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Abstract

I develop a model of spatial competition between multi-branch �rms in which con-

sumers value the price of services, spatial proximity to their home branch, and the

number of other branches in the �rm's network. The model delivers within and across

market predictions on the pattern and density of branching, the relationship of con-

centration to market size, the price-concentration relationship, and price dispersion.

I consider the applicability of this model to the commercial banking market for re-

tail deposits. I test the model's predictions by utilizing variation in the timing and

extent of within-state branching restrictions on banks and bank holding companies.

These restrictions constitute a plausible natural experiment with which to identify the

role of spatial externalities on the equilibrium deposit-market structure of commercial

banks. I also identify and parsimoniously model di�cult-to-resolve conceptual issues

in separating loan-side and deposit-side factors in the determination of bank market

structure.

�Preliminary and Incomplete. Please do not cite without the author's permission. This draft has
bene�ted considerably from discussions with Alan Auerbach, Robert Bartlett, Saurabh Bhargava, Severin
Borenstein, David Card, Stefano DellaVigna, Joe Farrell, Stavros Gadinis, Rich Gilbert, Shachar Kariv,
Botond Koszegi, Kristof Madarasz, Vikram Maheshri, Ulrike Malmendier, Justin McCrary, Nathan Miller,
Suresh Naidu, Omar Nayeem, Vikram Pathania, Dan Rubinfeld, David Sraer, Eric Talley, Glenn Woroch,
and Catherine Wolfram



I Introduction

Since Hotelling [1929], spatial models have informed economists' understanding of the

interaction between product di�erentiation, �rms' pricing decisions, and consumer welfare.

Within competition policy, these models provide an analytic framework for de�ning product

and geographic markets, as well as for inferring market performance from market structure

and �rm conduct. Models of �rm location in geographic space, including Hotelling's classic

model, typically involve horizontal product di�erentiation. Firms compete by locating close

to consumers. Consumers prefer �rms in their geographic locality. Typically, as the market

demand curve shifts out, a larger number of �rms can enter and the equilibrium outcome

becomes arbitrarily close to that of a competitive market. Models of vertical product

di�erentiation, by contrast, involve �rms choosing di�erent levels of quality, where every

consumer prefers a higher quality to lower quality, but consumers di�er in their willingness

to pay [Tirole (1989)]. In such models of quality competition, a few high quality �rms

can maintain large market shares even if the market{i.e. demand{grows arbitrarily large

[Shaked & Sutton (1982)].

I consider a model where individual �rms choose to locate multiples branches in geo-

graphic space. Consumers value both whether the �rm's branch is close to them as well as

the total number of other branches{or geographic locations{the �rm has. All else equal,

consumers prefer �rms with more branches. The model thus contains both features of

horizontal and vertical product di�erentiation. Firms �nd it advantageous to locate close

to consumers, a la Hotelling. But the decision to build the marginal branch involves

an externality because it raises consumers' willingness to pay for infra-marginal branches.

This branching or location externality characterizes products as diverse as health clubs

and wireless internet access, and could provide an explanation for common features of such

markets.1

In this paper I focus on a particular application of a such a model{deposit competition

among commercial banks. I ask to what extent bank competition for deposits explains per-

sistent features of the market structure and size distribution of commercial banks? Since at

least Diamond [1984], there is a large literature that explains the structure of banking mar-

kets by treating banks as delegated monitors of funds channelled from savers to borrowers.

This literature emphasizes the special role of banks in making loans. More recent devel-

opments in the literature have begun to ask whether the deposit function could also play

a role in explaining bank market structure. Banks compete for deposits by building large

networks of branches and ATMs, o�ering a suite of services, and setting deposit interest

1This model extends Miller [2010] to the case of multi-market competition and derives closed-form so-
lutions for prices, shares, and markups that can be used to calculate the limiting distribution of market
shares.
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rates and fees. The strategic interaction between competing banks and the distribution of

consumer preferences over these services could also shape important features of the banking

market.

Understanding the determinants of bank market structure is, in turn, a prerequisite

for deciding how to optimally regulate �nancial institutions. By a variety of measures,

the concentration of the commercial banking industry has increased over the last several

decades. To the extent that this increase has been driven by the demand for credit on

the part of borrowing �rms and households, by the demand for state-wide or nation-wide

banking services by consumers, or by technological change in the banking industry, it has

likely been welfare-improving. To the extent that it has been driven by a desire to become

too big to fail, to acquire government-insured sources of funds, or to exert market power,

policy makers should be concerned.

The empirical di�culty in identifying the e�ect of deposit competition is that bank

market structure is simultaneously determined by �rm and consumer demand for credit,

bank lending technology, bank demand for external funds, and consumer supply of deposits

and demand for services. This poses a formidable identi�cation challenge. The conceptual

experiment requires holding �xed the loan side of the market while varying the ability of

banks to compete for deposits. To this end, I utilize the history of state bank-branching

restrictions in the United States as a natural experiment to identify the e�ect of changes in

deposit market competition. For reasons that I detail below, these branching restrictions

constrained the ability of banks to compete for deposits, but had less of an e�ect on their

lending activity. By lifting these restrictions, states enabled banks to compete for deposits

through branch networks.

I use state bank-branching restrictions to test whether the proposed model can explain

salient features of deposit market structure. In the model, banks compete by locating

close to consumers and o�ering a deposit rate. The locations that banks can choose

constitute a set of neighborhoods that, taken together, constitute a market. (Alternatively,

the locations constitute a set of markets that, taken together, constitute a state or region.)

Each consumer chooses a bank in its neighborhood. At a given deposit rate, all consumers

prefer a bank with locations in many neighborhoods to one with fewer locations.

The model generates the following predictions when branching restrictions are lifted

and banks are able to compete by building large branch networks. First, the density of

branches should increase within a market and neighborhood. Second, market concentration

should increase, while neighborhood concentration should decrease. The intuition for

the latter result is as follows. Within a small enough locality or neighborhood, product

di�erentiation through network size allows banks of di�erent scope to co-exist without

competing aggressively on price. Without such di�erentiation, fewer banks can coexist.
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Further concentration with a market and concentration across markets should be quite

similar.

Third, the negative relationship between market concentration and market size should

decrease in magnitude. Put di�erently, market concentration should increase more in

larger markets than in smaller ones. Fourth, with branching there should be a negative

association between the size of a bank's branch network and its deposit rate. Consumers

should be willing to accept a lower deposit rate from a bank with a large network. This

negative association should increase in magnitude with the ability of banks to engage in

branch network competition. Fifth, the variance in deposit interest rates should increase

with branching. Greater product variety should lead to greater price dispersion.

II Summary of Results

[To be completed]

III A Spatial Model of Deposit Competition

I construct an equilibrium model of bank lending and deposit taking where the deposit

side determines market structure. In this model consumer heterogeneity in willingness to

pay for bank scope gives rise to di�ering deposit market shares. Deposit market shares are

an equilibrium consequence of strategic competition among banks of di�ering scope, where

scope is measured by the size of bank's branch network. The model is based on Miller

(2010), but extended to multi-market entry and competition. This family of models was

investigated, in some detail, by Shaked and Sutton [1982, 1983, 1988]. A formal description

of the game, existence proofs and equilibrium characterization results are contained in

Appendix A.

In the �rst stage of the game, banks sequentially choose to enter a subset of N + 1

distinct neighborhoods or localities. Together these neighborhoods constitute a market.

There are enough potential entrants that every neighborhood can contain at least one bank

that is in 0; 1; 2; :::; N other neighborhoods. In other words, each neighborhood can have a

bank of every possible scope. Each bank pays a �xed entry cost F to enter an individual

neighborhood. Subsequent to entry decisions, each bank chooses a deposit price rd in every

neighborhood they enter.

Conditional on bank entry decisions and deposit rates, consumers in each neighborhood

choose the bank that maximizes their utility. Each neighborhood contains a continuum

of depositors characterized by a preference parameter � distributed on[0; 1] according to

F (�). Let j index the set of banks who enter neighborhood n and order these banks by

their scope{the total number of neighborhoods they enter. The utility of a consumer in
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neighborhood n when choosing bank j is given by:

u(�; j) = rdnj + 
�(
Nnj
N

� 1)

where Nnj is the number of neighborhoods outside n in which bank j has a presence and

N is the total number of outside neighborhoods. I refer to a bank's outside neighborhood

presence (Nnj) as its outside scope.
2

In order to characterize the sub-game perfect equilibrium of this game, I �rst consider

the �nal-stage deposit competition in a neighborhood n. As in Miller (2010), the Jn banks

in neighborhood n are ordered in terms of their outside scope so that Nn1 < Nn2 < ::: <

NnJn : For a consumer in neighborhood n to be indi�erent between bank j and j � 1, it is
required that:

�nj =

8><>:
rdn1


�(1�Nn1
N
)
; j = 1

rdn;j�1�rdnj

�(Nnj�Nn;j�1

N
)
; j > 1

It follows that the neighborhood shares in neighborhood n are given by:

snj =

(
F (�n;j+1)� F (�nj); 0 � j < Jn

1� F (�n;Jn); j = Jn

From here forward, I assume that F (�) is the uniform distribution on [0; 1] in order to

obtain analytic solutions where possible.

Consider a �nal-stage equilibrium in neighborhood n in which there exists some con-

sumer who is indi�erent between bank j and j � 1 8j > 1. Each bank j chooses deposit

price rdnj to maximize pro�ts:

rdnj 2 argmax
rdnj

(rl � rdnj) � snj(rdn;N)

where rl is the competitive return on loans and a bank's neighborhood share snj(r
d
n;Nn)

is a function of each bank's deposit rate (rdn) and outside neighborhood scope (Nn). The

�rst order conditions that de�ne the above reaction functions are [Miller 2010]:

2Because all consumers weakly value banks with greater outside scope, the model is one of vertical
product di�erentiation described by Shaked and Sutton (1982, 1983, 1988). Competition across markets
also has features of horizontal product di�erentiation, a la Hotelling, because all consumers choose a bank
within their market n. I rely on well-known results for this class of models to characterize the sub-game
perfect Nash equilibria of this game.
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rdn1 =
1

2
� (rl + rdn2) if rdn1 � 0

rdnj =
1

2
� (rl + (Nn;j+1 �Nnj)

(Nn;j+1 �Nn;j�1)
� rdn;j�1 +

(Nnj �Nn;j�1)
(Nn;j+1 �Nn;j�1)

� rdn;j+1; 1 < j < Jn

rdnJn =
1

2
� (rl + rdn;Jn�1 � 
 �

(Nn;Jn �Nn;Jn�1)
N

)

It follows that the �nal-stage price equilibrium in any neighborhood n is the solution

to this system of equations. From the logic of undi�erentiated, Bertrand competition, two

banks of the same scope cannot earn positive pro�ts in equilibrium. Therefore, in any

given neighborhood, at most N + 1 banks can earn positive pro�ts. It can also be shown

that rdnj is decreasing in j. Intuitively, banks of greater scope can o�er consumers a lower

deposit interest rate.

By backward induction, banks choose an entry strategy anticipating equilibrium pro�ts

in each neighborhood that they enter. These pro�ts are a function of the entry decisions

taken by other banks. In choosing to enter an additional neighborhood n, a bank must

consider both its pro�ts in neighborhood n and the change in pro�ts in all (infra-marginal)

neighborhoods due to its increase in scope. When choosing to enter an additional neigh-

borhood a bank's pro�ts will increase for every other neighborhood in which this increase

in scope does not lead to undi�erentiated price competition. For convenience, I restrict

the strategy space so that banks must make positive variable pro�ts in each neighborhood

they enter. This rules out situations where a bank makes negative variable pro�ts in one

neighborhood, but increases overall pro�ts due to its greater scope. Because banks can

be indi�erent across di�erent entry strategies, the entry equilibrium need not be unique.

Nevertheless, these equilibria share important properties.

I consider equilibria of this game where F can be considered small3. By the logic of

Bertrand price competition, no two banks of equal scope can coexist in the same neighbor-

hood. Let N�(Nj) denote the largest number of banks of outside scope Nj that can exist

in any equilibrium across all N + 1 neighborhoods and let [�] denote the smallest integer
part of the expression in brackets:

N�(Nj) = [
N + 1

Nj + 1
] 8Nj 2 Z; 0 � Nj � N

It follows that N�(Nj) is decreasing in Nj .The largest number of banks that enter at

3Alternatively, this corresponds to a situation in which demand in each market is large, so that small
market shares are su�cient to cover the �xed cost of entry.
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least one neighborhood in equilibrium is given by
NP

Nj=0

N�(Nj)4. The number of banks that

can enter at least one neighborhood in equilibrium grows arbitrarily large with the total

number of neighborhoods (N + 1).

The model does not permit an exact calculation of equilibrium market share for each

bank. It is still possible, however, to obtain a lower bound for the market share{across

all N + 1 neighborhoods{of a bank with outside scope Nj . Such a bank would obtain

its lowest market share in a neighborhood n where there exists a bank of every possible

scope. A lower bound for its share across all N + 1 neighborhoods is therefore given by

(
Nj+1
N+1 ) � snj(r

d
n;Nn) where Nn = f0; 1; 2; :::; Ng.

This lower bound can be obtained explicitly from the equilibrium deposit rates in a

neighborhood with banks of every possible scope, that is, where Nn = f0; 1; 2; :::; Ng. In

Appendix A I show that in such a neighborhood, the interest rate charged by any bank j,

where j denotes its outside scope, is given by:

rd�j = rl � 1
3
� 1

UN�1(2)
� Tj�1(2) �

2


N

= rl �
p
3

3
� [ (2 +

p
3)j�1 + (2�

p
3)j�1

(2 +
p
3)N � (2�

p
3)N

] � 2

N

where U(�) and T (�) are Chebyshev polynomials, respectively, of the �rst and second type.
It can be shown that deposit prices (markups) are decreasing (increasing) in scope. This

expression can be used to calculate a lower bound of market share for a bank of any outside

scope Nj . I focus on the case where j = N , the bank with largest scope and market share

(sN+1) across all N + 1 neighborhoods. For this bank:

sN+1 = 1� �N+1

= 1�
rd�N � rd�N+1



N

I calculate the limiting market share of the largest bank as the number of neighborhoods

grows arbitrarily large:

4For example, if M = 4, then the largest number of banks of outside scope f0; 1; 2; 3; 4g, respectively, is
f5; 2; 1; 1; 1g. The largest number of total banks is 10, and the largest number of branches is f5; 2; 1; 1; 1g �
f1; 2; 3; 4; 5g = 21.
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lim
N!1

sN+1 = 1� 2
3
� lim
N!1

1

UN�1(2)
� [TN (2)� TN�1(2)]

=
2
p
3

3
� 1 � :15

The model thus exhibits a characteristic of vertical di�erentiation models �rst described

by Shaked and Sutton (1982). The market share of the largest k-�rms (k-�rm ratio) has

a non-zero lower bound, even if the market grows arbitrarily large. Intuitively, when

consumers value scope, there is a limit to the ability of banks to attract consumers from

the largest bank by o�ering a higher deposit rate.5

I can now state the empirical predictions that follow from increasing the ability of banks

to compete for deposits by establishing networks of branches. These predictions follow from

comparing the equilibrium outcome in the model above with one in which banks cannot

build branch networks (the no-branch case). While this comparison is stark, it captures

the simple logic behind varying the intensity of vertical di�erentiation in a continuous way.

First, the density of branches should increase within a market and neighborhood. In

the no-branch case the equilibrium number of branches per market is N + 1 and branches

per neighborhood is one. When branching is allowed, the number of branches per market

has an upper bound of

NP
Nj=0

(Nj+1)�N�(Nj)

N+1 and the number of branches per neighborhood

has an upper bound of N + 1.

Second, market concentration should increase, while neighborhood concentration should

decrease. In the no-branch case, the HHI measure for deposit shares in a market is 1
N+1 and

the k-�rm ratio is k
N+1 . With branch networks, the corresponding measures for a market are

strictly higher. In the no-branch case, the HHI measure and k-�rm ratio for deposit shares

in a neighborhood are both one. With branch networks the corresponding neighborhood

measures are strictly lower. The intuition for the latter result is as follows. Within

a small enough locality or neighborhood, vertical di�erentiation allows banks of di�erent

scope to co-exist without competing aggressively on price. Without such di�erentiation,

fewer banks can coexist.

Third, the negative relationship between market concentration and market size should

decrease in magnitude. In the model, market size is captured by N . Without bank

branching, the market concentration as measured by the k-�rm ratio where k = 1 is 1
N+1 .

This approaches 0 geometrically in N . With branching, this ratio is:

5As a theoretical matter, this limiting result on the concentration of the deposit market might be seen
as distinct from loan-side explanations of the bank size distribution. As I show in Appendix B, however, a
model of loan heterogeneity and can produce almost identical results in this limiting case.
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sN+1 = 1�
rd�N � rd�N+1



N

which, as we have seen, approaches :15 as N grows large. With branching, the slope of

the concentration/market size relationship increases (and grows smaller in absolute value).

Put di�erently, market concentration should increase more in larger markets than in smaller

ones.

Fourth, with branching there should be a negative association between the size of a

bank's branch network and its deposit rate. Consumers should be willing to accept a lower

deposit rate from a bank with a large network. This negative association should increase in

magnitude with the ability of banks to engage in branch network competition. Fifth, the

variance in deposit interest rates should increase with branching. Greater product variety

should lead to greater price dispersion.

IV Historical Background

In order to test these predictions, I exploit the history of bank regulation in the United

States. I brie
y outline the history of state bank-branching restrictions to explain their

suitability for these tests. For most of the twentieth century, the United States consisted

of at least 50 di�erent banking markets. In the early part of the century, the charters

of national banks were generally limited to individual states. After the Great Depres-

sion, a small number of bank holding companies formed across state lines. The Douglas

Amendment to the Bank Holding Company Act of 1956, however, allowed states to restrict

out-of-state bank holding companies from entering markets in their state.

Many states also severely restricted within-state branching. In so-called unit-branching

states banks were allowed to have only one branch. This restricted both geographic com-

petition for deposits and for loans. In some unit branching states, however, bank holding

companies could own many individual, one-branch banks. Bank holding companies were

free to organize their lending activity through an internal capital market. Individual banks

within the holding company, however, still had to each comply with state and national

banking regulations such as capital requirements. Depositors at one bank could not access

accounts or services at another bank in the same holding company. As a result, a bank

holding company was less able to compete for deposits than a multi-branch bank. I uti-

lize this di�erence in institutional structure and in the timing of deregulation to measure

the e�ects of increasing competition for deposits. I compare banking market structure in

states that underwent regulatory changes to market structure free-branching states where

no restrictions were placed on bank holding companies or banks. By doing so, I am able

to separately consider the e�ect of allowing multi-branch bank holding companies to form
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and of allowing holding companies to consolidate into individual banks.

V Data and Empirical Analysis

I construct a panel dataset to test my predictions. The panel consists of MSA and

non-MSA (county) markets from a subset of the 50 states from 1977-1997. I merge the

Summaryof Deposits dataset from the Federal Reserve, which contains branch level infor-

mation on deposits, with the Call Report Data on bank balance sheets and bank holding

company structure. I add to this market level and state level economic and demographic

information from the Bureau of Economic Analysis.

I limit the sample to free-branching states and unit-branching states. A unit-branching

state undergoes BHC deregulation when it allows holding companies to own multiple, single-

branch banks. A unit-branching state undergoes bank-branching deregulation when it

allows banks to own multiple branches by merger and acquisiton. BHC deregulation

precedes bank branching deregulation for every unit-branching state in the sample.

[To Be Completed]

VI Conclusion

[To be completed]
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VIII Appendix

Appendix A - Model of Deposit Competition

The game is extensive form, but it will simplify exposition to denote all entry decision

nodes as the \�rst stage" and to denote the (simultaneous move) pricing decision node as

a \second stage." In the �rst stage banks sequentially choose to enter a subset of N + 1

distinct neighborhoods or localities. Sequential entry is assumed in order to guarantee

the existence of an equilibrium in pure strategies. In the second stage banks set deposit

interest rates in each neighborhood they enter. I assume there are (N + 1)2 potential

entrants, so it is possible for every bank to enter every neighborhood. A strategy for bank

l in the �rst stage, where l denotes the order of entry, consists of f0; 1g entry decisions for
each of the N +1 neighborhoods for any history of entry by previous banks. Entry in each

neighborhood is associated with a �xed cost F .

Each bank l thus chooses, for every history hl�1, a vector el(hl�1) 2 E � ZN+1, where
eln(hl�1) = 1 if a bank enters neighborhood n and eln(hl�1) = 0 otherwise. Each bank

pays an entry cost c(el(hl�1)) = F � (Nl + 1) where Nl + 1 =
N+1P
n=1

eln(hl�1) is the total

number of neighborhoods that bank l enters given its strategy. I de�ne a history hl�1 2
Hl�1 � Z(l�1)�(N+1) such that6:

hl�1 =

266664
e1(h1)

e2(h2)

:::

el�1(hl�1)

377775
6For any bank l, the number of possible histories it faces at the time of entry is 2(M+1)�(l�1). Because

the order of entry of banks 1 to l � 1 is irrelevant for bank l0s entry decison, the number of strategically
relevant histories is 2(M+1)�(l�1)

(l�1)! . I therefore de�ne the set Hl�1 to exclude matrices that are simply row

permutations of one another. This implies that the extensive form of the entry game is a 2M+1 order
multinomial lattice.
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For any bank l, the number of possible histories it faces at the time of entry is 2(M+1)�(l�1).

Because the order of entry of banks 1 to l � 1 is irrelevant for bank l0s entry decison, the
number of strategically relevant histories is 2

(M+1)�(l�1)

(l�1)! . I restrict the set Hl�1 to exclude

matrices that are simply row permutations of one another. This implies that the extensive

form of the entry game is a 2M+1 order multinomial lattice.

Subsequent to entry decisions by all (N+1)2 banks, each bank l simultaneously chooses

deposit prices in every neighborhood for which eln(hl�1) = 1. A strategy in the second

stage for bank l is a mapping from every entry history (h(N+1)2) to a vector of deposit

interest rates. Each bank thus chooses rd(h(N+1)2) � RNl+1 8h(N+1)2 2 H(N+1)2
7.

Consider a �nal-stage equilibrium in neighborhood n in which there exists some con-

sumer who is indi�erent between bank j and j � 1 8j > 1. For any entry history of the

game, a best response correspondence for each bank in neighborhood n is given by:

rdnj(r
d
n;=j jNnj ;Nn;=j) 2 argmax

rdnj

(rl � rdnj) � snj(rdn;Nn) 8 rdn;=j ;Nn

where Nnj =
N+1P

k=1;k 6=n
ejk is the number of neighborhoods outside n in which bank j has

a presence, N is the total number of outside neighborhoods. I refer to a bank's outside

neighborhood presence (Nnj) as its outside scope, so Nn is a vector of outside scope for

all banks in market n8. Within any neighborhood n, the actions of bank j0s competitors

are summarized by rdn;=j , a vector of prices in neighborhood n, and Nn;=j , a vector of

outside scope9. Shaked and Sutton (1982) Proposition 1 shows that the pro�t function is

continuous and quasi-concave in rdnj . Let the �rm choose prices from a suitable, compact,

convex set. The best response correspondence is then non-empty, convex, and has closed

graph. By Kakutani's theorem a Nash equilibrium in prices exists for each neighborhood

n.

For the �rst stage, each bank's best-response correspondence over entry must be op-

timal for any history of the game (hl�1) and for any strategy pro�le of other banks

[e=l(h=l�1); r
d(h(N+1)2)]. I de�ne this best-response correspondence el(e=l(h=l�1); r

d(h(N+1)2)jhl�1)
7Recall that Ml is the total number of markets entered by bank l and is equal to the sum of the lth row

of any entry history h(M+1)2 :
8Any bank j that operates in at least one market has scopeMnj equal to its total market presence minus

one. When the identity of market n is irrelevant, I refer to this outside scope as Nj .
9All information on entry is contained in the �rst-stage history of the game (h(N+1)2). The entries in

the vector Nn, for example, are obtained by (1) forming a vector of row sums for any row in h(N+1)2 in

which the nth column is non-zero, (2) subtracting one from each entry, and (3) reordering this vector from
smallest to largest. I can thus equivalently represent this correspondence as:
rdnj(r

d
n;=j j h(N+1)2) 2 argmax

rbnj

(rl � rdnj) � snj(rdn;h(N+1)2) 8rdn;=j ; 8h(N+1)2

Note that a strategy for banks other than j in market n is a mapping from the history of the game to a
vector of prices rdn;=j(h(N+1)2).
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to be:

arg max
eln2f0;1g

n=N+1X
n=1

eln � f�l[rdn(h(N+1)2)jhl�1; e=l(h=l�1)]� Fg

s:t: �l[r
d
n(h(N+1)2)jhl�1; e=l(h=l�1)] > 0;8eln = 1

While notationally cumbersome, the above program has a natural interpretation. For any

given history hl�1 at which bank l must make an entry decision, the bank chooses the best

outcome along the path of the game induced by hl�1 and other bank's entry (e=l(h=l�1))

and pricing (rd(h(N+1)2)) strategies
10.

Fix the strategies of other banks [e=l(h=l�1); r
d(h(N+1)2)] and consider the entry choice

of bank l after some history of the game hl
11. This is a discrete choice over 2N+1 entry

choices, where payo�s are an outcome of the second stage induced by other bank's strategies

and bank l0s own pricing strategy. It follows that the set of best responses is nonempty for

any history of the game and that a sub-game perfect equilibrium exists by Kuhn's Theorem.

Because banks can be indi�erent across entry decisions, the equilibrium need not be unique.

As a result, the model does not permit an exact calculation of equilibrium neighborhood

share for each bank.

It is still possible to obtain a lower bound for the neighborhood share, across all N + 1

neighborhoods, of a bank with outside scope Nj . Such a bank would obtain its lowest

neighborhood share in a neighborhood n where there exists a bank of every possible scope.

A lower bound for its share across all N + 1 neighborhoods is therefore given by (
Nj+1
N+1 ) �

snj(r
d
n;Nn) where Nn = f0; 1; 2; :::; Ng. I derive an expression for this lower bound.
The �rst order conditions for rdj can be expressed in matrix form as:26666666664

1 �1
2 0 ::: ::: :::

�1
4 1 �1

4 0 ::: :::

0 �1
4 1 �1

4 0 :::

::: ::: ::: ::: ::: :::

::: ::: 0 �1
4 1 �1

4

::: ::: ::: 0 �1
2 1

37777777775
�

26666666664

rd1
:::

:::

:::

:::

rdN+1

37777777775
=

26666666664

1
2r
l

:::

:::

:::
1
2r
l

1
2r
l � 1

2


N

37777777775
The (N + 1) � (N + 1) matrix of coe�cients in this system is tridiagonal and almost-

Toeplitz. I start with observation that for the (N+1)�(N+1) tridiagonal, almost-Toeplitz
10The history h=l�1 must agree with hl�1 for all banks that enter before bank l and be determined by

e=l(h=l�1) subsequently. The history h(M+1)2 at which banks make their pricing decisions is thus completely
speci�ed by hl�1; el(hl�1);and e=l(h=l�1). Together with r(h(M+1)2), these objects determine an outcome
of the game.
11I am also �xing the pricing strategy of bank l after any history h(M+1)2 .
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matrix: 26666666664

�� 1 0 ::: ::: :::

1 �2� 1 0 ::: :::

0 1 �2� 1 0 :::

::: ::: ::: ::: ::: :::

::: ::: 0 1 �2� 1

::: ::: ::: 0 1 ��

37777777775
an exact solution for the (symmetric) inverse is known and given by:

a�1jk =
1

(1��2)UN�1(�)
� Tj�1(�) � TN+1�k(�); 1 � j � k � N + 1

where T and U are, respectively, Chebyshev polynomials of the �rst and second kind. To

utilize this result, re-express the above system as:26666666664

�2 1 0 ::: ::: :::

1 �4 1 0 ::: :::

0 1 �4 1 0 :::

::: ::: ::: ::: ::: :::

::: ::: 0 1 �4 1

::: ::: ::: 0 1 �2

37777777775
�

26666666664

rd1
:::

:::

:::

:::

rdN+1

37777777775
=

26666666664

�2rl + rl

�2rl

:::

:::

�2rl

�2rl + rl + 1
2


N

37777777775
An exact expression for equilibrium prices is then:

rdj (r
l; N; 
) = rl � [�2 �

N+1X
k=1

a�1jk + a
�1
j1 + a

�1
j;N+1] + a

�1
j;N+1 �

2


N
(1)

= rl + a�1j;N+1 �
2


N
(2)

= rl � ( 1

22 � 1) �
1

UN�1(2)
� Tj�1(2) �

2


N
(3)

= rl �
p
3

3
� [ (2 +

p
3)j�1 + (2�

p
3)j�1

(2 +
p
3)N � (2�

p
3)N

] � 2

N

(4)

where the lines 3 and 4 follow, respectively, from the matrix inverse given above and the

non-recursive representation of the Chebyshev polynomials. The sum that is multiplied by

rl collapses to 1 in line 2 by the following argument.

�2 �
N+1X
k=1

a�1jk + a
�1
j1 + a

�1
j;N+1 = (Eq. A)
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�2 � [
N+1X
k=j

a�1jk +

j�1X
k=1

a�1kj ] + a
�1
j1 + a

�1
j;N+1 =

1

(�2 � 1)UN�1(�)
�[2

N+1X
k=j

Tj�1(�)�TN+1�k(�)+2
j�1X
k=1

Tk�1(�)�TN+1�j(�)�Tj�1(�)�TN+1�j(�)]

where the equation follows from the symmetry of the matrix inverse. Using standard

rules for the algebra of Chebyshev polynomials, these sums can be simpli�ed:

N+1X
k=j

Tj�1(�) � TN+1�k(�) =
1

2

N+1X
k=j

TN+j�k(�) +
1

2

N+1X
k=j

Tjj�1�N�1+kj(�) (*)

j�1X
k=1

Tk�1(�) � TN+1�j(�) =
1

2

j�1X
k=1

TN�j+k(�) +
1

2

j�1X
k=1

Tjj�1�N�1+kj(�) (**)

Combining (�) and (��):

2

N+1X
k=j

Tj�1(�) � TN+1�k(�) + 2
j�1X
k=1

Tk�1(�) � TN+1�j(�) =

N+1X
k=j

TN+j�k(�) +

j�1X
k=1

TN�j+k(�) +
N+1X
k=1

Tjj�1�N�1+kj(�) =

N�1X
k=0

Tk(�) + TN+1�j(�) +
NX
k=0

Tk(�) + Tj�1(�)� 1

Equation A can then be simpli�ed to yield:
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�2 �
N+1X
k=1

a�1jk + a
�1
j1 + a

�1
j;N+1 =

1

(�2 � 1)UN�1(�)
� [
N�1X
k=0

Tk(�) +

NX
k=0

Tk(�)� 1] =

1
(�2�1)
UN�1(�)

� f1 + 2�+
N�1X
k=2

1

2
[Uk(�)� Uk�2(�)] +

NX
k=2

1

2
[Uk(�)� Uk�2(�)]g =

1

(�2 � 1)UN�1(�)
[
1

2
UN (�) + UN�1(�) +

1

2
UN�2(�)] =

1

(�2 � 1)
[1 +

1

2
� UN (�) + UN�2(�)

UN�1(�)
] =

1

(�2 � 1)
[1 + �]

When � = 2 this expression is equal to 1.

Using this closed form expression for rdj (r
l; N; 
) it is possible to obtain, for any given

scope, a lower bound for the neighborhood share of a bank and to characterize this share

as the number of neighborhoods N grows arbitrarily large. I focus on the case of a bank of

scope N +1, that is, a bank that enters every neighborhood. The existence of such a bank

corresponds to the case where the �xed cost of entry is low. The neighborhood share for

this bank is given by 1 � F (�N+1) = 1 � �N+1 in case of the uniform distribution, where

�N+1 represents a consumer who is indi�erent between a bank of scope N + 1 and N . It

was shown above that, in equilibrium, the neighborhood share for the �rm of greatest scope

is given by:

lim
N!1

sN+1 = 1� lim
N!1

�N+1

= 1� lim
N!1

rdN (�)� rdN+1(�)


N

= 1� ( 2

22 � 1) limN!1

1

UN�1(2)
� [TN (2)� TN�1(2)]

To characterize this share as N grows arbitrarily large, I refer to Nevai's (1979) results

for the asymptotic ratios of orthogonal polynomials. For a Chebyshev polynomial of the

second type:
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�UN (�) =
1

2
UN+1(�)�

1

2
UN�1(�))

lim
N!1

UN�1(�)

UN (�)
= ��

p
�2 � 1

It follows that:

lim
N!1

TN (2)

UN�1(2)
= lim

N!1

1
2UN (2)�

1
2UN�2(2)

UN�1(2)

= lim
N!1

1
2(4UN�1(2)� UN�2)�

1
2UN�2(2)

UN�1(2)

= 2� lim
N!1

UN�2(2)

UN�1(2)

=
p
3

lim
N!1

TN�1(2)

UN�1(2)
=

1
2UN�1(2)�

1
2UN�3(2)

UN�1(2)

=
1

2
� 1
2
[
4UN�2(2)� UN�1(2)

UN�1(2)
]

= 2
p
3� 3

It then follows that:

lim
N!1

sN+1 = 1� ( 2

22 � 1) limN!1

1

UN�1(2)
� [TN (2)� TN�1(2)]

= 1� 2
3
(
p
3� (2

p
3� 3))

=
2
p
3

3
� 1

� :15

The share of the largest bank is approximately :15 even as the number of neighborhoods{

and banks{grows arbitrarily large.

Appendix B - A Model of Loan Competition

I show that a model of lending can deliver an asymptotically equivalent result for the
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share of the largest bank. The result illustrates the di�culty in empirically distinguishing

the e�ects of loan and deposit side phenomenon in banking market structure. I present a

simple equilibrium model of bank lending and deposit taking where the loan side determines

market structure. In this model:

(1) �rm heterogeneity with respect to lending gives rise to di�ering loan market shares

(2) loan market shares re
ect di�erences in the underlying technology of lending or,

alternatively, a bank's span of control

(3) a right-skewed distribution of technology or organizational ability implies right-

skewed market structures, and a small fraction of banks or a small number of banks can

dominate lending even if the market is arbitrarily large, and

(4) deposit market shares passively re
ects loan market shares

I assume banks can acquire funds in a competitive borrowing market at rate rb and

lend in a competitive lending market with interest rate rl where rl > rb. Each bank can

make $x worth of loans with expected return p(x; �) � x where � is a �rm-speci�c attribute
distributed on [�;1) according to F (�). The probability of a loss (1� p(x; �)) increases
with total lending, but this probability is smaller for �rms with a high �. I assume that:

p(0; �) = 0;
@p(0; �)

@x
= 0 8�

@p(x; �)

@x
< 0;

@p(x; �)

@�
> 0;

@2p(x; �)

@x2
< 0; and

@2p(x; �)

@x@�
> 0 8�;8x > 0

This simple framework is consistent with several empirical interpretations. Banks can

di�er in their lending technologies, so that di�erent banks can \safely" handle di�erent

portfolio sizes. Banks could also di�er in their span of control, or organizational capability

to e�ectively monitor a large team of loan o�cers12.

Banks make an entry decision with associated �xed cost C before they realize their

value of �. Conditional on entry, banks observe their value of � and choose a level of loans

so as to:

max
x
rl � p(x; �) � x� rb � x

The solution function x(rl; rb; �) and pro�t function �(rl; rb; C; �) are then strictly increasing

in �:

12Alternatively, banks can possess comparative advantage in di�erent types of loans, indexed by �. A
matching process in the loan market would then result in di�erent loan types associating with di�erent
banks. In this setting, the size of a bank's optimal lending porfolio would follows from characteristics of
the underlying borrowers as opposed to the bank's technology or organizational capability.
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@x(rl; rb; �)

@�
=

�[@
2p(x(�);�)
@x@� + @p(x(�);�)

@� ]
@2p(x(�);�)

@x2
+ @p(x(�);�)

@�

=
(�) � (+)
(�) = (+)

@�(rl; rb; C; �)

@�
= rl � @p(x(�); �)

@�
� x(rl; rb; �) = (+)

Banks lend more and make higher pro�ts if they have a lower probability of loss for any

given level of loans.

I next de�ne an upward-sloping market supply curve for credit such that (1) the number

of potential entrants can vary, and (2) a heterogeneous set of banks make loans. I modify

a standard competitive model to obtain these two features. In a short-run equilibrium, an

upward sloping supply curve is derived by �xing the number of potential entrants. In a

long run equilibrium, only banks at minimum e�cient scale make loans. With free entry the

supply curve is perfectly elastic and the e�cient loan amount for each bank{its minimum

e�cient scale{is given by the intersection of the average cost curve with the maximum over

the set of average revenue curves. A long run supply curve can be de�ned in this way when

the set of �0s has an upper bound with strictly positive mass. The set of banks that make

loans in a long-run equilbrium are those that achieve this upper bound13. This conclusion

does not follow when, as here, there is no such upper bound with strictly positive mass.

I �rst partially endogenize the set of potential entrants. For any pair of market prices

frl; rbg, I de�ne the number of potential entrants be the largest number of �rms that can
each expect to make weakly positive pro�ts:

N(rl; rb; C) = maxfN 2 Z j E�[minf�i(rl; rb; C; �)Ni=1g] � 0g =

maxfN 2 Z j
Z
�

�(rl; rb; C; �)dFN;N (�) � 0g

where FN;N (�) is the distribution of the Nth order statistic, the minimum of N independent

draws from F (�). I assume that potential entrants make an entry decision before realizing

their values of �, so they will enter if they make weakly positive pro�ts in expectation.

The de�nition of potential entrants guarantees that all banks will enter14. If E�[x(r
l; rb; �)]

13If the set of possible �0s is has a maximum at ��, then the maximum average revenue curve is well-de�ned
(rl � p(x; ��)). The average cost curve is identical across banks. De�ne an equilibrium price r�l such that
average revenue equals average cost at an optimum for a bank of type ��:

(r�l � p(x
�
r�l ; r

b; ��
�
; ��)� rb) � x

�
r�l ; r

b; ��
�
� C = 0

By the monotonicity of the pro�t function, pro�ts must be strictly negative for all banks with � < ��.
14If the expected value of the minimum pro�t over N draws from F (�) is weakly positive then the expected
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exists, the expected market supply function is given by:

Xs(rl; rb) = E�[x(r
l; rb; �)] �N(rl; rb; C)

After entering, banks realize their value of � and set loan levels so as to maximize expected

pro�ts, conditional on �.

To obtain closed-form expressions, I assume:

p(x; �) =

(
1� x

� x � �
0 x > �

It is easily veri�ed that this functional form satis�es the restrictions given above. It follows

that:

x(rl; rb; �) =
�

2
(1� r

b

rl
)

p(rl; rb; �) =
1

2
(1 +

rb

rl
)

�(rl; rb; C; �) =
�

4
(rl � rb)� C

A convenience of the functional form chosen is that the equilibrium probability of loss

does not depend on � so both loans and pro�ts are a�ne functions of �. It follows that

the expected market supply function as well as the distribution of loans and pro�ts across

banks can be derived from F (�)15.

pro�t of any individual bank is also weakly positive.
15To illustrate, suppose � is distributed uniformly on the interval [�; �]. Then expected pro�ts of the �rm

with the lowest draw of � is given by:

E�[minf�i(rl; rb; C; �)Ni=1g] = (
rl � rb
4

) � (� +N�
N + 1

)� F

The number of entrants is:

N(rl; rb) = minfN 2 Z j N �
�
4
(rl � rb)� C
C � �

4
(rl � rb)

g

Because at least one entrant must achieve positive pro�ts in expectation, the minimum rl for which banks
enter is given by:

rl � rb +
4C
�+�
2

Similarly, if rl is high enough, then even bank of type � will earn weakly positive pro�ts. A bank with any
value � � � will earn positive pro�ts in expectation if:

rl � rb +
4C

�
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With this de�nition of the expected market supply function, I can then examine the

pattern of expected market shares across banks as the size of the market increases, that is,

as the market demand function shifts out. It is easily seen that the number of entrants

is unbounded and that the distribution of � governs the expected market shares across

banks. The Lorenz curve provides a useful way of characterizing the concentration of bank

lending16. I assume that � follows a Pareto distribution:

F (�) =

(
1� ( �� )

a a > 1; � � �
0 � < �

The Lorenz curve takes the form:

L(F (�)) = 1� (1� F (�))1�
1
a

so that 1 � L(F (�0)) = (1 � F (�0))1� 1
a is the fraction of total loans made by �rms with

� � �0. As a �! 1+ the concentration of loans made becomes increasingly skewed toward

the largest banks17. For any quantile of the largest banks (1�F (�)), the fraction of loans
made by this quantile becomes arbitrarily close to 1. This model of loans is thus consistent

with extreme skewness in the size distribution of banks when size is measured by loan

portfolios.

This model is also consistent with a high degree of skewness measured in the terms of

number, as opposed to the quantile, of the largest banks. Market concentration is often

measured by the k � firm ratio, here, the fraction of total loans made by the largest k

banks. I focus on the case where k = 1 and show that this model is also consistent with a

non-zero market share for the largest bank as demand shifts out and the number banks in

the market grows arbitrarily large. For any sequence of i.i.d. random variables, the ratio

Rn =
maxfxigni=1

nP
i=1

xi

converges to 0 almost surely in n if E(xi) <1 (O'Brien 1980). It follows

that for Pareto-distributed random variables, a necessary condition for the market share of

so that the number of potential entrants is unbounded (and the expected market supply function has in�nite
slope) as rl approaches this value from below. It follows that the expected market supply function is given
by:

Xs(rl; rb; C) = E�[x(rl; rb; �)] �N(rl; rb; C)

=

8><>:
0 rl 2 [0; rb + 4C

�+�
2

)

N � �+�
4
(1� rb

rl
) N 2 Z; rl 2 [rb + 4C

�+N�
N+1

; rb +
4C
�
)

16If, as was assumed for illustration, � has a uniform distribution, the largest 10% of banks account for
19% of lending.
17The Lorenz curve for the Pareto distribution is not de�ned if a � 1 because the �rst moment no longer

exists.
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the largest �rm to remain positive in the limit is that a � 1: For this distribution18, it can
be shown (Bingham and Teugels, 1981) that as n!1:

(i) E[ 1Rn ] �!
1
1�a ; a 2 (0; 1)

19

(ii) Rn
d�! ya; where ya has a non� degenerate distribution

Because Rn 2 [0; 1] with probability one, E[Rn] > 0 exists. It follows that when a < 1,
the largest bank accounts for a non-zero proportion of total market lending in expectation

even if the market grows arbitrarily large.

With this 
exible apparatus for considering loan market shares, I consider a simple,

spatial model of competition for deposits. I assume there are M + 1 markets in which

banks can locate20. In each market consumers inelastically supply 1
M+1 units of deposits

to banks. As noted above, banks can access a market for debt at cost rb. I assume

Bertrand competition in deposit prices (rd) in each market. Banks pay a �xed cost F to

enter each market. Banks simultaneously make an entry and price decision across each

market conditional on their realization of �. By the usual logic of Bertrand competition, an

equilibrium outcome for any particular market consists of one bank entering and charging

a price rd� so that its average cost for deposits equals that of its cost of outside funds

(
1

M+1
�rd�+F
1

M+1

= rb).

As there are many equilibria in this game, I impose a selection rule so that deposit

shares across markets passively re
ect loan shares. The intuition for this assumption is

that banks with a greater need for funds are more likely to enter more markets. I assume

the number of markets in which bank i enters in equilibrium and takes all the deposits is

[si �(M+1)] where si is a bank's share of the loan market and [�] represents the lowest integer
part of the expression. This holds for all banks i except the largest bank. For the largest

bank (sN ) this number of markets is given by [sN � (M + 1)] +M + 1�
N�1P
i=1

[si � (M + 1)].

If the number of deposit markets is large, then deposit market shares approximate loan

market shares arbitrarily closely.

18These results hold where x is an iid random variable with distribution function F (x) on R+, F (0) = 0;and
F (x) 2 D(�) for some � 2 (0; 1), that is, a normalized sum of x converges in distribution to an �-stable
random variable.
19This result is straightforward to derive in the special case of the Pareto distribution (Zaliapin et al

2003).
20I have therefore assumed that �rms can costlessly move across these M +1 markets in order to acquire

funds. This would be a reasonable assumption for loan and deposit competition across a large metropolitan
area made up of M + 1 neighborhoods.
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VIII.1 Tables

Table 1

Deregulation of Bank Branching by State

State Year of Deregulation State Year of Deregulation

Inter State Intra State Inter State Intra State

Maine 1978 1975 Pennsylvania 1986 1982
Alaska 1982 <1970 South Carolina 1986 <1970
New York 1982 1976 Alabama 1987 1981
Connecticut 1983 1980* California 1987 <1970
Massachusetts 1983 1984 Louisiana 1987 1988
Kentucky 1984 1990 New Hampshire 1987 1987
Rhode Island 1984 <1970 Oklahoma 1987 1988*
Utah 1984 1981 Texas 1987 1988*
Washington, DC 1985 <1970 Washington 1987 1985
Florida 1985 1988* Wisconsin 1987 1990*
Georgia 1985 1983 Wyoming 1987 1988*
Idaho 1985 <1970 Colorado 1988 1991*
Maryland 1985 <1970 Delaware 1988 <1970
Nevada 1985 <1970 Mississippi 1988 1986
North Carolina 1985 <1970 South Dakota 1988 <1970
Ohio 1985 1979 Vermont 1988 1970
Tennessee 1985 1985 West Virginia 1988 1987*
Virginia 1985 1978 Arkansas 1989 1994*
Arizona 1986 <1970 New Mexico 1989 1991*
Illinois 1986 1988* Nebraska 1990 1985*
Indiana 1986 1989 Iowa 1991 2001
Michigan 1986 1987 North Dakota 1991 1987*
Minnesota 1986 1993* Kansas 1992 1987*
Missouri 1986 1990* Montana 1993 1990*
New Jersey 1986 1977 Hawaii 1994 1986*
Oregon 1986 1985

* Indicates unit branching state
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Table 2

Banking Market Characteristics

Average Market Characteristics

Pop 3-Firm Herf Banks Markets

1977 466,967 0.69 0.22 18.9 362
(0.17) (0.11) (28.2)

1982 493,581 0.67 0.21 18.9 362
(0.16) (0.10) (27.6)

1987 493,581 0.69 0.22 18.9 362
(0.15) (0.10) (25.5)

1992 556,030 0.70 0.22 18.0 362
(0.15) (0.10) (21.8)

1997 592,037 0.69 0.21 17.0 363
(0.13) (0.10) (18.0)

1977 20,720 0.90 0.45 4.0 2,256
(0.14) (0.25) (2.9)

1982 21,529 0.90 0.44 4.1 2,265
(0.14) (0.24) (2.8)

1987 24,189 0.90 0.44 4.0 2,272
(0.14) (0.24) (2.8)

1992 22,311 0.90 0.43 4.1 2,262
(0.13) (0.23) (2.7)

1997 23,565 0.89 0.42 4.3 2,262
(0.13) (0.23) (2.67)

MSA

Non-MSA

Notes:  Each column represents the market average for a given year with
standard deviations in parentheses.  "3 firm" is the fraction of deposits in a
market held by the largest three banks or bank holding companies.  "Herf" is
the market Herfindahl index for deposits computed at the bank holding
company level.  "Banks" is the number of banks and bank holding
companies.
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