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Abstract

Bacteroides barnesiae Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae.
Strain BL2' is of interest because it was isolated from the gut of a chicken and the growing awareness that the
anaerobic microbiota of the caecum is of benefit for the host and may impact poultry farming. The 3,621,509 bp
long genome with its 3,059 protein-coding and 97 RNA genes is a part of the Genomic Encyclopedia of Type
Strains, Phase I: the one thousand microbial genomes (KMG) project.
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Introduction

Strain BL2" (= DSM 18169 = CCUG 54636 = JCM 13652)
is the type strain of Bacteroides barnesiae which belongs
to the genus Bacteroides [1]. The species epithet is derived
from the name of Ella M. Barnes, a British microbiologist,
who has contributed much to our knowledge of intestinal
bacteriology and anaerobic bacteriology in general. B. bar-
nesiae strain BL2" was isolated from caecum of a healthy
chicken. Four other strains belonging to the same species
have been isolated from the same source [1]. The genus
Bacteroides represents one of the predominant anaerobic
genera found in chicken caecum [2-4]. Bacteroides species
are thought to play a fundamental role in the breakdown
of complex molecules (such as polysaccharides) into sim-
pler compounds that are used by the animal host as well
as the microorganisms themselves [5, 6], in the utilization
of nitrogenous substances and in the biotransformation of
bile acids and other steroids [7]. They also play a role as
beneficent protectors of the gut against pathogenic micro-
organisms [8]. Here we present a summary classification
and set of features for B. barnesiae strain BL27, together
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with the description of the complete genomic sequencing
and annotation.

Organism information

Classification and features

A 1301 bp long contig contained the most complete 16S
rRNA gene copy in the draft genome. This partial gene
differed by 7 nucleotides (0.5 %) from the 16S rRNA ref-
erence sequence (AB253726) generated for the original
description of B. barnesiae [1]. Such a difference is not
unusual when comparing original sequences from the
time organisms were initially described with sequences
of type strain genomes sequenced in the KMG project
[9], a problem that was only partially resolved in the
sequencing orphan species initiative (SOS) [10]. A repre-
sentative 16S rRNA gene sequence of strain BL2" was com-
pared with GenBank using NCBI BLAST. The single most
frequent genus found was Bacteroides. The highest-scoring
environmental sequences (up to 99.8 % sequence identity),
including HQ784912 (‘gastrointestinal specimens clone
ELU0102-T240-S-NI_000093’), were all from a study on
gastrointestinal specimens linked to inflammatory bowel
diseases phenotype in human ileum [11] and indicate that
close relatives of strain BL2" and representatives of B.
barnesiae are also relevant to human health. Fig. 1 shows
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Fig. 1 Phylogenetic tree based on the 165 rRNA gene sequences showing the relationship of Bacteroides barnesiae strain BL2" among the genus
Bacteroides . The tree was constructed by the neighbor-joining method. Numbers at nodes indicate the percentage bootstrap values of 1000
replicates. Bars, 0.01 substitutions per nucleotide position. Accession numbers are given for each strain

the phylogenetic position of B. barnesiae in a 16S rRNA
gene sequence-based tree.

The cells of B. barnesiae are pleomorphic rods
(0.5-1.4 % 0.8-10.6 pum) (Fig. 2). The cells are usually
arranged singly or in pairs [1]. B. barnesiae is a Gram-
negative, non-sporeforming bacterium (Table 1) that is de-
scribed as non-motile, with only seven genes associated
with motility having been found in the genome (see
below). The optimum temperature for growth of strain
BL2" is 37 °C. B. barnesiae is a strictly anaerobic

Fig. 2 Light microscope image of strain BL2"

chemoorganotroph and is able to ferment glucose,
lactose, sucrose, maltose, salicin, xylose, cellobiose, man-
nose and raffinose [1]. The organism hydrolyzes esculin but
does not liquefy gelatin, and neither reduces nitrate nor
produces indole from tryptophan [1]. B. barnesiae does
not utilize mannitol, arabinose, glycerol, melezitose, sorb-
itol, rhamnose or trehalose [1]. Growth is possible in the
presence of bile [1]. Major fermentation products from
broth (1 % peptone, 1 % yeast extract, and 1 % glucose
each (w/v)) are acetic acid and succinic acid, whereas iso-
valeric acid is produced in small amounts [1]. B. barnesiae
shows activity for a-galactosidase, f-galactosidase, a-
glucosidase, P-glucosidase, a-arabinosidase, N-acetyl-
B-glucosaminidase, a-fucosidase, alkaline phosphatase,
leucyl glycine arylamidase, alanine arylamidase and gluta-
myl glutamic acid arylamidase but no activity urease,
catalase, arginine dihydrolase, [3-galactosidase 6-phosphate,
B-glucuronidase, glutamic acid decarboxylase and arginine,
proline, phenylalanine, leucine, pyroglutamic acid, tyrosine,
glycine, histidine and serine arylamidase [1].

B. barnesiae strain BL2" contains menaquinones MK-10
(58 %) and MK-11 (34 %) as principal respiratory quinones,
small amounts of MK-8, MK-9 and MK-12 (2 % each) are
found as minor components [1]. The major fatty acids
found were anteiso-Cys, (32 %), iso-Cy5,0 (15 %), 3-hydroxy
Ci6.0 (10 %) and Ci6,0 (10 %). Fatty acids Cig0 (4 %),
Cis0 (2 %), Cig109¢ (4 %), Cig.00w6,9¢ (2 %) and 3-
hydroxy iso-Cl;.,, (7 %) were found in minor amounts
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Table 1 Classification and general features of Bacteroides
barnesiae strain BL2" in accordance with the MIGS
recommendations [33] published by the Genome Standards
Consortium [34] and the NamesforLife database [35]

MIGS ID  Property Term Evidence code
Current classification  Domain Bacteria TAS [36]
Phylum Bacteroidetes  TAS [37, 38]
Class Bacteroidia TAS [38, 39]
Order Bacteroidales ~ TAS [38, 40]

Family Bacteroidaceae TAS [41, 42]

Genus Bacteroides TAS [42, 43]
Species Bacteroides  TAS [1]
barnesiae
Strain BL2" TAS [1]
Gram stain Negative TAS [1]
Cell shape Pleomorphic rods TAS [1]
Motility Non-motile TAS [1]
Sporulation Non-sporulating TAS [1]
Temperature range Mesophilic TAS [1]
Optimum temperature 37 °C TAS [1]
pH range; Optimum  Not reported
Carbon source Mono- and TAS [1]
polysaccharides
Energy metabolism ~ Chemoorganotroph  TAS [1]
MIGS-6 Habitat Chicken TAS [1]
MIGS-63  Salinity Not reported
MIGS-22  Oxygen requirement  Strictly anaerobic TAS [1]
MIGS-15  Biotic relationship Free-living TAS [1]
MIGS-14  Pathogenicity None NAS
Biosafety level 1 NAS
MIGS-23  Isolation Chicken caecum TAS [1]
MIGS-4  Geographic location  Japan TAS [1]
MIGS-5  Sample collection time Not reported
MIGS-4.1  Latitude Not reported
MIGS-42  Longitude Not reported
MIGS-4.3  Depth Not reported
MIGS-44  Altitude Not reported

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in
the literature); NAS: Non-traceable Author Statement (i.e., not directly observed
for the living, isolated sample, but based on a generally accepted property for
the species, or anecdotal evidence). These evidence codes are from the Gene
Ontology project [44]

[1]. Chemotaxonomic features are in line with known
features from other representatives of the genus [1].

Genome sequencing information

Genome project history

The organism was selected for sequencing on the basis
of its phylogenetic position [12—14]. Sequencing of B.
barnesiae strain BL2" is part of Genomic Encyclopedia
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of Type Strains, Phase I: the one thousand microbial
genomes project [9] which aims not only to increase
the sequencing coverage of key reference microbial ge-
nomes [15], but also to generate a large genomic basis
for the discovery of genes encoding novel enzymes
[16]. The genome project is deposited in the Genomes
OnLine Database [17] and the permanent draft genome
sequence is deposited in GenBank. Sequencing, finishing
and annotation were performed by the DOE Joint Gen-
ome Institute using state of the art sequencing technology
[18]. A summary of the project information is shown in
Table 2.

Growth conditions and genomic DNA preparation

B. barnesiae strain BL2", DSM 18169, was grown anaer-
obically in DSMZ medium 429 (Columbia Blood Agar)
at 37 °C [19]. DNA was isolated from 0.5-1 g of cell paste
using JetFlex genomic DNA purification (GENOMED)
following the standard protocol as recommended by
the manufacturer with and additional protease K (50 pl;
21 mg/ml) digest for 60 min. at 58 °C followed by addition
of 200 pl Protein Precipitation Buffer after protein precipi-
tation and overnight incubation on ice. DNA is available
through the DNA Bank Network [20].

Genome sequencing and assembly

The permanent draft genome of B. barnesiae strain BL2"
was generated using Illumina technology [18, 21]. An
[lumina Standard shotgun library was constructed and
sequenced using the Illumina HiSeq 2000 platform
which generated 11,109,700 reads totaling 1,666.5 Mb.
All general aspects of library construction and sequen-
cing performed at the DOE-JGI can be found at [22].
All raw Illumina sequence data was passed through DUK,

Table 2 Genome sequencing project information

MIGS ID Property Term
MIGS-31 Finishing quality Level 2: High-Quality Draft
MIGS-28  Libraries used [llumina Std. shotgun library
MIGS-29  Sequencing platforms  Illumina HiSeq 2000
MIGS-31.2  Fold coverage 122.7 %
MIGS-30 Assemblers Velvet v. 1.1.04; ALLPATHS v. 141043
MIGS-32 Gene calling method  Prodigal

Locus Tag c510

Genbank ID ARGC00000000

Genbank Date of 16-SEP-2013

Release

GOLD ID Gi11191

BIOPROJECT PRIN174979
MIGS-13  Source Material DSM 18169

|dentifier

Project relevance Tree of Life, GEBA-KMG
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a filtering program developed at JGI, which removes
known Illumina sequencing and library preparation arti-
facts [23]. Following steps were then performed for assem-
bly: (1) filtered Illumina reads were assembled using
Velvet [24], (2) 1-3 kb simulated paired end reads were
created from Velvet Contigs using wgsim [25], (3) [llumina
reads were assembled with simulated read pairs using
Allpaths—-LG (version r41043) [26]. Parameters for as-
sembly steps were: 1) Velvet (velveth: 63 —shortPaired
and velvetg: —very clean yes —export- Filtered yes —min
contig lgth 500 —scaffolding no —cov cutoff 10) 2) wgsim
(-e 0 -1100 -2 100 —r 0 —R 0 —=X 0) 3) Allpaths-LG (Pre-
pareAllpathsInputs: PHRED 64=1 PLOIDY=1 FRAG
COVERAGE =125 JUMP COVERAGE =25 LONG JUMP
COV =50, RunAllpathsLG: THREADS=8 RUN =std
shredpairs TARGETS = standard VAPI WARN ONLY =
True OVERWRITE =True). The final draft assembly
contained 47 contigs in 43 scaffolds. The total size of
the genome is 3.6 Mb and the final assembly is based
on 443.6 Mb of Illumina data, which provides an average
122.7 x coverage of the genome.

Genome annotation

Genes were identified using Prodigal [27] as part of the
DOE-JGI genome annotation pipeline [28, 29], following
by a round of manual curation using the JGI GenePRIMP
pipeline [30]. The predicted CDSs were translated and
used to search the National Center for Biotechnology
Information non-redundant database, UniProt, TIGR-Fam,
Pfam, PRIAM, KEGG, COG, and InterPro database. These
data sources were combined to assert a product description
for each predicted protein. Additional gene prediction
analysis and functional annotation was performed within
the Integrated Microbial Genomes-Expert Review plat-
form [31].

Table 3 Genome statistics

Attribute Value % of total
Genome size (bp) 3,621,509 100.00
DNA coding region (bp) 3,241,163 89.50
DNA G+ C content (bp) 1,696,150 46.84
DNA scaffolds 43

Total genes 3,156 100.00
Protein coding genes 3,059 96.93
RNA genes 97 3.07
Genes with function prediction 2,263 71.70
Genes assigned to COGs 1,668 52.85
Genes with Pfam domains 2,431 77.03
Genes with signal peptides 445 14.10
Genes with transmembrane helices 71 2253

CRISPR repeats 7
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Genome properties

The assembly of the draft genome sequence consists of
43 scaffolds amounting to 3,621,509 bp, and the G+ C
content is 46.8 % (Table 3). Of the 3,156 genes predicted,
3,059 were protein-coding genes, and 97 RNAs. The
majority of the protein-coding genes (71.7 %) were
assigned a putative function while the remaining ones
were annotated as hypothetical proteins. The distribution
of genes into COGs functional categories is presented in
Table 4.

Insights from the genome sequence

B. barnesiae strain BL2", Bacteroides salanitronis strain
BL78" and Bacteroides gallinarum strain C35" were iso-
lated from the cecum of the same healthy chicken [1].

Table 4 Number of genes associated with the general COG
functional categories

Code Value % Description
age

J 144 8.03 Translation, ribosomal structure and
biogenesis

A 0 0.00 RNA processing and modification

K 107 596 Transcription

L 126 7.02 Replication, recombination and repair

B 0 0.00 Chromatin structure and dynamics

D 20 1.11 Cell cycle control, cell division,
chromosome partitioning

Y 0 0.00 Nuclear structure

\Y 62 346 Defense mechanisms

T 60 334 Signal transduction mechanisms

M 142 7.72 Cell wall/membrane/envelope biogenesis

N 4 0.22 Cell motility

z 0 0.00 Cytoskeleton

W 0 0.00 Extracellular structures

U 47 262 Intracellular trafficking, secretion, and
vesicular transport

(0] 60 334 Posttranslational modification, protein
turnover, chaperones

C 103 574 Energy production and conversion

G 140 730 Carbohydrate transport and metabolism

E 138 7.69 Amino acid transport and metabolism

F 64 357 Nucleotide transport and metabolism

H 90 502 Coenzyme transport and metabolism

| 48 2.68 Lipid transport and metabolism

p 97 541 Inorganic ion transport and metabolism

Q 19 1.06 Secondary metabolites biosynthesis,
transport and catabolism

R 219 12.21 General function prediction only

S 104 5.80 Function unknown

- 1,488 47.15 Not in COGs
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The GGDC (Genome-to-Genome Distance Calculator)
web server (GGDC 2.0) [32] was used for the estimation
of the overall similarity between the three Bacteroides
genomes. The comparison of B. barnesiae with B. sala-
nitronis and B. gallinarum revealed that 11.1 % and
5.2 %, respectively, of the average of the genome lengths
are covered with HSPs (high-scoring segment pairs).
The identity within the HSPs was 83.6 % and 84.6 %, re-
spectively, whereas the identity over the whole genome
was 9.3 % and 4.4 %, respectively. The comparison of
B. gallinarum with B. salanitronis revealed that 5.4 % of
the genome is covered with HSPs, with an identity
within in the HSPs of 84.1 % and an identity over the
whole genome of 4.6 %. According to these calculations
the similarity between B. barnesiae and B. salanitronis is
higher than the similarity between B. barnesiae and B.
gallinarum as well as the similarity between B. galli-
narum and B. salanitronis.

The genome size of B. barnesiae (3.6 Mb) is signifi-
cantly smaller than those of B. salanitronis (4.3 Mb) and
B. gallinarum (4.9 Mb).

Conclusions

B. barnesiae strain BL2" genome consists of a single
chromosome of 3.6 Mb predicted to encode 3,156 genes.
Strain BL2" has a relatively small genome in comparison
to other sequenced Bacteroides species isolated from the
same chicken (4.3-4.9 Mb). These differences of genome
size may be the results of adaptation in this niche. Further
study will be necessary for elucidation of this idea.
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