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SUMMARY

Patterns of dementia are known to fall into dissoci-
ated but dispersed brain networks, suggesting that
the disease is transmitted along neuronal pathways
rather than by proximity. This view is supported by
neuropathological evidence for ‘‘prion-like’’ transsy-
naptic transmission of disease agents like misfolded
tau and beta amyloid. We mathematically model this
transmission by a diffusive mechanism mediated
by the brain’s connectivity network obtained from
tractography of 14 healthy-brain MRIs. Subsequent
graph theoretic analysis provides a fully quantitative,
testable, predictive model of dementia. Specifically,
we predict spatially distinct ‘‘persistent modes,’’
which, we found, recapitulate known patterns of
dementia and match recent reports of selectively
vulnerable dissociated brain networks. Model pre-
dictions also closely match T1-weighted MRI volu-
metrics of 18 Alzheimer’s and 18 frontotemporal
dementia subjects. Prevalence rates predicted by
the model strongly agree with published data. This
work has many important implications, including
dimensionality reduction, differential diagnosis, and
especially prediction of future atrophy using baseline
MRI morphometrics.

INTRODUCTION

Dementia is estimated to affect 25 million people worldwide, of

whom 30%–70% have Alzheimer’s disease (AD) and 10% fron-

totemporal dementia (FTD). Neuropathological evidence points

to a neuronal/synaptic poliencephalopathy (Braak et al., 2000),

with the disease beginning in the gray matter with accumulation

of misfolded beta amyloid and/or tau protein and progressing

along extant fiber pathways via secondary Wallerian degenera-

tion, disconnection, and loss of signaling, axonal reaction, and

postsynaptic dendrite retraction (Seeley et al., 2009). Atrophy

patterns captured from longitudinal magnetic resonance

imaging (MRI) (Apostolova et al., 2007; Thompson et al., 2003)

via segmentation, atlas-based parcellation (Wu et al., 2007),

and volumetric analysis (e.g., FreeSurfer [Fischl et al., 2002],
1204 Neuron 73, 1204–1215, March 22, 2012 ª2012 Elsevier Inc.
FMRIB Software Library [FSL] [Smith et al., 2004], and statistical

parametric mapping [SPM] [Klauschen et al., 2009]) indicate that

progression occurs along vulnerable fiber pathways rather than

by proximity (Villain et al., 2008; Englund et al., 1988; Kuczynski

et al., 2010). This view is supported by recent studies showing

alterations in brain networks due to neurodegeneration (He

et al., 2008; Lo et al., 2010). Amyloid deposition, metabolism,

and atrophy in AD show spatially distinct involvement of the

posterior temporal heteromodal network (Buckner et al., 2005;

Acosta-Cabronero et al., 2010), while the frontal (behavioral)

variant of FTD (bvFTD) appears restricted to the orbitofrontal

network. These findings led to the network-degeneration view

that various dementias selectively target distinct intrinsic brain

networks (Seeley et al., 2009; Zhou et al., 2010; Buckner et al.,

2005; Du et al., 2007).

This view is strongly supported by new neuropathological

evidence that numerous disease proteins, including alpha-

synuclein, beta-amyloid, and TDP-43, have the capacity to

misfold and march throughout local and then long-range circuits

via transsynaptic spread (Palop and Mucke, 2010; Frost et al.,

2009b). Misfolded proteins can trigger misfolding of adjacent

same-species proteins, which in turn cascade along neuronal

pathways. Pathological tau conformers can induce nonfolded

tau to adopt pathological conformations (Frost et al., 2009b).

Tau misfolding could propagate from the exterior to the interior

of a cell (Frost et al., 2009a). These findings suggest a ‘‘prion-

like’’ mechanism of transmission underlying all dementias (Frost

and Diamond, 2010). However, both the network-degeneration

view and supporting pathological data are descriptive rather

than explicative, qualitative rather than model-based.

In this paper, we ask (1) what biophysical model might capture

themicroscopic properties of prion-like disease progression and

(2) what are its macroscopic consequences? To answer the first

question we propose a diffusive mechanism, a classic model of

random dispersion driven by concentration gradients with wide

physiological applicability, for instance in modeling neuronal

apoptosis dynamics via diffusible ‘‘death factors’’ (Lomasko

and Lumsden, 2009) and neuronal transport and transsynaptic

movement of neurotransmitters (Barreda and Zhou, 2011). Diffu-

sive spread is an excellent model for any disease-causing agent

(e.g., tau, amyloid, or synuclein) whose interneuronal advance

fulfills the criterion that the rate of propagation is proportional

to concentration-level differentials—see, for instance, Hardy

(2005). In this paper, we derive the behavior of this diffusive

prion-like propagation on whole-brain structural connectivity
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Figure 1. Process Diagram Depicting Our Method-

ology

(Left) Structural healthy brain networks were obtained

from diffusion MRI scans of 14 young healthy volunteers,

followed by whole brain tractography. The nodes of this

network correspond to cortical and subcortical gray

matter regions obtained from a labeled T1-weighted brain

atlas, and the edges of this network are proportional to

the number and strength of the fiber tracts that connect

the nodes. Proposed network diffusion model and its

eigenmodes are derived from this healthy network. The

first three eigenmodes, which we have hypothesized to be

predictive of dementia atrophy patterns, are then tabu-

lated and plotted.

(Right) We then compare the predicted patterns with

measured atrophy of dementia patients (AD, bvFTD, and

age-matched normal subjects), obtained via a completely

separate processing pipeline, available in the SPMMatlab

toolbox. T1-weighted images of each subject were cor-

egistered with the same atlas as in the left panel, and gray-

matter regions were parcellated using the prelabeled atlas

information. Volume of each cortical and subcortical gray-

matter region was measured. The atrophy of each region

was obtained in terms of a t-statistic between the

diseased and age-matched normal groups. Finally, the

predicted and measured atrophy patterns were statisti-

cally compared using correlation analysis.
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networks, obtained from whole-brain tractography of diffusion

MRI scans.

To answer the second question, of the macroscopic conse-

quences of prion-like diffusive progression, we restrict this

diffusive progression to follow the fiber pathways defined by

the brain connectivity network and mathematically derive the

resulting macroscopic dynamics of this progression. The main

objective of this study was to determine whether the macro-

scopic consequences of this kind of diffusive prion-like propaga-

tion on the whole-brain healthy network (henceforth called the

‘‘network diffusion model’’) are consistent with, or predictive

of, the large-scale patterns of disease seen in various dementias.

First, we show that the network diffusion model implies the pres-

ence of ‘‘eigenmodes’’ representing distinct spatial patterns that

bear a strong resemblance to known patterns of various demen-

tias. Using statistical correlation analysis, we found strong

evidence that there is a one-to-one correspondence between

the healthy network’s eigenmodes and atrophy patterns of

normal aging, AD, and bvFTD. Interestingly, these eigenmodes

also recapitulate recent findings of dissociated brain networks

selectively targeted by different dementias (Seeley et al., 2009;

Zhou et al., 2010; Buckner et al., 2005; Du et al., 2007). This

may help provide a systemic explanation for the network degen-

eration theory, hitherto unexplained, as a simple consequence of

network dynamics. The network diffusion model can accurately

infer the population-wide prevalence rates of various dementias

and can explain, why bvFTD has higher prevalence than AD in

early stages, and why it subsequently becomes much less

prevalent than AD.

There is no need to invoke region-specific neuropathy, e.g.,

mesial temporal origin (Braak et al., 2000), or selective vulnera-

bility within dissociated functional networks (Seeley et al.,

2009). This implies that all dementias, hitherto considered path-
ophysiologically and etiologically distinct,might share a common

progression mechanism. We demonstrate the role of network

eigenmodes as biomarkers and as highly effective basis func-

tions for dimensionality reduction, classification, and automated

differential diagnosis. This might be especially advantageous for

heterogeneous and mixed dementia, which are poorly served by

classically described clinical phenotypes. Most important, the

model provides a clear path for predicting future atrophy in indi-

viduals starting from baseline scans.

RESULTS

Visual Correspondence between Eigenmodes
and Dementias
Figure 1 provides an overview of the datasets and processing

steps, with network analysis using 14 healthy young subjects

(left panel) and volumetric analysis of T1-weighted MRI scans

of 18 AD, 18 bvFTD, and 19 age-matched normal subjects (right

panel). The t-statistic of cortical volumes of AD and bvFTD

patients, normalized by young healthy controls, are shown in

Figures 2 and 3 as wire-and-ball plots, along with the values of

two eigenmodes of the healthy network evaluated at the same

brain regions. The wires denote network connections, the size

of each ball is proportional to the atrophy level in that region of

interest (ROI) (normalized by ROI size), and the color denotes

lobar membership. ROIs showing negative atrophy are consid-

ered statistical noise and are not shown. T-scores of cortical

atrophy as well as eigenmodes are shown in Figure 4 mapped

on the cortical surface of the 90-region cerebral atlas. Extreme

levels (±2 SD from mean values) were capped to aid visualiza-

tion. Since the colors are uniform within each ROI, the apparent

spatial resolution of these surface renderings may be somewhat

deceptive. Note that the ball-wire plots are not directly
Neuron 73, 1204–1215, March 22, 2012 ª2012 Elsevier Inc. 1205



Figure 2. Visual Correspondence between Theoretical Prediction

and Measured Alzheimer’s Atrophy Pattern

Theoretical prediction is based on the second eigenmode of the young healthy

brain network’s Laplacian matrix H. Measured Alzheimer’s atrophy pattern is

based on t-scores of gray-matter volumes in 18 Alzheimer’s subjects). We

have depicted whole-brain atrophy patterns using a wire-and-ball mesh plot,

where each parcellated GM region in the brain is represented by a node in the

network, depicted as a ball. The connectivity between two regions is depicted

by a wire whose thickness denotes connection strength. Note that the network

depicted here was separately obtained from the young healthy cohort, and is

identical in all panels.

(Top) Predicted distribution, where the value of the second eigenmode at each

node is denoted by the size of the corresponding ball.

(Bottom)Measured atrophy (t-statistic) of all 18 AD subjects in our study. Again

the size of the ball represents the amount of atrophy measured in the corre-

sponding GM region. The regions are color coded by lobe (blue, frontal lobe

structures; purple, parietal lobe; green, occipital lobe, red, temporal lobe, and

cyan, subcortical). A close homology is observed between predicted and

measured atrophy patterns.

See also Figures S1–S3 and S5.

Figure 3. Visual Correspondence between Theoretical Prediction

and Measured Atrophy Patterns

(Top) The third eigenmode of young healthy whole brain connectivity network’s

Laplacian matrix.

(Bottom) Measured atrophy (t-statistic) in our 18 bvFTD subjects. A close

homology is observed between the theoretical and measured atrophy

patterns.

See also Figures S2 and S3.
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comparable due to the above color scaling and absence of

subcortical structures in the surface maps. The crucial observa-

tion is that persistent eigenmodes of network diffusion appear

homologous to characteristic atrophy patterns observed in

various dementias.

The first (steady-state) eigenmode, whose eigenvalue is zero,

is not shown here, because it is relatively uninteresting, varying

simply according to region size, in rough correspondence to

atrophy seen in normal aging. In order to ensure that these

results are not due to a specific choice of volumetric algorithm

or choice of anatomic atlas, we repeated the same study using

volumetric data obtained by the FreeSurfer software (Fischl

et al., 2002) and a different 86-region atlas (Figure 5). Measured

atrophy patterns generally match the cortical atrophy seen using

the automated anatomic labeling (AAL) atlas (Figure 4), but exact

match is not to be expected due to both methodological as well

as ROI size and shape differences. It is important to note,

however, that the visual correspondence between eigenmodes

and atrophy remains intact, and the former generally agree

with classic AD/bvFTD pathology, which implies that these

results are not methodology-specific. We show later (Figures

S5 and S6 available online) that our results are also insensitive

to inter-subject variability.
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Comparison of Eigenmodes with Measured
and Published Atrophy Findings
The second-most persistent mode (Figures 2 and 4, top rows)

closely resembles typical Alzheimer’s atrophy inmesial temporal,

posterior cingulate, and limbic structures, as well as lateral

temporal and dorsolateral frontal cortex (Apostolova et al.,

2007; Thompson et al., 2003). This eigenmode shows strong

involvement of the medial and lateral temporal lobes, which are

involved in memory, and the dorsolateral prefrontal cortex,

implicated in working memory (Curtis and D’Esposito, 2003).

The main fibers connecting these regions are the superior longi-

tudinal fasciculus (SLF), the splenium of corpus callosum, and

the cingulum bundle. While agreement is good with our own

volumetric findings (Figures 2 and 4, bottom rows) and excellent

with the published literature (see, for instance, Apostolova

et al., 2007; Thompson et al., 2003; Seeley et al., 2009), there

were some areas of disagreement with our volumetric findings

in the parietal, frontolateral, and frontoinsular areas. We attribute

these differences to small sample size and technical limitations

of tractography, co-registration, and volumetrics.

The third persistent eigenmode (Figures 3 and 5, top rows) is in

good agreement with our bvFTD data (Figures 3 and 5, bottom

rows) and published findings (Du et al., 2007; Boxer and Miller,

2005; Seeley et al., 2009), which indicate prominent atrophy in

the orbitofrontal and anterior cingulate regions. This eigenmode

is particularly strong in the lateral temporal lobe and the superior

frontal, dorsolateral, and orbital cortices— areas that deal with

executive function, decision making, expectation, balancing

risk versus reward, and inhibition. Degeneration of the orbito-

frontal cortex was linked to disinhibited behavior, and the supe-

rior frontal gyrus has been associated with self-awareness

(Goldberg et al., 2006). The main fiber bundles connecting these



Figure 4. Cortical Atrophy of AD and bvFTD, and the Second and

Third Eigenmodes Atrophy Scores Are Mapped onto the Cortical

Surface Using the 90 Region AAL Cerebral Atlas

Atrophy, as well as eigenmode values, were converted into z-scores and

mapped to the range shown by the colorbar. Extreme levels (±2 SD frommean

value) were assigned the maximum/minimum color. Although there are areas

of disagreement with our volumetric data, the eigenmodes roughly resemble

the classic atrophy patterns seen in each disease.

Figure 5. Cortical Atrophy and Eigenmodes Mapped onto the

Cortical Surface using a Different Atlas

Scores are mapped onto the cortical surface using the 86-region FreeSurfer

atlas. Volumetric data were obtained by the FreeSurfer software and the brain

network was also recomputed under this new parcellation. Measured atrophy

patterns generally match the cortical atrophy seen using the AAL atlas (Fig-

ure 4), but exact match is not to be expected due to both methodological and

ROI size and shape differences. It is important to note, however, that

measured atrophy is still roughly in accordance with the eigenmodes, which

remain consistent with classic AD/bvFTD pathology.

Neuron
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regions are the SLF, genu of corpus callosum, and uncinate

fasciculus.

The clear temporal and frontal involvement predicted by our

model is, if anything, closer to the classic bvFTD patterns than

is shown by our bvFTD patients (Seeley et al., 2008; Broe

et al., 2003). We attribute these discrepancies to clinical hetero-

geneity in our bvFTD cohort, whose risk of misdiagnosis based

purely on clinical presentation (Neary et al., 1998) is high, around

20%–30% (Rabinovici and Jagust, 2009), and to pathological

heterogeneity (Gorno-Tempini et al., 2004; Pereira et al., 2009).

Temporal atrophy commonly attributed to bvFTD might repre-

sent a different disease altogether (Gorno-Tempini et al., 2004).

Finally, early bvFTD is known to affect frontal regions primarily

but spreads to the temporal lobe over time (Seeley et al., 2008;

Broe et al., 2003). This behavior is predicted by our model: after

the third eigenmode corresponding to bvFTD has run its course

(half-life 1/l3), subsequent degeneration will primarily follow

eigenmode 2 (much longer half-life 1/l2) corresponding to AD

and exhibiting prominent temporal involvement. This may also

explain repeated findings of AD pathology in clinically diagnosed

bvFTD (Broe et al., 2003; Neary and Snowden, 1996).

The fourth and higher eigenmodes probably capture degener-

ative processes occurring less frequently, as well as the hetero-

geneity found in common dementias. Since higher modes are

eventually overtaken by more persistent modes, they are harder

to isolate in aged populations. The parietal and cingulate atro-

phic pattern of the fourth eigenmode in Figure S3 is somewhat

suggestive of Huntington’s disease and corticobasal degenera-

tion (Rosas et al., 2008; Boxer et al., 2006) and might act as

a conduit for these rare genetic diseases.
Taken together, the spatial patterns described by our eigen-

modes are homologous to dementia patterns described in

several studies and to our own small sample of AD and bvFTD

subjects; they also bear a resemblance to recently observed

spatially distinct networks characterized internally by close

functional correlations (Zhou et al., 2010; Du et al., 2007; Seeley

et al., 2009).

Correlation with Measured Atrophy Patterns
The t-statistic of parcellated diseased versus young healthy

volumes was correlated against each hypothesized eigenmode

and plotted in Figure 6. In addition we show correlations

involving the mean young healthy ROI volume data, tvol, in order

to test our supposition that the first eigenmode, u1, simply

reflects the size of each region. Pearson’s correlation coefficient

and the p value of a one-sided t test are also given, and they

indicate statistically significant correlation at the level of a <

0.05 for the diagonal plots, but not for the ‘‘cross’’ plots. The

sole discordant result is the high correlation observed between

u2 and bvFTD, which is again attributable to the unusually high

temporal involvement seen in our bvFTD subjects. The strong

correlation between normal aging and the first eigenmode

(Figure S4) supports the hypothesis that the latter corresponds

to normal aging. While the ROI-wise correlation is highly signifi-

cant and the match is very good in proximate neighborhoods,

small discrepancies are apparent (Figures 2, 3, 4, and 5) and

preclude complete correspondence between measured and

predicted atrophy. These discrepancies might be attributed to
Neuron 73, 1204–1215, March 22, 2012 ª2012 Elsevier Inc. 1207



Figure 6. Correlations between Measured

Atrophy of AD/bvFTD versus Predicted

Atrophy from the First Three Eigenmodes

of the Young Healthy Network

The x axis in each panel represents a measured

statistic: normal ROI volume (top), t-score of ROI

volume of AD versus age-matched control groups

(middle), and t-score of ROI volume of bvFTD

versus age-matched control (bottom). The y axes

are eigenmodes of the healthy network: u1 (left

column), u2 (middle column), and u3 (right column).

Each dot in the scatter plots represents a single

GM region, and dots are color coded by lobe. A

line of best fit is also shown in each panel. Corre-

lations within diagonally located panels are high,

and correlations in off-diagonal panels are low.

Plots that show significance in both Pearson

correlation and the two-group t test are indicated

by green boxes, and they are along the diagonal

panels. This validates our hypothesis that there

is a one-to-one correspondence between eigen-

modes and dementia atrophy.

See also Figures S4 and S5 and Supplemental

Experimental Procedures.
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methodological limitations, the small sample size, clinical/patho-

logical heterogeneity, and possible misdiagnosis of dementia

patients.

To overcome the problem of multiple comparisons, we as-

sessed a separate measure of statistical significance. As in

Seeley et al. (2009), we separate the measured atrophy pattern

of each disease state into two groups of ROIs: (1) atrophied

ROIs (t-statistic > 1), and (2) the remaining ROIs. The atrophied

ROIs coincided with well-known regions affected in each

disease. (For the young healthy subjects’ ROI volume data,

tvol, the set 1 consists simply of the largest regions by volume.)

Then we use a one-tailed t test to test whether the predicted

atrophy pattern of nodes in these two sets (1 and 2) are statisti-

cally different and report the p values in Figure 6 under p2. Thus,

two separate measures of significance are used to substantiate

our main hypothesis—that there is a one-to-one correspon-

dence between dementias and network eigenmodes.

Diagnostic Power of Persistent Modes
We now show that persistent modes form an effective and

parsimonious basis on which atrophy data can be projected

for differential diagnosis. Figure 7A shows the mean within

each dementia group of the relative strength of the dot product,

d(k,n), which is a projection of the atrophy pattern of the kth

subject onto the nth eigenmode. A one-to-one correspondence

between dementias and eigenmodes is obvious: the normal

aging group exhibits the highest contribution from the first

eigenmode, u1; the AD group displays the highest contribution
1208 Neuron 73, 1204–1215, March 22, 2012 ª2012 Elsevier Inc.
from u2; and the bvFTD displays the high-

est contribution from u3. Figure 7B is a

scatter plot of d(k,n = 1,2,3) for AD and

bvFTD subjects. There is visually appre-

ciable separation between the two

groups, indicating that the eigenmodes
are acting as an effective basis for dimensionality reduction

and classification. The classification receiver operating charac-

teristic (ROC) curve using projections onto the four smallest

eigenmodes is shown in Figure 7D, alongwith the ROCof a direct

dimensionality reduction using principal components analysis

(PCA). It is noteworthy that PCA, which is conventionally the

‘‘optimum’’ reduced-space representation, does not produce

better classification than eigenmodes. Since classifier accuracy

depends on the number of basis vectors, in Figure 7Cwe plot the

area under the ROC curve as a function of the dimensionality of

the feature space for both eigenmodes and PCA. Clearly, eigen-

modes appear to do a better job of dimensionality reduction

and diagnostic classification than PCA. Note that some false

positives for both classifiers are expected due to clinical

misdiagnosis.

Prediction of Population-wide Prevalence Rates
Figure 8 (left) shows the correlation between 1/li and published

prevalence rates of three major degenerative disorders. The pre-

dicted order of prevalence matches published data: AD (highest

prevalence), then bvFTD, then Huntington’s (which was included

as an example of a rare degenerative disorder with similarities to

the fourth eigenmode). Figure 8 (right) shows that the prevalence

of AD and bvFTD as a function of age generally agrees with the

curves predicted by our model at almost all ages. Since theoret-

ical prevalence relies on the unknown disease progression rate,

b, and the age of onset (i.e., when to consider t = 0)—neither of

which are available a priori—we optimized these for best fit



Figure 7. Demonstrating the Utility of the Eigenmodes for Dimensionality Reduction, Differential Diagnosis, and Classification

(A) Mean dot product between atrophy and the first three eigenmodes for each dementia group. The aged but cognitively normal group showsmixed presence of

all three eigenmodes, whereas the other two disease groups show primary presence of the eigenmode hypothesized to be associated with the disease.

(B) Scatter plot of the dot product in (A) for AD and bvFTD subjects, showing clear separation of the two groups after projection onto the eigenmodes.

(C) Area under the ROC curve of three-way classification at various dimensions of feature space, based on eigenmodes as well as PCA. This plot shows that the

eigenmodes are doing at least as good a job of dimensionality reduction as the principal components analysis.

(D) ROC curve of both classifiers, using four features each. The blue curve corresponds to classification using the first four eigenmodes of network diffusion, while

the red curve corresponds to classification using the first four principle components of the atrophy z-scores. Clearly, the eigenmodes provide better classifiability

in terms of area under the ROC curve.

See also Figure S5.
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with published data. This is justified, because the unknown

parameters are not arbitrary but fully natural physiological

parameters. The model correctly predicts that early prevalence

of bvFTD should be higher than AD, equaling AD at around

60 years of age, mirroring recent prevalence studies of AD and

bvFTD under 65 years (Ratnavalli et al., 2002). The model also

correctly predicts that with age the relative prevalence of AD

versus bvFTD should increase (Boxer et al., 2006). While

predicted bvFTD prevalence is a bit higher than published

prevalence, we note that FTD is now considered highly under-

diagnosed (Ratnavalli et al., 2002). Considering the highly vari-

able and cohort-dependent nature of known prevalence studies,

the strong agreement provides further support to the model.

Bootstrap Analysis of Variability among Subjects
Although our hypotheses were validated using group means of

atrophy and connectivity, individual subjects are known to vary
greatly in both. Hence, we must address the question of natural

intersubject variability. How sensitive are the presented results

to the choice of particular subjects used in our study, given our

moderate sample size? We performed a principled statistical

analysis using bootstrap sampling with replacement (details in

Supplemental Experimental Procedures) which simulates the

variability within a sample group by resampling the group

multiple times. In Figure S5, we show histograms of various

test statistics germane to this paper. We conclude that the

data available in this study provide self-consistent results, with

no bias associated with our choice of group-mean networks

and atrophy.

DISCUSSION

We have shown that the macroscopic modeling of dementia

patterns as a diffusive prion-like propagation can recapitulate
Neuron 73, 1204–1215, March 22, 2012 ª2012 Elsevier Inc. 1209



Figure 8. Prevalence Rate of Various Dementias as

Percentage of All Dementias

(Left) Published prevalence versus survival time predicted

by network model. Note the strength of linear regression

showing highly significant correlation.

(Right) Published and predicted relative prevalence of AD

versus bvFTD as a function of age. The numbers indicate

the publication from which the nearby data point was

obtained. Solid curves pertain to parameter-optimized

model prediction. The curve shows extremely good fit of

the model to published prevalence data, especially in later

stages of life for which we have more reliable prevalence

data. The theoretical prevalence of bvFTD is higher than

measured prevalence in early stages of life, perhaps due

to either model error or systematic under-estimation of

bvFTD in younger populations.
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classic patterns of common dementias. Our conclusions are not

liable to be significantly altered due to choice of volumetric or

network algorithm (Figure 5) or due to intersubject variability (Fig-

ure S5). There are several implications of these findings.

Clinical and Diagnostic Implications
The predicted time evolution of various eigenmodes of the diffu-

sion model bears a strong correlation with the age-dependent

prevalence rates of both AD and bvFTD. To our knowledge, no

other existing model can accurately match this strong age

dependence observed in prevalence studies in dementia. From

the classification and principal components analysis (Figure 7)

we conclude that network diffusion eigenmodes are an effective

basis for dimensionality reduction of atrophy in dementia,

producing even better classification accuracy than the optimal

basis identified by PCA. This suggests a possible role for our

model in unsupervised, automated, and regionally unbiased

differential diagnosis of various dementias. Instead of dealing

with high-dimensional and complex whole-brain atrophy

patterns, future neuroradiologists might simply look at the rela-

tive contribution of the first three to four eigenmodes in any

person’s brain and treat them as clinical biomarkers. This

approach could be especially helpful in cases of mixed

dementia, where classical region-based atrophy descriptors

might prove unsatisfactory.

However, the most important clinical application of this model

could well be in the prediction of cognitive decline. Starting from

baseline MRI volumetrics for estimation of model parameters,

the model in Equation 1 can be subsequently used to predict

future atrophy of an individual subject. If the measured and pre-

dicted ‘‘future’’ atrophy are deemed statistically close, then it

would serve to further validate our hypotheses as well as provide

a valuable prognostic aid to the clinician. This will allow a neurol-

ogist to predict what the patient’s neuroanatomic, and therefore

cognitive, state will be at any given point in the future. Knowledge

of what the future holds will allow patients to make informed

choices regarding their lifestyle and therapeutic interventions.

Relationship to Network Degeneration Hypothesis
Figures 2, 3, 4, and 5 present an uncanny parallel to recent find-

ings of network degeneration. That brain networks are altered in

neurodegeneration is now established (He et al., 2008; Lo et al.,
1210 Neuron 73, 1204–1215, March 22, 2012 ª2012 Elsevier Inc.
2010). Distinct, nonoverlapping spatial patterns are seen in AD

and bvFTD (Zhou et al., 2010; Du et al., 2007), which Seeley

et al. characterized as belonging to the default mode and

salience networks, respectively. The relation between dementia

and separate intrinsic connectivity networks (ICNs) (Seeley et al.,

2009) appears convincing, but the underlying cause remains

unexplained. Conjectures regarding selective vulnerability of

different functional networks sharing synchronous neural

activity, region-specific functional loads, or some as yet

unknown structural, metabolic, and physiological aspects of

neural network biology were put forth (Saxena and Caroni,

2011). Buckner et al. (2005) conjectured that early metabolic

activity in the default network is somehow later implicated in

AD progression.

Interestingly, our macroscopic diffusion model can explain

these findings without requiring any kind of selective vulnera-

bility, regional specificity, or shared functional load. We note

that our persistent eigenmodes and functional ICNs are roughly

homologous, because ultimately they are both the result of

eigen decomposition (PCA) of implicit brain networks. When

ICNs are obtained using hierarchical graph clustering of func-

tional correlation networks, they are mathematically congruent

with eigenmodes of network Laplacian (Kondor and Lafferty,

2002). This congruence may explain why dementias appear to

fall into distinct ICNs—a strictly mechanical consequence of

diffusive network dynamics. Even with possibly random starting

configurations, network dynamics are sufficient to produce

regional specificity; however, this does not imply that the con-

ventional focal origin or selective vulnerability hypotheses are

incorrect. It could be that the starting configuration is dictated

by selective vulnerability due to various stressors (Saxena and

Caroni, 2011; Palop et al., 2006; Braak et al., 2000; Seeley

et al., 2009), but the subsequent patterns are determined by

macroscopic network dynamics. Our model merely accommo-

dates a conception of these diseases that is fully consistent

with known findings but does not require focal origin or selective

vulnerability.

Relationship to Prion-like Cerebral Proteopathy
Our model is based on current evidence of prion-like protein

misfolding, which propagates within neurons as well as transsy-

naptically, where retrograde axonal transport deficits cut off
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the growth-factor supply to projection neurons, begetting

axonal degeneration, synapse loss, and postsynaptic dendrite

retraction. There is mounting neuropathological evidence that

numerous disease proteins, including tau, alpha-synuclein,

beta-amyloid, and TDP-43, have the capacity to misfold and

march through neural circuits via transsynaptic spread (Palop

and Mucke, 2010; Frost et al., 2009b).

If a common concentration-dependent diffusive prion-like

process can reproduce subsequent atrophy patterns, this raises

a somewhat unorthodox possibility that diverse degenerative

etiologies have common macroscopic consequences. Indeed,

ourmodel does not differentiate between individual proteopathic

carriers, bunching them together into a generalized ‘‘disease

factor.’’ This is justified on two grounds. First, there is a consider-

able diversity of published opinion on the etiology of neurode-

generation (Saxena and Caroni, 2011) and the effect of individual

misfolding proteins (Whitwell et al., 2009; Palop and Mucke,

2010; Frost et al., 2009b). Second, and more important, the

specific biochemical properties of the prion-like agent may be

inconsequential for the macroscopic and chronic manifestation

of disease, as evidenced from recent joint histopathological/

morphometric studies. The idea that proteopathic carriers with

varied etiology can have a shared progression mechanism via

‘‘permissible templating’’ was first raised by Hardy (2005). The

spatial distribution of beta amyloid pathology in AD is poorly

correlated with whole brain atrophy patterns (Rabinovici et al.,

2010), while tau is well-correlated. However, neither tau nor

beta amyloid are specific to AD and are found in semantic

dementia, frontotemporal lobar degeneration (FTLD) subtype

(Pereira et al., 2009), dementia with Lewy bodies and posterior

cortical atrophy (Rabinovici and Jagust, 2009), etc. PIB-positive

binding to A-beta and plaques were observed in 25%–45% of

cognitively normal older subjects in postmortem autopsy studies

(Rabinovici and Jagust, 2009). BvFTD accommodates an even

more bewildering array of pathological correlates, including

alpha-synuclein, tau, ubiquitin, TDP-43, and Lewy bodies (Whit-

well et al., 2005; Forman et al., 2006; Pereira et al., 2009). Pereira

et al. found that clinical variants of bvFTD, but not histologic

variants, correlated with regional atrophy, and that there was

no volumetric difference between tau and ubiquitin bvFTD

pathology regardless of clinical subtype. No group-wise differ-

ences were found in the atrophy patterns of tau-positive versus

TDP-43-positive FTLD cases (Whitwell et al., 2009). These

results indicate that clinical presentation of dementias are only

dependent on the brain regions they affect, rather than their

histopathological correlates.

If true, these findings would provide strong support for our

work, which infers macroscopic consequences of proteopathic

progression without being encumbered by their specifics. The

main contribution of the proposed network diffusion model is

that it turns qualitative understanding of proteopathic trans-

mission into a quantitative, fully testable model and provides

a plausible alternative explanation for the apparent selective

vulnerability of brain regions in various dementias. The

network diffusion model does not support the ‘‘retrogenesis’’

hypothesis that AD is a WM-specific disease and is caused

by demyelination of late myelinating fiber pathways (Bartzokis,

2004).
Limitations
First-Order Approximation

Amodel that is informed by theminutiae of the neuropathology of

degeneration, melding the most current and detailed histopath-

ological findings, might prove more accurate. Nevertheless, we

note that as a first-order approximation, the presented model

appears to capture the essential patterns of dementia atrophy.

Simple models can sometimes capture the emergent behavior

of large-scale complex systems like the brain, which can be

surprisingly linear within large phase domains bounded by

(nonlinear) phase transitions. Indeed, the emergence of predict-

able and regular behavior from chaotic ensembles is considered

a hallmark of complexity (Shalizi, 2001). For example, the admit-

tance of large electrical networks of capacitative and resistive

elements is known to be chaotic, yet its frequency response is

essentially linear in large frequency ranges (Almond et al.,

2011). This kind of predictable, regular emergent behavior is

seen in complex systems as varied as the flocking of geese

(Martinez et al., 2007) and complex biological signaling networks

(Bhalla, 2002).

Although both atrophy and the network itself must dynamically

evolve due to degeneration, our model assumes static networks

in order to avoid non-linearity, which will make the eigenmodes

uninterpretable. By causing increasing network disconnection,

white matter damage may in fact accentuate rather than destroy

the main feature of the model, viz separate persistent modes of

atrophy. Nevertheless, we intend to investigate nonlinear models

in our future work. We will also investigate network models

based on neuronal excitability (Santos et al., 2010) rather than

proteopathic transmission.

The model should apply to other dementias like Huntington’s,

corticobasal syndrome, semantic dementia, and posterior

cortical atrophy, but this aspect will require more data. We

expect the multiple-comparisons problem will be exacerbated

and may become statistically untenable (e.g., 36 comparisons

for six dementias). Estimates of both higher eigenmodes and

rarer dementias are going to be noisier, and establishing their

equivalence may require more accurate brain networks than

current technology allows.

Methodology

Several technical challenges are inherent in our processing

pipeline. Spatial and angular resolution of current HARDI data

is poor, sometimes making co-registration with T1 MRI difficult.

Highly atrophied subjects sometimes fail to co-register properly.

These problems necessitated manual inspection of co-registra-

tion outcomes and rejection of problematic cases. SPM- and

FreeSurfer-based volumetrics are known to be noisy, with

less-than-perfect test-retest reliability. Although we have miti-

gated these effects by choosing a relatively coarse network

with only 90 large-sized ROIs, they cannot be completely ruled

out. Tractography is limited by a ‘‘distance bias’’ and lack of

spatial and angular resolution (Behrens et al., 2007). Conven-

tional tractography fails to capture many important but short-

curved U-shaped fibers, whereas probabilistic tractography

sometimes leads to unrealistic fiber tracts having little anatomic

justification. Finally, brain network statistics are liable to varywith

the choice and definition of nodes; hence, we have used

anatomically defined parcellations to define nodes—an
Neuron 73, 1204–1215, March 22, 2012 ª2012 Elsevier Inc. 1211
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approach that we feel has more physical basis than arbitrary

choice of nodes. Although we showed that our results are largely

unchanged under two quite different parcellation schemes (SPM

and FreeSurfer), the effect of other choices of network nodes

remains untested.
EXPERIMENTAL PROCEDURES

Development of a Network Diffusion Model

We model dementia progression as a diffusion process on a hypothesized

brain network G = {V,E} whose nodes vi˛ V represent the ith cortical or subcor-

tical gray matter structure, and whose edges, ei,j ˛ E, represent white-matter

fiber pathways connecting structures i and j. Structures vi comes from parcel-

lation of brain MRI, and connection strength, ci,j, is measured by fiber tractog-

raphy (Behrens et al., 2007). Consider an isolated population of fibers from an

affected (R2) to an unaffected (R1) region. The number of diseased afferents

from R2 to R1 is the product of the concentration, x2, of the disease factor

and the inter-region connection strength, c1,2. Conversely, there is a reverse

diffusion from R1 to R2 proportional to x1c2,1. The total concentration of the

disease factor in R1 will therefore increase by b(x2�x1)c1,2 dt in a (short) instant

dt, where b is the diffusivity constant controlling propagation speed. Assuming

bidirectional pathways, this leads, in the limit dt/ 0, to the first-order differen-

tial equation:

dx1
dt

= bc1;2ðx2 � x1Þ (Equation 1)

A Random Walker Network-Diffusion Model of Propagation

Spectral graph theory provides us with an elegant generalization of Equation 1

to the entire network. Suppose the disease factor at time t at each node in the

network is represented by the vector x(t) = {x(v,t),v ˛ V}. Then Equation 1

generalizes to the so-called ‘‘network heat equation’’ (Kondor and Lafferty,

2002),

dxðtÞ
dt

= � bHxðtÞ; (Equation 2)

where H is the well-known graph Laplacian, with

Hi;j =

8><
>:

�ci;j for ci;js0P
i;j0 :ei;j0

˛Eci;j0 for i = j

0 otherwise

: (Equation 3)

This is the graph equivalent of the Laplacian diffusion operator, DxbV2x:

Since all brain regions are not the same size, we normalize each row and

column of the Laplacian by their sums. Note that this model only depends

on the long-range transmission of proteopathic carriers, and not on their local

‘‘leaking’’ via synapses and dendrites, which will be restricted to the local

microenvironment of gray matter. Since our diffusion model uses relatively

large, anatomically distinct structures as brain network nodes, the effect of

localized transmission will be predominantly intranode. Disregarding the

limited effect of local internode leaking, the network Laplacian H does not

depend on self-connectivity within a node.

We hypothesize cortical atrophy in region k to be the accumulation of the

disease process in k, modeled as the integral

fkðtÞ=
Z t

0

xkðtÞdt

On the whole brain, this gives FðtÞ= R t
0 xðtÞdt. From matrix algebra, Equa-

tion 2 is satisfied by

xðtÞ= e�bHtx0; (Equation 4)

where x0 is the initial pattern of the disease process, on which the term e�bHt

acts essentially as a spatial and temporal blurring operator. We therefore

call e�bHt the diffusion kernel, and Equation 4 is interpreted as the impulse

response function of the network.
1212 Neuron 73, 1204–1215, March 22, 2012 ª2012 Elsevier Inc.
Persistent Modes of Propagation

The computation of Equation 4 is accomplished via the eigenvalue decompo-

sition H = ULUy, where U = [u1 . uN], giving

xðtÞ=U e�LbtUyx0 =
XN

i = 1

�
e�bli tuy

i x0

�
ui : (Equation 5)

The eigenvalues li of the Laplacian H are in the interval [0,1], with a single

0 eigenvalue and a small number of near-zero eigenvalues (see Figure S1).

Most eigenmodes, ui, correspond to large eigenvalues that quickly decay

due to exponentiation, leaving only the small eigenmodes, whose absolute

values we denote by ‘‘persistent modes,’’ to contribute (see Figure S2A).

Dynamics

The time evolution of hypothesized atrophy is a linear combination of

eigenmodes,

FðtÞ=
Z t

0

Xn

i = 1

�
e�bli tuy

i x0

�
ui dt =

Xn

i = 1

1

bli

�
1� e�bli t

�
uy
i x0 ui ; (Equation 6)

consisting of a sum of two parts, a deterministic exponential part and a case-

dependent random part, determined by the initial configuration x0 of the

disease. Figure S2B shows the deterministic part of the first three eigenmodes.

Atrophy in all modes increases with time, but lasting and substantial effect is

observed only in the persistent modes. The slower the decay rate, the more

widespread and severe is the damage.

Relationship to Prevalence Rates

The rate of progression of the ith eigenmode is li, and its eventual atrophy is

1=bli u
y
i x0 ui : We hypothesize that if eigenmodes are good models of

dementia, then population-wide prevalence rates should be reflected by the

overall magnitude and rate of progression of the eigenmodes. Assuming that

new neurodegenerative attacks target all modes equally, and ignoring genetic

predisposition, then for the entire population, 1/li should roughly translate into

eventual prevalence rates of the corresponding dementia. Relative prevalence

rates of various dementias as a function of time can similarly be predicted from

the relative values of the decay curves (Equation 6) of each eigenmode. We

investigate this relationship in subsequent analysis.

Incorporating Time-Varying Neurodegenerative Attacks

Given a time-varying externally driven disease process, a(t), the actual

dynamics of the system will be given by its convolution with the diffusion

kernel:

xðtÞ=
Z t

0

e�bHðt�tÞaðtÞdt = �
e�bHt x0+a

�ðtÞ=Xn

i = 1

�
e�bli t+a

�ðtÞui u
y
i :

(Equation 7)

Equation 7 implies that although the disease dynamics depends on an

unknown and possibly random external attack process, a(t), its behavior is still

constrained within a small number of distinct eigenmodes. Thus, the patho-

physiological nature, location, and frequency of neurodegenerative attacks

are irrelevant in this model.

Data Description

Healthy Cohort

Axial T1 weighted FSPGR scans (TE = 1.5ms, TR = 6.3ms, TI = 400ms, 15� flip
angle) with 2303 2303 156 isotropic 1 mm voxels were acquired on a 3 Tesla

GE Signa EXCITE scanner from 14 young healthy volunteers under an existing

institutional-review-board-approved study, whose details were previously

described (Raj and Chen, 2011). All participants signed written consent for

this study in fulfillment of the Helsinki Declaration. High Angular Resolution

Diffusion Imaging (HARDI) data (55 directions, b = 1000 s/mm2, 72 1.8-mm

thick interleaved slices, 128 3 128 matrix size) were also acquired. Age-

matched normal, AD, and bvFTD cohorts: Eighteen AD, 18 bvFTD, and 19

age- and gender-matched cognitive normal (CN) fully consenting subjects

were scanned on a 4 Tesla (Bruker/Siemens) MRI system with a 3D volumetric

MPRAGE sequence (TR/TE/TI = 2300/3/950 ms, 7� flip angle, 1.0 3 1.0 3

1.0 mm3 resolution, 157 continuous sagittal slices) at University of California

at San Francisco (UCSF). AD was diagnosed according to published clinical

criteria (McKhann et al., 1984, and bvFTD according to consensus clinical

criteria established by Neary and Snowden (1996). Clinical diagnoses were



Table 1. Study Subject Characteristics

Gender Healthy Young Control (Age) Healthy Age-Matched Control Alzheimer’s bvFTD

Female 5 (23 ± 5.8) 8 (61.5 ± 6.8) 7 (62.1 ± 6.6) 6 (61.8 ± 8.9)

Male 9 (23.2 ± 4.3) 11 (61.5 ± 12.5) 11 (63.2 ± 7.7) 12 (62.3 ± 11.8)

Number of subjects (age range, mean ± SD).
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not validated using histopathology or imaging, thus opening the possibility of

misdiagnosis and pathological heterogeneity, especially in the bvFTD group,

whose clinical presentation can frequently look similar to AD or semantic

dementia (Rabinovici and Jagust, 2009). Study subject characteristics are

summarized in Table 1.

Image Processing

Gray-matter (GM) brain regions were parcellated from all subjects’ T1-MRI

scans using an atlas-based parcellation scheme (SPM [Klauschen et al.,

2009] and individual brain atlases using SPM [IBASPM; Alemán-Gómez

et al., 2005]) to extract 116 ROIs, collected in the vector v = {viji ˛ [1, N]}.

The mean and standard deviation of the ROI volumes were determined for

each disease group. Whole-brain networks were extracted from HARDI scans

of young healthy subjects only, using previously described methodology (Raj

and Chen, 2011; Iturria-Medina et al., 2008). Briefly, Q-ball reconstruction

using spherical harmonic decomposition (Hess et al., 2006) is performed to

get orientation distribution functions at each voxel. The gray-white interface

voxels of the parcellated ROIs of the coregistered MRI/HARDI volumes are

used as seed points for probabilistic tractography (Behrens et al., 2007),

with 1000 streamlines drawn per seed voxel. Each streamline is assigned

a probability score according to established criteria (Iturria-Medina et al.,

2008). The connection strength, ci,j, of each ROI pair i,j is estimated by

summing the probabilities of the streamlines terminating in regions i and j.

Cerebellar structures are removed, giving a symmetric 90 3 90 connectivity

matrix for each of 14 young healthy subjects. A combined connectivity matrix

C is then obtained by averaging across healthy subjects. Prior to averaging,

the individual network edges are made robust by applying a threshold ob-

tained from hypothesis testing at significance level p = 0.001, following Raj

and Chen (2011).

Validation of Persistent Modes

To validate our hypothesis that persistent modes are homologous to known

patterns of atrophy in several degenerative diseases, we compared the persis-

tent modes with atrophy from our AD/bvFTD/normal aging cohort as follows:

Persistent modes were computed using the average young-healthy-brain

connectivity network. Normalized atrophy was given by the t-statistic between

the diseased group and the healthy group, i.e.,

tADðiÞ=
mhhealthy

ðiÞ � mhAD
ðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sADðiÞ2
NAD

+
shealthyðiÞ2
Nhealthy

s ;

and formed the corresponding atrophy vector tAD = {tAD (i)ji ˛ [1,N]}, and simi-

larly tFTD and taging. To these datawe add a vector tvol of ROI volumes obtained

from the mean of young healthy subjects, because we wish to determine

whether the first eigenmode corresponds to ROI volume. These statistical

atrophy maps were visually compared with the persistent modes and plotted

in a wire-and-ball brain map (Figures 2 and 3), where the wires denote (healthy)

network connections and the balls represent gray-matter ROIs. Cortical

atrophy and eigenmode values were mapped onto the cortical surface of the

90-region cerebral atlas (Figure 4). The same study was repeated using Free-

Surfer volumetrics (Fischl et al., 2002) and a different 86-region FreeSurfer

atlas. Healthy-brain connectivity networks were recomputed using this new

atlas for the purpose of seeding tracts. In order to perform statistically rigorous

hypothesis testing, we adopted a simple correlation approach. The t-statistic

of atrophy within each disease group and for all cortical ROIs was correlated

with the absolute values of all hypothesized eigenmodes, and the R2 and

p values of Pearson correlation coefficients were calculated. The statistical

atrophy of each disease was plotted against each persistent mode.
Prediction of Population-wide Prevalence of Diseases

The prevalence rates of various dementias were collected from literature

survey. Unfortunately, prevalence estimates vary wildly among sources,

age groups, and ethnicity, especially at low prevalence rates in younger

populations. We grouped studies into decadal age ranges from 50 to 90+

and restricted ourselves to studies in advanced (OECD) nations. For each

age range, we computed prevalence rate as a percentage of each dementia

over prevalence of ALL dementias. These data were taken from the following

studies: (Harvey 2003; Ratnavalli et al., 2002; Kobayashi et al., 2009; Jellinger

and Attems, 2010; Kukull et al., 2002; Morrison, 2010; Di Carlo et al., 2002;

Plassman et al., 2007). To this published data we compared the theoretical

prevalence that would be predicted by our model, as described in the

subsection titled Development of a Network Diffusion Model. Since the model

has two parameters (age of onset and diffusivity constant b) whose true

values cannot be uniquely determined from the literature, we estimated

them by fitting the model to published data using a simple minimization

routine.
Diagnostic Power of Persistent Modes

Finally we wish to determine whether the most persistent eigenmodes

have utility for the purpose of diagnosing and classifying various dementias.

Atrophy of each subject in the aged groups was normalized using the young

healthy subjects, giving a z-score, zk, for the kth subject. We computed the

dot product between zk and the nth eigenmode, giving dðk; nÞ=uT
nzk . In order

to remove the effect of different overall extent of atrophy in different dementias,

this figure was normalized to dðk; nÞ such that
P

ndðk;nÞ= 1: The latter values

were fed into a three-way (normal aging, AD, bvFTD) linear discriminate

analysis (LDA) classifier. ROC curves were obtained after repeated leave-

one-out analysis whereby each subject was classified based on training

over all the other subjects. For comparison, we also implemented a conven-

tional classifier based directly on atrophy z-scores, zk, after dimensionality

reduction using PCA.
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