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inverse problem by the Newton method (measured in number of PDE
solves) is roughly independent of the number of inversion parameters. 72
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ABSTRACT

Slender structures–bodies with large length to thickness ratio–occur not only in
structural engineering applications, but also in several biological and nano-scale applica-
tions. Some of the recently emerging examples of interest include nanoscale biological
filaments (e.g. DNA molecules, microtubules, cilia and flagella), carbon nano-tubes and
silver nano-wires. Several of these slender structures undergo very large twisting and
bending deformations. For example, biological filaments such as DNA perform their bi-
ological functions via well-regulated structural deformations that involve large twisting
and bending.

Continuum mechanics based models of slender structures are effective in simulat-
ing the mechanics of nano-scale filaments. However, the accuracy of these simulations
strictly depends on the knowledge of the constitutive laws that may in general be nonlinear
and non-homogeneous. It necessitates an inverse problem framework that can leverage
the data provided by physical experiments and molecular dynamics simulations to esti-
mate the unknown parameters in the constitutive law.

The primary purpose of this research is to show the possibility of developing in-
verse methods for identification of constitutive laws of slender structures modeled as con-
tinuum rods. The overarching goal of this research was originally motivated by the query
into structure-function relationship of biological filaments; how these two features of the
constitutive law (nonlinearity and non-homogeneity) influence structural deformations of
biological filaments that in turn govern their biological activity or functions. However,
little is known even from the perspective of structural engineering that could serve this
overarching goal. Therefore, I defined mechanics problems that address and focus on
some engineering and mathematical challenges as a stepping stone towards the overarch-
ing goal. This research in a broad outlook makes a bipartite contribution. The first con-
tribution is the development of a computational rod model that captures large dynamic
bending and torsion of slender filaments with user-defined nonlinear constitutive laws.
The second contribution is the development of both deterministic and statistical inverse
methods to identify the uncertain parameters of the constitutive law of slender structures.

Finally, the forward rod model developed here offers a platform to study a variety
of interesting engineering problems. Therefore, as an additional contribution of this dis-
sertation, I studied the beating oscillations of buckled rods subjected to nonconservative
follower loads. This is motivated by the beating dynamics of active filaments and paves
the way towards designing biomimetic applications of active filaments.
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Chapter 1

INTRODUCTION

The primary purpose of my doctoral research is to show the possibility of develop-
ing inverse methods for identification of constitutive laws of slender structures modeled
as continuum beams or rods. I particularly focused on cases where the unknown consti-
tutive law could either be nonlinear or non-homogeneous without any a priori knowledge
of it. The overarching goal of this research was originally motivated by the query into
the structure-function relationship of biological filaments; how these two features of the
constitutive law (nonlinearity and non-homogeneity) influence structural deformations of
biological filaments that in turn govern their biological activity or functions. However, my
dissertation does not directly address such applications. Instead, I recognize that little is
known even from the perspective of structural engineering toward this overarching goal.
Therefore, I defined mechanics problems that address and focus on some engineering and
mathematical challenges as a stepping stone towards the overarching goal.

As a prerequisite to the inverse approaches I needed to reinvent a forward compu-
tational rod model based on existing rod theories and models. One of the novel contri-
butions that I made to the computational rod model was to add a capability to input any
arbitrary nonlinear constitutive law. The second major contribution of my dissertation is
the development of both deterministic and statistical inverse approaches to identify the
uncertain parameters of the constitutive law of slender structures. Finally, the forward
rod model that I developed offers a platform to study a variety of interesting engineer-
ing problems. Therefore, as an additional contribution of my dissertation, I studied the
beating oscillations of buckled rods subjected to nonconservative follower loads. This is
motivated by the beating dynamics of active filaments and paves the way towards design-
ing biomimetic applications of active filaments.

The following sections in this chapter seek to contextualize and clarify these con-
tributions. Examples of research application that motivate this research are introduced
and finally a summary of research contributions is presented.

1.1 Motivating Research Applications
It is known that bending and twisting deformations of biological filaments such as

DNA, microtubules, flagella, cilia, and sheath proteins play a central role in their biolog-
ical functions. For example, looping of DNA often mediated by protein binding, shown
in Figure 1.1(a), left, is a crucial step in many gene regulatory processes [1, 2]. Another
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Figure 1.1: (a) DNA looping (left) regulates gene expression (pdb101.rcsb.org). Contin-
uum simulation of a looping rod (right). (b) Viral injection mechanism (left) in which
elastic energy of helical sheath proteins plays a central role. Continuum simulation of a
helical rod (right).

example is the viral injection mechanism, shown in Figure 1.1(b) left, in which elastic en-
ergy of helical sheath proteins plays a central role in injecting the viral DNA into the host
cell [3,4]. Both examples elucidate how understanding structural mechanics of biological
filaments provides an essential perspective for medical research and drug discovery.

Another example of a motivating research problem is buckling of microtubules.
Microtubules that are important components of cytoskeletal structures, in conjunction
with actin and intermediate filaments provide both the static and dynamic framework
that maintains cell structure. The morphology of cytoskeleton is known to regulate the
intercellular transport of material [5] which is critical for proper cellular function. Micro-
tubules resist various internal/external forces to maintain cell shape and they support mo-
tor proteins to generate the force required for cell movement and changes in shape [6–9].
Figure 1.2 adopted from Bicek et al [10] is showing actin-myosin contractility which is
one of the many possible mechanisms that causes buckling of the microtubules. One of
the important steps toward understanding such mechanics is to develop appropriate mod-
eling techniques that are described in the following section.

1.2 Required Modeling Capabilities
The continuum mechanics based elastic rod models [11,12] have evolved as viable

tools to efficiently simulate the bending and twisting deformations of a variety of slen-
der structures. Slender structures occur not only in structural engineering applications,
but also in the type of biological and nano-scale applications described above. Some
of the recently emerging applications involving slender structures at nano-scale include
biological filaments [13–15] (e.g. DNA molecules [2, 16, 17], microtubules [7, 8], cila
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Figure 1.2: Actin-myosin contractility can cause a microtubule to buckle. Myosin which
is an actin-based motor, can contract anti-parallel actin filaments as it moves. As a result,
a microtubule that is attached to the actin will buckle.

and flagella [18] and several others [19–21]), carbon nano-tubes [22] and silver nano-
wires [23]. Several of these slender structures undergo very large twisting and bending
deformations. For example, biological filaments such as DNA perform their biological
functions via well-regulated structural deformations that involve large twisting and bend-
ing deformations [24] (Figure 1.1(a) left). Computational rod models are capable of sim-
ulating the nonlinear dynamics of such deformations (Figure 1.1(a,b) right) by employing
appropriate constitutive laws in bending and torsion [25, 26], including intertwining with
self-contact [27] and fluid-structure interaction. Yet, highly limited knowledge of the
constitutive laws of biological filaments and nanorods has been a major roadblock for
applicability of continuum rod models.

A continuum rod model, in general, consists of dynamic equilibrium equations
and compatibility equations, which need to be solved respecting the prescribed constitu-
tive law. Although dynamic equilibrium equations and compatibility conditions, which
I henceforth refer to as the rod model, remain the same for all slender structures, the
key distinguishing factor is the constitutive law. Traditional models assume linear ho-
mogenous constitutive laws in bending and torsion. However, nonlinearities and non-
homogeneities in the constitutive law strongly influence the dynamics of such large de-
formations. For example, both DNA [28,29] and microtubules [30,31] are known to kink
suggesting that these filaments must have non-convex stored energy functions [32]. The
material nonlinearities are also known to influence the onset of buckling of nanorods and
nanotubes [33, 34] as well as the post-bucking behavior [35]. Such details of buckling
dynamics of filaments play an important role in biological systems [36]. Moroever, it is
intuitive, and is also well recognized in continuum mechanics that the constitutive law
of a material depends on its atomistic-level structure and interactions. Atomistic-level
structure and interactions may in general vary along the length of biological filaments
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leading to non-homogenous constitutive law. In case of DNA, while it is a readily ac-
cepted dogma that the genetic code resides in the chemical sequence of its four different
types of monomer units, the base pairs, only recently it has been recognized that there is a
second layer of coding in that sequence, that directly influences the mechanical behavior
by varying the constitutive law of the filament along its length [37]. While physicists are
already giving increasing attention to the subtle importance of mechanical layer of coding
in DNA [37, 38], the need for understanding of how atomistic-level details affect the me-
chanics of thin filaments in general, opens the doors for a profound fundamental research
in the field of mechanics of slender structures.

Unfortunately, for nano-scale filaments direct measurements of the parameters in
the constitutive law are not feasible through laboratory experiments. For example, atomic
force microscopy is used to find elastic moduli of silver nano-wires [23]. Single-molecule
experiments that use optical and magnetic tweezers to prescribe or measure the dynamics
of microscopic beads attached to one or both ends of DNA [39, 40] or microtubules [6]
provide indirect estimates of their bending or torsional stiffness averaged over the entire
length [41–43]. Direct imaging and thermal fluctuations also provide some data to esti-
mate bending stiffness of microtubules and actin filaments [44, 45]. However, to detect
the non-homogeneity along the length, the experiments are yet to evolve further account-
ing for the challenge that the current technology does not allow direct observation of
nano-scale filaments in motion with sufficient resolution [46].

Accurate identification of constitutive law parameters that are not directly mea-
surable involve challenging inverse methods. While a computational forward model can
simulate and predict deformations given initial and boundary conditions as well as pa-
rameters defining the constitute law, inverse models seek to identify unknown parame-
ters of the constitutive law given some measurements of deformations by leveraging the
other known components of the forward model (such as the equilibrium and compatibil-
ity equations). However, in developing inverse methods, a review of which can be found
here [47, 48], the need first arises for a computational forward model that can efficiently
simulate the deformations with any user-defined nonlinear constitutive law. Therefore,
the inverse models for nonlinear constitutive laws have to evolve together with the devel-
opment of corresponding forward models.

1.3 Research Challenges and Thesis Objectives
Previous sections identify a knowledge gap that has been the subject of interest

to a large research community and can be summarized as the following research ques-
tion: how can the constitutive law of filaments be identified from physical measurements
and/or molecular dynamics simulations? Answering this question involves a number of
challenges. First, an inverse approach to identify the constitutive law of filaments based
on measurement data has to cope with the inherent ill-posedness of the inverse prob-
lems [49, 50]. Ill-posedness is a typical feature of many inverse problems, in which the
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data do not uniquely determine the inversion parameter(s). Second, in physical experi-
ments it is not often possible to measure the observable quantity, in our case deformations,
everywhere in the domain. So, a compelling inverse approach not only returns a solution
to the inverse problem, but also need to determine the faith–to quantify the uncertainty–in
the inversion results systematically. And third, any measurement data includes some level
of noise, hence robustness is a critical feature of any viable inverse approach.

So, on one hand physicists are developing futuristic techniques of super-resolution
imaging to collect more and more informative data [46, 51]. On the other hand, as a me-
chanician, I defined the main objective of my research as to explore the possibilities of
developing inverse methods for identification of constitute law of slender structures. For
this objective, instead of using actual measured data specific to any research application
described in Section 1.1, it is more useful, and suffices, to use synthetic data tailored to
addressing specific challenges in developing inverse methods. Synthetic data is generated
by forward models and provides us with the necessary control for addressing the issues
of reconstructability (invertability), robustness, and data sparsity, one at a time. Develop-
ment of a computational rod model (a forward rod model) that is capable of incorporating
user-defined constitutive laws is an associated objective of this research.

Another knowledge gap in the field of mechanics is how the nonlonearity in con-
stitutive law influences the deformations of slender structures. Recognizing that the post-
buckling dynamics is crucial to several biological filaments, I defined another main ob-
jective of my research as to analyze the effect of nonlinearities in the constitutive law on
mechanics of slender structures, in particular, their post-buckling stability region. This
research objective, by focusing on a specific problem, exhibits the sensitivity of the me-
chanical response (or post-buckling stability) of slender structures to nonlinearities in
their constitutive law. This in turn, indicates the significance of having accurate knowl-
edge of the constitutive law for accurate modeling.

Finally, forward rod model offers a highly versatile tool to investigate several sci-
entific questions related to how a variety of filaments in nature function. However, mod-
eling and simulating the dynamics of deformation with a computational rod model is
a known challenge in the mechanics community. So, I defined an additional research
objective that shows the potential impact of the computational tools developed in this
research. The computational rod model which uses a linear constitutive law is not by
itself a novel contribution of this work, but is reinvented here building upon existing the-
ories. The additional research objective that I defined is to use this model to investigate
if and how follower forces in pre-stressed clamped rods mimic oscillatory beating of ac-
tive filaments. Flagella and cilia are examples of actively oscillating, whiplike biological
filaments that are crucial to processes as diverse as locomotion, mucus clearance, embryo-
genesis and cell motility. Elastically driven rod-like filaments subjected to compressive
follower forces provide a synthetic way to mimic such oscillatory beating.

The following list summarizes the objectives of my dissertation described above.
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1. To explore the possibilities of developing inverse methods for identification of con-
stitute law of slender structures.

2. To develop a computational rod model (a forward rod model) that is capable of
incorporating user-defined constitutive laws.

3. To analyze the effect of nonlinearities in the constitutive law on the mechanics of
slender structures, in particular, their post-buckling stability region.

4. To investigate if and how follower forces in pre-stressed clamped rods mimic oscil-
latory beating of active filaments.

These research objectives provide stepping stones towards addressing broader re-
search challenges. By developing modeling tools and elucidating a number of novel find-
ings this dissertation opens the way for a wider range of queries and developments that
would have not been possible without the basic contributions of this thesis.

1.4 Summary of Research Contributions
Here, I summarize my research contributions in the order they appear in Chapters

2 to 6.

• Effect of Softening Nonlinearities of Constitutive Law on Buckling

For a class of materials which exhibit cubic nonlinearity in the constitutive law, the con-
dition for post-buckling stability is characterized in literature using perturbation analy-
sis [52, 53]. Previous work reports that there is a limit on cubic parameter in the consti-
tutive law, beyond which the post-buckling configuration transitions from stable to un-
stable. In Chapter 2, I showed that there is a regime of partially stable post-buckling
solutions which are not predicted by any of the previous work. By perturbation analysis
I derived the domain of partial stability in the post-buckling response of clamped-free
beam for softening constitutive laws. Thus, I quantitatively showed how initially stable
post-buckling solutions transition to unstable post-buckling solutions as buckling contin-
ues. Post-buckling instability results into catastrophic collapse of the structure unless the
external or body forces vanish immediately.

• A Computational Rod Model with User-Defined Nonlinear Constitutive Law

In Chapter 3, I contributed an efficient formulation of a computational rod model that
has the capability of incorporating constitutive laws with any nonlinear functional form
defined by the user. Jacobian-based computational rod models require users to change
the Jacobian if the functional form of the constitutive law is changed, and hence are
not user-friendly. Chapter 3 presents a scheme that automatically modifies the Jacobian
based on any user-defined constitutive law without requiring symbolic differentiation.
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While the same purpose could be achieved by “automatic differentiation” (also known
as algorithmic differentiation or AD), the scheme that I developed is much simpler to
implement, yet as efficient. The scheme is then used to simulate force-extension behavior
of a coiled spring with a softening constitutive law. This case study is motivated by
mechanism of genomic delivery from virus to its host cell that is driven by elastic energy
stored in a compressed helical (sheath) protein [3].

• An Inverse Approach Directly Based on Forward Rod Model for Nonlinear Consti-
tutive Laws

Chapter 4 presents an inverse approach based on a continuum rod model to identify non-
linear constitutive laws of slender structures from geometric data. This approach can use
data from the dynamic states of deformation obtained, in principle, from atomistic sim-
ulations or other sources, however throughout this chapter I synthesize deformation data
using the computational rod model. Depending on the kinematic quantities that may be
computed from the observation or measured data, the algorithm of inverse approaches
differ in their steps to estimate the internal moments and forces. I also investigated and
compared the robustness of these inverse algorithms accounting for the effect of noise in
the data. Overall in this chapter, for the first time, I showed a viable approach of develop-
ing an inverse rod model which can be further extended to specific applications.

• An Adjoint-Based Inverse Approach for Non-homogeneous Constitutive Laws

Chapter 5 contributes an inverse approach for identification of the non-homogeneous con-
stitutive laws of slender structures in a linear elastic model. In doing so, I made two levels
of contributions that are described below:

⌅ Fast and Scalable Deterministic Approach with Regularization

I formulated a simple but representative inverse problem governed by the linear elastic
equation (Navier-Lamé model of linear elasticity) with non-homogeneous constitutive
law. Here, the inverse problem is a nonlinear least-squares optimization in which the cost
functional is the misfit between synthetic observations of a cantilever displacement field
and model predictions. A Tikhonov regularization term is added to the cost functional
to render the problem well-posed and account for observational error. I solve this op-
timization problem with an adjoint-based inexact Newton-conjugate gradient method. I
showed that the reconstruction of the Lamé parameter field converges to the exact co-
efficient as the observation error decreases. I also showed that the number of Newton
iterations is insensitive to the dimension of the parameters, i.e., the computational cost of
solving the inverse problem measured in number of PDE (Partial Differential Equations)
solves is constant as the size of the problem is increased. Therefore, this computationally
fast and scalable framework has the potential to solve high-dimensional inverse elasticity
problems that are of practical interest.
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⌅ Uncertainty Quantification Using Bayesian Inference

I also formulated the inverse problem of identifying Young’s modulus field from noisy
synthetic observations of the displacement field implementing a Bayesian inference frame-
work. Computing the general solution of this inverse problem (i.e., the posterior proba-
bility density) can become prohibitive, due to the expense of solving the forward model
and the high dimensionality of the uncertain parameters (which are discretizations of the
Young’s modulus field). To cope with the infinite-dimensional (i.e., large-scale) character
of the parameter field, it is common to construct a Gaussian approximation to the pos-
terior at the maximum a posteriori probability (MAP) point [54]. The MAP point in the
Gaussian case coincides with the mean and it is given by the solution of the deterministic
inverse elasticity problem. Here, the mean is computed by minimizing a regularized misfit
functional between observed and modeled displacement. The resulting least-squares min-
imization problem is solved using an adjoint-based inexact Newton method, which uses
first and second derivative information. I apply this method to quantify uncertainties in
the inference of the Young’s modulus field from synthetic observations of both cantilever
deformation and rod with a helical structure.

• Stability of Slender Structures Subjected to Follower Loads

Flagella and cilia are examples of actively oscillating, whiplike biological filaments that
are crucial to processes as diverse as locomotion, mucus clearance, embryogenesis and
cell motility. Elastically driven rod-like filaments subjected to compressive follower
forces provide a synthetic way to mimic such oscillatory beating. In the continuum limit,
this time-periodic, stable response results from the interplay between the structural insta-
bility of the inextensible slender rod, geometric constraints that control the onset of in-
stability, energy pumped into the system by the active follower forces, and motion-driven
viscous dissipation in ambient media.

In Chapter 6, I investigate the dynamical, nonlinear buckling instabilities that arise
due to the action of nonconservative follower forces on a pre-stressed slender rod clamped
at both ends. I systematically calculate the critical follower forces for onset of oscillations,
the emergent frequencies and the spatiotemporal patterns of the nonlinear rod shapes that
result for two types of fluid drag forces, namely, Stokes drag and Morrison drag. The
minimum (critical) force required to initiate stable oscillations depends strongly on the
initial slack and weakly on the nature of the drag force. The emergent frequencies at
onset however depend strongly on both the extent of pre-stress as well as the nature of the
fluid drag. Far from onset, and for large follower forces, the frequency of the oscillations
is determined by a power balance between the energy input by the active forces and the
dissipation due to fluid drag. Previous studies have focused on the buckling dynamics of
free-free, fixed-free, and pinned-free filaments with the base state being a straight non-
stressed filament or rod. Analyzing the role of pre-stress in emergent oscillations driven
by active distributed follower forces is a novel contribution of this dissertation.
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Chapter 2

EFFECT OF NONLINEAR CONSTITUTIVE LAW ON
BUCKLING

2.1 Introduction
Buckling of slender structures under compressive loads has been the subject of the

investigation for many engineering and biological systems. Buckling of microtubules and
actin filaments are shown to have a fundamental impact on the cytoskeletal shape and con-
tractility of the cells [10, 55, 56]. Microtubules are important components of cytoskeletal
structure that in conjunction with actin and intermediate filaments provide both the static
and dynamic framework to maintain the structure of the cell. Morphology of cytoskele-
ton is known to regulate the intercellular transport of material [5] which is critical for
proper cellular function. Microtubules resist various internal/external forces to maintain
cell shape and they support motor proteins to generate the force required for cell move-
ment and changes in shape [6–9]. For microtubules the critical buckling load reported
in the literature varies form around 1 pN, without taking into account the effect of the
cytoplasm [57] and up to around 100 pN when the interaction of microtubules with the
surrounding elastic filament network (cytoskeletal network) is considered [55,58]. Micro-
tubules demonstrate short buckling wavelengths in vivo, however, they can attain highly
buckled shapes (large amplitudes of buckling) [59]. For highly buckled microtubules it is
suggested that [59] using a nonlinear model to capture the interaction of the microtubule
with the surrounding elastic network, in combination with a non-Newtonian viscous fluid
model is necessary to accurately characterize the buckling deformation since the linear
models result in an underestimated buckling amplitude or overestimated critical load. On
the same basis, it is reasonable to assume that due to the large rates of deformations that
microtubules attain when buckled in vivo, the assumption of linear constitutive law in
bending is a part of the model discrepancy that accounts for the mismatch of the current
models such as [59] and the experimental observations. Therefore, I argue that an investi-
gation on the effect of nonlinear constitutive law on post-buckling behavior of slender fil-
aments, which is the subject of this chapter, has an implication for a better understanding
of the buckling of biological filaments such as microtubules and actin filaments. In fact,
nonlinear material properties are known to influence the onset of buckling for nanorods
and nanotubes [33,34]. Existence of post-buckling solution for elastic rods with nonlinear
constitutive law has been established in the continuum mechanics literature [60, 61].
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Treatment of the post-buckling stability analysis for a class of materials such as
redwood which exhibit cubic nonlinearity in the constitutive law

s = E1e +E2e3, (2.1)

is presented in the literature [52,53]. Here E1 and E2 are constants, s is normal stress and
e is normal strain. Although this cubic nonlinear constitutive law is originally proposed
to capture softening nonlinearity of redwood it is very well fit to many other applica-
tions such as softening nonlinearity of Silicon nanowire [62]. For this particular form of
nonlinear constitutive law, the condition of post-buckling stability is characterized using
perturbation analysis [52] [53]. To summarize the results in the existing literature for this
particular case we can say that for a given column with fixed slenderness ratio, as the
coefficient E2 decreases form zero in the negative direction (i.e. as the constitutive law
becomes more and more softenning), there is a threshold on the negative scale after which
the post-buckling solution is unstable. However, I demonstrated in this chapter that there
is a regime of partially stable post-buckling solutions which are not predicted by previous
work. Similar to Haslach [52], I used the perturbation method and by investigating the
convergence of the solutions to higher order terms I derived the domain of partial stability
in the post-buckling response of clamped-free beams. These initially stable post-buckling
solutions transition to unstable post-buckling solutions as the buckling continues.

In the Section 2.2, I first demonstrate three stability regimes of post-buckling so-
lutions that are stable, unstable, and partially stable using an idealized model of rigid
bar and rotational spring. Next, in Section 2.3, I present the analytical solution for the
buckling of a continuous fixed-free column using perturbation analysis. In Section 2.4, I
present some illustrative results to visualize the three post-buckling stability regimes. Fi-
nally, in Section 2.5, I discuss the overall findings of this chapter and scope of the future
work.

2.2 Idealized Model
The idealized model represents the elastic column with a combination of a rigid

bar and a rotational spring. The stability of the structure can be examined using this
simple model as shown in Figure 2.1. Consider a rigid bar with length L connected to a
pin joint and a rotational spring that captures the restoring bending moment MR following
the law given in Eq. (2.2).

MR = k1q + k2q 3 (2.2)

The angle q represents the deflection of the beam from initial direction and the k1 and k2
are constant parameters. To exclude the cases with negative stiffness around q = 0, the
parameter k1 requires to be nonnegative. Consequently, the positive k2 values correspond
to hardening constitutive laws, k2 = 0 represents a linear constitutive law, and negative k2
value correspond to softening constitutive laws.
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Figure 2.1: (a) Idealized model of buckling of a clamped-free column where k1 = 1
Nm/rad, L = 1 m. (b) This buckling bifurcation diagram shows that as k2 (in units of
Nm/rad3) decreases, the stable buckling (dashed curves with green, red, or blue colors)
transitions to a partially stable buckling (black curve with circular markers) and finally to
unstable buckling (gray solid curve).

Equilibrium of the moments for the column about the pin joint is shown in Eq.
(2.3). Here, the direction of the compressive load, P is preserved along the initial direc-
tion of the column’s axis. This equation can be rearranged to find an expression for the
buckling load, P as a function of deflection, q which is given in Eq. (2.4).

k1q + k2q 3 � PLsinq = 0 (2.3)

P =
k1q + k2q 3

Lsinq
(2.4)

The buckling critical load Pcr can be found by taking the limit of the Eq. (2.4) as q goes
to zero which leads to

Pcr =
k1

L
. (2.5)

Figure 2.1 is showing the plots of the load P normalized by Pcr versus the deflec-
tion q for three different possible types of spring laws. It can be seen that for k2 = 0 we
have a linear system which its buckling stability reflects what was famously demonstrated
by Euler. For positive values of k2 we are observing stable post-buckling similar to the
linear case. This means as the angle, q increases, the required load to hold the structure in
equilibrium also increases. However, as the value of k2 decreases from zero, the effect of
nonlinear softening at some point becomes significant and we observe a partially stable
post-buckling. In this regime, the buckled column is initially stable but after a critical
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value of the deflection the required load, P to hold the structure in equilibrium decreases
as the deflection, q increases. Finally, we observe a range for parameter k2 for which the
post-buckling response of the beam is completely unstable. This simple analysis and its
findings call for a detailed analysis of the post-buckling stability of columns with soften-
ing constitutive law of cubic form using a continuum description of the beam, which is
discussed in next section.

2.3 Perturbation Analysis
Since the idealized model revealed catastrophic post-buckling instabilities due to

softening nonlinearity of the constitutive law, I investigated this problem in more detail
using a continuum beam theory. Perturbation analysis is used, similar to Haslach [52], to
find the buckling response of a cantilever beam under a compressive force. A schematic
diagram of this loading scenario is shown in Figure 2.2. In this method, the external load,
P and the deflection of the beam, w(s) are expanded in terms of a perturbation parameter,
b.

w(s) = w1(s)b+w2(s)b2 +w3(s)b3 + ... (2.6)

P = Pcr +P(1)b+P(2)b
2 +P(3)b

3 + ... (2.7)

Next, the variations of the potential energy of the system with respect to the deflection
function, w(s) is calculated as we will present and discuss in this section. This allows us
to derive infinite number of differential equations that are solvable for the wi(s)’s and the
P(i)’s.

We consider a beam with the cubic nonlinear constitutive law

s = E1e +E2e3 (2.8)

where E1, E2 are constants, s is the normal stress and e is the strain. For a beam under
bending, the normal strain on the cross-section of the beam for a material point at distance,
n from the bending neutral axis can be written as follows.

e =�nk =�n dq
ds

(2.9)

In Eq. (2.9), k is denoting the bending curvature which is equal to the rate of change
of the orientation q with respect to the arc length variable s. Using this relationship
the constitutive law is integrated over the cross section to find an expression relating the
bending curvature to the restoring moment.

M =�
Z

A
sndA = E1I1k +E2I2k3 (2.10)

In Eq. (2.10) M is representing the restoring bending moment and I1 and I2 are given
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below.
I1 =

Z

A
n2dA (2.11)

I2 =
Z

A
n4dA (2.12)

The curvature can be expressed in terms of the deflection function and its derivatives
along s. For this I need to find the first and second derivative of deflection function with
respect to s which I here denote by w0 and w00, respectively.

w0 =
dw(s)

ds
= sin(q) (2.13)

w00 =
dw0

ds
= cos(q)dq

ds
=�cos(q)k (2.14)

Thus, by combining Eqs. (2.9), (2.13), and (2.14) we can rewrite the curvature, k as
follows.

k2 =
w002

1�w02 (2.15)

Now we have all the ingredients to represent the potential energy of the system in
terms of w(s) and P. The potential energy has two terms. First, the bending strain energy
and second, the work done by the external force. Therefore the potential energy, V can be
written as

V =
Z L

0

�Z
Mdk

�
ds�PD, (2.16)

where

D =
Z L

0
(1� cos(q))ds =

Z L

0
(1�

q
(1�w02))ds, (2.17)

or alternatively, by using Eqs. (2.15) and (2.17)

V =
Z L

0

�1
2

E1I1
w002

(1�w02)
+

1
4

E2I2
w004

(1�w02)2

�
ds�

P
Z L

0
(1�

q
(1�w02))ds.

(2.18)
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The derivative of this energy function with respect to w(s) is calculated as follows.

E1I1[w0000(1�w02)�1 +4w0w00w000(1�w02)�2+

w003(1+3w02)(1�w02)�3]+E2I2[3w0000w002(1�w02)�2+

6w0002w00(1�w02)�2 +24w000w003(1�w02)�3+

3w005(1+5w02)(1�w02)�4]+Pw00(1�w02)�3/2 = 0

(2.19)

Substituting polynomial expansions of Eqs. (2.6) and (2.7) in Eq. () results into a poly-
nomial equation in terms of powers of b. By equating the coefficients of all powers of b
to zero we can find infinite number of differential equations that are solvable for wi’s and
P(i)’s subjected to sufficient boundary condition. Differential equations that are found by
collecting the coefficients of b from both sides of the Eq. (2.3) is given below. The first
equation is a linear homogeneous fourth order differential equation.

E1I1w1
(4)(s)+Pcrw00

1(s) = 0 (2.20)

The rest of the equations, found by collecting the coefficients of bi, are linear non-
homogeneous fourth order differential equation which can be written as

E1I1wi
(4)(s)+Pcrw00

i (s) = Ri, for i = 2,3,4, ... (2.21)

where Ri consolidates all non-homogenous terms that depend on the solution of equa-
tions i�1, i�2, i�3, etc. To solve each of these fourth order differential equations four
boundary conditions are required. For the buckling of a cantilever beam under compres-
sive force three boundary conditions can be summarized as follows.

w(0) = w0(0) = w00(L) = 0 (2.22)

The fourth boundary condition is defined by prescribing the deflection of the beam at the
free end to be equal to the perturbation parameter.

w(L) =�b (2.23)

In addition, to solve for the unknown terms of the load function, P(i)’s another boundary
condition is required. The relation between the restoring moment and curvature at the
fixed end is used to find the fifth boundary condition. The restoring moment at s = 0 is
found using Newton’s second law while the weight of the beam is neglected.

M(0) =�Pb (2.24)
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Figure 2.2: Schematic diagram of the buckling of a cantilever beam under compressive
force.

Using the fact that w0(0) = 0, curvature at s = 0 is reduced to

k(0) = w00(0). (2.25)

Now using the constitutive law we can find the fifth necessary boundary condition to solve
the problem.

�Pb = E1I1w00(0)+E2I2w00(0)3 (2.26)

The boundary condition expressed in Eqs. (2.22), (2.23), and (2.26) can be trans-
lated in terms of wi(s)’s as shown in the following.

wi(0) = w0
i(0) = w00

i (L) = 0 (2.27)

w1(L) =�1, and
wi(L) =0, for i 6= 1.

(2.28)

The fifth boundary condition, Eq. (2.26), can be rewritten in terms of P(i) by collecting
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the coefficients of bi.

�Pcr =E1I1w00
1(0)

�P(1) =E1I1w00
2(0)

�P(2) =E1I1w00
3(0)+3E2I2w00

3(0)
3

�P(3) =3E2I2w00
2(0)w

00
1(0)

2 +E2I2w00
4(0)

�P(4) =3E2I2w00
3(0)w

00
1(0)

2 +3E2I2w00
2(0)

2w00
1(0)+E2I2w00

5(0)

etc.

(2.29)

In the next section, a systematic way to derive analytical solutions of these fourth order
differential equations using Mathematica is discussed.

2.4 Results
Using five boundary conditions that discussed in previous section the differential

equations are solved systematically in Mathematica for both the deflection function, wi
and the load, P(i). A complete description of the solution terms for the load, P up to 14-th
order is given in Appendix A, in addition to the Mathematica script. Here, the solution
corresponding to the 1-st up to 6-th order of accuracy is presented.

Pcr =
p2E1I1

4L2

w1 =cos
⇣ps

2L

⌘
�1

(2.30)

P(1) = w2 = 0 (2.31)

P(2) =
2p4E1I1L2 +3p6E2I2

256L6

w3 =2sin
⇣ps

2L

⌘
sin
⇣ps

L

⌘ (2.32)

P(3) = w4 = 0 (2.33)

P(4) =
p6(76E1I2

1 L4 +148p2E1I1E2I2L2 �21p4E2I2
2 )

131072L10E1I1

w5 =�
✓

p4 sin2
⇣ps

2L

⌘
cos
⇣ps

2L

⌘
(68E1I2

1 L4 +2
�
2E1I1L2 �3p2EI2

�2 cos
⇣ps

L

⌘

�20p2E1I1EI2L2 +57p4EI2
2)

◆
/(65536E1I2

1 L8)

(2.34)

P(5) = w6 = 0 (2.35)
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Following the similar pattern, the solution to all even numbered differential equa-
tions are zero which means all of the even numbered terms in the deflection function (w2,
w4, w6, etc.) and all the odd numbered terms in the load (P(1), P(2), P(3), etc.) are zero. In
previous work [52] the solution was truncated after solving the third differential equation
which gives a 4-th order approximation, O(b4) of the load, P.

P(b) =
p2E1I1

4L2 +(
2p4E1I1L2 +3p6E2I2

256L6 )b2 +O(b4) (2.36)

By determining the sign of the coefficient of the b2, Haslach [52] reported the condition
for the post-buckling stability to be E1I1(

2L
p )2 1

6I2
<�E2 or equivalently

(E2I2)cr =�E1I1

6
(
2L
p
)2, (2.37)

and as a result for any E2I2 > (E2I2)cr considered the post-buckling shapes stable. How-
ever, in what follows I demonstrate how this truncation is causing a salient feature of the
post-buckling stability to be missed. The results presented in this section indicate that to
capture a post-buckling regime with partial stability, the solution needs to be calculated at
least with 6-th order accuracy. Furthermore, employing a systematic truncation criteria,
such as the convergence of the solution which is used in this section, enhances the accu-
racy of predictions for the stable post-buckling regime and prevents the over estimation of
stability range. The load function, P with 6-th order accuracy is represented in Eq. (2.38).

P(b) =
p2E1I1

4L2 +(
2p4E1I1L2 +3p6E2I2

256L6 )b2

+(
p6(76E1I2

1 L4 +148p2E1I1E2I2L2 �21p4E2I2
2 )

131072L10E1I1
)b4 +O(b6)

(2.38)

Using the Wolfram Mathematica [63] I have automated the derivation of analytical
solutions to this perturbation problem. A script to perform the analysis is included in
Appendix A. Here, I first demonstrate the convergence of solution by choosing a set of
parameters for the column properties. I assume the length L = 1, coefficient E1I1 =

4
p2 ,

and E2I2 =
9
10(E2I2)cr. Figure 2.3 shows that for the chosen set of parameters the 14-th

order solution O(b14) has enough accuracy in calculating the load, P as a function of
deflection, b. It is important to note that here we chose to illustrate the convergence plot
for a value of E2I2 close to its critical value, since for very stiff beams (E2I2 � (E2I2)cr)
or very soft beams (E2I2 ⌧ (E2I2)cr) the solution will converge faster in comparison to
the cases where E2I2 is close to critical value. Figure 2.3 also demonstrates an instance
of a column with partially stable post-buckling which is only predictable by a solution, at
least, of order 6, i.e., Eq. (2.38). In Figure 2.3 the solutions show negligible improvement
by increasing the order of accuracy from 12 to 14, therefore, the solutions are considered

17



Figure 2.3: The external compressive load, P as a function of deflection, b for a column
with the length L = 1, coefficient E1I1 = 4

p2 , and E2I2 = 9
10(E2I2)cr. The curves show

negligible improvement by moving from the order of accuracy O(b12) to O(b14), hence
the solutions is considered to be converged at O(b14).

to be converged at 14-th order.
Figure 2.4 illustrates four instances of load-deflection plots based on the results

obtained by previous work, as well as the predictions by the analysis presented in this
chapter. In part (a) of the Figure 2.4 the cubic coefficient is chosen to be zero, E2I2 = 0,
which corresponds to a column with linear constitutive law. In this case the 14-th order
solution provides only a slight improvement in estimation of the load and both meth-
ods estimate an stable post-buckling. The situation is similar in part (b) despite the fact
that the this case represents a column with softening nonlinear constitutive law where
E2I2 =

6
10(E2I2)cr. However, part (c) of the Figure 2.4 in which, E2I2 =

9
10(E2I2)cr, the

load-deflection curve obtained by solutions of the order 6 and higher demonstrate a qual-
itatively different shape. I call this regime initially (or partially) stable post-buckling
regime, since for a specific value of deflection, b the post-buckling response transitions
from stable to unstable. And finally part (d) of the Figure 2.4 corresponds to an unstable
post-buckling regime, E2I2 = 6

5(E2I2)cr, in which predictions by solutions of all orders
are qualitatively the same. Figure 2.5 demonstrates the bending moment versus curva-
ture diagrams for the the same instances that are showcased in Figure 2.4 to provide a
visual representation of the softening nonlinearity in the constitutive law in various post-
buckling regimes.

2.5 Discussion and Conclusions
Using an analysis with simple idealized model of the slender columns with the

cubic nonlinearity in the constitutive law, it is observed that the post-buckling behavior of
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Figure 2.4: External compressive load is plotted against the deflection, obtained by per-
turbation analysis and corresponding to the solutions with 4-th, 8-th, and 14-th order of
accuracy. Solutions with 6-th or higher order accuracy show that as E2I2 decreases from
0 (a) to below (E2I2)cr, the column transitions through a partially stable buckling for
0 > E2I2 > (E2I2)cr, e.g., the transition from (b) to (c), and finally for E2I2 6 (E2I2)cr the
post-buckling becomes fully unstable. The 4-th order solution (red dashed curve) shows
only an abrupt change from stable to unstable buckling at (E2I2)cr.
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Figure 2.5: The bending moment versus curvature is depicted for each case of the load
versus deflection shown in Figure 2.4. In all four cases (a, b, c, d) the constitute law is
strictly monotonic.
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columns does not abruptly change from being stable to being unstable as the cubic (soft-
ening) nonlinearity in the constitutive law is increased. Instead, the domain of stability
diminishes smoothly. In other words, the post-buckling behavior is stable at the onset,
but after at a critical value of the cubic coefficient, it becomes unstable and the column
collapses catastrophically.

Motivated by this observation, I further investigated post-buckling stability using
a continuum beam theory. By including higher order terms in the perturbation analysis of
the beam, I observed similar trends as those observed in the idealized model. Therefore, I
conclude that it is necessary to include higher order terms in the perturbation analysis that
were truncated in previous work [52], to capture all important regimes of post-buckling
stability of columns with cubic nonlinear constitutive laws.

I found the higher order solutions (up to 14-th order accuracy) of perturbation
problem for a fixed-free column, where all of the solutions with 6-th or higher order of
accuracy reveal the existence of a partially stable post-buckling regime for a range of cu-
bic parameter E2I2. In order to extend the analysis presented here to further cases such as
pined-pined, fixed-pinned, and fixed-fixed columns two major steps are necessary. First,
to derive the Euler equation by taking the derivative of the total energy of the system
with respect to the deflection curve. Second, to identify the boundary conditions corre-
sponding to each loading scenario. Hence, in principle, it would be possible to conduct a
similar analysis and examine the post-buckling stability of columns with cubic constitute
law subject to a variety of loading following the method of this chapter.

On a bigger picture perspective, this work helps us recognize the high sensitivity
of post-buckling stability and dynamics on the nonlinearity of the constitutive law. It
reinforces the need for accurately identifying the nonlinearity in the constitutive law for
modeling and simulating the buckling dynamics of biological filaments using rod models.
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Chapter 3

ROD MODEL WITH USER-DEFINED CONSTITUTIVE LAW

3.1 Introduction
A continuum rod model, in general, consists of dynamic equilibrium equations

and compatibility equations, which need to be solved respecting the prescribed constitu-
tive law. Although dynamic equilibrium equations and compatibility conditions, which I
henceforth refer to as the rod model, remain the same for all slender structures, the key
distinguishing factor is the constitutive law. Accurate identification of constitutive law pa-
rameters that are not directly measurable involve challenging inverse methods.However,
in developing inverse methods, a review of which can be found here [47,48], the need first
arises for a computational forward model that can efficiently simulate the deformations
with any user-defined nonlinear constitutive law. Developing a computational rod model
that is capable of incorporating user-defined constitutive laws, which is the contribution
of this chapter, is also a stepping stone for addressing the research on estimation and
identification of constitutive law parameters.

Given the wide range of applications in which the computational rod model is
being employed and the commonalities among these applications, a user-friendly com-
putational rod model framework that is applicable across these applications will greatly
impact research in these areas. As discussed earlier, while the equations of dynamic
equilibrium and compatibility are the same across these variety of applications, the key
difference is the exact functional form of the nonlinear constitutive law. This exact func-
tional form of nonlinear constitutive law vary from material to material depending on
their atomistic structures [64, 65]. Thus, to develop a user-friendly computational tool
employing rod model, an important required feature is to allow the user to prescribe or
input any functional form of the constitutive law. Currently available computational rod
models, such as [66] that simulate the deformations, are unable to allow the user to define
different constitutive laws in a user-friendly way. This is so because the computational
model numerically solves the governing nonlinear differential equations with Jacobian-
based methods, and the constitutive law contributes to the Jacobian. Any change in the
form of the constitutive law thus necessitates extensive rewriting of the parts of the code
that relate to the Jacobian. This poses a barrier in modularizing the constitutive law as a
user input in the computer program. One way to circumvent this hurdle is to introduce
symbolic differentiation to compute the Jacobian. However, symbolic differentiation is
computationally very sluggish, and must be avoided, especially when they are required
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iteratively within ”for” loops. Another brute-force approach is to pre-program a library
of different functional forms of the nonlinear constitutive law (along with the respective
Jacobians-related codes) and allow users to choose from the list of available functions,
but this approach is neither elegant, nor can it handle unanticipated constitutive laws.

Yet another approach is Automatic or Algorithmic Differentiation (AD) [67], which
is as accurate as the method of symbolic differentiation and also faster than that. However,
the approach that this chapter presents is simpler in programming than AD, yet as accu-
rate. The main focus of this chapter is to allow a user-friendly computational rod model
environment wherein a user who is not necessarily familiar with programming of the
computational rod model can easily input a constitutive law, the rod parameters, bound-
ary conditions and can compute the rod deformations in a short span of time required to
set up the simulation. I achieve this by programming into the model (and Jacobian) not
a specific functional form of the constitutive law, but rather basis functions that can be
used to represent arbitrary functions. For instance, if powers of the deformation variables
are coded into the Jacobian, they can be used to represent any analytic function (by Tay-
lor series expansion) of the deformation variables by simply supplying the appropriate
coefficients. This is therefore an efficient approach that has one pre-programmed Jaco-
bian that can accommodate any user-defined constitutive law without requiring symbolic
differentiation. In this scheme, the user simply enters the constitutive law desired, and
the computer program first expands the user-defined constitutive law into a series (such
as Taylor series) or in terms of appropriately chosen basis functions. The coefficients of
the series (or the basis functions) are automatically passed on to the Jacobian, the form
of which is hard-coded based on the derivative of the series or the basis functions. Thus,
this scheme numerically (not symbolically) passes on the information of the functional
form of the user-defined constitutive law directly to the Jacobian via coefficients, and no
reprogramming by the user is needed.

The above-proposed approach is demonstrated in this chapter by implementing
the above scheme into an existing computational rod model [66] using MATLAB, and
testing it with hardening, softening and other types of constitutive laws including the im-
plicit forms. I analyzed the results (including the accuracy and speed) for several loading
scenarios leading to highly nonlinear rod deformations.

The chapter is organized as follows. Section 3.2 summarizes the mathematical
formulation of the dynamic rod model [12] with a general form of a nonlinear consti-
tutive law in bending and torsion. The mathematical formulation consists of nonlinear
partial differential equations that need to be integrated numerically for any given initial
and boundary conditions. Section 3.3 begins with describing the computational approach
for the numerical integration that was adopted in [12]. Section 3.3 then continues fur-
ther with introducing the proposed strategy for incorporating the user-defined nonlinear
constitutive law in the computational approach. Section 3.4 presents some case-studies to
compare the proposed strategy with existing (but non user-friendly) approaches.
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Figure 3.1: The motion of each cross-section of the rod at length s and time t is determined
by tracking the transformations of the body-fixed frame âi(s, t) with respect to the inertial
frame of reference êi.

3.2 Mathematical Formulation of Rod Model
The mathematical formulation of the dynamic rod model that I use [12] employs

the classical approach of the Kirchhoff [68] which assumes each cross-section of the rod
to be rigid. The position and orientation of each cross-section is determined in space, s
and time, t by tracking the transformation of a body-fixed frame, âi(s, t) with respect to
an inertial frame of reference, êi that are shown in Figure 3.1, where subscript i = 1,2,3.

Vector ~R(s, t) defines the position of the body-fixed reference frame, âi(s, t) rela-
tive to the inertial frame of reference, êi. The spatial derivative of ~R(s, t), which I denote
by~r(s, t), is in the tangential direction along the centerline. Deviation of~r(s, t) from the
unit normal of a cross-section determines the shear and stretch at that cross-section. The
change in magnitude of ~r(s, t) quantifies the extension or compression along s, and the
change in its orientation with respect to the body-fixed frame, âi(s, t) quantifies shear.
Furthermore, the spatial rate of change of cross-sectional orientation is denoted by ~k(s, t)
and describes the curvature and twist of the rod. In general, the rod may be intrinsically
curved and twisted in its stress-free state. I denote this stress-free curvature and twist
by ~k0(s). The stress distribution over the cross-section of the rod results in a net inter-
nal force, ~f (s, t) and a net internal moment, ~q(s, t). Moreover, the translational velocity,
~v(s, t) and angular velocity, ~w(s, t) corresponding to the frame âi(s, t) are used to describe
the rigid-body motion of the cross-sections.

Thus, the dynamics of rod deformation is described by six vector fields,~k(s, t) and
~r(s, t) that represent deformation of the rod, ~q(s, t) and ~f (s, t) that represent the restoring
moment and force, and ~v(s, t) and ~w(s, t) that represent motion of each cross-section.
These six vector fields must satisfy equations of dynamic equilibrium and compatibility
as well as a constitutive law.
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3.2.1 Equilibrium and Compatibility Equations
By applying Newton’s second law to an element of the rod with infinitesimal

length, the equations of equilibrium (3.1) and (3.2) are derived. The compatibility equa-
tions (3.3) and (3.4) follow from the space-time continuity of the cross-section position,
~R(s, t), and the space-time continuity of the transformation that maps âi(s, t) to êi, respec-
tively.

m(
∂~v
∂ t

+~w ⇥~v)� (
∂~f
∂ s

+~k ⇥~f )�~F =~0 (3.1)

Im
∂~w
∂ t

+~w ⇥ Im~w � (
∂~q
∂ s

+~k ⇥~q)+~f ⇥~r� ~Q =~0 (3.2)

∂~r
∂ t

+~w ⇥~r� (
∂~v
∂ s

+~k ⇥~v) =~0 (3.3)

∂~k
∂ t

� (
∂~w
∂ s

+~k ⇥~w) =~0 (3.4)

In Eqs. (3.1) to (3.4) all the derivatives are relative to the body-fixed reference
frame, m is the mass of the rod per unit length, and Im(s) is a 3-by-3 tensor of the moments
of inertia per unit length. The interaction of the rod with the environment is captured with
external force per unit length ~F(s, t) as well as the external moment per unit length ~Q(s, t).

3.2.2 Constitutive Law
The differential equations of equilibrium and compatibility have to be solved to-

gether with a constitutive law to find the six unknown vector fields. The constitutive law
describes the relationship between the deformation of the rod and the restoring internal
force and moment. In general, an elastic constitutive law can be written as the following
set of implicit algebraic equations in an R6 space:

Y
⇣
~q,~f ,~k,~r,s

⌘
= 0 , Y 2 R3 ⇥R3 ⇥R3 ⇥R3 ⇥R! R6. (3.5)

However, for an inextensibile rod~r(s, t) has unit magnitude, and for an unshearable rod,
its orientation relative to the body-fixed frame is constant. Therefore, for an inextensible
and unshearable rod, ∂~r(s,t)

∂ t =~0. Extension and shear are indeed negligible in majority
of applications of thin rods in low-tension or compression, for which deformation of the
rod is dominated by large bending and twisting. So, I describe the numerical approach in
this chapter for inextensible and unshearable rods, but recognize that the same approach
is applicable to a geometrically exact rod as well. I further assume the constitutive law to
be such that the restoring moment is an explicit function of curvature and twist and not
dependent on the internal forces. Thus, the constitutive law takes the following form:

~q = ~y(~k � ~k0,s), ~y 2 R3 ⇥R! R3, (3.6)
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where recall that ~k0 describes the initial stress-free curvature and twist of the rod. Note
that in this case, I have one less vector field to solve for (~r(s, t) is constant, not variable).
Furthermore, the constitutive law (Eq. (3.6)) can be directly substituted in the angular
momentum equation (Eq. (3.2)) to eliminate ~q(s, t). In particular, the constitutive law is
used to express the internal moment, ~q and its derivatives in terms of ~k using the total
derivative of function ~y given in equation (3.7) below:

∂~q
∂ s

=
∂~y
∂~k

∂~k
∂ s

� ∂~y
∂ ~k0

d~k0

ds
+

∂~y
∂ s

. (3.7)

With this substitution, I am left with four vector differential equations to solve for four
unknown vector fields, namely,~v(s, t), ~w(s, t), ~k(s, t) and ~f (s, t). The four partial differ-
ential equations of equilibrium and compatibility can be assembled as described next, to
apply a numerical integration scheme.

3.2.3 Assembled System of Equations
The equations of the inextensible and unshearable rod model (Eqs. (3.1) to (3.4))

are assembled after substitution of the constitutive law (Eq. (3.6) and its spatial derivative
Eq. (3.7)) to write them in the following compact form:

M∂Y
∂ t

+K∂Y
∂ s

+F = 0. (3.8)

Here,

Y =

2

664

~v
~w
~k
~f

3

775 (3.9)

is a 12⇥1 column matrix of unknowns, to be solved for, that describe the dynamic state
of the system. M and K are 12⇥12 matrices that describe the overall inertia and stiffness
of the system, and F is a 12⇥1 column matrix of non-homogeneous terms. In the com-
putational script, I assembled the four equations in the following order: Eq. (3.3), (3.4,
(3.2, and finally(3.1) that resulted in the following form of M, K and F:

M =

2

664

O O O O
O O I O
O Im O O
mI O O O

3

775 , (3.10)
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K =�

2

664

I O O O
O I O O
O O ∂~y

∂~k O
O O O I

3

775 , (3.11)

F =

2

6664

~w ⇥~r�~k ⇥~v
�~k ⇥~w

�(∂~y
∂ s � ∂~y

∂ ~k0

d~k0
ds )+~w ⇥ Im~w +~f ⇥~r�~k ⇥~y � ~Q
m(~w ⇥~v)�~k ⇥~f �~F

3

7775
. (3.12)

In Eqs. (3.10) and (3.11), the symbols I and O respectively refer to the identity tensor
and the null tensor (with the dimensions of 3⇥3). Note that the four rows of M, K, and
F correspond to the four equations of rod model and their order is immaterial.

The Generalized-a method [69] is adopted to compute the numerical solution of
this system, subjected to necessary and sufficient initial and boundary conditions. To
compute the geometric shape of the rod I use the method of incremental rotation [12, 70]
to construct the transformation matrix from body-fixed frame to an inertial frame. The
rod model formulation presented here is distinctly different from geometrically local ap-
proaches that were first proposed by Simo and L. Vu-Quoc [71] and describe configuration
of a slender structure locally by using displacements and the rotation of a cross-section.
There are many choices to parametrize the rotation of a cross-section in geometrically lo-
cal approaches and various approaches such as Euler angles [72], the rotation vector [73],
and Euler parameters [74] have been used. In the following section, I illustrate how the
Generalized-a method is applicable to a rod with nonlinear and non-homogenous con-
stitutive law. Here, note that K and F have the contribution of the nonlinear constitutive
law from its derivative given by Eq. (3.7), and therefore must have contribution to the
Jacobian of the system. In the next section, I introduce my strategy for implementation of
the user-defined nonlinear constitutive law in the computational approach.

3.3 Numerical Algorithm with User-Defined Constitutive Law
I first devise a numerical algorithm in Section 3.3.1 that is general enough to allow

for any constitutive law by expressing it in terms of the arbitrary function ~y . In doing so,
I identify the parts of the algorithm that get affected by ~y , the constitutive law. Then,
in Section 3.3.2, I introduce how a symbolic implementation would (traditionally) take
care of any constitutive law given any arbitrary function ~y . This is the most accurate
approach, but computationally extremely sluggish due to recurring symbolic differentia-
tions. Finally, in Section 3.3.3, I introduce my user-friendly and computationally efficient
strategy for inputting the user-defined nonlinear constitutive law that circumvents the need
of symbolic differentiation.
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3.3.1 Generalized-a Discretization
For a rod with linear and homogenous constitutive law, the matrices M and K are

constant and are not discretized in space and time. Therefore, Eq. (3.8) can be discretized
as

M(
∂Y
∂ t

)1�at
1�as

+K(
∂Y
∂ s

)1�bt
1�bs

+F1�bt
1�bs

= 0, (3.13)

in which the notation A1�x and A1�x for any quantity A and any parameter x, are defined
as follows.

A1�x = (1� x)A + xA �1 (3.14)

A1�x = (1� x)A + xA �1 (3.15)

The indices and enumerate the discretized nodes in time and space, respectively. The
parameters at and as are called mass averaging parameters and bt and bs are stiffness
averaging.

In the case of nonlinear constitutive laws, the term ∂~y
∂~k in the stiffness matrix K,

depends on the curvature and twist vector, therefore, it varies in space and time and is
discretized as given in Eq. (3.16).

K1�bt
1�bs

=
h
(1�bt)

⇣
(1�bs)K +bsK �1

⌘
+

bt

⇣
(1�bs)K �1 +bsK �1

�1

⌘i (3.16)

For non-homogeneous rods the mass matrix M varies along the length of rod but not in
time. Therefore, the discretized form of the system can be written as

M1�as(
∂Y
∂ t

)1�at
1�as

+K1�bt
1�bs

(
∂Y
∂ s

)1�bt
1�bs

+F1�bt
1�bs

= 0. (3.17)

The derivatives of Y are then discretized with Newmark-like formulation. In Eqs. (3.18)
and (3.19) the Newmark constants gt and gs control the averaging of time and space deriva-
tives.

(
∂Y
∂ t

) =
Y �Y �1

gtDt
� 1� gt

gt
(
∂Y
∂ t

) �1 (3.18)

(
∂Y
∂ s

) =
Y �Y �1

gsDs
� 1� gs

gs
(
∂Y
∂ s

) �1 (3.19)

Applying this scheme to the Eq. (3.17) results in an algebraic equation with nonlinear
terms of Y and Y �1 and linear terms of (∂Y

∂ s ) �1. In Eq. (3.20), A(Y ) and B(Y �1)
represent the nonlinear terms, H contains all of the known terms from previous time-step
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( �1), and the matrix K̂ is given in Eq. (3.21).

K̂(
∂Y
∂ s

) �1 +A(Y )+B(Y �1) = H (3.20)

K̂ = (1�bt)
⇣

bs � (1�bs)(
1� gs

gs
)
⌘

K1�bt
1�bs

(3.21)

To derive an integrable linear algebraic equation in the space, Eq. (3.20) is linearized
about a guessed solution. The linearization requires the calculation of the Jacobian of the
terms A(Y ) and B(Y �1) that I will show with AY and BY.

AY = (1�at)(1�as)
⇣M1�as

gtDt

⌘
+(1�bt)(1�bs)

⇣K1�bt
1�bs

gsDs
+FY

⌘
(3.22)

BY = (1�at)(as)
⇣M1�as

gtDt

⌘
+(1�bt)

⇣
(1�bs)

K1�bt
1�bs

gsDs
+bsFY �

⌘
(3.23)

To linearize the terms A(Y ) and B(Y �1), the Jacobian of the vector F needs to be cal-
culated. The Jacobian of F which is called FY is given in Eq. (3.24) for the case that
external force and external moment, ~F and ~Q, do not depend on Y.

FY =

2

6664

�k̃ �r̃ ṽ O
O �k̃ w̃ O
O w̃Im � (̂Im~w) ỹ � k̃ ∂~y

∂~k +Jy s �r̃
mw̃ �mṽ f̃ �k̃

3

7775
(3.24)

The symbol ñ in Eq. (3.24) represents the skew-symmetric tensor associated with the
vector~n generated as follows from its components

ñ =

2

4
0 �n3 n2
n3 0 �n1
�n2 n1 0

3

5 , (3.25)

and the Jy s is given below.

Jy s =�
∂
�∂~y

∂ s � ∂~y
∂ ~k0

d~k0
ds
�

∂~k
(3.26)

Equation (3.20) is linearized around a guessed solution. This means that the terms
AY, BY, and K̂(∂Y

∂ s ) �1 are calculated using the guessed solution so that the Eq. (3.20)
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Figure 3.2: The algorithm of the numerical scheme. The guessed solution for all spa-
tial nodes is shown with Y⇤ . At each time-step the linearized equation is integrated in
space. The spatial integration is iterated and is used to update the guessed solution until
it converges to the true solution Y bounded by a small tolerance e .

rendered integrable with respect to Y in space.

AYY +BYY �1 = H⇤ (3.27)

The matrix H⇤ contains all of the known terms from previous time-step ( �1) as well as
the linearization terms that depend on the guessed solution.

In most scenarios, the boundary condition contains partial information on Y at
one end (s = 0) and the rest is known at the other end (s = L). For example, in the Fig-
ure 3.1 the left hand side of the rod is fixed by a clamp which imposes ~v(0, t) =~0 and
~w(0, t) =~0, while on the right hand side the external forces and moments, ~f (L, t) and
~q(L, t) are prescribed. I use the shooting method at each time-step as explained by [75]
to start integration from one end and match the boundary conditions at the other end.
Alternatively, an assembled matrix approach can also be used to match the boundary con-
ditions at both the ends simultaneously. Figure 3.2 shows the algorithm of how shooting
method is applied to this problem.

Now the aim is to implement the numerical solution of the rod model as explained
here in a way that user has to provide the initial and boundary conditions for the sim-
ulation, the parameters for the numerical scheme (at , as, bt , bs, gt , gs, Dt , and Ds), the
physical properties of the rod (L, m, Im), and the function ~y that describes the constitutive
law of the rod. The constitutive law is allowed to have any arbitrary functional form and
its derivatives need to be calculated for this formulation. In particular, the matrices K and
F in Eqs. (3.11) and (3.12) depend on the constitutive law and its derivatives. In addition,
the Jacobian of the matrix F as represented in Eq. (3.24) also depends on the derivatives
of the constitutive law.
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In the next two sections, I discuss two approaches to incorporate a user-defined
constitutive law with an arbitrary functional form in the numerical solution of the rod
model. The first approach uses accurate description of the constitutive law and its deriva-
tives while the second approach, which I propose, approximates the constitutive law using
polynomial functions. It is important to note that by approximating the matrices K and
F, the true solution of the system Y will be directly affected while by approximating the
Jacobian FY merely the number of iterations for guessed solution to converge may get
affected and the true (converged) solution will remain unchanged. Such approximation
of the Jacobian does not necessarily increase the Newton-Raphson iterations. Instead, a
slightly inexact Jacobian helps overcome some known singularities that are encountered
with exact Jacobian.

It is also important to note that an alternative way to assemble the system of equa-
tions in comparison to Eqs. (3.8) and (3.9) would be to use a five-variable formulation.
By defining the state variable to be Y = [~v,~w,~f ,~q,~k] there would be no substitution of
the constitutive law in Eq. (3.2) and therefore the matrices K and F will not contain any
term that depends on the derivatives of the constative law. Instead of the substitution, the
constitutive law will be captured through the fifth row of the system of equations in order
to complete the five-variable formulation. However, elaborating on the implementation
of the five-variable variable formulation is not in the scope of this chapter.

3.3.2 Symbolic Implementation
I will compare the performance of my method with that of the symbolic implemen-

tation, which is the most accurate approach. So, here I describe how I used the method of
symbolic implementation in getting my benchmark results.

The constitutive law is defined as an input by the user in terms of the scalar sym-
bolic variables k1,k2,k3, and s in the form similar to Eq. (3.6). The matrices K, F, and
FY are implemented in terms of the symbols k1, k2, k3, and s and MATLAB substi-
tute command is used to compute the value of these matrices. The algorithm as shown
in Figure 3.2 requires the calculation of matrices K, F, and FY at each space-step. The
shooting method iteration will repeat the spatial integration until it converges which re-
quires reevaluation of all matrices. Therefore, the accuracy of this description comes
with a high computational cost due to iterative calculation of the matrices of symbolic
type. A comparison of the computational costs among the two methods is presented in
the subsequent sections.
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3.3.3 Least-Squares Polynomial Approximation
The second method that this chapter contributes has a similar user interface in

which the constitutive law is defined symbolically as expressed in equation (3.6). How-
ever in this approach the least-squares polynomial fitting is used to approximate the func-
tions yi where subscript i = 1,2,3 as given in the following equation.

qi =
n1

Â
j=0

n2

Â
k=0

n3

Â
l=0

n4

Â
m=0

p jklmk j
1kk

2k l
2sm (3.28)

The user can control and choose the order of the polynomial functions so that approxima-
tions match well with the true constitutive law or it can be automated with a convergence
criteria.

For the cases in which the two axes of bending of the rod and its one axis of twist
are decoupled, the polynomial approximation reduces to

qi =
n1

Â
j=0

n2

Â
k=0

p jkk j
i sk. (3.29)

And finally if in addition to the decoupling, the rod also has homogeneous elastic proper-
ties, the function approximation can be written as

qi =
n

Â
j=0

p jk j
i . (3.30)

Therefore, in this approach the matrices K, F, and FY are defined in terms of arrays of
polynomial coefficients, for example p j’s that are calculated before entering the iteration
loops. For instance, the derivative of the function yi with respect to the curvature or twist
ki which appears in both K and FY has the following form, for any arbitrary constitutive
law.

∂qi

∂ki
=

n

Â
j=1

jp jk j�1
i (3.31)

Thus, there is no need for symbolic description of the constitutive law and it is expected
to gain a significant computation advantage by using this method. This will be addressed
in the following sections with more detail.

To compute the derivative of the constitutive law and using these values in the
Jacobian and other matrices, one might also use an existing technique of Automatic Dif-
ferentiation as described in [67]. Automatic differentiation (AD) uses exact formulas
along with floating-point values, instead of expression strings as in symbolic differentia-
tion, and it involves no approximation error as in numerical differentiation using differ-
ence quotients. This method is as accurate as symbolic differentiation and very quick in
computation also.
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But using this technique might not be of great help when compared to the method
mentioned above. The constitutive laws in real life will not be too complex which can-
not be approximated accurately by Taylor Series. The current method as shown in the
previous examples is giving very accurate results when compared with symbolic differen-
tiation. Also, understanding and then implementing Automatic Differentiation in the rod
theory will take some extra effort. Introducing this new technique might just make the
current code complex and might not be of significant help when studying the non-convex
constitutive laws.

3.4 Results
In this section a case study is defined to illustrate and compare the results of the

two methods that are previously explained. In order to show the effect of nonlinear con-
stitutive laws on the overall dynamics and mechanics of the rod I also present the results
for a rod with linearized constitutive laws in bending and torsion.

All the simulations are conducted for a rod with an intrinsic curvature ~k0 that cor-
responds to a helix and resembles a coil spring. There are many scenarios in which these
types of structures are important. For example, recently it is shown [4] how the injection
mechanism of the viral genome which involves compressing and stressing helical proteins
can be understood and modeled by the continuum rod model.

3.4.1 Geometry and Properties of the Rod
As explained in previous sections the vector ~k0 captures the stress-free configura-

tion of the rod. In this section a rod with helical shape is simulated by prescribing the ~k0.
The rod has an arc-length of 1 meter, the radius and the pitch of the helix are respectively
called R and P and are chosen to be both equal to

p
2

10p . Therefore the stress-free curvature
and twist of the helix is calculated as follows.

~k0 =
1

R2 +P2 (R,R,P) (3.32)

The rod has a circular cross-section with the radius of 1 centi meter and its density
is 2766.67 kg

m3 . The rod is assumed to be composed of homogenous isotropic matrial with
the following constitutive laws.

y1 = EI14arctan(
k1 �k01

4
) (3.33)

y2 = EI24arctan(
k2 �k02

4
) (3.34)

y3 = GI34arctan(
k3 �k03

4
) (3.35)
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Figure 3.3: Bending constitutive law that captures the relationship between the restoring
moment, q1 and curvature, k1. The rod is chosen to be isotropic with a circular cross-
section. Therefore, the bending constitutive law for both planes of bending, q1 �k1 and
q2 �k2, is the same.

In Eqs. (3.33), (3.34), and (3.35), I1 and I2 represent the second moment of area of
the rod cross-section about the axes â1 and â2 and I3 is the polar moment of area of
the cross-section about â3. The values of the E and G are chosen to correspond to the
Young’s modulus and shear modulus of the aluminum in its linear elastic regime where
E = 68.95⇥109 Pa and G = 27.58⇥109 Pa.

3.4.2 Loading Scenario
The helical rod that is described in previous section is equivalent to a coil spring.

The following boundary conditions are devised to stretch and compress the rod along its
helical axis as depicted in Figure 3.5. The end of the rod at s = 0 is clamped by imposing
~v(0, t) =~0 and ~w(0, t) =~0. The other end at s = L is also clamped but slowly moves
toward or away from the clamp at s = 0 by prescribing~v(L, t) = h(t) ~N and ~w(L, t) =~0.
The vector ~N = (1,1,1) is along the helical axis of the rod and the scalar function, h(t)
is given by the following expression.

h(t) =±
(

5t m/s, if t  0.1,
0.5 m/s, otherwise.

(3.36)

The positive and negative signs on the right hand side of the Eq. (3.36) respectively
correspond to the extension and compression of the spring.
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Figure 3.4: Twisting constitutive law that captures the relationship between the restoring
torque, q3 and torsion, k3.

In the following section, the force-extension relationship of the rod is extracted
from the results of the simulations that are described here.

3.4.3 Force-Extension Relation
In this section the simulation results of the loading scenario that explained previ-

ously are compared when the symbolic implementation of the accurate constitutive laws
are used versus the case in which the constitutive laws are approximated by a polynomial
function as explained in Section 3.3. The least-squares fitting is used to find 5-th order
polynomial functions that approximate yi’s in the interval 0.4k0i < ki < 1.6k0i. The or-
der of polynomial and the range of ki’s can be controlled by the user for the desirable
accuracy. Figures 3.3 and 3.4 show the accurate constitutive laws and the corresponding
polynomial approximations as well as the linearized constitutive laws about the initial
curvature and twist. The symmetry of the circular cross-section of the rod in addition to
the isotropic mechanical properties result into having equal bending constitutive laws or
equivalently I1 = I2 and y1 = y2.

Figure 3.6 is showing the force-extension relationships obtained by the two differ-
ent methods proposed in Section 3.3 as well as the results using the linearized constitutive
law. We can see in this figure that the method explained in Section 3.3.3 is able to closely
reproduce the same results as the method of Section 3.3.2 which incorporates accurate de-
scription of the constitutive laws. I also observe that the linearized constitutive law is over
estimating the hardening behavior of this coil spring in stretching while under estimates
its softening behavior in compression.

35



Figure 3.5: Loading scenarios of compressing and stretching the helical rod.

The method of Section 3.3.2, as mentioned before, uses symbolic variables to
implement the accurate constitutive laws. This increases the computational cost drasti-
cally in comparison to the method of the Section 3.3.3 in which the constitutive laws are
approximated by polynomial and there is no need to use the symbolic variables. In par-
ticular, the simulations that are presented here take about 4 seconds per time-step for the
method of the Section 3.3.3 on a 3.1 GHz Intel Core i7 machine with 16GB of memory,
while it takes 400 seconds per time-step when the method of the Section 3.3.2 is used on
the same machine.

3.4.4 Dynamic Responce
In this section, to compare the performance of the three methods on the dynamic

of the rod a loading scenario defined as follows. The rod is initially at rest. The end
of the rod at s = 0 is clamped similar to the section 3.4.2. The other end of the rod at
s = L is stretched along the axis of helix and then released by prescribing the velocity,
~v(L, t) = g(t) ~N where ~N = (1,1,1) and

g(t) =

(
1000t m/s, if t  0.005,
5 m/s, if 0.005  t  0.015.

(3.37)

For the time t � 0.015 the end of the rod at s = 0 is released to freely vibrate by imposing
~f (L, t) =~0 and ~k(L, t) =~k0.
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Figure 3.6: This diagram shows the relationship between the magnitude of the force along
the axis of the helix, faxial and the change in end-to-end distance, DX .

Figure 3.7 is showing the results of the three simulations using the accurate de-
scription of the constitutive law, the least-squares fitting method, and the linear approx-
imation of the constitutive law. This figure shows that the polynomial approximation
of the constitutive law closely captures the dynamics of the rod when it is compared to
the simulation with the accurate description of the constitutive law. Although the devi-
ations of the results using the linear approximation of the constitutive law grows as the
time elapses. In these simulations, the rod is surrounded by water and the hydraulic drag
which is captured through the external force, ~F in Eq. (3.1) is calculated based on the
Morrison law as explained by [27].

~Fdrag =�1
2

rfd
⇣

Cn|~v⇥ t̂|t̂ ⇥ (~v⇥ t̂)+pCt(~v · t̂)|~v⇥ t̂|t̂
⌘

(3.38)

Here, the diameter of the rod is d = 2⇥10�2 m, the normal drag coefficient Cn = 0.1, the
tangential drag coefficient is Ct = 0.01, and rf is the surrounding fluid density which is
chosen to be water. The vector t̂ represents the vector~r for an inextensible and unshear-
able rod.

3.5 Discussion and Conclusions
This chapter contributes a simple and fast method of implementing any arbitrary

user-defined constitutive law in a computational rod model. The method avoids symbolic
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Figure 3.7: The vibrations of the rod is calculated via three different descriptions of the
constitutive law. The end-to-end distance of the rod DX is plotted versus time using
the accurate description of the constitutive law, the least-squares fitting and the linear
approximation of the constitutive law.

differentiation by expanding the user-input constitutive law function in a series and using
the derivative of the series in the Jacobian. Thus, the method automatically modifies the
Jacobian based on the coefficients in the series expansion. The performance of the method
is presented for hardening and softening constitutive laws in the force-extension behavior
of a helical spring. The effect of nonlinearity in the constitutive law is also emphasized
by comparing the results with those for linearized constitutive laws. This comparison
further reinforces the need for accurately identifying the nonlinearity in the constitutive
law for modeling and simulating the buckling dynamics of biological filaments using rod
models.
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Chapter 4

AN INVERSE APPROACH DIRECTLY BASED ON FORWARD
ROD MODEL FOR NONLINEAR CONSTITUTIVE LAWS

4.1 Introduction
Biological filaments with large length-to-thickness ratio exhibit pronounced bend-

ing and twisting deformations that influence their biological functions. For example,
looping or supercoiling of DNA, often mediated by proteins is an important step in the
gene regulation mechanism [76]. Miele et al [77] have also shown that favorable sites
of nucleosome formation are not only a function of intrinsic shape of the DNA but also
of sequence-dependent elastic properties. Molecular dynamics (MD) methods provide
the capability for all-atom simulations and several studies of DNA with these methods
has shown encouraging results for modeling the structural deformations of DNA [78].
However the high computational cost becomes a drawback in the MD simulation of large
systems. To avoid high computational costs of atomic models, one can use a macroscopic
description of a filament as a continuous system. Rod models, in particular, have been
shown to be both effective and efficient in capturing essential properties such as lac re-
pressor looping [79]. Yet, application of continuum rod theory is dependent on having
accurate models of constitutive laws for biological filaments. Unfortunately, direct exper-
imental measurements that can lead to identifying the constitutive law are technologically
impractical for most biological filaments due to their sub-micron size and very large ther-
mal fluctuations. There have been several experiments that show that it is possible to
estimate average bending and torsional stiffness [80, 81] in DNA strands. However, the
experimental derivation of the full functional form of the constitutive laws remains elu-
sive. Developing a computational approach for accurate identification of the constitutive
law, hence would be a timely effort. Hinkle et al. [82] proposed an approach that uses
a continuum rod model with static deformation data generated from discrete-structure
simulation which has shown encouraging success in estimating the constitutive law.

This chapter presents an inverse approach to use the dynamic deformation data,
generated by forward rod model, for identifying the constitutive law in bending or tor-
sion. The proposed method uses deformation data as an input to estimate the correspond-
ing restoring forces and moments based on Kirchhoff rod theory [83]. Configurational
data in general can be obtained from discrete-structure simulations (or, from other types
of simulations, such as MD simulations, for example) to derive the constitutive law of
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a filament. However, in this chapter I synthesized the data using the forward rod model
developed in Chapter 3. In particular, Section 4.2 illustrates how to use the configuration
data of a dynamic simulation to identify the bending constitutive law of an artificial fil-
ament. After evaluating the performance of several numerical schemes in Section 4.3, I
benchmarked the constitutive law that is derived by applying it to different loading con-
ditions in Section 4.4. Next, in Section 4.5, I present all viable algorithms of the inverse
approach and analyze the performance and robustness of various algorithms conceivable
in the inverse approach presented in this chapter. Section 4.5.5 investigates the robustness
of the inverse approach algorithms by adding noise to the inputs and finally, Section 4.6
draws conclusions on the performance of algorithms based on the results and robustness
analysis.

4.2 The Algorithm of Inverse Approach
The inverse approach conceptualized here, in general, is a method to find the func-

tions yi in Eq. (3.6) using the geometric data that specify the deformation of the filament.
The deformation of the filament, i.e. ~k and ~r, as well as the other kinematic quantities
~v and ~w can, in principle, be obtained, for example, from the time series of atomic posi-
tions extracted from molecular dynamics simulations. Using kinematic quantities as input
variables, the inverse approach presented here leverages the forward model, Eqs. (3.1) to
(3.4) to estimate the restoring forces and moments. Depending on which of the kinematic
variables can be obtained reliably from the position data, the steps of the inverse method
algorithm will vary.

Figure 4.1 outlines the steps involved in one such inverse approach algorithm that
uses only ~k and~r as input. In step 1, the angular velocity ~w is calculated, via Eq. (C1),
from the input ~k values. Eq. (C2) of the step 2 is used to solve for the velocity using the
input ~k and~r values as well as the angular velocity ~w values determined in step 1. The
step 3 uses Eq. (E1) to derive the internal force ~f from the input ~k , and ~w and~v values,
obtained in step 1 and 2 respectively. Finally, in step 4 the internal moment ~q is derived
using Eq. (E2) from the values of ~k ,~r, ~f , and ~w calculated in the previous steps. Once
all of these steps are completed I have, on one hand the strain information in the form of
~k and~r, and on the other hand the restoring forces and moments, ~f and~q. Using this data
I can derive the constitutive law in the form of an algebraic relationship, for example as a
polynomial function, by an appropriate fitting procedure.

The inverse approach proposed here, requires both numerical integration as well
as numerical differentiation. For example, all the steps of the algorithm outlined in Fig-
ure 4.1 involves numerical differentiation in time, t, and numerical integration along the
spatial coordinate, s using the boundary conditions. So, the inverse approach is vul-
nerable to integration error compounded with the noise amplification due to numerical
differentiation, and is, therefore expected to be very sensitive to the choice of numeri-
cal scheme. I tested several numerical schemes implementing the algorithm presented in
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Figure 4.1: Rod model equations and solution procedure in the inverse approach to solve
rod model equations with input deformation data for four unknowns namely ~w , ~v, ~f and
~q.

Figure 4.1. Next section presents and compares a case study with three representative
numerical schemes.

Note that depending on the choice of input kinematic variables, other conceivable
algorithms may have steps that involve numerical differentiation in space, and numerical
integration in time using initial conditions. Nevertheless, in general, to keep the algorithm
fast and simple to implement, the preference would be to have explicit scheme for numer-
ical integration, but can have implicit scheme for numerical differentiation. The first and
second schemes presented in the next section adopt this simplicity.

Note also that cantilever loading allows the spatial integration to proceed as an
initial value problem (IVP) taking advantage of the explicit integration scheme. In partic-
ular, Eqs. (C1) and (C2) can be integrated in a single shot from clamped end towards the
free end using only the clamped end boundary conditions, while Eqs. (E1) and (E2) can
be integrated in a single shot from the free end towards to the clamped end using only the
free end boundary conditions.

4.3 Comparing Different Finite Differences Schemes For The Inverse Approach
4.3.1 Simulation Case Studies

In the following three sections, different finite difference approaches are applied
to the inverse algorithm which is illustrated in the Figure 4.1. At each of the steps shown
in the figure the calculated output quantity is tracked to evaluate the performance of the
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Figure 4.2: Schematic diagram of the cantilever beam with length L = 1 m, mass per unit
length, m = 9.8 kg/m, and the moment of inertia per unit length, Im(s) that corresponds
to a uniform circular cross-section with the diameter, d = 0.0141 m. In Section 4.3, the
filament is bent in x-z plane by applying the shear force, ~f (L, t) = 20000â1 to the free end
while distributed load, ~F and moment at free end, ~q(L, t) are zero. In Section 4.5.4, the
filament is bent in x-z plane by applying either the bending moment, q2(L, t) or the shear
force, f1(L, t) to the free end, but no distributed load.

numerical scheme. The input curvature data is obtained from the planar bending simula-
tion of an artificial filament modeled as a cantilever beam. Figure 4.2 shows a schematic
representation of a cantilever beam. The shear force on the free end, ~f (L, t) is applied as
a step function in time and is described in body-fixed frame in the positive â1 direction.
The other external forces and moments are zero in this simulation. The dynamic response
of the filament is found by computational forward rod model with the constitutive law
provided in Eq. (4.1) as an algebraic constraint.

q2 = 30k5
2 �600k3

2 +10000k2. (4.1)

Figure 4.3 shows the snapshots of the in-plane bending of the filament subjected to the
shear force, ~f (L, t) = 20000â1.

4.3.2 First Discretization Scheme
The inverse algorithm that is presented in Figure 4.1 is done through four steps.

Each step involves temporal differentiation and spatial integration to compute the desired
quantity. Here, finite differences are used to discretize the equations. In the first scheme
the temporal derivatives are approximated by second order central difference formula.
The spatial derivatives in Eqs. (C1) and (C2) are discretized by backward difference for-
mula to use the boundary values of the ~v and ~w at the fixed end and initiate the spatial
integration. In all of the following equations, the indices i and j are enumerating the time-
steps and space-steps, respectively. Both temporal and spatial grids are uniform and are
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Figure 4.3: Snapshots of the shape of the filament in response to the step shear force
simulated by the forward rod model.

described by step sizes, Dt and Ds, respectively. The magnitudes of both time-step and
space-step are equal to those used in the forward simulations. The 3-by-3 identity matrix
is denoted by Id, and the the skew-symmetric matrix corresponding to the curvature vec-
tor, ~k is represents by k̃ . Hence, the discretized form of the Eqs. (C1) and (C2) is derived
as follows.

(Id +Dsk̃i, j)~wi, j = ~wi, j�1 +Ds
�~ki+1, j �~ki�1, j

2Dt
�

(4.2)

(Id +Dsk̃i, j)~vi, j =~vi, j�1 +Ds
�
~wi, j ⇥~ri, j

�
(4.3)

The boundary condition for the internal force and internal moment are known at the free
end of the filament. Therefore the forward difference formula is used to approximate the
spatial derivative in the Eqs. (E1) and (E2).

(Id �Dsk̃i, j)~fi, j = ~fi, j+1 �mDs
�~vi+1, j �~vi�1, j

2Dt
+~wi, j ⇥~vi, j

�
(4.4)

(Id �Dsk̃i, j)~qi, j = ~qi, j+1 �DsIm
�~wi+1, j �~wi�1, j

2Dt
�
�Ds

�
~wi, j ⇥ (Im~wi, j) + ~fi, j ⇥~ri, j)

(4.5)
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Figure 4.4: Internal moment that is calculated by inverse method versus input curva-
ture data for the first discretization scheme. The red line shows the exact constitutive
law, while the asterisks are showing the estimated constitutive law that is found by least-
squares fitting.

The values of the internal moments that are estimated by the inverse method are then
plotted against curvature values. The least-squares function fitting is used to estimate the
relationship between restoring moment and curvature. In the Figure 4.4 the exact consti-
tutive law is shown by red line and the estimated constitutive law with the asterisks. This
figure includes the data for the loading scenario that is described in previous subsection
in addition to the data where the filament is bent about the opposite direction by applying
a shear force of same magnitude to the free end, in the negative â1 direction.

4.3.3 Second Discretization Scheme
In this section, temporal derivatives are discretized by forth order central differ-

ence formula. The spatial derivatives in Eqs. (C1) and (C2) are discretized by backward
difference formula and thus integrated in space from fixed end ( j = 0) where the boundary
conditions are known for angular velocity, ~w(L, t) and linear velocity ~v(L, t). Therefore,
using discretized forms of Eqs. (C1) and (C2), given below, values of ~w and ~v are ob-
tained.

(Id +Dsk̃i, j)~wi, j = ~wi, j�1 +Ds
��~ki+2, j +8~ki+1, j �8~ki�1, j +~ki�2, j

12Dt
�

(4.6)

(Id +Dsk̃i, j)~vi, j =~vi, j�1 +Ds
�
~wi, j ⇥~ri, j

�
(4.7)
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Figure 4.5: Internal moment that is calculated by inverse method versus input curvature
data for the second discretization scheme. The red line shows the exact constitutive law,
while the asterisks are showing the estimated constitutive law that is found by least-square
fitting.

The temporal derivatives in Eqs. (E1) and (E2) are discretized with the same numerical
method as Eqs. (4.6) and (4.7). However, since the boundary condition for internal force
~f and internal moment ~q are known at the free end of the cantilever ( j = 31), a forward
difference formula is used for spatial discretization. Therefore, Eqs. (4.8) and (4.9) are
integrated backward in space from last cross-section ( j = 31) toward the first one ( j = 1)
and solved for internal force, ~f and internal moment,~q as follows.

(Id�Dsk̃i, j)~fi, j = ~fi, j+1�mDs
�
~wi, j ⇥~vi, j +

�~vi+2, j +8~vi+1, j �8~vi�1, j +~vi�2, j

12Dt
�

(4.8)

(Id �Dsk̃i, j)~qi, j =~qi, j+1 �DsIm
��~wi+2, j +8~wi+1, j �8~wi�1, j +~wi�2, j

12Dt
�
�

Ds
�
~wi, j ⇥ (Im~wi, j)+~fi, j ⇥~ri, j) (4.9)

The computed internal moments, the exact constitute law, estimated constitutive laws via
this formulation are illustrated in Figure 4.5.
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4.3.4 Third Discretization Scheme
Another finite difference scheme that is frequently used to discretize the partial

differential equations in both space and time is box method [84]. The unknown vectors in
the rod model equations can be assembled into a matrix as shown below.

Y =

2

664

~w
~v
~f
~q

3

775 (4.10)

Therefore, the set of four differential equations can be represented as

MẎ +KY 0+F = 0 (4.11)

where Ẏ and Y 0 are partial derivatives of the matrix Y in time and space, respectively.
Matrices M and K are coefficients and F contains non-homogeneous terms. Figure 4.6
shows the stencil for the box method scheme and the grid points that are used in space
and time averaging are highlighted. Applying the box method to discretize the system of
equations represented in Eq. (4.11) will result in the following.

(Mi, j +Mi�1, j)(
Yi, j +Yi�1, j

Dt
)+(Mi, j�1 +Mi�1, j�1)(

Yi, j�1 +Yi�1, j�1

Dt
)+

(Ki, j +Ki, j�1)(
Yi, j +Yi, j�1

Ds
)+(Ki�1, j +Ki�1, j�1)(

Yi�1, j +Yi�1, j�1

Ds
)+

(Fi, j +Fi�1, j +Fi, j�1 +Fi�1, j�1) = 0 (4.12)

Hence, discretized form of the Eq. (C1) by box method can be retrieved as given below.

(Id + Id)(
~wi, j �~wi, j�1

Ds
)+(Id + Id)(

~wi�1, j �~wi�1, j�1

Ds
)

� (Id + Id)(
~ki, j �~ki�1, j

Dt
)� (Id + Id)(

~ki, j�1 �~ki�1, j�1

Dt
)

+
�
~ki, j ⇥~wi, j +~ki, j�1 ⇥~wi, j�1 +~ki�1, j ⇥~wi�1, j+

~ki�1, j�1 ⇥~wi�1, j�1
�
= 0 (4.13)
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Figure 4.6: Temporal and spatial grid points corresponding to the box method. Blue
circles in the figure represent the four nodes that are used for discretization.

The terms are rearranged to obtain the following explicit expression for the unknown.

(2Id +Dsk̃i, j)(~wi, j) = 2(~wi, j�1 �~wi�1, j +~wi�1, j�1)

+2Ds
⇣~ki, j �~ki�1, j

Dt
+
~ki, j�1 �~ki�1, j�1

Dt

⌘

�Ds
�
~ki, j�1 ⇥~wi, j�1 +~ki�1, j ⇥~wi�1, j+

~ki�1, j�1 ⇥~wi�1, j�1
�

(4.14)

In Figure 4.7 the results of the angular velocity about â2 direction that are computed by
Eq. (4.14) is plotted, as well as the exact values of the angular velocity that are simulated
by forward rod model. Same approach is employed to discretize the rest of the rod model
equations. Equation (4.15) shows the discretized form of the Eq. (C2) with the box
method.

(2Id +Dsk̃i, j)(~vi, j) = 2(~vi, j�1 �~vi�1, j +~vi�1, j�1)

�Ds
�
~ki, j�1 ⇥~vi, j�1 +~ki�1, j ⇥~vi�1, j+

~ki�1, j�1 ⇥~vi�1, j�1
�
+Ds

�
~wi, j ⇥~ri, j +~wi, j�1 ⇥~ri, j�1+

~wi�1, j ⇥~ri�1, j +~wi�1, j�1 ⇥~ri�1, j�1
�

(4.15)

The linear velocity in the â1 direction is also compared to its exact values as depicted
in Figure 4.8 and shows a close match. Likewise, Eqs. (E1) and (E2) are discretized as
follows.
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Figure 4.7: The angular velocity of the mid-length cross-section of the filament (s = L
2 )

computed by box method discretization is compared with the exact values of the input
data that is simulated by forward rod model.

Figure 4.8: The linear velocity of the mid-length cross-section of the filament (s = L
2 )

computed by box method discretization is compared with the exact values of the input
data that is simulated by forward rod model.
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Figure 4.9: The internal force at the mid-length cross-section of the filament (s = L
2 )

computed by box method discretization is compared with the exact values of the input
data that is simulated by forward rod model.

(2Id �Dsk̃i, j�1)(~fi, j�1) = 2(~fi, j +~fi�1, j �~fi�1, j�1)

�2mDs
⇣~vi, j �~vi�1, j

Dt
+
~vi, j�1 �~vi�1, j�1

Dt

⌘

+Ds
�
~ki, j ⇥~fi, j +~ki�1, j ⇥~fi�1, j+

~ki�1, j�1 ⇥~fi�1, j�1
�
�mDs

�
~wi, j ⇥~vi, j +~wi, j�1 ⇥~vi, j�1+

~wi�1, j ⇥~vi�1, j +~wi�1, j�1 ⇥~vi�1, j�1
�

(4.16)

Eq. (4.16) in combination to the quantities from previous steps are used to compute
the internal force. As can be seen in Figure 4.9 the internal forces in the â1 direction are
oscillating about the true solution which in this case is known from the forward rod model
simulation. Thus, the box method discretization for computation of the internal forces is
not converging and showing the crank-nicolson noise in time.
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Figure 4.10: The internal moment at the mid-length cross-section of the filament (s = L
2 )

computed by box method discretization is compared with the exact values of the input
data that is simulated by forward rod model.

(2Id �Dsk̃i, j�1)(~qi, j�1) = 2(~qi, j +~qi�1, j �~qi�1, j�1)

�2DsIm
⇣~wi, j �~wi�1, j

Dt
+

~wi, j�1 �~wi�1, j�1

Dt

⌘

+Ds
�
~ki, j ⇥~qi, j +~ki�1, j ⇥~qi�1, j+

~ki�1, j�1 ⇥~qi�1, j�1
�
�Ds

�
~wi, j ⇥ (Im~wi, j)+~wi, j�1 ⇥ (Im~wi, j�1)+

~wi�1, j ⇥ (Im~wi�1, j)+~wi�1, j�1 ⇥ (Im~wi�1, j�1)
�

�Ds
�
~fi, j ⇥~ri, j +~fi, j�1 ⇥~ri, j�1 +~fi�1, j ⇥~ri�1, j+

~fi�1, j�1 ⇥~ri�1, j�1
�

(4.17)

The internal forces are also used in computation of the internal moments by Eq. (4.17),
therefore, the solution is not converged and shows the crank-nicolson noise in time as
illustrated in Figure 4.10.

4.4 Validation
Among the three numerical schemes that are implemented in previous section, the

first one is proved to be the most efficient and effective. It has the simplest formulation,
yet, from Figures 4.4 and 4.5 it can be inferred that the first scheme is more accurate than
the second one in estimation of the internal moments and, therefore, of the constitutive
law. Here, an alternative loading scenario is defined in order to test how the estimated
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Figure 4.11: Shape of the rod simulated by the exact constitutive law and shown with the
solid red line. The dashed blue line as also shape of the rod that is found by the estimated
constitutive law.

constitutive law is capturing the dynamics of the filament in comparison to the original
constitutive law. A shear force is applied to the free end of the filament, f (L, t) = 30000â1
as a step function in time while its angular velocity is constrained to be zero, ~w(L, t) =~0.
Figure 4.11 illustrates several snapshots of the shape of the filament as time elapses. The
response of the filament with the reconstructed constitutive law is in close agreement with
the response of the filament obtained by its original constitutive law as time evolves.

4.5 Robustness Analysis
4.5.1 Algorithmic Formulation

Depending on which of the four kinematic variables ~k ,~r,~v and ~w can be obtained
reliably from the position data, the steps of the inverse method algorithm will vary. Fig-
ure 4.1 outlines the steps involved in one such inverse method algorithm that uses only
~k and~r as known inputs. In this scenario, step 1 uses Eq. (C1) to solve for the angular
velocity ~w substituting the known input~k . Step 2 uses Eq. (C2) to solve for the velocity~v
substituting the known inputs~k and~r as well as the angular velocity ~w obtained from step
1. Step 3 uses Eq. (E1) to solve for the internal force ~f substituting the input ~k as well as
~w and ~v obtained in step 1 and 2 respectively. Finally, step 4 uses Eq. (E2) to solve for
the internal moment ~q substituting the inputs ~k and~r as well as ~f and ~w obtained from
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Table 4.1: Viable Inverse Algorithms

Measured kinematic variables Steps of inverse algorithm
1 ~k 1, 2, 3, 4
2 ~w 1 (inverted), 2, 3, 4
3 ~k , ~w 2, 3, 4
4 ~k ,~v 1, 3, 4
5 ~v, ~w 1(inverted), 3, 4
6 ~k ,~v, ~w 3, 4

the previous steps. The steps 3 and 4 assume that the distributed force, ~F(s, t) and mo-
ment, ~Q(s, t), if nonzero, are known, so are the boundary values of ~f and ~q at one of the
two boundaries to provide for the constants of the spatial integrations. A 2-dimensional
version of this algorithm without distributed force and moment was proposed by [85].

Once all of these steps are completed, we have, on one hand the strain information
in the form of the deformations ~k(s, t) and ~r(s, t), and on the other hand the restoring
force and moment, ~f (s, t) and ~q(s, t) for all values of s and t. Using this data we can
derive the constitutive law in the form of an algebraic relationship by an appropriate
fitting procedure.

When extension and shear are negligible, the configurational data will yield~r to
be constant with respect to âi, and only the other three kinematic variables~k ,~v and ~w will
have the physically useful information for estimating ~f and ~q. Table 4.1 lists all of the
combinations of these three kinematic variables and corresponding steps of the inverse
method algorithms for estimating ~f and ~q. For options 2 and 5, it may be tempting to
consider using step 2 (Eq. (C2)) in place of step 1 (Eq. (C1)) as a viable alternative.
However, solving for either ~w or ~k from Eq. (C2) is ill-posed because they appear in
Eq. (C2) only in the cross-product terms. In other words, solving for any vector ~u from
~u⇥~a =~b with vectors ~a and~b given, is an ill-posed problem that has infinite solutions.
For the same reason, the option of using~v alone as input with steps 1 & 2 (coupled), 3, 4,
is not viable because Eq. (C2) does not provide for independent three scalar equations for
~w and ~k due to the cross-products. Not surprisingly,~v has information on the centerline,
but not on the twist of the filament; consider, for example, a case of pure twist in which
full knowledge of linear velocity, ~v does not provide any information on the mechanical
response of the rod. Table 4.1 lists only the well-posed choices.

Not all of the options of inverse algorithms listed in Table 4.1 are expected to be
equally well-conditioned. Section 4.5.4 tests these algorithms in two different loading
scenarios for data generated from forward rod model simulation employing a nonlinear
constitutive law, and Section 4.5.5 analyzes their robustness.
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4.5.2 Numerical Discretization
The inverse approach is more susceptible to ill-conditioning than the forward

model because unlike the forward model, the inverse algorithm requires not only nu-
merical integration but also numerical differentiation, which tends to be ill-conditioned
with finite differencing approach [86]. In particular, each of the steps 1, 3 and 4 involves
numerical differentiation in time t, and numerical integration along the spatial coordinate
s. Step 2 involves numerical integration along the spatial coordinate, s, and if there is
shear or extension, it also has a non-trivial timporal derivative. Step 1 (inverted) involves
numerical differentiation in s and integration in t. So, all the options of inverse algorithms
listed in Table 4.1 are vulnerable to integration error compounded with the noise amplifi-
cation due to numerical differentiation, and are very sensitive to the choice of numerical
difference schemes. Several space-time discretization schemes are applied to this inverse
problem [87] and found that while sophisticated schemes such as box method [84] tend
to fail, a rather simple scheme that uses second order central differencing for approximat-
ing numerical differentiation and forward or backward Euler differencing for numerical
integration, surprisingly worked well. So, we adopt the same scheme for the simulations
in Section 4.5.4.

4.5.3 Initial and Boundary Conditions
Forward rod model needs twelve initial conditions and twelve boundary conditions

(six at each end). However, inverse approach does not require the full set of initial and
boundary conditions. To be well-posed, steps 1 through 4 require knowledge of ~w , ~v, ~f
and ~q respectively, each at either one of the two ends to integrate towards the other end
simply as an initial value problem (IVP) in the spatial coordinate, s [64]. Steps 1 through
4 do not require knowledge of initial conditions. Step 1 (inverted) require only the initial
condition for ~k .

4.5.4 Comparing Different Algorithms
This section compares the performance of the family of inverse algorithms listed in

Table 4.1 using input data obtained by simulating planar bending of a cantilever illustrated
in Figure 4.2, with the forward rod model described in previous chapter. All the quantities
are in SI units. Without loss of any generality, the cross-section fixed vector â2 is aligned
with the bending axis. The extension and shear are ignored, and the constitutive law
chosen is nonlinear and decoupled along â2 as

q2 = 30k5
2 �600k3

2 +10000k2. (4.18)

The inverse algorithms are tested with the dynamic response of the cantilever simulated
in two different loading scenarios:

Loading Scenario 1: A pure bending moment, q2(L, t) is applied at the free end
that results in sinusoidal variation in the curvature at the free end k2(L, t) = 4sin(10pt).
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Figure 4.12: Loading scenario 1: bending moment q2(L, t) = 30720sin5(10pt) �
38400sin3(10pt) + 40000sin(10pt) resulting in a sinusoidal curvature, k2(L, t) =
4sin(10pt).

Figure 4.13: Simulation snapshots of the cantilever deformation.
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Figure 4.14: Curvature~k(s = 0.8L, t) estimated from ~w using Eq. (C1) (step 1 (inverted))
and compared with that computed from the forward model.

The bending moment at the free end, q2(L, t) is plotted as a function of time in Figure 4.12.
A few snapshots of the simulated cantilever deformation are shown in Figure 4.13(a).

Loading Scenario 2: A pure shear force is exerted at the free end as a step func-
tion in time f1(L, t) = 20000. A few snapshots of the simulated step response are shown
in Figure 4.13(b). The simulations are repeated with the loading in opposite direction,
f1(L, t) =�20000 to obtain deformations in a wider range.

The forward model simulation computes all the kinematic variables~v(s, t),~w(s, t)
and~k(s, t) as well as the restoring force, ~f (s, t) and moment,~q(s, t). However, The inverse
model simulation uses only the kinematic variables required as input for each algorithm
listed in Table 4.1 to estimate the restoring force, ~f (s, t) and moment,~q(s, t).

To begin, consider the estimation with input ~w alone or ~w and ~v (options 2 or 5
in Table 4.1). Both algorithms begin with step 1 (inverted), in which ~k is integrated in
time using forward Euler differencing starting with its initial value. The spatial derivative
of ~w is approximated by second order central differencing. Figure 4.14(a) and (b) com-
pare the estimated ~k (red curve) at a sample cross-section at s = 0.8L with that computed
from the forward model (blue curve) for loading scenarios 1 and 2 respectively. As the
integration of ~k marches in time, the error grows rapidly with the compounding effect of
noise amplification due to numerical differentiation of ~w in s. This error growth renders
the algorithms worthless. In fact, in the limit of quasi-static deformation, the kinematic
variables ~v and ~w will be zero, and the inverse algorithms that rely only on these kine-
matic variables, will obviously be ill-posed and lacking sufficient information to estimate
restoring effects. So, one may intuitively expect that unless the dynamics are reason-
ably fast, these algorithms will indeed tend to be very ill-conditioned. These algorithms
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may be better conditioned if ~k is measured even at intermittent time values to reset the
accumulated error to zero.

The remaining options (1,3,4 and 6) in Table 4.1 do have ~k as input that we now
recognize is crucial for estimation. The remaining options require all or a subset of the
four steps from 1 through 4 outlined in Figure 4.1. Each of these four steps involves inte-
gration along s. In steps 1 and 2, ~w and~v are integrated using forward Euler differencing
starting with their known values at the clamped end (s = 0). For steps 3 and 4, ~f and
~q are known at the free end (s = L), and therefore they are integrated back towards the
clamped end using backward Euler differencing, which, in this case, is an explicit inte-
gration scheme. The temporal derivatives in Steps 1, 3 and 4 are approximated by second
order central differencing. Since there is no integration in time, no initial conditions are
required.

Figure 4.15 shows the results of each of the four remaining options (1,3,4 and 6)
of inverse algorithm for both loading scenarios. The first column represents the results of
loading scenario 1 (pure bending moment), while the second column represents the results
of loading scenario 2 (pure shear force). The first row corresponds to option 1 (~k alone as
input), the second row to option 3 (~k and ~w as inputs), the third row to option 4 (~k and~v
as inputs) and the fourth row to option 6 (~k ,~v and ~w as inputs). The scattered green dots
represent estimated q2(s, t) versus k2(s, t), through which a polynomial is fitted and the
least-squares error representing the estimated constitutive law and plotted discretely as
blue asterisks in the perspective of the red curve, which represents the actual constitutive
law given by Eq. 4.18. The degree of the fitted polynomial is automatically converged
by a fitting algorithm. It matches the degree of actual constitutive law in all successful
results. The actual and fitted polynomial expressions are also shown in each result.

While all of the four options provide good estimates of the constitutive law, the
least square differences between the estimated and the actual constitutive laws suggest
that the algorithm 4 is consistently the best. The next section analyzes the robustness of
these four options.

4.5.5 Robustness of Algorithms
The kinematic variables are obtained from configuration data via numerical dif-

ferentiations in space and/or time. So, they tend to be noisy. This section analyses the
robustness of the aforementioned algorithms with respect to their input kinematic vari-
ables. To do so, a numerical approximation of white noise, n is added to the inputs using
the random number generator in MATLAB. This noise in the input quantities affect the
values of the estimated internal moments and consequently the final estimation of the
constitutive law. The root mean square (RMS) of the differences (Dif) between the es-
timated and exact constitutive laws are plotted as noise increases. The RMS differences
are normalized by the maximum value of the moments (infinity norm), and the variance
of the noise in the inputs is normalized by the square of maximum value of the corre-
sponding input. Figure 4.16 shows how the estimated constitutive law deviates from the
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Figure 4.15: Constitutive law estimated by different inverse algorithms.
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Figure 4.16: The normalized RMS of the differences, Di f between the exact and es-
timated internal moments versus normalized variance of the input noise for algorithm
number one in Table 4.1.

exact constitutive law as the numerical noise in the input curvature increases when the
algorithm number one in the Table 4.1 is used to identify the constitutive law. The figure
implies that for the normalized variance of the noise in curvature var(n)

max(k2)
less than 10�4

the estimation of the constitutive law is not affected significantly and the method gives a
reliable estimation. However, when the normalized variance of input noise grows to the
order of 10�2, the estimated constitutive law starts to significantly deviate from the exact
function.

Next, robustness of the algorithm number three in Table 4.1 is investigated. This
algorithm has two input variables ~k and ~w . Therefore, the white noise is added to both
of the input variables. Figure 4.17(a) shows the effects of noise on the estimation of the
constitutive law. The color scale represents the RMS of the differences between the exact
and estimated constitutive law, normalized by maximum of the internal moment. The
result shows that algorithm number three is less sensitive with respect to the noise in the
angular velocity in comparison to the noise in the input curvature values.

Furthermore, I analyze the robustness of the algorithm number four in Table 4.1
that uses ~k and~v as input variables. Figure 4.17(b) shows the effect of numerical noise in
the input variables on the estimation of the constitutive law for this algorithm. It can be
inferred from Figure 4.17 that the estimation of the constitutive law is more sensitive to
the noise in curvature that to the noise in linear velocity.

The robustness of the algorithm number six in Table 4.1 is shown in Figure 4.18 by
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Figure 4.17: The normalized RMS of the differences (Di f ) between the exact and esti-
mated constitutive law versus the variance of the input noises for algorithms three (a) and
four (b) in Table 4.1 with loading scenario 1. The color scale represent the normalized
RMS (Di f ), while var(ni) is the variance of the numerical noise that is normalized by
squared value of the maximum of the curvature and angular velocity (a) or velocity (b).

adding noise to the input variables~v, ~w and ~k . The robustness analysis of this algorithm
also reveals that the algorithms are more susceptible to the noise in curvature than to the
noise in the angular and linear velocities.

4.6 Discussion and Conclusions
This Chapter presents implementation and analysis of several inverse algorithms

that use the dynamic configurational data to estimate the constitutive laws of filaments.
The inverse approach is based on a continuum rod model and can use different combina-
tion of kinematic variables to estimate the restoring forces and moments in the filament.
However, in all the algorithms, it is consistently found that the curvature and twist vector
~k is the most crucial input. The choice of the input variables determines how many steps
will be involved in the method. Thus, the number of numerical integrations and differen-
tiations vary in each algorithm and directly affect the estimation of the constitutive law.
In this work, the inverse algorithms use the deformation data obtained from a forward rod
model simulation of planar bending with nonlinear (5-th order polynomial) constitutive
law. The algorithm number four that uses linear velocity along with curvature and twist as
measured inputs showed the most accurate estimation of constitutive law. The robustness
analysis of each algorithm is also performed. It is found that the method, in general, is
more sensitive to the noise in curvature than the noise in velocity and angular velocity.
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Figure 4.18: The normalized RMS of the differences (Di f ) between the exact and esti-
mated moments are color coded and shown against the normalized variances of the noises
in inputs for algorithm number six in Table 4.1.

To handle noisy input data there are strategies to smooth them and overcome the corrup-
tion of the final estimation. One such strategy is windowing that smooths high frequency
harmonics and improves approximation of the numerical derivatives.

Overall, in this chapter, I have shown a viable approach of developing an inverse
rod model that requires no a priori knowledge of the form of the nonlinearity in the con-
stitutive law.
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Chapter 5

AN ADJOINT-BASED INVERSE APPROACH FOR
NON-HOMOGENEOUS CONSTITUTIVE LAWS

5.1 Introduction
In this chapter, I formulated a simple but representative inverse problem governed

by the linear elastic equation with non-homogeneous coefficient field. In particular, I
discuss the reconstructability of the Lamé parameter field from synthetic observations of
the displacement field under cantilever loading. In this section, I follow the approach
in [88] and solve the underlying least-squares minimization problem using an adjoint-
based inexact Newton-conjugate gradient method, which uses first and second derivative
information of the least-squares cost functional. The numerical results show that the
reconstructions of the Lamé parameter field converge to the exact parameter as the obser-
vation error decreases. We also show that the number of Newton iterations is insensitive
to the dimension of the parameters, i.e., the computational cost of solving the inverse
problem–measured in number of PDE (Partial Differential Equations) solves–is constant
as the size of the problem is increased. Therefore, this computational framework has
the potential to solve high-dimensional inverse elasticity problems that are of practical
interest.

In addition, I formulated the inverse problem in a Bayesian inference frame-
work [89, 90]. Computing the general solution of this inverse problem (i.e., the posterior
probability density) can become prohibitive, due to the expense of solving the forward
model and the high dimensionality of the uncertain parameters (which are discretizations
of the elasticity parameter field). To cope with the infinite-dimensional (i.e., large-scale)
character of the parameter field, it is common to construct a Gaussian approximation to
the posterior at the maximum a posteriori probability (MAP) point (see [54], and refer-
ences therein). The MAP point in the Gaussian case coincides with the mean and it is
given by the solution of the deterministic inverse elasticity problem. In this chapter, I fol-
lowed the approach in [88] and solve the underlying least squares minimization problem
using an adjoint-based inexact Newton-conjugate gradient method, which uses first and
second derivative information of the least squares cost functional. The posterior covari-
ance matrix can be computed using the inverse of the Hessian of the least squares cost
functional of the deterministic inverse elasticity problem. I applied this method to quan-
tify uncertainties in the inference of the Young’s modulus parameter field from synthetic
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observations of the cantilever deformation as well as a deformations of rod with helical
structure.

The Chapter is organized as follows. Section 5.2 introduces the forward problem
of a cantilever as the Navier-Lamé model of linear elasticity. The computational for-
ward solver is benchmarked against an analytical solution of a simple loading scenario
in Section 5.3. In Section 5.4 we formulate the inverse problem governed by the forward
elasticity model and discuss an efficient solution method to solve this problem. In Sec-
tion 5.5 we present two model problems, one with a smooth non-homogeneous stiffness
coefficient, and the other with a discontinuous stiffness coefficient and discuss the perfor-
mance of the inexact Newton-conjugate gradient method. Section 5.6 offers a discussion
on the results of the deterministic inverse approach. In Sections 5.7 and 5.8, formula-
tion of the inverse problem in Bayesian inference framework is discussed. In Section 5.9
two model problems are defined to illustrate the performance of the Bayesian approach.
Finally, Section 5.8 provides concluding remarks on the results of Bayesian inversion.

5.2 Forward Problem: Linear Elastic Model
Any inverse numerical model is build upon a rigorous forward model. Therefore,

I briefly explain the linear elastic model and will discuss the numerical approach that
is used to solve the underlying equations. The equations of linear elasticity are derived
in strong form by applying the equilibrium of momentum to a material point. These
equations under static equilibrium can be written as follows [91]

�——— ·sss = fff , (5.1a)

where sss denotes the stress tensor and the body force is denoted by fff . Equation (5.1) is
the Navier-Lamé model of linear elasticity that describes a boundary value problem for
a cantilever. We employ a constitutive law that relates the stress tensor sss and the strain
tensor eeeuuu =

1
2(———uuu+———uuuT ) by

sss = 2µeeeuuu +l tr(eeeuuu)III, (5.1b)

where l and µ are the Lamé coefficients, and uuu is the displacement. The relationship
between the Lamé coefficients and Young’s modulus E and Poisson ratio n is given in the
Section 5.5.

We choose the model domain W to be a two-dimensional rectangular section of a
cantilever (as shown in Figure 5.1) with the following boundary conditions. On the left
boundary, GD, we impose homogeneous Dirichlet condition to model a clamped end, and
on GN , we impose a traction-free, i.e., homogeneous Neumann boundary condition

uuu = 000 on GD (5.1c)
sssnnn = ttt on GN . (5.1d)
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Figure 5.1: The domain W (grey shaded region) and coordinate system for the linear
elastic problem (5.1) modeling a cantilever. The boundary ∂W=GN [GD (with GN \GD =
/0), where GN and GD are boundaries with Dirichlet and Neumann boundary conditions,
respectively, defined in (5.1c)–(5.1d).

The numerical solution of the boundary value problem (5.1a)–(5.1d) is obtained by the
finite element method [92]. Therefore, the weak form of this boundary value problem has
to be derived. If we multiply (5.1a) with a test function vvv belonging to Vd = {vvv 2 H1(W) :
vvv = 0 in GD} and use the Green’s second identity, we obtain the weak form of (5.1a)–
(5.1d), that reads: Find uuu 2Vd such that

Z

W
sss : eeevvv dx =

Z

GN
vvv · ttt ds+

Z

W
fff · vvvdx, 8vvv 2Vd. (5.2)

We note that for the cases in which traction is zero on the boundary, the first term on the
right hand side of Eq. (5.2) vanishes. For simplicity, in what follows we assume that this
is the case.

5.3 Validation of Forward Solver
In this section the forward model is validated for a simple loading scenario in

which deriving the analytical solution of the stress distribution is readily possible.

5.3.1 Analytical Solution
Consider the problem shown in Figure 5.2 (left). The beam is subjected to a uni-

form shear stress sxy = t over its free end. Corresponding boundary conditions are

sxx(0,y) = 0, sxy(0,y) = t, syy(0,±b) = sxy(0,±b) = 0. (5.3)

The analytical solution for this problem can be obtained by relaxing one of the above
conditions and using Airy stress function. The formulation of Airy stress function f for
the planar stress is given below.

—4f = 0 (5.4)
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Figure 5.2: A cantilever subjected to a uniform distribution of shear stress on the free end
(left) that is modeled by finite element approach. For analytical solution it is assumed a
shear force is applied to the free end (right).

sxx =
∂ 2f
∂y2 (5.5)

syy =
∂ 2f
∂x2 (5.6)

sxy =� ∂ 2f
∂x∂y

(5.7)

Now consider the similar problem in Figure 5.2 (right). This beam is subjected to a shear
force F which is defined to be the resultant force of the shear stress t .

Z +b

�b
sxy(0,y)dy = 2bt = F (5.8)

This is called the weak boundary condition, since the stress is not specified directly on the
boundary and only its resultant is. However, the Saint-Venant’s principle states that the
stresses in these two problems are equal other than a region very close to the boundary
x = 0 and y 2 [�b,b]. Therefore, by constructing the Airy stress function as represented
in Eq. (5.9) the stresses can be obtained using the Eqs. (5.5) to (5.7).

f = axy3 �3ab2xy (5.9)

Therefore, the elements of the stress tensor are obtained as follows.

sxx =
3F
2b3 xy, sxy =

3F
4b3 (b

2 � y2), syy = 0 (5.10)

The Figure 5.3 is showing the contours of the stress sxx for the beam with b = 1 and
length L = 4 where t =�10.

64



Figure 5.3: Contours of the normal stress sxx =
3F
2b3 xy obtained by Airy stress function.

Figure 5.4: Contours of the normal stress sxx obtained by finine element solution.

5.3.2 Finite Element Solution
The problem that is shown in Figure 5.2 (left) can be solved to find the stress

tensor using the equations of linear elasticity (5.1). The domain of this problem is W =
[0,4]⇥ [�1,1] with the following boundary condition.

uuu = (0,0) on x = 4, (5.11)

sssnnn = (0,�10) on x = 0. (5.12)

Equation (5.11) expresses the Dirichlet’s boundary condition which is imposed on the
clamped end of the cantilever. Equation (5.12) is the Neumann’s boundary condition and
prescribes the traction on the free end. The body force fff in this scenario is zero. The
Figure 5.4 is showing the contours of the stress sxx found by the forward solver for the
beam with E = 4000 and n = 0.3.

Figures 5.3 and 5.4 are showing that the values of the normal stress sxx obtained
by finite element solution are very close to those obtained by analytical approach.

5.4 Inverse Problem: Inferring the Lamé Parameter from observed Displacement
In this section, I describe the solution of the inverse problem of inferring the two-

dimensional Lamé parameter field, l in (5.25) from synthetic observations of the dis-
placement field under cantilever loading with the elastic model described in the previous
section.
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5.4.1 The Regularized Inverse Problem
Using noisy (synthetic) measurements uuuobs (of uuu) in W, I seek to estimate the

unknown parameter field l = l (xxx), assuming that fff and µ are known. That is, I am
interested in finding parameter field, l such that the misfit, uuu� uuuobs is minimized on W.
This is expressed as the following constrained minimization problem

min
l

J (l ) :=
1
2

Z

W
(uuu�uuuobs)2dx+R(l ,g), (5.13)

where uuu = uuu(l ) is found by solving (5.1) for given l . The rightmost term in (5.13)
is a regularization term, which is needed to cope with the ill-posedness of the inverse
problem [49, 50]. Ill-posedness is a typical feature of many inverse problems, in which
the data do not uniquely determine the inversion parameter field. In this work, we choose
a Tikhonov regularization, namely

R(l ,g) = g
2

Z

W
(———l ·———l )dx, (5.14)

where g is a regularization parameter.

5.4.2 Inverse Problem Solver: Adjoint-Based Inexact Newton-CG
We now present an efficient method to solve the nonlinear least-squares optimiza-

tion problem (5.13). Gradient-based methods such as steepest descent or nonlinear conju-
gate gradients [93,94] can be used to iteratively find the solution of this optimization prob-
lem. However, due to the ill-posedness that is a common feature of infinite-dimensional
inverse problems, a gradient-based method can converge very slowly. Therefore, to
solve (5.13) efficiently, here we focus on Newton method, which is known to converge at
a superlinear rate [93, 94].

Starting with an initial guess for the parameter l , Newton’s method iteratively
updates this field by l k+1 = l k +al̂ , where l k is the current parameter and the Newton
direction l̂ is obtained by solving the linear system

H (l k)l̂ =�G (l k). (5.15)

Here, G is the gradient of the regularized data misfit functional J in (5.13), and H is
its Hessian operator. To guarantee convergence, the new value of the parameter is found
by damping the Newton direction, i.e., by choosing a step length a via an Armijo line
search for example, such that the cost functional in (5.13) is sufficiently decreased at each
iteration [93, 94].

To facilitate the computation of the infinite-dimensional gradient and Hessian, we
use the Lagrangian approach [95–97], in which the Lagrange multiplier function ppp 2 Vd
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plays the role of the test function in enforcing the weak form of the elastic problem (5.2).
The Lagrangian functional is given by

L (uuu,l , ppp)=J (l )+
Z

W
sssuuu : eee pppdx�

Z

W
fff · pppdx, 8ppp 2Vd. (5.16)

The gradient of J can be found as the variation of the Lagrangian, L with respect to l ,
provided variations of L with respect to uuu and ppp vanish. Thus, the gradient G (l ) at l

G (l )(l̃ ) =g
Z

W
———l̃ ·———ldx+

Z

W
(l̃ tr(eeeuuu)III) :eee pppdx. (5.17)

In the gradient expression above, uuu and ppp satisfy the forward and adjoint problems, re-
spectively, which are obtained by invoking stationarity of L with respect to the Lagrange
multiplier (also known as the adjoint) and forward variables ppp and uuu. We note that en-
forcing stationarity of L with respect to the adjoint variable ppp simply recovers the weak
form of the forward equation given by (5.2). The weak form of the adjoint problem is
obtained by taking variations of the Lagrangian functional with respect to uuu in a direction
ũuu, namely

Lu(uuu,l , ppp)(ũuu)=
Z

W
(uuu�uuuobs)ũuudx+

Z

W
sss ũuu : eee pppdx, 8ũuu 2Vd, (5.18)

and letting this vanish for all directions ũuu. The strong form of the adjoint problem is
obtained by integration by parts in (5.18)

�——— ·sss ppp =�(uuu�uuuobs) (5.19a)
ppp = 000 on GD (5.19b)

sss pppnnn = 000 on GN . (5.19c)

We note that the adjoint equation is driven by the misfit between the solution uuu of the
forward problem and the observational data uuuobs.

The action of the Newton Hessian operator in a direction l̂ is obtained by taking
second variations of L with respect to all variables [88, 98]. This can be expressed (in
weak form) as

H (l , l̃ )l̂ = g
Z

W
———l̃ ·———l̂dx+

Z

W
(l̃ tr(eeeuuu)III) : eee p̂ppdx, (5.20)
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where the incremental adjoint displacement p̂pp satisfies the incremental adjoint problem

�——— ·sss p̂pp =�ûuu (5.21a)
p̂pp = 000 on GD (5.21b)

sss p̂ppnnn = 000 on GN , (5.21c)

and the incremental forward displacement ûuu satisfies the incremental forward problem

�——— ·sss ûuu = ——— · (l̂ tr(eeeuuu)III) (5.22a)
ûuu = 000 on GD (5.22b)

sss ûuunnn = 000 on GN . (5.22c)

Thus computation of gradients and Hessian actions are expressed as solutions of for-
ward and adjoint PDEs. Once the gradient and the action of the Hessian operator are de-
fined, we can solve the optimization problem (5.13) with an inexact matrix-free Newton–
conjugate gradient (CG) method. To reduce the number of CG iterations, we precondition
the Hessian operator by the inverse of the regularization operator. In the numerical results
section, we will demonstrate that the number of outer Newton iterations and of inner
CG iterations is independent of the mesh size, as is expected for a wide class of inverse
problems.

5.5 Inversion results
This section presents two representative problems with cantilever loading (shown

in Figure 5.1) to study the performance of inverse method described in Section 5.4 for
reconstruction of the parameter field l . The first problem focuses on the inversion of a
smooth (sinusoidal) Lamé parameter field for different signal-to-noise ratios (SNRs). The
second problem targets a discontinuous parameter field. In each of the two representa-
tive problems, the two-dimensional domain of the cantilever is W = [0,8]⇥ [0,0.5]. The
observation data uuuobs is synthesized by solving the forward problem described in Section
5.2 and adding a numerical noise to the solution. The forward problem, which requires
solving Eq. (5.1) as a boundary value problem, is solved using FEniCS [99, 100], a finite
element package. In both the problems, the traction ttt on the boundary GN is zero, and the
cantilever bends under a prescribed body force fff . Since the parameter l penalizes the
volumetric strain in the constitutive law (5.25), the body force is so chosen that the beam
experiences some compression in addition to experiencing shear due to bending.
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Figure 5.5: The values of the the reconstructed l field for different signal to noise ratios
(SNRs) compared to the true parameter field ltrue. The reconstructed l is taken along a
line that passes trough the middle of the beam at y = 0.25.

5.5.1 A smooth (sinusoidal) Lamé parameter field
This problems targets a sinusoidal variation in the Young’s modulus E and a uni-

form Poisson ratio n given by

E = 3⇥105 �2.8⇥105 sin


p
✓

x
8
� 1

2

◆�
(5.23a)

n = 0.3. (5.23b)

Lamé parameters, µ and l , are calculated from E and n according to

l =
En

(1+n)(1�2n)
(5.24a)

µ =
E

2(1+n)
. (5.24b)

The synthetic observation data uuuobs for the inversion of l is generated by bending
the cantilever under a uniform body force fff = (�1000,100). The inversion is tried for
three different signal-to-noise ratios (SNRs), namely 10, 100 and 1000. Figure 5.5 shows
the reconstructed l field for each SNR along with the true l field. It is noted that the
method converges as the magnitude of the numerical noise diminishes.

Figure 5.6 shows the reconstructed Lamé parameter field (linversion) for SNR =
100, the true parameter field (ltrue), and the (uniform) initial guess of linitial = 1.0⇥103

that was used for Newton iterations. Figure 5.7 shows the displacement fields on a color
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Figure 5.6: The true parameter ltrue with sinusoidal variation (top), reconstructed param-
eter field (middle) and the initial guess for Newton iterations (bottom).

Figure 5.7: The displacement field of the beam with sinusoidal variation of the parameter
l . The solution of the forward model is shown by uuutrue (right). The synthetic observation
uuuobs (middle) is found by adding 1% noise to the uuutrue. The recovered displacement field
obtained by using the Newton method is uuuinv (left).

scale with the accordingly deformed shapes of cantilever. The synthetic observations,
uuuobs, are obtained by running the forward model with ltrue to obtain uuutrue and adding
1% noise (SNR = 100). The recovered displacement field is denoted byuuuinv. This figure
demonstrates that the inversion matches well the observations. The optimum value of
the regularization parameter, g , for this numerical experiment is found by Morozov’s
criteria [50] as illustrated in Figure 5.8. The optimal g using Morozov’s criteria ensures
that the norm of the misfit |uuu�uuuobs| is comparable to the norm of the noise in the data.

Finally, it is useful to recognize that the number of PDE solves for the Newton
method is insensitive to the number of inversion parameters, an important requirement
especially when the target application is of large scale. To this end, Table 5.1 shows that
by refining the mesh, the computational cost, measured by number of PDE solves, remains
approximately constant, which is not the case with gradient-based adjoint methods [101].

5.5.2 A discontinuous Lamé Parameter Field
This problem again has the same uniform Poisson ratio n = 0.3, but a discontinu-

ous variation in the Young’s modulus E. For x 2 [0,4] (left half cantilever), E = 3⇥105,
and for x 2 (4,8] (right half cantilever), E = 2⇥ 104. Such discontinuities in nano-scale
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Figure 5.8: The Morozov’s criteria is used to find the optimal value of regularization
parameter g .

filaments can occur due to changes in their chemical structure [26]. They are also found
in the Magnetic Resonance Elastography (MRE) images of the interface between normal
tissue and cancerous tissue [102].

Note that the overall stiffness of the beam in this problem is smaller than that in
the previous problem. Therefore the synthetic observation is generated using a commen-
surately smaller uniform body force fff = (�100,30). As in the previous problem, a noise
of 1% is added (i.e., SNR = 100).

The reconstructed parameter field for this problem is shown in Figure 5.9. It is
evident from this figure that while the proposed inversion method captures the location of
the discontinuity of the proposed l parameter field, the reconstruction is smooth. This is
due to the use of a Tikhonov regularization, which penalizes the magnitude of the gradient
of l . The abrupt changes and sharp edges are captured commonly using the total variation
(TV) regularization [103] or regularization performed by the BV-seminorm [104].

Figure 5.10 shows the true (left), observed (center) and recovered (right) displace-
ment fields. We note that despite the poor reconstruction of the parameter field on the
left of the discontinuity, the recovered displacement field matches extremely well the true
displacement field.

5.6 Discussion on the Deterministic Approach
This section presents a Hessian-based inversion approach to estimate the Lamé

parameter field for cantilever beams from their displacement fields. We show that the
number of PDE solves for the Newton method is insensitive to the number of inversion
parameters, an important requirement especially when the target application is of large
scale. This would not be the case with gradient (only)-based methods, as our previous
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Table 5.1: Number of iterations (#iter) and the number of PDE solves (#PDE) for the
inexact Newton method for an inverse elasticity problem. The first column (Mesh) shows
the number of elements used to discretize the variables and the second column (#par) in-
dicates the number of inversion parameters (l ). The third column reports the number of
Newton iterations, and in parentheses the overall number of CG iterations. The last col-
umn reports the number of PDE solves needed by the method to converge. The iterations
are terminated when the norm of the gradient is decreased by a factor of 106. This table
shows that the cost of solving the inverse problem by the Newton method (measured in
number of PDE solves) is roughly independent of the number of inversion parameters.

Mesh #par #iter #PDE
80⇥20 1701 11 (42) 106

160⇥40 6601 11 (44) 110
240⇥60 14701 12 (47) 118
320⇥80 26001 12 (48) 120

experience shows [88]. While the method has been presented for inversion of a single
Lamé parameter field, the extension to inversion of both the Lamé parameters is trivial.

We have formulated and solved two model problems to study the invertibility of
the Lamé parameter field. First, we focused on the inversion of a smooth (sinusoidal)
Lamé parameter field for different SNRs. We found that the reconstructions converge
to the true Lamé parameter field as the noise in the synthetic observations decreases.
The second model problem targeted a discontinuous parameter field. The results for this
problem show that while we are able to reconstruct the location of the discontinuity, the
Tikhonov regularization applied smoothed out the sharp edges. In future work we in-
tend to extend this inversion framework to include total variation regularization, known
to preserve sharp interfaces [50]. In addition, after a (deterministic) inverse solution is
found, the question is how much confidence we can have in the inverse solution. To an-
swer this question, we will turn to the framework of Bayesian inference, which provides
a systematic means of quantifying uncertainty in the solution of the inverse problem.

5.7 Bayesian Inversion
In the previous section the regularized inverse formulation was effective to recon-

struct the parameter field l . In these scenarios the observable quantity uobs was available
at every computational node. However, in physical experiments it is not often possible
to measure the observable quantity everywhere in the domain. For instance, a technique
such as ultrasound elastography has low resolution in the directions perpendicular to the
axis of the transducer and only one component of the displacement field is measurable
this way [105]. In the cases where limited information is accessible, the Bayesian method
can infer an statistical estimate about the expected values of the parameter field. The
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Figure 5.9: The true parameter ltrue with a discontinuity (top), reconstructed parameter
field (middle) and the initial guess for Newton iterations (bottom). The true parameter
ltrue is calculated by substituting E = 3⇥ 105, n = 0.3 for x 2 [0,4] and E = 2⇥ 104,
n = 0.3 for x 2 (4,8] in Eq. 5.24.

Figure 5.10: The displacement field of the beam with discontinuous jump in the parameter
l . The solution of the forward model is shown by uuutrue (right). The synthetic observation
uuuobs (middle) is found by adding 1% noise to the uuutrue. The recovered displacement field
obtained by using the Newton method is uuuinv (left).

solution of the Bayesian inverse problem that is the posterior probability distribution, de-
termines how the information from the observable quantity can be used to identify the
unknown parameters. In other words, the estimation results approach the real values of
the parameters, as much as the data is informative.

The mechanical properties of a linearly elastic material, which can be described
by Young’s modulus E and Poisson’s ratio n parameters, can not be directly observed
or measured in an experiment hence these are typically unknown or uncertain. However
in experimental techniques– such as elastography [105]– it is common to measure the
components of the displacement field across the domain, which can be used to infer these
parameters. Inferring the mechanical properties of a material using the measurements–
such as the displacement field uuuobs – can be formulated as an inverse problem. In this
section we formulate an inverse problem for the elasticity parameter field E, and describe
an efficient numerical technique to solve this problem.

In the following, we employ a constitutive law that relates the stress tensor sssuuu and
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the strain tensor eeeuuu =
1
2(———uuu+———uuuT ) by

sssuuu =
E

1+n
eeeuuu +

En
(1+n)(1�2n)

tr(eeeuuu)III, (5.25)

where uuu is the displacement, E is the Young’s modulus, n is the Poisson’s ratio, and III is
the second-order unit tensor.

5.8 Inverse Problem: Bayesian Quantification of the Parameter Uncertainty
To answer the question of what confidence we have in the inverse solution we turn

to the framework of Bayesian inference [89, 90]. In this framework, the inverse problem
is formulated as a problem of statistical inference over the space of uncertain parameters.
The solution is the posterior probability distribution function that expresses how likely
it is that a set of candidate parameters gives rise to the observed data via the physical
model. The Bayes’ theorem combines the prior probability distribution, pprior(E), with
a likelihood, plike(uuuobs|E), to calculate the posterior probability distribution ppost(E|uuuobs),
namely

ppost(E|uuuobs) µ pprior(E)plike(uuuobs|E). (5.26)

The prior captures any knowledge, information or assumption about the parameter field
E, and the likelihood encodes the probability of observing data uuuobs, given a parameter
field E. The posterior, which is the solution of the inverse problem, represents the proba-
bility of parameter field E given the observed data uuuobs. In this work we use an additive
Gaussian noise model that gives

uuuobs = FFF(E)+hhh , hhh ⇠ N (000,Gnoise) , (5.27)

where Gnoise 2 Rq⇥q is the measurement noise covariance matrix, q represents the num-
ber of observation points, and FFF(·) is the so-called parameter-to-observable operator that
maps model parameters E to observations uuuobs. Here, evaluation of this map requires
solution of the Navier-Lamé Eqs. (5.1) possibly combined with an observation opera-
tor B, that allows for extracting q observation points. Furthermore, since the noise hhh is
independent of E, thus uuuobs|E ⇠ N (FFF(E),Gnoise), the likelihood is given by

plike(uuuobs|E) µ exp
⇣
� 1

2

D
Buuu�uuuobs,G�1

noise(Buuu�uuuobs)
E⌘

, (5.28)

where hg,hi represents the inner product of the two given functions g and h, i.e.,

hg,hi=
Z

W
ghdx. (5.29)
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We use a Gaussian prior defined by the mean Epr and the covariance Gpr 2 Rn⇥n. We
define the covariance as the inverse of the square of a Laplacian-like operator, namely
Gpr = (�gDDDE + dE)�2 as in [54]. The parameter g determines the correlation length of
the operator (i.e. the smoothness,) and d determines the magnitude of its variance. The
prior can therefore be written as

pprior(E) µ exp
⇣
�1

2
⌦
E �Epr,G�1

pr (E �Epr)
↵⌘

. (5.30)

According to Bayes’ theorem with Gaussian noise and prior, the posteriori density func-
tion of E is described as [89, 90]

ppost(E)µexp
⇣
�1

2

D
Buuu�uuuobs,G�1

noise(Buuu�uuuobs)
E
�1

2
⌦
E �Epr,G�1

pr (E �Epr)
↵⌘

. (5.31)

We note that if the parameter-to-observable map is linear the posterior probability density
is Gaussian. However, the further this map is from being linear (which is the case here),
the further the posterior is from being Gaussian [89, 90]. In such case, a sampling ap-
proach is applied to explore the posterior. To cope with the infinite-dimensional character
of the parameter field (hence its high-dimensional nature stemming from discretization),
here we construct a Gaussian approximation of the posterior at the maximum a posteriori
probability (MAP) point (see [54], and references therein). This MAP point is the param-
eter vector maximizing the posterior (5.31). It can be found by minimizing the negative
log of (5.31), which amounts to solving the optimization problem

EMAP = argmin
E

J (E) :=� logppost(E). (5.32)

There is a number of optimization methods that one can use to solve (5.32), e.g., gradient-
based methods such as steepest descent or nonlinear conjugate gradient, or second deriva-
tive based (i.e., Hessian) methods [93,94]. For an efficient computation of the MAP point,
here we use adjoints- and Hessian-based methods, as we will show in the next section.
One of the advantages in doing so is that the posterior covariance matrix Gpost of the Gaus-
sian approximation can then be obtained by computing the action of the inverse of the
Hessian (of J at EMAP) on vectors [89, 90].

5.8.1 Calculating the MAP points: adjoint-based inexact Newton-CG
To solve (5.32) efficiently, here we focus on the Newton method, which is known

to converge at a superlinear rate [93, 94]. Starting with an initial guess for the parameter
E, Newton’s method iteratively updates this field by Ek+1 = Ek +aÊk, where Ek is the
current parameter and the Newton direction Êk is obtained by solving the linear system

H (Ek)Êk =�G (Ek). (5.33)
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Here, G is the gradient of the regularized data misfit functional J in (5.32), and H is
its Hessian operator. To guarantee convergence, the new value of the parameter is found
by damping the Newton direction, i.e., by choosing a step length a via an Armijo line
search for example, such that the cost functional in (5.32) is sufficiently decreased at each
iteration [93, 94].

To facilitate the computation of the infinite-dimensional gradient and Hessian, we
use the Lagrangian approach [95–97], in which the Lagrange multiplier function ppp 2 Vd
plays the role of the test function in enforcing the weak form of the elastic problem (5.2).
The Lagrangian functional is given by

L (uuu,E, ppp)=J (E)+
⌦
sssuuu,eee ppp

↵
�h fff , pppi. (5.34)

The gradient of J can be found as the variation of the Lagrangian L with respect to E,
provided variations of L with respect to uuu and ppp vanish. Thus, the gradient G (E) at E is
found by taking the Freshet derivative of the Lagrangian functional in the directions p̃pp, ũuu,
and Ẽ and is shown with Lppp, Luuu, and LE , respectively

⌦
sssuuu,eee p̃pp

↵
�h fff , p̃ppi= Lppp p̃pp, (5.35a)

⌦
sss ũuu,eee ppp

↵
+
D

B⇤G�1
noise(Buuu�uuuobs), ũuu

E
= Luuuũuu, (5.35b)

⌦
G�1

pr (E �Epr), Ẽ
↵
+

⌧
Ẽ

1+n
eeeuuu,eee ppp

�
+

⌧
Ẽn

(1+n)(1�2n)
tr(eeeuuu)III,eee ppp

�
= LEẼ. (5.35c)

We note that the left hand side of (5.35a) is the weak form of the underlying forward
problem, and the left hand side of (5.35b) represents the weak form of the corresponding
adjoint equation, which is obtained by invoking stationary of L with respect to forward
variable uuu (or Luuu = 0). The strong form (obtained by integration by parts) for this equa-
tion reads

�——— ·sss ppp =�B⇤(Buuu�uuuobs) in W, (5.36a)
ppp = 000 on GD, (5.36b)

sss pppnnn = 000 on GN . (5.36c)

We note that the adjoint equation is driven by the misfit between the solution uuu of the
forward problem and the observational data uuuobs.

Once we have uuu and ppp, we can evaluate the gradient, which is given in the left hand
side of (5.35c). To enforce the stationary of the gradient (or LE = 0) I use the Newtons
method, as explained above, where to compute the direction Êk I solve Eq. (5.33). The
action of the Hessian operator H (Ek) in a direction Êk is obtained by taking second
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variations of L with respect to all variables [88, 98]. This can be expressed as
⌦
sss ûuu,eee p̃pp

↵
= Lpppuuuûuu, (5.37a)

⌦
B⇤G�1

noiseBûuu, ũuu
↵
= Luuuuuuûuu, (5.37b)

⌧
Ẽ

1+n
eee ûuu,eee ppp

�
+

⌧
Ẽn

(1+n)(1�2n)
tr(eee ûuu)III,eee ppp

�
= LEuuuûuu, (5.37c)

0 = Lpppppp p̂pp, (5.38a)
⌦
sss ũuu,eee p̂pp

↵
= Luuuppp p̂pp, (5.38b)

⌧
Ẽ

1+n
eeeuuu,eee p̂pp

�
+

⌧
Ẽn

(1+n)(1�2n)
tr(eeeuuu)III,eee p̂pp

�
= LE ppp p̂pp, (5.38c)

⌧
Ê

1+n
eeeuuu,eee p̃pp

�
+

⌧
Ên

(1+n)(1�2n)
tr(eeeuuu)III,eee p̃pp

�
= LpppEÊ, (5.39a)

⌧
Ê

1+n
eee ũuu,eee ppp

�
+

⌧
Ên

(1+n)(1�2n)
tr(eee ũuu)III,eee ppp

�
= LuuuEÊ, (5.39b)

⌦
Ê,G�1

pr Ẽ
↵
= LEEÊ. (5.39c)

Equations (5.37), (5.38), and (5.39) sequentially represent the derivatives of equation
(5.35) with respect to uuu, ppp, and E. Here Ê represents the Newton direction and is found
by solving

H

2

4
ûuu
Ê
p̂pp

3

5=

2

4
Luuuuuu LuuuE Luuuppp
LEuuu LEE LE ppp
Lpppuuu LpppE Lpppppp

3

5
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4
ûuu
Ê
p̂pp

3

5=

2

4
�Luuu
�LE
�Lppp

3

5=

2

4
0

�G (E)
0

3

5 . (5.40)

The so-called incremental adjoint displacement p̂pp satisfies the incremental adjoint prob-
lem which is derived from the first row of (5.40). In strong form reads

�——— ·sss p̂pp =�B⇤Bûuu in W, (5.41a)
p̂pp = 000 on GD, (5.41b)

sss p̂ppnnn = 000 on GN , (5.41c)

and the so-called incremental forward displacement ûuu satisfies the incremental forward
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problem derived from the third row of equation (5.40), which in strong form reads

�——— ·sss ûuu =�——— · ( Ê
1+n

eeeuuu +
Ên

(1+n)(1�2n)
tr(eeeuuu)III) in W, (5.42a)

ûuu = 000 on GD, (5.42b)
sss ûuunnn = 000 on GN . (5.42c)

5.8.2 Finite dimensional formulation
In order to demonstrate the calculation of the posterior covariance matrix Gpost we

discuss the finite dimensional representation of the Newtons equation (5.40).
2

4
W 0 CT

0 R AT

C A 0

3

5

2

4
ûuu
Ê
p̂pp

3

5=

2

4
0
�g
0

3

5 , (5.43)

Where W = B⇤G�1
noiseB and R = G�1

pr . Thus, the incremental forward variable is found by
the third row of the system (5.43)

ûuu =�C�1AÊ, (5.44)

and the incremental adjoint variable by the first row

p̂pp =�C�TWûuu =C�TWC�1AÊ. (5.45)

The Newton direction Ê can be identified using the second row of the system (5.43)

(R+ATC�TWC�1A)Ê =�g (5.46)

where Hessian matrix is
H = (R+ATC�TWC�1A) (5.47)

The data misfit Hessian Hmisfit in (5.47) is equal to ATC�TWC�1A and prior covariance
matrix G�1

pr is equal to R. We also introduce prior-preconditioned data misfit Hessian as
follows.

H = (Hmisfit +G�1
pr ) = G�1

pr (GprHmisfit + I) (5.48)

5.9 Results
This section presents two model problems to illustrate the performance of the

inverse method described in Section 5.8. The first problem focuses on the inversion of a
smooth (sinusoidal) Young’s modulus field for a planar cantilever bending. The second
problem targets the same inversion parameter but for a three dimensional helical structure.
The observation data uuuobs is synthesized by solving the forward problem described in
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Section 5.2 and adding a noise level of 1 percent to the solution. In other words, the signal
to noise ratio (SNR) is equal to 100. In what follows, the traction ttt on the boundary GN is
zero, and we consider a nonzero body force fff .

To solve the inverse problems we used hIPPYlib [106], an inverse problem python-
based library. This library contains scalable algorithms for PDE-based deterministic and
Bayesian inverse problems. It builds on FEniCS [99, 100], a finite element package that
is used to solve the forward problem (5.1).

5.9.1 Cantilever Bending
The domain W = [0,8]⇥ [0,0.5] for this model problem is a two-dimensional rect-

angular section of a cantilever (as shown in Figure 5.1). The boundary conditions are
the following. On the left boundary, GD, we impose homogeneous Dirichlet condition to
model a clamped end, and on GN , we impose a traction-free, i.e., homogeneous Neumann
boundary condition.

The goal of this model problem is to identify the Young’s modulus E parameter
field when Poisson’s ratio n is known (here taken as 0.25). The synthetic observation
data uuuobs for the inversion of E is obtained by simulating the cantilever bending subject
to uniform body force fff = (0,6.5⇥10�3) and with a “true” parameter field

E = 15.0�5.0sin
✓

p
�x

8
� 1

2
�◆

, (5.49)

to which we add noise as explained above.
The prior is chosen in the following way. The mean is chosen to be zero and the

prior covariance matrix is constructed by using the inverse of a Laplacian-like operator,
as explained in Section 5.8. For the cantilever bending example, the parameter g , which
controls the smoothness of the parameter field E has a constant value 0.4, and parameter
d is also chosen to be constant 0.1. A one-dimensional representation (at y = 0.25m) of
the prior mean, standard deviation and samples from the Gaussian prior distribution are
illustrated on the left in Figure 5.11.

Figure 5.12 shows the synthetic observation data uuuobs, state variable obtained with
the true parameter field uuutrue, and the solution of the forward problem with the inversion
result uuuinv along the bending neutral axis of the beam (i.e. y = 0). This figure shows that
the difference between uuuobs and uuu is larger toward the right side of the beam.

In Figure 5.13 we compare the variance of the prior with that of the posterior. This
result shows that the variance is decreased which can be attributed to the observations. We
note that toward the free end of the cantilever (i.e., the right side of the cantilever), where
the bending deformation decreases, the variance (i.e., the uncertainty) remains larger.
This is because the sensitivity of the observable to the parameter vanishes, hence the data
becomes uninformative. More specifically, in this loading scenario the maximum stress
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Figure 5.11: The standard deviation (s ) of the prior (left) and the posterior (right) prob-
ability distributions are shown in gray color scale in which higher probability density is
indicated by darker shading. The prior mean and the MAP point of the posterior are
shown in red and samples from the prior and the posterior are shown in different colors.

and strain values occur toward the clamped end of the beam while the free end has zero
stress and strain

The Figure 5.14 shows the spectrum of prior-preconditioned data misfit Hessian.
The spectrum of this Hessian is a measure of the informativity of the observed data.
The preconditioning of the data misfit Hessian with Gpr is a mean to construct a Hessian
that does not depend on the dimension of the problem, instead only depends on how
informative the data is [54]. Moreover, to look at the spectrum of the prior-preconditioned
data misfit Hessian, similar to [54] we make a low-rank approximation of the Hessian
by truncating the eigenvalues that are small relative to 1. In this problem Figure 5.14
shows that only a few of the eigenvalues are larger than one. These large eigenvalues are
the modes that direct the Newton’s method to the final solution in the parameter space.
Much smaller eigenvalues correspond to the noise in the data and do not help to infer
the parameter. This is also illustrated by depicting a subset of the eigenvectors of prior-
preconditioned data misfit Hessian as shown in Figure 5.15.

5.9.2 Helical Rod Stretching
In this section, we define a model problem for the identification of the elastic

properties of a more realistic rod, namely of the helical proteins (sheath) that play a key
role in the genome injection mechanism of the bacteriophage T4 virus [4, 4]. The helical
sheath proteins on the viral tail are stretched before injection. When the virus attaches to a
target cell, the elastic energy of the helical proteins is used to inject the DNA into the target
cell. Continuum rod theory is shown to be capable of capturing the important features of
this mechanism [4], however the accuracy of continuum modeling is strictly determined
by the accurate knowledge of the constitutive law. The methodology presented here can
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Figure 5.12: The synthetic observation uuuobs, state variable calculated with true parameter
field uuutrue, and the solution of the forward problem with the inversion results uuuinv are
shown along the bending neutral axis of the beam.

be used not only to estimate the constitutive law of such structures, but also to quantify
the degree of uncertainty in the estimations. The problem presented in this section shows
how the constitutive law of a helical rod can be estimated using the measurements of the
displacement field.

The Poisson ratio n in this model problem is constant, e.g., n = 0.25, and the
sinusoidal Young’s modulus, E, is given by

E = 15.0�5.0sin
✓

p
� x

20
� 1

2
�◆

. (5.50)

The geometry for this problem is a helix with radius R = 1 mm and pitch P = 2 mm. The
synthetic observations uuuobs for this case are generated by stretching the helical structure
under a uniform body force fff = (2.2⇥10�3,0,0). In this example, the parameter g has a
constant value 1.0, and parameter d is also chosen to be constant 0.1. In Figure 5.17 we
show the variance and samples from the prior and posterior probability distributions. The
results show that the variance of the posterior is smaller than that of the prior, which is
due to the information we learned from the observations. However, toward the free end of
the structure (right hand side in Figure 5.16) as the deformation declines to zero, the data
is not informative for accurate identification of the parameter field, therefore the posterior
shows a larger variance in this region.
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Figure 5.13: Several depictions of the prior (top left) and posterior (top right) using a
color scale. The variance s2 (bottom left) of the prior (top) and posterior (bottom) is
demonstrated in the domain. MAP points versus true parameter field.

5.10 Discussion on Bayesian Inversion
This section presents a Bayesian inversion approach to estimate the Elasticity

parameter field for cantilever beams and helical springs from their displacement fields.
In deterministic formulation of the inverse problem we have shown that the number of
PDE solves for the Newton method is insensitive to the number of inversion parameters,
an important requirement especially when the target application is of large scale. This
would not be the case with gradient (only)-based methods, as our previous experience
shows [88]. While the method has been presented for inversion of a single parameter
field E, the extension to inversion of both the Young’s modulus and Poisson’s ratio is
trivial.

We have formulated and solved two model problems to study the invertibility of
the Young’s modulus. First, we focused on the inversion of a smooth (sinusoidal) pa-
rameter field. The second model problem targeted a 3-dimensional parameter field. We
found that the reconstruction of the parameter field (MAP points) were close to its true
value and the uncertainty in the reconstruction is directly determined by the availabil-
ity of informative data. For example, on the computational nodes near the free end of
the cantilever under pure shear force, where deformations are nearly zero, the posterior
probability distribution has large variances which is a measure of the uncertainty.
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Figure 5.14: Logarithmic plot of the spectrum of prior-preconditioned data misfit Hessian
for cantilever problem (top) and the helical rod (bottom).
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Figure 5.15: Several depictions of the eigenvectors of prior-preconditioned data misfit
Hessian in the domain of the cantilever. From top to bottom the eigenvalues correspond
to first, fifth, tenth and fiftieth eigenvalue.

Figure 5.16: The domain of the linear elastic problem modeling a helical rod. The radius
of the helix is R = 1 mm and its pitch P = 2 mm. The overall length of the structure is
L = 20 mm shown with dashed line and the cross-section of the rod is a circle with radius
r = 0.25 mm.

Figure 5.17: Several depictions of the prior (top left) and posterior (top right) using a
color scale. The variance s2 (bottom left) of the prior (top) and posterior (bottom) is
demonstrated in the domain. MAP points versus true parameter field (bottom right).
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Chapter 6

STABILITY OF SLENDER STRUCTURES SUBJECTED TO
FOLLOWER LOADS

6.1 Introduction
Stability analysis of slender structures subjected to follower loads are important

instantiations of nonconservative problems in the theory of elastic stability. A number of
thorough surveys of the developments and achievements on the structural stability of non-
conservative systems can be found in the literature [107–109]. Conservative loads such
as gravitational or electrostatic forces can be written as gradient of a time independent
potential function [110]. Nonconservative loads, however, do not fit this criteria; their
magnitude and direction depend on the configuration of a structure (e.g., deflection and
slope), its velocity, and time. Viscous damping is a commonly encountered example of
nonconservative forces which depend on the velocity of a structure. Follower forces are a
second type of nonconservative force which, acting either as a point force or a distributed
load, always act tangential to the deflection curve of a structure. Reut [111], Pfluger [112],
Leipholz [110] and Beck [113] were among the first researchers to analyze the buckling of
cantilevers subjected to follower forces. For instance, Beck [113] reports that the critical
buckling load for a cantilever subjected to a compressive point load that always remains
tangential to the free-end of the cantilever is approximately 10 times larger than for a
force with constant direction.

Stability analysis of slender structures subjected to follower loads is critical in
several applications such as pipes conveying fluid [114, 115], self-thrust structures [116],
and rockets [117]. It is shown that equations motion of disc-brake systems [118] can be
mapped to the equations that govern the stability of a cantilever subjected to a compres-
sive and uniformly distributed follower load, the Leipholz column. More recently, fol-
lower forces have been studied at smaller scales in microfluidic settings where inertia is
negligible. For instance, synthetic filaments comprised of connected paramagnetic beads
when actuated are observed to mimic the shapes of beating flagella [119, 120]. Similarly,
tunable colloidal chains assembled from chemically tailored Janus particles with control-
lable polarities can also be tuned to generate oscillatory beating [121–123]. While the
length scales in these applications range from around 1-500 µm, dynamical principles
underlying their structural stability are similar to classical, large-scale applications; in-
deed connections between mechanics at multiple length scales have been illustrated in
other biological settings [3, 4, 12, 66, 124–127].
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Figure 6.1: (a) Schematic representation of a rod of unstressed length L with fixed-fixed
boundary condition (clamped at both ends). The end to end distance when buckled is
Lee < L. (b) The motion of material points comprising the cross-section of the rod at
arc-length position, s and at time t is determined by tracking the transformations of the
body-fixed frame âi(s, t) with respect to the inertial frame of reference êi. (c) The shape
(top) and pre-stress (bottom) in the buckled state for different values of Lee/L. The dashed
line corresponds to the unstressed case Lee/L = 1.0. Pre-stress here is defined as the
component of the Internal force in the direction of cross-sectional normal vector â3(s, t)
i.e., f3.

Continuum models are effective approximations for analyzing the post-buckling
behavior of inextensible filaments and rods subjected to shearing as well as compres-
sive follower forces [123, 127, 128]. A crucial ingredient in the physical respons of these
structures is the dissipation of energy due to viscous drag that provides a means to sustain
steady oscillations. Furthermore, in these zero inertia settings, the dissipation rate (and
not inertia) provides the time scales controlling the temporal characteristics of the post-
buckled state such as the steady-state beating frequency [123, 128–130]. These studies
have however focused on the buckling dynamics of free-free, fixed-free, and pinned-free
filaments with the base state being a straight non-stressed filament or rod. The role of
pre-stress in emergent oscillations driven by active distributed follower forces while im-
portant, is however yet to be elucidated.

I focus here on the complementary scenario of a fixed-fixed rod that is, a rod
clamped at both ends and pre-stressed by decreasing the end-to-end distance, thereby
generating a buckled shape and then subjected to a constant density follower force. In
the fixed-free scenario, the lack of constraint at the free-end allow for either lateral os-
cillations or steady rotations to develop in favorable conditions [123]. In my fixed-fixed
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scenario, the slack generated upon initial compression offers the necessary degree of free-
dom to allow for oscillations. The simulations are three-dimensional, but, by introducing
strictly planar perturbations and loads, the oscillations remain planar.

In Section 6.2 of the present chapter, I discuss the modeling of the clamped rod
with linear constitutive law. Section 6.3 presents and discusses the results of two case
studies pertaining to oscillations under two types of drag forces. Finally, Section 6.4
presents some concluding remarks on the findings of this chapter.

6.2 Model
We consider a rod that is in stress-free state when straight. By displacing one of

the clamped ends of the rod toward the other end and forcing the rod to bend and buckle
as shown in Figure 6.1(a), I generate pre-stress in the rod. Thus, pre-stress is controlled
by the end-to-end length of the rod, Lee < L, here the slack being L�Lee.

The continuum rod model that I use is explained in Chapter 3. Both shear and
stretch deformations are negligible for filaments with large slenderness (length/thickness)
ratio under compression. So, I assume~r(s, t) = â3(s, t) = t̂(s, t), where t̂(s, t) is the unit
tangent vector along the arc-length. The distributed follower forces and moments in this
model are captured by ~F and ~Q in Eqs. (3.1) and (3.2), respectively. In the scenario of
fixed-fixed rod, I consider the effect of distributed follower forces in tangential direction
(along â3(s, t)) in this section. Here for simplicity of notation, I refer to this tangential
follower force density by scalar F .

The differential equations of equilibrium and compatibility (3.1)-(3.4) have to be
solved together with a constitutive law relating the deformations to the restoring forces.
The constitutive law, for an isotropic and linearly elastic rod takes the form of an algebraic
constraint:

~q(s, t) = B(s)~k(s, t). (6.1)

The matrix B in Eq. (6.1) encodes the bending and torsional stiffness moduli of the rod.
By choosing the body-fixed frames of reference to coincide with principal axes of rod
cross-sections, B can be written as

B =

2

4
EI1 0 0
0 EI2 0
0 0 GI3

3

5 , (6.2)

where E is the Young’s modulus, G is the shear modulus, and I1, I2, and I3 represent the
second moment of area of the rod cross-section about its principal axes. Our choice, as
implicit in Figure 6.1(b), implies that subscripts i = 1,2 in âi(s, t) represent the rod’s axes
of bending and i = 3 represents torsional axis.
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Figure 6.2: Critical load for onset of oscillations Fcr versus scaled end-to-end distance
Lee/L for both Stokes [S] drag and Morrison [M] drag. I note that the critical loads are
roughly the same over the range of pre-stress values investigated.

The Generalized-a method [69] is adopted to compute the numerical solution of
this system, subjected to necessary and sufficient initial and boundary conditions. A de-
tailed description of this numerical scheme applied to this formulation is given in Chapter
3

6.3 Results
I next present results for the critical value of the follower force density Fcr versus

end-to-end distance Lee/L and explore how the beating frequency, w(|F |,Lee/L) both at
the critical point and for values of the follower force |F |> Fcr depends on the pre-stress.
A cylindrical rod with slenderness ratio of 800 is simulated with properties given in Table
6.1. I compare the findings for two types of drag forces, namely Stokes drag [S] and
Morrison drag [M] given in Eqs. (6.3) and (6.4), respectively as explained in [27].

~FS =�1
2

rfd
⇣

Cnt̂ ⇥ (~v⇥ t̂)+pCt(~v · t̂)t̂
⌘

(6.3)

~FM =�1
2

rfd
⇣

Cn|~v⇥ t̂|t̂ ⇥ (~v⇥ t̂)+pCt(~v · t̂)|~v⇥ t̂|t̂
⌘

(6.4)

In both equations rf and d represent the environment fluid density and diameter of the
rod, respectively. Drag coefficients (per unit length) Cn and Ct are given in Table 6.1. In
typical scenarios the normal drag coefficient is larger than the tangential coefficient ie,
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Figure 6.3: Configurations of the rod in sequence (1-10) over one period of oscillation
when |F | = 15 N/m. The configurations (rod shapes) for Stokes drag are shown on the
top, with shapes for Morrison drag shown in the bottom row.
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Quantity Variable Value Units
Diameter d 0.0096 m
Length L 8 m
Mass per unit length m 0.2019 kg/m
Young’s modulus E 68.95 GPa
Shear modulus G 27.58 GPa
Second moment of area I1 = I2 4.24 ⇥10�10 m4

Polar moment of area I3 8.48 ⇥10�10 m4

Normal drag coefficient Cn 0.1 m.s or m2

Tangential drag coefficient Ct 0.01 m.s or m2

Surrounding fluid density rf 1000 kg/m3

Table 6.1: Numerical values for the geometric and elastic rod properties and drag coeffi-
cients used in the computations.

Cn > Ct . For the nonlinear form of the Morrison drag, motivated by filament motions
corresponding to high Reynolds number, Cn/Ct � 1. Strictly speaking, in the Stokes
limit, and for motion in a Newtonian fluid, both actual drag coefficients are independent
of density, weakly dependent on the diameter of the rod d. and proportional to fluid
viscosity (and in fact, differ by a factor of two for very slender rods). Here in order to treat
both limits in the same consistent framework, I set the values of these drag coefficients to
constants and focus solely on the role of activity embodied in the follower force density
and the pre-stress embodied in the ratio Lee/L.

I note that the Stokes [S] form for the drag is linear in the velocity while the
Morrison form [M] is quadratic, and hence nonlinear in the velocity. Thus for the same
change in configuration and frequency, the Morrison form will result in a larger viscous
dissipation per unit length than the Stokes form. Conversely, if we require that the same
amount of energy be dissipated, the Stokes limit will be characterized by either higher
frequency or by larger amplitude deformations or both.

6.3.1 Benchmark: Critical Force for Beck’s Column
In order to benchmark the model presented in this section, I calculate the critical

buckling force for the Beck’s column and compare it with the values reported. Beck’s
column is a cantilever subjected to a compressive point load that is always tangential to
the free-end of the column. Beck’s analysis, published in German [113] and reviewed
in English [108] yields the following expression for the critical buckling force, Pcr of a
cantilever with bending stiffness, EI and length, L in absence of damping dissipation.
Pcr ⇡ 20.51 (EI/L2). Using the formulation presented in Section 6.2, I investigate the
value of the critical buckling force for Beck’s column and compare it to the value reported
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in the literature. To approach the conditions of a quasi-static simulation and reduce the
dynamic effects I apply a compressive follower force, which gradually increases in time,
to the free-end of the cantilever. The critical force found by our computational model
in absence of viscous drag is approximately Pcr ⇡ 20.10 (EI/L2), which is within two
percent error margin of the classical estimated value.

6.3.2 Oscillatory Beating of Fixed-Fixed Rods
In this section I present the results for the post-buckling analysis of pre-stressed

rods with fixed-fixed boundary conditions for various values of the the slack (and thus,
various values of the pre-stress as well as base curvature). Identifying and characterizing
critical points as well as the force-frequency relationship is crucial to designing accurately
controllable oscillations.

6.3.2.1 Onset of Oscillations
I study cylindrical rods that are in stress-free state when straight. When both ends

of a rod are fixed and clamped, moving one of the clamped ends of the rod toward the
other end forces the rod to bend or buckle (c.f., Figure 1(a)). This process generates
pre-stress in a rod and thus, pre-stress rates can be controlled by the end-to-end length
of the rod, Lee - an example of this is shown in Figure 1(c). Starting from a base state
completely determined by the ratio Lee/L, I then apply uniformly distributed follower
load, Fâ3 along the rod. When the magnitude of the follower load, |F | > Fcr, buckled
shapes become unstable and beating oscillations emerge. Figure 6.2 shows the magni-
tudes of the critical follower load against end-to-end distance for the same rod subjected
to two types of drag forces. Surprisingly I observe that critical follower load increases as
the amount of pre-stress in the rod increases even though decreasing Lee/L implies more
slack. The magnitude of critical follower load found to be nearly the same for both Stokes
and Morrison drags (discrepancies being < 2%).

6.3.2.2 Shapes Far From Criticality
Despite the low sensitivity of Fcr to the nature of drag law, beating configurations

as well as the steady frequency of oscillations are found to be significantly different for
Stokes and Morrison drags. This can be explained by the fact that Morrison drag dis-
sipates energy at a higher rate compared to the Stokes drag for the same frequency and
mode shapes. Figure 6.3 illustrates how the shape of the rod evolves during one complete
oscillation for both Stokes and Morrison drags. I visually observe that configurations of
the rod subjected to Stokes drag consist of various shape modes. This suggests that higher
order harmonics are stronger in this case. Whereas, for cases subjected to Morrison drag,
higher order shapes are not recognizable visually. By looking at the Fourier transfor-
mation of any quantity I can also confirm the significance of higher order harmonics in
Stokes regime compared to Morrison as is shown in Figure 6.4.
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Figure 6.4: Fourier transform (in the time domain) of the shear force at the mid-span
length of the rod shows that higher harmonics are damped in the case of the non-linear
Morrison drag (top row) more effectively than for the linear Stokes drag (bottom row).
The right column of the picture corresponds to Lee/L = 0.9 while the left column corre-
sponds to Lee/L = 0.7. The ratio of drag coefficients for both cases is 10. Intuitively, we
expect this ratio to affect the extent of dampening.
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Figure 6.5: Frequency of beating oscillations for rods having various end-to-end distances
Lee for the linear Stokes [S] drag case. The frequency is plotted as a function of the
distributed follower load. I note that the results for the Stokes drag features possible
transitions that may be related to activation of higher order mode shapes as seen from
Figure 6.3 (shown alongside).

With the computational model proposed here I next systematically investigate the
effect of pre-stress and the follower force on the of frequency beating oscillations and
emergent shapes. Figures 6.5 and 6.6 illustrate the frequency of beating oscillations for
rods under various end-to-end distances and subjected to both types of viscous drag. I
observe that frequency of oscillations under Stokes drag undergoes a sudden increase
once the magnitude of the distributed follower load reaches a second critical limit. Such
a behavior is absent under Morrison drag. Also for a region where magnitude of the
distributed follower load is below 18 N/m I observe that larger pre-stress (or smaller end-
to-end) distance results in smaller beating frequency. This pattern is also evident under
the Stokes drag but only in the region in which the magnitude of the distributed follower
load is above 18 N/m.

Examining the force dependence of the beating filaments subject to Morrison type
drag forces more closely in Figure 6.6 (a), I find the frequencies in the limit |F | � Fcr
follow w ⇠ |F |5/6. In the complementary analysis of a cantilever subject to follower
forces moving under Stokesian drag conditions the exponent was found to be 4/3 [123].
This scaling relationship was derived using a combination of dimensional analysis and a
power balance for steady stable beating to occur. Here, I use a similar analysis to obtain
the relationship between the frequency of beating and the follower force density for the
Morrison drag case.
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6.3.2.3 Stable Frequencies at Large |F | for Morrison Drag
When oscillations reach steady state, the rate at which energy is input into the

system due to the action of the nonconservative follower forces balances the rate at which
energy is dissipated by the fluid drag,

Active energy/time ⇡ Dissipation/time (6.5)

The rate at which active energy enters the system is proportional to the magnitude of the
follower force (follower force density multiplied by a characteristic length) multiplied by
a characteristic speed inherent to the oscillations. For very large F or small Lee/L, the ef-
fect of the slack and indeed of the boundary (end to end distance Lee) becomes negligible;
instead, the oscillatory wavelength and amplitude are determined by a emergent length
scale l over which compression can be accommodated. Both of these deductions are
consistent with the curves plotted in Figure 6.6. Figure 6.6(a) illustrates how the curves
for various Lee/L bunch together as |F |/Fcr � 1. Similarly from Figure 6.6(b), I see that
the frequency curve is flatter for |F | = 34 N/m than for 15 N/m. Thus, the rate at which
active energy is generated (with time scale here chosen as a period of oscillation) is

Active energy ⇠ (|F |l )(lw). (6.6)

Energy dissipated by the drag for the Morrison case is proportional to the velocity squared,
times the velocity of oscillations; energy is then dissipated in the system following

Dissipation ⇠ (Ceffl 2w2)l (lw), (6.7)

where Ceff is the effective drag coefficient. Combining the Eqs. (6.5)-(6.7) I can find the
following relationship.

w2 ⇠ |F |
Ceffl 2 (6.8)

relating the frequency w to the follower force density.
To estimate l , I examine the shapes of the buckled rod relative to the base state

noting that activity arises not from the pre-stressed values of f3 but solely from |F |. As-
suming that the shape is dominated by the follower force (with pre-stress playing a pos-
sibly subdominant part), I examine the moments acting on the rod and use dimensional
analysis to obtain,

l ⇠
✓

EI
|F |

◆ 1
3
. (6.9)
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Figure 6.6: (a) Frequency for the Morrison [M] drag plotted as a function of the force
density |F | re-plotted in logarithmic scales to illustrate two salient features - (i) as the
follower force increases to values much larger than the critical values, the effect of the
pre-stress diminishes, and (ii) the frequencies in the limit |F |� Fcr scales roughly as |F |
- note that for the case of a free cantilever subject to follower forces, I obtain using a
scaling argument w ⇠ |F | 5

6 . (b) Emergent frequency plotted as a function of the scaled
end to end distance showing non-monotonic behavior indicating competition between
geometric flexibility (the slack 1�Lee/L and the pre-stress f3 in setting the frequency w
at fixed values of |F |.

Substituting (13) in (12) yields

w ⇠ 1p
Ceff

 
|F | 5

2

EI

! 1
3

⇠ |F |
5
6 . (6.10)

Figure 6.6(a) shows that our simulations follow the scaling w ⇠ |F | 5
6 for |F |� Fcr with

the force-frequency curves converging to a universal curve. This suggests that pre-stress
(Lee) has a significant effect on response frequency close to the onset of oscillations but
not for |F |� Fcr.

6.4 Discussion and Conclusions
In this chapter I discussed the application of a computational rod model to ana-

lyze the buckling stability as well as the post-buckling oscillations of slender structures
subjected to compressive follower loads. Simulations were first benchmarked with pre-
vious findings on magnitude of the critical buckling force for Beck’s column. I focused
on slender rods that maintain a straight shape corresponding to their stress-free state (i.e.,
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having no intrinsic curvature and twist) with both ends clamped. By moving one end of
the rod toward the other end, the structure undergoes buckling and the end-to-end dis-
tance represents a measure of the amount of pre-stress in the rod. I found that beyond a
critical value of distributed and compressive follower loads the buckled shapes become
unstable and oscillatory beating emerges. The magnitude of the critical follower load in-
creases as the magnitude of the pre-stress in the structure increases. I also observed that
frequency of the oscillations as well as the configuration of the rod are significantly influ-
enced by the type of drag law used in modeling. Morrison drag induces higher dissipation
rate than Stokes drag, therefore, under identical circumstances many more harmonics are
discernible in the oscillations of a rod subjected to Stokes drag. Moreover, for the rods
subjected to Stokes drag I observed that frequency of oscillations as a function of fol-
lower load undergoes a sudden increase once the magnitude of the distributed follower
load reaches a second critical limit. Our results provide a starting point to systematically
investigate the interplay between geometry, elasticity, dissipation and activity towards de-
signing bio-inspired multi-functional, synthetic structures to move and manipulate fluid
at various length scales.
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Chapter 7

SUMMARY, CONCLUSIONS, AND FUTURE WORK

7.1 Summary and Major Conclusions
In fulfillment of the primary purpose of this dissertation which I defined as show-

ing the possibility of developing inverse methods for identification of constitutive laws
of slender structures modeled as beams or rods, this dissertation contributes inverse ap-
proaches that can use various types of measurements to infer the constitutive law of slen-
der structures. A family of inverse approaches directly based on the rod model formula-
tion is developed and analyzed for robustness of the constitutive law estimations. Next,
an inverse problem governed by the linear elastic equation is presented to reconstruct the
non-homogeneous Lamé parameter field from synthetic observations of the displacement
field under cantilever loading. Finally, the inverse problem of identifying Young’s mod-
ulus field from synthetic observations of the displacement field in a Bayesian inference
framework is developed and tested in two scenarios.

This dissertation also contributes a computational rod model that describes the
nonlinear dynamics of slender structures with user-defined nonlinear constitutive laws.
Proposed formulation is benchmarked by comparing the dynamical solution with known
equilibrium solution in case of a quasi-static (slow) loading. The model is then employed
in several case studies that explore the stability of slender structures subjected to non-
conservative follower loads. The description and the scope of major contributions of this
dissertation are summarized in the following.

• Effect of Softening Nonlinearities of Constitutive Law on Buckling

I present the analytical solution for the buckling of a continuous fixed-free rod
with cubic nonlinear constitutive law using perturbation analysis. The novel contribution
of this work is to demonstrate three distinct regimes in the post-buckling solution, namely
stable, unstable, and partially stable regimes. While the existing literature only report
either stable or unstable post-buckling regimes, by investigating the convergence of the
solutions to the perturbation problem the existence of partially stable buckling regime is
revealed.

• An Efficient and Accurate Computational Rod Model with User-Defined Constitu-
tive Law
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To implement any arbitrary user-defined constitutive law in a computational rod
model I contributed a simple and fast method. By expanding the user-input constitutive
law function in a polynomial series and using the derivative of the series in the numerical
formulation, this method avoids symbolic differentiation which is computationally unde-
sirable. The method automatically modifies the Jacobian term based on the coefficients
in the series expansion and is found to be as accurate as symbolic differentiation, yet sig-
nificantly faster for the two case studies of hardening and softening constitutive laws in
the force-extension behavior of a helical spring.

• An Inverse Approach Directly Based on Forward Rod Model for Nonlinear Consti-
tutive Laws

Several inverse algorithms of a computational inverse method are developed, and
analyzed for robustness with respect to numerical noise in the input data. The algorithms
use the dynamic deformation data to estimate the constitutive laws of slender structures
and can employ different combination of kinematic variables to estimate the restoring
forces and moments in the filament. However, in all the algorithms, it is consistently
found that the curvature and twist vector ~k is the most crucial input compared to veloc-
ities, for example. The choice of the input variables determines how many steps will be
involved in the method. Thus, the number of numerical integrations and differentiations
vary in each algorithm and directly affect the estimation of the constitutive law. In this
work I used the deformation data obtained from forward rod model simulations of planar
bending with nonlinear constitutive law. Through robustness analysis it is found that the
methods, in general, are more sensitive to the noise in curvature than the noise in velocity
and angular velocity.

• An Adjoint-Based Inverse Approach for the Lamé Parameter field in an Elastic
Model of Slender Structures

I have formulated and solved two model problems to study the invertibility of the
Lamé parameter field from synthetic observations in a deterministic framework. First, I
focused on the inversion of a smooth (sinusoidal) Lamé parameter field for different Sig-
nal to Noise Ratios. I found that the reconstructions converge to the true Lamé parameter
field as the noise in the synthetic observations decreases. The second model problem tar-
geted a discontinuous parameter field. The results for this problem show that while I was
able to reconstruct the location of the discontinuity, application of Tikhonov regulariza-
tion smoothed out the sharp edges.

• Bayesian Quantification of the Parameter Uncertainty in Linear Elastic Model

After a deterministic inverse solution is found for the linear elastic model of slen-
der structures, the question is how much confidence we can have in the inverse solution.
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To answer this question, I turned to the framework of Bayesian inference, which provides
a systematic means of quantifying uncertainty in the solution of the inverse problem.

I have formulated and solved two model problems to study the invertibility of the
Young’s modulus. First, I focused on the inversion of a smooth (sinusoidal) parameter
field. The second model problem targeted a 3-dimensional parameter field. I found that
the reconstruction of the parameter field (MAP points) were close to its true value and the
uncertainty in the reconstruction is directly determined by the availability of informative
data. For example, on the computational nodes near the free end of the cantilever under
pure shear force, where deformations are nearly zero, the posterior probability distribution
has large variances which is a measure of the uncertainty. Identifying such relationships
and patters can be used in optimal experimental design to obtain most informative data
for identification of uncertain parameters.

• Follower Forces in Pre-Stressed Clamped Filaments Mimic Oscillatory Beating of
Active Filaments

I employed the computational rod model to characterize the buckling stability as
well as the post-buckling oscillations of slender structures subjected to compressive fol-
lower loads. Previous studies have focused on the buckling dynamics of free-free, fixed-
free, and pinned-free filaments with the base state being a straight non-stressed filament
or rod. The role of pre-stress in emergent oscillations driven by active distributed follower
forces is analyzed in this dissertation. I focused on slender rods with no intrinsic curva-
ture and twist with both ends clamped. By moving one end of the rod toward the other
end, the structure undergoes buckling and the end-to-end distance represents a measure
of the amount of pre-stress in the rod. I found that beyond a critical value of distributed
and compressive follower loads the buckled shapes become unstable and oscillatory beat-
ing emerges. The magnitude of the critical follower load increases as the magnitude of
the pre-stress in the structure increases. I also observed that frequency of the oscillations
as well as the configuration of the rod are significantly influenced by the type of drag
law used in modeling. Morrison drag induces higher dissipation rate than Stokes drag,
therefore, under identical circumstances many more harmonics are discernible in the os-
cillations of a rod subjected to Stokes drag. Moreover, for the rods subjected to Stokes
drag I observed that frequency of oscillations as a function of follower load undergoes
a sudden increase once the magnitude of the distributed follower load reaches a second
critical limit.

7.2 Future Work
The analysis of oscillatory beating of slender structures provide a starting point

to systematically investigate the interplay between geometry, elasticity, dissipation and
activity towards designing bio-inspired multi-functional, synthetic structures. Target ap-
plications include to move and manipulate fluid at various length scales, e.g., nano mixers
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or swimming nano robots. Out of plane oscillations and three-dimensional rotary motion
of active filaments is also another potential extension of this work. The three-dimensional
formulation of our computational rod model is well suited to such scenarios.

To date, in all inverse models I have employed synthetic observations to study the
performance of the proposed methods, as well as to probe the limits of reconstructabil-
ity of the elasticity parameters. A natural extension of this work shall be to apply the
adjoint-based and Bayesian inversion frameworks to more realistic applications, such as
constitutive modeling of microtubules and nano-wires from their MD simulations and
data obtained from physical experiments. The potential of success with such applications
lies in extending the inverse method to three-dimensional cases, and to observation data
in dynamic equilibrium. In real applications the use of static or dynamic model is deter-
mined by the availability of the measurements. Furthermore, for nano-scale filaments, it
is important to account for the effect of thermal fluctuations in the observation data, which
on one hand corrupts the deterministic data, but on the other hand provides information
by itself on the deformability of the nano-scale filaments.

Yet another extension can be to include total variation regularization, known to
preserve sharp interfaces [50], in the adjoint-based inversion framework. Finally, it is also
important to consider nonlinearity in the constitutive laws without any a priori assumption
on its form. Hence, the inverse methods based on linear elastic model can be extended to
more general elastic models with nonlinear forms of constitutive law.

100



BIBLIOGRAPHY

[1] D. Swigon, B. D. Coleman, W. K. Olson, Modeling the lac repressor-operator as-
sembly: the influence of DNA looping on lac repressor conformation, Proceedings
of the National Academy of Sciences 103 (26) (2006) 9879–9884.

[2] T. D. Lillian, S. Goyal, J. D. Kahn, E. Meyhfer, N. Perkins, Computational analysis
of looping of a large family of highly bent dna by laci, Biophysical Journal 95 (12)
(2008) 5832 – 5842.

[3] A. Maghsoodi, A. Chatterjee, I. Andricioaei, N. C. Perkins, Dynamic Model Ex-
poses the Energetics and Dynamics of the Injection Machinery for Bacteriophage
T4, Biophysical Journal 113 (1) (2017) 195–205.

[4] A. Maghsoodi, A. Chatterjee, I. Andricioaei, N. C. Perkins, A First Model of the
Dynamics of the Bacteriophage T4 Injection Machinery, Journal of Computational
and Nonlinear Dynamics 11 (4) (2016) 041026.

[5] D. Ando, N. Korabel, K. Huang, A. Gopinathan, Cytoskeletal network morphology
regulates intracellular transport dynamics, Biophysical Journal 109 (8) (2015) 1574
– 1582.

[6] M. Kikumoto, M. Kurachi, V. Tosa, H. Tashiro, Flexural rigidity of individual mi-
crotubules measured by a buckling force with optical traps, Biophysical Journal
90 (5) (2006) 1687 – 1696.

[7] D. Sept, F. C. MacKintosh, Microtubule elasticity: Connecting all-atom simula-
tions with continuum mechanics, Phys. Rev. Lett. 104 (2010) 018101.

[8] T. Hawkins, M. Mirigian, M. S. Yasar, J. L. Ross, Mechanics of microtubules,
Journal of Biomechanics 43 (1) (2010) 23 – 30.

[9] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates,
Sunderland, 2001.

[10] A. D. Bicek, E. Tuzel, A. Demtchouk, M. Uppalapati, W. O. Hancock, D. M. Kroll,
D. J. Odde, Anterograde microtubule transport drives microtubule bending in llc-
pk1 epithelial cells, Molecular biology of the cell 20 (12) (2009) 2943–2953.

101



[11] J. C. Simo, J. E. Marsden, P. S. Krishnaprasad, The hamiltonian structure of non-
linear elasticity: The material and convective representations of solids, rods, and
plates, Archive for Rational Mechanics and Analysis 104 (2) 125–183.

[12] S. Goyal, N. C. Perkins, C. L. Lee, Nonlinear Dynamics and Loop Formation in
Kirchhoff Rods with Implications to the Mechanics of DNA and Cables, Journal
of Computational Physics 209 (1) (2005) 371–389.

[13] W. Hwang, in: S. De, W. Hwang, E. Kuhl (Eds.), Multiscale Modeling in Biome-
chanics and Mechanobiology, 2015, pp. 63–83.

[14] S. Neukirch, G. van der Heijden, Geometry and mechanics of uniform n-plies:
from engineering ropes to biological filaments, Journal of Elasticity 69 (1-3) (2002)
41–72.

[15] I. Klapper, Biological applications of the dynamics of twisted elastic rods, Journal
of Computational Physics 125 (2) (1996) 325 – 337.

[16] K. A. Hoffman, Methods for determining stability in continuum elastic-rod models
of DNA, Philosophical Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences 362 (1820) (2004) 1301–1315.

[17] S. Goyal, N. C. Perkins, J. C. Meiners, Resolving the Sequence-Dependent Stiff-
ness of DNA Using Cyclization Experiments and a Computational Rod Model,
Journal of Computational and Nonlinear Dynamics 3 (2008) 011003.

[18] A. Hilfinger, A. K. Chattopadhyay, F. Jülicher, Nonlinear dynamics of cilia and
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Appendix A

ANALYTIC SOLUTION OF THE PERTURBATION PROBLEM

In this appendix we present the converged solution to the perturbation problem
discussed in Chapter 2. External load, P is solved analytically to 14-th order accuracy,
O(b14), using a Mathematica manuscript given below. In the following, symbol b is
replaced with b to make the reading of the equation more convenient.

P(b) =p14b12
⇣

94976832E1I6
1 L12 +278558592p2E1I5

1 E2I2L10 �40448240p4E1I4
1 E2I2
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+7116301056p6E1I3
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����� ��� ��� �������
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������� Clear["Global`*"]
ClearAll[f]

������� Remove["Global`*"]

������� (*Quit[]*)

���� ���� ���� �� ��� ����� �������� ������

���� ������ ���� �� ��� ������������ ��� �EI1 represents E1 I1�
������� LHS1 = EI1 �w(4)[s] �1 - w'[s]^2�^(-1) + 4 w'[s] w(2)[s] w(3)[s] �1 - w'[s]^2�^�-2� +

w(2)[s]^3 �1 + 3 w'[s]^2� �1 - w'[s]^2�^�-3��

���� ����� ���� �� ��� ������������ ��� �EI2 represents E2 I2�
������� LHS2 =

EI2 �3 w(4)[s] w(2)[s]^2 �1 - w'[s]^2�^�-2� + 6 w(3)[s]^2 w(2)[s] �1 - w'[s]^2�^�-2� +

24 w(3)[s] w(2)[s]^3 w'[s] �1 - w'[s]^2�^�-3� +

3 w(2)[s]^5 �1 + 5 w'[s]^2� �1 - w'[s]^2�^(-4)�

���� ��� �������� ���� ���

������� LHS3 = P w(2)[s] �1 - w'[s]^2�^�-3 � 2�

���� ���� ���� �� ��� ������

������� LHS = LHS1 + LHS2 + LHS3

����� ������ ��������� �� ��� ������
�������� LH = Series[LHS, {w′[s], 0, 13}]

�������� LHS = Normal[LH]
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��� �����

�������� w[s_] = Sum[wi[s] b^i, {i, 1, 13}]

��� �����

�������� P = pcr + Sum[pi b^i, {i, 1, 13}]
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�������� LHS

������������ �� ������� ������ �� �� �� �� ����� �����

����������� �� b�

�������� coef1 = Coefficient[LHS, b, 1]

����������� �� b�

�������� coef2 = Coefficient[LHS, b, 2]

����������� �� b�

�������� coef3 = Coefficient[LHS, b, 3]

����������� �� b�

�������� coef4 = Coefficient[LHS, b, 4]

����������� �� b�

�������� coef5 = Coefficient[LHS, b, 5]

����������� �� b�

�������� coef6 = Coefficient[LHS, b, 6]

����������� �� b�

�������� coef7 = Coefficient[LHS, b, 7]
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����������� �� b�

�������� coef8 = Coefficient[LHS, b, 8]

����������� �� b�

�������� coef9 = Coefficient[LHS, b, 9]

����������� �� b��
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�������� coef13 = Coefficient[LHS, b, 13]
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�������� mb = EI1 w′′[0] + EI2 w′′[0]^3 + P b
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�������� mbc1 = Coefficient[mb, b, 1]

�������� mbc2 = Coefficient[mb, b, 2]

�������� mbc3 = Coefficient[mb, b, 3]

�������� mbc4 = Coefficient[mb, b, 4]

�������� mbc5 = Coefficient[mb, b, 5]

�������� mbc6 = Coefficient[mb, b, 6]

�������� mbc7 = Coefficient[mb, b, 7]

�������� mbc8 = Coefficient[mb, b, 8]

�������� mbc9 = Coefficient[mb, b, 9]
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�������� mbc10 = Coefficient[mb, b, 10]

�������� mbc11 = Coefficient[mb, b, 11]

�������� mbc12 = Coefficient[mb, b, 12]

�������� mbc13 = Coefficient[mb, b, 13]

������� ��� ������������ �� ��� ����� ��� ��� �����

������� ��� ��� ����������� �� b� � ��� ������

���� ���� ���� �� ��� ���
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������� ��������
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w� � ��� ������
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P�� - ��� (����)
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�������� pcr = Simplify[pcr]

������� ��� ��� ����������� �� b�
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�������� w2[s_] = Simplify[DSolveValue[coef2 ⩵ 0, w2[s], s]]
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���������� �������� ����������

�������� sol2 = Solve[{w2[0] ⩵ 0, w2′[0] ⩵ 0, w2′′[L] ⩵ 0, w2[L] ⩵ 0, mbc2 ⩵ 0 },
{p1, C[1], C[2], C[3], C[4]}]

w� - ��� (����)
�������� {temp} = w2[s] /. sol2

�������� w2[s_] = FullSimplify[temp]

P(�) - ��� (����)
��������

{p1 } = p1 /. sol2

�������� p1 = Simplify[p1]
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���� ���� ���� �� ��� ���
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�������� w3[s_] = Simplify[DSolveValue[coef3 ⩵ 0, w3[s], s]]
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�������� sol3 = Solve[{w3[0] ⩵ 0, w3′[0] ⩵ 0, w3′′[L] ⩵ 0, w3[L] ⩵ 0, mbc3 ⩵ 0 },
{p2, C[1], C[2], C[3], C[4]}]

w� - ��� (����)
�������� {temp} = w3[s] /. sol3

�������� w3[s_] = FullSimplify[temp]

�������� FullSimplify�Cos�Pi s � �2 L�� - Cos�3 Pi s � �2 L���

P(�) - ��� (����)
�������� {p2 } = p2 /. sol3

�������� p2 = Simplify[p2]
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������� ��� ��� ����������� �� b�

���� ���� ���� �� ��� ���

�������� coef4 = FullSimplify[coef4]

������� ��������

�������� w4[s_] = Simplify[DSolveValue[coef4 ⩵ 0, w4[s], s]]

���������� �������� ����������

�������� sol4 = Solve[{w4[0] ⩵ 0, w4′[0] ⩵ 0, w4′′[L] ⩵ 0, w4[L] ⩵ 0, mbc4 ⩵ 0 },
{p3, C[1], C[2], C[3], C[4]}]

w� � ��� ������

�������� {temp} = w4[s] /. sol4

�������� w4[s_] = FullSimplify[temp]

P(�) � ��� ������

�������� {p3 } = p3 /. sol4

�������� p3 = Simplify[p3]

������� ��� ��� ����������� �� b�

���� ���� ���� �� ��� ���

�������� coef5 = FullSimplify[coef5]

������� ��������

�������� w5[s_] = Simplify[DSolveValue[coef5 ⩵ 0, w5[s], s]]

���������� �������� ����������

�������� sol5 = Solve[{w5[0] ⩵ 0, w5′[0] ⩵ 0, w5′′[L] ⩵ 0, w5[L] ⩵ 0, mbc5 ⩵ 0 },
{p4, C[1], C[2], C[3], C[4]}]

w� � ��� ������

�������� {temp} = w5[s] /. sol5

�������� w5[s_] = FullSimplify[temp]
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P(�) � ��� ������

�������� {p4 } = p4 /. sol5

�������� p4 = Simplify[p4]

������� ��� ��� ����������� b�

���� ���� ���� �� ��� ���

�������� coef6 = FullSimplify[coef6]

������� ��������

�������� w6[s_] = Simplify[DSolveValue[coef6 ⩵ 0, w6[s], s]]

���������� �������� ����������

�������� sol6 = Solve[{w6[0] ⩵ 0, w6′[0] ⩵ 0, w6′′[L] ⩵ 0, w6[L] ⩵ 0, mbc6 ⩵ 0 },
{p5, C[1], C[2], C[3], C[4]}]

w�

�������� {temp} = w6[s] /. sol6

�������� w6[s_] = FullSimplify[temp]

P(�)

�������� {p5} = p5 /. sol6

�������� p5 = Simplify[p5]

������� ��� ��� ����������� b�

���� ���� ���� �� ��� ���

�������� coef7 = FullSimplify[coef7]

������� ��������

�������� w7[s_] = Simplify[DSolveValue[coef7 ⩵ 0, w7[s], s]]

���������� ��� �������� ���������

��������� sol7 = Solve[{w7[0] ⩵ 0, w7′[0] ⩵ 0, w7′′[L] ⩵ 0, w7[L] ⩵ 0, mbc7 ⩵ 0 },
{p6, C[1], C[2], C[3], C[4]}]
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��������� w7[s_] = FullSimplify[temp]

P(�)

��������� {p6} = p6 /. sol7

��������� p6 = Simplify[p6]
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��������� sol8 = Solve[{w8[0] ⩵ 0, w8′[0] ⩵ 0, w8′′[L] ⩵ 0, w8[L] ⩵ 0, mbc8 ⩵ 0 },
{p7, C[1], C[2], C[3], C[4]}]

w�

��������� {temp} = w8[s] /. sol8

��������� w8[s_] = FullSimplify[temp]

P(�)

��������� {p7} = p7 /. sol8

��������� p7 = Simplify[p7]

������� ��� ��� ����������� b�

������� ��������

��������� w9[s_] = Simplify[DSolveValue[coef9 ⩵ 0, w9[s], s]]

���������� ��� �������� ���������

��������� sol9 = Solve[{w9[0] ⩵ 0, w9′[0] ⩵ 0, w9′′[L] ⩵ 0, w9[L] ⩵ 0, mbc9 ⩵ 0 },
{p8, C[1], C[2], C[3], C[4]}]
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w�

��������� {temp} = w9[s] /. sol9

��������� w9[s_] = FullSimplify[temp]

P(�)

��������� {p8} = p8 /. sol9

��������� p8 = Simplify[p8]

������� ��� ��� ����������� b��

������� ��������

��������� w10[s_] = Simplify[DSolveValue[coef10 ⩵ 0, w10[s], s]]

���������� ��� �������� ���������

��������� sol10 = Solve[{w10[0] ⩵ 0, w10′[0] ⩵ 0, w10′′[L] ⩵ 0, w10[L] ⩵ 0, mbc10 ⩵ 0 },
{p9, C[1], C[2], C[3], C[4]}]

w��

��������� {temp} = w10[s] /. sol10

��������� w10[s_] = FullSimplify[temp]

P(�)

��������� {p9} = p9 /. sol10

��������� p9 = Simplify[p9]

������� ��� ��� ����������� b��

������� ��������

��������� w11[s_] = Simplify[DSolveValue[coef11 ⩵ 0, w11[s], s]]

���������� ��� �������� ���������

��������� sol11 = Solve[{w11[0] ⩵ 0, w11′[0] ⩵ 0, w11′′[L] ⩵ 0, w11[L] ⩵ 0, mbc11 ⩵ 0 },
{p10, C[1], C[2], C[3], C[4]}]
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w��

��������� {temp} = w11[s] /. sol11

��������� w11[s_] = FullSimplify[temp]

P(��)

��������� {p10} = p10 /. sol11

��������� p10 = Simplify[p10]

������� ��� ��� ����������� b��

������� ��������

��������� w12[s_] = Simplify[DSolveValue[coef12 ⩵ 0, w12[s], s]]

���������� ��� �������� ���������

��������� sol12 = Solve[{w12[0] ⩵ 0, w12′[0] ⩵ 0, w12′′[L] ⩵ 0, w12[L] ⩵ 0, mbc12 ⩵ 0 },
{p11, C[1], C[2], C[3], C[4]}]

w��

��������� {temp} = w12[s] /. sol12

��������� w12[s_] = FullSimplify[temp]

P(��)

��������� {p11} = p11 /. sol12

��������� p11 = Simplify[p11]

������� ��� ��� ����������� b��

������� ��������

��������� w13[s_] = Simplify[DSolveValue[coef13 ⩵ 0, w13[s], s]]

���������� ��� �������� ���������

��������� sol13 = Solve[{w13[0] ⩵ 0, w13′[0] ⩵ 0, w13′′[L] ⩵ 0, w13[L] ⩵ 0, mbc13 ⩵ 0 },
{p12, C[1], C[2], C[3], C[4]}]
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w��

��������� {temp} = w13[s] /. sol13

��������� w13[s_] = FullSimplify[temp]

P(��)

��������� {p12} = p12 /. sol13

��������� p12 = Simplify[p12]

�������������� ���� � �� �� ����� ����� �� �
��������� load[b_] = pcr + Sum[pi b^i, {i, 1, 12}]

�������������� ��� ����� �� �� ����� ����� �� �
��������� shape[b_] = Sum[wi[s] b^i, {i, 1, 13}]

������� ���������
��������� curv[b_] = D[shape[b], {s, 2}]
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