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Abstract 

Across four experiments, we look at whether adults and 
children can represent the amount of information needed to 
distinguish different populations in the context of an intuitive 
statistical reasoning task requiring metacognitive monitoring 
and control. Consistent with a ground truth model of 
information gain, adults (N=60) modulated their information 
gathering with respect to the difficulty of the discrimination 
problem. Adults also adjusted their confidence threshold 
depending on task difficulty, allowing for more uncertain 
judgments when the discrimination was more difficult or 
gathering data was more costly (Experiments 1 and 2). In a 
simplified version of the task, children (N = 42, M = 7.3 
years, range: 5.0-9.0) were also able to distinguish easy and 
difficult discrimination problems and judge that they needed 
more information to solve harder problems (Experiments 3 
and 4). 

Keywords: metacognition; development; information 
gathering; statistical reasoning; children, cognitive 
development 

Introduction 
Much of the power of human learning stems from our 

metacognitive abilities: we recognize when problems are 
difficult and can identify the contexts in which we need 
more information to answer our questions.  There are many 
lenses through which to view metacognitive tasks, but one 
classic model describes a cognitive structure consisting of 
two separate processes: monitoring and control (Nelson, 
1990). Monitoring consists of the ability to judge our 
competence in a certain task, while control enables a person 
to modify their behavior in order to optimize their 
performance.  

There is a large literature on the developmental and neural 
underpinnings of metacognition (e.g., Fernandez-Duque, 
Baird, & Posner, 2000), much of it looking at the alignment 
between people’s assessment of their abilities and their 
performance on tasks involving recall memory and retrieval.   
However, because this work is largely qualitative, it is 
difficult to assess the extent to which people’s information 
seeking is precisely calibrated to their uncertainty. 

However, in recent years, many researchers interested in 
uncertainty and information gain have explored the degree 
to which both adults (e.g., Gureckis & Markant, 2012; 
Loewenstein, 1994) and children (e.g., Kidd, Piantadosi, & 
Aslin, 2012; Ruggieri & Lombrozo, 2015) engage in 
efficient information search.  Such work suggests that even 
children search efficiently, maximizing opportunities for 
information gain (e.g., Kidd, et al., 2012).  Critically 
however, learners might explore rationally in the face of 
uncertainty without any metacognitive representation of the 

relative difficulty of different tasks or metacognitive control 
over their information search. 

In the current study we look at whether adults and 
children explicitly represent the relative difficulty of 
statistical reasoning tasks, and can use this judgment to 
modulate their information seeking. Statistical reasoning 
offers a useful domain in which to test monitoring and 
control of information search because we can precisely 
quantify the discriminability of different contrasts and ask 
how sensitive learners are to differences in populations, and 
how learners might modulate their information sampling 
based on the difficulty of the problem.  

Assessing the confidence with which we can determine a 
population from a sample is commonplace in scientific 
hypothesis testing, however, in the current study we aim to 
investigate if non-expert adults and children intuitively use 
this type of reasoning to guide information seeking. 

Some recent work has suggested that when children are 
asked to distinguish the number of marbles in a box by 
shaking and listening, children as young as four modify 
their exploration in a graded way, tracking the 
discriminability of the stimulus (e.g., shaking longer when 
trying to discriminate nine marbles from eight than nine 
from two; Siegel, Magid, Tenenbaum & Schulz, 2014). This 
suggests that children modify their information search in 
quantitatively precise ways with respect to psychophysical 
stimuli.  However, this task leaves open the question of 
whether children have a metacognitive representation of the 
differences in task difficulty.  Here we ask this question in a 
more abstract domain, but one that preserves our ability to 
model graded differences in task difficulty in a 
quantitatively precise way.  

Logic of the Task 
In order to look at if and how adults and children 

represent the difficulty of statistical discrimination problems 
and use this judgment to modulate their information 
seeking, we use a task in which participants observe two 
boxes of balls (e.g., one filled with 90% red balls and 10% 
white balls, and the other with 90% white and 10% red, 
labeled hereafter as 90/10).  Participants are told they will 
get to see a sample of balls drawn from one of the two 
boxes and are asked to estimate how many balls they would 
need to see to know from which of the two populations the 
sample was drawn. The difficulty of the discrimination 
problem depends on the overlap between the populations.  
Distinguishing 90/10 from 10/90 is relatively easy and 
should require only a small sample of balls; distinguishing 
60/40 from 40/60 would be much harder and require a larger 
sample. Importantly, the participant only gets to select the 
size of the sample; they never see the specific balls that 
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make up the sample. In this way, the decision about how 
many balls to sample can only be based on the difficulty of 
the discrimination problem rather than the informativeness 
of the sample, or their increased certainty about the correct 
answer.  Thus the task requires metacognitive monitoring 
(to know whether the task will be relatively easy or 
difficult) and control (to determine the appropriate sample 
size). 

Computational Model 
Because the question we are asking is quantitative in 

nature, we can formalize the structure of this sampling task 
using a computational model, and consider human behavior 
with respect to a model of information gain based on 
sampling in this scenario. Although it is not a cognitive 
model, it allows us to characterize people’s tolerance for 
uncertainty as a function of the difficulty of each 
discrimination problem. 

The two boxes that make up each discrimination task are 
randomly shuffled out of sight of the participant, so the 
model assumes a uniform prior between them. The 
participant does not have access to the exact content of the 
sample because it is placed into an opaque container, so the 
model sums across all possible samples that could be drawn 
from each box (e.g., a sample of two balls could contain two 
red balls, two white balls, or one of each), weighted by the 
probability of those samples. After calculating the 
probability that a sample was drawn from each box, the 
larger of the two probabilities is selected because after a 
particular draw is revealed to a participant, we assume that 
they will guess the sample was drawn from the box that has 
the same majority color as the sample that they see. Using 
this strategy, their probability of being correct is equal to the 
probability that that specific sample was drawn from the 
chosen box.  

These probabilities are then combined into a weighted 
sum across samples, formalized as 

 

 (1),  
 
which can be interpreted as the confidence with which one 
could answer what box the samples were being pulled from 
based only on simulating the data that has been drawn.  

As the discrimination difficulty between boxes increases, 
the informativeness of each sample decreases, leading to 
different curves for each proportion, as seen in Figure 1. 
One key question of this study is how people might adjust 
their confidence thresholds as both the difficulty of the 
discrimination problem and the cost of obtaining new 
information changes.  One hypothesis is that people may 
have a given threshold of certainty that they want to reach 
before they make a guess, and that that threshold stays 
constant.  For instance, someone may want to have a 90% 
chance of being correct about whether they are picking from 
one box or the other before making a guess, regardless of 
whether the problem is easy or hard. 

 

Figure 1. Formalization of the relationship between 
number of samples drawn and confidence in correctly 
guessing the box that it was drawn from. Dashed line 
represents a constant confidence threshold of 90%. 

  
However, at high confidence thresholds, very large 

samples would be necessary to solve hard discrimination 
problems.  Insofar as sampling evidence is costly, people 
might instead adjust their confidence threshold downward 
as the difficulty of the problems increases, becoming more 
willing to accept higher levels of uncertainty in more 
difficult situations.  We tested participants in two 
conditions: one in which additional samples from the 
population could be taken at no cost, and one in which 
additional information came at a cost.   

 
Experiment I 

Participants & Method 
Thirty adults were recruited and tested on Amazon 

Mechanical Turk.  Four additional participants were 
excluded for failing to correctly answer check questions 
assessing attention and task understanding.   

Participants were first shown a short video walking them 
through the setup of the task, in which two boxes with 
reversed proportions were shuffled behind a barrier so that 
participants did not know what box the samples would be 
drawn from.  They then saw an animation of a hand picking 
out balls from behind one of the barriers and placing them 
into an opaque container. Following this demonstration, the 
contents of the container were revealed, and participants 
were asked to judge what box the sample had been drawn 
from. The training trial was done with a box with a ratio of 
72/28 colored balls, and was designed to be an easy 
discrimination so that failure to make the discrimination 
could be used as an exclusion criterion.  

Participants were then shown a sample of four characters 
and their boxes (Figure 2) to give them a sense of the space 
of possible contrasts in proportions. They were then told 
that for the rest of the games, it would be up to them to 
decide how many samples they wanted to draw in each set. 
Ten characters were then presented one at a time along with 
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their colored box and a white box with the reverse 
proportion, along with a question asking “How many balls 
do you think I need to put in the bowl for you to know 
whether the balls came from my box or [the current 
character]’s box?” Participants simply had to type in the 
number of samples that they thought they would need to 
discriminate each pair, so it was no more costly to sample 
90 balls than 20 balls. Thus, we expected that participants’ 
responses would largely reflect the difficulty of the 
discrimination problem, such that they would sample more 
balls as the problems became harder. 

 

 
Figure 2. Characters and boxes of differing discrimination 
difficulty used in adult behavioral experiments 1 & 2. 

Results 
As clear in Figure 3, adults selected larger samples for 

more difficult discrimination problems (β= -0.36, SE = 0.06, 
t =   -6.58, p < 0.0001, linear model). Although in principle, 
participants could have chosen a very large sample for all 
the discrimination problems, especially in this context 
where there was no explicit cost to sampling, the adults 
instead selected samples in a graded way, preferring more 
information for harder problems. Despite the fact that 
people chose larger samples for harder discrimination 
problems, they also accepted a lower certainty threshold for 
harder problems than easier problems rather than choosing 
the number of balls required to hold their threshold constant. 

These results suggest that lay adults are “intuitive 
statisticians.” They can use the difficulty of a discrimination 
problem to decide how much data they need to distinguish 
populations from samples, and they can do so without ever 
seeing the specific samples or gaining the specific 
information (the content of the sample) that would let them 
solve the discrimination problem.  Intriguingly, although 
Experiment 1 imposed no costs to participants for sampling 
more data, people responded as if additional sampling were 
indeed costly, adjusting their confidence threshold 
downward.  This is not unreasonable, given that sampling is 
typically costly in the real world.  In Experiment 2, we 
explicitly add a cost to each additional sample to see if 
people continue to ask for more information for more 
difficult problems while also tolerating more uncertainty for 
more difficult discrimination problems. 

 
Figure 3. Adults request significantly fewer samples as 

discrimination difficulty decreases. Blue dashed line 
represents the number of samples needed to maintain a 

constant 90% confidence threshold.  
 

Experiment 2 
Participants & Method 

A new sample of thirty adults were recruited and tested on 
Amazon Mechanical Turk. Two additional participants were 
excluded for failure to correctly answer check questions 
assessing attention and task understanding.   

Experiment 2 was identical to Experiment 1 except that 
instead of being able to enter the total number of samples 
participants wanted for each proportion, they were asked 
after each individual sample if they would like to draw 
another ball or if they thought they had enough information 
to know which box was being sampled from. 

Results 
As in Experiment 1, adults selected larger samples for 

more difficult discrimination problems (β= -0.15, SE = 0.02, 
t = -6.6, p < 0.0001, linear model), Figure 4. In comparison 
to Experiment 1 however, the adults were even more 
conservative about their sampling: the average sample 
selected was smaller at every discrimination contrast 

When a cost of sampling is added, this encourages 
participants to be more conservative in their sampling, and 
as it compresses the number of samples participants chose, 
it also compresses the range of certainty values.  

When the model is used to transform the number of balls 
that the human participants chose to draw in each proportion 
to a confidence measure, it becomes apparent that 
participants are not relying on a single confidence threshold 
to make their judgments, but are instead modulating their 
confidence based on the difficulty of the task (Figure 5). 
Their tolerance for uncertainty increased with the difficulty 
of the discrimination problem regardless of the inclusion of 
an explicit cost of sampling.   
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Figure 4. Adults select larger samples for more difficult 
discrimination problems even when required to pay a cost 

for each sample. Blue dashed line represents the number of 
samples needed to maintain a constant 90% confidence 

threshold. 
 

Figure 5. Adults in the cost (red) and no-cost (blue) 
conditions both show varying certainty thresholds across 
difficulty of discrimination. Dashed black line represents 

constant certainty threshold of 90%. 
 

Experiment 3 
In Experiment 3, we ask whether even young children 

monitor the relative difficulty of discrimination tasks and 
know to ask for more information for more difficult 
problems. The games that children played were similar to 
those used in the adult task, but much simpler.  We asked 
children to make a qualitative distinction between easy tasks 
and hard tasks and asked whether children knew to ask for 
more information for the hard tasks.  To engage the 
children, the tasks were embedded in a social context in 
which the children’s job was to help four different puppets 
distinguish their boxes of toys from the experimenter’s 
boxes so each box could be returned to its rightful owner.  
The boxes used for the children had 30 balls visible rather 
than the 100 used in the adult online game. Consistent with 
comparable work on children’s understanding of uncertainty 
monitoring and information search (Nelson, et al., 2014; 
Ruggieri, et al., 2015), we tested a relatively wide age-
range: five to nine-year-olds.  

Participants 
Children (N=25,  M=6.9 years, range: 5.1-8.9, 48% girls) 

were recruited from an urban children’s museum.  For this 
and the following experiment, while most of the children 
were white and middle class, a range of ethnicities and 
socioeconomic backgrounds reflecting the diversity of the 
local population (47% European American, 24% African 
American, 9% Asian, 17% Latino, 4% two or more races) 
and the museum population (29% of museum attendees 
receive free or discounted admission) were represented 
throughout. 

Training 

 
Figure 6. Task structure for behavioral experiments with 

children (Experiments 3 and 4). 
 

Children were tested individually in a private room at a 
children’s museum. During the training, the experimenter 
introduced the child to a puppet and two 12.5cm x 12.5cm 
boxes. Both had a transparent face, with the red box 
showing 20 red balls and 10 white balls and the white box 
showing 10 white balls and 20 red balls.  

The experimenter said ‘I’m going to play a trick on Sam 
and mix up these boxes behind this wall so he doesn’t know 
which side his box is on.”  The experimenter placed the 
boxes behind a barrier made of two 35cm x 25cm cardboard 
screens and shuffled them from side to side. The two 
barriers were then separated with one box hidden behind 
each so that the child could tell that each box was behind a 
barrier but could not tell which box was where. Then the 
experimenter said “Here’s how you can figure out which 
box is Sam’s: I’m going to open up one of these boxes and 
take balls out one at a time and put them into this tube.”  
She introduced a 3cm diameter, 30cm tall tube that was 
opaque on the side facing the child and clear on the side 
facing the experimenter, and began moving balls one at a 
time from the box to the tube without revealing the color of 
each ball to the child until the tube was filled to the top. 
Then the experimenter turned the tube of balls around so 
that the child could see the contents.  She asked the child 
“Do you think I took these balls from Sam’s box, or from 
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my box?” All children successfully identified the correct 
box.  Then the experimenter brought out a second, smaller 
tube (3cm diameter x 10cm height) and asked “Suppose we 
had used this smaller tube for that same game. Would it 
have been easier or harder to guess which box the balls 
came from?” All children said that the smaller tube would 
have made the task more difficult. 

Test 
Following the training task, the puppet and the boxes 

from the training trial were moved out of sight, and children 
were shown two additional puppets, one with a 90/10:10/90 
set of boxes, and one with a 60/40:40/60 set. The 
experimenter placed the puppets and their set of boxes one 
at a time onto the table as she said “This is [name]. He also 
brought a box of balls to the museum. Just like I had a white 
box with the same colors inside as Sam’s box, I have a 
white box with the same colors as [name]’s box inside, but 
my box always has more white balls.” Children were then 
told “Some of my friends’ boxes are easier to tell apart from 
my box, and some are harder. Which of my friends’ boxes 
do you think is easier to tell apart from my box?” to draw 
their focus to the contrasting proportions inside the 
character’s boxes. 

Children were then introduced to one large tube that could 
hold approximately 20 balls, and one small tube that could 
hold about 5 balls inside. The experimenter said “See this 
big tube? This tube can hold a lot of balls inside, so if it’s 
hard to tell my friend’s box apart from my box, it might be 
good to use the big tube. If it’s easy to tell apart my box 
from my friend’s box, you might only need to look at a 
couple of balls and you could use the little tube.” Children 
were then asked, ”Can you help me decide which tube to 
use for which friend’s game?” and handed the tubes to place 
in front of the boxes. This test trial was then repeated with 
two different puppets who also had 90/10 and 60/40 box 
sets in different colors. 

 
Results 
As predicted, more children selected the large tube for the 
puppet with the difficult discrimination (60/40) and the 
small tube for the puppet with the easier discrimination 
(90/10) across both test trials (Wilcoxon signed-rank, Z = 
3.41, p < 0.001). There was no effect of age on children’s 
accuracy (t = 1.03, p = 0.313), although in this sample 
children did not begin to succeed until nearing age six.  

These results suggest that children distinguish the relative 
difficulty of these statistical discrimination tasks and 
recognize that the more overlap there is between the 
populations, the larger the sample they will need to 
distinguish them.  However, the task instructions in 
Experiment 3 leave open some doubt about whether 
children succeeded at both metacognitive monitoring and 
control or whether they succeeded only at the former.   
Children may have successfully identified which 
discrimination was more difficult but then rather than 
recognizing that they needed more information to make the  

Figure 7. Children select the larger tube to provide more 
information for the more difficult comparison. 

 
harder discrimination, they may have simply followed the 
instructions to assign the larger tube to the more difficult 
problem. In order to look at whether children genuinely 
understand that the more difficult tasks requires more 
information, we ran an additional experiment in which we 
did not explicitly make the link between the difficulty of 
discrimination and the amount of information they needed 
to solve the problem.  This allowed us to assess whether 
children could make this inference themselves.  

 
Experiment 4 

Participants & Method 
Children (N = 18,  M = 7.6 years, range: 6.0 – 9.0, 50% 

girls) were recruited from an urban children’s museum. 
Although there was no effect of age in Experiment 3, the 
few five-year-olds tested performed at chance, thus in 
Experiment 4, we restricted the sample to six to nine-year-
olds.  

The materials used in Experiment 4 were identical to 
Experiment 3, as were the explanation of the game, the 
training trial, and the introduction of the two 90/10 and 
60/40 puppets for the test trial. When introducing the large 
and small tubes, the experimenter said “I have two tubes, 
one is big and can hold a lot of balls inside which would 
give us a lot of information about which box I picked the 
balls from, and one is small and can only hold a couple of 
balls inside, which would give us just a little bit of 
information.” The connection between discrimination 
difficulty and information was not mentioned explicitly.  
 
Results 

As in Experiment 3, more children selected the large tube 
for the puppet with the more difficult discrimination and the 
smaller tube for the puppet with the easier discrimination 
across both test trials (Wilcoxon signed-rank, Z = 2.33, p < 
0.05).  Again, there was no effect of age on children’s 
performance (t = 1.117, p = 0.281). In this study children 
could not succeed by simplifying identifying which task was 
harder and which was easier on each trial; children 
additionally had to recognize that they needed to collect 
more samples on the harder problem than the easy one.  
Children’s success on this task suggests that they can both 
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monitor the difficulty of these discrimination problems and 
regulate their choices to maximize information gain.  

Figure 8. Children choose to gather more information for 
the harder discrimination even when this connection was not 
explicitly discussed. 

Discussion 
Across four experiments, we showed that both naïve 

adults and children represent the relative difficulty of 
discriminating populations and recognize that larger 
samples are required to discriminate populations with 
greater overlap.  Consistent with a ground truth 
computational model, adults were sensitive to the relative 
difficulty of discrimination tasks, showing a graded increase 
in the amount of information they requested as problems 
became progressively more difficult.  Adults were also 
sensitive to the cost of sampling information, both in 
contexts in which those costs were made explicit and those 
in which they were not.  Thus they adjusted their confidence 
threshold downward, tolerating more uncertainty as 
discrimination problems became more difficult.  Our results 
also suggest that children as young as six distinguish easy 
and difficult discrimination problems and know that they 
need larger samples to succeed in more difficult 
discriminations.   

Although considerable work suggests that even infants 
represent the relationship between samples and populations 
(Xu & Garcia, 2008; Xu & Denison, 2009; Gweon, 
Tenenbaum, & Schulz, 2010), and in this sense are 
“intuitive statisticians,” to our knowledge this is the first 
study to ask whether children represent these relationships 
metacognitively, distinguishing the relative amount of 
evidence required to distinguish easier and harder 
discrimination problems in the absence of any specific 
information about the sample being drawn.  In future work, 
we might ask whether children can make not just qualitative 
distinctions about the information required to distinguish 
populations but, like adults, graded inferences about the 
number of samples they would need as discrimination 
problems become more difficult.   

However, the current work suggests that even children’s 
intuitive statistics extends beyond the ability to recognize 

probabilistic relationships between samples and populations.  
Children and lay adults intuitively recognize something 
comparable to the kind of inference we make in science – 
that the more overlap there is between populations, the more 
statistical power it takes to distinguish them. These results 
also suggest that even young children engage in 
metacognitive monitoring of the relative difficulty of 
discrimination problems and adjust their pursuit of 
information in response to this difficulty, suggesting that 
young children understand something about how to allocate 
resources to affect their knowledge state and allow for more 
effective learning.  
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