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We examine theoretically the signatures of magnetic adatoms in graphene probed by scanning tunneling

spectroscopy (STS). When the adatom hybridizes equally with the two graphene sublattices, the broad-

ening of the local adatom level is anomalous and can scale with the cube of the energy. In contrast to

ordinary metal surfaces, the adatom local moment can be suppressed by the proximity of the probing

scanning tip. We propose that the dependence of the tunneling conductance on the distance between the tip

and the adatom can provide a clear signature for the presence of local magnetic moments. We also show

that tunneling conductance can distinguish whether the adatom is located on top of a carbon atom or in the

center of a honeycomb hexagon.

DOI: 10.1103/PhysRevLett.103.206804 PACS numbers: 73.20.�r, 71.55.Ht

Graphene is a two-dimensional sheet of carbon atoms
whose remarkable electronic properties derive from elec-
tronic excitations that behave as chiral Dirac quasiparticles
[1]. Although clean bulk graphene may not be magnetic,
there is a rich variety of possibilities for magnetism when
adatoms are added on top of graphene. As an open surface,
the use of scanning tunneling microscopy (STM) probes
[2] opens the possibility of controlling the position of
adatoms with atomic precision [3] and at the same time
switching the magnetic local moments on and off by gating
[4,5].

One of the challenges for the manipulation of local
moments is detection: how can one reliably identify a local
magnetic moment at room temperature. Unlike ordinary
metal surfaces, due to the low density of states (DOS), an
adatom localized level can hybridize strongly with the
STM tip. We propose that the dependence of the adatom
STM differential conductance (DC) with the distance to a
nonmagnetic STM tip, in the limit of small separation, can
provide an experimental signature for the presence of local
moments above the Kondo temperature [6]. Furthermore,
because the electrons in graphene carry different sublattice
quantum numbers, we show that when the adatom sits in
the center of the honeycomb hexagon [see Fig. 1(b)],
destructive interference between the different tunneling
paths changes substantially the form of the Fano factor
[7] and the shape of the DC curves compared to the case
where the adatom is located on the top of a carbon atom
[Fig. 1(a)]. This effect allows the use of STM to character-
ize adatoms and defects in graphene, including substitu-
tional impurities in single and double vacancies [8].

Our starting point is the free Hamiltonian of the
graphene-adatom-tip system: H ¼ H g þH f þH c.

H g is the tight-binding Hamiltonian for graphene:H g ¼
�t

P
hiji

P
� a

y
�ðRiÞb�ðRjÞ þ H:c:, where a, b are the fer-

mionic operators for sublattices A and B, respectively (t�

2:8 eV), and � ¼"; # is the spin. In momentum space,

H g ¼ �t
X

�k

½�ðkÞayk�bk� þ��ðkÞbyk�ak��; (1)

where �ðkÞ ¼ P3
i¼1 e

ik�ai , a1 ¼ x̂, a2 ¼ �x̂=2þ ffiffiffi
3

p
ŷ=2,

and a3 ¼ �x̂=2� ffiffiffi
3

p
ŷ=2 are the lattice nearest neighbor

vectors. H c ¼
P

k�kc
y
k;�ck� is the effective Hamiltonian

for the c tip electrons, with �k ¼ ðk2Þ=2m� � �D, where
m� is the effective electronic mass, and �D is the energy at
the bottom of the tip band with respect to the Dirac point,

and H f ¼ P
��0f

y
�f� is the Hamiltonian of the f elec-

trons at the local level with energy �0. The Coulomb
energy U for double occupancy of the local level is de-

scribed by a Hubbard term: H U ¼ Ufy" f"f
y
# f#. Since we

are only interested in the magnetic state of the adatom (we
do not include the Kondo effect and hence our theory is
valid above the adatom Kondo temperature, TK), in what
follows we use Anderson’s mean field decomposition [4]:

H U;MF ¼ U
P

�n�f
y��f�� �Un#n", where n� ¼ hfy�f�i

is the average occupation of the level. Hence, at the mean

field level we write H f;MF ¼ P
���f

y
�f�, where �� ¼

�0 þUn�� is the renormalized level energy.

a) b)

FIG. 1 (color online). Two adatom positions in graphene:
(a) asymmetric case, on top of a carbon atom, when the adatom
(large circle) hybridizes with one sublattice and (b) symmetric
case, when the adatom is located at the center of a hexagon. Red
arrows: nearest neighbor vectors.
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In graphene the adatoms can be localized at different
positions in the honeycomb lattice [8]. Here we consider
two cases where the adatom is either placed on top of a
carbon atom, in which case the sublattice symmetry is
locally broken, or the adatom is located in the center of
an hexagon without symmetry breaking. In the first case,
assuming the adatom to be on the B sublattice, we have

H V;AS ¼ V
P

�f
y
�b�ð0Þ þ H:c: In the second case we

have: H V;S ¼ P
�

P
3
i¼1 V½ay�ðaiÞ þ by�ð�aiÞ�f� þ H:c:

In momentum space, these two terms can be written as

H V;AS ¼ V
X

p�

byp�f� þ H:c: (2)

in the asymmetric case, and

H V;S ¼ V
X

p�

½�ðpÞbyp� þ��ðpÞayp��f� þ H:c: (3)

in the symmetric one [9].
In the presence of a STM tip, there are two additional

hopping terms: H f�c ¼ Vc

P
�f

y
�c�ðrÞ þ H:c:, where Vc

is the effective tunneling energy between the tip and the

adatom, and H g�c ¼ P
�;itc;i½ay�ðRiÞ þ by�ðRiÞ�c�ðRi �

rÞ þ H:c: where tc;i is the hopping energy between the tip

and each carbon, r ¼ ðR; zÞ is the position of the tip with
respect to the adatom, R is the in-plane distance from the
adatom to the center of the tip, and z is the out-of-plane
distance between them. The fact that the adatom sits a few
angstroms above the graphene plane is accounted by the
exponential z dependence of the tunneling energies. In

momentum space we have H f�c ¼ VcðrÞ
P

�pf
y
�c�p þ

H:c: and H g�c ¼
P

�kptc;pðrÞ½ay�p þ by�p�c�k þ H:c:,

where tc;pðrÞ ¼ tcðzÞe�ip�R after averaging over the posi-

tion of the carbon sites below the impurity.
In the absence of the tip, after diagonalization of the

Hamiltonian H g þH f þH V in Eqs. (1)–(3), the re-

tarded Green’s function of the f electrons Gff;�ð�Þ ¼
�hT½fð�Þfyð0Þ�i is given by

GR
ff;�ð!Þ ¼ ½!� �� ��ffð!Þ��1; (4)

where �ffð!Þ is the self-energy of the localized electrons

due to the hybridization with the electrons in graphene. As
in the usual Anderson impurity problem [10], the forma-
tion of local moments is defined by the occupation of the
localized level n� for up and down spins, n� ¼ �ð1=�Þ�
R�
�D d!ImGR

ff;�ð!Þ, where � is the chemical potential

(D� 7 eV is an energy cutoff).
In the asymmetrical case [see Eq. (2)], �AS

ff ð!Þ ¼
V2

P
pG

0R
bb;pð!Þ, where G0

bbð�Þ ¼ �hT½bð�Þbyð0Þ�i is the

diagonal component of the bare graphene Green’s function,
G0

xy, with x, y ¼ a, b:

G0R
xy;kð!Þ ¼ !�0

xy � t�1
xyRe�ðkÞ þ t�2

xyIm�ðkÞ
!2 � t2j�ðkÞj2 þ i0þsignð!Þ ; (5)

where�j (j ¼ 1, 2) are off-diagonal Pauli matrices (�2
ba ¼

�2�
ab ¼ i), and �0 is the identity matrix. We calculate the

self-energy within the linearized theory, where the energy
around the K (K0) point is given by ��ðkÞ ¼ �vFk, where
vF � 106 m=s is the Fermi velocity. It reads [4]

�AS
ff ð!Þ¼�ð!�=�Þ lnðj1�D2=!2jÞ� i�j!j�ðD�j!jÞ;

(6)

where � ¼ �ðV=DÞ2 is the dimensionless hybridization
parameter. The imaginary part of (6) gives the broadening
of the level due to the hybridization of the adatom, and it is
proportional to the DOS of the host.
In the symmetric case, however, the hybridization of the

f electrons is mediated by the virtual hopping of the
electrons in graphene into a ‘‘ghost’’ site located below
the adatom, in the center of the hexagon. In this process, as
the electrons hop in and out from the adatom, they gain an
additional phase that leads to interference between the
different quantum mechanical paths involving the six ad-
atom neighboring sites on both sublattices. The self-energy
in this case involves also off-diagonal terms of (5):

�S
ffð!Þ ¼ V2

X

p

½�ðpÞ�a;pð!Þ þ��ðpÞ�b;pð!Þ�; (7)

where �x;pð!Þ ¼ �ðpÞG0R
xb;pð!Þ þ��ðpÞG0R

xa;pð!Þ. In the

linearized theory, Eq. (7) gives [11]:

�S
ffð!Þ ¼ �!½Z�1ð!Þ � 1� � 2i�ðj!j3=t2Þ�ðD� j!jÞ;

(8)

where Z�1 ¼ 1� ð1=!ÞRe�S
ffð!Þ ¼ 1þ 2�=ð�t2Þ�

½D2 þ!2 lnðjD2 �!2j=!2Þ� gives the quasiparticle resi-
due. The imaginary part of �S

ff gives rise to an anomalous

broadening of the adatom level that scales with j!j3=t2,
suppressing strongly the hybridization when j�0j 	 t.
In the perturbative regime where Vc, tc are small com-

pared to V, the inclusion of the tip leads to an additional
renormalization of the f electrons Green’s function,

�ffðr; !Þ ¼ �ffð!Þ þ �ð1Þ
ff ðr; !Þ, where

�ð1Þ
ff ðr; !Þ ¼ Vcðr; !Þ �Vcð�r; !ÞX

k

G0R
cc;kð!Þ: (9)

G0R
cc;kð!Þ ¼ ½!� �ðkÞ þ i0þ��1 is the retarded Green’s

function of the c electrons, G0
cc;kð�Þ ¼ �hT½ckð�Þcykð0Þ�i,

whereas Vcðr; !Þ is the renormalized tunneling energy
between the tip and the adatom, namely

VAS
c ðr;!Þ¼VcþVtcðzÞ½G0R

abðR;!ÞþG0R
bbðR;!Þ� (10)

for the asymmetric case, where �Vcðr; !Þ follows from the
exchange G0

xb ! G0
bx, and

VS
c ðr; !Þ ¼ Vc þ VtcðzÞ½�aðR; !Þ þ�bðR; !Þ� (11)

in the symmetric one (VS
c 
 �VS

c). In our notation, �ðRÞ ¼
P

pe
ip�R�x;p is the Fourier transform of�x. �

ð1Þ
ff in Eq. (9)

can be easily computed assuming an effective band width,
�D, for the c electrons in the tip.
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The adatom induced DC is Gðr; !Þ / 	cð!Þ	f�cðr; !Þ,
where 	c is the DOS of the tip, and 	f�cðr; !Þ ¼
�ð1=�ÞIm½Vcðr; !ÞP�Gff;�ð!Þ �Vcð�r; !Þ� is the ana-

logue of the f electron DOS, which contains renormalized
tunneling matrix elements between the tip and the adatom
[12]. In a more standard form, the DC is

G ðr;!Þ¼2�e	ct
2
c ~	

X

�

q �q�
 �
þðq �
þ �q
Þ��

�2
�þ1

; (12)

where e is the electron charge, ! ¼ �þ eV, with eV the
applied bias, ~	ðr; !Þ ¼ �	2ð!Þ=Im�ffðr; !Þ, where 	ð!Þ
is the graphene DOS per spin, and ��ðr; !Þ ¼ �½!�
�� � Re�ffðr; !Þ�=Im�ffðr; !Þ, qðr; !Þ ¼ ReVcðr; !Þ=
½�tcðzÞV	ð!Þ� and 
ðr; !Þ ¼ �ImVcðr; !Þ=
½�tcðzÞV	ð!Þ� are the Fano parameters [7]. In contrast
with usual metal surfaces, the Fano factor q has a live
dependence with the bias in graphene. The conjugate forms
�qð�r; !Þ and �
ð�r; !Þ are defined by the conjugate tun-
neling matrix element �Vcð�r; !Þ. In the particular case
when the tip is above the adatom (R ¼ 0), q ¼ �q and 
 ¼
�
 and qAS ¼ fVc þ ½tcðzÞ=V�Re�AS

ff ð!Þg=½�tcðzÞV	ð!Þ�,
where �AS

ff ð!Þ is defined by Eq. (6), and 
AS ¼ 1. In the

case where the adatom and the tip are on top of each other
in the center of the hexagon, destructive interference leads
to cancellation of the perturbative corrections on the tun-
neling matrix element in Eq. (11), and the Fano parameter
simplifies to qS ¼ Vc=½�tcðzÞV	� and 
S ¼ 0. For ada-
toms with d and f orbitals, the cancellation is not exact.

The shape of the Fano resonances in the DC curves is
driven by the ratio q=
. When q=
 � 1, the DC curve
shows a pronounced peak, whereas in the opposite regime,
q=
 	 1 one expects a dip. For a set of parameters V ¼
1 eV, U ¼ 1 eV, �D ¼ 4 eV, �D ¼ 2 eV, � ¼ 0:1 eV,
and �0 ¼ �0:5 eV, in the asymmetric case, for Vc=tc ¼
0:1, the red (gray) curve shown in the inset of Fig. 2(a) has
a small dip, which is suppressed when Vc=tc * 0:2. In
contrast, the curves shown in Fig. 2(b) for the symmetric
case have a well-pronounced peak for all finite values of qS

[see inset of Fig. 2(b)], reflecting the fact that qS=
S is
always large (
S ¼ 0). Figures 2(a),2(b) and 2(c),2(d)
compare the features of the positive bias resonance for tc ¼
0:15 eV and tc ¼ 0:02 eV, respectively. All red (gray)
curves in Fig. 2 correspond to Vc=tc ¼ 0:1. Increasing
this ratio from Vc=tc ¼ 0:25 up to 1.6, the DC curves
show two strongly pronounced peaks indicating the po-
sition of the two magnetic Fano resonances at �0 þ n"U
and �0 þ n#U. For Vc=tc < 0:1, in the asymmetric case,

Fig. 2(c) shows an inversion in the structure of the reso-
nance (Vc=tc ¼ 0:01) for positive bias. The shape of the
DC curves for small q=
 [see insets of Fig. 2] agrees
with a recent STM measurement of the Kondo peak in
graphene [13].

The decrease in the separation of the peaks with increas-
ing Vc reflects the suppression of the local moment by the
proximity of the STM tip. In particular, in the symmetric

case [Fig. 2(b)], the hybridization of the adatom with
graphene is weaker than in the asymmetric one, making
the local moment much more sensitive to the STM tip. The
difference is indicated clearly by the separation of the
peaks for large Vc and also by the width of the peaks as
Vc goes to zero. In the asymmetric case [Fig. 2(a)], the
peaks remain broad at small Vc whereas in the other case
their width collapses much faster, reflecting their anoma-
lous broadening /j!j3=t2 [see Eq. (8)]. In the opposite
limit, for Vc large enough, the two DC magnetic peaks
eventually merge on top of each other, destroying the local
moment completely. The merging of the peaks happens
much earlier in the symmetric case [Fig. 2(b)] than in the
asymmetric one. We note that for large Vc, fluctuations
drive the DC away from equilibrium (although still in the
perturbative regime for Vc 	 V), invalidating the strict
applicability of Eq. (12). The main effect of fluctuations,
however, is to further suppress the local moment, and in
this sense the equilibrium calculation may be regarded as a
conservative estimate for the main effect, the suppression
of the local moment by the STM tip. As the tip separation
to the adatom becomes progressively small the DC peaks
can shift strongly: in that case, the peak on the right will
redshift and eventually cross the experimentally accessible
bias window around the Fermi level, providing an experi-
mental signature for the presence of the local moment with
a nonmagnetic tip, regardless the presence of the Kondo
peak. A significant suppression of the local moment by the
metallic tip is harder for adatoms with a very large U, such
as cobalt, which show a large local moment when hybri-
dized with metals, but may be easily achieved in adatoms
which are not usually magnetic and exhibit a local moment
in graphene [4].
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FIG. 2 (color online). Adatom induced DC, G 
 dI=dV, ver-
sus bias when the adatom sits (left) on top of carbon and (right)
in the center of the hexagon. See details in the text. (a),
(b) tc ¼ 0:15 eV and Vc=tc ¼ 1:6, 1.5, 1.35, 1.1, 0.7, 0.25, and
0.1 (inset), from top to bottom. (c),(d) tc ¼ 0:02 eV and Vc=tc ¼
0:7, 0.25, 0.1, 0.05, and 0.01. Vc=tc ¼ 0:1 for all curves in red
(gray).
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The Fano resonance also generates peaks in the LDOS
around the adatom. The plots in Fig. 3 show the evolution
of those peaks with the increase of Vc in the asymmetric
case, for up and down spins. As the level is broadened by
the tip, the height of the peaks clearly collapses [Fig. 3(d)].

In the case where the adatom is on top of the carbon, the
sublattice asymmetry in the LDOS provides another STM
signature that identifies the position of the adatom in the
lattice. The LDOS for the asymmetric case can be com-
puted perturbatively for small tc and Vc,

	AS
x;�ðr; !Þ ¼ �ð1=�V2ÞIm�AS

ff ðz; !ÞjVc¼0 � ð1=�Þ
� Im½�xðr; !ÞGR

ff;�ð!Þ ��xð�r; !Þ�; (13)

where x ¼ b for the same sublattice of the adatom and x ¼
a for the opposite one. The first term is the renormalized
LDOS in the absence of the adatom and

�xðr; !Þ ¼ VG0R
xb ðR; !Þ þ tcðzÞG0R

aað0; !Þ
�VAS
c ð�r; !Þ �ð1ÞAS

ff ðr; !Þ

contains the interference effects due to the interplay of the

adatom and the tip in graphene. ��x in Eq. (13) follows by
exchanging G0

xb by G0
bx and VAS

c by �VAS
c [see Eq. (10)].

The STM topography maps computed from integration of

Eq. (13) in energy (see Fig. 4) clearly show the asymmetry
between the two sublattices (the adatom has three nearest
neighbors and six next nearest neighbors). Figures 4(a) and
4(b) display the integrated LDOS for the opposite sublat-
tice of the adatom, which has a lower point group symme-
try, while Figs. 4(c) and 4(d) display similar maps for the
same sublattice of the adatom, with and without interfer-
ence effects from the tip.
In conclusion, we have derived the fingerprints for Fano

resonances of magnetic adatoms in graphene. We have
shown the signatures in the DC curves that identify the
position of the adatom and possibly the presence of local
moments, away from the Kondo regime.
We acknowledge E. Fradkin, K. Sengupta,

H. Manoharan, and E. Andrei for discussions. B. U. ac-
knowledges partial support from U.S. Department of En-
ergy under Grant No. DE-FG02-91ER45439 at the Univer-
sity of Illinois, and the Aspen Center of Physics, where this
work started. S.W. T. acknowledges support from UC-Lab
FRP under Grant No. 09LR05118602. A.H. C. N. ac-
knowledges the partial support of the U.S. Department of
Energy under Grant No. DE-FG02-08ER46512.
Note added.—Recently we became aware of a related

work [14].

[1] K. S. Novoselov et al., Nature (London) 438, 197
(2005); Y. Zhang et al., Nature (London) 438, 201
(2005); A.H. Castro Neto et al., Rev. Mod. Phys. 81,
109 (2009).

[2] E. Stolyarova et al., Proc. Natl. Acad. Sci. U.S.A. 104,
9209 (2007); G.M. Rutter et al., Science 317, 219 (2007);
V. Brar et al., Appl. Phys. Lett. 91, 122102 (2007); M.
Ishigami et al., Nano Lett. 7, 1643 (2007); Y. Zhang et al.,
Nature Phys. 4, 627 (2008); V. Geringer et al., Phys. Rev.
Lett. 102, 076102 (2009); G. Li, A. Luican, and E.Y.
Andrei, Phys. Rev. Lett. 102, 176804 (2009).

[3] D.M. Eigler et al., Nature (London) 344, 524 (1990).
[4] B. Uchoa et al., Phys. Rev. Lett. 101, 026805 (2008).
[5] K. Sengupta and G. Baskaran, Phys. Rev. B 77, 045417

(2008).
[6] D. Withoff and E. Fradkin, Phys. Rev. Lett. 64, 1835

(1990); G.-M. Zhang, H. Hu, and L. Yu, Phys. Rev. Lett.
86, 704 (2001); M. Hentschel and F. Guinea, Phys. Rev. B
76, 115407 (2007); B. Dora and P. Thalmeier, Phys.
Rev. B 76, 115435 (2007).

[7] U. Fano, Phys. Rev. 124, 1866 (1961).
[8] A. V. Krasheninnikov et al., Phys. Rev. Lett. 102, 126807

(2009).
[9] The hybridization in Eq. (3) can be easily generalized for

d and f-wave representations of the localized orbital, and
also for substitutional impurity defects.

[10] P.W. Anderson, Phys. Rev. 124, 41 (1961).
[11] The nonlinear corrections of the spectrum give a finite but

small renormalization of the level, �0, for j!j & t.
[12] M. Plihal and J.W. Gadzuk, Phys. Rev. B 63, 085404

(2001).
[13] H. Manoharan et al. (unpublished).
[14] K. Saha et al., arXv:0906.2788.

0

0.02
LD

O
S

-1 -0.5 0 0.5 1

ω (eV)

0

0.02

-1 -0.5 0 0.5 1

ω (eV)

)b)a

d)c)

FIG. 3 (color online). Graphene LDOS at the adatom site (top
carbon case) for Vc=tc ¼ 0:1, 0.7, 1.1, and 1.6, from (a) to
(d) (tc ¼ 0:15 eV). Dark line: n"; light: n#. Total LDOS: n" þ n#.
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FIG. 4 (color online). Integrated LDOS maps around the ad-
atom (center) in the asymmetric case, with the adatom on top of
the carbon. On the left (right): scans for the opposite (same)
sublattice of the adatom: (a),(c) without (tc ¼ Vc ¼ 0Þ and (b),
(d) with the tip (tc ¼ 0:2 eV, Vc ¼ 0:02 eV).
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