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Abstract Conductances of ion channels and transporters controlling cardiac excitation may vary

in a population of subjects with different cardiac gene expression patterns. However, the amount

of variability and its origin are not quantitatively known. We propose a new conceptual approach to

predict this variability that consists of finding combinations of conductances generating a normal

intracellular Ca2+ transient without any constraint on the action potential. Furthermore, we validate

experimentally its predictions using the Hybrid Mouse Diversity Panel, a model system of

genetically diverse mouse strains that allows us to quantify inter-subject versus intra-subject

variability. The method predicts that conductances of inward Ca2+ and outward K+ currents

compensate each other to generate a normal Ca2+ transient in good quantitative agreement with

current measurements in ventricular myocytes from hearts of different isogenic strains. Our results

suggest that a feedback mechanism sensing the aggregate Ca2+ transient of the heart suffices to

regulate ionic conductances.

DOI: https://doi.org/10.7554/eLife.36717.001

Introduction
Following the landmark publication of the Hodgkin-Huxley model of nerve-cell action potential over

six decades ago (Hodgkin and Huxley, 1952), electrophysiological models of increasing complexity

have been developed to describe the cardiac action potential (AP) and its interaction with the intra-

cellular calcium (Ca2+) signal (Noble, 2011; Silva and Rudy, 2010), which links electrical signaling to

mechanical contraction in cardiomycoytes (Bers, 2001). As illustrated in Figure 1 for a mouse ven-

tricular mycoyte (Bondarenko et al., 2004), those models typically involve a large set of interacting

cellular components that includes various voltage-gated membrane ion channels and transporters,

the Na+/Ca2+ exchanger, and Ca2+ handling proteins such as the ryanodine receptor (RyR) Ca2+

release channels, which open in response to Ca2+ entry into the cell via L-type Ca2+ channels, and

the sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA), which uptakes Ca2+ back into the SR. Ca2+

release and uptake from the SR causes a transient rise in cytosolic Ca2+ concentration, the calcium

transient (CaT), which activates myocyte contraction. Those cellular-scale models have been tradi-

tionally constructed by piecing together separate mathematical models describing molecular-scale
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components in the same species (guinea pig (Luo and Rudy, 1991), mouse (Bondarenko et al.,

2004), rabbit (Shannon et al., 2004; Mahajan et al., 2008), dog (Fox et al., 2002), etc.), and by

sometimes mixing models in different species. Experimental measurements of voltage-current rela-

tionships and other properties used to develop those models are typically averaged over several

cells from one or a few hearts. While such prototypical ‘population-averaged’ (and even ‘species-

averaged’) models have proven useful to investigate basic mechanisms of cardiac arrhythmias on cel-

lular to tissue scales (Krogh-Madsen and Christini, 2012; Karma, 2013; Qu et al., 2014), they fall

short of predicting how different individuals in a genetically diverse population respond to perturba-

tions (such as physiological stressors, ion channel mutations, drug or gene therapies, etc.) affecting

one or several cellular components.

In a neuroscience context, the limitation of population-averaged models has been highlighted by

pioneering theoretical and experimental studies by Abbot, Marder, and co-workers demonstrating

that ion channel conductances can exhibit a high degree of activity-dependent plasticity as well as

variability between individuals (LeMasson et al., 1993; Siegel et al., 1994; Liu et al., 1998;

Golowasch et al., 1999; Prinz et al., 2004; Schulz et al., 2006; Marder and Goaillard, 2006;

Grashow et al., 2009; Marder, 2011; O’Leary et al., 2013). Theoretical studies along this line first

originated from an attempt to explain why neurons can maintain fixed electrical activity patterns

despite a high rate of ion channel turnover. This question was addressed by treating ion channel

conductances as dynamical variables in models of neuronal activity and by using the intracellular

Ca2+ concentration as an activity-dependent feedback mechanism regulating their values

(LeMasson et al., 1993; Siegel et al., 1994; Liu et al., 1998), a mechanism supported by experi-

ments (Golowasch et al., 1999). Those model neurons displayed remarkable properties such as the

ability to modify their conductances to maintain a given behavior when perturbed or to develop dif-

ferent properties in response to different patterns of presynaptic activity. Subsequently, a different

type of computational study in which model parameters (conductances and synaptic strengths of a

circuit model of the crustacean somato-gastric ganglion) were varied randomly, demonstrated that a

Figure 1. Schematic representation of the sarcolemmal currents and intracellular Ca2+ cycling proteins of the mouse ventricular myocyte model.

DOI: https://doi.org/10.7554/eLife.36717.002
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similar bursting activity could be obtained with multiple parameter sets, that is multiple ‘good

enough solutions’ (GES) (Prinz et al., 2004). This prediction agreed qualitatively with an experimen-

tal study demonstrating that neurons of the same circuits obtained from different crabs could have

markedly different ion channel densities, corresponding to different gene expression, but yet differ-

ent circuits could generate similar bursting activities (Schulz et al., 2006).

A later experimental study further showed that different circuits, while operating similarly under

controlled conditions, could respond differently to perturbations such as serotonin addition, which

increases the bursting frequency at a population level, but lowers it in some individuals

(Grashow et al., 2009). Those findings shed light on why pharmacological treatments may work in

some individuals but not others. In addition, they suggest that the existence of different good

enough solutions provides an evolutionary advantage for the survival of a genetically diverse popula-

tion by allowing different individuals to better adapt to different environmental challenges so as to

survive and restore the population.

Those studies and related ones in the broader context of systems biology (Daniels et al., 2008;

Gutenkunst et al., 2007; Transtrum et al., 2015) and cardiac electrophysiology (Sarkar and Sobie,

2009; Sarkar and Sobie, 2010; Weiss et al., 2012; Sarkar et al., 2012; Britton et al., 2013;

Groenendaal et al., 2015; Muszkiewicz et al., 2016; Krogh-Madsen et al., 2016) have produced a

paradigm shift from population-averaged models, with unique fine-tuned parameter sets, to popula-

tions of models characterized by multiple parameter sets. In this new paradigm, each set represent-

ing a different individual in a population can produce a similar behavior under controlled conditions,

but a starkly different response to perturbations for some individuals. This paradigm shift, however,

creates new theoretical and experimental challenges.

On the theoretical side, an open question is how to search for GES representing different individ-

uals in a population. The results of this search, which has been carried out using various methods

(e.g. random search (Prinz et al., 2004), multivariate regression analysis (Sarkar and Sobie, 2009;

Sarkar and Sobie, 2010), or genetic algorithms (Groenendaal et al., 2015), depend critically on

what outputs are selected to constrain model parameters. To date, parameter searches in a cardiac

context have been ‘AP centric’, focusing primarily on features of the membrane voltage (Vm) signal.

Sarkar and Sobie showed that very different combinations of ion conductances can produce almost

identical cardiac AP waveforms, albeit different CaT amplitudes, and that adding additional con-

straints on the Vm and Ca2+ signals can further constrain model parameters (Sarkar and Sobie,

2009; Sarkar and Sobie, 2010). Groenendaal et al., 2015 constrained model parameters using Vm

traces with variable AP waveforms recorded from guinea pig cardiomyocytes under randomly timed

electrical stimuli, as opposed to a unique AP waveform recorded during periodic pacing. This search

yielded parameter sets that are potentially better suited to describe more complex aperiodic forms

of Vm dynamics relevant for arrhythmias. Britton et al., 2013 observed experimentally a significant

variability in AP waveform in rabbit Purkinje fibers and searched for model parameter combinations

that reproduce this waveform variability. They then used those parameter sets to predict different

effects of pharmacological blockade of cardiac HERG (IKr current) potassium channel in different

subjects (Britton et al., 2013).

All those GES searches have relied for the most part on using measured AP features (Sarkar and

Sobie, 2009; Sarkar and Sobie, 2010; Sarkar et al., 2012; Britton et al., 2013;

Groenendaal et al., 2015; Muszkiewicz et al., 2016; Krogh-Madsen et al., 2016) to constrain

model parameters, even though some recent studies have also considered the additional effect of

constraining the CaT (Passini et al., 2016; Mayourian et al., 2017). However, given that there is no

known voltage-sensing mechanisms regulating ion channel expression, it remains unclear if natural

biological variability can be predicted based on AP features. Here, we adopt a different ‘Ca2+ cen-

tric’ view (Weiss et al., 2012), which postulates as in a neuroscience context (Golowasch et al.,

1999; LeMasson et al., 1993; Siegel et al., 1994; Liu et al., 1998; O’Leary et al., 2013) that model

parameters are predominantly constrained by feedback sensing of Ca2+, and potentially other ions

(e.g. Na+) affecting ion channel regulation. Our hypothesis is that the CaT is critical for generating

blood pressure, which is sensed by the carotid baroreceptors and feeds back through the autonomic

nervous system to regulate the CaT via controlling levels of Ca-cyling proteins and the AP in a way

that preserves blood pressure. This provides a very straightforward physiological mechanism that we

show not only constrains the CaT to a physiological waveform, but, as an added and novel bonus,

also constrains AP features through the ratio of inward Ca currents and outward K currents. Under
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this hypothesis, multiple parameter combinations producing a normal CaT could potentially repre-

sent different GES in a genetically diverse population. In addition, unlike voltage, intracellular con-

centrations of Ca2+ and Na+ ions ( Ca½ �i and Na½ �i, respectively) have a known interactive role in

transcriptional regulation of cardiac ion channel proteins and their function (Rosati and McKinnon,

2004). For example, the Ca2+/calcineurin/NFAT pathway regulates L-type Ca2+ channel (LCC)

expression (Qi et al., 2008) and Na+ modulates cAMP-dependent regulation of ion channels in the

heart (Harvey et al., 1991) including phosphorylation of LCCs via cAMP-dependent protein kinase

(Balke and Wier, 1992). To test this hypothesis, we perform a GES search in which parameters of a

mouse ventricular myocyte model are only constrained by CaT features and Na½ �i. This search yields

GES with different conductances of the L-type Ca2+ current (ICa;L) and K+ currents (Ito;f and IKur) and

reveals that conductances are strongly correlated due to compensatory effects of those currents on

the CaT.

On the experimental side, a major challenge is to test whether different GES produced by any

given search method are representative of different individuals in a genetically diverse population.

Performing this test generally requires distinguishing quantitatively the variability of conductances

and electrophysiological phenotype observed in cells extracted from the same heart (intra-heart cell-

to-cell variability) from the variability of the same quantities between different subjects (inter-subject

variability). Making this distinction is made extremely difficult by the fact that AP features and con-

ductances vary significantly between cells extracted from same region of the heart (Banyasz et al.,

2011; Groenendaal et al., 2015) and that regional (e.g. ventricular base-to-apex and epicardium to

endocardium) variations of ion channel expression are also present. The existence of large intra-heart

cell-to-cell variability, and the practical limitation that only a finite number of cells can typically be

extracted from a single heart for current measurements, raises the question of whether it is feasible

to distinguish electrophysiological parameters between genetically distinct individuals.

To cope with this challenge, we use here the Hybrid Mouse Diversity Panel (HMDP) that is a col-

lection of approximately 100 well-characterized inbred strains of mice that can be used to analyze

the genetic and environmental factors underlying complex traits. Because inbred strains are isogenic

and renewable, we are able to use multiple hearts from the same strain to obtain enough statistics

to differentiate quantitatively between intra-heart and inter-subject variability in conductances of key

currents (ICa;L, Ito;f and IKur) affecting the AP and CaT of mouse ventricular myocytes from different

strains. The results show that, despite large cell-to-cell variability, some strains have clearly distin-

guishable mean conductances (i.e. conductances averaged over all cells for the same strain). Mean

conductances can vary by up to two-and-a-half fold between strains. The results further show that,

remarkably, variations of mean conductances for individual strains follow the same correlation (ICa;L
current is large or small when the sum of Ito;f and IKur currents is large or small, respectively) pre-

dicted by our computational Ca2+ centric GES search. The central hypothesis that parameters are

constrained predominantly by features of the CaT (as a surrogate for arterial blood pressure) is fur-

ther validated experimentally by showing that strains with very different conductances have similar

contractile activity. It is worth emphasizing that the main novelty of the present study is the use of

the HMDP to validate this hypothesis. The computational identification of GES itself uses a standard

search algorithm, which consists of minimizing a cost function constructed from features of the CaT

and the intracellular sodium concentration. In addition, we use tissue scale simulations to show that

compensation remains effective at an organ scale despite large cell-to-cell variability within an indi-

vidual heart. Finally, we use our findings to interpret the results of recent studies of cardiac hypertro-

phy and heart failure induced by a stressor in the HMDP (Ghazalpour et al., 2012; Rau et al., 2015;

Rau et al., 2017; Santolini et al., 2018).

Results

Effects of individual conductances on the calcium transient
We first used a mouse ventricular myocyte model to investigate the effects of changing a single

electrophysiological parameter on the CaT. This model (see Materials and methods) combines ele-

ments of previously published ventricular mycoyte models (Shiferaw et al., 2003; Shannon et al.,

2004; Bondarenko et al., 2004; Mahajan et al., 2008). The CaT was characterized by its amplitude,

defined as the difference D Ca½ �i between the diastolic and peak value of the cytosolic Ca2+
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concentration Ca½ �i, and the time-averaged value of Ca½ �i over one pacing period, denoted by

h Ca½ �ii. The CaT amplitude D Ca½ �i is a major determinant of the contractile force while h Ca½ �ii pro-

vides an average measure of the cytosolic Ca2+ concentration in the cell. Both quantities will be

used as Ca2+ sensors for our multi-parameter search of GES and examining individual parameter

effects will be useful later to interpret the results of that search. We vary the conductances of sarco-

lemmal currents and transporters depicted in Figure 2A and the expression levels of Ca2+ handling

proteins that include the ryanodine receptor (RyR) Ca2+ release channels and the sarcoplasmic retic-

ulum (SR) Ca2+ ATPase SERCA, which pumps Ca2+ from the cytosol into the SR. For each parameter

value, we pace the myocyte at a 4 Hz frequency for many beats until a steady-state is reached where

the CaT profile used to calculate D Ca½ �i and h Ca½ �ii and the intracellular sodium concentration Na½ �i
no longer vary from beat to beat.

Figure 2 shows the effects of individual parameter changes on the steady-state CaT amplitude

(Figure 2A) and average Ca½ �i (Figure 2B). Those six parameters were selected because they control

the major currents influencing the CaT. Both quantities are plotted as a function of conductance fold

change G/Gref where Gref is a reference value producing a normal CaT. Increasing the conductance

of the inward L-type Ca2+ current ICa;L is seen to strongly increase both D Ca½ �i and h Ca½ �ii but has a

Figure 2. Effects of individual conductances on the Ca2+ transient (CaT). (A) CaT amplitude defined as the difference D Ca½ �i between the peak and

diastolic values of the cytosolic Ca2+ concentration Ca½ �i versus G/Gref where G is the individual conductance value and Gref some fixed reference value.

(B) Time-averaged Ca½ �i over one pacing period (h Ca½ �ii) versus G/Gref. Illustration of the effect of varying ICa;L conductance (C) and Ito;f conductance (D)

on AP and CaT profiles, where 50%, 100%, and 150% correspond to Gref=0.5, 1.0, and 1.5, respectively. (E) Effect of varying RyR conductance on SR

Ca2+concentration Ca½ �SR and CaT. Different time windows are plotted for the CaT and SR load (0 to 150 ms) and AP waveforms (0 to 50 ms) in (C-–E).

DOI: https://doi.org/10.7554/eLife.36717.003
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weak effect on the AP waveform (Figure 2C). The effect on the CaT stem from the fact that ICa;L is

the main trigger of Ca2+-induced Ca2+ release(CICR), which transfers a large amount of Ca2+ from

the SR to the cytosol. The weak effect on APD is due to the fact that the increase of CaT amplitude

causes ICa;L to inactivate more rapidly, thereby opposing AP prolongation. In contrast, increasing

the conductances of K+ currents that are dominant in the mouse such as Ito;f (fast inactivating com-

ponent of the transient outward current) and IKur causes both D Ca½ �i and h Ca½ �ii to decrease. Increas-

ing either of those K+ currents speeds up repolarization (as illustrated for Ito;f in Figure 2D) and

hence inactivation of ICa;L, thereby reducing the magnitude of CICR. Increasing the conductance of

the sodium-calcium exchanger current INaCa also causes both D½Ca�i and h Ca½ �ii to decrease by

enhancing the forward mode of this current that extrudes Ca2+ from the cytosol. The results of

Figure 2A are consistent with a study of the effects of single conductance change in rat ventricular

myocytes (Devenyi and Sobie, 2016), albeit with a much stronger influence of ICa;L conductance on

CaT amplitude in the present mouse model. Changing RyR expression from its reference value is

seen to leave D Ca½ �i and h Ca½ �ii almost unchanged, even though it strongly affects the SR Ca2+ con-

centration Ca½ �SR (Figure 2E). This behavior reflects the well-known effect that making RyR channels

more leaky (e.g. by addition of caffeine that increases RyR activity or, similarly here, by increasing

the magnitude of the Ca2+ release flux through RyRs) yields a transient increase in CaT amplitude,

but no change in the steady-state CaT amplitude after Ca½ �SR adjusts to a lower steady-state level

(Bers, 2001). This effect is illustrated by time traces of Ca½ �SR and Ca½ �i in steady-state for different

RyR expression levels in Figure 2E. Finally, changing the expression level of SERCA has opposite

effects on D Ca½ �i and h Ca½ �ii. Increasing SERCA magnitude increases SR Ca2+ load, thereby increas-

ing the amount of SR Ca2+ release and CaT amplitude, but at the same time depletes Ca2+ from the

cytosol.

Computationally determined good enough solutions
Next, we performed a computational search for combinations of parameters that yield a normal

electrophysiological output as defined by the steady-state CaT amplitude D Ca½ �i, time averaged

cytosolic Ca2+ concentration h Ca½ �ii, and intracellular sodium concentration Na½ �i at a 4 Hz pacing fre-

quency. A GES search that uses the diastolic and peak Ca½ �i values as Ca
2+ sensors, instead of D Ca½ �i

(the difference between the peak and diastolic Ca½ �i values) and time averaged Ca½ �i, gives nearly

identical results. So our Ca2+ sensors can be straightforwardly interpreted physiologically as require-

ments of normal diastolic and systolic contractile function necessary for a normal arterial blood pres-

sure at the organism scale. A ‘good enough solution’ (GES) was defined as a combination of

electrophysiological parameters that produces output values of those three quantities that are close

enough to normal target values, which are defined as the values D Ca½ �*i , h Ca½ �ii
�, and Na½ �*i corre-

sponding to the reference set of parameters (Gref values) of the ventricular mycoyte model. The

search was conducted by defining a cost function

EðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

n¼1

Sn pð Þ� S*n
S*n

� �2

v

u

u

t � �; (1)

which is an aggregate measure of the deviation of output sensors Sn pð Þ from their desired target val-

ues S*n. Here, N ¼ 3 with S1 ¼ D Ca½ �i, S2 ¼ h Ca½ �ii, and S3 ¼ Na½ �i, and � is a small tolerance that we

choose to be 5%. E is a function of model parameters p¼ p1; p2; . . .ð Þ chosen to consist of the con-

ductances of ICa;L, Ito;f , IKur, and INaCa as well as RyR and SERCA expression levels. Effects of individ-

ual changes of those parameters on CaT properties measured by S1 and S2 are shown in Figure 2A,

B. Conductances of other sarcolemmal currents that were found to have a negligible effect on the

CaT were kept constant. The search for GES was conducted by first generating a large population of

~10;000 randomly chosen candidate models, with each model represented by a single parameter

set p. A candidate model was generated by randomly assigning each parameter (p1; p2; . . .) a value

comprised between 0% and 300% of its reference value Gref . We then utilized a multivariate minimi-

zation algorithm (see Materials and methods for details) that evolves p until the GES optimization

constraint defined by Equation 1 is satisfied. This method typically yields a large number of GES

(7263 of the ~10;000 trials yield a GES with six parameters and three sensors described above, with
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2737 either not converging or not producing a physiological output) and is computationally more

efficient than a random search without optimization that yields very few GES.

Results of the GES search are shown in Figure 3. Figure 3A shows the parameters of six repre-

sentative GES and their corresponding AP waveforms (Figure 3B) and CaT profiles (Figure 3C). The

CaT profiles are all very close to each other, which holds for all GES, while the AP waveforms exhibit

larger variations owing to the fact that the GES search does not involve any voltage sensing.

Figure 3D shows histograms of parameters for all GES. Conductances of sarcolemmal currents tend

to be highly variable except for INaCa, which turns out to be constrained by the intracellular sodium

concentration sensor (S3 ¼ Na½ �i). This is revealed by a GES search with only Ca2+ sensing (S1 and S2)

that yields a broader histogram for the INaCa conductance (Figure 3—figure supplement 1). The his-

togram of RyR expression level is very broad. This is consistent with the fact that this parameter was

found to have a very weak effect on the CaT (Figure 2A,B) due to the compensatory adjustment of

SR Ca2+ load (Figure 2E). In contrast, the histogram of SERCA is very narrow. This feature, which

persists even if Na+ sensing is removed (Figure 3—figure supplement 1), is predominantly due to

Ca2+ sensing. It stems from the fact that changing SERCA expression level has opposite effects on

the CaT amplitude (Figure 2A) and average Ca½ �i (Figure 2B), increasing one while decreasing the

other or vice-versa. Therefore, those opposite effects cannot be compensated by changes of con-

ductance of sarcolemmal currents that simultaneously increase or decrease both Ca2+ sensors, or by

changes of RyR expression level that has a negligible effect on the CaT due to SR load adjustment.

However, conductances of inward and outward currents that change both Ca2+ sensors in opposite

directions can in principle compensate each other. This compensation is revealed by representing

each GES as a point in a 3D plot (Figure 3E) whose axes are the conductances of ICa;L, Ito;f and IKur.

This plot shows that all GES lie close to a 2D surface in this 3D conductance space due to a three-

way compensation between the effects of ICa;L, Ito;f , and IKur on the CaT. GES lie inside a smeared

2D surface (i.e. a 2D surface of finite thickness) in the 3D conductance space of Figure 3E. This fea-

ture stems from the fact that the GES parameter space considered here is in principle six-dimen-

sional (four sarcolemmal current conductances and 2 Ca2+ protein expression levels). However,

SERCA expression and INaCa conductance are constrained by Ca2+ and Na+ sensing, respectively,

and RyR expression has a negligible effect on both Ca2+ and Na+ sensors, thereby reducing the rele-

vant parameter space to the three conductance axes of Figure 3C. The subspace of GES that mini-

mizes the cost function E must therefore lie on the 2D surface E ¼ 0. This surface is smeared

because INaCa is only constrained by Na+ sensing within a finite range and the GES search only mini-

mizes E within a finite tolerance (E � � instead of E ¼ 0).

To facilitate the comparison with experiments presented in the next subsection, it is useful to rep-

resent the three-way compensation between ICa;L, Ito;f , and IKur conductances by plotting the sum of

the peak currents of Ito;f and IKur versus the peak current of ICa;L with all three currents measured

under voltage-clamp with a step from �50 to 0 mV. Those peak currents are proportional to conduc-

tances up to proportionality factors fixed by intra- and extracellular ionic concentrations and voltage.

In this peak-current representation, the smeared 2D surface of GES of Figure 3E takes on the sim-

pler form of a thick nearly straight line (Figure 3F). We note that even though correlations between

two or more parameters have been explored in population models (Sánchez et al., 2014;

Britton et al., 2013; Muszkiewicz et al., 2018), their sum studied here has not been previously

considered.

Good enough solutions in the HMDP
In order to test the computational modeling predictions, and at the same time differentiate intra-

heart cell-to-cell from inter-subject variability, we performed electrophysiological and contractile

measurements on ventricular myocytes obtained from mouse hearts of nine different strains from

the HMDP listed in the Materials and methods, each strain assumed to represent a different good

enough solution. Peak values of ICa;L, Ito;f , and IKur were measured under voltage-clamp with a step

from �50 to 0 mV following established protocols (see Materials and methods). The K+ currents

were measured in the same cell and the Ca2+ currents in different cells. Contraction was analyzed by

measuring mycoyte shortening during several paced beats in separate cells for six strains that

include five of the strains in which conductances were measured. In order to collect enough statistics

to distinguish cell-to-cell from inter-strain variability, several hearts of each isogenic strain were
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Figure 3. Computationally determined good enough solutions (GES) with calcium sensing. (A) Examples of GES representing combinations of 6

conductances that produce a normal CaT and intracellular Na+ concentration. Each color represents a different GES and the corresponding AP and

CaT profiles are shown in B) and C), respectively. (D) Histograms of individual normalized conductances G/Gref for a collection of 7263 GES showing

that some conductances are highly variable while others are highly constrained. (E) Three-dimensional (3D) plot revealing a three-way compensation

Figure 3 continued on next page
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used. The number of cells that could be obtained from one heart for L-type Ca2+ current, several K+

currents, or contraction analysis varied from 1 to 7 so that several hearts of each strain were needed

to obtain enough independent measurements to statistically distinguish intra-heart cell-to-cell from

inter-strain variability (see data in Materials and methods).

The results of current and contraction measurements are shown in Figure 4. In Figure 4A, we

plot the sum of the peak currents of Ito;f and IKur versus the peak current of ICa;L together with the

standard errors of the mean (SEM) of those quantities. Bar plots showing mean current values

together with both SEM and standard deviation (SD) characterizing cell-to-cell variability are given in

the Materials and methods. We also superimpose on this plot the computationally predicted GES of

Figure 3F. Different HMDP strains, each representing a GES, are seen to function with different

combinations of Ca2+ and K+ currents that compensate each other in a non-trivial three-way fashion

that closely follows the GES computationally determined with a three-sensor search in which both

the CaT and Na+ concentration are constrained (faded red points in Figure 4A). The sum of Ito;f and

IKur follows a linear correlation with ICa;L (p=0.0007) using eight out of nine strains and the correla-

tion remains statistically significant (p=0.0144) if the outlier strain (BXA12/PgnJ) is included. Interest-

ingly, this outlier strain still falls within the larger range of computationally predicted GES using a

two-sensor search without Na+ sensing (faded blue points in Figure 4A). To distinguish cell-to-cell

from inter-strain variability, we performed a one-way ANOVA F-test on the ICa;L measurements. The

result shows that ICa;L measurements for all strains do not originate from the same distribution (p-

value p=0.000024). Furthermore, we performed a student T-test using raw data of ICa;L measure-

ments for all pairs of strains. The results yield very small statistically significant p-values for pairs of

strains with sufficiently different average current values (e.g. BXA25/PgnJ, CXB1/ByJ, and C57BL/6J

in Figure 4A). Those results are consistent with the fact that mean currents differ much more than

their standard error for those strains, as can be seen by visual inspection of means and SEM values

corresponding to thin bars on both axes of Figure 4A. We conclude that inter-strain variability of ion

channel conductances can be distinguished from cell-to-cell variability of those same quantities for a

significant number of the strains investigated. While the Ca2+ and K+ currents were measured for the

nine strains reported in Figure 4A, the Ca2+ current was measured in seven additional strains (total

of 16 strains). Those additional measurements reported in the Materials and methods confirm that

some strains can have markedly different ICa;L conductances.

Unlike ion channel conductances, CaT properties were assumed not to vary in the computation-

ally-enabled GES search, which rests on the hypothesis that Ca2+ sensing provides a feedback mech-

anism that regulates ion channel gene and protein expression. The results in Figure 4B, which use

contraction as a surrogate for CaT amplitude, support this hypothesis by showing that mean values

of cell shortening do not vary substantially across strains. This is confirmed by performing a standard

ANOVA statistical test, which shows that cell shortening measurements for the six strains reported in

Figure 4B do not originate from different distributions within statistical uncertainty (p-value

p=0.4136).

Figure 3 continued

between conductances of ICa;L, Ito;f , and IKur. Each GES is represented by a red dot. All GES lie close to a 2D surface in this 3D plot. Pairwise

projections (grey shadows) do not show evidence of two-way compensation between pairs of conductances. (F) Alternate representation of three-way

compensation obtained by plotting ICa;L versus the sum of Ito;f and IKur. Peak values of those currents after a voltage step from �50 to 0 mV are used

to make this plot that can be readily compared to experiment. Different time windows are plotted for the AP waveforms and CaT in B and C,

respectively.

DOI: https://doi.org/10.7554/eLife.36717.004

The following figure supplements are available for figure 3:

Figure supplement 1. Histograms of individual ion channel conductances in 8320 GESs found by a GES search constrained only by Ca2+ transient

amplitude and average, but not constrained by intracellular sodium concentration Na½ �i.

DOI: https://doi.org/10.7554/eLife.36717.005

Figure supplement 2. Correlation between ICa;L and the sum of Ito;f and IKur is weaker but still significant when intracellular sodium concentration is

not constrained.

DOI: https://doi.org/10.7554/eLife.36717.006

Figure supplement 3. Computationally determined GES with voltage sensing.

DOI: https://doi.org/10.7554/eLife.36717.007
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Figure 4. Good enough solutions in the Hybrid Mouse Diversity Panel (HMDP). (A) Central result of this paper

showing quantitative agreement between theoretically predicted and experimentally measured compensation of

inward Ca2+ and outward K+ currents. Equivalent plot of Figure 3F showing the sum of Ito;f and IKur versus ICa;L

for nine different mouse strains using peak values of those currents (proportional to conductances) after a voltage

step from �50 to 0 mV. Mean current values (green filled squares) are shown together with standard errors of the

mean (thin bars) for each strain. The number of cells used for each strain is given in Table 1 of the Materials

and methods section. Computationally determined GES are superimposed and shown as faded red points using

all three sensors (CaT amplitude, average Ca½ �i, and diastolic Na½ �i) and faded blue points for two sensors (CaT

amplitude and average Ca½ �i). Lines represent linear regression fits using the method of Chi-squared minimization

with errors in both coordinates including (solid line, p=0.0144) and excluding (dashed line, p=0.0007) the outlier

strain BXA12/PgnJ marked by a red box. The small p values of those fit validate the computationally predicted

three-way compensation of Ca2+ and K+ currents. The three strains selected for the organ scale study (C57BL/6J,

CXB1/ByJ, and BXA25/PgnJ) with low, medium, and high ICa;L conductance, respectively, are highlighted by blue

circles. (B) Cell shortening, measured as the fraction of resting cell length at 4 Hz pacing frequency in different

HMPD strains where thick and thin bars correspond to standard error of the mean and standard deviation,

respectively. A standard ANOVA test shows no significant differences in cell shortening between strains (p=0.4136)

supporting the hypothesis that different combinations of conductances produce a similar CaT and contractile

activity.

Figure 4 continued on next page
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Compensation at the organ scale
Current measurements discussed in the previous section show that mean conductances of Ca2+ and

K+ currents vary between strains in a compensatory way so as to produce a normal CaT. They also

show that conductances vary significantly from cell to cell around their mean values. This is illustrated

in Figure 5A for three mouse strains that have statistically distinguishable mean ICa;L conductances

(low, medium, and high) as measured by standard errors (thick bars), but exhibit large cell-to-cell var-

iability as measured by the standard deviations (thin bars) of the distributions of conductance meas-

urements in individual cells. This raises the question of whether compensation remains operative at

the organ scale in the presence of large cell-to-cell variability. There are two interlinked aspects to

this question. The first relates to the cellular-level dynamical coupling between membrane voltage

and intracellular Ca2+ dynamics that is inherently nonlinear (Krogh-Madsen and Christini, 2012;

Karma, 2013; Qu et al., 2014). Even when cells are uncoupled, this nonlinearity could potentially

cause the mean CaT amplitude in an ensemble of cells with highly variable conductances to differ

from the CaT amplitude computed in a single cell with conductances set to the mean values of the

ensemble, as traditionally done in cardiac modeling. The second aspect relates to the additional

effect of gap-junctional coupling between cells. This effect is well-known to smooth out cell-to-cell

variation of AP waveforms on a mm scale that is much larger than the individual mycoyte length.

However, whether this smoothing translates into increased organ-scale uniformity of CaT amplitude

and contractility is unclear.

To address those two aspects, we constructed tissue scale computational models for three mouse

strains with statistically distinguishable average conductances (as illustrated for ICa;L in Figure 5A).

Tissues of each strain consisted of 56� 56 electrically coupled cells (see Materials and methods for

details). Simulations were carried out with and without electrical coupling to assess the effect of the

latter. The conductances of ICa;L, Ito;f , and IKur were assumed to vary randomly from cell to cell, and

no constraint was imposed on the ratio of Ito;f þ IKur to ICa;L, representing the worst case scenario in

which both AP and CaT would exhibit maximal variations at the single myoycte level. Their values

were drawn randomly from Gaussian distributions with average values and standard deviations that

match experimental current measurements in each strain. All other parameters were kept fixed to

reference values. The resulting cell-to-cell variation of conductances for three different strains is

shown in Figure 5B) using the same peak-current representation of Figures 3F and 4A. In this repre-

sentation, each point represents a different cell, and clouds of points of the same color represent all

cells in a tissue of the same strain. Furthermore, the center of each cloud falls on the thick line corre-

sponding to the computationally determined GES surface where compensation is operative at the

single-cell level.

The results of simulations with populations of uncoupled and coupled cells with randomly varying

conductances are shown in Figure 5C–G. Figure 5C shows that AP waveforms are highly variable

when cells are uncoupled, reflecting the variability in conductances with no constraint imposed on

the ratio of Ito;f þ IKur to ICa;L. Figure 5D shows that AP waveforms becomes uniform when cells are

coupled, as expected, even though interstrain variability is still significant. Figure 5E compares histo-

grams of CaT amplitude and AP duration (APD) when cells are uncoupled and coupled. Consistent

with the AP waveforms of Figure 5C and D, APD histograms in Figure 5E show that junctional cou-

pling strongly reduces APD variability, as expected. CaT amplitude and average Ca½ �i histograms in

turn reveal that, in coupled cells, the more uniform APD translates into a more uniform CaT ampli-

tude and average Ca½ �i (i.e. narrower DCa and <Ca> histograms, respectively), reflecting the influ-

ence of the cell’s APD on its CaT. At the organ scale, this ensures that cells in tissue have uniform

APs. They also benefit modestly from a more uniform CaT as a result of coupling, promoting more

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.36717.008

The following figure supplement is available for figure 4:

Figure supplement 1. Patch clamp measurements of mean ICa;L (A), Ito;f (B), and IKur (C) functional current density

averaged over multiple cells for nine HMDP mouse strains with standard errors (thick bars) and standard deviations

(thin bars).

DOI: https://doi.org/10.7554/eLife.36717.009

Rees et al. eLife 2018;7:e36717. DOI: https://doi.org/10.7554/eLife.36717 11 of 35

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.36717.008
https://doi.org/10.7554/eLife.36717.009
https://doi.org/10.7554/eLife.36717


Figure 5. Organ scale compensation. (A) Mean ICa;L conductance in three different HMDP strains where thick and thin bars denote standard error and

standard deviation, respectively. (B) Sets of conductances generated to be representative of individual cells within ventricular tissue of the three strains

by assigning normally distributed random values to the ICa;L, Ito;f and IKur conductances using experimentally determined means and standard

deviations. The blue, green, and red points correspond to the three HMDP strains with low (C57BL/6J), medium (CXB1/ByJ), and high (BXA25/PgnJ)

Figure 5 continued on next page
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uniform force generation throughout the tissue. Thus, tissue coupling compensates significantly

when AP and CaT variability between single myoycytes is high, for the case in which the ratio of

Ito;f þ IKur to ICa;L is not constrained at the single myocyte level.

Figure 5F and G show that compensation remain operative at the organ scale. Figure 5F shows

that, even though the strains have different average conductances (Figure 5B), they produce CaT

amplitude histograms with approximately the same mean and width. In contrast, if the same simula-

tion is repeated by fixing the conductance of K+ currents to the value of the strain with the medium

value of ICa;L conductance (CXB1/ByJ), the different ICa;L conductances are not compensated by dif-

ferent Ito;f and IKur conductances, yielding CaT amplitude distributions with shifted peaks and hence

different aggregate contraction (Figure 5G).

In summary, our results show that compensation remains operative at the organ scale because

CaT amplitude histograms have similar means with and without electrical coupling (Figure 5E). This

implies that cell-to-cell variability of conductances and hence APD causes variability of CaT ampli-

tude without significantly affecting its mean, so that ICa;L and potassium currents can compensate

each other even though conductances exhibit large cell-to-cell variations from their mean values.

Gap junctional coupling has the additional important effect of reducing CaT amplitude variability,

thereby promoting tight organ-level behavior despite high cell-to-cell variability.

Cardiac hypertrophic response to a stressor
From a functional standpoint, the most relevant implication of the present study is that different

GES may exhibit markedly different responses to perturbations, as previously demonstrated in a

neuroscience context (Grashow et al., 2009). To examine this possibility, we reviewed data from

separate studies of isoproterenol (ISO)-induced cardiac hypertrophy and heart failure in approxi-

mately 100 HMDP strains that include most of the strains used in the present study. In those studies,

heart mass was measured in those strains before (mpre) and 3 weeks after (mpost) implantation of a

pump continuously delivering isoproterenol (Table 3). Figure 6 reveals the existence of a statistically

very significant correlation between baseline ICa;L conductance and the hypertrophic response

(mpost/mpre). Although many factors contribute to the hypertrophic response in the HMDP

(Rau et al., 2017; Santolini et al., 2018), intracellular Ca2+ overload activating the Ca2+-calcineurin-

NFAT signaling pathway has been shown to play a major role (Bers, 2008). Since ICa;L is the major

pathway of Ca2+ entry into the cytoplasm, it is intriguing to speculate that strains with a larger base-

line ICa;L conductance under baseline conditions have a more robust increase in ICa;L that is not ade-

quately compensated by repolarizing Kþ currents, making those strains more susceptible to Ca2+

overload when ICa;L is enhanced during sustained b-adrenergic stimulation by isoproterenol. Hypo-

thetically, this may result in a stronger cardiac hypertrophic response. To make this case convinc-

ingly, however, would require demonstrating that Ca2+ overload is chronically worsened in strains

Figure 5 continued

ICa;L conductance, respectively, and the grey points are the results of the three-sensor GES search (same as Figure 3F). (C) Variable AP waveforms in

uncoupled myocytes with conductances randomly chosen from the distribution shown in B for C57BL/6J and D) AP waveforms for coupled myocytes in

tissue for C57BL/6J and the two other strains. AP waveforms of uncoupled cells vary significantly from cell to cell as observed experimentally (Fig.

Figure 5—figure supplement 1) but are uniform in electrotonically coupled cells, as expected. (E) Histograms of Ca2+ transient (CaT) amplitude (DCa)

and action potential duration (APD) for C57BL/6J in electrotonically uncoupled and coupled cells. Importantly, in coupled cells, the more uniform APD

translates into a much more uniform CaT amplitude, reflecting the strong effect of the cell’s APD on its CaT amplitude. (F) Distribution of CaT

amplitudes within electrotonically coupled cells in tissue scale simulations using the parameter distributions from B. The three strains have the same

mean CaT amplitude averaged over all cells marked by a thick vertical gray line, thereby demonstrating that compensation of Ca2+ and K+ currents

remains operative at a tissue scale. (G) Distribution of CaT amplitudes obtained by varying only ICa;L conductance and with Ito;f and IKur conductances

fixed to their reference values. Lack of compensation between Ca2+ and K+ currents in this case yields different mean CaT amplitude.

DOI: https://doi.org/10.7554/eLife.36717.011

The following figure supplements are available for figure 5:

Figure supplement 1. Action potential recordings from isolated myocytes for mouse strain C57BL/6J paced at 4 Hz under current clamp.

DOI: https://doi.org/10.7554/eLife.36717.012

Figure supplement 2. Histogram of average Ca2+ concentration corresponding to Figure 5E for C57BL/6J in electrotonically uncoupled and coupled

cells.

DOI: https://doi.org/10.7554/eLife.36717.013
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with a high baseline ICa;L conductance and ruling out other strain-dependent hypertrophy-promoting

pathways that are not Ca2+-dependent, which is beyond the scope of the present work.

Compensation and gene expression
In a neuroscience context, ionic conductances of neurons from the stomatogastric ganglion of differ-

ent crabs were previously found by Schulz et al. (2006) to be correlated with gene expression, as

shown by independent measurements in the same subjects of functional densities of different ion

channels, used to determine conductances, and mRNA levels of genes encoding for pore-forming

subunits of those channels. In a cardiac context, decrease of ICa;L current density has been shown to

be correlated with a decrease of Cav1.2 mRNA expression in response to a sustained increase of

pacing rate in cultured adult canine atrial cardiomyocytes mimicking atrial tachycardia remodeling

(Qi et al., 2008). In the present study, we did not perform independent measurements of gene

expression in the same ventricular myocytes used to measure ionic conductances. However, to

examine the possible relationship between compensation of conductances and gene expression, we

reviewed the gene expression data from the aforementioned studies of ISO-induced cardiac hyper-

trophy and heart failure in approximately 100 HMDP strains that include most of the strains used in

the present study. Gene expression was measured both in control (pre-ISO) and after injection of

ISO for 21 days in 8- to 10-week-old female mice (post-ISO). Details of heart biopsies conducted

pre- and post-ISO and microarray data analysis are given in the Methods section of Santolini et al.

(2018).

Figure 6. Correlation between L-type Ca2+ current conductance and cardiac hypertrophic response to a stressor

for different HMDP strains. The Pearson correlation is r = 0.86 (p=3e-4).

DOI: https://doi.org/10.7554/eLife.36717.014
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No statistically significant pairwise correlation (Pearson correlation coefficient r<0:25 and p-value

p>0:05) were found between expression levels of the genes Cacna1c, Kcnd2, and Kcna5, encoding

for the pore forming subunit of the Cav1.2, Kv4.2, and Kv1.5 channels associated with ICa;L, Ito;f , and

IKur, respectively. However, a statistically very significant correlation was found between expression

levels of Cacna1c and Kcnip2 that encodes the KChIP2 accessory b subunits directly interacting with

Kv4.2 (see Figure 7 and caption for r and p values). This correlation is present both in control (pre-

ISO), which is the condition relevant to our conductance measurements in selected strains (Figure 4),

and post-ISO. Since increased KChiP2 level is known to increase the functional current density of Ito;f
(Kuo et al., 2001; Jin et al., 2010), the strong positive correlation between Cacna1c (Cav1.2) and

Kcnip2 (KChIP2) expression levels may partially contribute to the positive correlation between ICa;L

and Ito;f+IKur functional current densities (Figure 4).

Discussion
In the present study, we have proposed a new methodology for searching for combinations of

electrophysiological parameters representing different individuals in a genetically diverse popula-

tion. While previous studies have used primarily AP features to constrain parameters (Sarkar and

Sobie, 2009; Sarkar and Sobie, 2010; Sarkar et al., 2012; Britton et al., 2013;

Groenendaal et al., 2015; Muszkiewicz et al., 2016; Krogh-Madsen et al., 2016), we have chosen

to constrain parameters using the Ca2+ transient that plays a key role to regulate ion channel expres-

sion and activity. This choice is based on a straightforward physiological hypothesis, namely that the

CaT is critical for generating blood pressure, which is sensed by the carotid baroreceptors and feeds

back through the autonomic nervous system to regulate the CaT in a way that preserves blood pres-

sure. In contrast, a physiological basis for sensing cardiac voltage to regulate the AP and CaT is

unclear. We have also examined the effect of additionally constraining the intracellular Na+ concen-

tration that is also known to modulate ion channel activity. Regulatory mechanisms traverse different

levels of biological organization from transcriptional regulation to post-transcriptional and post-

translational modification to ion channel trafficking and phosphorylation. Those mechanisms are

presently not known in sufficient detail to be modeled quantitatively. However, there is sufficient

experimental evidence of feedback sensing of cellular activity via Ca2+ (Qi et al., 2008) and Na+

(Harvey et al., 1991; Balke and Wier, 1992) concentrations to make a search that constrains model

parameters based on those signals plausible. The Ca2+ transient determines the contractile force

underlying arterial blood pressure generation regulated by baroreceptor feedback via the autonomic

nervous system. Hence, fixing the diastolic and peak Ca½ �i values is a physiologically meaningful

choice to search for parameter combinations that produce a normal diastolic and systolic function,

which we have adopted here. Previous work (Xiao et al., 2008) has provided evidence of a compen-

satory increase of IKs following exposure of canine cardiomyocytes to a pharmacological IKr blocker.

Even though the mechanisms are not clear, it has been hypothesized that feedback sensing of Ca½ �i
may potentially underlie the compensatory upregulation of IKs through post-transcriptional upregu-

lation of underlying channel subunits mediated by microRNA changes. Together with other studies

(Qi et al., 2008), those previous findings may provide supportive evidence for the present Ca2+

sensing hypothesis and suggests its generality beyond mice.

A remarkable and nontrivial finding of the present computational study is that Ca2+ sensing suffi-

ces to produce a physiological AP waveform whose duration spans comparable range (see

Figure 5C) to that recorded experimentally in isolated myocytes (Figure 5—figure supplement 1),

even though the voltage signal is not used to constrain model parameters. For comparison, we show

in Figure 3—figure supplement 3 the results of a GES search that uses voltage instead of Ca2+

sensing. With voltage sensing alone (both without and with Na½ �i sensing), the AP waveform was

readily constrained as expected, but the CaT was highly variable and often not physiological. More-

over, the correlation between inward Ca2+ and outward K+ currents observed in the HMDP

(Figure 4A) was no longer preserved, since other inward and outward currents including INaCa could

regulate AP duration when the CaT was not constrained. Those results support our hypothesis that

ionic conductances are primarily regulated by feedback mechanisms sensing ionic concentrations.

Since the CaT is critical for generating blood pressure (which is sensed by the carotid baroreceptors

and feeds back through the autonomic nervous system to regulate the CaT by controlling levels of

Ca-cyling proteins and the AP in a way that preserves blood pressure), Ca2+ sensing provides a
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straightforward physiological mechanism that not only constrains the CaT to a physiological wave-

form, but also, as an added and novel bonus, constrains AP features through the ratio of inward

Ca2+ current and outward K+ currents. It is much less clear, on the other hand, how voltage would

be sensed by the heart to provide a feedback mechanism to control both the AP waveform and the

CaT. Voltage-sensing alone provided a reliable AP waveform, but a highly unreliable CaT as shown

in Figure 3—figure supplement 3.

Our results show that CaT calibration results in considerable AP waveform variability (Figure 5C)

in isolated myocytes as expected if the AP waveform is not constrained. This finding is consistent

with the observations that AP variability is considerable when measured experimentally in patch

clamp studies (Figure 5—figure supplement 1), but greatly reduced in tissue because less frequent

atypical AP waveforms are voltage-clamped by the more typical AP waveforms of their neighbors.

Our finding that CaT calibration results in considerable AP waveform variability is also consistent

with the converse finding in a previous study (Muszkiewicz et al., 2018) and here (Figure 3—figure

supplement 3) that the CaT is highly variable when the AP waveform alone is constrained without

Figure 7. Compensation and gene expression. Plot showing the existence of a statistically very significant

correlation (Pearson correlation coefficient r ¼ 0:47 and p-value, p ¼ 8:1 10�13) between the expression level of

Kcnip2, encoding the KChIP2 accessory b subunits that interact with Kv4.2 channels (Ito;f ) and of Cacna1c, a gene

encoding the a1C subunit of the Cav1.2 L-type calcium channels (ICa;L) across 206 mice. Cardiac gene expression

was measured in 106 control (Pre-ISO) strains and 21 days after injection of isoproterenol (post-ISO) in 100 HMDP

strains (a smaller number due to higher mortality of certain strains). Note that the significant correlation holds

when considering separately pre-ISO (blue points, r ¼ 0:59, p ¼ 2 10
�11) and post-ISO (red points,

r ¼ 0:42, p ¼ 1:5 10�5) data. Lines show best fits of a linear model for pre-ISO (blue), post-ISO (red), and pre- and

post-ISO combined (black). Expression data is taken from Santolini et al. (2018) and is averaged over all

microarray probes for each gene.

DOI: https://doi.org/10.7554/eLife.36717.016
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also constraining the CaT. However, at least in the present study, constraining the AP waveform

does not reproduce the correlation between Ca2+ and K+ currents observed in the HMDP.

Even though our calcium centric GES search did not include the conductance of the Na+ current,

it seems physiologically plausible that this conductance (and gap junction coupling) could also be

regulated by Ca2+ sensing to ensure that conduction velocity is adequate to generate a synchronous

blood pressure waveform. In particular, the integrated CaT of the ventricles has to be reasonably

synchronous to generate a normal blood pressure waveform, requiring the Na current density to be

adequate for a normal conduction velocity through the tissue.

Even though the GES search was performed using target values of Ca2+ sensors for a 4 Hz pacing

frequency, different GES exhibit similar CaT amplitude versus pacing frequency curves consistent

with experimental measurements (Figure 18 in Bondarenko et al., 2004) over a broad range of pac-

ing frequencies from 0.5 to 4 Hz. Since different model parameters corresponding to different

strains reproduce similar CaT amplitude-frequency curves, we do not expect the choice of pacing

frequency to be critically important for calibrating model parameters that produce a normal electro-

physiological phenotype. We attribute the robustness of those curves to the knock on effect of volt-

age on the L-type Ca2+ current and SR Ca2+ release via CICR. As a result of this effect, constraining

the CaT indirectly constrains the relative magnitudes of depolarizing and repolarizing currents affect-

ing the AP; that is, the same CaT amplitude can be obtained with combinations of Ca2+ and K+ cur-

rents that are both large or both small, thereby compensating each other, but not with

combinations in which the Ca2+ current is large and the sum of K+ currents is small or vice-versa. It

remains that the AP waveform and duration are only partially constrained by the CaT and are thus

more variable than in a GES search that uses AP features such as duration, plateau voltage, etc., to

constrain parameter sets (Sarkar and Sobie, 2009; Sarkar and Sobie, 2010).

While the additional constraint to keep the intracellular Na+ concentration Na½ �i within a normal

physiological range is not necessary to produce a physiological AP waveform, it constrains more

tightly the conductance of the Na+-Ca2+ exchanger current (compare INaCa histograms of Figure 3D

and Figure 3—figure supplement 1). This leads in turn to a tighter three-way compensation

between the L-type Ca2+ current and two dominant repolarizing K+ currents in the mouse, which is

less pronounced in a GES search in which Na½ �i is not constrained (Figure 3—figure supplement 2)

and ICa;L can be compensated by INaCa in addition to those K+ currents (four-way compensation). In

the present study, we have leveraged the fact that different mice in the same HMDP inbred strain

are isogenic to distinguish for the first time intra-heart cell-to-cell variability from inter-subject (inter-

strain in the HMPD context) variability. This has allowed us to use several hearts for each strain and

perform current measurements in enough cells to statistically distinguish mean conductances of sev-

eral currents in different strains. The results (Figure 4A, Table 1 and Figure 4—figure supplement

1) clearly show that conductances differ between strains. Statistical testing shows that ICa;L conduc-

tance measurements for different strains are very unlikely to belong to the same distribution (as indi-

cated by the very small p-value) and mean conductances can vary by as much as two-hand-a-half

fold between pairs of strains (e.g. C57BL/6J and BXA25/PgnJ), far in excess of the typical standard

error of the mean. Furthermore, guided by the predictions of our computational GES search, we

have also measured conductances of two dominant repolarizing currents in the mouse, Ito;f and IKur,

to test for the existence of compensation between those currents and ICa;L. The results (Figure 4A)

show that for eight out of the nine strains in which all three currents were measured, the currents

accurately compensate each other as predicted by the GES search in which both the CaT and Na½ �i
are constrained. Compensation is evidenced by the linear regression fit of Ito;f+IKur versus ICa;L. One

outlier strain (BXA12/PgnJ) deviates from this fit but still falls within the larger ensemble of computa-

tionally predicted GES without the Na½ �i constraint. Importantly, cells isolated from mouse strains

with very different ICa;L conductance have statistically indistinguishable contractile function

(Figure 4B). This suggests that compensation between ICa;L and K+ currents in different HMDP

strains is present to maintain Ca2+ homeostasis, as assumed in the computational GES search. As a

whole, the results clearly support the hypothesis that Ca2+ concentration plays a major role in feed-

back sensing of cellular activity and regulation of ion channel expression. While more strains would

need to be studied to more accurately determine the role of the Na+ concentration, measurements

reported in Figure 4A suggest that it plays at least an auxiliary role in further constraining conduc-

tances beyond Ca2+ sensing.
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One limitation of the present GES search is that it only identifies possible combinations of electro-

physiological parameters underlying a normal cardiac electrophysiological phenotype. However, it

cannot by itself predict which GES among those found are actually represented, even approximately,

in a genetically diverse population. Another limitation is that dominant K+ currents and AP features

are markedly different in mouse than human. While there is no analog of the HMDP for human, or

other species (such as rabbit, dog, or pig) with AP features similar to human, it might be possible to

extend the present study using renewable cardiomyocytes (CMs) derived from induced pluripotent

stem cells (iPSC) as an alternative to the HMDP. However, iPSC-CMs and adult myocytes isolated

from intact hearts exhibit quantitative differences in their responses to ionic current perturbations

(Gong and Sobie, 2018). Therefore, it is unclear whether the variation of ionic conductances in

iPSC-CMs of genetically different subjects would be representative of the variation of conductances

in intact hearts of the same subjects, which is ultimately relevant for pharmacological treatment of

cardiac arrhythmias. In addition, from the results of a recent study of AP variability in cardiomyocytes

derived from different human subjects (Britton et al., 2017), it is unclear if inter- and intra-subject

variability could be statistically distinguished in a large population.

Finally, the correlation between ICa;L conductance and cardiac hypertrophic response of HMDP

strains to sustained b-adrenergic stimulation (Figure 6) also highlights the importance of considering

the inherent variability of electrophysiological parameters in a genetically diverse population to inter-

pret the variability of phenotypic response to pharmacological perturbations (Sarkar et al., 2012;

Britton et al., 2013; Britton et al., 2017; Gong and Sobie, 2018) or stressors (Rau et al., 2017;

Santolini et al., 2018). For example, pharmacological treatment with an anti-arrhythmic L-type cal-

cium channel blocker, or pathologies such as hyperkalemia (elevated potassium level), would be

expected to have different effects in different subjects. In the setting of the HMDP, an L-type cal-

cium channel blocker or hyperkalemia would be expected to have a stronger effect on the calcium

transient and action potential of mice strains that function under normal conditions with larger ICa;L

and potassium current conductances. Consistent with previous population level studies

(Sarkar et al., 2012; Britton et al., 2013; Britton et al., 2017; Gong and Sobie, 2018; Rau et al.,

2017; Santolini et al., 2018), taking into account this variability seems ultimately needed to develop

personalized therapies for cardiac arrhythmias and heart failure.

Table 1. Patch clamp measurements of ICa;L, Ito;f , and IKur functional current density.

Mean current density averaged over n cells isolated from multiple hearts for each strain is given together with the standard error.

Strain ICa;L (pA/pF) n IKur (pA/pF) n Ito;f (pA/pF) n IKss (pA/pF) n

A/J 13.71947 � 1.23085 19 11.61804 � 2.79089 13 13.03735 � 1.64818 14 5.23445 � 0.48377 13

BALB/cByJ 10.72278 � 1.3951 9 11.496 � 2.03274 10 7.46938 � 0.82615 9 8.197 � 0.62438 10

BTBR T+tf/J 14.75667 � 1.14159 6 16.42364 � 2.78295 11 9.271 � 1.43985 10 6.093 � 0.39553 9

BXA12/PgnJ 11.01333 � 0.98995 9 15.66429 � 1.70548 8 11.89875 � 2.18027 8 8.34556 � 1.30065 9

BXA25/PgnJ 17.57 � 4.81376 5 15.8049 � 1.74509 7 11.62704 � 1.59613 7 7.11986 � 1.31554 6

BXH6/TyJ 7.32625 � 0.59327 16 5.954 � 0.43731 10 8.73172 � 0.67617 11 7.98545 � 0.87545 11

C57BL/6J 7.3925 � 0.93181 10 7.82727 � 1.45134 11 7.594 � 0.92097 10 9.16273 � 1.62148 11

CXB1/ByJ 11.93909 � 0.81022 11 11.69556 � 1.42095 9 8.73883 � 1.11087 10 6.089 � 0.5724 10

CXB11/HiAJ 7.63625 � 0.89344 8 8.90316 � 2.49755 6 8.42537 � 1.24635 7 6.8481 � 1.3638 7

AXB8/PgnJ 7.355 � 1.09612 6 - - -

BXA14/PgnJ 11.28091 � 1.00796 15 - - -

BXA4/PgnJ 11.77615 � 1.19476 13 - - -

BXD34/TyJ 11.12556 � 1.13741 9 - - -

CBA/J 7.956 � 0.81269 10 - - -

CXB7/ByJ 9.05386 � 0.6087 16 - - -

SJL/J 11.2745 � 0.99708 20 - - -
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Materials and methods

Overview of the HMDP
The hybrid mouse diversity panel (HMDP) consists of a population of over 100 inbred mouse strains

selected for usage in systematic genetic analyses of complex traits (Ghazalpour et al., 2012). The

main goals in selecting the strains were to (i) increaseresolution of genetic mapping, (ii) have a

renewable resource that is available to all investigators world-wide, and (iii) provide a shared data

repository (https://systems.genetics.ucla.edu/about/hmdp2) that would allow the integration of data

across multiple scales, including genomic, transcriptomic, metabolomic, proteomic, and clinical

phenotypes.

Electrophysiological and contraction measurements
Cell isolation
Ventricular myocytes were enzymatically isolated from the hearts of adult female mice (8- to 12-

week-old) using a procedure previously developed and utilized to isolate rabbit cardiomyocytes by

Yang et al. (2008). Briefly, hearts were removed from mice anesthetized with intravenous pentobar-

bital and perfused retrogradely at 37˚C in Langendorff fashion with nominally Ca2+-free Tyrode’s

buffer containing 1.2 mg/ml collagenase type II (catalog number 4176; Worthington) and 0.12 mg/

ml protease type XIV (catalog number P5147; Sigma) for 10 – 17 min. After washing out the enzyme

solution, the ventricles were cut from the atria and aorta and transferred to a separate glass dish

containing Tyrode’s solution. Cells were isolated by gentle mechanical dissociation, stored at room

temperature, and used within 5 hr. This procedure typically yielded 30 – 50% of rod-shaped and

Ca2+-tolerant myocytes.

Patch clamping
Isolated ventricular myocytes were patch clamped in the whole cell ruptured patch configuration

using borosilicate glass pipettes (1�3-megaohm tip resistance). Myocytes were superfused at

34�36˚C with Tyrode’s solution modified accordingly. Currents were measured under voltage clamp

conditions, using an Axopach 200B amplifier with a Digidata 1440A interface (Axon Instruments,

Union City, CA). Data were acquired and analyzed using pClamp (Axon instruments) and Origin

(Origin).

L-type calcium current measurements
For characterization of ICa properties, the pipette solution, designed to eliminate K+ and Cl� cur-

rents, contained (in mM) 100 CsMeS, 30 CsCl, 5 MgATP, five phophocreatine di(tris), 5 N-2-hydrox-

yethylpi-perazine-N’�2-ethanesulfonic acid (HEPES), 5 NaCl and 0.1 1,2-Bis(2-Aminophenoxy)

ethane-N,N,N’,N’-tetraacetic acid (BAPTA) (pH adjusted with HEPES to 7.1 – 7.2). The superfusate,

designed to eliminate K+ currents, contained (in mM), 136 NaCl, 5.4 CsCl, 1 MgC12, 0.33 NaH2PO4,

10 glucose, 5 HEPES, and 1.2 CaC12 (pH adjusted with Trizma base to 7.4). Voltage-clamp protocols

to assess activation were as previously described by Delbridge et al. (1997). In all experiments,

peak ICa current was recorded after a voltage step from �50 to 0 mV.

Potassium current measurements
For characterization of K+ current properties, the pipette solution, designed to eliminate Ca2+ cur-

rents, contained (in mM) 130 KCl, 5 MgATP, five phophocreatine di(tris), 5 HEPES, 5 NaCl, and 10

BAPTA (pH adjusted with HEPES to 7.1 – 7.2).The superfusate, designed to eliminate Ca2+ currents,

contained (in mM) 136 NaCl, 5.4 KCl, 1 MgC12, 0.33 NaH2PO4, 10 glucose, 5 HEPES, and 0.2

CdCl2 (pH adjusted with Trizma base to 7.4). To access the activation of K+ current components:

IKur, Ito;f and IKss, we adopted a voltage protocol, similar to the one reported by Zhou et al. (1998),

in combination with the usage of 4-aminopyridine (4-AP) that has the following pharmacological

properties: (1) IKur is markedly blocked by 4-AP at submillimolar concentration (e.g. 0.1 mM); (2) a

higher concentration (i.e., >1 mM) blocks Ito;f effectively; and (3) IKss is 4-AP resistant. Using this pro-

cedure, peak IKur, Ito;f and IKss currents could be deduced from three current measurements without

4-AP and with 0.1 mM and 2 mM 4-AP after a voltage step from �50 to 0 mV.
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Results of patch clamp measurements
Results of patch clamp measurements for all strains are summarized in Table 1 and Figure 4—figure

supplement 1. Both the L-type Ca2+ current and two K+ currents (Ito;f and IKur) were measured in

nine strains and the L-type Ca2+ current alone was measured in 16 strains.

Contraction analysis
The length of ventricular myocytes was measured and analyzed using the method described by

Sdek et al. (2011). Briefly, myocytes were imaged during pacing using a high-speed charge-coupled

device-based camera (128 � 128 pixels; Cascade 128+; Photometrics) at 290 frames/s. The acquired

video image data were then processed using Imaging Workbench software (version 6.0; INDEC Bio-

Systems). Myocyte length was measured and analyzed using ImageJ software. Cell shortening was

calculated from the ratio of peak systolic length to resting diastolic length averaged over 10 contrac-

tions evoked by the stimulus train. Results of cell shortening measurements for six strains paced at 4

Hz are summarized in Table 2.

Heart extraction and mass measurement for cardiac hypertrophic
response
At sacrifice, hearts were excised, drained of excess blood and weighed. Each chamber of the heart

(LV with inter-ventricular septum, RV-free wall, RA and LA) was isolated and subsequently weighed.

Cardiac hypertrophy was calculated as the increase in total heart weight after isoproterenol (ISO)

treatment compared to control animals (see Table 3). As described prevoiously (Wang et al., 2016),

the ISO treatment consisted of 30 mg per kg body weight per day of Isoproterenol (ISO) adminis-

tered for 21 days in 8- to 10-week-old female mice using ALZET osmotic mini-pumps, which were

surgically implanted intraperitoneally. The average number of control hearts per strain was 2.75. The

average number of treated hearts per strain was 3.5. The exact number of hearts per strain can be

found in Table S1 of Santolini et al. (2018).

Mathematical model of mouse ventricular myocytes
We have developed a novel mathematical model of mouse ventricular myocytes that combines ele-

ments of previously published ventricular mycoyte models (Shiferaw et al., 2003; Shannon et al.,

2004; Bondarenko et al., 2004; Mahajan et al., 2008). For this purpose, we kept the mathematical

formulation of intracellular calcium cycling of the Mahajan model developed by Shiferaw et al.

(2003), which physiologically incorporates graded release by linking the Ca2+ spark recruitment rate

to ICa;L current magnitude, and replaced several sarcolemmal currents by those formulated by

Bondarenko et al., 2004 for mouse ventricular mycoytes. This model allowed us to explore effi-

ciently the space of good enough solutions that we can compare to experimentally measured vari-

ability found in the hybrid mouse diversity panel (HMDP). The Bondarenko et al., 2004 mouse

model has sarcolemmal currents fitted to detailed experimental measurements of sarcolemmal cur-

rents in mouse ventricular myocytes. The Mahajan et al. (2008) model is a rabbit model that integra-

tes a Markov model of ICa;L together with the Shannon et al. (2004) formulation of other

sarcolemmal currents and the Shiferaw et al. (2003) model of calcium cycling and SR calcium

release. The Shiferaw et al. (2003) model represents the release of calcium from the SR as a sum of

individual spark events, which reproduces important observed instabilities such as Ca2+ transient

Table 2. Cell Shortening at 4 Hz pacing.

Strain DL/L (4 Hz) n

BXA12/PgnJ 0.0835 � 0.0184 5

BXA14/PgnJ 0.1182 � 0.0108 14

BTBR T+tf/J 0.0978 � 0.0095 7

BALB/cByJ 0.105 � 0.0158 5

C57BL/6J 0.0989 � 0.016 6

BXA25/PgnJ 0.0838 � 0.0112 5
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alternans. Even though the Shiferaw et al. (2003) model of calcium cycling model was

developed for rabbit mycoytes, it can in principle describe Ca2+ cycling in other species including

mouse. Therefore, we constructed a mouse model starting with the Mahajan et al. (2008) model,

which incorporates the Shiferaw et al. (2003) model of calcium cycling, and using the formulation of

Shannon et al. (2004) for ICa;L and Bondarenko et al., 2004 for other sarcolemmal currents fitted

to mouse data. We did not use the Bondarenko et al., 2004 detailed Markov formulations of the

gating of INa and ICa;L channels with fast transition rates that were computationally prohibitive for

the number of simulations we performed in this study. However, we checked that our combined

model reproduces well the mouse electrophysiological phenotype of the Bondarenko et al., 2004

model while being computationally efficient and incorporating a realistic description of Ca2+ cycling.

We verified that the Shiferaw et al. (2003) model of Ca2+ cycling integrated with the

Shannon et al. (2004) model of ICa;L produced a normal bell-shaped SR release as a function of

step-voltage. We also verified that the force-frequency relationship produced by the model has the

correct negative staircase observed experimentally. The equations for the model are described

below. The reference values of the six parameters varied in this study are given in Table 4 and pro-

duce baseline AP and CaT morphologies consistent with the experimental measurements in

Bondarenko et al., 2004. Table 5 lists all other parameters used that were kept fixed.

Equations for Ca2+ cycling
We use the model for Ca2+ cycling developed by Shiferaw et al. (2003) and subsequently imple-

mented in Mahajan et al. (2008). The equations for Ca2+ cycling are

dcs

dt
¼ bs

vi

vs
Jrel � Jd þ JCa þ JNaCað Þ� Jstrpn

� �

; (2)

dci

dt
¼ bi Jd � Jupþ Jleak � J itrpn � JPMCA

h i

; (3)

dcj

dt
¼�Jrelþ Jup� Jleak; (4)

dc0j

dt
¼
cj� c0j

ta
; (5)

Table 3. Heart mass before and 3 weeks after Isoproterenol (ISO) injection.

Strain Heart mass pre-ISO, mpre (g) Heart mass post-ISO, mpost (g)

A/J 0.088666667 0.133

AXB8/PgnJ 0.087 0.0992

BALB/cByJ 0.10105 0.1389

BTBR T+tf/J 0.14162 0.223

BXA-12/PgnJ 0.064 NA

BXA-14/PgnJ 0.0975 0.1248

BXA-4/PgnJ 0.1031 0.14675

BXD-34/TyJ 0.1215 NA

BXH-6/TyJ 0.0845 0.0878

C57BL/6J 0.096716667 0.1222

CBA/J 0.095333333 0.13

CXB-11/HiAJ 0.1135 0.1255

CXB-7/ByJ 0.109 0.1475

SJL/J 0.087 0.123333333
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Jd ¼
cs� ci

ts
; (6)

dcp

dt
¼ ~JSRþ ~JCa�

cp � cs
� �

td
; (7)

where the SR leak flux and RyR release flux are given by

Jleak ¼ gl 12:4cj � ci
� �

; (8)

dJrel

dt
¼N 0

s tð Þcj
Q c0j

� �

csr
�
Jrel

T
; (9)

T ¼
tr

1� tr
dcj
dt
=cj

� � (10)

Q c0j

� �

¼

0 0<c0j<50;

c0j� 50 50� c0j � csr;

uc0jþ 1� uð Þcsr � 50 c0j>csr;

8

>

<

>

:

(11)

N 0
s ¼�gRyR Vð ÞPoiCa; (12)

gRyR Vð Þ ¼ gRyR
e�0:05 Vþ30ð Þ

1þ e�0:05 Vþ30ð Þ
; (13)

~JSR ¼�gSR Vð ÞQ c0j

� �

PoiCa; (14)

gSR Vð Þ ¼ 50gRyR Vð Þ (15)

Intracellular Ca2+ buffering
Similarly to Mahajan et al. (2008). All buffering parameters are experimentally based and summa-

rized in Shannon et al. (2004). Buffering to SR, calmodulin, membrane, and sarcolemma binding

sites are modeled using the instantaneous buffering approximation given by

bi ¼ 1þ
BSRKSR

ciþKSRð Þ2
þ

BcdKcd

ci þKcdð Þ2
þ

BmemKmem

ciþKmemð Þ2
þ

BsarKsar

ciþKsarð Þ2

 !�1

; (16)

Table 4. Reference values of ionic current parameters varied in the GES search.

Parameter Definition Reference value Reference source

gCa Ca2+ current flux 333.32 mmol/(Cm C) Measured

vup Peak uptake rate 1.17 �M/ms Chosen*

gNaCa Peak NaCa rate 36.6 �M/s Bondarenko et al., 2004

gRyR Release current
strength

12.9 sparks cm2/mA Mahajan et al. (2008)

gto;f Ito;f peak
conductance

0.16 A/F Measured

gKur IKur peak
conductance

0.144 A/F Measured

*vup was chosen such that the reference Ca2+ transient amplitude was normal.
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Table 5. Mouse ventricular myocyte model parameters.

Parameter Definition Value

Physical constants and ionic concentrations

Cm Cell capacitance 3.1 �10�4�F

vi Cell volume 2.58 �10�5�l

vs Submembrane volume 0.02 vi

F Faraday Constant 96.485 C/mmol

R Universal gas constant 8.314 J mol�1 K�1

T Temperature 298 K

Na½ �o External Na+

concentration
140 mM

K½ �i Internal K+

concentration
143.5 mM

K½ �o External K+

concentration
5.4 mM

Ca2þ
� �

o
External Ca2+

concentration
1.8 mM

Cytosolic buffering parameters

BT Troponin C
concentration

70 �mol/l cyt

kTon on rate for
Troponin C
binding

0.0327 (�M ms)�1

kToff off rate for
Troponin C
binding

0.0196 (ms)�1

BSR SR binding site
concentration

47 �mol/l cyt

KSR SR binding site
disassociation
constant

0.6 �M

BCd Calmodulin
binding site concentration

24 �mol/l cyt

KCd Calmodulin binding
site
disassociation
constant

7 �M

Bmem Membrane
binding site concentration

15 �mol/l cyt

Kmem Membrane binding site
disassociation
constant

0.3 �M

Bsar Sarcolemma binding
site concentration

42 �mol/l cyt

Ksar Sarcolemma
binding
site disassociation constant

13 �M

SR release parameters

tr Spark lifetime 10 ms

ta NSR-JSR diffusion
time

20 ms

u Release slope 4 ms�1

csr Release slope
threshold

90 �M / l cytosol

td cp - cs diffusion time 0.50 ms*

Table 5 continued on next page
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bs ¼ 1þ
BSRKSR

csþKSRð Þ2
þ

BcdKcd

csþKcdð Þ2
þ

BmemKmem

csþKmemð Þ2
þ

BsarKsar

csþKsarð Þ2

 !�1

(17)

Buffering to Troponin C is given by

d CaT½ �i
dt

¼ J itrpn ¼ kTonci BT � CaT½ �i
� �

� kToff CaT½ �i; (18)

d CaT½ �s
dt

¼ Jstrpn ¼ kToncs BT � CaT½ �s
� �

� kToff CaT½ �s (19)

The SERCA uptake pump
Similarly to Shiferaw et al. (2003).

Table 5 continued

Parameter Definition Value

ts cs - ci diffusion time 0.75 ms

Exchanger, uptake, and SR leak parameters

cup Uptake threshold 0.5 �M

ksat NaCa saturation
threshold

0.1

� NaCa energy barrier
position

0.35

Km;Nai Ion mobility constant 21 mM

Km;Nao Ion mobility constant 87.5 mM

Km;Cao Ion mobility constant 1380 �M

gl Leak current
conductance

1.74 � 10�5ms�1

Ionic current parameters

gNa Na+ current
conductance

13 mS/�F

gNa;b Na+ background
current conductance

0.0026 mS/�F

gCa;b Ca2+ background
current conductance

0.000367 mS/� F

�gCa Strength of local LCC
calcium flux

9000 mM/(cm C)

gK1 IK1 conductance 0.2938 mS/�F

gNaK INaK conductance 1.716 mS/�F

gKss IKss conductance 0.025 mS/�F

gto;s Ito;s conductance 0 mS/�F

JPMCA;max Maximal JPMCA flux one pA/pF

KPMCA Saturation constant
for Ca2+ current

0.5 �M

PCa Constant 0.00054 cm/s

Po;max Constant 0.083

*We have reduced this value from the original value of Mahajan et al. (2008) so that the Ca2+ transient increases when SERCA uptake rate is increased.
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Jup ¼
vupc

2

i

c2i þ c2up
(20)

Na+dynamics
Intracellular Na+ dynamics are given by

d Naþ½ �i
dt

¼ 100
Cm

Fvi
INaþ 3INaCa þ 3INaK þ INa;b
� �

(21)

In order to reduce computation time, we have sped up the rate at which the system reaches

steady-state by increasing d Naþ½ �i=dt by a factor of 100. This will make sodium converge to steady-

state on a time-scale fast enough to perform the number of simulations necessary for this study.

Once the cell reaches steady-state, d Naþ½ �i=dt is zero, so this modification will not affect the sodium

dynamics at steady-state. By doing this, we can save up to 90% of calculation before the system

reaches steady-state.

Ionic currents
The rate of change of the membrane voltage V is described by the equation

dV

dt
¼� Istim þ ICa;Lþ IPMCAþ INaCa þ INa þ Ito;f þ Ito;sþ IKur þ IKssþ IK1þ INaK þ ICa;bþ INa;b

� �

(22)

ICa;L ¼
�2Fvi

Cm

JCa (23)

INaCa ¼
Fvi

Cm

JNaCa (24)

IPMCA ¼
�2Fvi

Cm

JPMCA (25)

where Istim is the external stimulus current driving the cell.

The L-type Ca current (ICa;L)
Similarly to the Shannon et al. (2004) model,

JCa ¼ gCaPoiCa (26)

~JCa ¼��gCaPoiCa (27)

iCa ¼
4PCaVF

2

RT

cse
2VF=RT � 0:341 Ca2þ½ �o

e2VF=RT � 1
(28)

Po ¼ Po;max � d� f � fCa (29)

dfCa

dt
¼ 0:12 1� fCað Þ�

1:4025

1þ 30=cp
� �4

fCa (30)

d¥ ¼
1

1þ e� Vþ4:6ð Þ=6:3
(31)

td ¼ d¥
1� e� Vþ4:6ð Þ=6:3

0:035 V þ 4:6ð Þ
(32)
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f¥ ¼ 1�
1

1þ e� Vþ22:8ð Þ=6:1
(33)

tf ¼
1

0:02� 0:007e� 0:0337 Vþ10:5ð Þð Þ2
(34)

dd

dt
¼
d¥� d

td
(35)

df

dt
¼
f¥� f

tf
(36)

Calcium background leak (ICa;b)

ICa;b ¼ gCa;b V �ECað Þ (37)

ECa ¼
RT

2F
log

Ca2þ½ �o
ci

� �

(38)

The sarcolemmal Ca2+ ATPase (IPMCA)
The sarcolemmal Ca2+ pump (IPMCA) provides another mechanism, in addition to the exchanger

(INaCa), for the extrusion of Ca2+ ions out of the cell. This pump is not included in Mahajan et al.

(2008). We added this current using the formula used by Bondarenko et al., 2004.

JPMCA ¼ JPMCA;max

c2i
K2

PMCA þ c2i
(39)

The Na+-Ca2+ exchange flux (NaCa)
Similarly to the Bondarenko et al., 2004 model,

JNaCa ¼ gNaCa
e�VF=RT Naþ½ �

3

i Ca2þ
� �

o
�e ��1ð ÞVF=RT Naþ½ �

3

oci

1þ ksate ��1ð ÞVF=RTð Þ K3

m;Naoþ Naþ½ �
3

o

� �

Km;Caoþ Ca2þ
� �

o

� � (40)

The fast sodium current (INa)
Similarly to the Shannon et al. (2004) model,

INa ¼ gNam
3hj V �ENað Þ (41)

dh

dt
¼ ah 1� hð Þ�bhh (42)

dj

dt
¼ aj 1� jð Þ�bjj (43)

dm

dt
¼ am 1�mð Þ�bmm (44)

am ¼ 0:32
V þ 47:13

1� e�0:1 Vþ47:13ð Þ
(45)

bm ¼ 0:08e�V=11 (46)

ForV ��40mV;
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ah ¼ 0 (47)

aj ¼ 0 (48)

bh ¼
1

0:13 1þ e Vþ10:66ð Þ=�11:1ð Þ
(49)

bj ¼ 0:3
e�2:535�10

�7V

1þ e�0:1 Vþ32ð Þ
(50)

ForV ��40mV;

ah ¼ 0:135e Vþ80ð Þ=�6:8 (51)

bh ¼ 3:56e0:079V þ 3:1� 10
5e0:35V (52)

aj ¼
�1:2714� 10

5e0:2444V � 3:474� 10
�5e�0:04391V

� �

� V þ 37:78ð Þ

1þ e0:311 Vþ79:23ð Þ
(53)

bj ¼
0:1212e�0:01052V

1þ e�0:1378 Vþ40:14ð Þ
(54)

Sodium background leak (INa;b)

INa;b ¼ gNa;b V �ENað Þ (55)

ENa ¼
RT

F
log

Naþ½ �o
Naþ½ �i

� �

(56)

Inward rectifier Kþ current (IK1)
Similarly to the Bondarenko et al., 2004 model,

IK1 ¼ gK1
Kþ½ �o

Kþ½ �oþ0:21

V �EK

1þ e0:0896 V�EKð Þ

� �

(57)

EK ¼
RT

F
log

Kþ½ �o
Kþ½ �i

� �

(58)

The fast component of the transient outward K+ current (Ito;f )
This current is modified from the formulation of Bondarenko et al., 2004 as:

Ito;f ¼ gto;f a
3

to;f ito;f V �EKð Þ (59)

dato;f

dt
¼
a¥� ato;f

ta
(60)

dito;f

dt
¼
i¥� ito;f

ti
(61)

aa ¼ 0:18264e0:03577 Vþ45ð Þ (62)

Rees et al. eLife 2018;7:e36717. DOI: https://doi.org/10.7554/eLife.36717 27 of 35

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.36717


ba ¼ 0:3956e0:06237 Vþ45ð Þ (63)

ai ¼
0:00152e� Vþ13:5ð Þ=7:0

0:067083e� Vþ33:5ð Þ=7:0þ 1
(64)

bi ¼
0:0095e Vþ33:5ð Þ=7:0

0:051335e Vþ33:5ð Þ=7:0 þ 1
(65)

ta ¼
1

aa þba

(66)

ti ¼
1

aiþbi

(67)

a¥ ¼
aa

aaþba

(68)

i¥ ¼ 1� rð Þ
ai

aiþbi

þ r (69)

where r¼ 0:37 accounts for the presence of a persistent outward potassium current in patch clamp

measurements of Ito;f . We have increased the rates of the inactivation gate (ai and bi) from the origi-

nal formulation to match experimental measurements of Ito;f inactivation rate under voltage clamp.

The slow component of the transient outward K+ current (Ito;s)
Similarly to the Bondarenko et al., 2004 model,

Ito;s ¼ gto;sato;sito;s V �EKð Þ (70)

dato;s

dt
¼
ass� ato;s

tta;s
(71)

dito;s

dt
¼
iss� ito;s

tti;s
(72)

ass ¼
1

1þ e� Vþ22:5ð Þ=7:7
(73)

iss ¼
1

1þ e Vþ45:2ð Þ=5:7
(74)

tta;s ¼ 0:493e�0:0629V þ 2:058 (75)

tti;s ¼ 270:0þ
1050

1þ e Vþ45:2ð Þ=5:7
(76)

The ultra-rapidly activating component of the delayed rectifier K+ current
(IKur/IK;slow)
Similarly to the Bondarenko et al., 2004 model,

IKur ¼ gKurauriur V �EKð Þ (77)

Rees et al. eLife 2018;7:e36717. DOI: https://doi.org/10.7554/eLife.36717 28 of 35

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.36717


daur

dt
¼
ass� aur

taur
(78)

diur

dt
¼
iss� iur

tiur
(79)

taur ¼ 0:493e�0:0629V þ 2:058 (80)

tiur ¼ 1200�
170

1þ e Vþ45:2ð Þ=5:7
(81)

We have reduced the timescale of inactivation (tiur) from the original formulation to match experi-

mental measurements of IKur inactivation rate under voltage clamp.

The non-inactivating steady-state K+ current (IKss)
Similarly to the Bondarenko et al., 2004 model,

IKss ¼ gKssaKss V �EKð Þ (82)

daKss

dt
¼
ass� aKss

tKss
(83)

tKss ¼ 39:3e�0:0862V þ 13:17 (84)

The Na+-K+ pump current (INaK)
Similarly to the Bondarenko et al., 2004 model,

INaK ¼ gNaK fNaK
1

1þ Km;Nai= Naþ½ �i
� �3=2

Kþ½ �o
Kþ½ �oþKm;Ko

(85)

fNaK ¼
1

1þ 0:1245e�0:1VF=RT þ 0:01548767s e�VF=RT
(86)

s¼
1

7
e Naþ½ �o=67300� 1

� �

(87)

Effect of cs-ci diffusion rate on how the Ca2+ transient depends on SERCA
The effect of modifications of the SERCA pump on the steady-state Ca2+ transient is shown in Fig-

ure 1. While increasing SERCA peak uptake current has the effect of sequestering Ca2+ back into

the SR which would reduce the Ca2+ transient, the dominant effect is to increase the Ca2+ transient

due to higher SR Ca2+ load at steady-state. This is consistent with experiments showing restoration

of Ca2+ transient amplitude when SERCA is up regulated (del Monte et al., 2002; del Monte et al.,

1999).

Initial simulations using the original Ca2+ cycling parameters of Mahajan et al. (2008) showed

that the SR Ca2+ load decreased as the uptake rate was increased since more Ca2+ was extruded

from the sub membrane region of the myocyte via NCX before it had sufficient time to diffuse from

the sub membrane space (with local Ca2+ concentration denoted by cs) into the cytosol compart-

ment (with local Ca2+ concentration denoted by ci) to be re-uptaken into the SR. In order to rectify

this, we increased the diffusion rate between the sub membrane and cytosolic compartments. We

found that when this rate is faster (smaller ts), the SR Ca2+ load increases with increasing SERCA

uptake rate as experimentally observed. For this reason, we use a value of ts = 0.75 ms for all simula-

tions in this study.

Rees et al. eLife 2018;7:e36717. DOI: https://doi.org/10.7554/eLife.36717 29 of 35

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.36717


Computational reproduction of patch clamp experiments
In order to compare the GESs found by the computational search to the phenotype variability found

in the HMDP, we iterate the model with voltage held constant, reproducing the experimental patch

clamp procedure described in the Methods section of the main text. Each model is simulated for 1 s

with Vm held at �50 mV in order to reach steady-state. Vm is then raised to 0 mV, and peak values

ICa;L, Ito;f and IKur are recorded.

Tissue scale modeling
Tissue scale modeling is performed using a 56 � 56 array of myocytes, each with individual values of

ionic conductances. Electrotonic coupling is simulated by introducing a diffusive into the Vm evolu-

tion equation,

qVm

qt
¼�

1

Cm

ðIstim þ IionÞþDr2Vm (88)

The applied stimulus current occurs at a pacing rate of 4 Hz and is applied to each myocyte simul-

taneously. The diffusive term is applied isotropically, with diffusive co-efficient, D¼ 1cm2=s. In the

discretized diffusion equation,

V tþ1

i;j ¼ V t
i;j þ dt½�

1

Cm

ðIstim þ IionÞþ
D

Dx2
ð
X

V t
i�1;j�1

� 4V t
i;jÞ�; (89)

We use a lattice size of Dx¼ 225�m, such that the 56 � 56 lattice represents a 1.25 cm �1.25 cm

tissue.

GES search
In this study, we consider variation in six important ionic currents: L-type Ca current (ICa;L), the SR

ATPase SERCA, Na+-Ca2+ exchange (NaCa), ryanodine receptor (RyR), the transient outward K+ cur-

rent (Ito;f ), and the ultra-rapidly-activating K+ current (IKur). Those six currents were selected because

they are the major currents influencing the CaT. The strength of these ionic currents is determined

by their conductance gi. Any given set of parameters (p ¼ p1; p2; � � � ; pnf g) corresponds to a different

candidate myocyte model and produces a different phenotype, which we characterize by quantifi-

able measurements of its steady-state behaviour (sensors) that is steady state calcium transient

amplitude, action potential duration and sarcoplasmic reticulum (SR) Ca2+ concentration. When stim-

ulating a model with a given period, these parameters (once the simulation has reached steady state)

produce a phenotype which we can compare to the phenotype produced by the standard parame-

ters of our model (pref ).

We define a cost function E that quantifies how much each model’s phenotype differs from our

reference phenotype as

E pð Þ2¼
X

N

n¼1

Sn pð Þ�Sn prefð Þ

Sn prefð Þ

� �2

; (90)

where the Sn pð Þs are sensors characterizing the electrophysiological phenotype of the model’s out-

put. E prefð Þ is zero by definition. The three sensors used in this study are listed in Table 6.

For any given set of conductances, a simulation is performed that outputs a value for each sensor.

All values are calculated after the simulation is paced with a pacing cycle length PCL = 250 ms for

12.5 s when the system has reached steady state.

We define a good enough solution (GES) as a set of conductances with a phenotype such that

the value of cost function E pð Þ is less than a threshold � ¼ 0:05. None of the cost function sensors Sn
are based on the membrane potential, and therefore a GES does not necessarily have an action

potential shape close to the reference action potential shape. A GES is required to achieve steady-

state. Therefore, parameters that produce parameter sets that do not reach a steady state during

pacing at constant cycle length, such as those which exhibit calcium transient alternans, are not con-

sidered GESs. We additionally reject any set of parameters for which the output steady-state SR

Ca2+ load is above a threshold Ca2þ
� �

SR
> 130 �MCyt, which we consider to be unphysiologically

overloaded.
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Completing an exhaustive search of the parameter space becomes increasingly computationally

intensive as the number of parameters grows. An exhaustive search of a M dimensional space, con-

sidering K possible values for each conductance requires KM evaluations of the cost function. Addi-

tionally, as the number of sensors (N) that we use to calculate the cost function increases, the

fraction of models tested that are good enough solutions (F) will decrease. We calculated E pð Þ for

10
7 random parameter sets, p, and found only 11 which were GESs (E pð Þ<0:05). It is therefore appar-

ent that an exhaustive search is not efficient for finding GES in high dimensional parameter space

and for this reason we use a minimization scheme to find GESs. We start by randomly assigning val-

ues to each parameter such that 0<pi<3pi;ref for each i in p, and then minimize them with respect to

the cost function, E pð Þ, using the Nelder-Mead simplex algorithm (Nelder and Mead, 1965) (also

known as the Amoeba algorithm) until E pð Þ<�. Running this procudure 10,000 times yeilds 7263

GESs, with the remaining trials being rejected either because the minimization algorithm does not

converge, the SR load constraint is not satisfied, or the system is found to not be in steady-state

(determined by comparing D Ca½ �i of the 50th and 51 st beat).

The Nelder-Mead simplex algorithm
The Nelder-Mead algorithm (Nelder and Mead, 1965) maintains a non-degenerate simplex at each

iteration, a geometric figure in n dimensions of nonzero volume that is the convex hull of nþ 1 verti-

ces, ~x0; ~x1; :::; ~xn, and their respective function values. Suppose we start from the vector ~x0, the sim-

plex can be initialized as ~xi ¼ ~x0 þ d~ei, where ~ei is a unit vector, and where d is our guess of the

problem’s characteristic length scale. In each iteration, new points are computed, along with their

function values, to form a new simplex. The algorithm terminates when the function values at the

vertices of the simplex satisfy a predetermined condition. One iteration of the Amoeba algorithm

consists of the following steps (the standard values for the coefficients are:

a ¼ 1;b ¼ 2; g ¼ 0:5;s ¼ 0:5):

1. Order: order and re-label the nþ 1 vertices as ~x0; ~x1; :::; ~xn, such that F ~x0ð Þ � F ~x1ð Þ � ::: � F ~xnð Þ.
Since we want to minimize F ~x0ð Þ, we refer to x0 as the best point, to ~xn as the worst point, and
to ~xn�1 as the next worst point. Let ~xc refer to the centroid of the n points in the vertex.

~xc ¼
P

n�1

i¼0

~xi=n.

2. Reflect: compute the reflected point, ~xr ¼ ~xc þ a ~xc � ~xnð Þ. Evaluate F ~xrð Þ. If
F ~x0ð Þ � F ~xrð Þ<F ~xn�1ð Þ, then obtain a new simplex by replacing the worst point ~xn with the
reflected point ~xr and go to step 1.

3. Expand: if F ~xrð Þ<F ~x0ð Þ, compute the expanded point, ~xe ¼ ~xc þ b ~xr � ~xcð Þ. If F ~xeð Þ<F ~xrð Þ, then
obtain a new simplex by replacing the worst point ~xn with the expanded point ~xe and go to
step 1; otherwise then obtain a new simplex by replacing the worst point ~xn with the reflected
point ~xr and go to step 1.

4. Contract: At this step, where it is certain that F ~xrð Þ>F ~xn�1ð Þ, compute the contracted point
~xcon ¼ ~xc þ g ~xn � ~xcð Þ. If F ~xconð Þ � F ~xnð Þ, obtain a new simplex by replacing the worst point ~xn
with the expansion point ~xcon and go to step 1.

5. Shrink: replace all vertices except the best ~x0 with ~xi ¼ ~x0 þ s ~xi � ~x0ð Þ and go to step 1.

Two sensor search only constraining the Ca2+ transient
The results of the GES search described in the main text were reproduced using only two sensors,

constraining h Ca½ �ii and D Ca½ �i but not constraining Na½ �i. This results in a broader histogram for the

INaCa conductance (Figure 3—figure supplement 1 compared to Figure 3).

Table 6. Simulation outputs corresponding to physiological sensors

Abbreviation Description Reference value

Ca½ �i

 �

Average cytostolic Ca2+ over one beat 0.24 �M

D Ca½ �i Ca2+ transient amplitude 0.5 �M

Na½ �i Diastolic Na+ 14 mM

DOI: https://doi.org/10.7554/eLife.36717.020
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Code availability
The codes used in this work are available at: https://github.com/circs/GES (Rees, 2018; copy

archived at https://github.com/elifesciences-publications/GES).
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