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Emergence and propagation of epistasis
in metabolic networks
Sergey Kryazhimskiy*

Division of Biological Sciences, University of California, San Diego, La Jolla, United
States

Abstract Epistasis is often used to probe functional relationships between genes, and it plays an

important role in evolution. However, we lack theory to understand how functional relationships at

the molecular level translate into epistasis at the level of whole-organism phenotypes, such as

fitness. Here, I derive two rules for how epistasis between mutations with small effects propagates

from lower- to higher-level phenotypes in a hierarchical metabolic network with first-order kinetics

and how such epistasis depends on topology. Most importantly, weak epistasis at a lower level may

be distorted as it propagates to higher levels. Computational analyses show that epistasis in more

realistic models likely follows similar, albeit more complex, patterns. These results suggest that

pairwise inter-gene epistasis should be common, and it should generically depend on the genetic

background and environment. Furthermore, the epistasis coefficients measured for high-level

phenotypes may not be sufficient to fully infer the underlying functional relationships.

Introduction
Life emerges from an orchestrated performance of complex regulatory and metabolic networks

within cells. The blueprint for these networks is encoded in the genome. Mutations alter the

genome. Some of them, once decoded by the cell, perturb cellular networks and thereby change

the phenotypes important for life. Understanding how mutations affect the function of cellular net-

works is key to solving many practical and fundamental problems, such as finding mechanistic causes

of genetic disorders (Hu et al., 2011; Fang et al., 2019), deciphering the architecture of complex

traits (Zuk et al., 2012; Mackay, 2014; Wei et al., 2014), building artificial cells (Hutchison et al.,

2016), explaining past, and predicting future evolution (Blount et al., 2008; Wiser et al., 2013;

de Visser and Krug, 2014; Harms and Thornton, 2014; Kryazhimskiy et al., 2014; Sailer and

Harms, 2017a; Sohail et al., 2017). Conversely, mutations can help us learn how cellular networks

are organized (Phillips, 2008; van Opijnen and Camilli, 2013).

To infer the wiring diagram of a cellular network that produces a certain phenotype, one

approach in genetics is to measure the pairwise and higher-order genetic interactions (or ‘epistasis’)

between mutations that perturb it (Phillips, 2008). Much effort has been devoted in the past 20

years to a systematic collection of such genetic interaction data for several model organisms and cell

lines (Kelley and Ideker, 2005; Lehner et al., 2006; Jasnos and Korona, 2007; Collins et al.,

2007; St Onge et al., 2007; Typas et al., 2008; Roguev et al., 2008; Costanzo et al., 2010;

Szappanos et al., 2011; Huang et al., 2012; Roguev et al., 2013; Bassik et al., 2013; Babu et al.,

2014; Costanzo et al., 2016; van Leeuwen et al., 2016; Skwark et al., 2017; Du et al., 2017;

Heigwer et al., 2018; Horlbeck et al., 2018; Norman et al., 2019; Liu et al., 2019; Kuzmin et al.,

2018; New and Lehner, 2019; Celaj et al., 2020). This approach is particulary powerful when the

phenotypic effect of one mutation changes qualitatively depending on the presence or absence of a

second mutation in another gene, for example when a mutation has no effect on the phenotype in

the wildtype background, but abolishes the phenotype when introduced together with another

mutation, such as synthetic lethality (Tong et al., 2001). Such qualitative genetic interactions can
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often be directly interpreted in terms of a functional relationship between gene products

(Tong et al., 2001; Davierwala et al., 2005; Phillips, 2008).

Most pairs of mutations do not exhibit qualitative genetic interactions. Instead, the phenotypic

effect of a mutation may change measurably but not qualitatively depending on the presence or

absence of other mutations in the genome (Babu et al., 2014; Costanzo et al., 2016). The genetic

interactions can in this case be quantified with one of several metrics that are termed ‘epistasis coef-

ficients’ (Wagner et al., 1998; Hansen and Wagner, 2001; Mani et al., 2008; Wagner, 2015;

Poelwijk et al., 2016). Although some rules have been proposed for interpreting epistasis coeffi-

cients, in particular, their sign (Dixon et al., 2009; Lehner, 2011; Baryshnikova et al., 2013), the

validity, and robustness of these rules are unknown because there is no theory for how functional

relationships translate into measurable epistasis coefficients in any system (Lehner, 2011;

Domingo et al., 2019). To avoid this major difficulty, most large-scale empirical studies focus on cor-

relations between epistasis coefficients rather than on their actual values (but see Velenich and

Gore, 2013, for a notable exception). Genes with highly correlated epistasis profiles are then inter-

preted as being functionally related (Segrè et al., 2005; Bellay et al., 2011; Babu et al., 2014;

Costanzo et al., 2016; Horlbeck et al., 2018). Although this approach successfully groups genes

into protein complexes and larger functional modules (Michaut et al., 2011; Bellay et al., 2011), it

does not reveal the functional relationships themselves. As a result, many if not most, genetic inter-

actions between genes and modules still await their biological interpretation (Costanzo et al., 2016;

Fang et al., 2019).

While geneticists measure epistasis to learn the architecture of biological networks, evolutionary

biologists face the reverse problem: they need to know how the genetic architecture constrains epis-

tasis at the level of fitness. Epistasis determines the structure of fitness landscapes on which popula-

tions evolve (Fragata et al., 2019). Understanding it would bear on many important evolutionary

questions, such as why so many organisms reproduce sexually (Kondrashov, 2018), how novel phe-

notypes evolve (Blount et al., 2008; Bridgham et al., 2009; Natarajan et al., 2013; Harms and

Thornton, 2014), how predictable evolution is (Weinreich et al., 2006; Tenaillon et al., 2012;

Wiser et al., 2013; Kryazhimskiy et al., 2014), etc. So far, evolutionary biologists have relied pri-

marily on abstract models of fitness landscapes (see Orr, 2005, for a review), rather than those firmly

grounded in organismal biochemistry and physiology (e.g. Dykhuizen et al., 1987; Das et al.,

2020). For example, Fisher’s geometric model—one of the most widely used fitness landscape mod-

els—is explicitly devoid of the physiological and biochemical details (Fisher, 1930; Tenaillon, 2014;

Martin, 2014).

A theory of epistasis must address two challenges. First, it must specify how the architecture of a

biological network constrains epistasis. Such knowledge is important not only for evolutionary ques-

tions, but also for the inference problem in genetics. Consider a biological network module that pro-

duces a phenotype of interest but whose internal structure is unknown. By genetically perturbing all

genes within the module and measuring the phenotype in all single, double and possibly some

higher-order mutants, we can obtain the matrix of epistasis coefficients. In principle, we can then fit

a network topology and parameters to these data. However, without knowing what information

about the network is contained in the matrix in the first place, we cannot be sure whether the

inferred topology and parameters are close to their true values or represent one of many possible

solutions consistent with the data.

The second challenge is that epistasis may arise at a different level of biological organization than

where it is measured by the experimentalist or by natural selection. For example, geneticists are

often interested in understanding the structures of specific regulatory or metabolic network modules

(Collins et al., 2007; Costanzo et al., 2010). However, measuring the peformance of a module

directly is often experimentally difficult or impossible. Then epistasis is measured for an experimen-

tally accessible ‘high-level’ phenotype, such as fitness, which depends on the performance of the

focal ‘lower-level’ module, but also on other unrelated modules. However, if we do not know how

epistasis that originally emerged in one module maps onto epistasis that is measured, it is unclear

what we can infer about module’s internal structure.

Evolutionary biologists encounter a related problem when they wish to learn the evolutionary his-

tory of a protein or a larger cellular module. To do so, they would in principle need to know how dif-

ferent mutations in this module affected fitness of the whole organism in its past environment. But

such information is rarely available. Instead, it is sometimes possible to reconstruct past mutations
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and measure their biochemical effects in the lab (Lunzer et al., 2005; Bridgham et al., 2009;

Natarajan et al., 2013; Sarkisyan et al., 2016). When interesting patterns of epistasis are identified

at the biochemical level, it is usually assumed that the same patterns manifested themselved at the

level of fitness and drove module’s evolution. However, this is not obvious. If interactions with other

modules distort epistasis as it propagates from the biochemical level to the level of fitness

(Snitkin and Segrè, 2011), our ability to infer past evolutionary history from in vitro biochemical

measurements could be diminished. Therefore, the second challenge that a theory of epistasis must

address is how epistasis propagates from lower-level phenotypes to higher-level phenotypes.

There is a large body of theoretical and computational literature on epistasis. As early as 1934,

Sewall Wright realized that epistasis naturally emerges in molecular networks (Wright, 1934). This

was later explicitly demonstrated in many mathematical and computational models (e.g. Kacser and

Burns, 1981; Keightley, 1989; Szathmáry, 1993; Gibson, 1996; Keightley, 1996; Wagner et al.,

1998; Omholt et al., 2000; Peccoud et al., 2004; Gjuvsland et al., 2007; Gertz et al., 2010;

Fiévet et al., 2010; Pumir and Shraiman, 2011). Metabolic control analysis became one of the

most successful and general frameworks for understanding epistasis between metabolic genes

(Kacser and Burns, 1973). Dean et al., 1986, Dykhuizen et al., 1987, Dean, 1989, Lunzer et al.,

2005, MacLean, 2010 used it to interpret the empirically measured fitness effects of mutations and

their interactions in terms of the metabolic relationships between the products of mutated genes.

Kacser and Burns, 1981, Hartl et al., 1985, Keightley, 1989, Clark, 1991, Keightley, 1996,

Bagheri-Chaichian et al., 2003, Bagheri and Wagner, 2004, Fiévet et al., 2010 explored the impli-

cations of epistasis in metabolism for genetic variation in populations, their response to selection,

long-term evolutionary dynamics and outcomes, such as the evolution of dominance. However, most

studies analyzed only the linear metabolic pathway (but see Keightley, 1989) and assumed that fit-

ness equals flux through the pathway (but see Szathmáry, 1993), thereby bypassing the problem of

epistasis propagation.

There have been few attempts to theoretically relate the molecular architecture of an organism to

the types of epistasis that would arise for its high-level phenotypes, such as fitness. Segrè et al.,

2005 and He et al., 2010 used flux balance analysis (FBA, Orth et al., 2010) to compute genome-

wide distributions of epistasis coefficients in metabolic models of Escherichia coli and Saccharomy-

ces cerevisiae and arrived at starkly discordant conclusions. Recently, Alzoubi et al., 2019 showed

that FBA is generally poor in predicting experimentally measured genetic interactions, suggesting

that it might be difficult to understand the emergence and propagation of epistasis by relying exclu-

sively on genome-scale computational models. Sanjuán and Nebot, 2008 and Macı́a et al., 2012

modeled various abstract metabolic and regulatory networks and found a possible link between

epistasis and network complexity. The work by Chiu et al., 2012 is a more systematic attempt to

develop a general theory of epistasis. They established a fundamental connection between epistasis

and the curvature of the function that maps lower-level phenotypes onto a higher-level phenotype.

However, further progress has been so far hindered by uncertainty in what types of functions map

phenotypes onto one another in real biological systems. Previous studies made various idiosyncratic

choices with respect to this mapping, leaving us without a clear guidance as to the conditions or sys-

tems where they are expected to hold.

To overcome this problem, here I consider a whole class of hierarchical metabolic networks and

obtain the family of all functions that determine how the effective activity of a larger metabolic mod-

ule can depend on the activities of smaller constituent modules. There are several advantages to this

approach. First, it leads to an intuitive understanding of how the structure of the network influences

epistasis emergence and propagation. Second, my approach is based on basic biochemical princi-

ples, so it should be relevant for many phenotypes. For example, epistasis is often measured at the

level of growth rate (Jasnos and Korona, 2007; St Onge et al., 2007; Babu et al., 2014;

Costanzo et al., 2016), and metabolism fuels growth. Moreover, metabolic genes occupy a large

fraction of most genomes (Orth et al., 2011) and the general organization of metabolism is con-

served throughout life (Csete and Doyle, 2004). Thus, by understanding genetic interactions

between metabolic genes, we will gain an understanding of a large fraction of all genetic

interactions.

In my model, I consider a hierarchical network with first-order kinetics but arbitrary topology, and

ask two questions related to the two challenges mentioned above. (1) How does an epistasis coeffi-

cient that arose at some level of the metabolic hierarchy propagate to higher levels of the hierarchy?
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(2) How does the network topology constrain the value of an epistasis coefficient between two muta-

tions that affect different enzymes in this network? I obtain answers to these questions analytically in

the limiting case when the effects of mutations are vanishingly small. I then computationally probe

the validity of the conclusions outside of the domain where they are expected to hold.

My model is not intended to generate predictions of epistasis for any specific organism. Instead,

its main purpose is to provide a baseline expectation for how epistasis that emerges at lower-level

phenotypes manifests itself at higher-level whole-organism phenotypes, such as fitness, and what

kind of information may be gained from measurements of such higher-level epistasis. One possible

outcome of this analysis is that there may be fundamental limitations to what an epistasis measure-

ment at one level of biological organization can tell us about epistasis at another level. On the other

hand, if it turns out that there is a general correspondence between epistasis coefficients at different

levels in this simple model, then it may be worth developing more sophisticated and general models

on which inference from data can be based.

Model
Hierarchical metabolic network
Consider a set of metabolites A ¼ f1; 2; . . . ; ng with concentrations S1; . . . ; Sn which can be intercon-

verted by reversible first-order biochemical reactions. The rate of the reaction converting metabolite

i into metabolite j is xij Si � Sj=Kij

� �
where Kij is the equilibrium constant. The rate constants xij, which

satisfy the Haldane relationships xji ¼ xij=Kij (Cornish-Bowden, 2013), form the matrix ~x ¼ xij







n

i;j¼1
.

The metabolite set A and the rate matrix~x define a biochemical network N ¼ A;~xð Þ.
The first-order kinetics assumption makes the model analytically tractable, as discussed below;

biologically, it is equivalent to assuming that all enzymes are far from saturation. The rate constants

xij depend on the concentrations and the specific activities of enzymes and therefore can be altered

by mutations. Kij characterize the fundamental chemical nature of metabolites i and j and cannot be

altered by mutations (Savageau, 1976).

The whole-cell metabolic network is large, and it is often useful to divide it into subnetworks that

carry out certain functions important for the cell. I define subnetworks mathematically as follows. I

say that two metabolites i and j are adjacent (in the graph-theoretic sense) if there exists an enzyme

that catalyzes a biochemical reaction between them, that is, if xij>0. Now consider a subset of

metabolites A� � A. For this subset, let AIO
� be the set of all metabolites that do not belong to A�

but are adjacent to at least one metabolite from A�. Let~x� be the submatrix of~x which corresponds

to all reactions where both the product and the substrate belong to either A� or AIO
� . The metabolite

subset A� and the rate matrix~x� form a subnetwork � ¼ ðA�;~x�Þ of network N . I refer to A� and AIO
�

as the sets of internal and ‘input/output’ (‘I/O’ for short) metabolites for subnetwork m, respectively.

Thus, all internal metabolites and all reactions that involve only internal and I/O metabolites are part

of the subnetwork. Note that the I/O metabolites do not themselves belong to the subnetwork, but

reactions between them, if they exist, are part of the subnetwork. Metabolites that are neither inter-

nal nor I/O for m are referred to as external to subnetwork m. These definitions are illustrated in

Figure 1A.

The main objects in this work are biochemical modules, which are a special type of subnetworks.

To define modules, I introduce some auxiliary concepts. I say that two metabolites i and j are con-

nected if there exists a series of enzymes that interconvert i and j, possibly through a series of inter-

mediates. Mathematically, i and j are connected if there exists a simple (i.e. non-self-intersecting)

path between them. If all metabolites in this path are internal to the subnetwork m (possibly exclud-

ing the terminal metabolites i and j themselves) then i and j are connected within the subnetwork m,

and such path is said to lie within m. By this definition, metabolites i and j can be connected within m

only if they are either internal or I/O metabolites for m.

Definition 1
A subnetwork m is called a module if (a) it has two I/O metabolites, and (b) for every internal metabo-

lite i 2 A�, there exists a simple path between the I/O metabolites that lies within m and contains i.

This definition is illustrated in Figure 1A. The assumption that modules only have two I/O metab-

olites is not essential. However, mathematical calculations become unwieldy when the number of I/O
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metabolites increases. Moreover, modules with just two I/O metabolites already capture two most

salient features of metabolism: its directionality, and its complex branched topology (Csete and

Doyle, 2004). Such modules are a natural generalization of the linear metabolic pathway which has

been extensively studied in the previous literature (Kacser and Burns, 1973; Szathmáry, 1993;

Bagheri-Chaichian et al., 2003; MacLean, 2010).

Modules have two important properties. First, for any given concentrations of the two I/O metab-

olites, all internal metabolites in the module can achieve a unique steady state which depends only

on concentrations of these I/O metabolites but not on the concentrations of any other metabolites

in the network (see Proposition 1 in Materials and methods). Now consider a module m whose I/O

metabolites are (without loss of generality) labeled 1 and 2 (Figure 1A). The second property is that,

at steady state, the flux through this module is J� ¼ y� S1 � S2=K12ð Þ, where

y� ¼ F ~x�
� �

(1)

is the effective reaction rate constant of module m (Figure 1B). Importantly, y� depends only on

the rate matrix ~x�, but not on any other rate constants (see Corollary 2 in Materials and methods),

and it can be recursively computed for any module, as described in Materials and methods. In other

words, metabolic network N can be coarse-grained by replacing module m at steady state with a sin-

gle first-order biochemical reaction with rate y�. Importantly, such coarse-graining does not alter the

dynamics of any metabolites outside of module m (see Proposition 1 in Materials and methods). This

statement is the biochemical analog of the star-mesh transformation (and its generalization, Kron

reduction, Rao et al., 2014) well known in the theory of electric circuits (Versfeld, 1970). The bio-

logical interpretation of these properties is that a module is somewhat isolated from the rest of the

metabolic network. And vice versa, the larger network (i.e. the cell) ‘cares’ only about the total rate

at which the I/O metabolites are interconverted by the module but ‘does not care’ about the details

of how this conversion is enzymatically implemented. In this sense, the effective rate y� quantifies

the function of module m (a macroscopic parameter) while the rates~x� describe the specific biochem-

ical implementation of the module (microscopic parameters).

The effective rate constant y� of module m depends on the entire rate matrix~x�. In general, a sin-

gle mutation may perturb several rate constants within a module, so that the entire shape of the

function F may be important. Here, I focus on a special case when each mutation perturbs one reac-

tion (real or effective) within a module, while all others remain constant. To examine epistasis

between mutations, I will also consider two different mutations that perturb two separate reactions

1 53 4 2

Metabolites

I/O for , 

internal 
for , 

internal 
for , 

I/O for  
internal for 

external for  
I/O for 

1 52
y

1

4

3

2

5

A B

C

1 5
y

Figure 1. Illustration of a hierarchical metabolic network and its coarse-graining. (A) White rectangle represents

the whole metabolic network N . Example subnetworks m and n are represented by the dark and light gray

rectangles. Only metabolites and reactions that belong to these subnetworks are shown; other metabolites and

reactions in N are not shown. Metabolites 1 and 5 may be adjacent to other metabolites in N ; this fact is

represented by short black lines that do not terminate in metabolites. Subnetworks m and n are both modules

because there exists a simple path connecting their I/O metabolites that lies within m and n and contains all their

internal metabolites (dashed blue line). (B) Network N can be coarse-grained by replacing module m at steady

state with an effective reaction between its I/O metabolites 1 and 2, with the rate constant is y�. (C) Network N
can be coarse-grained by replacing module n at steady state with an effective reaction between its I/O

metabolites 1 and 5, with the rate constant is yn.
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within a module. In these special cases, we do not need to know the entire function F. We only need

to know how module’s effective rate constant y� depends on the one or two rate constants of the

perturbed reactions. When y� is considered as a function of the rate constant x of one reaction, I

write

y� ¼ f1ð�Þ; (2)

and when y� is considered as a function of the rate constants x and h of two reactions, I write

y� ¼ f2ð�;hÞ: (3)

The rate constants of all other reactions within module m play a role of parameters in functions f1

and f2.

Consider now a network N that has a hierarchical structure, such that there is a series of nested

modules � � n � � � �, in the sense that A� � An � � � � (Figure 1A). Since any module at steady state

can be replaced with an effective first-order biochemical reaction, there exists a hierarchy of quanti-

tative metabolic phenotypes y�; yn; . . . (Figure 1B,C). These phenotypes are of course functionally

related to each other. Specifically, because n is a ‘higher-level’ module (in the sense that it contains

a ‘lower-level’ module m), the matrix~xn can be decomposed into two submatrices~x� and~xnn� where

the latter is the matrix of rate constants of reactions that belong to module n but not to module m.

Since replacing the lower-level module m with an effective reaction with rate constant y� does not

alter the dynamics of metabolites outside of m, yn must depend on all elements of ~x� only through

y�, that is,

yn ¼ f1 y�
� �

; (4)

where rates~xnn� act as parameters of function f1. Thus, in the hierarchy of metabolic phenotypes

y�;yn; . . ., a phenotype at each subsequent level depends on the phenotype at the preceding level

according to Equation 4, and the lowest level phenotype y� depends on the actual rate constants

accroding to Equation 1. This hierarchy of functionally nested phenotypes is conceptually similar to

the hierarchical ‘ontotype’ representation of genomic data proposed recently by Yu et al., 2016.

Quantification of epistasis
Consider a mutation A that perturbs only one rate constant xij, such that the wildtype value x0ij

changes to xAij . This mutation can be quantified at the microscopic level by its relative effect

dAxij ¼ xAij=x
0

ij � 1. If the reaction between metabolites i and j belongs to nested modules �; n; . . .,

then mutation A may impact the functions of these modules, which can be quantified by the relative

effects dAy�, d
Ayn, etc. at each level of the hierarchy.

Consider now another mutation B that only perturbs the rate constant xk‘ of another reaction.

Since mutations A and B perturb distinct enzymes, they by definition do not genetically interact at

the microscopic level. However, if both perturbed reactions belong to the metabolic module m (and,

as a consequence, to all higher-level modules which contain m), they may interact at the level of the

function of this module, in the sense that the effect of mutation B on the effective rate y� may

depend on whether mutation A is present or not. Such epistasis between mutations A and B can be

quantified at the level m of the metabolic hierarchy by a number of various epistasis coefficients

(Wagner et al., 1998; Hansen and Wagner, 2001; Mani et al., 2008). I will quantify it with the epis-

tasis coefficient

"ABy� ¼
dABy�� dAy�� dBy�

2dAy� d
By�

; (5)

where dABy� denotes the effect of the combination of mutations A and B on phenotype y� relative

to the wildtype. Since I only consider two mutations A and B, I will write "y� instead of "ABy� to sim-

plify notations. Note that other epistasis coefficients can always be computed from "y�, d
Ay� and

dBy�, if necessary. Expressions for epistasis coefficients at other levels of the metabolic hierarchy are

analogous.
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Results
The central goal of this paper is to understand the patterns of epistasis between mutations that

affect reaction rates in the hieararchical metabolic network described above. Specifically, I am inter-

ested in two questions. (1) Given that two mutations A and B have an epistasis coefficient "y� at a

lower level m of the metabolic hierarchy, what can we say about their epistasis coefficient "yn at a

higher level n of the hierarchy? In other words, how does epistasis propagate through the metabolic

hierarchy? (2) If mutation A only perturbs the activity xij of one enzyme and mutation B only perturbs

the activity xk‘ of another enzyme that belongs to the same module m, then what values of "y� can

we expect to observe based on the topological relationship between the two perturbed reactions

within module m? In other words, what kinds of epistasis emerge in a metabolic network?

Propagation of epistasis through the hierarchy of metabolic
phenotypes
Assuming that the effects of both individual mutations and their combined effect at the lower-level m

are small, it follows from Equation 4 and Equation 5 that

"yn ¼
"y�
C

þ H

2C2
þ o 1ð Þ; (6)

where C¼ f 0
1
y�=yn and H ¼ f 00

1
y2�=yn are the first- and second-order control coefficients of the

lower-level module m with respect to the flux through the higher-level module n and o 1ð Þ denotes all
terms that vanish as the effects of mutations tend to zero (see Materials and methods for details).

Note that Equation 6 is a special case of a more general Equation 49 which describes the case

when mutations affect multiple enzymes. Equation 6 defines a linear map f with slope 1=C and a

fixed point �"¼�H 2C 1�Cð Þð Þ�1, which both depend on the topology of the higher-level module n

and the rate constants~xnn�.

To gain some intuition for how the map f

governs the propagation of epistasis from a

lower level m to a higher level n, suppose that

module n is a linear metabolic pathway. In this

case, it is intuitively clear that function f1 is

monotonically increasing (i.e. the higher y�, the

more flux can pass through the linear pathway n)

and concave (i.e. as y� grows, other reactions in

n become increasingly more limiting, such that

further gains in y� yield smaller gains in yn).

Indeed, it is easy to show that C ¼ 1þ ay�
� ��1

>0

and H ¼ �2a y� 1þ ay�
� ��2

<0, where a is a posi-

tive constant that depends on other reactions in

the pathway (see Materials and methods for

details). It then immediately follows that any

zero or negative epistasis "y� that already arose

at the lower level would propagate to negative

epistasis "yn at the level of the linear pathway n.

Moreover, since C<1, the fixed point of the map

in Equation 6 is unstable. Therefore, if epistasis

"y� was already sufficiently large at the lower

level, it would induce even larger positive epista-

sis "yn at the level of the linear pathway n. In

fact, when module n is a linear pathway, �" ¼ 1,

so that "yn>1 whenever "y�>1.

The first result of this paper is the following

theorem, which shows that the same rules of

propagation of epistasis hold not only for a lin-

ear pathway but for any module (Figure 2).

y

S
lo

p
e
 1
/C

y0 1

1

If y , then y

If y , then y

Figure 2. Propagation of epistasis. Properties of

Equation 6 that maps lower-level epistasis "y� onto

higher-level epistasis "yn. Slope 1=C and fixed point �"

depend on the topology and the rate constants of the

higher-level module n, but they are bounded, as

shown. Thus, the fixed point �" of this map lies between

0 and 1 and is always unstable (open circle).
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Theorem 1
For any module n,

0�C� 1

(7)

and

0� �"� 1: (8)

The proof of Theorem 1 is given in Materials and methods. Its main idea is the following. The

functional form of f1 in Equation 4 depends on the topology of module n. Since the number of

topologies of n is infinite, we might a priori expect that there is also an infinite number of functional

forms of f1. However, this is not the case. In fact, all higher-level modules that contain a lower-level

module fall into three topological classes defined by the location of the lower-level module with

respect to the I/O metabolites of the higher-level module (see Proposition 2 and Figure 7 in Materi-

als and methods). To each topological class corresponds a parametric family of the function f1, so

that there are only three such families. For each family, the values of C and H can be explicitly calcu-

lated, yielding the bounds in Equation 7 and Equation 8.

Equation 6 together with Equation 7 and Equation 8 show that the linear map f from epistasis

at a lower-level to epistasis at the higher-level has an unstable fixed point between 0 and 1 (Fig-

ure 2). This implies that negative epistasis at a lower level of the metabolic hierarchy necessarily

induces negative epistasis of larger magnitude at the next level of the hierarchy, that is, "yn � "y�<0.

Therefore, once negative epistasis emerges somewhere along the hierarchy, it will induce negative

epistasis at all higher levels of the hierarchy, irrespectively of the topology or the kinetic parameters

of the network.

Similarly, if epistasis at the lower level of the metabolic hierarchy is positive and strong, "y�>1, it

will induce even stronger positive epistasis at the next level of the hierarchy, that is, "yn � "y�>1.

Therefore, once strong positive epistasis emerges somewhere in the metabolic hierarchy, it will

induce strong positive epistasis of larger magnitude at all higher levels of the hierarchy, irrespec-

tively of the topology or the kinetic parameters of the network. If positive epistasis at a lower level

of the hierarchy is weak, 0<"y�<1, it could induce either negative, weak positive or strong positive

epistasis at the higher level of the hierarchy, depending on the precise value of "y�, the topology of

the higher-level module n and the microscopic rate constants~xnn�.

In summary, there are three regimes of how epistasis propagates through a hierarchical metabolic

network. Negative and strong positive epistasis propagate robustly irrespectively of the topology

and kinetic parameters of the metabolic network, whereas the propagation of weakly positive epista-

sis depends on these details. The strongest qualitative prediction that follows from Theorem 1 is

that negative epistasis for a lower-level phenotype cannot turn into positive epistasis for a higher-

level phenotype, but the converse is possible.

Emergence of epistasis between mutations affecting different enzymes
Which of the three regimes described above can emerge in metabolic networks and under what cir-

cumstances? In other words, if two mutations affect the same module, are there any constraints on

epistasis that might arise at the level of the effective rate constant of this module? To address this

question, I consider two mutations A and B that affect the rate constants of different single reactions

within a given module.

Consider a relatively simple module n shown in Figure 1A and two mutations A and B that affect

the reactions, as shown in Figure 3A. I will now show that the epistasis coefficient "yn can take values

in all three domains described above, depending on the biochemical details of this module. Using

the recursive procedure for evaluating y� described in Materials and methods, it is straightforward

to obtain an analytical expression for yn as a function of the rate matrix ~xn, from which "y� can also

be obtained (see Materials and methods for details). To demonstrate that "y� can take values below

0, between 0 and 1, and above 1, it is convenient to keep all of the rate constants fixed except for

the rate constant z � x34 of a reaction that is not affected by mutations A or B, as shown in

Figure 3A. Figure 3B then shows how the epistasis coefficient "y� varies as a function of z for one
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particular choice of all other rate constants. When z is small, "y�<0. As z increases, it becomes weakly

positive (0<"y�<1) and eventually strongly positive ("y�>1). Thus, in my model, there are no funda-

mental constraints on the types of epistasis that can emerge between mutations.

This simple example also reveals that not only the value but also the sign of epistasis generically

depend on the rates of other reactions in the network, such that other mutations or physiological

changes in enzyme expression levels can modulate epistasis sign and strength. In other words,

‘higher-order’ and ‘environmental’ epistasis are generic features of metabolic networks.

Upon closer examination, the toy example in Figure 3 also suggests that the sign of "yn may

depend predictably on the topological relationship between the affected reactions. When z ¼ 0, the

two reactions affected by mutations are parallel, and epistasis is negative. When z is very large, most

of the flux between the I/O metabolites passes through z such that the two reactions affected by

mutations become effectively serial, and epistasis is strongly positive. Other toy models show consis-

tent results: epistasis between mutations affecting different reactions in a linear pathway is always

positive and epistasis between mutations affecting parallel reactions is negative (see Materials and

methods for details). These observation suggest an interesting conjecture. Do mutations affecting

parallel reactions always exhibit negative epistasis and do mutations affecting serial reactions always

exhibit positive epistasis? In fact, such relationship between sign of epistasis and topology has been

previously suggested in the literature (e.g. Dixon et al., 2009; Lehner, 2011).

To formalize and mathematically prove this hypothesis, I first define two reactions as parallel

within a given module if there exist at least two distinct simple (i.e. non-self-intersecting) paths that

connect the I/O metabolites, such that each path lies within the module and contains only one of the

two focal reactions. Analogously, two reactions are serial within a given module if there exists at

least one simple path that connects the I/O metabolites, lies within the module and contains both

focal reactions.

A

1 53 4 2

A B
z

1 53 4 2

Strictly parallel: y

A B

A B
1 53 4 2

Strictly serial: yvz

y

86420
–3

0

1

3

C

D

B

Figure 3. Emergence of epistasis and its dependence on the topological relationship between the reactions

affected by mutations. (A) An example of a simple module n (same as in Figure 1A) where negative, weak positive

and strong positive epistasis can emerge between two mutations A and B. (B) Epistasis between mutations A and

B at the level of module n depicted in (A) as a function of the rate constant z of a third reaction. The values of

other parameters of the network are given in Materials and Methods. (C) An example of a simple module where

reactions affected by mutations are strictly parallel. In such cases, epistasis for the effective rate constant yn is non-

positive. Dashed blue lines highlight paths that connect the I/O metabolites and each contain only one of the

affected reactions. (D) An example of a simple module where reactions affected by mutations are strictly serial. In

such cases, epistasis for the effective rate constant yn is equal to or greater than 1 (i.e. strongly positive). Dashed

blue line highlights a path that connects the I/O metabolites and contains both affected reactions.
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According to these definitions, two reactions can be simultaneously parallel and serial, as, for

example, the reactions affected by mutations A and B in Figure 3A. I call such reaction pairs serial-

parallel. I define two reactions to be strictly parallel if they are parallel but not serial (Figure 3C) and

I define two reactions to be strictly serial if they are serial but not parallel (Figure 3D). Thus, each

pair of reactions within a module can be classified as either strictly parallel, strictly serial or serial-

parallel.

The second result of this paper is the following theorem.

Theorem 2
Let x and h be the rate constants of two different reactions in module m. Suppose that mutation A

perturbs only one of these reactions by dA� and mutation B perturbs only the other reaction by dBh.

In the limit dA� ! 0 and dBh ! 0, the following statements are true. If the affected reactions are

strictly parallel then "y� � 0. If the affected reactions are strictly serial, then "y� � 1.

The detailed proof of this theorem is given in Materials and methods. Its key ideas and the logic

are the following. It follows from Equation 3 and Equation 5 that

"y� ¼
H�h

2C�Ch

þ oð1Þ; (9)

where C� ¼ qf2
q�

�
y�
, Ch ¼ qf2

qh

h

y�
, H�h ¼ q

2 f2
q�qh

�h
y�

are the first- and second-order control coefficients of the

affected reactions with respect to the flux through module m and oð1Þ denotes terms that vanish

when dA� and dBh approach zero (see Materials and methods for details). Note that Equation 9 was

previously derived by Chiu et al., 2012.

To compute the epistasis coefficient "y� for an arbitrary module m, we need to know the first and

second derivatives of function f2. Analogous to function f1, there is a finite number of parametric

families to which f2 can belong. Specifically, all modules fall into nine topological classes with respect

to the locations of the affected reactions within the module (see Figure 8), and each of these topolo-

gies defines a parametric family of function f2 (see Proposition 3 and its Corollary 3 in Materials and

methods). Most of these topological classes are broad and contain modules where the affected reac-

tions are strictly parallel, those where they are strictly serial as well as those where they are serial-

parallel. And it is easy to show that not all members of each topological class have the same sign of

"y�. However, modules from the same topological class where the affected reactions are strictly par-

allel or strictly serial fall into a finite number of topological sub-classes (see Figure 10 through Figure

14, Table 2 and Table 3). Overall, there are only 17 distinct topologies where the affected reactions

are strictly parallel (Table 2), which define 17 parametric sub-families of function f2. For all members

of these sub-families, Equation 9 yields "y� � 0 (see Proposition 7 in Materials and methods). Simi-

larly, there are only 11 distinct topologies where the affected reactions are strictly serial (Table 3),

which define 11 parametric sub-families of function f2. For all members of these sub-families, Equa-

tion 9 yields "y� � 1 (see Proposition 8 in Materials and methods).

The results of Theorem 1 and Theorem 2 together imply that the topological relationship at the

microscopic level between two reactions affected by mutations constrains the values of their epista-

sis coefficient at all higher phenotypic levels. Specifically, if negative epistasis is detected at any phe-

notypic level, the affected reactions cannot be strictly serial. And conversely, if strong positive

epistasis is detected at any phenotypic level, the affected reactions cannot be strictly parallel. In this

model, weak positive epistasis in the absence of any additional information does not imply any spe-

cific topological relationship between the affected reactions.

Sensitivity of results with respect to the magnitude of mutational
effects
Both Theorem 1 and Theorem 2 strictly hold only when the effects of both mutations are infinitesi-

mal. Next, I investigate how these results might change when the mutational effects are finite.

Propagation of epistasis between mutations with finite effect sizes
As mentioned above and discussed in detail in Materials and methods, all higher-level modules that

contain a lower-level module fall into three topological classes, which I label Mb, Mio and Mi,
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depending on the location of the lower-level module within the higher- level module (see Figure 7).

The topological class specifies the parametric family of the function f1 which maps the effective rate

constant y� onto the effective rate constant yn (see Equation 4). For all modules from the topological

class Mb, function f1 is linear (see Equation 29), which implies that the results of Theorem 1 hold

exactly even when the effects of mutations are finite. For modules from the topological classes Mio

and Mi, function f1 is hyperbolic (see Equation 30 and Equation 31), so that the results of Theorem

1 may not hold when the effects of mutations are finite. To test the validity of Theorem 1 in these

cases, I calculated the non-linear function f that maps the epistasis coefficient "y� onto the epistasis

coefficient "yn for 1000 randomly generated modules from each of the two topological classes and

for mutations that increase or decrease the effective rate constant of the lower-level module y� by

up to 50% (see Materials and methods for details).

The validity of Theorem 1 depended on the sign of mutational effects. When at least one of the

two mutations had a negative effect on y�, map f had the same properties as described in Theorem

1, even for mutations with large effect, that is, it had a fixed point �" in the interval ½0; 1� and this fixed

point was unstable. When the effects of both mutations on y� were positive and small, these results

also held in about 82% of sampled modules (see Figure 4A, Figure 4—figure supplement 1, Fig-

ure 4—figure supplement 2). In the remaining ~18% of sampled modules, the fixed point �" shifted

slightly above 1. As the magnitude of mutational effects increased, the fraction of sampled modules

with �">1 grew, reaching 42% when both mutations increased y� by 50%. In most of these cases, �"

remained below 2, and I found only one module with �">4 (Figure 4A, Figure 4—figure supplement

1, Figure 4—figure supplement 2). Whenever the fixed point existed, it was unstable, with the

exception of 12 modules for which f was very close to the identity map. For 289 modules (14.5%),

the fixed point disappeared when both mutations increased y� by 50%. In all these cases, "yn<"y�,

indicating that even large positive epistasis may decline as it propagates through the metabolic hier-

archy when the effects of mutations are finite.
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Figure 4. Sensitivity of results of Theorem 1 and Theorem 2 with respect to the magnitude of mutational effects. (A) Distribution of the position of the

fixed point �" of the function f that maps lower-level epistasis "y� onto higher-level epistasis "yn in modules with random parameters and for mutations

with positive effects on y� (see text and Materials and methods for details). All cases are shown in Figure 4—figure supplement 1 and Figure 4—

figure supplement 2. The effect size of both mutations is indicated on each panel. ‘No f.p’. indicates that no fixed point exists. (B) Fraction of sampled

modules (averaged across generating topologies) where mutations affect strictly serial reactions but the epistasis coefficient is less than 1, contrary to

the statement of Theorem 2 (see text and Materials and methods for details). All cases stratified by generating topology are shown in Figure 4—figure

supplement 3.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Distribution of the position of the fixed point in 1000 modules from the topological class Mio with random parameters.

Figure supplement 2. Distribution of the position of the fixed point in 1000 modules from the topological class Mi with random parameters.

Figure supplement 3. Fraction of sampled modules with different strictly serial generating topologies where the epistasis coefficient falls between 0.01

and 0.99.
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Emergence of epistasis between mutations with finite effect sizes
As mentioned above and discussed in detail in Materials and methods, modules where the reactions

affected by mutations are strictly parallel fall into 17 topological classes (see Table 2) and modules

where the reactions affected by mutations are strictly serial fall into 11 topological classes (see Table

3). The topological class specifies the parametric family of the function f2 which maps the rate con-

stants x and h of the affected reactions onto the effective rate constant y�. To test how well Theorem

2 holds when the effects of mutations are finite, I calculated "y� for randomly generated modules

from these topological classes and for mutations increasing or decreasing x and h by up to 50% (see

Materials and methods for details).

The validity of Theorem 2 depended most strongly on the topological relationship between the

reaction affected by mutations. Whenever the affected reactions were strictly parallel, the epistasis

coefficient at the level of module m was always less than or equal to zero, even when mutations per-

turbed the rate constants by as much as 50%, consistent with Theorem 2. This was also true for

strictly serial reactions, as long as both mutations had positive effects. When the affected reaction

were strictly serial and at least one of the mutations had a negative effect, the epistasis coefficient

was always positive, but in some cases it was less than 1 (see Figure 4B, Figure 4—figure supple-

ment 3), in disagreement with Theorem 2. This indicates that when the effects of mutations are not

infinitesimal, even mutations that affect strictly serial reactions can potentially produce negative epis-

tasis for higher-level phenotypes.

Taken together, these results suggest that both Theorem 1 and Theorem 2 extend reasonably

well, but not perfectly, to mutations with finite effect sizes. The domains of validity of both theorems

appear to depend on the sign of mutational effects. The way in which the theorems break down as

their assumptions are violated appears to be stereotypical: when the mutational effects increase,

more types of mutations produce weak epistasis, and the bias toward negative epistasis increases

during propagation from lower to higher levels of the metabolic hierarchy.

Beyond first-order kinetics: epistasis in a kinetic model of glycolysis
The results of previous sections revealed a relationship between network topology and the ensuing

epistasis coefficients in an analytically tractable model. However, the assumptions of this model are

most certainly violated in many realistic situations. It is therefore important to know whether the

same or similar rules of epistasis emergence and propagation hold beyond the scope of this model.

I address this question here by analyzing a computational kinetic model of glycolysis developed by

Chassagnole et al., 2002. This model keeps track of the concentrations of 17 metabolites, reactions

between which are catalyzed by 18 enzymes (Figure 5A and Figure 5—figure supplement 1; see

Materials and methods for details). This model falls far outside of the analytical framework intro-

duced in this paper: some reactions are second-order, reaction kinetics are non-linear, and in several

cases the reaction rates are modulated by other metabolites (Chassagnole et al., 2002).

Testing the predictions of the analytical theory in this computational model faces two complica-

tions. First, in a non-linear model, modules are no longer fully characterized by their effective rate

constants, even at steady state. Instead, each module is described by the flux between its I/O

metabolites which non-linearly depends on the concentrations of these metabolites. Consequently,

the effects of mutations and epistasis coefficients also become functions of the I/O metabolite con-

centrations. An epistasis coefficient at the level of module n can still be evaluated according to

Equation 5, with yn now representing the flux through module n evaluated at a particular concentra-

tion of the I/O metabolites. For simplicity, I computationally find the steady state of the full glycolysis

network and evaluate the epistasis coefficients only at this steady state, that is, for each module, I

keep the concentrations of the I/O metabolites fixed at their steady-state values for the full network

(see Materials and methods for details).

The second complication is that some control coefficients are so small that they fall below the

threshold of numerical precision. Perturbing such reactions has no detectable effect on flux (Fig-

ure 5—figure supplement 2). In the analysis that follows, I ignore such reactions because the epista-

sis coefficient defined by Equation 5 can only be computed for mutations with non-zero effects on

flux. In addition, the control coefficients of some reactions are negative, which implies that an

increase in the rate of such reaction decreases the flux through the module (Figure 5—figure sup-

plement 2). I also ignore such reactions because there is no analog for them in the analytical theory
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presented above. After excluding seven reactions for these reasons, I examine epistasis in 55 pairs

of mutations that affect the remaining 11 reactions.

The glycolysis network shown in Figure 5A (see also Figure 5—figure supplement 1) can be nat-

urally partitioned into four modules which I name ‘LG’ (lower glycolysis), ‘UGPP’ (upper glycolysis

and pentose phosphate), ‘GPP’ (glycolysis and pentose phosophate), and ‘FULL’. Modules LG and

UGPP are non-overlappng and both of them are nested in module GPP which in turn is nested in the

FULL module. Thus, at least for some reaction pairs it is possible to calculate epistasis coefficients at

three levels of metabolic hierarchy. There are three such pairs, and the results for them are shown in

Figure 5B. Epistasis for the remaining pairs of reactions can be evaluated only at one or two levels

of the hierarchy because these reactions belong to different modules at the lowest levels or because

their individual effects are too small. The results for all reaction pairs are shown in Figure 5—figure

supplement 3.
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Figure 5. Epistasis in a kinetic model of Escherichia coli glycolysis. (A) Simplified schematic of the model (see

Figure 5—figure supplement 1 for details). Different shades of gray in the background highlight four modules as

indicated (see text). Light blue circles represent metabolites. Reactions are shown as lines with dark gray boxes.

The enzymes catalyzing reactions whose control coefficients with respect to the flux through the module are

positive are named; other enzyme names are ommitted for clarity (see Table 5 and Table 6 for abbreviations).

Three reactions, catalyzed by PGI, PFK, PGDH, for which the epistasis coefficients are shown in panel B are

highlighted in dark blue, red, and orange, respectively. (B) Epistasis coefficients for flux through each module

between mutations perturbing the respective reactions, computed at steady state (see text and Materials and

methods for details). Reactions catalyzed by PGI and PGDH are strictly parallel (path g6p-f6p-fdp-gap contains

only PGI, path g6p-6pg-ribu5p-gap contains only PGDH and there is no simple path in UGPP between g6p and

gap that contains both PGI and PGDH). Reactions catalyzed by PGI and PFK are serial-parallel (path g6p-f6p-fdp-

gap contains both reactions, path g6p-f6p-gap contains only PGI, path g6p-6pg-ribu5p-f6p-fdp-gap contains only

PFK). Reactions catalyzed by PFK and PGDH are also serial-parallel (path g6p-6pg-ribu5p-f6p-fdp-gap contains

both reactions, path g6p-f6p-fdp-gap contains only PFK, path g6p-6pg-ribu5p-gap contains only PGDH).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Detailed schematic of the kinetic model of glycolysis.

Figure supplement 2. Control coefficients for the output flux in the FULL module.

Figure supplement 3. Control and epistasis coefficients for the fluxes through multiple sub-modules within

glycolysis.
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The strongest qualitative prediction of the analytical theory described above is that negative epis-

tasis for a lower-level phenotype cannot turn into positive epistasis for a higher-level phenotype,

while the converse is possible. Figure 5B and Figure 5—figure supplement 3 show that the data

are consistent with this prediction. Another prediction is that epistasis between strictly parallel reac-

tions should be negative. There is only one pair of reactions that are strictly parallel, those catalyzed

by glucose-6-phosphate isomerase (PGI) and 6-phosphogluconate dehydrogenase (PGDH), and

indeed the epistasis coefficients between mutations affecting these reactions are negative at all lev-

els of the hierarchy (Figure 5B). Finally, the analytical theory predicts that mutations affecting strictly

serial reactions should exhibit strong positive epistasis. There are 36 reaction pairs that are strictly

serial. Epistasis is positive between mutations in 33 of them, and it is strongly positive in 17 of them

(Figure 5—figure supplement 3). Three pairs of strictly serial reactions (those where one reaction is

catalyzed by PK and the other is catalyzed by PGI, PGDH, or PFK) exhibit negative epistasis (Fig-

ure 5—figure supplement 3). These results suggest that, although one may not be able to naively

extrapolate the rules of emergence and propagation of epistasis derived in the simple analytical

model to more complex networks, some generalized versions of these rules may nevertheless hold

more broadly.

Discussion
Genetic interactions are a powerful tool in genetics, and they play an important role in evolution.

Yet, how epistasis emerges from the molecular architecture of the cell and how it propagates to

higher-level phenotypes, such as fitness, remains largely unknown. Several recent studies made a

statistical argument that the structure of the fitness landscape (and, as a consequence, the epistatic

interactions between mutations at the level of fitness) may be largely independent of the underlying

molecular architecture of the organism (Martin, 2014; Lyons et al., 2020; Reddy and Desai, 2020).

If mutations are typically highly pleiotropic (i.e. affect many independent phenotypes relevant for fit-

ness) or are engaged in a large number of idiosyncratic epistatic interactions with other mutations in

the genome, the resulting fitness landscapes converge to certain limiting shapes, such as the Fisher’s

geometric model (Martin, 2014; Tenaillon, 2014). To what extent these arguments indeed apply in

practice is unclear. But if they do, most genetic interactions detected at the fitness level may be

uninformative about the architecture of the underlying biological networks.

In this paper, I took a ‘mechanistic’ approach, which is in a sense orthogonal to the statistical one.

In my model of a hierarchical metabolic network, mutations are highly pleiotropic (a mutation in any

enzyme affects all the fluxes in the module) and highly epistatic (a mutation in any enzyme interacts

with mutations in any other enzyme). Yet, these pleiotropic and epistatic effects appear to be suffi-

ciently structured that some information about the topology of the network is preserved through all

levels of the hierarchy. Indeed, the emergence and propagation of epistasis follow two simple rules

in my model. First, once epistasis emerges at some level of the hierarchy, its propagation through

the higher levels of the hierarchy depends weakly on the details of the network. Specifically, nega-

tive epistasis at a lower level induces negative epistasis at all higher levels and strong positive epista-

sis induces strong positive epistasis at all higher levels, irrespectively of the topology or the kinetic

parameters of the network. Second, what type of epistasis emerges in the first place depends on the

topological relationship between the reactions affected by mutations. In particular, negative epista-

sis emerges between mutations that affect strictly parallel reactions and positive epistasis emerges

between mutations that affect strictly serial reactions. Insofar as my model is relevant to nature, the

key conclusion from it is that epistasis at high-level phenotypes carries some, albeit incomplete,

information about the underlying topological relationship between the affected reactions.

These results have implications for the interpretation of empirically measured epistasis coeffi-

cients. It is often assumed that a positive epistasis coefficient between mutations that affect distinct

genes signals that their gene products act in some sense serially, whereas a negative epistasis coeffi-

cient is a signal of genetic redundency, that is, a parallel relationship between gene products

(Dixon et al., 2009). My results suggest that this reasoning is generally correct, but that the relation-

ship between epistasis and topology is more nuanced. In particular, the sign of the epistasis coeffi-

cient in my model constrains but does not uniquely specify the topological relationship, such that a

negative epistasis coefficient implies that the affected reactions are not strictly serial (but may or

may not be strictly parallel) and an epistasis coefficient exceeding unity excludes a strictly parallel
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relationship (but does not necessarily imply a strictly serial relationship). My model suggests that one

should also be careful with inferences going in the other direction, that is, extrapolating the patterns

of epistasis measured at the biochemical level to those at the level of fitness. For example, if one

wishes to infer the past evolutionary trajectory of an enzyme and finds two amino acid changes that

exhibit a positive interaction at the level of enzymatic activity, it does not automatically imply that

these mutations will exhibit a positive interaction at the level of fitness.

The strongest results presented here rely on several assumptions. I proved Theorem 1 and Theo-

rem 2 in the limit of vanishingly small mutational effects. Some results of the metabolic control analy-

sis, notably the summation theorem, are sensitive to this assumption (Bagheri-Chaichian et al.,

2003; Bagheri and Wagner, 2004). To test the sensitivity of my analytical results with respect to this

assumption, I used numerical simulations of networks with randomly sampled kinetic parameters and

found that the results hold reasonably well when the effects of mutations are not infinitesimal.

The most restrictive assumption in the present work is that of first-order kinetics. Networks with

only first-order kinetics clearly fail to capture some biologically important phenomena, such as sign

epistasis (Weinreich et al., 2005; Chou et al., 2014; Ewald et al., 2017; Kemble et al., 2020). I dis-

cuss possible ways to relax this assumption below. But at present, a major question remains whether

the rules of epistasis and propagation described here hold for realistic biological networks and

whether they can be directly used to interpret empirical epistasis coefficients. My analysis of a fairly

realistic computational model of glycolysis cautions against overinterpreting empirical epistasis coef-

ficients using the rules derived here. But it also suggests that more general rules of propagation and

emergence of epistasis may be found for more realistic networks. Thus, the simple rules derived

here should probably be thought of as null expectations.

Relaxing the first-order kinetics assumption is analytically challenging because it is critical for

replacing a module with a single effective reaction without altering the dynamics of the rest of the

network. Although such lossless replacement is almost certainly not possible in networks with more

complex kinetics, advanced network coarse-graining techniques may offer a promising way forward

(Rao et al., 2014). Flux balance analysis (FBA) is an alternative approach (Orth et al., 2010). FBA is

appealing because it entirely removes the dependence of the model on reaction kinetics. However,

this comes at a substantial cost. In FBA models, fitness and other high-level phenotypes become

independent of the internal kinetic parameters, which is clearly unrealistic. Nevertheless, FBA is often

very good at capturing the effects of mutations that change the topology of metabolic networks,

such as reaction additions and deletions (reviewed in Gu et al., 2019). At the same time, there is no

natural way within FBA to model mutations that perturb reaction kinetics (He et al., 2010;

Alzoubi et al., 2019). In short, FBA and my approach are complementary (see Appendix 5 for a

more detailed discussion).

Generic properties of epistasis in biological systems
Simple models help us identify generic phenomena—those that are shared by a large class of sys-

tems—which should inform our ‘null’ expectations in empirical studies. Deviations from such null in a

given system under examination inform us about potentially interesting peculiarities of this system.

The model presented here suggests several generic features of epistasis between genome-wide

mutations.

Epistasis has two contributions
My analysis shows that the value of an epistasis coefficient measured for a higher level phenotype is

a result of two contributions (Domingo et al., 2019), propagation and emergence, which corre-

spond to two terms in Equation 6 (or the more general Equation 49). The first term, propagation,

shows that if two mutations exhibit epistasis for a lower-level phenotype they also generally exhibit

epistasis for a higher-level phenotype. The second contribution comes from the fact that lower-level

phenotypes map onto higher-level phenotypes via non-linear functions. This is true even in a simple

model with linear kinetics considered here. As a result, even if two mutations exhibit no epistasis at

the lower-level phenotype, epistasis must emerge for the higher-level phenotype, as previously

pointed out by multiple authors (e.g. Kacser and Burns, 1981; DePristo et al., 2005; Martin et al.,

2007; Chiu et al., 2012; Otwinowski et al., 2018; Domingo et al., 2019; Husain and Murugan,

2020).
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Epistasis depends on the genetic background and environment
My analysis shows that the value of an epistasis coefficient for a particular pair of mutations is in

large part determined by the topological relationship between reactions affected by them. Since the

topology of the metabolic network itself depends on the genotype (which genes are present in the

genome) and on the environment (which enzymes are active or not), the topological relationship

between two specific reactions might change if, for example, a third mutation knocks out another

enzyme or if an enzyme is up- or down-regulated due to an environmental change (see Figure 3).

Thus, we should generically expect epistasis between mutations to depend on the environment and

on the presence or absence of other mutations in the genome. In other words, G� G� G interac-

tions (higher-oder epistasis) and G� G� E interactions (environmental epistasis) should be common

(Snitkin and Segrè, 2011; Flynn et al., 2013; Lindsey et al., 2013; Taylor and Ehrenreich, 2015;

Sailer and Harms, 2017a). This fact complicates the interpretation of inter-gene epistasis since

mutations in the same pair of genes can exhibit qualitatively different genetic interactions in different

strains, organisms and environments, as has been observed (St Onge et al., 2007; Musso et al.,

2008; Tischler et al., 2008; Dowell et al., 2010; Heigwer et al., 2018; Li et al., 2019). However,

the situation may not be hopeless because the topological relationship between two reactions can-

not change arbitrarily after addition or removal of a single reaction. For example, if two reactions

are strictly parallel, removing a third reaction does not alter their relationship (see Proposition 5).

Thus, comparing matrices of epistasis coefficients measured in different environments or genetic

backgrounds could inform us about how the organism rewires its metabolic network in response to

these perturbations (St Onge et al., 2007; Musso et al., 2008; Heigwer et al., 2018; Li et al.,

2019).

Skew in the distribution of epistasis coefficients
Studies that measure epistasis for fitness-related phenotypes among genome-wide mutations usually

find both positive and negative epistases, but the preponderance of positive and negative epistasis

varies. Some authors reported a skew toward positive interactions among deleterious mutations

(Jasnos and Korona, 2007; He et al., 2010; Johnson et al., 2019), whereas others reported a skew

toward negative interactions (Szappanos et al., 2011; Costanzo et al., 2016). Beneficial mutations

appear to predominantly exhibit negative epistasis, also known as ‘diminishing returns’ epistasis

(e.g. Martin et al., 2007; Khan et al., 2011; Chou et al., 2011; Kryazhimskiy et al., 2014;

Schoustra et al., 2016). The reasons for these patterns are currently unclear. Several recent theoreti-

cal papers offer possible statistical explanations for them (Martin, 2014; Lyons et al., 2020;

Reddy and Desai, 2020). On the other hand, mechanistic predictions for the distribution of epistasis

coefficients are not yet available (but see Sanjuán and Nebot, 2008; Macı́a et al., 2012; Chiu et al.,

2012). The present work does not directly address this problem either, but it provides some addi-

tional clues.

First, my model shows that the sign of epistasis at least to some extent reflects the topology of

the network. Thus, the distribution of epistasis coefficients at high-level phenotypes in real organ-

isms should ultimately depend on the preponderance of different topological relationships between

the edges in biological networks. It then seems a priori unlikely that positive and negative interac-

tions would be exactly balanced. Thus, we should expect the distribution of epistasis coefficients to

be skewed in one or another direction.

The second observation is that in the metabolic model considered here a positive epistasis coeffi-

cient at one level of the hierarchy can turn into a negative one at a higher level, but the reverse is

not possible. This bias toward negative epistasis at higher-level phenotypes appears to be even

stronger in networks with saturating kinetics (Figure 5 and Figure 5—figure supplement 3).

The third observation is that epistasis among beneficial and deleterious mutations affecting meta-

bolic genes should be identical at the level where they arise, provided that beneficial and deleterious

mutations are identically distributed among metabolic reactions. Thus, a stronger skew toward nega-

tive epistasis among beneficial mutations at the level of fitness could arise in my model for two

mutually non-exclusive reasons. One possibility is that beneficial mutations tend to affect certain spe-

cial subsets of genes, those that predominantly give rise to negative epistasis. For example, benefi-

cial mutations may for some reason predominantly arise in enzymes that catalyze strictly parallel

reactions. Another possibility is that when epistasis between beneficial mutations propagates
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through the metabolic hierarchy it tends to exhibit a stronger negative bias compared to epistasis

between deleterious mutations. Indeed, this phenomenon arises in my model among mutations with

large effect (see Figure 4A, Figure 4—figure supplement 1 and Figure 4—figure supplement 2).

Epistasis is generic
Perhaps the most important—and also the most intuitive—conclusion of this work is that we should

expect epistasis for high-level phenotypes, such as fitness, to be extremely common. Consider first a

unicellular organism growing exponentially. Its fitness is fully determined by its growth rate, which

can be thought of as the rate constant of an effective biochemical reaction that converts external

nutrients into cells (see Appendix 6 for a simple mathematical model of this statement). In other

words, growth rate is the most coarse-grained description of a metabolic network and, as such, it

depends on the rate constants of all underlying biochemical reactions. Many previous studies have

shown that within-protein epistasis is extremely common (e.g. Lunzer et al., 2005; DePristo et al.,

2005; Sailer and Harms, 2017b; Husain and Murugan, 2020). Present work shows that, once epis-

tasis arises at the level of protein activity, it will propagate all the way up the metabolic hierarchy

and will manifest itself as epistasis for growth rate. It also suggests that growth rate is a generically

non-linear function of the rate constants of the underlying biochemical reactions, such that all muta-

tions that affect growth rate individually would also exhibit pairwise epistasis for growth rate with

each other (Kacser and Burns, 1981; DePristo et al., 2005; Martin et al., 2007; Chiu et al., 2012;

Otwinowski et al., 2018; Husain and Murugan, 2020).

In more complex organisms and/or in certain variable environments, it may be possible to decom-

pose fitness into multiplicative or additive components, for example, plant’s fitness may be equal to

the product of the number of seeds it produces and their germination probability, as pointed out

by Chou et al., 2011. Then, mutations that affect different components of fitness would exhibit no

epistasis. However, such situations should be considered exceptional, as they require fitness to be

decomposable and mutations to be non-pleiotropic.

If epistasis is in fact generic for high-level phenotypes, why do we not observe it more frequently?

For example, a recent study that tested almost all pairs of gene knock-out mutations in yeast found

genetic interactions for fitness for only about 4% of them (Costanzo et al., 2016). One possibility is

that many pairs of mutations exhibit epistasis that is simply too small to detect with current methods.

As the precision of fitness measurements improves, we would then expect the fraction of interacting

gene pairs to grow. Another possibility is that systematic shifts in the distribution of estimated epis-

tasis coefficients away from zero are taken by researchers as systematic errors rather than real phe-

nomena, and are normalized out. Thus, some epistasis that would otherwise be detectable may be

lost during data processing.

If epistasis is indeed as ubiquituous as the present analysis suggests, it would call into question

how observations of inter-gene epistasis are interpreted. In particular, contrary to a common belief,

a non-zero epistasis coefficient does not necessarily imply any specific functional relationship

between the components affected by mutations beyond the fact that both components somehow

contribute to the measured phenotype (Boyle et al., 2017). The focus of future research should

then be not merely on documenting epistasis but on developing theory and methods for a robust

inference of biological relationships from measured epistasis coefficients.

Materials and methods

Key ideas and logic of proofs of Theorems 1 and 2
Before proceeding to the detailed proofs of Theorem 1 and Theorem 2, I informally outline some

key ideas and the basic logic.

The central object of the theory is a metabolic module. Modules have two key properties. First, a

module is somewhat isolated from the rest of the metabolic network, in the sense that all metabo-

lites inside it interact with only two metabolites outside, the I/O metabolites. The second property is

that the metabolites within the module are sufficiently connected that each of them individually as

well as any subset of them collectively can achieve a quasi-steady state (QSS), given the concentra-

tions of the remaining metabolites. This property is proven in Proposition 1.
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When some metabolites are at QSS, they can be effectively removed from the network and

replaced with effective reactions among the remaining metabolites. In other words, one can ‘coarse-

grain’ the network by removing metabolites. This approach is a standard biochemical-network

reduction technique (Segel, 1988); for example, the Briggs-Haldane derivation of the Michaelis-

Menten formula is based on this idea. In general, the resulting effective reactions have more com-

plex (non-linear) kinetics than the original reactions. However, when the original reactions are first-

order, the effective reactions are also first-order, that is, there is no increase in complexity. In Net-

work coarse graining and an algorithm for evaluating the effective rate constant for an arbitrary

module, I formally define the coarse-graining procedure (CGP) that eliminates one or multiple

metabolites and replaces them with effective reactions.

CGP is an essential concept in my theory. I use it to compute the QSS concentrations for internal

metabolites within a module (Corollary 1) and thereby prove Proposition 1, mentioned above. Since

any module m can achieve a QSS at any concentrations of its I/O metabolites and since any module

has only two I/O metabolites, it can be replaced with a single effective reaction (Corollary 2). CGP

provides a way to calculate the rate constant y� of this reaction. In other words, the CGP is an algo-

rithm for evaluating function Fð~x�Þ in Equation 1 for any module m.

CGP has an important property: its result does not depend on the order in which metabolites are

eliminated. Therefore, in computing the effective rate constant of a module, we can choose any con-

vinient way to eliminate its metabolites. Suppose that one module m is nested within another module

n as in Figure 1A. A convenient way to compute the effective rate yn of the larger module is to first

coarse-grain the smaller module m, replacing it with an effective rate y�, and then eliminate all the

remaining metabolites in n. Since effective rates after coarse-graining do not depend on the order

of metabolite elimination, yn must depend on the rate constants ~x� only indirectly, through y�. In

other words, all the information about the smaller module m that is relevant for the performance of

the larger module n is contained in y�. Therefore, if a mutation or mutations perturb only reactions

inside of the smaller module m, we only need to know their effects on the effective rate constant y�
to completely understand how they will perturb the performance of the larger module n. Specifically,

if we have two such mutations A and B, all the information about them is contained in three num-

bers, dAy�, d
By� and "y�. Theorem 1 then describes how epistasis at the level of module m propa-

gates to epistasis at the level of module n.

The proof of Theorem 1 proceeds as follows. Let a be the effective reaction with rate constant y�
that represents module m within the larger module n, and consider yn as a function of y�, as in Equa-

tion 4. To obtain f1ðy�Þ, it is convenient to first eliminate all metabolites that do not participate in

reaction a. No matter what the initial structure of module n is, such coarse-graining will produce only

one of three topologically distinct ‘minimal’ modules, which differ by the location of reaction a with

respect to the I/O metabolites of module n (Figure 7). This implies that the function f1 can belong to

three parameteric families, where the parameters are the effective rate constants of reactions other

than a in each of the minimal modules. This is the essence of Proposition 2. Then Theorem 1 can be

easily proven by explicitly evaluating the first- and second-order control coefficients for each of the

three functions and showing that the statements of the theorem hold for all of them, irrespectively

of the function’s parameters.

Now consider two reactions a and b with rate constants x and h, and imagine the two mutations

A and B that affect these reactions. To understand what value of "y� will occur, we need to obtain y�

as a function of x and h (Equation 3). To do so, it is convenient to first eliminate all metabolites that

do not participate in reactions a or b. No matter what the initial structure of module m is, such

coarse-graining will produce only one of nine topologically distinct minimal modules, which differ by

the location of reactions a and b with respect to the I/O metabolites of module m and each other

(Figure 8). This implies that the function f2 can belong to nine parameteric families. This is the

essence of Proposition 3 and Corollary 3.

How does the topological relationship between reactions a and b translate into epistasis? First,

there are only three types of relationships between any pair of reactions in a module: strictly serial,

strictly parallel, or serial-parallel (see Figure 3). Second, Proposition 4 and Corollary 4 show that

coarse-graining does not alter the strict relationships, that is, if reactions a and b are strictly serial or

strictly parallel before coarse-graining they will remain so after coarse-graining. This is important

because it implies that to prove Theorem 2 we do not need to consider an infinitely large space of
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all modules but only a much smaller space of all minimal modules, that is, those that have only those

metabolites that participate in the affected reactions a and b. Although the space of all minimal

modules is still infinite, the space of their topologies is finite (see Figure 8). For some minimal topol-

ogies, the connection between the strictly serial or strictly parallel relationship and epistasis can be

established very easily. For example, if reaction a and reaction b both share an I/O metabolite as a

substrate (see topological class Mio;io;IO in Figure 8), then they are always strictly parallel, no matter

what the rest of the module looks like. Evaluating the first- and second-order control coefficients for

the function f2 that corresponds to this topological class reveals that "y� � 0 for any parameter val-

ues of f2.

Unfortunately, most topological classes are too broad and include modules where reactions a and

b are strictly serial as well as modules where they are strictly parallel or serial-parallel (e.g., class

Mio;io;;). Consequently, the sign of "y� for such modules can change depending on the values of the

rate constants. However, since the number of distinct minimal topologies is finite, it is possible to

identify all minimal topologies where the reactions a and b are strictly serial or strictly parallel. These

topological sub-classes define parametric sub-families of function f2, and we can explicitly calculate

"y� for all such functions. However, such brute-force approach is extremely cumbersome because

the number of distinct minimal topologies is very large.

Fortunately, the following simple and intuitive fact greatly simplifies this problem. If two reactions

are strictly serial or strictly parallel, this relationship does not change if a third reaction is removed

from the module. This statement is the essence of Proposition 5. However, if the two reactions are

serial-parallel, removal of a third reaction can change the relationship to a strictly serial or a strictly

parallel one. As a consequence, there exist certain most connected ‘generating’ topologies where

the relationship between the focal reactions is strictly parallel or strictly serial, and any other strictly

serial minimal topology can be produced from at least one of the generating topologies by removal

of reactions. This is the essence of Proposition 6. All generating topologies can be discovered by a

simple algorithm provided in Appendix 3. They are listed in Table 2 and Table 3 and shown in Figure

10 through Figure 14. Each generating topology defines a parametric sub-family of function f2, and I

explicitly evaluate the first- and second-order control coefficients for all these sub-families (see Prop-

osition 7 and Proposition 8) which essentially completes the proof of Theorem 2.

Network coarse-graining
Notations and definitions
Here, I give a more precise definition of the model and introduce additional notations and defini-

tions. As mentioned above, all reactions are first order and reversible. Thus, each reaction i $ j has

one substrate i 2 A and one product j 2 A, and it is fully described by its rate constant xij. By defini-

tion, xii ¼ 0. I denote the set of all reactions by R ¼ i $ j : i; j 2 A; xij>0
� 	

. The dynamics of metabo-

lite concentrations S1; . . . ; Sn in the network N are governed by equations

_Si ¼
Xn

j¼1

xji Sj �Di Si; i 2 A (10)

where

Di ¼
Xn

j¼1

xij; i2 A: (11)

In what follows, it will be important to distinguish three types of reactions within a module, based

on their topological relationship to the I/O metabolites of that module. The topology of the module

m is determined by its set of reactions R� ¼ i$ j 2 R : i; j2 A� [AIO
�

n o

. I call all reactions where both

the substrate and the product are internal to module m as reactions internal to m, and I denote the

set of all such reactions by Ri
� � R�. For example, module m in Figure 1A has one internal reaction

3$ 4. I call all reactions where one of the metabolites is internal to m and the other is an I/O metabo-

lite as the i/o reactions for m, and I denote the set of all such reactions by Rio
� � R�. (I reserve upper-

case ‘I/O’ for metabolites and use lower-case ‘i/o’ for reactions.) For example, module m in

Figure 1A has three i/o reactions 1$ 3, 1$ 4 and 2$ 4. Finally, I refer to reactions between any
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two I/O metabolites for module m as bypass reactions for module m, and I denote the set of all such

reactions by Rb
� � R�. For example, module m in Figure 1A has no bypass reactions but reaction

1$ 5 is a bypass reaction for module n. By definition, all these three sets of reactions Ri
�, R

io
� and Rb

�

are non-overlapping, and R� ¼ Ri
� [Rio

� [Rb
�.

Another important concept are the simple paths that lie within a module. For any two metabolites

i; j 2 A [ AIO
� , I denote a simple path between them that lies within m as p

�
ij or, equivalently as

i $ k1 $ . . . $ km $ j (where all k‘ 2 A�). I say that each of the metabolites k‘ belongs to (or is con-

tained in) path p
�
ij (denoted by k‘ 2 p

�
ij ). Similarly, I say that each of the reactions k‘ $ k‘þ1 belong to

(or are contained in) path p
�
ij (denoted by k‘ $ k‘þ1 2 p

�
ij ). I will drop superindex m from p

�
ij if it is clear

what module is being referred to.

Network coarse graining and an algorithm for evaluating the effective rate
constant for an arbitrary module
In this section, I formally introduce and characterize the coarse-graining procedure (CGP). First, I

introduce the main idea, which is to eliminate a metabolite that is at QSS and to replace it with a set

of new reactions between metabolites adjacent to the eliminated one. This is exactly analogous to

the star-mesh transformation in the theory of electric circuits (Versfeld, 1970). The resulting network

is a coarse-grained version of the original network in the sense that it has one less metabolite. Next,

I define the CGP, which is simply multiple metabolite eliminations applied successively. I prove Prop-

osition 1, which justifies applying the CGP to a whole module and replacing it with a single effective

reaction (Corollary 2). Finally, I show how to apply the CGP in practice to compute function F from

Equation 1 for modules with some simple topologies.

Elimination of a single metabolite
I begin by outlining the main idea behind the CGP, which is to replace one metabolite internal to a

module with a series of effective reactions between metabolites adjacent to it. If the effective rate

constants are defined appropriately, the dynamics of all metabolites in the resulting coarse-grained

network are the same as in the original network, provided that the eliminated metabolite is at QSS

in the original network.

To formalize this idea, suppose that module � ¼ A�;~x�
� �

contains m internal metabolites. Let

k 2 A� be the internal metabolites that will be eliminated. Let Afkg ¼ A n fkg be the reduced metabo-

lite set and let~xfkg be the reduced ðn� 1Þ � ðn� 1Þ matrix of rate constants defined by

x
fkg
ij ¼ xijþ

xik xkj

Dk

; i; j 2 Afkg; i 6¼ j; (12)

x
fkg
ii ¼ 0; i 2 Afkg; (13)

where Dk is given by Equation 11.

Such metabolite elimination has three properties that follow immediately from Equation 12 and

Equation 13. First, the rate constants of reactions do not change as long as the eliminated metabo-

lite does not participate in them. Mathematically, x
fkg
ij ¼ xij for all metabolites i and j that are not

adjacent to the eliminated metabolite k. In particular, this is true for all metabolites external to mod-

ule m. Second, because equilibrium constants have the property Kij ¼ Ki‘K‘j for any metabolites i; j; ‘,

the rate constants x
fkg
ij obey Haldane’s relationships. Therefore, the reduced metabolite set Afkg and

the reduced rate matrix~xfkg define a new ‘coarse-grained’ metabolic network N fkg ¼ Afkg;~xfkg
� �

. It is

easy to show that subnetwork m after the elimination of metabolite k is still a module. Third, the reac-

tion set of module m (i.e., its topology) in the coarse-grained network N fkg depends only on the reac-

tion set of this module in the original network N , but not on the particular values in the rate matrix

~x�.

Next, I will show that the dynamics of metabolites in the coarse-grained network N fkg are identi-

cal to the dynamics of metabolites in the original network N where metabolite k is at QSS. Note

that if metabolite k is at QSS in the network N , its concentration is given by

Kryazhimskiy. eLife 2021;10:e60200. DOI: https://doi.org/10.7554/eLife.60200 20 of 67

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.60200


Sk ¼
X

j2AIO
� [A�nfkg

xjk Sj

Dk

; (14)

which follows from Equation 10. Now, the dynamics of metabolites in the network N fkg are gov-

erned by equations

_Si ¼
X

j2Afkg

x
fkg
ji Sj�D

fkg
i Si; for i 2 Afkg; (15)

where D
fkg
i ¼Pj2Afkg x

fkg
ij . As mentioned above, x

fkg
ij ¼ xij for all pairs of metabolites where at least

one metabolite is external to module m. Therefore, Equation 15 for the external metabolites are

identical to Equation 10 that govern the dynamics of these metabolites in the original network N .

Next, consider the dynamics of the I/O and internal metabolites for module m in the coarse-grained

network N fkg, that is, those in the set AIO
� [A� n fkg. For any such metabolite i, the sum in the right-

hand side of Equation 15 can be re-written as

X

j2AIO
� [A�nfkg

x
fkg
ji Sj ¼

X

j2AIO
� [A�nfkg

xji þ
xjk xki

Dk

� �

Sj�
xik xki

Dk

Si

¼
X

j2AIO
� [A�nfkg

xji Sjþ xki
X

j2AIO
� [A�nfkg

xjk Sj

Dk

� xik xki

Dk

Si:

(16)

According to Equation 14, the second term in Equation 16 equals xkiSk, so that Equation 16

becomes

X

j2AIO
� [A�nfkg

x
fkg
ji Sj ¼

X

j2AIO
� [A�

xjiSj�
xik xki

Dk

Si: (17)

For any metabolite i 2 AIO
� [A� n fkg, the second term in the righthand side of Equation 15 can be

re-written as

D
fkg
i ¼

X

j2AIO
� [A�nfkg

xijþ
xik xkj

Dk

� �

� xik xki

Dk

¼Di �
xik xki

Dk

: (18)

Substituting Equation 17 and Equation 18 into Equation 15, we see that Equation 15 is in fact

equivalent to Equation 10 for all i 2 A n fkg with Sk given by Equation 14.

The coarse-graining procedure (CGP)
Here, I define the CGP for an arbitrary set of internal metabolites by applying metabolite elimination

recursively.

Let E � A� be an arbitrary subset of metabolites internal to module m in the metabolic network N
and let nE be the number of elements in E. Let AE ¼ A n E be the reduced metabolite set after the

metabolites have been eliminated. I define the reduced ðn� nEÞ � ðn� nEÞ matrix of rate constants

~xE as follows. If nE ¼ 1, the matrix ~xE is defined by Equation 12 and Equation 13. If nE>1, then I

define it recursively. Suppose that all metabolites in E other than some metabolite k 2 E have been

previously eliminated, such that the coarse-grained network N E0 ¼ AE0
;~xE

0� �
is defined, with the set

of eliminated metabolites E0 ¼ E n fkg, AE0 ¼ A n E0, and the known matrix ~xE
0
. Then, I define the

matrix~xE through the elimination of metabolite k from N E0
, that is,

xEij ¼ xE
0

ij þ
xE

0
ik x

E0
kj

DE0
k

; i; j2 AE; i 6¼ j; (19)

xEii ¼ 0; i 2 AE; (20)

with
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DE0
k ¼

X

j2AE0
xE

0
kj : (21)

I define the the coarse-graining procedure that eliminates the metabolite set E as a map

CGE :N 7!N E ¼ AE;~xE
� �

:

As with the elimination of a single metabolite, it is straightforward to show that the rate constants

xEij obey Haldane’s relationships, so that N E is indeed a metabolic network. CGE maps module m

within the metabolic network N onto a subnetwork �0 within the metabolic network N E. It is

straightforward to show that �0 is a module. Whenever there is no ambiguity, I will label both the

original and the coarse-grained versions of the module by m. To simplify notations, if the CGP

Box 1. Properties of the coarse-graining procedure.

The coarse-graining procedure CGE eliminating metabolites in set E � A� has the following useful properties which follow from

Equation 24.

1. The effective rate constants xEij do not depend on the order in which metabolites are eliminated. Therefore, the composi-

tion of coarse-graining procedures is commutative, that is, if E ¼ E1 [ E2, where E1 and E2 are two non-overlapping sub-
sets of A�, then

CGE1 �CGE2 ¼CGE2 �CGE1 ¼CGE:

2. If at least one of the metabolites i or j is not adjacent to any of the eliminated metabolites, then xEij ¼ xij. In particular,

xEij ¼ xij if either i and/or j are external to m.

3. The topology of module m after the application of CGE depends only on its original topology but not on the values of its
rate constants~x�.

4. If both metabolites i and j are adjacent to at least one eliminated metabolite, then xEij ¼ xij þ a; where a � 0 depends only

on the rate constants of reactions that involve at least one eliminated metabolite. In particular, if both k and ‘ are from

A n E, then xEij is independent of xk‘.

5. If E ¼ A�, then the effective rate constant y� of module m depends on the rate matrix~x� but does not depend on any

other reaction rates, that is, Equation 1 holds. Furthermore, the functional form of Fð~x�Þ depends only on the topology of

module m, that is, all modules with the same topology are mapped onto y� by the same function F.

6. Suppose that module m is nested in a larger module n ¼ An;~xnð Þ (see Figure 1A). It follows from Property #1 that

CGn ¼ CG� � CGAnnA� , that is, yn can be obtained by carrying out the CGP in two stages, by first eliminating module m and
replacing it with the effective reaction with the rate constant y� and then eliminating the remaining metabolites in An. In

the network N � after the first stage of coarse-graining, all rate constants~xnn� are identical to those in the original network,

that is, they are independent of ~x�, by virtue of Property #2. Therefore yn depends on the rate constants ~x� of reactions

within module m only through the effective rate constant y� of module m. In other words, Equation 4 holds.

7. If, in the original network N , metabolites i and j are adjacent or connected by a simple path that contains only the elimi-

nated metabolites, then metabolites i and j are adjacent in the coarse-grained network N E.

8. If, in the metabolic network N , metabolites i and j are not adjacent (i.e. xij ¼ 0) and no simple path exists within the set E

(i.e. such that all non-terminal metabolites in this path are from E) that connects metabolites i and j, then metabolites i

and j are also not adjacent in the coarse-grained network N E (i.e., xEij ¼ 0).

9. It follows from properties #7 and #8 that for a simple path p‘1 ‘m ¼ ‘1 $ ‘2 $ � � � $ ‘m to exist in module m after the appli-
cation of CG�, it is neccessary and sufficient that for each i ¼ 1; . . . ;m� 1, either ‘i and ‘iþ1 are adjacent in the original
module m or there exists a simple path ‘i $ � � � $ ‘iþ1 within the original module m all of whose non-terminal metabolites
are from E.
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eliminates the entire module m (i.e., if E¼ A�), I label it CG
�. I label the coarse-grained network that

restults from the application of CG� by N � and I label the effective rate of the reaction substituting

module m in network N � as y�.

Intuitively, the result of coarse-graining should not depend on the order in which the metabolites

are eliminated. To see this, let us obtain explicit (i.e. not recursive) expressions for xEij . First, by apply-

ing the recursion Equation 19, it is easy to show that elimination of two metabolites E ¼ fk; ‘g yields

effective rate constants

x
fk;‘g
ij ¼ x

fkg
ij þ

x
fkg
i‘ x

fkg
‘ j

D
fkg
‘

¼ xijþ
Dk xi‘ x‘jþD‘ xik xkjþ xik xk ‘ x‘ j þ xi‘ x‘k xkj

DkD‘� xk ‘ x‘k
(22)

¼ xijþ
xi‘ x‘j

D
fkg
‘

þ xik xkj

D
f‘g
k

þ xik xk ‘ x‘ j

D
f‘g
k D‘

þ xi‘ x‘k xkj

D
fkg
‘ Dk

; i; j 2 A n fk; ‘g; i 6¼ j: (23)

As expected, Equation 22 and Equation 23 are symmetric with respect to the eliminated metab-

olites k and ‘. Extrapolating from Equation 23, it is possible to show that for an arbitrary metabolite

subset E� A� that contains nE metabolites,

xEij ¼ xij þ
XnE

L¼1

X

k1;...;kLð Þ

xik1
1

xk1k2

D
En k1f g
k1

� � � xkL�1j

D
En k1;k2;...;kLf g
kL

; i; j 2 A nE; i 6¼ j: (24)

Here, the second sum is taken over all nE!=ðnE �LÞ! ordered lists of metabolites k1; . . . ;kLð Þ from E.

Each list can be thought of as a simple path within E that connects metabolites i and j. The proof of

Equation 24 can be found in Appendix 1. As expected, Equation 24 shows that the effective reation

rate xEij does not depend on the order in which metabolites are eliminated. This and other properties

of the CGP are listed in Box 1.

One of key building blocks of the proofs of Theorem 1 and Theorem 2 is the fact that modules

can be classified into a finite number of topological classes (see below). To arrive at this classifica-

tion, it will be convenient to define a composition of coarse-graining procedures, as follows. Sup-

pose that CGE1 and CGE2 are two coarse-graining procedures of network N for two subsets of

metabolites E1 � A� and E2 � A�. If the sets E1 and E2 are non-overlapping, CGE2 is also defined for

the coarse-grained network N E1 which is the result of applying CGE1 to the original network N . The

result of applying CGE2 to the N E1 is called the composition of coarse-graining procedures CGE1 and

CGE2 of the original network N and is denoted as CGE1 � CGE2 .

As defined above, coarse-graining is a formal procedure, and there is no a priori guarantee that

(a) it can in fact be carried out for every set of metabolites and (for example, because a metabolite

set does not have a steady-state solution); and (b) it will not distort the dynamics in the rest of the

network. The following proposition alleviates both of these concerns and thereby justifies the use of

the CGP for any subset of internal metabolites within a module (including the entire module m). It is

straightforward to prove it by induction, using the same logic as in the elimination of a single

metabolite.

Proposition 1
Let E be any subset of metabolites internal to module m. Then,

1. There exists a joint QSS solution Si for all metabolites i 2 E, given the concentrations of the
remaining internal and I/O metabolites for module m.

2. The dynamics of all remaining metabolites in A n E in the coarse-grained metabolic network

N E are the same as in N where all metabolites in E are at QSS.

Corollary 1
Without loss of generality, suppose that the I/O metabolites for module m are labeled 1 and 2 and

its internal metabolites are labeled A� ¼ f3; 4; . . . ;mg. There exists a unique QSS Si for all i 2 A�. The

QSS concentrations can be obtained by recursively applying equation.

Kryazhimskiy. eLife 2021;10:e60200. DOI: https://doi.org/10.7554/eLife.60200 23 of 67

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.60200


Sk ¼
1

D
fkþ1;...;mg
k

x
fkþ1;...;mg
1k S1 þ x

fkþ1;...;mg
2k S2þ

X

j2f3;...;k�1g
x
fkþ1;...;mg
jk Sj

0

@

1

A (25)

for k¼ 3;4; . . . ;m.

Equation 25 follows from Equation 10 for the coarse-grained network obtained by eliminating

metabolites k þ 1; . . . ;m.

Corollary 2
Without loss of generality, suppose that the I/O metabolites for module m are labeled 1 and 2. Mod-

ule m can be replaced with a single effective reaction between its I/O metabolites, whose rate con-

stant y� can be calculated using Equation 19 and Equation 20 or Equation 24. The dynamics of all

metabolites in the resulting coarse-grained metabolic network are identical to their dynamics in the

original network N where all metabolites internal to module m are at the QSS determined by

Equation 25.

Computation of effective rate constants for simple modules
Corollary 2 provides a method for replacing any module m at QSS with an effective rate y� ¼ Fð~x�Þ,
which can be calculated using Equation 19 and Equation 20 or Equation 24. Here, I show how to

implement this calculation for three simple metabolic modules.

Linear pathway
Consider a linear pathway with I/O metabolites 1 and m and internal metabolites 2; 3; . . . ;m� 1

(Figure 6A). This labeling of metabolites is more convenient for the linear pathway. To calculate y�, I

will apply recursion Equation 19 and Equation 20. I start by eliminating metabolite 2. After this ini-

tial coarse-graining step, the resulting module is still a linear pathway, where two reactions

1 $ 2 $ 3 were replaced with a single reaction 1 $ 3 with the effective rate constant.

x
f2g
13

¼ x12 x23

x21þ x23
¼ 1

K12 x23
þ 1

x12

� ��1

:

All other rate constants remain unchanged. Next, I eliminate metabolite 3. The resulting module

is still a linear pathway, where now three reactions 1$ 2$ 3$ 4 were replaced with a single reac-

tion 1$ 4 with the effective rate constant

x
f2;3g
14

¼ x
f2g
13

x34

x
f2g
31

þ x34
¼ 1

K13 x34
þ 1

K12 x23
þ 1

x12

� ��1

:

All other rate constants remain unchanged. Continuing this process until all internal metabolites

are eliminated, I obtain

3

1 2

4

21 mm–1

A B

Figure 6. Simple modules. (A) Linear pathway. (B) Two parallel pathways.
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y� ¼
Xm�1

i¼1

1

K1i xi iþ1

 !�1

; (26)

which is identical to the expression originally obtained by Kacser and Burns, 1973.

Two parallel pathways
Consider two parallel pathways with I/O metabolites 1 and 2 and internal metabolites 3 and 4

(Figure 6B). I obtain the effective rate constant using Equation 22 with i ¼ 1, j ¼ 2, k ¼ 3, ‘ ¼ 4.

Since x12 ¼ x34 ¼ 0, Equation 22 simplifies to

y� ¼
D3 x14 x42þD4 x13 x32

D3D4

¼ x14 x42

x41þ x42
þ x13 x32

x31þ x32
: (27)

Thus, the contributions of parallel pathways are simply added.

Module m in Figure 1
To obtain the effective rate constant for module m shown in Figure 1, I again use Equation 22 with

i ¼ 1, j ¼ 2, k ¼ 3, ‘ ¼ 4.

y� ¼
D3 x14 x42þD4 x13 x32 þ x13 x34 x42 þ x14 x43 x32

D3D4 � x34 x43
; (28)

with D3 ¼ x31þ x32þ x34 and D4 ¼ x41þ x42þ x43.

Classification of modules with respect to ‘marked’ reactions, and the
parametric families of functions f1 and f2
The CGP described above allows us to calculate the function F that maps the rate matrix ~x� for an

arbitrary module m onto the module’s effective rate constant y�. F is a multivariate function of the

entire matrix~x�. However, in many applications, only one or two reactions are varied at a time while

all others remain constant, and we want to know how module’s effective parameter y� depends on

these one or two perturbed reactions. I refer to such singled-out reactions as ‘marked’. When y� is

considered as a function of the rate constant x of one marked reaction, I write y� ¼ f1ð�Þ, as in Equa-

tion 2. When y� is considered as a function of the rate constants x and h of two marked reactions, I

write y� ¼ f2ð�;hÞ as in Equation 3.

The functional form of F and, as a consequence, the functional forms of f1 and f2 depend only on

the topology of module m (see Property #5 of the CGP in Box 1). In other words, modules with iden-

tical topologies have the same functional forms of f1 and f2, such that each topology of module m

defines a parametric family of functions f1 and f2, where all rate constants within module m other than

x, or x and h, play a role of parameters.

Since the number of possible topologies is infinite, there is an infinite number of functional forms

of F. However, the number of parameteric families of functions f1 and f2 is finite, and it turns out to

be small. To see this, notice that for any module with a single marked reaction, the CGP can be car-

ried out in two stages. In the first stage, we can eliminate all metabolites that do not participate in

the marked reaction. The resulting coarse-grained module is minimal in the sense that it can have at

most two internal metabolites. Such minimal modules (and, as a consequence, all modules with one

marked reaction) fall into three distinct topological classes, which are specified by the location of the

marked reaction with respect to the I/O metabolites, as shown in Figure 7. This implies that there

are only three parameteric families of the function f1. The topologies of the three minimal modules

are sufficiently simple that the three corresponding parametric functional forms of f1 can be easily

computed by applying the coarse-graining Equation 19 or Equation 22. This result is formulated in

Proposition 2.

The same logic applies to modules with two marked reactions. CGP that eliminates all metabo-

lites that do not participate in the marked reactions maps all such modules onto respective minimal

modules, which can have at most four internal metabolites (see Figure 8). This result is formulated in

Proposition 3. Minimal modules (and, as a consequence, all modules with two marked reactions) fall

into nine distinct topological classes, which are specified by the locations of the marked reactions.
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All modules from the same topological class are described by functions f2 from the same parametric

family. These families are characterized in Corollary 3.

These topological classifications are extremely useful for the following reason. If we can show that

all functions from the same parameteric family (corresponding to a given topological class) have

some common property irrespectively of the values of the parameters, it would imply that this prop-

erty holds for all modules from the corresponding topological class. This logic is a key part of the

proofs of both Theorem 1 and Theorem 2.

To formalize this reasoning, consider module � ¼ A�;~x�
� �

and let a ¼ ia $ ja and b ¼ ib $ jb be

two reactions from its set of reactions R�. I call a pair ð�; aÞ a single-marked module and I call a trip-

let ð�; a; bÞ a double-marked module, and I refer to reactions a and b as marked within module m.

The topology of a single-marked module ð�; aÞ is determined not only by the reaction matrix R�, but

also by the position of the marked reaction, so I refer to the pair ðR�; aÞ as the topology of the sin-

gle-marked module ð�; aÞ. Similarly, I refer to the triplet ðR�; a; bÞ as the topology of the double-

marked module ð�; a; bÞ. I denote by ~x�na the matrix of rate constants of all reactions in module m

other than reaction a and I denote by~x�nfa;bg the matrix of all rate constants in module m other than

reactions a and b. I denote the sets of all single- and double-marked modules by M1 and M2,

respectively. To avoid metabolite labeling ambiguities, I adopt the following conventions:

i. The I/O metabolites are labeled 1 and 2 and the internal metabolites are labeled 3; 4; . . .;
ii. ia; ja 2 f1; 2; 3; 4g; ib; jb 2 f1; 2; 3; 4; 5; 6g;
iii. ia<ja, ib<jb, ia � ib, ja � jb.

It is easy to see that the set of all single-marked modules M1 can be partitioned into three non-

overlapping topological classes depending on the type of the marked reaction a. I denote the clas-

ses of all single-marked modules where the marked reaction is bypass, i/o or internal (see Notations

and definitions) by Mb, Mio and Mi, respectively (Figure 7). Similarly, the set M2 can be partitioned

3

1 2
a

3

1 2

a

4

3

1 2

a

1 2
a

3

1 2

a

3

1 2

a

4

Before 

coarse-graining
Minimal

fully connectedClass

M
i

M
io

M
b

Figure 7. Classification of single-marked modules. Left column shows a general module from each topological

class. The right column shows a minimal fully connected module in each topological class (see text for details).

Circles represent metabolites and lines represent reactions. Only the I/O metabolites and the metabolites that

participate in the marked reaction are shown, all other metabolites are suppressed. Short lines that have only one

terminal metabolite represent all remaining reactions in which this metabolite participates, reactions between all

other metabolites are suppressed. Metabolites are labeled according to the conventions listed in the text. The

marked reaction is colored orange and labeled a. The module is represented by a gray rectangle, and the rest of

the network is not shown.
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into nine non-overlapping topological classes according to the types of marked reactions and the

type of metabolite that is shared by both of these reactions (I/O, internal, or none). These classes

are listed in Table 1 and illustrated in Figure 8.
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Figure 8. Classification of double-marked modules. Notations as in Figure 7.
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Each topological class contains infinitely many modules, with various numbers of metabolites and

various topologies. However, for each topological class M, there is a minimum number of internal

metabolites mM, such that all modules within M must have at least mM internal metabolites. I

denote the set of metabolites minimal in the topological class M by AM. It is clear that for the sin-

gle-marked module classes Mb and for Mio, mMb ¼ mMio ¼ 1 and AMb ¼ AMio ¼ f3g, and for Mi,

mMi ¼ 2 and AMi ¼ f3; 4g (see second column in Figure 7). For the double-marked modules, mM
and AM are given in Table 1 and illustrated in Figure 8.

If a single-marked module from the topological class M has the minimum number of metabolites

nM in that class, I call such module and its topology minimal in M. There may be several minimal

topologies in a topological class, but there is only one minimal topology that is fully connected. A

topology ðR�; aÞ is called fully connected if the reaction set R� is complete in the sense that it con-

tains reactions between all pairs of metabolites in the minimal metabolite set AM. I denote such

complete reaction set for the class M by RM, and I denote the respective fully connected topology

by ðRM; aÞ. I employ the same terminology and analogous notations for double-marked modules.

The minimal fully connected topologies are shown in the second column in Figure 7 and Figure 8.

Next, I prove Proposition 2, which is the key step toward the proof of Theorem 1. This proposi-

tion states that there are only three functional forms for the function f1 and characterizes them. The

idea of the proof is the following. According to Property 5 (Box 1), all single-marked modules that

are mapped by the CGP onto a minimal module with the same topology ðR�; aÞ have the same func-

tional form of f1. In other words, each minimal topology ðR�; aÞ specifies a parameteric family of the

function f1. Since the number of possible minimal topologies is finite, the claim of Theorem 1 can be

tested for each corresponding functional form of f1. However, the number of minimal topologies is

rather large. Fortunately, another simplification is possible. Since the reaction set R� of any minimal

single-marked module is a subset of the complete reaction set RM, the fully connected topology

ðRM; aÞ specifies the largest parametric family of the function f1 for the class M, such that all other

families can be obtained from it by setting some parameters to zero, which is equivalent to removing

reactions from the fully connected topology. In other words, all single-marked modules that belong

to the topological class M are described by functions f1 that belong to one parameteric family corre-

sponding to the fully connected topology minimal in M. The three parameteric families of f1 are

characterized by Proposition 2.

One important consequence of Proposition 2 is that it is not necessary to test the claim of Theo-

rem 1 for each family of f1 that corresponds to each minimal topology. Instead, it is sufficient to test

it for the three families that correspond to the fully connected minimal topologies in each class.

Table 1. Classification of double-marked modules.

Metabolites are labeled according to conventions described in the text. mM is the minimum number of internal metabolites in a mod-

ule from class M. AM is the set of internal and I/O metabolites in all minimal modules in class M.

Class a b Shared metab. Verbal description mM AM Equation for f2

Mb;io;IO ð1; 2Þ ð1; 3Þ 1 Bypass and i/o reactions, shared I/O metabolite 2 f1; 2; 3g Equation (34)

Mb;i;; ð1; 2Þ ð3; 4Þ – Bypass and internal reactions, no shared metabolies 2 f1; 2; 3; 4g Equation (35)

Mio;io;I ð1; 3Þ ð2; 3Þ 3 i/o reactions, shared internal metabolite 1 f1; 2; 3g Equation (36)

Mio;io;IO ð1; 3Þ ð1; 4Þ 1 i/o reactions, shared I/O metabolite 2 f1; 2; 3; 4g Equation (37)

Mio;io;; ð1; 3Þ ð2; 4Þ – i/o reactions, no shared metabolites 2 f1; 2; 3; 4g Equation (38)

Mio;i;I ð1; 3Þ ð3; 4Þ 3 i/o and internal reactions, shared internal metabolite 2 f1; 2; 3; 4g Equation (39)

Mio;i;; ð1; 3Þ ð4; 5Þ – i/o and internal reactions, no shared metabolites 3 f1; 2; 3; 4; 5g Equation (40)

Mi;i;I ð3; 4Þ ð3; 5Þ 3 Internal reactions, shared internal metabolite 3 f1; 2; 3; 4; 5g Equation (41)

Mi;i;; ð3; 4Þ ð5; 6Þ – Internal reactions, no shared metabolites 4 f1; 2; 3; 4; 5; 6g Equation (42)
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Proposition 2
Let ð�; aÞ be a single-marked module, and let x be the rate constant of reaction a. Then y� ¼ f1ðuÞ,
where u ¼ � þ a for some a � 0, and the function f1 is given by one of the following expressions.

f1ðuÞ ¼ u; if ð�;aÞ 2Mb; (29)

f1ðuÞ ¼w12þ
u w32

u=K13þw32

; if ð�;aÞ 2Mio; (30)

f1ðuÞ ¼w12þ
D3w14w42 þD4w13w32þw13w42 uþw14w32 u=K34

D3D4 � u2=K34

; if ð�;aÞ 2Mi: (31)

Here D3 ¼w31þw32þ u, D4 ¼w41þw42þ u=K34, and all wij � 0 are independent of x.

Proof
Since any single-marked module ð�; aÞ belongs to exactly one of three classes Mb, Mio and Mio, I

consider these three cases one by one.

Case ð�; aÞ 2 Mb. According to the labeling conventions outlined above, a ¼ 1 $ 2 (see Figure 7).

Equation 29 follows directly from Property #4 of the CGP (Box 1).

Case ð�; aÞ 2 Mio. According to the labeling conventions, a ¼ 1 $ 3 (see Figure 7). According to

Property #1 of the CGP, module m can be coarse-grained in two stages, by first applying CGA�nf3g

which eliminates metabolites 4; . . . ;m (those that do not participate in the marked reaction) and then

applying CGf3g which eliminates the remaining metabolite 3. Mathematically,

CG� ¼ CGA�nf3g � CGf3g. After applying CGA�nf3g, the resulting coarse-grained module �0 has a single

internal metabolite 3 and at most three effective reactions 1 $ 2, 1 $ 3 and 2 $ 3 (Figure 7),

that is, it is minimal in Mio. By virtue of Properties #2 and #4 of the CGP, the effective rate constants

w12, w23 are independent of x and u � w13 ¼ � þ a. Note that w12 may equal zero, but w23 6¼ 0

because �0 is a module. Regardless, the reaction set R�0 of module �0 is always a subset of the com-

plete reaction set RMio . Thus, to obtain the effective rate constant y�, I consider the most general

case when �0 is fully connected and eliminate the remaining internal metabolite 3, which leads to

Equation 30.

Case ð�; aÞ 2 Mi. According to the labeling conventions, a ¼ 3 $ 4 (see Figure 7). Otherwise, the

logic of the proof is exactly the same as for the case ð�; aÞ 2 Mio.

Next I prove Proposition 3 which states that, for any double-marked module that belongs to a

given topological class, there exists a double-marked module that is minimal in the same class, such

that both modules have the same function f2. The corresponding minimal module is obtained from

the original module by applying the CGP. This proposition is important because it implies that all

functions f2 can be completely characterized by only examing minimal modules. Then, analogously

to single-marked modules, Corollary 3 states that function f2 can belong to one of nine parameteric

families which are defined by the fully connected minimal topologies in each topological class.

Proposition 3
Let ð�; a; bÞ be a double-marked module that belongs to the topological class M, and let x and h be

the rate constants of reactions a and b, respectively. Then there exist non-negative constants a and

b and a double-marked module ð�0; a; bÞ minimal in M such that y� ¼ y�0 ¼ f2ðu; vÞ, where

u¼ �þa; (32)

v¼ hþb (33)

are the rate constants of the marked reactions a and b in �0, respectively, and all other rate con-

stants in �0 are independent of x or h. Module �0 is obtained from m by the coarse-graining proce-

dure CG�nfa;bg that eliminates all metabolites internal to module m that do not participate in

reactions a or b.
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Proof
To prove this proposition, I will construct the double-marked module ð�0; a; bÞ minimal in M by

applying CG�nfa;bg. Let mM be the mimimal number of internal metabolites in class M (see Table 1).

According to the metabolite labeling conventions, metabolites nM þ 3; nM þ 4; . . . are neither I/O

nor do they participate in the marked reactions. CG�nfa;bg eliminates all these metabolites and maps

module m onto module �0, all of whose internal metabolites participate in reactions a and/or b.

Therefore, ð�0; a; bÞ is minimal in class M (Figure 8). According to Properties #2 and #4 of the CGP

(Box 1), the effective rate constants u and v of reactions a and b in module �0 are given by linear rela-

tionships in Equation 32 and Equation 33, and the remaining effective rate constants are indepen-

dent of x and h. The fact that y� ¼ y�0 follows from Property #1 of the CGP, CG� ¼ CG�nfa;bg � CGA�0 .

Corollary 3
Let ð�; a; bÞ be a double-marked module, and let x and h be the rate constants of reactions a and b,

respectively. The function f2 that maps x and h onto module’s effective rate constant y� belongs to

one of nine parametric families. If ð�; a; bÞ 2 Mb;io;IO, then

f2ðu;vÞ ¼ uþ vw32

v=K13þw32

: (34)

If ð�;a;bÞ 2Mb;i;;, then

f2ðu;vÞ ¼ uþD3w14w42þD4w13w32þw13w42 vþw14w32 v=K34

D3D4 � v2=K34

;

D3 ¼w31þw32þ v;

D4 ¼w41þw42þ v=K34:

(35)

If ð�;a;bÞ 2Mio;io;I, then

f2ðu;vÞ ¼w12þ
uv

u=K13þ v
; (36)

If ð�;a;bÞ 2Mio;io;IO, then

f2ðu;vÞ ¼w12þ
D3 vw42þD4 uw32þ uw34w42þ vw43w32

D3D4 �w34w43

;

D3 ¼ u=K13þw32þw34;

D4 ¼ v=K14þw42þw43:

(37)

If ð�;a;bÞ 2Mio;io;;, then

f2ðu;vÞ ¼w12þ
D3w14 v=K24þD4 uw32þ uw34 v=K24þw14w43w32

D3D4 �w34w43

;

D3 ¼ u=K13þw32þw34;

D4 ¼w41þ v=K24þw43:

(38)

If ð�;a;bÞ 2Mio;i;I, then

f2ðu;vÞ ¼w12þ
D3w14w42þD4 uw32þ uvw42þw14w32 v=K34

D3D4 � v2=K34

;

D3 ¼ u=K13þw32þ v;

D4 ¼w41þw42þ v=K43:

(39)

If ð�;a;bÞ 2Mio;i;;, then
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f2ðu;vÞ ¼W12þ
W13W32

W31 þW32

;

Wij ¼wijþ
D4wi5w5jþD5wi4w4jþwi4 vw5jþwi5w4j v=K45

D4D5 � v2=K45

;

D4 ¼w41þw42þw43þ v;

D5 ¼w51þw52þw53þ v=K45;

w13 � u:

(40)

If ð�;a;bÞ 2Mi;i;I, then

f2ðu;vÞ ¼W12þ
D3W14W42þD4W13W32þW13W34W42þW14W43W32

D3D4�W34W43

;

Wij ¼wijþ
wi5w5j

D5

;

D3 ¼W31þW32þW34;

D4 ¼W41þW42þW43;

D5 ¼w51þw52þw53þw54;

w34 � u;

w35 � v:

(41)

If ð�;a;bÞ 2Mi;i;;, then

f2ðu;vÞ ¼W12þ
D3W14W42þD4W13W32þW13W34W42þW14W43W32

D3D4�W34W43

; (42)

Wij ¼wijþ
D5wi6w6j þD6wi5w5j þwi5w6j vþwi6w5j v=K56

D5D6� v2=K56

; (43)

D3 ¼W31þW32þW34;

D4 ¼W41þW42þW43;

D5 ¼w51þw52þw53þw54þ v;

D6 ¼w61þw62þw63þw64þ v=K56;

w34 � u:

In Equation 34 through Equation 35, u and v are given by Equation 32 and Equation 33. All

effective activities wij � 0 are constants (other than cases where they stand for u or v) that depend on

the topology of module m and on the parameters~x�nfa;bg but do not depend on x and h.

Proof
This statement and Equation 34 through Equation 35 follow directly from Proposition 3 and the

fact that the reaction set of any double-marked module in any given topological class is a subset of

the complete reaction set in that topological class.

Derivation of Equation 6 and Equation 9
Consider a higher-level phenotype y, such as the effective activity of a module, which is function of a

multivariate lower-level phenotype~x ¼ ðx1; x2; . . . ; xnÞ, such as the rates of individual reactions within

the module, y ¼ F ~xð Þ. Denote the wildtype values of the phenotypes as ~x0 ¼ ðx0
1
; x0

2
; . . . ; x0nÞ and

y0 ¼ F ~x0ð Þ. Consider a mutation that perturbes these values, so that the mutant has lower-level phe-

notypic values ~x0 ¼ x0
1
; x0

2
; . . . ; x0n

� �
. The relative effect of the mutation on phenotype xi is

dxi ¼ x0i=x
0

i � 1. If all dxik k � 1 where ~xk k denotes the length of vector~x, then the value of the higher-

level phenotype y0 in the mutant is given by

y0 ¼ y0 1þ
Xn

i¼1

Ci dxi þ
1

2

Xn

i;j¼1

Hij dxi dxj

 !

þ o d~xk k2
� �

: (44)

where
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Ci ¼
x0i
y0
qF

qxi

�
�
�
�
~x¼~x0

; i¼ 1; . . . ;n; (45)

Hij ¼
x0i x

0

j

y0
q
2F

qxi qxj

�
�
�
�
~x¼~x0

; i; j¼ 1; . . . ;n; (46)

which I refer to as first- and second-order control coefficients of the lower-level phenotypes xi

and xj with respect to the higher-level phenotype y.

Now consider two single mutants, A and B, and the double-mutant AB. Each mutation A and B

and their combination may perturb all xi phenotypes such that xAi ¼ x0i 1þ dAxi
� �

, xBi ¼ x0i 1þ dBxi
� �

,

and xABi ¼ x0i 1þ dABxi
� �

¼ x0i 1þ dAxi þ dBxi þ 2 dAxi d
Bxi "xi

� �
:

Assuming that dA~x








� 1, dB~x









� 1 and dAB~x









� 1, using the approximation in Equation 44

and the definition of "xi (analogous to Equation 5), I obtain

dAy¼
Xn

i¼1

Ci d
Axi þ o dA~x











� �
; (47)

dBy¼
Xn

i¼1

Ci d
Bxi þ o dB~x











� �
; (48)

"y¼
Pn

i¼1
Ci "xi d

Axi d
Bxiþ 1

2

Pn
i;j¼1

Hij d
Axi d

Bxj
Pn

i¼1

Pn
j¼1

CiCj d
Axi d

Bxj
þ o 1ð Þ; (49)

where oð1Þ refers to terms that are vanishingly small as dAxi ! 0 , dBxi ! 0, i¼ 1; . . .n.

I examine two special cases of Equation 49. The first special case is when both mutations affect a

single phenotype xk, that is, when all dAxi ¼ 0 and all dBxi ¼ 0 except for i ¼ k. Then Equation 47,

Equation 48, Equation 49 simplify to

dAy¼Ck d
Axk þ o dAxk

�
�

�
�

� �
; (50)

dBy¼Ck d
Bxk þ o dBxk

�
�

�
�

� �
; (51)

"y¼ "xk
Ck

þ Hkk

2C2

k

þ o 1ð Þ: (52)

Equation 52 is equivalent to Equation 6.

The second special case is when mutation A affects a single phenotypes xk and mutation B affects

a single phenotype x‘ (k 6¼ ‘), i.e., all dAxi ¼ 0 except for i ¼ k, all dBxi ¼ 0 except for i ¼ ‘, and all

"xi ¼ 0. Then Equation 47, Equation 48, Equation 49 simplify to

dAy¼Ck d
Axk þ o dAxk

�
�

�
�

� �
; (53)

dBy¼C‘ d
Bx‘þ o dBx‘

�
�

�
�

� �
; (54)

"y¼ Hk‘

2CkC‘
þ o 1ð Þ: (55)

Equation 55 is equivalent to Equation 9.

Calculation of epistasis in simple modules
Equation 52 and Equation 55 allow me to compute how epistasis propagates and emerges in arbi-

trary metabolic networks. In this section, I show how to implement these calculations for three simple

metabolic modules considered above and in module n shown in Figure 3.
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Linear pathway
First, consider how epistasis propagates through a linear pathway (Figure 6A). For simplicity,

assume that both mutations A and B affect the same reaction 1 $ 2. It follows from Equation 26

that

y� ¼ f1ð�Þ ¼
1

�
þa

� ��1

;

where a is a positive constant. Therefore, the first- and second-order control coefficients of reac-

tion 1$ 2 with respect to the flux through the linear pathway m are given by

C¼ y�

�
¼ 1

1þa�
;

H ¼� 2a�

1þa�ð Þ2
:

Substituting these expressions into the expression for the fixed point �"¼�H 2C 1�Cð Þð Þ�1, I find

that �"¼ 1, irrespectively of the rates of other reactions in the linear pathway. This implies that epista-

sis "�<1 at the level of reaction 1$ 2 would induce a lower value of epistasis "y�<"�<1 at the level of

the entire linear pathway, any value "�>1 would induce a higher value of epistasis "y�>"�>1, and

"�¼ 1 would induce "y� ¼ 1.

Now consider emergence of epistasis in a linear pathway. Suppose that mutation A affects reac-

tion 1 $ 2 and mutation B affects reaction 2 $ 3. Denote the rate constant of reactions 1 $ 2 and

2 $ 3 by � � x12 and h � x23, respectively. It follows from Equation 26 that

y� ¼ f2ð�;hÞ ¼
1

�
þ 1

K12h
þb

� ��1

;

where b is a positive constant. Therefore,

C� ¼ y�

�
;

Ch ¼ y�

K12h
;

H�h ¼
2y2�

K12 �h
;

which, after substituting into Equation 9, yield "y� ¼ 1. Together with the fact that �"¼ 1 (see

above), this result implies that epistasis coefficient between any two mutations that affect different

reactions in a linear pathway equals 1.

Two parallel pathways
Suppose that mutation A affects reaction 1 $ 3 and mutation B affects reaction 1 $ 4 in the linear

metabolic pathway shown in Figure 6B. Denote the rate constants of reaction 1 $ 3 and 1 $ 4 by

� � x13 and h � x14. It follows from Equation 27 that

y� ¼ f2ð�;hÞ ¼
1

�
þa

� ��1

þ 1

h
þb

� ��1

;

where a¼ 1=ðK13 x32Þ and b¼ 1=ðK14 x42Þ. Thus, we have H�h ¼ 0, and there is no epistasis between

such mutations.

Module n in Figure 3A
I denote the rate of the reactions affected by mutations A and B by � ¼ x13 and h ¼ x42, and I also

denote z ¼ x34. I will calculate the epistasis coefficient "yn in two stages, by first calculating the epis-

tasis coefficient "y� and then propagating it to "yn using Equation 6. Here I am specifically interested

in how "yn depends on the rate constant z.
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To compute epistasis between mutations A and B at the level of module m, I rewrite Equation 28

as

y� ¼
a�hþ b� �þ bhhþ c

d �hþ e� �þ ehhþ f
;

where a¼ x14=K13þ x32þ z, b� ¼ x32 x41þ z=K34ð Þ, bh ¼ x14 x32þ zð Þ, c¼ x14 x32 z=K34, d¼ 1=K13,

e� ¼ x41þ z=K34ð Þ=K13, eh ¼ x32þ z, f ¼ x32 z=K34þ x41 zþ x32 x41. I obtain the following expressions for

the first- and second-order control coefficients.

C� ¼
�

y�

~c1 zþ ~d1

D

� �2

; (56)

Ch ¼
h

y�

1

K14

~c2 zþ ~d2

D

� �2

; (57)

H�h ¼
�h

y�

2z

K14

~c1 zþ ~d1
� �

~c2 zþ ~d2
� �

D3
; (58)

where D¼ d �hþ e� �þ ehhþ f , ~c1 ¼ x23=K24þh, ~d1 ¼ x32 x41þhð Þ, ~c2 ¼ �þ x14, ~d2 ¼ x14 �=K13þ x32ð Þ.
Substituting Equation 56 through Equation 58 into Equation 53 through Equation 55, I obtain

dAy� ¼
�

y�

~c1 zþ ~d1

D

� �2

dA�; (59)

dBy� ¼
h

y�

1

K14

~c2 zþ ~d2

D

� �2

dBh: (60)

"y� ¼
z ~azþ ~b
� �

~c1 zþ ~d1
� �

~c2 zþ ~d2
� � ; (61)

where ~a¼ ~c1~c2 and ~b¼ �=K13þ x32ð Þx14hþ x41þhð Þx32 �.
To obtain the expression for "yn, I coarse-grain module n by eliminating the only remaining inter-

nal metabolite 2 and obtain

yn ¼ x15þ
y� x25

y�=K12þ x25
:

I then apply equation Equation 6 with

C¼ y�

yn

x2
25

y�=K12þ x25
� �2

; (62)

H ¼�
2y2�

ynK12

x2
25

u=K12þ x25ð Þ3
: (63)

Figure 3B illustrates how "yn changes as a function of z. It was generated using the following

matrix of rate constants:

~x¼

0 0:378 0:514 0:237 0

1:810 0 0 0 1:001
42:232 0 0 z 2:446
7:957 0 z=2:44 0 0:259
0 6:982 0:994 0:257 0

0

B
B
B
B
@

1

C
C
C
C
A

:

The Matlab code is available at https://github.com/skryazhi/epistasis_theory.
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Next, I consider thress special cases of the toy network depicted in Figure 3A that relate this net-

work to those in Figure 3C and D.

1. z ¼ 0. According to Equation 61, "y� ¼ 0 and hence "yn ¼ H=2C2 � 0, with C and H given by

Equation 62 and Equation 63. It is easy to see that in this case the reactions 1 $ 3 and 2 $ 4

that are affected by mutations are strictly parallel because there is a simple path
1 $ 3 $ 2 $ 5 that contains only reaction 1 $ 3 and there is a simple path 1 $ 4 $ 2 $ 5 that
contains only reaction 2 $ 4 (Figure 3C).

2. x15 ¼ x32 ¼ x14 ¼ 0. In this case, module n is a linear pathway. Therefore, "yn ¼ 1 independently
of z, as shown above. This fact can also be obtained directly from Equation 61, Equation 62,
Equation 63 and Equation 6.

3. z ! ¥. In this case, module m becomes an effectively linear pathway because most of the meta-
bolic flux between the I/O metabolites 1 and 2 passes through reaction 3 $ 4. Thus, it follows
from Equation 61 that "y� ! ~a= ~c1 ~c2ð Þ ¼ 1, as expected. Then, according to Theorem 1,

"yn � 1.

Proof of Theorem 1
As discussed above, the key step toward the proof is Proposition 2, which states that the function f1

belongs to one of three parameteric families, given by Equation 29, Equation 30, Equation 31. To

complete the proof, I now explicitly evalute the control coefficient C and the H in Equation 6 for

each of these functions and show that the inequalities in Equation 7 and Equation 8 hold for all

parameter values.

Proof of Theorem 1
Let a be the effective reaction within higher-level module n that represents the lower-level module

m. To simplify notations, I denote y� � �. According to Proposition 2, the functional from of f1

depends only on the topological class of the single-marked module ðn; aÞ. So, I consider the three

classes one by one.

Case ðn; aÞ 2 Mb. From Equation 29, C ¼ �=yn and H ¼ 0. Therefore, inequalities in Equation 7

and Equation 8 hold.

Case ðn; aÞ 2 Mio. From Equation 30,

C¼ �

yn

w32

D

� �2

; (64)

H ¼�2
�2

yn

w2

32

D3

1

K13

¼�2C
�=K13

D
; (65)

where D¼ ð�þaÞ=K13þw32. From Equation 64, it is clear that C� 0. Re-writing Equation 64 as

C¼ �w32=D

yn

� �
w32

D

� �

it is also clear that C� 1 since both ratios in this expression do not exceed 1. From Equation 65

and the fact that 0�C� 1, it follows that �"� 0. To show that �"� 1, note that

D 1�Cð Þ ¼ �þa

K13

þw32 1� �w32=D

yn

� �

� �

K13

:

Therefore,

�"¼ �=K13

D ð1�CÞ � 1:

Therefore, inequalities in Equation 7 and Equation 8 hold.

Case ðn; aÞ 2 Mi. I re-write Equation 31 as

yn ¼w12þ
~Auþ ~B

D
;

Kryazhimskiy. eLife 2021;10:e60200. DOI: https://doi.org/10.7554/eLife.60200 35 of 67

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.60200


with u¼ �þa, D¼ ~Cuþ ~D, ~A¼ w13þw14ð Þ w42 þw32=K34ð Þ,
~B¼ ðw31þw32Þw14w42þðw41þw42Þw13w32, ~C¼ ðw31þw32Þ=K34þðw41þw42Þ, ~D¼ ðw31þw32Þðw41þw42Þ,
which yields

C¼ �

yn

~A~D� ~B~C

D2
; (66)

H ¼�2
�2

yn

~A~D� ~B~C
� �

~C

D3
¼�2C

~C �

D
: (67)

Next, it is straightforward to show that ~A~D� ~B~C¼ w41w32�w31w42ð Þ2=K31 � 0, which implies that

C� 0. To show that C� 1, I expand the denominator in Equation 66 and obtain

ynD
2 � ~Auþ ~B

� �
~Cuþ ~D
� �

� u ~A ~Dþ ~B ~C
� �

� � ~A ~D� ~B ~C
� �

:

Therefore, numerator in Equation 66 cannot exceed the denominator. The fact that �"� 0 follows

directly from Equation 67 together with C� 1. To show that �"� 1, first note that

yn ¼w12þ
~A�

D
þ
~Aaþ ~B

D
�

~A�

D
:

Therefore,

D ð1�CÞ ¼ ~C �þ ~Caþ ~D 1�
~A�=D

yn

� �

þ �

D

~B ~C

yn
� ~C �:

Hence,

�"¼
~C �

Dð1�CÞ � 1:

Therefore, inequalities in Equation 7 and Equation 8 hold in this case as well, which completes

the proof.

Proof of Theorem 2
Proving Theorem 2 involves several auxiliary steps. First, I note that any two reactions a and b within

any module m can be either strictly serial, strictly parallel or serial-parallel. Then, Proposition 4 and

its Corollary 4 establish that strictly parallel (serial) reactions in ð�; a; bÞ are also strictly parallel (serial)

in a minimal module ð�0; a; bÞ, which is obtained from m by eliminating all metabolites that do not

participate in the marked reactions. Next, recall that in both modules ð�; a; bÞ and ð�0; a; bÞ the same

function f2 maps the rate constants of two marked reactions onto module’s effective rate constant

(Proposition 3). Since the epistasis coefficient depends only on the shape of this function, we only

need to consider all minimal modules in order to understand what kinds of epistasis may arise

between mutations affecting strictly serial and strictly parallel reactions in any module. This is a big

simplification because the number of different minimal topologies is finite and the parameteric fami-

lies of function f2 are known for all of them (see Corollary 3). As a consequence, to prove Theorem 2,

we could in principle list all of the minimal topologies, identify those where the marked reactions are

strictly serial or strictly parallel and evalulate the epistasis coefficient using Equation 9 for every

respective function f2.

Unfortunately, the number of minimal topologies is very large, so that such brute-force approach

would be quite cumbersome. I take a less cumbersome approach which is based on the realization

that a strictly serial or strictly parallel relationship between two reactions cannot be altered by

removing a third reaction from the module (Proposition 5). This implies that every minimal topology

where the two reactions are strictly serial can be produced from another, more connected, ‘generat-

ing’ topology by removing some reactions; and similarly for minimal modules where the reactions

are strictly parallel (Proposition 6). All generating topologies can be identified by a simple algorithm

given in Appendix 3.
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Finally, I prove Theorem 2 in three steps. First, Proposition 7 shows that "y� � 0 for any minimal

module m with any strictly parallel generating topology. Second, Proposition 8 shows that that

"y� � 1 for any minimal module m with any strictly serial generating topology. Third, the proof of

Theorem 2 formally extends this argument to all modules with strictly serial and strictly parallel

reactions.

Topological relationships between reactions within a module
Consider module m with the I/O metabolites 1 and 2. As described above, a simple path connecting

two metabolites i and j within module m is denoted by p
�
ij ¼ i $ k $ . . . $ ‘$ j. If such path con-

tains reactions a1; a2; . . . and does not contain reactions b1; b2; . . ., I denote it as

p
�
ijða1; a2; . . . ; �b1; �b2; . . .Þ. I denote the set of all paths p

�
ijða1; a2; . . . ; �b1; �b2; . . .Þ by

P�
ijða1; a2; . . . ; �b1; �b2; . . .Þ.
According to Lemma 1 proven in Appendix 2, any reaction in the module belongs to at least one

simple path within module m that connects the I/O metabolites. Mathematically, P�
12
ðaÞ 6¼ ; for any

reaction a 2 R�. Thus, we can define different topological relationships between any two reactions

within a module based on the existence of various paths that do or do not contain them. Conse-

quently, we can classify any double-marked module ð�; a; bÞ based on the toplogocial relationship

between its marked reactions. This classification is orthogonal to that given in Table 1.

Two reactions a 2 R� and b 2 R� are called parallel within module m if there exists a simple path

p
�
12
ða; �bÞ and a simple path p

�
12
ðb; �aÞ. Two reactions a 2 R� and b 2 R� are called serial within module m

if there exist at least one simple path p
�
12
ða; bÞ. Two reactions are called strictly parallel within module

m if they are parallel but not serial, they are called strictly serial within module m if they are serial but

not parallel, and they are called serial-parallel within module m if they are both serial and parallel. It

is straightforward to show that there are no other logical possibilities for any two reactions to be

anything other than strictly serial, strictly parallel or serial-parallel. This implies that two reactions are

strictly parallel if they are not serial, and they are strictly serial if they are not parallel. If reactions a

and b are serial, parallel, strictly serial, strictly parallel or serial-parallel within module m, I also refer

to the double-marked module ð�; a; bÞ as serial, parallel, etc. Since the relationship between reac-

tions depends only on the topology of the module, but not on its rate constants, I also refer to the

topology ðR�; a; bÞ as serial, parallel, etc.
Recall that coarse-graining procedure CG�nfa;bg eliminates all metabolites internal to module m

other than those participating in reactions a and b. If the double-marked module ð�; a; bÞ belongs to
the topological class M, then, according to Proposition 3, CG�nfa;bg maps ð�; a; bÞ onto a minimal

double-marked module ð�0; a; bÞ from the same class M. The following proposition, which is easy to

prove using Property #9 of the CGP (see Box 1), establishes how this procedure alters the topologi-

cal relationship between reactions a and b.

Proposition 4
Let ð�; a; bÞ be a double-marked module from the topological class M (Table 1) and let ð�0; a; bÞ be
the minimal double-marked module in M onto which ð�; a; bÞ is mapped by CG�nfa;bg.

1. Reactions a and b are serial in ð�0; a; bÞ if and only if they are serial in ð�; a; bÞ.
2. If reactions a and b are parallel in ð�0; a; bÞ, then they are also parallel in ð�; a; bÞ.

Note that the converse of the second claim in Proposition 4 is not true. In other words, if two

reactions a and b are parallel in ð�; a; bÞ, they may not be parallel in ð�0; a; bÞ. Figure 9 shows a

counter-example illustrating this.

Corollary 4

1. If reactions a and b are strictly serial in ð�; a; bÞ, they are also strictly serial in ð�0; a; bÞ.
2. If reactions a and b are strictly parallel in ð�; a; bÞ, they are also strictly parallel in ð�0; a; bÞ.
3. If reactions a and b are serial-parallel in ð�; a; bÞ, they are either strictly serial or serial-parallel in

ð�0; a; bÞ.
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Corollary 4 is an important step toward proving Theorem 2. According to Proposition 3, the func-

tion that maps the rate constants x and h of the reactions a and b in module m onto the effective

rate constant y� is the same function that maps the rate constants u and v of these reactions in the

minimal module �0 onto the effective rate constant y�0 . It then immediately follows from Equation 9

that the epistasis coefficient "y� between mutations affecting reactions a and b in the original mod-

ule m is the same as the epistasis coefficient "y�0 in the minimal module �0. Now, if the reactions a

and b are strictly parallel in ð�; a; bÞ, then, according to Corollary 4, these reactions are also strictly

parallel in ð�0; a; bÞ. Hence, to demonstrate that "y� � 0 for any such double-marked module ð�; a; bÞ,
it is sufficient to show that "y�0 � 0 for all double-marked modules ð�0; a; bÞ that are minimal in M
and where the reactions a and b are strictly parallel. And similarly for the strictly serial reactions.

According to this logic, Theorem 2 can be proven by identifying all double-marked modules that

are minimal in each of the topological classes listed in Table 1 and where the marked reactions are

strictly parallel, evaluating epistasis for all of them, and showing that it is non-positive, irrespectively

of the rate constants of any reactions, and similarly for the strictly serial reactions.

Generating topologies
Since the number of topologically distinct minimal double-marked modules is finite, the approach

outlined above is in principle feasible. Unfortunately, the number of topologies to be considered is

very large, so in practice it is very cumbersome. To avoid this complication, I take an alternative

approach that is based on the same key idea as the proof of Theorem 1. Rather than considering

one by one, each minimal topology where the marked reactions are strictly serial or strictly parallel

(and the corresponding parametric families of f2), the idea is to identify the most connected minimal

topologies (and the corresponding largest parametric families of f2) such that all the other minimal

topologies with the strictly serial or strictly parallel reactions (and the corresponding parametric fam-

ilies) can be obtained from them by removing reactions (i.e. setting some parameters to zero).

This idea can be implemented using the following observations. If the two marked reactions are

strictly parallel or strictly serial in a minimal module, then removing a third reaction from it does not

change this relationship. This statement is proven in Proposition 5. As a consequence, all minimal

modules in the topological classes Mb;io;IO, Mb;i;; and Mio;io;IO must be strictly parallel because the

fully connected minimal topologies are strictly parallel (Figure 8). Similarly, all minimal modules in

the topological class Mio;io;I must be strictly serial because the fully connected minimal topology is

strictly serial (Figure 8). The fully connected minimal topologies in all other topological classes are

serial-parallel. If the two reactions are serial-parallel, removing a third reaction can change their rela-

tionship into a strictly serial or strictly parallel one, depending on which reaction is removed, as

shown for example in Figure 3A,C and D. In fact, by removing reactions from the fully connected

minimal modules shown in Figure 8, it is easy to show that the topological classes Mio;io;;, Mio;i;I,

Mio;i;;, Mi;i;I, Mi;i;; contain both strictly serial and strictly parallel modules.

These observations suggests that adding reactions to a minimal module where the marked reac-

tions are strictly serial or strictly parallel will either change their relationship into serial-parallel or will

preserve their relationship until the minimal module is fully connected. Therefore, among all minimal

modules in a topological class, there must exist the most connected modules where the marked

reactions are strictly parallel or strictly serial, such that all other less connected strictly serial or

a b

1 2

a b

1 2

µ

Figure 9. A counter example illustrating that the converse to claim 2 in Proposition 4 may not be true. Reactions a

and b are parallel in ð�; a; bÞ. CGP maps the double-marked module ð�; a; bÞ onto the minimal double-marked

module ð�0; a; bÞ where reactions a and b are not parallel.
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strictly parallel modules can be produced from the most connected ones by removal of reactions.

This statement is proven in Proposition 6. Such most connected strictly parallel and strictly serial min-

imal topologies, which I refer to as ‘generating’, are listed in Table 2 and Table 3. They define the

largest parameteric familes of functions f2 which I then examine for the value of "y�.

Proposition 5
Let ð�; a; bÞ and ð�0; a; bÞ be two minimal double-marked modules from the same topological class

whose sets of reactions are R� and R�0 , respectively, and R�0 ¼ R� n fcg where c 2 R� n fa; bg.

1. If reactions a and b are strictly parallel in ð�; a; bÞ, they are also strictly parallel in ð�0; a; bÞ.
2. If reactions a and b are strictly serial in ð�; a; bÞ, they are also strictly serial in ð�0; a; bÞ.

Proof

Denote the I/O metabolites in both modules m and �0 by 1 and 2. Since �0 and m are topologically

identical except for �0 lacking one reaction c, it must be true that

P�0

12
ða1; a2; . . . ; �b1; �b2; . . .Þ � P�

12
ða1; a2; . . . ; �b1; �b2; . . .Þ for any reactions a1; a2; . . ., b1; b2; . . . from R�0 . In

other words, there could only be fewer paths connecting the I/O metabolites within module �0 com-

pared to module m. The rest of the proof follows immediately from this fact and the definitions of

strictly serial and strictly parallel relatioships.

Next, I define a minimal topology as generating either if it is a fully connected topology (as in

topological classes Mb;io;IO, Mb;i;; and Mio;io;IO, Mio;io;I) or if adding any reaction to it would make

the marked reactions serial-parallel.

Denote the sets of all double-marked topologies minimal in class M where the marked reactions

are strictly serial, strictly parallel and serial-parallel by by Rser
M, Rpar

M and Rsp
M, respectively.

Table 2. Strictly parallel generating topologies.

Marked reactions Generating topology

Class a b ID Excluded reactions Figure

Mb;io;IO 1 $ 2 1 $ 3 b; io; IO;F ; Figure 7

Mb;i;; 1 $ 2 3 $ 4 b; i; ;;F ; Figure 7

Mio;io;IO 1 $ 3 1 $ 4 io; io; IO;F ; Figure 7

Mio;io;; 1 $ 3 2 $ 4 io; io; ;;P f3 $ 4g Figure 9

Mio;i;I 1 $ 3 3 $ 4 io; i; I;P f2 $ 4g Figure 10

Mio;i;; 1 $ 3 4 $ 5 io; i; ;;P1 f3 $ 4; 3 $ 5g Figure 11

io; i; ;;P2 f2 $ 5; 3 $ 5g
io; i; ;;P3 f2 $ 4; 2 $ 5g

Mi;i;I 3 $ 4 3 $ 5 i; i; I;P1 f2 $ 4; 2 $ 5g Figure 12

i; i; I;P2 f1 $ 5; 2 $ 5g

Mi;i;; 3 $ 4 5 $ 6 i; i; ;;P1 f3 $ 5; 3 $ 6; 4 $ 5; 4 $ 6g Figure 13

i; i; ;;P2 f1 $ 5; 1 $ 6; 2 $ 5; 2 $ 6g
i; i; ;;P3 f2 $ 4; 2 $ 6; 3 $ 6; 4 $ 5; 4 $ 6g
i; i; ;;P4 f2 $ 4; 2 $ 5; 2 $ 6; 4 $ 5; 4 $ 6g
i; i; ;;P5 f1 $ 6; 2 $ 4; 2 $ 5; 2 $ 6; 4 $ 6g
i; i; ;;P6 f1 $ 4; 1 $ 6; 2 $ 4; 2 $ 6; 4 $ 6g
i; i; ;;P7 f1 $ 4; 1 $ 5; 2 $ 3; 2 $ 6; 3 $ 5; 4 $ 6g
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Definition 2
Topology ðR; a; bÞ minimal in M is called a strictly serial generating topology in M if it is strictly serial

(i.e. ðR; a; bÞ 2 Rser
M) and either it is fully connected (i.e. R ¼ RM) or ðR [ fcg; a; bÞ 2 Rsp

M for any reac-

tion c 2 RM n R.

Definition 3
Topology ðR; a; bÞ minimal in M is called a strictly parallel generating topology in M if it is strictly

parallel (i.e. ðR; a; bÞ 2 Rpar
M ) and either it is fully connected (i.e. R ¼ RM) or ðR [ fcg; a; bÞ 2 Rsp

M for

any reaction c 2 RM n R.
Clearly, a topological class M may have multiple generating topologies, and it is easy to show

that every topological class has at least one generating topology. I denote the set of all strictly serial

generating topologies for the class M by Gser
M and I denote the set of all strictly parallel generating

topologies for class M by Gpar
M . The following proposition justifies the name ‘generating topology’. It

states that any strictly serial minimal topology can be produced from some strictly serial generating

topology by removing one or multiple reactions, and similarly for any strictly parallel minimal

topology.

Proposition 6
If ðR; a; bÞ is a strictly parallel topology minimal in the topological class M, then there exists a strictly

parallel generating topology ðRg; a; bÞ in M, such that R � Rg. If ðR; a; bÞ is a strictly serial topology

minimal in the topological class M, then there exists a strictly serial generating topology ðRg; a; bÞ in
M, such that R � Rg.

Table 3. Strictly serial generating topologies.

Marked reactions Generating topologies

Class a b ID Excluded reactions Figure

Mio;io;I 1 $ 3 2 $ 3 io; io; I;F ; Figure 7

Mio;io;; 1 $ 3 2 $ 4 io; io; ;; S f2 $ 3g Figure 9

Mio;i;I 1 $ 3 3 $ 4 io; i; I;S1 f2 $ 3g Figure 10

io; i; I;S2 f1 $ 4g

Mio;i;; 1 $ 3 4 $ 5 io; i; ;; S1 f1 $ 4; 1 $ 5g Figure 11

io; i; ;; S2 f2 $ 3; 2 $ 4; 3 $ 5g
io; i; ;; S3 f1 $ 5; 2 $ 3; 2 $ 5g

Mi;i;I 3 $ 4 3 $ 5 i; i; I;S1 f1 $ 3; 2 $ 3g Figure 12

i; i; I;S2 f2 $ 3; 2 $ 5; 4 $ 5g

Mi;i;; 3 $ 4 5 $ 6 i; i; ;; S1 f2 $ 3; 2 $ 5; 2 $ 6; 4 $ 5; 4 $ 6g Figure 13

i; i; ;; S2 f1 $ 3; 1 $ 6; 2 $ 3; 2 $ 6; 4 $ 6g

io,io,ø,F
3

1 2

a

b
4

io,io,ø,P
3

1 2

a

b
4

io,io,ø,S
3

1 2

a

b
4

Figure 10. Graphical representation of strictly serial and strictly parallel generating topologies in the class Mio;io;;.

Fully connected topology io; io; ;;F is shown for reference (same as in Figure 8).
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Proof
Suppose that M is one of the topological classes Mb;io;IO, Mb;i;;, or Mio;io;IO. Since the fully con-

nected minimal topology ðRM; a; bÞ is strictly parallel, it is a generating topology in M. Then, accord-

ing to Proposition 5, any topology ðR; a; bÞ minimal in M is strictly parallel, and Proposition 6 holds.

By the same logic, Proposition 6 holds for the topological class Mio;io;I.

Suppose that M is one of the remaining topological classes Mio;io;;, Mio;i;I, Mio;i;;, Mi;i;I or Mi;i;;.
Then the fully connected minimal topology ðRM; a; bÞ is serial-parallel. Suppose that ðR; a; bÞ is strictly
parallel. Then R must be a strict subset of RM, so that the set C ¼ RM n R is not empty. Then, either

ðR; a; bÞ 2 Gpar
M or ðR; a; bÞ 62 Gpar

M . If ðR; a; bÞ 2 Gpar
M , the Proposition 6 holds. Suppose that

ðR; a; bÞ 62 Gpar
M . This implies that there exists a reaction c1 2 C, such that R1 ¼ R [ fc1g and

ðR1; a; bÞ 2 Rpar
M (ðR1; a; bÞ cannot be in Rser

M due to Proposition 5). There are three possibilities.

1. R1 ¼ RM.
2. R1 � RM and ðR1; a; bÞ 2 Gpar

M .

3. R1 � RM and ðR1; a; bÞ 62 Gpar
M .

Option (a) is not possible since ðR1; a; bÞ 2 Rpar
M while ðRM; a; bÞ 2 Rsp

M. Option (b) implies that the

Proposition 6 holds. Option (c) implies that there exists a reaction c2 2 C n fc1g, such that

R2 ¼ R1 [ fc2g and ðR2; a; bÞ 2 Rpar
M , and we have the same three possibilities for R2 as above. Thus,

by induction, Proposition 6 must hold. The proof is analogous if ðR; a; bÞ is strictly serial.

Discovering all strictly serial and strictly parallel generating topologies in any given topological

class M is straightforward because all minimal topologies within M can be produced by removing

reactions from the unique fully connected topology minimal in M shown in Figure 8. In Appendix 3,
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1 2
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Figure 11. Graphical representation of strictly serial and strictly parallel generating topologies in class Mio;i;I. Fully connected topology io; i; I;F is

shown for reference (same as in Figure 8).
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Figure 12. Graphical representation of strictly serial and strictly parallel generating topologies in class Mio;i;;. Fully connected topology io; i; ;;F is

shown for reference (same as in Figure 8).
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I provide an algorithm that discovers all strictly serial and strictly parallel generating topologies by

sequentially removing reactions from the fully connected minimal topology in each topological class.

The code implementing this algorithm in Matlab is available at https://github.com/skryazhi/epista-

sis_theory. All strictly parallel generating topologies are listed in Table 2 and all strictly serial gener-

ating topologies are listed in Table 3. They are also illustrated in Figure 8 and Figure 10 through

Figure 14. I label each generating topology by a four-letter combination (see column 4 in Table 2

and Table 3): the first three letters denote the topological class and the last letter (F, P, or S)

denotes the specific generating topology within that class. Letter ‘F’ (stands for ‘full’) denotes the

fact that the reaction set in the generating topology is complete. Letters ‘P’ (for ‘parallel’) and ‘S’

(stands for ‘serial’) denote strictly parallel and strictly serial generating topologies, respectively; if

there are a multiple generating topologies within the same class, they are distinguished by subindi-

ces, for example, io; i; ;;P1; io; i; ;;P2, etc.

Topological relationship between reactions and epistasis
Each strictly serial and strictly parallel generating topology in a given class M (listed in Table 2 and

Table 3) is produced by removing reactions from the fully connected topology minimal in M (shown

in Figure 8). This implies that the parametric family of function f2 that corresponds to any generating

topology is obtained from Equation 34 through Equation 35 by setting some parameters wij to

zero. In other words, these parametric families are known. Next, I prove Proposition 7 that shows

that "y� � 0 for every member of every parameteric family of f2 that corresponds to a strictly parallel

generating topology and the analogous Proposition 8 for strictly serial topologies.

Now, any minimal strictly parallel topology can in turn be produced by removing reactions from

some strictly parallel generating topology, and any minimal strictly serial topology can be produced

by removing reactions from some strictly serial generating topology. This implies that any function f2

that corresponds to any strictly parallel minimal topology belongs to the parametric family that cor-

responds to some strictly parallel generating topology; and any function f2 that corresponds to any

strictly serial minimal topology belongs to the parametric family that corresponds to some strictly

serial generating topology. Therefore, Propositions 7 and 8 imply that "y� � 0 for any minimal strictly

parallel topology and that "y� � 1 for any minimal strictly serial topology. The proof of Theorem 2 is

then concluded by recalling that every strictly parallel module is mapped onto its effective rate con-

stant via function f2 that corresponds to some minimal strictly parallel module, and similarly for

strictly serial modules.
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Figure 13. Graphical representation of strictly serial and strictly parallel generating topologies in class Mi;i;I. Fully

connected topology i; i; I;F is shown for reference (same as in Figure 8).
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Proposition 7
Let ð�; a; bÞ be a minimal double-marked module in the topological class M, with u and v being the

rates of reactions a and b, respectively, and let y be the effective rate constant of this module. Sup-

pose that mutation A perturbs only reaction a by dAu, and mutation B perturbs only reaction b by

dBv, such that dAu
�
�

�
�� 1, dBv

�
�

�
�� 1. If reactions a and b are strictly parallel in ð�; a; bÞ, then "y � 0.

Proof
According to Proposition 6, the topology of module ð�; a; bÞ can be produced by removing reactions

from some strictly parallel generating topology ðRg; a; bÞ. Therefore, the function f2 that maps u and v

in this module onto its effective rate constant y belongs to the parametric family that corresponds to

ðRg; a; bÞ. According to Equation 55,

"y¼ Huv

2CuCv

þ oð1Þ; (68)

where

Cu ¼
u

y

qf2

qu
; (69)

Cv ¼
v

y

qf2

qv
; (70)

Huv ¼
uv

y

q
2f2

quqv
: (71)

According to Theorem 1, 0�Cu � 1 and 0�Cv � 1. And since all y>0, u>0, v>0, to prove Proposi-

tion 7, it is sufficient to show that q
2 f2

quqv
� 0 for any member of any parametric family that corresponds

to generating topologies listed in Table 2.

Generating topologies b; io; IO;F and b; i; ;;F (Figure 8). According to Equation 34 and Equa-

tion 35, y ¼ f2ðu; vÞ ¼ uþ fðvÞ, which implies that "y ¼ 0.

Generating topology io; io; IO;F (Figure 8). According to Equation 37,

y¼ f2ðu;vÞ ¼w12þ
AuvþBuþBv

D
;

where D¼ EuvþFuþGvþB, A¼w42=K13þw32=K14, B¼w32w42þw32w43þw34w42, E¼ 1= K13K14ð Þ,
F ¼ w42þw43ð Þ=K13, G¼ w32þw34ð Þ=K14. Therefore,

q
2f2

quqv
¼�2

w34

K14

w32 v=K14þBð Þ w42 u=K13þBð Þ
D3

� 0:

Generating topology io; io;;;P (Figure 10). According to Equation 38,

y¼ f2ðu;vÞ ¼w12þfðuÞþ ðvÞ, which implies "y¼ 0.

Generating topology io; i; I;P (Figure 11). Notice that metabolite 4 together with reactions

1 $ 4, a and b form a double-marked module ð�0; a; bÞ whose I/O metabolites are 1 and 3 and which

is minimal in the topological calss Mb;io;IO. Denote the effective reaction rate of module �0 by y0.
Therefore, "y0 ¼ 0, as shown above. Since module �0 is contained in m, by Theorem 1, "y � 0.

Generating topology io; i; ;;P1 (Figure 12). According to Property 1 of the CGP (Box 1), module

m can be coarse-grained by first eliminating metabolite 3. In the resulting module �0, mutation A per-

turbs only the rate constant u0 of the effective reaction a0 � 1 $ 2 (by Properties 2 and 4 of the

CGP). Then, according to Equation 50 and Theorem 1, dAu0
�
�

�
�� 1. The double-marked module

ð�0; a0; bÞ is minimal in the topological class Mb;i;; which implies that "y ¼ 0, as shown above.

Generating topology io; i; ;;P2 (Figure 12). Module m can be coarse-grained by first eliminating

metabolite 5, which will result in a double-marked module ð�0; a; b0Þ that is minimal in the topological

class Mio;io;IO. The rest of the proof for this topology is analogous to that for the topology io; i; ;;P1.
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Generating topology io; i; ;;P3 (Figure 12). Notice that metabolites 4 and 5 together with reac-

tions a, b, 1 $ 4, 1 $ 5, 3 $ 4 and 3 $ 5 form a double-marked module ð�0; a; bÞ whose I/O metabo-

lites are 1 and 3 and which is minimal in the topological calss Mb;i;;. The rest of the proof for this

topology is analogous to that for the topology io; i; I;P.

Generating topology i; i; I;P1 (Figure 13). Notice that metabolites 4 and 5 together with reactions

a, b, 1 $ 3, 1 $ 4, 1 $ 5 and 4 $ 5 form a double-marked module ð�0; a; bÞ whose I/O metabolites

are 1 and 3 and which is minimal in the topological calss Mio;io;IO. The rest of the proof for this topol-

ogy is analogous to that for the topology io; i; I;P.

Generating topology i; i; I;P2 (Figure 13). Notice that metabolite 5 together with reactions a, b,

and 4 $ 5 form a double-marked module ð�0; a; bÞ whose I/O metabolites are 3 and 4 and which is

minimal in the topological calss Mb;io;IO. The rest of the proof for this topology is analogous to that

for the topology io; i; I;P.

Generating topology i; i; ;;P1 (Figure 14). According to Equation 35,

y ¼ f2ðu; vÞ ¼ x12 þ fðuÞ þ  ðvÞ, which implies "y ¼ 0.

Generating topology i; i; ;;P2 (Figure 14). Notice that metabolites 5 and 6 together with reac-

tions a, b, 3 $ 5, 3 $ 6, 4 $ 5 and 5 $ 6 form a double-marked module ð�0; a; bÞ whose I/O metabo-

lites are 3 and 4 and which is minimal in the topological calss Mb;i;;. The rest of the proof for this

topology is analogous to that for the topology io; i; I;P.

Generating topology i; i; ;;P3 (Figure 14). Module m can be coarse-grained by first eliminating

metabolites 4 and 6, which will result in a double-marked module ð�0; a0; b0Þ that is minimal in the

topological class Mio;io;IO. The rest of the proof for this topology is analogous to that for the topol-

ogy io; i; ;;P1.

Generating topology i; i; ;;P4 (Figure 14). Module m can be coarse-grained by first eliminating

metabolite 4, which will result in a double-marked module ð�0; a0; bÞ that is minimal in the topological

class Mio;i;; with a strictly parallel generating topology io; i; ;;P3. The rest of the proof for this topol-

ogy is analogous to that for the topology io; i; ;;P1.

Generating topology i; i; ;;P5 (Figure 14). Module m can be coarse-grained by first eliminating

metabolite 6, which will result in a double-marked module ð�0; a; b0Þ that is minimal in the topological
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Figure 14. Graphical representation of strictly serial and strictly parallel generating topologies in class Mi;i;;. Fully connected topology i; i; ;;F is shown

for reference (same as in Figure 8).
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class Mi;i;I with a strictly parallel generating topology i; i; I;P1. The rest of the proof for this topology

is analogous to that for the topology io; i; ;;P1.

Generating topology i; i; ;;P6 (Figure 14). Notice that metabolites 4 and 6 together with reac-

tions a, b, 3 $ 5, 3 $ 6, 4 $ 5 form a double-marked module ð�0; a; bÞ whose I/O metabolites are 3

and 5 and which is minimal in the topological calss Mio;io;;. The rest of the proof for this topology is

analogous to that for the topology io; i; I;P.

Generating topology i; i; ;;P7 (Figure 14). Using Equation 42, I show in Appendix 4 that

q
2f2

quqv
¼ 2b

K31

Au vþBuð Þ Av uþBvð Þ
Eu vþFuð Þ3

; (72)

where Av, Bv, Eu, Fu are all non-negative constants and b� 0.

Proposition 8
Let ð�; a; bÞ be a minimal double-marked module in the topological class M, with u and v being the

rates of reactions a and b, respectively, and let y be the effective rate constant of this module. Sup-

pose that mutation A perturbs only reaction a by dAu, and mutation B perturbs only reaction b by

dBv, such that dAu
�
�

�
�� 1, dBv

�
�

�
�� 1. If reactions a and b are strictly serial in ð�; a; bÞ, then "y � 1.

Proof
The logic of the proof is the same as for Proposition 7, that is, it is sufficient to show that "y � 1 for

any double-marked module ð�; a; bÞ with any strictly serial generating topology listed in Table 3.

Generating topology io; io; I;F (Figure 8). According to Equation 36,

y¼ f2ðu;vÞ ¼w12þ
uv

D
(73)

where D¼ u=K13þ v. Therefore,

Cu ¼ v

D

� �2 u

y
;

Cv ¼ 1

K12

u

D

� �2 v

y
;

Huv ¼ 2

K12

1

yD

uv

D

� �2

:

Substituting these expressions into Equation 68, I obtain

"y¼ y

uv=D
� 1

because y� uv=D according to Equation 73.

Generating topology io; io; ;; S (Figure 10). According to Property 1 of the CGP (Box 1), module

m can be coarse-grained by first eliminating metabolite 3. In the resulting module �0, mutation A per-

turbs only the rate constant u0 of the effective reaction a0 � 1 $ 4 (by Properties 2 and 4 of the

CGP). Then, according to Equation 50 and Theorem 1, dAu0
�
�

�
�� 1. The double-marked module

ð�0; a0; bÞ is minimal in the topological class Mio;io;I which implies that "y � 1, as shown above.

Generating topology io; i; I; S1 (Figure 11). Notice that metabolite 3 together with reactions a, b,

and 1 $ 4 form a double-marked module ð�0; a; bÞ whose I/O metabolites are 1 and 4 and which is

minimal in the topological calss Mio;io;I. Therefore, if the effective reaction rate of module �0 is y0,

"y0 � 1, as shown above. According to Equation 50, Equation 51 and Theorem 1, dAy0
�
�

�
�� 1,

dBy0
�
�

�
�� 1. Since module �0 is contained in m, by Theorem 1, "y � 1.

Generating topology io; i; I; S2 (Figure 11). Module m can be coarse-grained by first eliminating

metabolite 4, which results in a double-marked module ð�0; a; b0Þ that is minimal in the topological

class Mio;io;I. The rest of the proof for this topology is analogous to that for the topology io; io; ;; S.
Generating topology io; i; ;; S1 (Figure 12). Module m can be coarse-grained by first eliminating

metabolites 4 and 5, which results in a double-marked module ð�0; a; b0Þ that is minimal in the
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topological class Mio;io;I. The rest of the proof for this topology is analogous to that for the topology

io; io; ;; S.
Generating topology io; i; ;; S2 (Figure 12). Notice that metabolites 3 and 4 together with reac-

tions a, b, 1 $ 4, 1 $ 5 and 3 $ 4 form a double-marked module ð�0; a; bÞ whose I/O metabolites are

1 and 5 and which is minimal in the topological calss Mio;io;; with the strictly serial generating topol-

ogy io; io; ;; S. The rest of the proof for this topology is analogous to that for the topology io; i; I; S1.

Generating topology io; i; ;; S3 (Figure 12). Notice that metabolites 3 and 5 together with reac-

tions a, b, 1 $ 4, 3 $ 4, and 3 $ 5 form a double-marked module ð�0; a; bÞ whose I/O metabolites

are 1 and 4 and which is minimal in the topological calss Mio;io;; with the strictly serial generating

topology io; io; ;; S. The rest of the proof for this topology is analogous to that for the topology

io; i; I; S1.

Generating topology i; i; I; S1 (Figure 13). Notice that metabolite 3 together with reactions a, b,

and 4 $ 5 form a double-marked module ð�0; a; bÞ whose I/O metabolites are 4 and 5 and which is

minimal in the topological calss Mio;io;I. The rest of the proof for this topology is analogous to that

for the topology io; i; I; S1.

Generating topology i; i; I; S2 (Figure 13). Notice that metabolites 3 and 5 together with reactions

a, b, 1 $ 3, 1 $ 4, and 1 $ 5 form a double-marked module ð�0; a; bÞ whose I/O metabolites are 1

and 4 and which is minimal in the topological calss Mio;i;I with the strictly serial generating topology

io; i; I; S2. The rest of the proof for this topology is analogous to that for the topology io; i; I; S1.

Generating topology i; i; ;; S1 (Figure 14). Module m can be coarse-grained by first eliminating

metabolites 5 and 6, which results in a double-marked module ð�0; a; b0Þ that is minimal in the topo-

logical class Mio;i;I with the strictly serial generating topology io; i; I; S1. The rest of the proof for this

topology is analogous to that for the topology io; io; ;; S.
Generating topology i; i; ;; S2 (Figure 14). Module m can be coarse-grained by first eliminating

metabolite 6, which results in a double-marked module ð�0; a; b0Þ that is minimal in the topological

class Mi;i;I with the strictly serial generating topology i; i; I; S1. The rest of the proof for this topology

is analogous to that for the topology io; io; ;; S.

Proof of Theorem 2
According to Proposition 3, the coarse-graining procedure CG�nfa;bg maps the double-marked mod-

ule ð�; a; bÞ onto a double-marked module ð�0; a; bÞ that is minimal in the same topological class as

ð�; a; bÞ, and the rates u, v of reactions a, b in �0 are given by linear relations in Equation 32 and

Equation 33. Clearly, dAu
�
�

�
�� 1 and dBv

�
�

�
�� 1. Furthermore, none of the other reaction rates wij in �

0

depend on x or h, so that dAwij ¼ 0 and dBwij ¼ 0 for all wij other than u and v, and "wij ¼ 0 for all wij

including u and v. It then follows from Proposition 3 that "y� ¼ "y�0 .

Now, according to Corollary 4, if reactions a and b are strictly parallel in ð�; a; bÞ, they are also

strictly parallel in ð�0; a; bÞ. Therefore, by Proposition 7, "y�0 � 0. Analogously, if reactions a and b are

strictly serial in ð�; a; bÞ, they are also strictly serial in ð�0; a; bÞ. Therefore, by Proposition 8, "y�0 � 1.

Sensitivity of Theorem 1 and Theorem 2 with respect to the magnitude
of mutational effects
According to Proposition 2, function f1 for any module belongs to one of three parametric families,

which correspond to the three minimal fully connected modules shown in Figure 7. As mentioned in

the Results, for modules in the class Mb, function f1 is linear, so that the claims of Theorem 1 con-

tinue to hold for mutations with finite effects. To evaluate the sensitivity of Theorem 1 with respect

to the effect sizes of mutations for the topological classes Mio and Mi, I generated 1000 minimal

single-marked modules n from each of these topological classes with random parameters. Evaluating

only minimal modules is sufficient because for any module from a given topological class there exists

a minimal module from the same class, such that both of them map the lower level phenotype y�

onto the higher-level phenotype yn via the same function f1 (see Proposition 2).

To this end, I drew each xij (i<j) from a mixture of a point measure at 0 (with weight 0.25) and an

exponential distribution with mean 1 (with weight 0.75). The point measure at 0 ensures that minimal

modules that are not fully connected are represented in the sample. I drew each Kij (i<j) as a ratio of
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two random numbers from an exponential distribution with mean 1. As a result, the distribution of

non-zero xij values had the interdecile range of ð5:7� 10
�2; 3:91Þ with median 0.65.

I denote the effective rate constant of the reaction that represents the lower-level module m by

� � y�. In modules from the topological class Mio, it is reaction 1 $ 3 and in modules from the topo-

logical class Mi, it is the reaction 3 $ 4. I perturbed x by two mutations A and B with relative effects

dA� and dB� and epistasis "�. I chose nine different pairs of mutational effects

ðdA�; dB�Þ : ð�0:01;�0:01Þ, ð�0:1;�0:1Þ, ð�0:5;�0:5Þ, ð0:01; 0:01Þ, ð0:1; 0:1Þ, ð0:5; 0:5Þ, ð�0:01; 0:01Þ,
ð�0:1; 0:1Þ, ð�0:5; 0:5Þ, and 16 different values of "� ranging from �1 to 2 with an increment of 0.2.

Since the rate constant �AB of the double mutant cannot be negative, I skipped those combinations

of perturbations and epistasis values for which dA� þ dB� þ 2 "�ð Þ dA�
� �

dB�
� �

<� 1. I then computed

the resulting values dAyn, d
Byn and "yn at the level of the effective rate constant yn of the higher-level

module n.

Using these data, I inferred the function f that maps lower-level epistasis "� onto higher-level

epistasis "yn, as follows. For any minimal single-marked module from the topological classes Mio or

Mi, the effective rate constant yn can be written as

yn ¼ x12þ
~A�þ ~B

D
;

where D¼ ~C �þ ~D and ~A¼ x32, ~B¼ 0, ~C¼ 1=K13 , ~D¼ x32 for modules from the topological class

Mio (see Equation 30), and ~A¼ x13þ x14ð Þ x42þ x32=K34ð Þ, ~B¼ ðx31þ x32Þx14 x42þðx41 þ x42Þx13w32,
~C¼ ðx31þ x32Þ=K34þðx41þ x42Þ , ~D¼ ðx31þ x32Þðx41þ x42Þ for modules from the topological class Mi

(see Equation 31). Therefore, for any perturbation d�, we have

dyn ¼
~A ~D� ~B ~C

D2

�

yn

d�

1þ ~C �=D
� �

d�
:

Since dAB� is a linear function of "�, dAByn is a hyperbolic function of "�. Therefore, "yn is also a

hyperbolic function of "�,

"yn ¼f "�ð Þ ¼ a� b

"�þ c
; (74)

where constants a, b and c depend on the parameters of module n and on the mutational effect

sizes dA� and dB�. I numerically calculated these parameters for each sampled module and each pair

of mutational effects.

The main results of Theorem 1 are that, when the effects of mutations are infinitesimal, the map f

has a fixed point �", this fixed point is located between 0 and 1, and it is unstable. I use equation

Equation 74 to test whether these statements also hold when the effects of mutations are finite.

Specifically, it is easy to see that the map f has a fixed point �" if the discriminant

d ¼ ða� cÞ2 � 4 ðb� acÞ is positive. In this case, I designate �" as the one of two roots 1=2 a� c�
ffiffiffi
d

p� �

that is closer to zero. I then check whether this fixed point is located between 0 and 1. I check

whether it is unstable by comparing the derivative of f at �" with 1.

According to Proposition 6, function f2 for any module where the reactions affected by mutations

are strictly parallel belongs to one of 17 parameteric families, which correspond to the strictly paral-

lel generating topologies listed in Table 2. And similarly, function f2 for any module where the reac-

tions affected by mutations are strictly serial belongs to one of 11 parameteric families, which

correspond to the strictly serial generating topologies listed in Table 3. Therefore, to evaluate the

sensitivity of Theorem 2 with respect to the effect sizes of mutations I generated 104 double-marked

modules ð�; a; bÞ with each of the strictly serial and strictly parallel topologies with random parame-

ters. I drew xij and Kij as described above. I chose the same nine pairs of mutational effects

ðdA�; dBhÞ as above, where x and h are the rate constants of reactions affected by mutations A and

B: ð�0:01;�0:01Þ, ð�0:1;�0:1Þ, ð�0:5;�0:5Þ, ð0:01; 0:01Þ, ð0:1; 0:1Þ, ð0:5; 0:5Þ, ð�0:01; 0:01Þ, ð�0:1; 0:1Þ,
ð�0:5; 0:5Þ.

I found that, for some modules, individual mutational perturbations dAy� and/or dBy� at the level

of the whole module were too small, which resulted in numerical instabilities. To avoid them, I
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calculated epistasis "y� only for cases where the effects of both mutations dAy� and dBy� exceeded

the precision threshold of 10�5. As a result, I evaluated epistasis in less than 104 modules per gener-

ating topology and pair of mutational effects, but this number never fell below 1000. When compar-

ing the values of epistasis with 0 and 1, I used the same precision threshold of 10
�5 to avoid

numerical problems. In addition, I found that for mutations affecting strictly serial reactions there is a

substantial fraction of modules where "y� falls between 0.99 and 1 (see Figure 4—figure supple-

ment 3). This is not a numerical artifact, but probably reflects real clustering of epistasis coefficients

around 1, which is expected for the linear pathway irrespective of its parameters (see above).

The Matlab code for this analysis is available at https://github.com/skryazhi/epistasis_theory.

Kinetic model of glycolysis
I downloaded the kinetic metabolic model of E. coli glycolysis by Chassagnole et al., 2002 from the

BioModels database (Malik-Sheriff et al., 2019) on September 15, 2015 (model ID

BIOMD0000000051). I used the Matlab SimBiology toolbox to interpret the model. To validate the

model, I simulated it for 40 s and reproduced Figures 4 and 5 from Chassagnole et al., 2002. The

Matlab code is available at https://github.com/skryazhi/epistasis_theory.

Modifications to the original model
I simplified and modified the model by (a) fixing the concentrations of ATP, ADP, AMP, NADPH,

NADP, NADH, NAD at their steady-state values given in Table V of Chassagnole et al., 2002 and

(b) removing dilution by growth. I then created four models of sub-modules of glycolysis by retaining

the subsets of metabolites and enzymes shown in Figure 5—figure supplement 1 and Table 4 and

removing other metabolites and enzymes. Each sub-module has one input and one output metabo-

lite. Note that, since some reactions are irreversible, it is important to distinguish the input metabo-

lite from the output metabolite. The concentrations of the input and the output metabolites in each

model are held constant at their steady-state values given in Table 4. I defined the flux through the

sub-module as the flux toward the output metabolite contributed by the sub-module (Table 4). This

flux is the equivalent of the quantitative phenotype y� of a module in the analytical model. In addi-

tion, I made the following modifications specific to individual sub-modules.

1. In the FULL model, the stoichiometry of the PTS reaction was changed to

½Extglu� þ ½pep� $ ½g6p�þ ½pyr�

and the value of the constant KPTS;a1 was set to 0.02 mM, based on the values found in the lit-
erature (Stock et al., 1982; Natarajan and Srienc, 1999).

2. In all models other than FULL, the extracellular compartment was deleted.
3. In all models, the concentrations of the I/O metabolites were set to values shown in Table 4,

which are the steady-state concentrations achieved in the FULL model with the concentration
of extracellular glucose being 2 mM and pyruvate concentration being 10 mM.

Table 4. Definition of modules in the glycolysis network shown in Figure 5—figure supplement 1.

Enzyme abbreviations are listed in Table 6. Metabolite abbreviations are listed in Table 5.

Model Internal metabolites
Concentrations of I/O
metabolites Reactions Output flux

UGPP 6 pg, dhap, e4p, f6p, fdp, rib5p,
ribu5p, sed7p, xyl5p

[g6p]=3.82 mM, [gap]
=0.44 mM

ALDO, G6PDH, PFK, PGDH, PGI, Ru5P, R5PI,
TA, TIS, TKa, TKb

JALDO þ JTIS þ JTKb þ JTKa � JTA

LG 2 pg, 3 pg, pgp [gap]=0.44 mM, [pep]
=0.08 mM

ENO, GAPDH, PGK, PGM JENO

GPP all in UGPP and in LG, gap [g6p]=3.82 mM, [pep]
=0.08 mM

all in UGPP and in LG JENO

FULL all in GPP, g6p, pep [Ext glu]=2 mM, [pyr]=10
mM

all in GPP, PTS, PK, PEPCxyl JPK þ JPTS
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Calculation of flux control coefficients and epistasis coefficients
I calculate the first- and second-order flux control coefficients (FCC) Ci and Hij for flux J with respect

to reactions i and j as follows (see Equation 45 and Equation 46). I perturb the rmax;i of reaction i by

factor between 0.75 and 1.25 (10 values in a uniformly-spaced grid), such that drmax;i 2 ½�0:25; 0:25�.
Then, I obtain the steady-state flux J 0 in each perturbed model and calculate the flux perturbations

dJ ¼ J 0=J0 � 1, where J0 is the corresponding flux in the unperturbed model. Then, to obtain Ci and

Hii, I fit the linear model

Table 5. Names of metabolites used in the kinetic model of glycolysis.

2 pg 2-Phosphoglycerate

3 pg 3-Phosphoglycerate

6 pg 6-Phosphogluconate

dhap Dihydroxyacetonephosphate

e4p Erythrose-4-phosphate

f6p Fructose-6-phosphate

fdp Fructose-1,6-bisphosphate

g6p Glucose-6-phosphate

gap Glyceraldehyde-3-phosphate

glu Glucose

pep Phosphoenolpyruvate

pgp 1,3-Diphosphoglycerate

pyr Pyruvate

rib5p Ribose-5-phosphate

ribu5p Ribulose-5-phosphate

sed7p Sedoheptulose-7-phosphate

xyl5p Xylulose-5-phosphate

Table 6. Names of enzymes used in the kinetic model of glycolysis.

ALDO Aldolase

ENO Enolase

G6PDH Glucose-6-phosphate dehydrogenase

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

PFK Phosphofructokinase

PGDH 6-Phosphogluconate dehydrogenase

PGI Glucose-6-phosphateisomerase

PGK Phosphoglycerate kinase

PGM Phosphoglycerate mutase

PEPCxyl PEP carboxylase

PK Pyruvate kinase

PTS Phosphotransferase system

R5PI Ribose-phosphateisomerase

Ru5P Ribulose-phosphate epimerase

TA Transaldolase

TIS Triosephosphate isomerase

TKa Transketolase, reaction a

TKb Transketolase, reaction b
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dJ ~Ci drmax;i

� �
þHii

2
drmax;i

� �2

by least squares. If the estimated value of Ci was below 10
�4 for a given sub-module, I set Ci to

zero and exclude this reaction from further consideration in that sub-module because it does not

affect flux to the degree that is accurately measurable. If the estimated value of Hii is below 10
�4, I

set Hii to zero.

To calculate the non-diagonal second-order control coefficients Hij, I create a 4� 4 grid of pertur-

bations of drmax;i and drmax;j and calculate the resulting flux perturbations dJ (16 perturbations total).

Since Ci, Cj, Hii and Hjj are known, I obtain Hij, by regressing

dJ� Ci drmax;i

� �
þHii

2
drmax;i

� �2

� �

� Cj drmax;j

� �
þHjj

2
drmax;j

� �2

� �

against

drmax;i

� �
drmax;j

� �
:

If the estimated value of Hij is below 10
�4, I set Hij to zero. I estimate the epistasis coefficient "J

between mutations affecting reactions i and j as

"J ¼ Hij

2CiCj

:

Establishing the topological relationships between pairs of reactions
To establish the topological relationship (strictly serial, strictly parallel, or serial-parallel) between

two reactions, I consider the smallest module (LG, UGPP, GPPP, or FULL) which contains both reac-

tions. I then manually identify whether there exists a simple path connecting the input metabolite

with the output metabolite for that module that passes through both reactions. (Note that, since

some reactions are irreversible in this model, it is important to distinguish the input metabolite from

the output metabolite). If such path does not exist, I classify the topological relationship between

the two reactions as strictly parallel. If such path exists, I check if there are two paths connecting the

input to the output metabolites such that each path contains only one of the two focal reactions. If

such paths do not exist, I classify the topological relationship between the two reactions as strictly

serial. Otherwise, I classify it as serial-parallel.
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Appendix 1

Proof of Equation 24
First, the terms in Equation 24 can be re-arranged as follows

xEij ¼ xijþ
xik1 xk1j

D
Enfk1g
k1

þ xik2 xk2 j

D
Enfk2g
k2

þ� � �

þ xik1 xk1k2 xk2j

D
Enfk1g
k1

D
Enfk1;k2g
k2

þ�� �þ xik2 xk2k1 xk1 j

D
Enfk2g
k2

D
Enfk1;k2g
k1

þ �� �

¼ xijþ
xik1

D
Enfk1g
k1

xk1 jþ
xk1k2 xk2j

D
Enfk1;k2g
k2

þ �� �
 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼x
Enfk1g
k1 j

þ xik2

D
Enfk2g
k2

xk2j þ
xk2k1 xk1j

D
Enfk1 ;k2g
k1

þ� � �
 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼x
Enfk2g
k2 j

þ�� �

¼ xijþ
X

‘2E

xi‘ x
Enf‘g
‘j

D
Enf‘g
‘

:

(75)

Next, I will demonstrate the validity of Equation 75 by induction. It is clear that for E¼ fkg � A�,

Equation 24 reduces to Equation 12. Now suppose that nE>1 and that there exists a metabolite

k 2 E, such that Equation 75 holds for the subset E0 ¼ E n fkg, that is,

xE
0

ij ¼ xij þ
X

‘2E0

xi‘ x
E0nf‘g
‘j

D
E0nf‘g
‘

: (76)

I will now show that then Equation 75 also holds for E. To do so, I use the definition of xEij (Equa-

tion 19) and apply Equation 76 to expand terms xE
0

ij and xE
0

ik as follows.

xEij ¼ xE
0

ij þ
xE

0
ik x

E0
kj

DE0
k

¼ xijþ
X

‘2E0

xi‘ x
E0nf‘g
‘j

D
E0nf‘g
‘

þ
xik x

E0
kj

DE0
k

þ
X

‘2E0

xi‘ x
E0nf‘g
‘k xE

0
kj

D
E0nf‘g
‘ DE0

k

¼ xijþ
X

‘2E0

xi‘

D
E0nf‘g
‘

x
E0nf‘g
‘j þ

x
E0nf‘g
‘k xE

0
kj

DE0
k

 !

þ
xik x

E0
kj

DE0
k

:

(77)

Recalling that E¼ E0 n fkg, I re-write Equation 75 as

xEij ¼ xij þ
X

‘2E0

xi‘ x
Enf‘g
‘j

D
Enf‘g
‘

þ
xik x

E0
kj

DE0
k

: (78)

Since the first and third terms of Equation 77 and Equation 78 are identical, to complete the

proof, it is sufficient to show that for any ‘2 E0,

1

D
E0nf‘g
‘

x
E0nf‘g
‘j þ

x
E0nf‘g
‘k xE

0
kj

DE0
k

 !

� 1

D
Enfk;‘g
‘

x
Enfk;‘g
‘j þ

x
Enfk;‘g
‘k x

Enfkg
kj

D
Enfkg
k

 !

¼
x
Enf‘g
‘j

D
Enf‘g
‘

: (79)

To show that Equation 79 holds, I first use Equation 19 and Equation 21 to express x
Enfkg
kj and

D
Enfkg
k in terms of effective reaction rates after the elimination of the metabolite set E n fk; ‘g,
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x
Enfkg
kj ¼ x

Enfk;‘g
kj þ

x
Enfk;‘g
k‘ x

Enfk;‘g
‘j

D
Enfk;‘g
‘

D
Enfkg
k ¼D

Enfk;‘g
k � x

Enfk;‘g
k‘ x

Enfk;‘g
‘k

D
Enfk;‘g
‘

;

(80)

which imply that

1

D
Enfk;‘g
‘

x
Enfk;‘g
‘j þ

x
Enfk;‘g
‘k x

Enfkg
kj

D
Enfkg
k

 !

¼ D
Enfk;‘g
k

D
Enfk;‘g
‘ D

Enfkg
k

x
Enfk;‘g
‘j þ

x
Enfk;‘g
‘k x

Enfk;‘g
kj

D
Enfk;‘g
k

 !

¼
D

Enfk;‘g
k x

Enf‘g
‘j

D
Enfk;‘g
‘ D

Enfkg
k

:

Finally, it follows from Equation 80 that D
Enfk;‘g
‘ D

Enfkg
k ¼D

Enfk;‘g
k D

Enf‘g
‘ ; which completes the proof

of Equation 79. Thus, Equation 75 and equivalently Equation 24 hold for any metabolite subset

E� A�.
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Appendix 2

Existence of a simple path that contains a given reaction
Lemma 1

Let m be a module with the reaction set R�. Then, for any reaction a 2 R�, there exists a simple path

p12ðaÞ within � that connects the I/O metabolites and contains reaction a, that is, P�
12
ðaÞ 6¼ ;.

Proof
Reaction a is either a bypass, i/o, or internal reaction for module �. If a is a bypass reaction, then the

statement is trivially true. If a is an i/o reaction, then, without loss of generality, let a ¼ 1 $ j. Since �

is a module, there exists a simple path j $ j1 $ � � � $ 2 that connects the internal metabolite j to the

I/O metabolite 2. Therefore, the path 1 $ j $ j1 $ � � � $ 2 connects the I/O metabolites and con-

tains reaction a.

Suppose that a ¼ i $ j is an internal reaction. To prove the statement, it is sufficient to show that

there exists a pair of non-intersecting paths p0
1i and p0

2i, such that one of them contains a and the

other does not. Since � is a module, there exists a pair of non-intersecting paths p1i and p2i and a

pair of non-intersecting paths p1j and p2j within module � (I omitted super-index � to simplify nota-

tions). There are two mutually exclusive possibilities. (i) Metabolite j is contained in either of the

paths p1i or p2i and/or metabolite i is contained in either of the paths p1j or p2j. (ii) Metabolite j is not

contained in either of the paths p1i or p2i and metabolite i is not contained in either of the paths p1j

or p2j, that is, j 62 pui and i 62 puj, u ¼ 1; 2. It is trivial to construct the neccessary paths p0
1i and p0

2i in

case (i).

ai j

1 2

k

l

p
1i

p
2i

p
2j

Appendix 2—figure 1. Illustration for the proof of Lemma 1.

Consider case (ii). If paths p2j and p1i do not intersect, then let p0
1i ¼ p1i and

p0
2i ¼ i$ j

|ffl{zffl}

¼a

$ �� �$ 2;
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

¼p2j

and the statement is true. Suppose paths p2j and p1i intersect. Then, among all metabolites that

belong to both p1i and p2j, let metabolite k be the one closest to j along the path p2j (see Figure).

Then the segment pkj of path p2j and the path p1i do not intersect. Let

p00
1i ¼ 1$ �� �$ k

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
along p1i

$ �� �$
|fflfflfflffl{zfflfflfflffl}

along p2j

j$ i
zffl}|ffl{
¼a

;

If p00
1i and p2i do not intersect, then the lemma is true. If p00

1i and p2i do intersect, this intersetion

can only occur within the segment pkj of path p00
1i, excluding metabolites k and j (see Figure). This is

because the remaining segment p1k of path p00
1i is also a segment of p1i, which, by assumption, does

not intersect p2i. Suppose that among all metabolites that belong to both the segment pkj of path p00
1i

and the path p2i metabolite ‘ is the one closest to j along the path p00
1i. Then let
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p0
1i ¼ p1i;

p0
2i ¼ 2$ �� �$

zfflfflfflfflfflffl}|fflfflfflfflfflffl{
along p2i

‘$ �� �$
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

along p2j

j$ i
zffl}|ffl{
¼a

:

The path p0
2i does not intersect the path p1i because its first segment p2‘ belongs to path p2i and

its second segment p‘j belongs to the segment pkj of path p00
1i (and, as mentioned above, segment pkj

does not intersect p1i). Thus, the statement holds for case (ii) as well.
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Appendix 3

An algorithm for discovering all strictly serial and strictly parallel
generating topologies
Suppose that ðR; a; bÞ 2 Gser

M, that is, ðR; a; bÞ is a strictly serial generating topology in the topological

class M. Since R � RM where RM is the complete reaction set RM for class M, R can be discovered

by sequentially removing reactions from RM. The same logic holds for strictly parallel generating

topologies. The following algorithm implements this idea.

1. Define function generate_topology_list. This function takes a topology ðR; a; bÞ 2 Rsp
M as input

and returns a new list of topologies L as output, which is produced as follows. Initialize L ¼ ;.
For every reaction ci 2 R n fa; bg, construct the reaction subset Ri ¼ R n fcig and use Definition
1 to test whether Ri corresponds to a valid module. If Ri corresponds to a module, add

ðRi; a; bÞ to list L; otherwiese, discard. It can be proven that, as long as ðR; a; bÞ 2 Rsp
M, there

exists at least one ci 2 R, such that Ri corresponds to a module, that is, L 6¼ ;. Return list L.
2. Initialization.

a. Pick a topological class M.

b. Test whether ðRM; a; bÞ 2 Rser
M. If so, Gser

M ¼ ðRM; a; bÞf g and Gpar
M ¼ ;. Return Gser

M, Gpar
M .

c. Test whether ðRM; a; bÞ 2 Rpar
M . If so, Gpar

M ¼ ðRM; a; bÞf g and Gser
M ¼ ;. Return Gser

M, Gpar
M .

d. Set Gser
M ¼ ;, Gpar

M ¼ ;. Use function generate_topology_list with ðRM; a; bÞ as input and

obtain the list of reaction sets L. Proceed to Step 3 with list L.

3. Take list L ¼ ððR1; a; bÞ; ðR2; a; bÞ; . . . ; ðRk; a; bÞÞ as input. Set L0 ¼ ;. Proceed to Step a with i ¼ 1.

a. Test whether ðRi; a; bÞ belongs to Rpar
M , Rser

M or Rsp
M. Choose one of the alternatives b, c, or

d.
b. ðRi; a; bÞ 2 Rpar

M . If ðRi; a; bÞ is not in the set Gpar
M and if ðRi [ fcg; a; bÞ 2 Rsp

M for all c 2 RM n Ri,

then add ðRi; a; bÞ to Gpar
M . Proceed to Step e.

c. ðRi; a; bÞ 2 Rser
M. If ðRi; a; bÞ is not in the set Gser

M and if ðRi [ fcg; a; bÞ 2 Rsp
M for all c 2 RM n Ri,

then add ðRi; a; bÞ to Gser
M. Proceed to Step e.

d. ðRi; a; bÞ 2 Rsp
M. Use function generate_topology_list with ðRi; a; bÞ as input and obtain the

list of reaction sets Li. Replace L0 with L0 [ Li. Proceed to Step e.
e. If i ¼ k, proceed to Step f. Otherwise, proceed to Step a with iþ 1.

f. If L0 6¼ ;, then proceed to Step 3 with L0 as input. Otherwise, return Gser
M, Gpar

M .
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Appendix 4

Derivation of Equation 72
In this case, Equation (42) simplify to

W12ðvÞ ¼w12þ
w16w52 v=K56

D56ðvÞ
;

W13ðvÞ ¼w13þ
w16w63D5ðvÞ

D56ðvÞ
;

W14ðvÞ ¼w16w54 v=K56

D56ðvÞ
;

W23ðvÞ ¼w25w63 v

D56ðvÞ
;

W24ðvÞ ¼w24þ
w25w54D6ðvÞ

D56ðvÞ
;

W34ðu;vÞu þw36w54 v=K56

D56ðvÞ
;

where

D56ðvÞ ¼D5ðvÞD6ðvÞ�
v2

K56

;

D5ðvÞ ¼w52þw54þ v;D6ðvÞ
D6ðvÞ ¼w61þw63þ v=K56:

Notice that the only effective rate constant that depends on u is W34, and
qW34

qu
¼ 1. Thus, it is easy

to differentiate y, given by Equation 35, with respect to u, if we isolate the term W34 in both the

numerator and the denomintor,

y¼W12þ
A56;34W34 þB56;34

D56;34
; (81)

where

D56;34 ¼ E56;34W34þF56;34;

A56;34 ¼W14W42þ
W13W32

K34

þW13W42þ
W14W32

K34

W13þW14ð Þ W32

K34

þW42

� �

;

B56;34 ¼W14W42 W31þW32ð ÞþW13W32 W41 þW42ð Þ;
E56;34 ¼ W31þW32

K34

þ W41þW42ð Þ;
F56;34 ¼ W31þW32ð Þ W41þW42ð Þ:

It is also useful to obtain another expression for y, which is easier to differentiate with respect to

v. To do that, we can first eliminate metabolites 3 and 4 to obtain effective reaction rates

V12ðuÞ ¼w12 þ
w13w42 u

D34ðuÞ
;

V15ðuÞ ¼w13w45 u

D34ðuÞ
;

V16ðuÞ ¼w16 þ
w13w36D4ðuÞ

D34ðuÞ
;

V25ðuÞ ¼w25 þ
w24w45D3ðuÞ

D34ðuÞ
;

V26ðuÞ ¼w24w36 u=K34

D34ðuÞ
;

V56ðu;vÞ ¼ vþw36w54 u=K34

D34ðuÞ
;

where
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D34ðuÞ ¼D3ðuÞD4ðuÞ�
u2

K34

;

D3ðuÞ ¼w31þ uþw36;
D4ðuÞ ¼w42þ u=K34þw45:

The only effective activity that depends on v is V56, and
qV56

qv
¼ 1. Thus, isolating the term V56 (and

recalling that V65 ¼ V56=K56), we obtain the following expression for y, which is easy to differentiate

with respect to v.

y¼ V12þ
A34;56V65þB34;56

D34;56
; (82)

where

D34;56 ¼ E34;56V65þF34;56;

A34;56 ¼ V16þV15ð Þ V62

K65

þV52

� �

;

B34;56 ¼ V15V52 V61þV62ð ÞþV16V62 V51þV52ð Þ;
E34;56 ¼

V61þV62

K65

þ V51þV52ð Þ;
F34;56 ¼ V61þV62ð Þ V51þV52ð Þ:

Using symbolic computation it is possible to show that (see Mathematica notebook

[Supplementary file 1] and Mathematica notebook pdf [Supplementary file 2], p. 2)

D56;34D56 ¼D34;56D34: (83)

Also notice that, any module with the reaction set i; i;;;P7 is symmetric with respect to swapping

metabolite labels 1 with 2, 3 with 5, and 4 with 6. It is easy to check that Equations (81), (82)

respect this symmetry.

Differentiating Equation 81 with respect to u, after some algebra I obtain

qy

qu
¼ qy

qW34

¼ 1

K31

W31W42 �W32W41

D56;34

� �2

: (84)

Analogously, differentiating Equation 82 with respect to v, I obtain

qy

qv
¼ 1

K56

qy

qV65

¼ 1

K51

V52V61�V51V62

D34;56

� �2

: (85)

Notice that Equation 85 can also be obtained from Equation 84 by symmetry with respect to the

aforementioned metabolite relabeling.

Next, using symbolic computation (see Mathematica notebook (Supplementary file 1) and Math-

ematica notebook pdf (Supplementary file 2), p. 3), it is possible to show that

W31W42�W32W41ð ÞD56

D56;34D56

¼ Au vþBu

Eu vþFu

; (86)

where all coefficients

Au ¼w31

K56

 þw42f;

Bu ¼  f;

Eu ¼ u
w31w52 þw31w54þw36w52

K34K56

þ w42w61þw42w63þw45w61ð Þ
� �

þD4ðuÞfþD3ðuÞ
K56

 ;

Fu ¼ u
w52þw54

K34

fþðw61þw63Þ 
� �

þf :

and

f ¼w31w61þw31w63þw36w61;
 ¼w42w52þw42w54þw45w52
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are independent of u and v and are non-negative. Similarly (see Mathematica notebook

(Supplementary file 1) and Mathematica notebook pdf (Supplementary file 2), p. 4),

V52V61�V51V62ð ÞD34

D34;56D34

¼ Av uþBv

Ev uþFv

; (87)

where

Av ¼w61 þw52

K34

f;

Bv ¼  f;

Ev ¼ v w42w61þw42w63þw45w61ð Þþw31w52þw31w54þw36w52

K34K56

� �

þ D5ðvÞ
K34

fþD6ðvÞ ;

Fv ¼ v w42þw45ð Þfþw31þw36

K56

 

� �

þf :

We can now obtain the second derivative q
2y

quqv
, taking into account Equation 86. Alternatively, we

can obtain q
2y

quqv
by differentiating qy

qv
with respect to u, taking into account Equation 87. The denomi-

nators in both expressions would be identical due to Equation 83. Therefore the expression for the

second derivative must have the form given by Equation 72, that is,

q
2y

quqv
¼ 2b

K31

Au vþBuð Þ Av uþBvð Þ
Eu vþFuð Þ3

;

where b is independent of u and v. Thus, according to Equation 84, Equation 86,

b¼ AuFu �BuEu

Av uþBv

¼� w36 =K56þw45fð Þ;

which is verified in Mathematica notebook (Supplementary file 1) and Mathematica notebook

pdf (Supplementary file 2), p. 4. Similarly, according to Equation 85, Equation 87,

b

K31

¼ 1

K51

AvFv �BvEv

Au vþBu

¼�w63 þw54=K34f

K51

which is verified in Mathematica notebook (Supplementary file 1) and Mathematica notebook

pdf (Supplementary file 2), p. 5.
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Appendix 5

Relationship to the flux balance analysis
Here, I discuss the relationship of the model presented in this paper to the flux balance analysis

(FBA), a widely used approach to modeling whole-cell metabolism (Orth et al., 2010). FBA and my

model are designed to address different questions. My model was designed to explore how the flux

depends on the kinetic parameters of a module. FBA was designed to avoid this dependence. Nev-

ertheless, the two models are conceptually and mathematically related and in fact are in some sense

equivalent, as discussed below. The most important similarity is that both models rely on flux bal-

ance—the assumption that internal metabolites are at steady state—as a key simplification.

The major difference is that my model assumes that all reaction kinetics are first order, which

allows for analytical tractability, while FBA is agnostic with respect to reaction kinetics and takes into

account only their stoichiometries and possibly some additional ‘capacity’ constraints on the reaction

rates (Orth et al., 2010). This difference deserves some additional discussion. In real cells, the con-

centrations of internal metabolites and the resulting fluxes (which are functions of these concentra-

tions) are determined by the stoichiometries of reactions, the activities of enzymes and the

concentrations of external nutrients. A general approach to modeling such systems, adopted by the

metabolic control analysis and related theories, is to explicitly specify the dynamic equations for the

metabolites, such as Equation 10, and solve them to find steady-state concentrations of internal

metabolites (see e.g. Savageau, 1976). The steady-state fluxes are then determined automatically.

In my model, the internal steady state exists and is unique for any module (see Corollary 1). In con-

trast, there are no dynamic equations within FBA. Instead, the steady-state fluxes are subject only to

the mass-balance equations and the capacity conditions, which typically form a severely underdeter-

mined system. Therefore, arriving at a unique flux distribution in FBA requires additional assump-

tions. The typical approach is to first fix at least some nutrient uptake rates and then maximize an

objective function, such as the growth rate or biomass yield (Feist and Palsson, 2010). In other

words, FBA trades-off the ability to handle reactions with arbitrary kinetics and unknown kinetic

parameters against the necessity to impose auxiliary conditions to find the right solution among

many plausible ones.

As a consequence of these model design choices, mutations that add or remove reactions can be

naturally studied within the FBA framework, but there is no natural way to incorporate mutations

that perturb the kinetic parameters of reactions (He et al., 2010; Alzoubi et al., 2019). In contrast,

mutations of small or large effect, including reaction additions and deletions, can be in principle nat-

urally studied within my model.

Due to differences in the assumptions, my model and FBA describe different sets of biological

systems. However, there are special cases which can be described by both FBA and my model, and

in these special cases the two models are mathematically equivalent.

From the perspective of FBA, modules with two I/O metabolites and first-order kinetics described

by my model are a special case. So, let us apply FBA to a metabolic module � ¼ ðA�;~x�Þ with two I/

O metabolites 1 and 2. For the purposes of FBA, let the I/O metabolite 1 be the ‘external nutrient’

and let the I/O metabolite 2 be the ‘biomass’. Suppose that metabolites in the set Ain � A� are adja-

cent to the external nutrient and metabolites in the set Aout � A� are adjacent to the biomass. Then

reactions 1 $ i for i 2 Ain, that is, those that convert the nutrient into intermediate metabolites, are

the ‘uptake reactions’. And the reactions i $ 2 for i 2 Aout, that is, those that convert intermediate

metabolites into biomass, are the ‘biomass reactions’. Denote the rate of reaction consuming

metabolite i and producing metabolite j by vij and let Jin ¼Pi2Ain
v1i and Jout ¼

P

i2Aout
vi2 be the

input and output fluxes, respectively. To study epistasis within the FBA framework, we would need

to obtain Jout.

The assumption of my model that all reaction kinetics are first-order translates into the FBA for-

malism as the fact that the elements of the stoichiometry matrix~S take values �1, +1 or 0 and there

are no capacity constraints on the rates of reactions. Then, the mass-balance equation ~S~v ¼~0 leads

to the equality Jin ¼ Jout, so that the flux through the module does not depend on module’s internal

structure. Instead, it must be given as an auxiliary condition.

In my model, the steady-state flux J through the module depends in general on the internal struc-

ture of the module (through the effective rate constant y�) and is given by J ¼ y� S1 � S2=K12ð Þ for any
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concentrations S1 and S2 of the external nutrient and the biomass. However, in the degenerate case

where all uptake reactions are irreversible (i.e., K1i ¼ ¥ for all i 2 Ain), J ¼ Jin ¼Pi2Ain
x1iS1, such that

it is independent of the internal structure of the module. In this sense, this special case of my model

is equivalent to FBA. However, my model and FBA are not equivalent in terms of the distribution of

internal fluxes. My model still produces a unique steady sate and the corresponding flux distribution,

whereas FBA does not specify a unique flux distribution in this case without additional auxiliary

conditions.
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Appendix 6

Connection between metabolism and growth
Here I describe a simple ‘bioreactor’ model for connecting a hierarchical metabolic network

described in this paper with cellular growth. Suppose that module m with I/O metabolites 1 and n is

at the top level of the metabolic hierarchy and describes the whole cell. The I/O metabolite 1 can be

thought of as nutrients, and the I/O metabolite n can be thought of as proteins, so that cellular

metabolism converts nutrients into biomass. Denote the concentrations of metabolites and proteins

within cells by Si and p. Suppose that cells have a fixed volume v and the number of cells is N. Then,

the absolute abundance of proteins and metabolites across all N cells is P ¼ p vN and Ai ¼ Si v N,

i ¼ 1; . . . ; n� 1.

The proteins produced by the cell are the enzymes that catalyze all the reactions inside module m.

Let the relative expression level of the enzyme catalyzing reaction i $ j, i<j be fij (with
Pn�1

i¼1

P

j>i fij ¼ 1), so that its concentration inside cells is fij p. If the specific forward and reverse

activities of this enzyme are aij and aji (so that aij obey the Haldane equalities and aii ¼ 0), then the

total forward and reverse activities are xij ¼ aij fij p and xji ¼ aji fij p.

Finally, I assume that all reactions converting internal metabolites into biomass are irreversible,

and I assume that the cell density in the bioreactor is small enough that the nutrient concentration S1

stays constant. In other words, I model early exponential growth. Then the dynamics of metabolite

and protein abundances are governed by equations

_Ai ¼
Xn�1

i¼1

xjiAj �DiAi; i¼ 2; . . .n� 1: (88)

_P¼
Xn�1

i¼2

xinAi; (89)

where Di ¼
Pn

i¼1
xij.

I assume that all cells are identical and at steady state, such that protein and metabolite concetra-

tions inside cells are constants and the production of proteins and metabolites manifests itself in the

multiplication of cells. Then Equation 88 and Equation 89 become

lSi ¼
Xn�1

i¼1

xji Sj�Di Si; i¼ 2; . . .n� 1: (90)

_N ¼ lN; (91)

where l¼Pn�1

i¼2
xinSi is the steady-state flux into biomass which defines the exponential growth

rate of the system.

Finally, assuming that the rates of consumption and production of all metabolites are much

greater than their dilution by growth, I set l Si » 0. Then Equation 90 defines the same steady state

for module � as described in the section Network coarse-graining. Therefore, module � can be

replaced with the effective activity x� between nutrients and biomass, yielding l ¼ x�.
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