stimulus-matched 
conditions in the same session (Opt-Out Available and Waived. Vs Opt-Out Unavailable) for odd 
trials only. 178 of the 417 neurons shown in the upper quadrant of Figure S2B fall within the upper 
right quadrant here, indicating they signal confidence in both the stimulus-matched and accuracy-
matched dimensions. (B) Same as in A, for the even trials.  While many neurons also signaled 
confidence in the stimulus-matched dimension in the even trials (showing adequate 
discriminability as a function of Opt-Out availability), most neurons did not signal confidence in 
the sensitivity-matched dimension. This means that true confidence-encoding in both dimensions 
was not a stable feature for these neurons. (C) Histograms showing the frequency of neurons on 
different sides of the midlines in panel B. “Opt-Out waived” denotes the number of neurons with 
a stimulus-matched discriminability index > 0 in panel B; “Opt-Out unavailable” denotes the 
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number of neurons with a stimulus-matched discriminability index < 0.  “HPE” indicates the 
number of neurons with a sensitivity-matched discriminability index > 0 in panel B; “LPE” indicates 
the number of neurons with a discriminability index < 0 in B.  Although there were many neurons 
that were stable in discriminating Tin and Tout more effectively when the Opt-Out was waived (as 
they retained this property when computed on even trials), the neurons that discriminated Tin and 
Tout most effectively for High Positive Evidence on odd trials did not signal confidence stably on 
even trials.  
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Fig S7.  Decoding High Positive Evidence vs. Low Positive Evidence Conditions, and 
testing generalization to Opt-Out Waived vs. Opt-Out Unavailable Trials.  (A) We trained and 
tested a decoding model using a 100ms sliding window (step size = 10ms) beginning 50ms before 
the choice targets appeared through 200ms after the choice report, to predict whether a given 
trial was from the High Positive Evidence condition (HPE) or the Low Positive Evidence condition, 
regardless of the choice that was made. Here, we show the area under the ROC curve (AUC) for 
decoding HPE vs. LPE conditions for the 23 stimulus-matched sessions. The thick line represents 
the average AUC across sessions, and the shaded area represents the SEM across sessions.  
(B) Here, we plot the performance of a generalized decoder, trained on HPE vs. LPE conditions, 
and tested on Opt-Out waived vs. Opt-Out unavailable trials. The area under the ROC curve 
(AUC) is shown. 
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Fig S1.  Decoding perceptual decisions made with different levels of confidence for 
Monkey H for the same motion stimuli (stimulus-matched).  (A) Plotting the area under the 
ROC curve (AUC) for the 11 stimulus-matched sessions for monkey H.  The thick line represents 
the average AUC across sessions, and the shaded area represents the SEM across sessions.  
(B) The average posterior probability across time.  The y-axis reflects the posterior probability of 
a given correct trial involving a “Tin” choice.  The thick line represents the average posterior 
probability across sessions, and the shaded area represents the SEM across sessions.   
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Fig S2.  Decoding perceptual decisions made with different levels of confidence for 
Monkey P for the same motion stimuli (stimulus-matched).   (A) Plotting the area under the 
ROC curve (AUC) for the 8 stimulus-matched sessions for monkey P.  The thick line represents 
the average AUC across sessions, and the shaded area represents the SEM across sessions.  
(B) The average posterior probability across time.  The y-axis reflects the posterior probability of 
a given correct trial involving a “Tin” choice.  The thick line represents the average posterior 
probability across sessions, and the shaded area represents the SEM across sessions. 
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Fig. S3.  Comparison of population and single neuron decoding of confidence. (A) Shown 
here are three different classifiers’ performance scores (AUC) for classifying Tin vs. Tout choices in 
stimulus-matched recording sessions when the Opt-Out was waived. The three different 
classifiers include a classifier using the activity from all recorded neurons (dark blue), a classifier 
using only the neuron that had the highest squared Beta value from the population-level result 
(orange), and a classifier using only the neuron with median squared beta value (pink) from the 
population-level result.  While Beta magnitude does not perfectly index the predictive power of a 
given neuron, these units still contain choice-related activity that is informative.  As can be seen 
in this panel, decoding population activity results in a much greater capacity to predict Tin and Tout 
choices. (B) Same as A, but showing classifier performance scores for trials when the Opt-Out 
was unavailable. The population line here represents decoding using all neurons in stimulus-
matched recording sessions (green), and single neurons that either had the highest squared Beta 
value from the population-level result (orange) or median squared beta value (pink) on these 
same trials. The data are aligned on the motion cue onset indicated by the upward arrow.  
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Fig. S4.  Individual session results from sensitivity-matched sessions.  Shown in this plot 
are the 23 individual session results from the sensitivity-matched sessions, which included all 
days when the difference between d’ between the high and low evidence condition was less than 
0.7.  Most sessions fell well within this cutoff, as the mean difference between High Positive 
Evidence and Low Positive Evidence for all sessions in this dataset was 0.02, and the median 
was 0.07.  The results for either the behavioral or decoding analyses did not significantly change 
even when using a more strict standard for d’ matching (e.g., differences between conditions < 
0.5).   
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Fig. S5.  Does the activity of some superior colliculus neurons signal confidence?  (A) 
Frequency histograms of discriminability indices (see Methods) for neurons recorded during 
accuracy-matched sessions. The plots include the data from the sensitivity-matched task, which 
includes conditions that vary in terms of Opt-Out availability (“stimulus-matched” dimension, on 
which both subjective confidence and decision capacity vary) as well as Positive Evidence level  
(i.e., HPE vs. LPE, the “sensitivity-matched” dimension, on which subjective confidence and 
physical stimuli vary). For the stimulus-matched dimension shown in blue, positive values indicate 
the neuron discriminates Tin vs. Tout more effectively when the Opt-Out is waived (indicating high 
confidence), compared to when it is unavailable and negative values indicate that the neuron 
discriminates better for Tin vs. Tout when the Opt Out is unavailable compared to when it is waived. 
In the sensitivity-matched dimension shown in orange, positive values indicate the neuron 
discriminates Tin vs. Tout choices more effectively for trials from the High Positive Evidence 
condition than trials from the Low Positive Evidence condition and negative values indicate that 
the neuron discriminates better for Tin vs. Tout for trials from the Low Positive Evidence condition 
compared to the High Positive Evidence condition. Indices around 0 indicate equal 
discriminability. (B) Sensitivity-matched discriminability indices plotted against stimulus-matched 
discriminability indices for individual neurons. For a neuron to show higher Tin vs. Tout 
discriminability with higher confidence under both sensitivity-matched and stimulus-matched 
conditions, it should fall within the upper right quadrant.  (C) Percentages of neurons in each 
quadrant from panel B. 
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Fig S6.  Instability of confidence signals in the superior colliculus. To evaluate whether the 
discriminability index was stable across time, we computed it separately for each neuron for both 
odd and even trials in the sensitivity-matched sessions, which included conditions that vary in 
terms of Opt-Out availability (“stimulus-matched” dimension, on which both subjective confidence 
and decision capacity vary) as well as Positive Evidence level  (i.e., HPE vs. LPE, the “sensitivity-
matched” dimension, on which subjective confidence and physical stimuli vary). (A) 
Discriminability index for neurons recorded in the sensitivity-matched conditions (HPE vs. LPE) 
is plotted against the discriminability index for those same neurons in the stimulus-matched 
conditions in the same session (Opt-Out Available and Waived. Vs Opt-Out Unavailable) for odd 
trials only. 178 of the 417 neurons shown in the upper quadrant of Figure S2B fall within the upper 
right quadrant here, indicating they signal confidence in both the stimulus-matched and accuracy-
matched dimensions. (B) Same as in A, for the even trials.  While many neurons also signaled 
confidence in the stimulus-matched dimension in the even trials (showing adequate 
discriminability as a function of Opt-Out availability), most neurons did not signal confidence in 
the sensitivity-matched dimension. This means that true confidence-encoding in both dimensions 
was not a stable feature for these neurons. (C) Histograms showing the frequency of neurons on 
different sides of the midlines in panel B. “Opt-Out waived” denotes the number of neurons with 
a stimulus-matched discriminability index > 0 in panel B; “Opt-Out unavailable” denotes the 
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number of neurons with a stimulus-matched discriminability index < 0.  “HPE” indicates the 
number of neurons with a sensitivity-matched discriminability index > 0 in panel B; “LPE” indicates 
the number of neurons with a discriminability index < 0 in B.  Although there were many neurons 
that were stable in discriminating Tin and Tout more effectively when the Opt-Out was waived (as 
they retained this property when computed on even trials), the neurons that discriminated Tin and 
Tout most effectively for High Positive Evidence on odd trials did not signal confidence stably on 
even trials.  
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Fig S7.  Decoding High Positive Evidence vs. Low Positive Evidence Conditions, and 
testing generalization to Opt-Out Waived vs. Opt-Out Unavailable Trials.  (A) We trained and 
tested a decoding model using a 100ms sliding window (step size = 10ms) beginning 50ms before 
the choice targets appeared through 200ms after the choice report, to predict whether a given 
trial was from the High Positive Evidence condition (HPE) or the Low Positive Evidence condition, 
regardless of the choice that was made. Here, we show the area under the ROC curve (AUC) for 
decoding HPE vs. LPE conditions for the 23 stimulus-matched sessions. The thick line represents 
the average AUC across sessions, and the shaded area represents the SEM across sessions.  
(B) Here, we plot the performance of a generalized decoder, trained on HPE vs. LPE conditions, 
and tested on Opt-Out waived vs. Opt-Out unavailable trials. The area under the ROC curve 
(AUC) is shown. 
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