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A STUDY OF FACTORS THAT AFFECT THE PRECISION 
OF COMPARTMENTAL MODEL PARAMETER ESTIMATION 

USING DYNAMIC POSITRON EMISSION TOMOGRAPHY 

B. M. MAZOYER, Jt. H. HUESMAN, T. F. BUDINGER, and B. L. KNITTEL 

Abstract 

Donner Laboratory and Lawrence Berkeley Laboratory, 
University of California, Berkeley, CA 94720 

LBL- 19614 

Submitted for publication 

A method for comparison and optimization of experimental designs (rate of injec­
tion and rate of tomographic data collection) of emission tomography studies is 
proposed. The sensitivity matrix of the study model and an estimate of the sta­
tistical uncertainty of the tomographic data are used to compute the covariance 
matrix of the parameters. The determinant of this. covariance matrix (proportional 
to the total volume of uncertainty of the model parameters) serves as a criterion to 
be minimized. The method is applied to brain glucose metabolism studies using dy­
namic positron emission tomography, and a comparison of various current protocols 
is made with simulated data. The results show that higher rates of injection and 
higher rates of data collection at early times lead to smaller statistical uncertainties 
of the parameter estimates. Sources of biases in these estimates are also investi­
gated; this study shows that the model must account for the integration process 
inherent to the tomographic data collection, as well as include the vascular fraction 
and the time difference between the arrival of the tracer at the blood sampling site 
and at the tomographic region. 
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Introduction 

This paper presents a method for evaluation of input functions (rate of injection) and 
of temporal sampling strategies (rate of tomographic data collection) for emission 
tomography. This is the first attempt, to our knowledge, to calculate a quality 
factor for a given strategy and to optimize the experimental design of emission 
tomography studies. 

The determination of physiological properties (such as tissue blood flow, metabolic 
rates, receptor activity, subs~rate turnover or clearance) relies on accurate measure­
ments of the response of a tissue or organ system to an input. The input might 
be an injected radioactive tracer of biological activity in nuclear medicine imaging 
procedures, or a pulse sequence in nuclear magnetic resonance studies. Over the 
past years the major focus of research in physiologic studies employing tracers has 
been the accurate measurement of the response of the biological system and the 
related technological developments of emission tomography. In addition, attention 
has been directed toward computer implementation of mathematical methods of 
kinetic modeling for extracting the desired physiological parameters from tomo­
graphically derived data. Recently, these efforts have uncovered the importance of 
accurate characterization of the input function and limitations imposed by statis­
tical uncertainty of the data on the type and number of parameters which can be 
extracted from an observation (1). 

The method presented here uses the estimate of the statistical uncertainty of ob­
served data (represented by the data covariance matrix), together with the expected 
variation of observations predicted by the kinetic model due to small changes in the 
model parameter values (represented by a sensitivity matrix) (2). For a given model 
the sensitivity matrix, as well as the data covariance matrix, will depend on the 
shape of the input function and the frequency of observation. For example a flat in­
put function or a low sampling rate will lead to observed data which are insensitive 
to rapid physiological processes. The sensitivity matrix and the data covariance 
matrix are used to generate the parameter covariance matrix. It is the determinant 
of this parameter covariance matrix which we use to measure the optimality of the 
experimental design. Since this determinant is proportional to the volume of the 
n-dimensional parameter estimate confidence region, the smaller the determinant 
the better the input and sampling strategies. We will refer to this confidence region 
as the uncertainty elip.soid. 

The method we present is of general applicability for any model in computed 
tomography studies, as the form and values of the sensitivity matrix depend on the 
definition of the model, and the data covariance matrix is defined by the actual 
data uncertainties which can be estimated by the data acquisition technique (3). In 
this paper we compare a range of sampling and injection protocols in contemporary 
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use in positron emission tomography (PET) experiments by calculating their rela­
tive covariance matrix determinant values. Also examined are effects of neglecting 
parameters which are necessary to accurately describe the data. 

METHODS 

PET study model 

A dynamic PET experiment ca:n be generalized as follows (see Fig. 1): usually a 
single intravenous injection of a radionuclide (the input function) is performed, and 
the time course of the activity in some region of interest in the tomographic slice 
is recorded. The true input function cannot usually be monitored, and multiple 
blood samples are analyzed to estimate the time-activity function in the vascular 
compartment. A mathematical model representing the physiological behaviour of 
the tracer is then fit to the data in order to estimate the rate constants and their 
covariance matrix. Unless specified otherwise, the three-compartmental model used 
in 18-fluorodeoxyglucose (FDG) experiments (4) will be the reference system. To 
this model we add a vascular fraction fv· A single-input, single-output experiment 
(with blood samples and tomographic PET data) will be the reference experimen­
tal protocol. A parameter 7 is also included in the system in order to account for 
the time delay between the arrival of tracer at the blood sampling site and the 
arrival of tracer at the organ studied by PET sampling. The vascular compart­
ment concentration xt(t) (assumed to be known without error in this work) is the 
input function of a three compartment system; the concentrations of unphosphory­
lated and phosphorylated glucose are denoted by x2(t) and x3 (t), respectively. An 
analogous treatment can be envisioned for amino acid brain or heart kinetics; how­
ever here x3 (t) would represent sequestered label in protein. Equations describing 
transfer of matter between compartments can be summarized as: 

(1) 

dx3 
-d = k3x2(t) - k4x3(t) t . 

(2) 

Let a(t) be the activity in the region of interest: 

a(t) = s {fvxl(t ~ 7) + (1- fv) [x2(t) + x3(t)]} , (3) 

where s is concentration-activity scaling factor, fv is the fractional volume of tissue 
comprising blood capillaries, and 7 is the sample delay time which depends on the 
blood sampling site and method (e.g. a long catheter has a corresponding large 7). 
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Solving the system of differential equations gives: · ,. · · 

a(t) = s [fvxi(t- r.) + (1- fv)(h * xi)(t)] , (4) 

where "*" denotes the convolution operator, 

(h * xi)(t) =/_too h(t- s)xi(s- r)ds , (5) 

and "h" is the impulse response of this system, 

(6) 

with a.i and Ai defined as (5): 

k2 +kg+ k4 ± J(k2 +kg+ k4)2- 4k2k4 . 
Ai = 

2 
, z = 1, 2 , (7) 

(8) 

The tomographic device provides a series (yi, j = 1, 2, .. n) of measures of mean 
values of a(t) over time intervals (ti-bti), but Yi is usually assumed to be equal 

to a(tj-i :J tj) ). As .noticed by previous authors (6), sample concentrations at the 
midpoint are not accurate mean values for time varying activities and can generate 
biased parameter estimates .. Clearly, unbiased parameter estimates are desirable, 
and therefore we use a true integral model (instead of a simple first order correction 
as proposed in the reference cited above). The effects of using a non-integral model 
are also investigated in this papef. The integral model value for Yi is given by: 

1 1t· y~ = ' a(t)dt, j = 1,2, ... ,n. 
tj - tj-1 tj-l 

(9) 

We assume that a(t) is a continuous non-homogeneous Poisson process (7) and 
we approximate experimental uncertainty on the Yi values (e~, e2 , ••• , en) as an n­
variate normal distribution N( {J.ti = 0}, llaii II), where E = llaii II is the covariance 
matrix of the data Zj (zi = Yi + ei)· 

Notice that the whole process can be interpreted in terms of linear time-invariant 
systems and can be formalized as follows ( 8): 

dx • 
dt = A(p)x(t) + B(p)u(t- r) , 

y(t) = C(p)x(t) + D(p)u(t- r), 0 ~ t ~ T , 

Zj = y(ti) +eh j = 1,2, ... n, 
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where x denotes the vector of state variables (concentration or mass in the compart­
ments), u is the input function vector, y the output vector, Zj the measurements 
of y at the discrete time ti (with some uncertainty ei). A, B, C and D are ma­
trices depending on the model parameter vector p=(k~, k2, k3 , k4, fv, r)T, T is the 
total time of the study, and n is the number of samples. For the reference system 
described above: 

-(13) 

Parameter and covariance matrix estimation 

Using any of the available procedures to fit y to z will provide a parameter vector 
estimate p. Two kinds of information are useful in order to assess the quality of 
this estimate: the bias in its mean, 

b = E(p)- p, (14) 

and its covariance matrix, 

COV(p) = E{(p- E{p})2
} , (15) 

where E{.} stands for the mathematical expectation of a random variable. 
Parameter biases resulting from using the non-integral model were computed 

by fitting the a values at the mid-intervals (see Eq. 4} to data generated using 
the integral model. In order to evaluate biases in parameter estimates resulting 
from assigning wrong constant values to fv and r instead of including these two 
parameters in the estimation process, fits were also performed with various constant 
values for these two parameters. 

The covariance matrix of p as defined in Eq. 15 gives a measure of the precision 
of p. A general (but extremely cumbersome) method to estimate COV(p), is to do 
a Monte-Carlo simulation of the experiment (for example generate 1000 data sets, 
obtain 1000 estimates of p, and compute the covariance matrix from this sample). 
Fortunately, for models that are linear in the parameters (e.g. y = Sp), COV(p) 
is easy to compute for least-squares estimates. Moreover, if the data errors (}:::) 
are used as weights for the least-squares fit, p is the minimum variance unbiased 
estimate (Gauss-Markov theorem) and its covariance matrix is given by: 

(16) 

(Notice that for normally distributed data, Gauss-Markov and Maximum Likelihood 
estimation are identical (9).) Equation 16 clearly shows how the data errors are 
propagated in the parameter estimate uncertainties through the matrix S. Note 
that S, the sensitivity matrix, is the derivative of y with respect to p. 

More often than not, non-linear models must be used to describe correctly the 
physiological process and the measurement process of the experiment (as it is the 
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case for the multi-compartment model described above). The determination of the 
parameter covariance matrix as defined by .Eq. 16 can be extended to non-linear 
models. LetS= (sii) still denotes the sensitivity matrix (the derivative ofy relative 
to p, which now depends on p): 

a ~· ·. . ... Yi . 
2 

. . . 
sii=-

8 
,z=l, , ... ,n,;=1,2, ... ,r, 

Pi 
(17) 

where r equals the number of parameters; sii represents the variation in the ith 

observation due to a unit variation of Pi. If S is computed at the true value of p, 
if the data are Gaussian and if a Gauss-Markov criterion is used, equation 16 is a 
good approximation of the actual parameter estimate covariance matrix (9). 

PET data simulation and analysis 

Comparison of various experimental designs requires an initial dataset from which 
i 

the data relative to the various protocols can· be ge'nerated. To provide a function 
used for the standard or reference input data (x 1(t) in counts per ml per minute) 
patient data were acquired. Following a fast venous injection into the arm of a 
patient (2 second injection duration), blood samples were drawn (at 5 to 7 sec 
intervals for the first minutes of the experiment), counted in a well counter and 
scaled to tomographic data using a conversion factor of well-counter to PET events 
per volume (10). 

Given a set of values for p = .. (.1 min-1 ,.2 min- 1 ,.1 min- 1 ,0. min-:- 1 ,.05,10 sec)T, we 
generated Yt values using Eq. 4 and 9 on a one second time scale (superscript • 
stands for 1 sec duration data file) using a discrete convolution algorithm (11). 
Back transport from the third compartment (represented by k4 ) was not used in 
this study, as previous work (1) had pointed out that its determination is not 
warranted in dynamic PET-FDG brain experiments lasting less than 40 min. 

Given the sequence of ti (the sampling protocol), a PET dataset (zi) is created by 
adding a weighted sum of these Yt (the integral model Yi value) and, when required, 
a noise contribution (ei) using a Gaussian pseudo-random number generator: 

i,j = 1,2, ... ,n, (18) 

where {Jii is the Kronecker delta function. The Zj are assumed to be uncorrelated, 
e.g. E is diagonal with elements a}j· 

Different sampling protocols have been tested (see Fig. 2 and Table 1), some 
of which are currently used by various groups. We tested protocols with the same 
total time, T, and various sampling rates, as well as protocols with different total 
time and similar sampling rates. Also, a set of blurred input functions (and the 
corresponding residue functions) were generated by convolving the reference input 
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function with unit area rectangular functions of durations 10, 30, 60 and 120 sec. 
These blurred input functions are used to evaluate the effects of prolonging the in­
travenous injection. Figure 3 shows the reference input function, the input function 
for the 120 sec duration injection and their corresponding model residue functions 
(y(t)). For each set of input function and sampling strategy we fit the various mod­
els (integral and non-integral, with fv and r included in the fit parameter list or set 
to wrong constant values) to the PET dataset using a Marquardt-type (12) opti­
mization method and a Gauss-Markov criterion. The fitting procedure minimizes a 
x2 statistic: 

X2 = t(z;- Yi)2. 
j=l Ujj 

(19) 

From Eq. 4, 5 and 9, it is clear that fitting the integral model requires the com­
putation of a double integral for each time point at each iteration, which is very 
time consuming. Therefore, we designed an algorithm to speed up this part of 
the estimation process (see appendix A) and validated it before proceeding with 
the simulation analyses. Estimation of the parameter covariance matrix has been 
achieved numerically using Eq. 16, where each term si; of the matrix S defined in 
Eq. 17 is evaluated using a central difference operator: 

(20) 

Ap; is a small increment of the Pi parameter value. 

8 

II 



• 

00 

60x1 - 6x10 - 6x30 - 35x60 : 1 

60x2 - 4x30 - 12x180 

24x5 - 12x15 - 10x60 - 5x300 

10x30 - 10x60 - 5:i<300 

5x60 - 5x120 - 5x180 - 2x300 : 5 

10x180 - 2x300 : 6 

110 

30 

XBL 855-8290 

Fig. 2 Various sampling protocols, some of which are currently used in FDG­
PET experiments, are ,compared in this work. In all cases tomographic data are 
acquired continuously and what differs are the durations and number of images, 
e.g. Protocol 1 has 60 images at 1 sec. intervals followed by 6 images at 10 sec. 
intervals, then 6 images at 30 sec. intervals and 35 images at 60 sec. intervals. 
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Table 1. Sampling strategies with various study durations (T) 

Initial frame Sampling strategy Study duration 
duration (sec) (nr of frames x frame duration) T (sec) 

95x1- 12x2 119 
60x1 - 6x10 - 31x6 306 
60x1 - 6x10 - 6x30 - 35x9 615 

1 60x1 - 6x10- 6x30- 35x26 910 
60x1 - 6x10 - 6x30 - 35x43 1505 
60x1 - 6x10 - 6x30 - 35x60 2400 
60x1- 6x10 - 6x30 - 35x77 2995 
60x1 - 6x10 - 6x30 - 35x94 3590 
6x30 180 
10x30 300 
10x30- 5x60 600 

30 1 Ox30 - 1 Ox60 900 
10x30 - 10x60 - 2x300 1500 
10x30- 10x60- 5x300 2400 
10x30- 10x60- 5x300- 1x600 3000 
10x30- 10x60- ·5x5oo-- 2x600 3600 
5x180 900 
7x180 1260-
9x180 1620 

180 10x180 1800 
10x180 - 1x300 2100 
10x180- 2x300 2400 
10x180 - 1x400 3000 
10x180 - 6x300 3600 

The initial frame durations are kept constant for each of the three group of protocols, and 
correspond to the initial sampling rates of protocols 1, 4 and 6 of Fig. 2. 
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Fig. 3 Comparison of two FDG-PET experimental designs with different sam­
pling strategies and input functions. A fast injection and 1 sec initial frame duration 
are used in experiment A, and a 120 sec injection and 180 sec initial frame duration 
i11 experiment B. On the right are shown the actual covariance matrix of the param­
eters kt, k2 , k3 , the corresponding uncertainty ellipsoid and its normalized volume 
[) for both protocols. 
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Protocol comparison 

The parameter covariance matrix gives the precision on the parameter estimate. In 
addition to its dependence on the fitting procedure, equations 10-12 clearly show 
that COV(p) also depends on experimental factors such as the input function shape 
(u) and the data collection strategy (the series and number of ti), over which the 
investigator has control. The magnitude of some scalar function of this matrix, 
such as its determinant (a quantity proportional to the volume of the parameter 
confidence region (2,13) )provides a criterion for discriminating between various ex­
perimental protocols. This measure of protocol optimality, known as D-optimality 
in the case of minimizing det ( C OV (p)), has been proposed in other fields ofresearch 
(2,13-15), where it is often referred to as the information matrix approach. Mini­
mizing the determinant of COV(p) is equivalent to maximizing the determinant of 
the matrix M defined as: 

(21) 

The matrix M may be interpreted as the information contained in the data relative 
to the fact that we try to estimate p. A property of the information matrix, M, 
is that the diagonal elements of its inverse are the lower bound of any unbiased 
parameter estimate variances (16) or, more generally, that the ellipsoid relative to 
M- 1 lies inside any unbiased parameter estimate uncertainty ellipsoid (9). Thus, the 
determinant of M provides a measure of the maximum global achievable accuracy 
of the parameter estimate for a given experimental protocol. 

However, the principal parameters of interest in dynamic PET-FDG experiments 
are the rate constants k~, k2 , k3 , because they represent the physiological process 
under study. In addition, the local glucose metabolic rate ( 4) is proportional to the 
ratio (R) given by: 

(22) 

The parameters fv and r are necessarily included in the model because of the nature 
of the data acquired in PET experiements, but they do not contain significant infor­
mation about the local brain glucose metabolism. For these reasons, as a measure 
of merit for the various protocols and input functions we shall use the determinant 
(A) of the covariance matrix of only k1 , k2 and k3 • Because p also includes fv and r, 
this matrix is a submatrix of COV(p). Recall that the determinant of this subma­
trix is not the quantity which is minimized in a fit for a given protocol, but instead 
is a measure of the precision that can be obtained on the estimated k's using this 
protocol. In subsequent figures we will plot a normalized value of this quantity 
denoted by [), and defined as: 

(23). 

[) can be interpreted as a mean coefficient of variation for the k's. For uncorre­
lated parameters, [) is actually the geometric mean of the parameter coefficients of 
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variation: 
D = ak1 ak2 ak3 • 

( ) 

1/3 

. kt k2 k3 
(24) 

Such a criterion, when all of the fit parameters are not of interest, has been previ­
ously proposed (2). A comparison of two protocols is shown in Fig. 3. 

RESULTS 

Effects of rate of injection and 'rate of data collection 

Effects of various sampling rates at early times after injection on parameter esti­
mate precision are shown on Fig. 4; the reference curve and the corresponding 
residue function have been used for this particular set of results. We plot D, the 
normalized determinant of the covariance matrix of kt, k2, k3 as well as the three 
individual parameter estimate coefficients of variation, as a function of the initial 
image duration for each of the 'six sampling protocols shown in Fig. 2. A second 
set of figures (Fig. 5a,b,c,d) decribes the effects ofT, the total time of the study, 
for three different protocols (1,4,6). For each protocol, the initial frame duration is 
kept constant while additional information is added using later images. Effects of 
increasing the injection duration are shown in Fig. 6 for each sampling protocol. 
Notice that an optimal input function seems to exist, for some protocols. 

Effects of using a non-integral model 

In order to show the discrepancies between the true residue function (generated 
using the integral model described in Eq. 9 and the residue function y(t) computed 
using a value at the mid time-interval, we plotted these curves for various sampling 
protocols in Fig. 7. Notice that these discrepancies are clearly dependant on the 
sampling rate at early times. Fitting these residue functions to data generated using 
the integral model provided biased parameter estimates whose dependence on the 
sampling rate at early times and increasing injection durations is shown is Table 2. 

Effects of fixing some parameters 

Fitting the PET data using a reduced number of fit parameters and constant true 
values for the others reduces the discrepancies between the various protocols found 
in the previous section as shown in Fig. 8. In addition, the precision of parameters 
is usually better since fewer parameters are fit, but this effect is minimized in the 
sampling protocols using fast initial sampling rates. However, important biases 
which depend on the experimental design are generated for the fit parameters when 
wrong values are used for the parameters not fit. The bias values can be predicted 
using a first order expansion of the x2 criterion (see appendix B) and the Table 3 
gives the first order derivatives of the parameter kt, k 2, k3 considered as functions 
of the parameters fv and r. 
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Fig. 7 Residue function for six experiments using the sampling protocols of Fig. 2 
and the reference input function. The residue function is computed at the mid-point 
of each image time interval by using its mean value over this interval. 
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Table 2. Biases {in %of the parameter true value} in the mean of parameter estimates 

and R = k;~)c3 resulting from the use of a non-integral model. 

parameter sharp input function blurred input function 
prot 1 prot 4 prot 6 prot 1 prot 4 prot 6 

kl .02 1.7 9.9 .002 5.7 7.3 

kz . 002 2.8 11.4 .003 9.3 10 . 

k3 .005 .32 7. .04 1.7 9.3 

fv . 6 1.3 62 . .01 34. 94. 

to . 06 50. 100 . .08 67. 170. 

R .01 . 11 3 . .004 1.5 5.4 

Values were obtained by fitting the non-integral model using two different input functions 
(the sharp reference and a blurred function obtained by convolving the reference with a 
unit area rectangular function of 60 second duration), and three PET data protocols (1, 
4 and 6 of Fig. 2 with initial frame duration 1, 30 and 180 sec). Notice that since a one 
second time scale was used to generate the data, no significant biases are observed for 
protocol 1 (sampling rate=1/sec). 
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Fig. 8 Comparison of experiments using the six different sampling protocols of 
Fig. 2 and the same reference input function, when some model parameters are 
not fit but--set -to their -true values. This figure demonstrate the effect of including 
or excluding parameters such as the delay between the arrivals of the tracer at the 
blood and PET sampling sites ( T) and the vascular fraction Uv) on normalized 
determinant of kh k2 , k3 covariance matrix (D). 
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Table 3. Normalized partial derivatives of fit parameters (k1, k2, k3) and R = k;~i3 , 
relative to constant parameter fv and r. 

sharp input function A 
protocol 1 protocol 4 protocol 6 

koki/ofv -.33 -.34 -.38 

£
1 
okJ/or .059 .067 .12 

kok2/t3fv -.61 -.64 -.7 

k2 t3k2/t3r .11 .13 .25 

{;;ak3/t3fv -.065 -.07 -.085 

£
3 
ok3jor .028 .036 .076 

~t3Rjt3Jv .033 .032 .033 

R t3Rjt3r .004 .004 .007 

Normalized derivatives (in relative value) are given for protocol 1, 4, and 6 (with initial 
frame duration 1, 30, 180 sec respectively, see Fig. 2) and the sharp reference input 
function. These derivatives can be used to predict the bias of fit parameter estimates 
when using wrong constant values for other parameters as proved in Appendix B. For 
example setting fv to .04 instead of .05 and T to 11 instead of 10 sec will generate a value 
of k1 overestimated by 7.2% ( -20% x .33 + 10% x .059} for protocol 1. 
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Notice the sensitivity of the parameters k1 and k2 to small changes of fv, and 

the cancellation of these sensitivities when the ratio R = k;~l3 is computed. 

This stability of R (previously noticed by different authors (4,5) ) appears on the 
uncertainty elipsoids of Fig. 1 and 2. The gradient of R with respect to (k1 , k2, k3 )T 

is very close to the linear combination of the k's that has the smaller uncertainty. 
This linear combination is represented by the elipsoid axis labeled by a "*" on Fig. 
3. 

DISCUSSION 

It may have been noticed on Fig. 4 and 5, that the shape of the curve of D 
(the normalized covariance matrix determinant) is similar to the shape of the in­
dividual k coefficient of variation curves, and therefore, unless otherwise specified, 
results will be discussed with reference to this quantity only. D is a good param­
eter space criteria because it is invariant under scale changes in the parameters or 
linear transformation of the ouput, properties that other proposed global criteria 
such as a weighted trace (an average of the parameter estimate variances) do not 
fulfill (13). The validity of our results relies on the fact that when the true data 
uncertainties are used in the Gauss-Markov estimation, equation 15 provides a good 
estimate for C OV (:p). In one simulation, we checked the validity of this asumption: 
we generated 1000 sets of data (y) using the reference input function, sampling 
protocol 4 (see Fig. 2) and a Gaussian pseudo-random number generator for the 
noise. Each of these sets was fit, and Table 4a compares the observed covariance 
matrix of the estimates with the matrix computed using Eq. 15 and the true value 
of the parameters. These matrices are very close. The same simulated data were fit 
to the non-integral model and experimental biases are compared to those obtained 
when fitting non-noisy data in Table 4b, showing a very good agreement. Table 
4b provides an estimate of the order of magnitude of the precision of our results. 
We found that two-sided derivatives (see Eq. 17) are necessary in the fitting pro­
cess in order to obtain this precision, because single-sided derivatives give erratic 
behavior near the minimum. Our model for the FDG experiment is a combination 
of a well-known model for the FDG pathway in the brain (4) and of a model of 
data collection and noise using PET. It has been shown by different authors that 
for the practical time course of an FDG-PET experiment, this model is sufficient 
(1). However the methodology holds for studying more complicated models of other 
biological systems. Also of practical importance is to include the parameters fv and 
r in this model. Use of constant values for these parameters is unrealistic, and 
Table 3 has shown that, especially for protocols with fast sampling, large biases are 
generated for parameters strongly correlated with early time data. It should be em­
phasized that, for all the protocols, assuming that the fitting algorithm is provided 
good starting values, unbiased parameter estimates are obtained using the integral 
model. However, our results show that the precision as well as the sensitivity of 
the fit is highly dependent on the relationship between the sampling rate and the 
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frequency components of the residue function y(t) during the experiment. 

Table 4a. Precision study results for the integral model. 

r 

parameter sample mean sample standard error 
(x103 ) 

k1 .10006 1.9729 
(min- 1) ( .10000) (1.9599) 

k2 .20015 8.5174 
(min-1 ) (.20000) (8.4868) 

k3 .099919 2.0116 
(min-1 ) (.10000) (1.9952) 

fv .04990 2.3783 
(.05000) (2.3536) 

r 10.003 449.77 
(sec) (10.000) (449.06) 

X2 19.811 . 6430.0 
(20.000) (6324.6) 

1000 residue functions were generated using the reference input function and a Gaussian 
pseudo-random generator. Protocol 4 of Fig. 2 (initial frame duration 30 sec) was used ~ 

to generate 1000 related set of PET data and the integral model was fit to these data, 
providing a sample of 1000 parameter estimates and x2 , whose mean value and standard 
error are compared with their theoretical values (in parentheses). The theoretical values 
for the standard errors were calculated from Eq. 16, and the theoretical value for the x2 

is the number of degrees of freedom (number of data points for protocol 4 minus number 
of fit parameters, 25- 5 = 20). 
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Table 4b. Precision study results for the non-integral model . 

para!heter true value sample mean theoretical value 

k1 .1 .09842 .09833 
(min- 1 ) 

k2 .2 .19501 .19481 
(min-1 ) 

k3 .1 .09958 .09967 
(min-1 ) 

fv .05 .04921 .04933 

7 10. 15.158 15.141 
(sec) 

1000 residue functions were generated using the reference input function and a Gaussian 
pseudo-random generator. Protocol 4 of Fig. 2 (initial frame duration 30 sec) was used 
to generate 1000 related set of PET data and the non-integral model was fit to these 
data, providing a sample of 1000 parameter estimates, whose mean value are compared 
with their theoretical values obtained using a fit of the non-integral model to data without 
noise. 
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For a given parameter vector and input function, it is easy to see that the gain 
in precision for parameter estimates relies on an a high sampling rate when the 
residue function y has high frequency components, thus avoiding aliasing problems 
that may propagate all through the estimation process. Figure 4 emphasizes this 
result: keeping the total time constant so that the total amount of information 
available in the experiment is constant, it is easy to see that precision is lost when 
the initial sampling rate becomes slower. It may be argued that observed differ­
ences for parameter precision are a consequence of using different number of data 
points for the various protocols. However, it has to be kept in mind that the same 
total number of counts is used for all the protocols. Moreover, in an other set 
of simulations (in which the experiment duration T and the total number of data 
points n constant were kept constant) we found the same order of magnitude for the 
differences in parameter precision relative to protocols with various initial sampling 
rates. Another result of practical interest is to be found in the fact that using low 
sampling rate protocols makes the fit procedure very sensitive to the starting values 
of the parameters. An initial guess such as (.8,.18,.12,.04,-8) for protocol 6 causes 
our fitting procedure to become unstable, whereas it converges to the true param­
eter values for all other protocols. It is therefore important to consider algorithm 
stability with respect to starting values when designing such experiments, and it 
appears that from this particular point of view, it is better to have many points 
with low statistics than a few points with good statistics. 

Meanwhile, the effect of additional information in the protocol obtained by 
adding new data is clearly demonstrated. After a given time, depending on the 
parameter value and its function in the model (Fig. 5a), no significant gain in pa­
rameter precision is obtained. Assuming that the patient stays in the tomograph 
during the entire study (in order to avoid problems when repositioning the patient), 
say 1 hour maximum, it is clear that the numerical identifiability of some parame­
ters for a given region size has to be questioned. For instance it can be shown that 
even for a one hour protocol the precision that one can expect on the parameter k4 

(.005 in this simulation) will be 30% at best (to be compared with less than 2% for 
kt). Notice that precision may be gained for short total time experiments simply 
by increasing T, but for some protocols, more precision may be gained by using a 
different sampling strategy. 

Simulations with different input functions show that the best results are obtained 
with the sharpest input function and the fastest sampling rate for a given set of 
parameters. However, if we consider a given protocol, there exists an optimal input 
function. This may also be interpreted as an aliasing problem. For a certain protocol 
and set of parameters, if the input function is too sharp, aliasing occurs on the 
residue function sampling; if the input function is too smooth, fast components of 
the biological system will not be measurable. It must be pointed out that for some 
sampling schedules, the optimal input function may not be achievable because it 
is too sharp. This is a common problem when using the input function from an 
intravenous injection, since the initial bolus is dispersed during its transit from the 
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injection site to the region of interest. For these protocols, however, the fastest 
injection always gives the best results. In this analysis, no attempt has been made 
to include effects of precision of x1 . When counted in a well-counter, blood sample 
activity can be known with a very good precision and errors due to x1 precision 
come mostly from the use of venous samples instead of arterial samples. For example 
assuming that circulation can be roughly modeled as the convolution by a square 
function, fitting the model with the 10 sec input function to the data generated with 
the sharp reference input provides a strongly biased parameter estimate (see Table 
5). This effect is more important for protocols with faster initial data collection 
rates, and may be explained by the fact that the model is sensitive to inaccuracies 
in the input function measurements at early times through the blood contribution 
(represented in Eq. 4 by fvx 1 ( t- 7)). Protocols with lower initial sampling rates are 
less sensitive to this contribution, because the averaging of the blood contribution 
over a relatively long time interval makes this average value more stable with respect 
to the shape of the input function. 

Finally, using the integral model instead of the non-integral model is validated 
in this study. Results conform to the intuitive idea that sampling strategies with 
larger time intervals generate larger biases for parameter estimates, when fitting the 
non-integral model to the data. This fact can be related to the large discrepancies 
generated when the input function or the residue function have high frequencies 
components as shown in Fig. 7. Our study shows that it is possible to use the 
integral model in practice if the double integral of Eq. 12 is carefully computed. 
Therefore, especially for tomographs with a poor time resolution, the integral model 
should be used. 
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Table 5. Biases {in %of the true parameter value) in the mean of parameter estimate 
due to arm venous blood sampling instead of true capillary sampling. 

parameter blurred input function A blurred input function B 
protocol 3 protocol 4 protocol 3 protocol 4 

kl 4.3 0.6 9.7 3.3 

k2 8.1 1.0 18. 5.5 

kg 0.2 0.1 0.4 0.5 

fv 9.4 3.0 49. 16. 

T 21. 47. 40. 118. 

Venous sampling was simulated by convolving the sharp reference input function (assumed 
to represent the true brain capillary tracer concentration) with unit area rectangular func­
tions of 10 (A) and 30 sec (B) durations. The PET data were generated with the reference 
residue curve sampled with protocol 3 and 4 (initial frame duration 5 and 30 sec respec­
tively) of Fig. 2. 
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Appendix A: computation of Yi for the integral model 

In our method, no parametrization of the input function x1 ( t) is performed (such 
as a fit to a multi-exponential function), and instead a linear interpolation between 
the sampling points is used. Since the impulse response of our reference system h(t) 
is a linear combination of exponentials (Eq. 6), computing Yi as indicated in Eq. 
4,5, and 9 requires the evaluation of double integrals such as: 

i t. [it ] . _ 3 -a(t-s) _ · _ l 1 - . e x 1(s r)ds dt, J -1, ... ,n. 
t)-1 0 

(25) 

Computing Ii using a double quadrature formula at discrete values of t (ti_ 1 :S 
t :S ti) would be an inefficient method, since the integral in brackets would be 
recomputed for each value oft. Instead of doing this, suppose we want to evaluate 
Ii using the equally spaced integration nodes: . 

tj-I,lj-1+Lit, ... ,tj = tj-i+n;Lit. (26) 

Then Ii may be rewritten: 
n; 

li = 'Lwf, (27) 
i=1 

with 
wf = rj-J+iLit [ r e-a(t-s)x1(s ~ r)ds] dt . (28) 

lt,._ 1+(i-1)Lit lo 
Assuming small steps between the integration nodes (in our study At = 1 sec) we 
can use the mean value theorem to evaluate wf as: 

. itj-J+(i-~)Lit ( (" 1) ) w1 =Lit e-a t;- 1+ t-2 tit-s x 1(s- r)ds . 
I 0 

(29) 

Then, dividing the integration interval in two parts gives: 

(30) 

so finally, wi satisfies the recursion relations: 

j -aLit j · -a .o.t ( ) • wi = e wi_ 1 + (Lit) 2 e 2 x 1 ti- 1 +(i-1)Lit - r , z = 2, ... , ni , (31) 

W i = e-aLitwi- 1 + ( "t) 2 e-a ";t x (t ·- - "") J. - 2 n 
1 n;_ 1 "" 1 J 1 ' ' - '· • • ' ' (32) 

with: 
(33) 

As a consequence, the original double integral has been replaced by a simple sum 
and the fitting procedure made much less cumbersome. 
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Appendix B: prediction of parameter biases resulting from 
use of wrong constant values of some of them 

Let Po (assumed to be 0 for simplicity in this appendix) be the true value of the 
parameter vector, PI and p 2 the fit and non-fit parts of the parameter vector (p2 = 

(r) or (/v, r)T), and e2 be the error in p 2 . Fitting only PI will provide a biased 
estimate p: 

(34) 

The problem is to estimate the bias hi in the fit parameters due to the error e2 in 
the non-fit parameters. Assuming that a second order expansion of the x2 criterion 
in p is valid: 

(35) 

where the matrix M is defined as: 

M = (8y(p))T E-I (. 8y(p)) = ( Mn M12 ) 
ap IPn . ap IPn M2I M22 

(36) 

then with p = (Pb P2)T, x2 can be written: 

X
2 

= pf Mu PI + (pf MI2 P2 + Pr M2I pi) + Pr M22 P2 (37) 

the new optimum pis defined by: 

(38) 

and therefore: 
(39) 

and: 
(40) 

Notice the linearity between the bias hi in the fit parameters and the error e2 in 
the non-fit parameters. 

Acknowledgements 

This work was supported in part by the Director, Office of Energy Research, Office 
of Health and Environmental Research of the US Department of Energy under 
contract No DE-AC03-76SF00098 and in part by Public Health Service Grant No 
HL25840 awarded by the National Heart Lung and Blood Institute, Department 
of Health and Human Services. Bernard Mazoyer acknowledges the support of 
part of this research by the lnstitut National de la Recherche en Informatique et 
Automatique (INRIA) and the Fondation pour la Recherche Medicale during 1984. 

28 

t 



• 

REFERENCES 

1. BUDINGER TF, HUESMAN RH, KNITTEL B, FRIEDLAND R, DERENZO 
SE. Physiological modeling of dynamic measurements of metabolism using 
positron emission tomography. In: Greitz T et al. eds. The metabolism of the 
human brain studied with positron emission tomography. New York: Raven 
Press, 1985:165-183. 

2. BECK JV, ARNOLD KJ, eds. Parameter estimation in engineering and sci­
ence. New York: Wiley; 1977. 

3. HUESMAN RH. A new fast algorithm for the evaluation of regions of in­
terest and statistical uncertainty in computed tomography. Phys Med Bioi 
1984;29:543-552. 

4. SOKOLOFF L, REIVICH M, KENNEDY C, et al. The (14C) deoxyglucose 
method for the measurement of local cerebral glucose utilization: Theory, 
procedure and normal values in the conscious and anesthetized albino rat. J 
Neurochem 1977;28:897-916. 

5. PHELPS ME, HUANG SC, HOFFMAN EJ, SELIN C, SOKOLOFF L, KUHL 
DE. Tomographic measurement of local cerebral glucose metabolic rate in 
humans with (F-18)2-Fluoro-2-Deoxy-d-Glucose: Validation of the method. 
Ann Neuro/1979;6:371-388. 

6. PARKER JA, BELLER GA, HOOP B, HOLMAN BL, SMITH TW. Assess­
ment of regional myocardial blood flow and regional fractional oxygen extrac­
tion in dogs, using 150-Water and 150-Hemoglobin. Circ Res 1977;42:511-518. 

7. SNYDER DL. Statistical analysis of dynamic tracer data. IEEE Trans Biomed 
Eng 1973;BME-20:11-20. 

8. EYKOFF P ed. System identzfication: Parameter and state estimation. New 
York: Wiley, 1974. 

9. EADIE WT, DRIJARD D, JAMES FE, ROOS M, SADOULET B. Statistical 
methods in experimental physics. Amsterdam: North-Holland, 1971. 

10. FRIEDLAND RP, BUDINGER TF, GANZ E, et al. Regional cerebral metabolic 
alterations in dementia of the Alzheimer type: Positron emission tomography 
with [18F]Fluorodeoxyglucose. J Comput Assist Tomogr 1983;7:590-598. 

11. KNITTEL B. Kinetic analysis of dynamic PET data. Lawrence Berkeley 
Laboratory Report No 17313, 1983. 

12. MARQUARDT DW. An algorithm for least-squares estimation of nonlinear 
parameters. SIAM 1963;11:431-441. 



13. MEHRA RK. Optimal input signals for parameter estimation in dynamic 
systems: Survey and new results. IEEE Trans Autom Cont 1974;AC-19:753-
768. 

14. DISTEFANO JJ Ill. Optimized blood sampling protocols and sequential de­
sign of kinetic experiments. Am J Physiol1981;R259-265. 

15. MORI F, DI STEFANO JJ Ill. Optimal nonuniform sampling interval and 
test-input design for identification of physiological systems from very limited 
data. IEEE Trans Autom Cont 1979;AC-24:893-900. 

16. CRAMER H. Mathematical methods of statistics. Princeton: Princeton Uni­
versity Press, 1958. 

30 

• 

,j 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



~- ·~ 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

~ ..... ~ ,. 




