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ABSTRACT OF THE THESIS 

 

Performance prediction of PEM fuel cell using artificial neural network machine learning 

by 

Pengjie Tian 

Master of Mechanical Engineering 

University of California, Irvine, 2020 

Professor Yun Wang, Chair 

 

Proton exchange membrane (PEM) fuel cell is a promising candidate as a renewable 

energy source in the future. It is an electrochemical device that directly convert chemical energy 

in hydrogen fuel to electric energy with water as the only byproduct. In operation, multiple 

physical processes occur, including electrochemical reaction, heat and mass transfer, liquid water 

formation and vaporization, which govern fuel cell operation and performance. Various physical 

models have been developed, which couple the multi-physics with electrochemical reaction 

kinetics, to predict fuel cell performance for design and control purpose. Machine learning and 

data-driven approach have received a growing attention in recent years. This study investigates 

the application of artificial neural network (ANN) machine learning to predict PEM fuel cell 

performance.  A novel four-layered backpropagation ANN is developed to achieve reasonable 

accurate prediction of fuel cell performance using the large amount (> 1,500) of performance 

data (I-V curves) obtained from a validated three-dimensional (3D) physical model for various 

operating conditions, including temperature, anode and cathode relative humidity. Various ANN 

parameters, including the number of neurons in each hidden layer, the sizes of training data, the 

activation functions, selection of training data set, are investigated to assess their impacts on 

prediction accuracy.  Simulations show 20 neurons in each hidden layer fit best for our database. 
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The hyperbolic tangent function as the ANN’s activation function in hidden layer performs the 

best in terms of prediction accuracy because of its high gradient value and smooth gradient 

profile. For data set selection, randomly selected training data show a good ANN prediction. For 

selected datasets, the ANN shows capabilities of predicting the I-V curves using incomplete 

input data information and filtering out noise signals or outliers in the input data set. These 

results can provide a valuable guidance of using the ANN to help PEM fuel cell experiment in 

which data for training are limited in most case.
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Chapter 1: Introduction 
1.1 PEM fuel cell 
 

Seeking alternative automobile power source becomes an urgent topic in recent years as 

conventional internal combustion engine fossil fuel causing severe air pollution. Proton exchange 

membrane fuel cell (PEMFC) is an energy conversion device which convert chemical potential 

energy into electrical energy [1]. As alternative power source, PEMFC exhibits high efficiency, 

energy density, silent operation, reduction in pollution emission, low temperature operation, etc. 

[2] In recent years, PEMFC have been applied into many industrial fields, for example, fuel cell 

electric vehicles, forklift trucks, buses, small portable devices, etc. According to a fuel cell 

industry review report, a total of 39700 unit of PEMFC shipments is achieved in 2018, and 609.0 

megawatts electricity was generated by PEMFC in 2018 [3]. Toyota launched its first fuel cell 

vehicle, Mirai, in 2017, and achieved total of 4000 shipment so far. Over 30 gas stations are 

being constructed and operated across U.S and over 60 in Germany. [4] 

Main components for a typical PEMFC are membrane electrode assembly, gasket, 

bipolar plate (BPs) and current collective plates [1]. Figure 1 shows the components of a typical 

single PEM fuel cell. End plates provide robust mechanical support for the whole cell while 

uniformly distributing compressive pressure to all the components. What’s more, the 

compression stress allows a tighter contact between each component of a PEMFC so that reduce 

the contact resistance. [5] 
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Figure 1 Typical fuel cell components [6] 

Figure 2 A schematic of a PEM fuel cell component thickness, and physical processes [7] 
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Flow channels usually grooved in the BPs that provide pass way for reactant gases, which 

help with the uniform distribution of reactants to the reactive area. Parallel, serpentine, pin-type 

flow channels are conventional channel design in early research. In addition, the high thermal 

conductive property of base material allows them to remove heat efficiently so that keep fuel cell 

under a proper operating temperature. Bipolar plates also play an important role at the fuel cell 

stack level. Plates can separate each single cell while remaining the electrical connection in 

series configuration. [8] 

Figure 3 SEM images of catalyst layers: 20%Pt/C, I/C ratio of 0.5 (left) and 40%Pt/C, I/C ratio 

of 0.5 (center) and 0.33 (right). Each is measured at two different locations. [9] 

The membrane electrode assembly (MEA) can be considered as the “heart” of a PEMFC, 

which consists of proton exchange membrane, catalyst layer (CL), gas diffusion layer (GDL). It 

is the location where all the electrochemical reactions take place. Proton exchange membrane 

separates the anode hydrogen and cathode oxygen and it only permit hydrogen ions to pass 

through. Currently, the most prominent membrane, Nafion, was developed based on 
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perfluorosulfonic acid. Polytetrafluoroethylene (PTFE) serves as its backbone structure to 

provide mechanical strength, while sulfonic acid groups offer charge transport sites [1]. Platinum 

nanoparticles are dispersed on the high-surface area carbon support to form conventional catalyst 

layer [10]. Commonly, the porous Pt/C catalyst particles mixed with electrolyte solution, known 

as ionomer, facilitates the transport of reactant gas, discharge the product of water and provide 

path for electrical conduction [11]. Figure 3 shows SEM images of catalyst layers with different 

Pt/C mass percentage loading, CL thickness, and ionomer to carbon black ratio. GDL distribute 

the reactant gas to the whole reactive area and provide robust mechanical support to protect 

catalyst layer [12]. 

According to Figure 2 the electrolyte prevents direct reaction between fuels, hydrogen 

and oxygen (air), while it keeps the ability allowing proton (hydrogen ion:𝐻+) to travel through 

the proton exchange membrane. Hydrogen is introduced and ionized at the anode side, while one 

of the products, hydrogen ions, travel through the membrane and reach to cathode side of the 

PEMFC. Hydrogen ions reduce oxygen to form water at the cathode side. [13] 

                                                       𝐴𝑛𝑜𝑑𝑒:𝐻2 ⟶ 2𝐻+ + 2𝑒−                                                    (1) 

𝐶𝑎𝑡ℎ𝑜𝑑𝑒:
1

2
𝑂2 + 2𝐻+ + 2𝑒− ⟶ 𝐻2𝑂                                             (2) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙: 𝐻2 +
1

2
𝑂2 ⟶ 𝐻2𝑂                                                    (3) 

1.2 PEM fuel cell performance 
 

The performance of a PEM fuel cell is usually indicated by polarization (I-V) curve, 

which displays the voltage output for a given current density. Mainly three distinct regions 

consist a polarization curve, respectively, low current density region, moderate current density 

region, and high current density region. Figure 4 shows a typical I-V curve. At the initiation 

stage of a PEM fuel cell (low current region), the sharp voltage drop is mainly caused by the 
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activation loss. At moderate current density region, the fuel cell voltage exhibits a linearly 

decreasing behavior, which is resulted by the domination of ohmic loss. While, the voltage 

depart from a linear drop because of the more significant concentration loss occurs in high 

current density region. These three major losses will be discussed in detail in latter chapter. 

Figure 4 A typical PEM fuel cell polarization curve. [14] 

 

The performance of a PEMFC can be affected by various factors. Operating condition 

including operating temperature, reactant inlet/out relative humidity, pressurization condition, 

reactant flow rates, can influence the voltage output value. In addition, materials used in a 

PEMFC such as the catalyst layer components (Pt/C wt%, I/C wt%), the type of Nafion, can 

affect the performance as well. In this study, we focus on the factor of operating condition. 
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1.3 Machine learning 
 

1.3.1 Introduction to machine learning 

 

Recently, applying machine learning technique on the study of PEM fuel cell 

performance has gained a lot attention. It provides a way for systems automatically learn and 

improve from the previous experience, large amount of data [15]. In other words, Machine 

learning algorithm allows computer to build a mathematical model automatically based on the 

training data. Machine learning algorithm has been implemented in many practical areas, 

including, web searching, spam filters, stock trading, etc. [16] Machine learning can be classified 

into three main types, supervised learning, unsupervised learning, reinforcement learning. 

Supervised learning is most popular type in PEM fuel cell research field. For a given input 

signal, if the training data contains the explicit correct output data, then it is in the supervised 

learning [17]. 

1.3.2 Artificial neural network 

 

Many researchers developed both analytical and numerical models for prediction of 

PEMFC performance in recent years. Wang et al developed a two-phase flow analytical model 

based on two-phase Darcy’s law and the 𝑀2 formalism. Analytical solutions of liquid water 

saturation and species concentration are obtained [18]. Zhang et al built a 3D multi-phase model 

of PEM fuel cell and validated the model using PEM fuel cell experimental data in terms of I-V 

curves and spatial variation of current density distribution from two different resources. His work 

showed a decreasing reaction rate from inlet to outlet for 100% RH operation and the peak local 

current shifts downstream for dry operation [19]. A three-dimensional agglomerate model for 

cathode catalyst model was built by Das et al. their numerical model successfully assesses the 
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activation polarization in which calculated the cathode activation overpotentials, membrane and 

solid phase current densities, investigated the oxygen transport process in cathode catalyst layer. 

[20] Those previous studies contributed significant progress in investigating PEMFC fuel cell 

performance under different operating conditions, exploring mechanism in thermal management, 

species transport, two-phase flow, etc. During a PEMFC operation, a large number of parameters 

need to be considered, because too many physicochemical reactions entangle together, which 

make it especially hard to evaluate the performance. What’s more, complicated numerical 

models trying to simulate all the inner reactions that require a lot computational power to solve 

those coupled differential equations. Further, two-phase phenomena, droplet dynamics and cold 

start are complex in PEM fuel cells [21] [22] [23] [24] [25] [26]. Though many models claim to 

consider the two-phase flow, it is challenging to fully consider their impacts due to two-phase 

instability, random surface heterogeneity and dynamics. 

Artificial neural network is a typical machine learning algorithm that simulates the 

biological systems composed of “neurons” [27]. Instead of taking every physicochemical 

parameter into account, the artificial neural network focus on several key parameters (weight 

values) to seek for estimate solutions for the model demonstrating performance. ANN shows 

ability to solve for problem with incomplete data set, incomplete information provided, and 

complex phenomena situations [28]. 

1.3.3 ANN study on PEM fuel cell 

 

Chavez-Ramirez et al, modeled a 5(𝑘𝑊) PEMFC stack with 7 inputs and 2 outputs, 

namely voltage output and cathode outlet temperature. Based on backpropagation (BP) learning 

algorithm, their ANN model successfully predicted voltage and cathode outlet temperature, with 

error percentage of 9.4%, and 5.6% respectively [29]. A two-layered backpropagation neural 
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network was built to predict a commercial PEMFC system’s (1.2 𝑘𝑊 𝑁𝑒𝑥𝑎𝑇𝑀) output voltage 

and current by Saengrung et al. The model learning speed and accuracy were evaluated by how 

many epochs is needed to reach designed error goal of 0.001. Their results show the two-layered 

BP neural network can smoothen the prediction of fuel cell voltage and current output, while the 

BP network with only one hidden can provide a good prediction as well. [30] A feedforward 

backpropagation neural network created by Bhagavatula et al perform a good prediction for the 

cell output voltage, and cell temperatures, humidification temperatures, 𝐻2/𝐴𝑖𝑟 flow rates and 

current density were used as inputs for their ANN. The simulation results indicated model 

improvements can be observed with the increasing number of neurons in each hidden layer. In 

addition, increasing the input parameters can significantly reduce the number of neurons required 

in each hidden layer, and improve the ANN model. They used trained ANN successfully 

predicted the performance of a fuel cell at higher temperature. [31] Lee et al trained their ANN 

model with data obtained from a 300 𝑐𝑚2 single cell in 𝐻2/𝐴𝑖𝑟 operation using Nafion 115 and 

Nafion 1135 membrane electrolytes. The architecture of their ANN is a two-layered feed forward 

backpropagation neural network with hyperbolic tanh function as activation and 30 neurons in 

each layer, while 10 independent input variables are given to train this ANN. The simulated 

results are compared with experimental data, which exhibit a good agreement with error 

percentage less than 1%. [32]  Seyhan produced a parametric study on the PEMFC with different 

wave amplitude, different flow rates and different cell operating temperature, and used those 

parameters as inputs for their ANN to predict the performance of a PEMFC with wavy 

serpentine and conventional serpentine flow channel. The linear regression model for their 

experimental data and predicted data shows a great agreement, with regression value R for both 

training and testing data equal 0.99975 and 0.99966 respectively [33]. For regression simulation, 



9 
 

Wang et al suggested that the ANN and SVM are most common algorithm for data-driven 

models, which perform better in small database in a range of 100 to 1000 data points [34]. 
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Chapter 2: Fuel cell performance and physics-based 

model 
 

PEM fuel cell performance is measured by the I-V curve or output voltages as a function of 

operating current density, which is determined by the transportation and electrochemical 

processes in operation. Physics-based models have been developed to describe the processes and 

predict fuel cell performance. 

2.1 Effects of operating condition on fuel cell performance 
 

2.1.1 Pressure 

 

According to Nernst equation, a PEMFC operated under a pressurized condition, a 

significant performance enhancement can be observed. For a PEMFC under a normal operating 

condition: the overall reaction: 𝐻2 +
1

2
𝑂2 ⟶ 𝐻2𝑂. Therefore, apply the overall reaction into 

Nernst equation: 

𝐸 = 𝐸0 −
𝑅𝑇

2𝐹
ln(

1

𝑃𝐻2∗𝑃𝑂2

1
2

)                                                           (4) 

where 𝐸0 is standard-state reversible voltage, 𝑅 is ideal gas constant, 𝑇 is operating temperature 

in (Kelvins), 𝐹 is Faraday’s constant, 𝑃 is partial pressure for hydrogen and oxygen. It is obvious 

that pressurizing the fuel cell which increase the reactant gas partial pressure can increase the 

reversible voltage. [12] Lu et al developed a 3D CFD model using ANSYS FLUENT for a single 

serpentine channel PEMFC. They discovered the apply back pressure can increase the relative 

humidity at the cathode channel result in an increasing of membrane water content. [35] 
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2.1.2 Temperature & relative humidity 

 

The relative humidity of reactant gas is depended on the fuel cell operating temperature. 

[36] 

𝑅𝐻(%) =
𝑃𝐻2𝑂

𝑃𝐻2𝑂
0 ∗ 100%                                                          (5) 

Where 𝑃𝐻2𝑂
0 is a function of temperature, which can be expressed as [36], 

𝑃𝐻2𝑂
0 = 6.02724 ∗ 10−3 + 4.38484 ∗ 10−4(𝑇 − 273.15) + 1.39844 ∗ 10−5(𝑇 − 273.15)2 +

2.71166 ∗ 10−7(𝑇 − 273.15)3 + 2.57731 ∗ 10−9(𝑇 − 273.15)4 + 2.82254 ∗

10−11(𝑇 − 273.15)5                                                                                                                     (6) 

According to Nernst equation, the increasing in temperature will reduce the reversible 

voltage. In addition, increasing in temperature can accelerate electrochemical reaction rate, bring 

down the activation energy needed for initializing fuel cell. Kim et al performed testing on a fuel 

cell stack of 10 𝑐𝑚2 active area and 10 cells to investigate the effects of humidity and 

temperature on performance of a PEMFC stack. As a result, the cathode reactant humidity has 

more influence on the overall performance. Increasing in cathode humidity can strongly increase 

the performance of PEMFC. At the stack level, they claimed the humidity has more influence 

than that of temperature. [37] On the contrary, introducing excessive water (high humidity) 

content may cause non-uniform temperature distribution on membrane, water flooding in 

cathode channel, thermal management issue, etc [18]. 

2.1.3 Gas flow rate 

 

Providing enough reactant gas is necessary to keep fuel cell operating under expected 

performance. Guveligoglu et al built an analytical model based on a new algorithm, which 
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explores the cell performance under various hydrogen/air flow rates and humidification level. 

The results showed the high hydrogen flow rates and low air flow rate at high humidification 

level can increase the overall performance for a PEMFC. High water concentration in membrane 

result in a high membrane conductivity, while high hydrogen flow rate can ensure enough 

reactant supply. [38] 

2.2 Physics-based model 
 

The real voltage output for a PEMFC can be obtained by firstly starting from the 

thermodynamic voltage, then subtracting three main voltage losses, respectively, activation loss, 

ohmic loss, and concentration loss. 

𝑉𝑟𝑒𝑎𝑙 = 𝐸𝑡ℎ𝑒𝑟𝑚𝑜 − 𝜂𝑎𝑐𝑡 − 𝜂𝑜ℎ𝑚𝑖𝑐 − 𝜂𝑐𝑜𝑛𝑐                                  (7) 

2.2.1 Electrical potential: 𝐸𝑡ℎ𝑒𝑟𝑚𝑜 

 

Gibbs free energy characterizes the work potential for a typical reaction. The Gibbs free 

energy is defined as: 

𝐺 = 𝐻 − 𝑇𝑆 or ∆𝑔 = ∆ℎ − 𝑇∆𝑠 (differential form and holding a constant temperature)    (8) 

The maximum electrical work that can be extract from a constant-temperature and constant-

pressure process is given by: 

𝑊𝑒𝑙𝑒𝑐 = −∆𝑔                                                              (9) 

Based on the equation above, the voltage (electrical potential) can be expressed by the electrical 

work that required to move a charge Q in a electrical potential field E, 

𝑊𝑒𝑙𝑒𝑐 = 𝐸𝑄 = 𝐸 ∗ (𝑛𝐹)                                                    (10) 
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Combine with equation 2.2 and 2.3, we can get 

∆𝑔 =  −𝑛𝐹𝐸 𝑜𝑟 𝐸 = −
∆𝑔

𝑛𝐹
                                                   (11) 

Thus, for a typical PEMFC reaction, 

𝐻2 +
1

2
𝑂2 ⟶ 𝐻2𝑂                                                        (12) 

 The reversible voltage generated under standard condition: 

𝐸0 = −
∆𝑔

𝑛𝐹
= 1.23 (𝑉)                                                    (13) 

Where, ∆𝑔 is standard-state free-energy change for the reaction, 𝐸0 is standard-state reversible 

voltage. 

However, in most cases, the PEMFCs commonly are operated under Non-standard-state 

conditions. In those cases, the Nernst equation is applied to predict the thermodynamic reversible 

cell voltage, in which the effects of temperature and operating pressure (species concentration) 

are considered, 

𝐸 = 𝐸0 −
𝑅𝑇

𝑛𝐹
ln(

1

𝑃𝐻2∗𝑃𝑂2

1
2

)                                                  (14) 

2.2.2 Activation Loss: 𝜂𝑎𝑐𝑡 

 

At low current density region, activation of reaction dominates at this stage. The 

activation loss (voltage loss) is labeled as the voltage loss due to overcome the activation barrier 

associated with the electrochemical reaction. [12] The equation, known as Butler-Volmer 

equation, is used to describe the relationship between current density and overpotential, 
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𝑗 = 𝑗0(𝑒
𝛼𝑛𝐹𝜂

𝑅𝑇 − 𝑒−
(1−𝛼)𝑛𝐹𝜂

𝑅𝑇 )                                                   (15) 

Where, 𝑗0 is exchange current density, 𝛼 is transfer coefficient, 𝜂 is activation potential. 

Basically, it states the current density grows in an exponential behavior with activation 

overpotential. If the electrochemical reaction with a higher current density, the fuel cell must 

experience a higher overpotential. 

 

Figure 5 Relationship between j and 𝜂 behaved as Butler-Volmer equation [12] 

Figure 5 shows plot of activation overpotential with current density at low current density level. 

With the simplification of Butler-Volmer equation, two distinct regions can be observed on this 

figure. At extremely low current density region (𝜂𝑎𝑐𝑡 < 15𝑚𝑉), the equation can be simplified 

into, 

𝑗 = 𝑗0 ∗
𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
                                                           (16) 
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A linear relationship between current density and activation overpotential can be 

observed in this region. At relatively high current density region (𝜂𝑎𝑐𝑡 > 50 − 100 𝑚𝑉), the 

second exponential term can be neglect from the original Butler-Volmer equation. Then it 

becomes, 

𝑗 = 𝑗0𝑒
𝛼𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇                                                              (17) 

Expressed in terms of 𝜂𝑎𝑐𝑡 , 

𝜂𝑎𝑐𝑡 = −
𝑅𝑇

𝛼𝑛𝐹
ln(𝑗0) +

𝑅𝑇

𝛼𝑛𝐹
ln (𝑗) or 𝜂𝑎𝑐𝑡 = 𝑎 + 𝑏 ∗ log(𝑗) (Tafel equation)             (18) 

For fuel cells, when under operation, large current density with high power output is 

desired. Therefore, 𝜂𝑎𝑐𝑡 = −
𝑅𝑇

𝛼𝑛𝐹
ln(𝑗0) +

𝑅𝑇

𝛼𝑛𝐹
ln (𝑗) is considered in computing the real fuel cell 

voltage output. 

2.2.3 Ohmic loss 

 

Charge transport process involves in PEMFC operation. Electrons and ions are two main 

species been transported in the PEMFC reaction. In actual situation, because ions are more 

difficult to be transported than that of electrons, therefore, the resistance of electron charge 

transport usually dominates the ohmic resistance. 

Equation for ohmic loss: 

𝑅 =
𝐿

𝐴𝜎
                                                                  (19) 

Where L is conductor length, A is cross-section area, 𝜎 is conductive resistivity. [39] 

𝜂𝑜ℎ𝑚𝑖𝑐 = 𝑖 ∗ 𝑅𝑜ℎ𝑚𝑖𝑐 = 𝑖 ∗ (𝑅𝑒𝑙𝑒𝑐 + 𝑅𝑖𝑜𝑛 + 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡)                           (20) 
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When research group investigate this issue, a resistance term named area-specific 

resistance (ASR) is commonly introduced to normalize the effect of ohmic resistance with area. 

A simplified expression for ohmic loss can be written as, 

𝜂𝑜ℎ𝑚𝑖𝑐 = 𝑗 ∗ (𝐴𝑆𝑅𝑜ℎ𝑚𝑖𝑐)                                                  (21) 

Where ASR is area-specific resistance, 𝑗 is operating current density. 

According to ohmic loss equation, it can be observed a linearly relationship between 

ohmic loss and current density. In order to increase performance of PEMFC, many researchers 

investigated possible ways to bring down area-specific resistance in many aspects, such as 

reducing electrolyte thickness, reducing contact resistance by applying various compression 

stress. 

2.2.4 Concentration loss 

 

Species concentration influence performance of a PEMFC in two ways. Firstly, according 

to Nernst equation, the reactant and product concentration on the active area affect the reversible 

voltage output. Secondly, species concentration can affect the reaction rate as well. [12] 

For the Nernst thermodynamic reversible voltage output, it is determined by the species 

concentration at reactive area not the bulk concentration at inlets. The reactant concentration 

depletion at catalyst layer many cause a voltage loss, 𝜂𝑐𝑜𝑛𝑐,𝑁𝑒𝑟𝑛𝑠𝑡. 

𝜂𝑐𝑜𝑛𝑐,𝑁𝑒𝑟𝑛𝑠𝑡 =
𝑅𝑇

𝑛𝐹
ln (

𝑗𝐿

𝑗𝐿−𝑗
)                                               (22) 

Where, 𝑗𝐿 is the limiting current characterize the condition when reactant concentration at 

catalyst layer is depleted to zero, 𝑐𝑅,𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 = 0. From equation (22), it can be observed, as 
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current density approaches the limiting current density, the concentration loss will increase 

significantly. 

The electrochemical reaction rate is affected by species concentration as well. Starting 

from Butler-Volmer (BV) equation, as we concentrated at high current density region, the second 

part of BV equation can be dropped out, which becomes to, 

𝑗 = 𝑗0
0(

𝑐𝑅

𝑐𝑅
0 𝑒

𝛼𝑛𝐹𝜂

𝑅𝑇 )                                                             (23) 

Here, the ratio between catalyst layer reactant concentration and bulk reactant concentration: 
𝑐𝑅

𝑐𝑅
0 

need to be considered. In terms of overpotential, 

𝜂𝑐𝑜𝑛𝑐 =
𝑅𝑇

𝛼𝑛𝐹
ln (

𝑗𝑐𝑅
0

𝑗0
0𝑐𝑅

)                                                        (24) 

Substitute the term 
𝑐𝑅
0

𝑐𝑅
=

𝑗𝐿

𝑗𝐿−𝑗
. Eventually, we can get, 

𝜂𝑐𝑜𝑛𝑐,𝐵𝑉 =
𝑅𝑇

𝛼𝑛𝐹 
ln (

𝑗𝐿

𝑗𝐿−𝑗
)                                                      (25) 

Combining two part of concentration loss together, 

𝜂𝑐𝑜𝑛𝑐 = (
𝑅𝑇

𝑛𝐹
) (1 +

1

𝛼
) ln (

𝑗𝐿

𝑗𝐿−𝑗
)                                                (26) 

The real fuel cell voltage output can be obtained by putting all the pats previous 

discussed together. A typical PEMFC I-V curve as shown in Figure 4 A typical PEM fuel cell 

polarization curve. , at the initiation stage (low current density region), the curve shows a 

nonlinear behavior similar as BV equation. While, at medium current density region, the ohmic 

loss (loss due to charge transport), contributes most overpotential to the overall voltage 

decreasing, and a linear relationship between current density and voltage output can be seen. The 
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concentration loss dominant at high current density region, mainly, because of the depletion of 

reactant concentration at catalyst layer. 

For more details about the physics-based model, it can be found in the Ref [12]. 

 

Figure 6 3D fuel cell computational domain for database construction [19] 

 

2.3 Physics-based model prediction 

 

To construct a database for ANN, a 3D multi-physics model of PEM fuel cells was 

adopted. The 3D fuel cell computational domain is shown in Figure 6, which contains the BP 

channel, GDL, catalyst layer and membrane. The governing equations are given in Table 1 and 

details regarding the catalyst layer physics can be found in ref [40]. The model was also 

validated in detail and thus is reliable to generate the database for ANN. For example, Wang et al 

investigated the through-plane water profiles with spatially varying properties of gas diffusion 

layers and their multi-dimensional two-phase model of PEM fuel cell was validated by their 
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experimental data [41]. Figure 7 shows the model predicted 1-D liquid water distribution profile 

which is very close to the experimental data probed by X-ray imaging. 

 

Figure 7 The 1-D prediction of liquid water profile across the anode and cathode GDLs, and 

comparison with the X-ray imaging data [41] 

Figure 8 shows their results of 2-D model prediction based on a uniform GDL property in 

comparison with neutron imaging data. It can be observed that the model prediction agrees the 

experimental data well. In addition, the prediction results of a smoothed model by applying 

Gaussian smoothing technique and a model considering spatially varying GDL property are 

plotted in Figure 8 as well. 
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Figure 8 (a) Comparison with the high-resolution neutron imaging data, 2-D model prediction 

(with/without smoothing) using a uniform GDL property, and 2-D model prediction using a 

spatially varying GDL property (b) The varying GDL property in the present study. [41] 

 

 

 

 

 

 



21 
 

Table 1 The governing equations of multi-physics fuel cell model 

Continuity equation: 
𝜀
𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑢⃗ ) = 𝑆𝑚 

(27) 

Momentum 

conservation: 

1

𝜀
[
𝜕𝑢⃗ 

𝜕𝑡
+

1

𝜀
𝛻 ⋅ (𝑢⃗ 𝑢⃗ )] = −𝛻(

𝑝

𝜌
) + 𝛻 ⋅ 𝜏 + 𝑆𝑢 

(28) 

Energy conservation: 𝜕𝜌̄𝑐̄𝑝𝑇

𝜕𝑡
+ 𝛻 ⋅ (𝛾𝑇𝜌𝑐𝑝𝑢⃗ 𝑇) = 𝛻 ⋅ (𝑘𝑒𝑓𝑓𝛻𝑇) + 𝑆𝑇 

(29) 

Species conservation 

(𝐻2𝑂,𝐻2, 𝑂2) 

𝜀𝑒𝑓𝑓
𝜕𝐶𝑘

𝜕𝑡
+ 𝛻 ⋅ (𝛾𝑐𝑢⃗ )

= 𝛻 ⋅ (𝐷𝑘,𝑒𝑓𝑓𝛻𝐶𝑘) − 𝛻 ⋅ [(
𝑚𝑓𝑙

𝑘

𝑀𝑘
−

𝐶𝑔
𝑘

𝜌𝑔
)𝑗 𝑙] + 𝑆𝑘 

(30) 

Charge conservation 

(electrons): 

0 = 𝛻 ⋅ (𝜎𝑒𝑓𝑓𝛻𝛷𝑠) − 𝑆𝜑 (31) 

Charge conservation 

(protons) 

0 = 𝛻 ⋅ (𝐾𝑒𝑓𝑓𝛻𝛷𝑒) + 𝑆𝜑 (32) 

Note: Detail regarding the equations and parameters can be found in ref [42] 

 

In addition, other physics-based fuel cell models have been developed in the literature [43] [44] 

[45]. Afshari et al studied the performance of a PEM fuel cell with three different cathode 

channel design, namely, two parallel channel design (model A), locally restricted flow channels 

(model B), and metal foam (model C). They applied most basic mathematical models of several 

conservation laws, including mass, momentum, species, electrical charge and energy [46]. The 

numerical results obtained by their mathematical model were validated by the experimental data 

provided from Ticianelli et al [47]. Figure 9 is their polarization curve for different channel 

design, which is plotted based on their numerical results. It clearly shows the effects of reactant 
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flow rate, caused by different channel design, on the PEM fuel cell performance. The metal foam 

design shows best performance especially in high current density region [46]. 

 

Figure 9 Polarization curve for different channel design [46] 
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Chapter 3: ANN method 
 

3.1 Machine learning technique 
 

The artificial 

neural network shows 

great ability to handle 

problems with 

incomplete data & 

information, and it is 

also able to solve 

complex multiple 

phenomena involved 

problems in an intuitive 

way. In this paper, a 

standard feed forward 

backpropagation neural 

network was developed 

to capture the PEMFC 

I-V curve behavior. 

Theoretically, the neural 

network using gradient descent algorithm to minimize the cost function, and a cost function is an 

assessment of the accuracy between predicted value and actual value. As shown in Figure 10, the 

training & validation data are fed into neural network. In the first iteration, the output can error 

  

Figure 10 Flow chart for backpropagation and ANN algorithm 
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can be calculated based on the beginning weight and bias values. After all the validation data 

have been checked, the ANN starts the following iteration. The same processes are performed 

until the epoch reaches the designated maximum value.  Via gradient descent algorithm, the 

weights and bias values are continuously updated to find the global minimum of the error value. 

3.1.1 The architecture of neural networks 

 

Figure 11 shows a typical multilayered neural network configuration. The leftmost layer 

is called input layer, and the neurons in this layer are known as input neurons. The rightmost 

layer is named output layer where the prediction values are output from this layer. Last, the 

layers located in between those two are called hidden layers. Specifically, Figure 11indicates this 

typical neural network has two hidden layers. Commonly, those neural networks with multiple 

layers are named as multilayer perceptrons (MLPs), even if the neurons in the hidden layers are 

sigmoid neurons (not perceptrons). [48] 

Figure 11 A typical architecture of a MLPs [48] 
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3.1.2 A type of neuron: sigmoid neuron 

 

The ANN model predicts PEMFC current density which requires neurons inside hidden 

layer have ability that contain continuous values. Therefore, the concept of sigmoid neuron needs 

to be introduced in this regression model, because a simple perceptron can only contain value 

either 1 or 0. A sigmoid neuron have inputs 𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛, and an overall bias 𝑏. The output for 

a sigmoid neuron: 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝜎(Σ𝑗
𝑛𝑤𝑗𝑥𝑗 + 𝑏) = 𝜎(𝑧) =

1

1+exp (−Σ𝑗
𝑛𝑥𝑗−𝑏)

                           (33) 

Where 𝜎(𝑧) is sigmoid function, 

𝜎 =
1

1+𝑒−𝑧                                                                (34) 

According to the equation (34), as 𝑧 ≡ 𝑤 ∗ 𝑥 + 𝑏 approaches positive infinite, the 𝜎(𝑧) ≈

1. When 𝑧 is a large negative value, then we get the output 𝜎(𝑧) ≈ −1. Sigmoid function is a 

smoothed version of a step function which results in the sigmoid neuron obtaining the ability to 

hold values between 0 and 1. [48] 

 

Figure 12 Typical sigmoid neuron 
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(a)                                                                            (b) 

Figure 13 (a) Plot of sigmoid function, (b) Plot of a step function [48] 

Sigmoid neuron is just an example of various kinds of neurons, and the name sigmoid 

neuron is just because this kind of neurons select sigmoid as activation function. However, to 

build and optimize the neural network, the selection of activation functions is one of important 

factors.  

3.1.3 Activation function 

 

The selection of activation function is a crucial step when building a ANN. They 

determine the output type, training efficiency, and converging speed of an ANN. Activation 

functions are attached to each neuron in ANN, they determine whether to activate the related 

neuron or not by judging the neuron input’s relevance with the model prediction. [49] 

There are several types of activation functions, and they can be classified into linear and 

nonlinear types. For linear activation function, the simple linear activation function is often used 

at the output layer to get a real output value, which serves as a scaling function in the ANN. 

However, it cannot be used as activation functions for hidden layers when applying 
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backpropagation algorithm, because this function has constant gradient. The classical nonlinear 

activation function that applied in early development of ANN are sign, sigmoid and hyperbolic 

tanh function. The sigmoid function can hold values located in (0,1), which gives its ability to 

solve prediction problems with outputs can be interpreted as probabilities. Hyperbolic tanh 

function has the similar properties as that of sigmoid functions, however, tanh function can re-

scale the output value from -1 to 1. Therefore, tanh function is preferred when the outputs 

contain both positive and negative values. [50] In recent years, Rectified Linear Unit (ReLu) 

function has gained a lot attention, because of its computational efficiency and ease in training 

neural networks. Table 2 lists the most commonly used activation in ANN applications. 

Table 2 Characteristics for common activation functions 
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(a)                                                                        (b) 

 

(c)                                                                        (d) 

Figure 14 (a) Simple linear function (b) Logistic sigmoid function (c) Hyperbolic tangent 

function (d) Rectified Linear Units (ReLu) [50] 

 

3.1.4 Cost function 

 

A cost function is an assessment that measures how well the predicted result fit for its 

corresponding original result. When the value of cost function approaches to zero, the model 

successfully found proper weight and bias values which provide a prediction output very close to 

its actual value. A typical cost function is called mean squared error (MSE) function: 
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𝐶(𝑤, 𝑏) =
1

2𝑛
Σ‖𝑦(𝑥) − 𝑎𝐿(𝑥)‖2                                           (35) 

Where 𝑤 and b denotes the weight values and bias namely, n is the total number of training data, 

a is the predicted output from 𝐿 − 𝑡ℎ layer (output layer) of an ANN. The primary goal for 

training a neural network is to minimize the cost as a function of weight and bias values. 

Therefore, the best weight and bias values can be found out to describe the problem intuitively.  

3.1.5 Gradient descent 

 

The algorithm named gradient descent is usually applied to find the minimum of cost 

function. When adjusting weight values w and bias b, a small change of cost function can be 

expressed as  

Δ𝐶(𝑤, 𝑏) ≈
𝜕𝐶

𝜕𝑤
∆𝑤 +

𝜕𝐶

𝜕𝑏
∆𝑏                                                 (36) 

We can denote the gradient vector: ∇𝐶 of cost function, and define ∆𝑣 

∇𝐶 = (
𝜕𝐶

𝜕𝑤
,
𝜕𝐶

𝜕𝑏
) , ∆𝑣 ≡ (∆𝑤, ∆𝑏)                                             (37) 

Then equation (36) can be written as: 

∆𝐶(𝑤, 𝑏) ≈ ∇𝐶 ∗ ∆𝑣T                                                    (38) 

In order to guarantee cost function 𝐶(𝑤, 𝑏) will always decrease, we need to keep ∆𝐶(𝑤, 𝑏) 

always as a negative value. Then, we can particularly choose: 

∆𝑣 = −𝜂∇𝐶                                                              (39) 

Eventually, the change in cost function: ∆𝐶(𝑤, 𝑏) becomes, 

∆𝐶 =  −𝜂(∇C)2 < 0,𝑤ℎ𝑒𝑟𝑒 𝜂 (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒            (40) 
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This illustrates that the value of cost function always decreases, with the changing of weight and 

bias values. Via this process, we can find the best weights and bias values that describes the 

model by iterating this process repeatedly. In each iteration, the change of weight and bias values 

can be written as [48], 

(𝑤′, 𝑏′) = (𝑤, 𝑏) − 𝜂∇𝐶                                                 (41) 

3.1.6 Back propagation algorithm 

 

The back propagation algorithm provide a tool that tracks the error 𝛿𝑗
𝑙 for every layer and 

then builds connection between error and the gradient of the cost function with respect to weight 

values and biases, respectively, 
𝜕𝐶

𝜕𝑤𝑗
𝑙 and 

𝜕𝐶

𝜕𝑏𝑗
𝑙 . The error for 𝑗 − 𝑡ℎ neuron in 𝑙 − 𝑡ℎ layer is 

defined as [48]: 

𝛿𝑗
𝑙 ≡

𝜕𝐶

𝜕𝑧𝑗
𝑙                                                                  (42) 

Starting from notations, as shown in Figure 15, the activation 𝑎𝑗
𝑙 is influenced by all the 

weight values and biases in previous layer, (𝑙 − 1) − 𝑡ℎ layer. Thus, the activation 𝑎𝑗
𝑙 of 𝑗 − 𝑡ℎ 

neuron in 𝑙 − 𝑡ℎ layer can be expressed as [48]: 

𝑎𝑗
𝑙 = 𝜎 ∗ (Σ𝑘𝑤𝑗𝑘

𝑙 ∗ 𝑎𝑘
𝑙−1 − 𝑏𝑗

𝑙) = 𝜎 ∗ (𝑧𝑗
𝑙)                                     (43) 

For simplicity, the equation (43) can be written in a matrix form: 

𝑎𝑙 = 𝜎 ∗ (𝑤𝑙𝑎𝑙−1 − 𝑏𝑙) = 𝜎 ∗ (𝑧𝑙)                                         (44) 

Where, the 𝑤𝑙 is a [𝐽 ∗ 𝐾] weight matrix which contains all the weight values for 𝑙 − 𝑡ℎ layer, 

𝑎𝑙−1 is a [𝐾 ∗ 1] activation matrix for 𝑙 − 𝑡ℎ layer, and 𝑏𝑙 is a [𝐽 ∗ 1] bias matrix. 



31 
 

From simplified equation (44), it can be observed that the 𝑙 − 𝑡ℎ layer activation 𝑎𝑙 is the 

activation at (𝑙 − 1) − 𝑡ℎ layer 𝑎𝑙−1 times the weight matrix for 𝑙 − 𝑡ℎ layer, then minus the bias 

matrix for 𝑙 − 𝑡ℎ layer, 𝑏𝑙. 

 

Figure 15 Schematic of a typical hidden layer 

As stated previously, the back propagation monitoring the error in each layer. To 

illustrate the progress that the error is propagated backward from output layer to input layer, 

there are several remarkable equations need to be understood. 

The error in 𝑙 − 𝑡ℎ layer can be expressed as an equation of error in (𝑙 + 1) − 𝑡ℎ layer. 



32 
 

𝛿𝑙 = [𝑤𝑙+1]𝑇 ∘ 𝛿𝑙+1 ∗ 𝜎′(𝑧𝑙)                                                  (45) 

Here, the symbol ∘ is the Hadamard product between two matrices. From the equation, the error 

in (𝑙 + 1) − 𝑡ℎ layer 𝛿𝑙+1 can be propagated backward to find out the error in 𝑙 − 𝑡ℎ layer, 𝛿𝑙. 

Applying chain rule on equation (42) and equation (44), the error in the output layer 𝐿 − 𝑡ℎ layer 

can be expressed as: 

𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑧𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝐿 ∗ 𝜎′(𝑧𝐿)                                                   (46) 

In matrix form, 

𝛿𝐿 = ∇𝐶 ∘ 𝜎′(𝑧𝐿)                                                        (47) 

Generally, starting from output layer, we can compute error for any layer by combining 

equation (46) and equation (47). In addition, the neural network needs to adjust the weight values 

and biases to find the best combination of weight values and biases, and the error should be able 

to send messages to neural network to determine whether the adjustment of weights and biases is 

necessary or not. In terms of error 𝛿𝑙, the rate in change of cost function with respect to weights 

and biases can be expressed as following, 

𝜕𝐶

𝜕𝑤𝑙
= 𝑎𝑙−1 ∗ 𝛿𝑙                                                             (48) 

 
𝜕𝐶

𝜕𝑏𝑙 = 𝛿𝑙                                                                    (49) 

Several insights can be observed from those equations,   
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1. The term 𝜎′(𝑧𝑙) equation (47) implies when the gradient of activation function is small, 

which results in a small value of 𝛿𝑙. Consequently, the neuron learning rate determined 

by term: 
𝜕𝐶

𝜕𝑤𝑙 will be small. In other words, the neuron is at saturated state.  

2. The equation (48) shows that a small activation input lead to a small gradient in cost with 

respect to weight values. 

This simplified ANN mathematical model with some symbol correction was based on a basic 

model. Details regarding with ANN mathematical model can be found in Ref [48]. 

A four-layered feed forward backpropagation artificial neural network was developed 

with python programming tool. The build-in neural network algorithms in TensorFlow 1.1.5 

open source machine learning library were used in our ANN. Figure 16 shows the architecture of 

our feed forward backpropagation neural network. It consists of one input layer with four input 

parameters, respectively, operating temperature (𝑇), anode and cathode relative humidity 

(𝑅𝐻𝑎/𝑅𝐻𝑐), output voltage (𝑉). Two hidden layers were built in our ANN, and various layer 

configurations such as number of neurons and activation functions, are applied to explore the 

best ANN parameter for prediction our PEMFC performance. Current density is the only output, 

which is combined with experimental voltage data to plot the predicted I-V curve. 
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Figure 16 Architecture for our ANN 

 

 

3.2 Data acquisition 

 

The data imported as training, validation and testing data were from the study of liquid 

water distribution by wang et al [41]. As stated in previous chapter, the experimental data were 

validated by their numerical model, therefore the experimental data were imported as training 

validation and testing data in our ANN. Total of 1460 data were selected as training, validation 

and testing data among total number of 1615 data provided, because several experimental tests 

were conducted under wrong operating conditions which resulted in extremely high current 

density outcome in those experimental runs. Table 3 lists sample data points for each operating 

condition. Experiments were performed under combinations of those operating conditions.  

Sample data obtained under specific operating conditions are shown in Table 4. 

 



35 
 

Table 3 Table of sample data 

 

Sample 

data 

Input: operating conditions Output 

Temperature  𝑅𝐻𝑎 𝑅𝐻𝑐 Voltage  Current 

density  
Data1 353 0.75 0.75 0.9 217 

Data2 333 0.75 0.25 0.34 15400 

Data3 293 0.99 0.99 0.74 94.6 
Note: Because of the unit of current density, the value of current density at 

low voltage region is very large. 
 

Table 4 Specifications for input and output parameters 

Parameter name symbol Unit Data points 

Temperature 𝑇 𝐾 293,313,333,353 

Relative humidity 

(anode) 
𝑅𝐻𝑎  0.25,0.5,0.75,0.99 

Relative humidity 

(cathode) 

𝑅𝐻𝑐  0.25,0.5,0.75,0.99 

Voltage 𝑉 𝑉 0.3-0.9 

Current density 𝑗 𝐴/𝑚2   
 

3.3 Data standardization 

 

As it can be seen from figure of sigmoid function, it can only operate input data from 

(0,1). Similar for the hyperbolic tangent function, which can handle data between -1 and 1. 

Therefore, data normalization is necessary at the beginning. In addition, as the input value 𝑥 is 

close to 1 or 0, the gradient of sigmoid activation function will be very close to 0. The vanishing 

of gradient can cause the adjustment of weights and biases very slow. In other words, the neuron 
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will learn slowly. To avoid vanishing gradient issue, all the inputs value including temperature, 

relative humidity, voltage, were normalized to (0.1,0.9). 

Secondly, for output data, as noted previously, the current density value could be very 

large at low voltage density region. Thus, an extra step log10(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) was applied 

firstly. After that, a normalization is performed on those data. Eventually, all the input and output 

data were reverted to their original scale. 

3.4 Performance evaluation criterion 

 

It is very important to propose a method to evaluate the prediction results for our ANN. 

Since current density has very large value, because of its unit (
𝐴

𝑚2), the resulted root mean square 

error (RMSE) values are always very high, with its value reach up to 1000 (𝐴/𝑚2) in some 

simulation trails. Therefore, we mainly evaluate our model accuracy with two statistical criteria, 

mean absolute percentage error (MAPE) and coefficient of determination (CoD or 𝑅2), 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑌𝑝𝑟𝑒𝑑,𝑖−𝑌𝑎𝑐𝑡𝑢𝑎𝑙,𝑖|

|𝑌𝑎𝑐𝑡𝑢𝑎𝑙,𝑖|

𝑁
𝑖                                                 (50) 

𝑅2 = 1 −
∑ (𝑌𝑝𝑟𝑒𝑑−𝑌𝑎𝑐𝑡𝑢𝑎𝑙)

2𝑁
𝑖

∑ (𝑌𝑝𝑟𝑒𝑑−𝑌𝑎𝑣𝑔)
2𝑁

𝑖

                                                  (51) 

Where, 𝑌𝑝𝑟𝑒𝑑 is predicted current density, 𝑌𝑎𝑐𝑡𝑢𝑎𝑙 is corresponding experimental current density, 

and 𝑌𝑎𝑣𝑔is the average experimental current density. 

Small MAPE value indicates the ANN model prediction accuracy is very high. 

Coefficient of determination is a measurement for the fitting between prediction value and actual 

experimental value. With 𝑅2 ≈ 1, the prediction values fit the experimental value very well. 
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Chapter 4: Results and discussion 
 

4.1 Effect of neuron number in hidden layer 
 

Determining number of neurons in each hidden layer is a very important part when 

constructing the architecture of ANN. Using too few neurons in each hidden layer may cause the 

issue named underfitting where neuron cannot effectively capture all the information provided by 

training data set. On the contrary, too many neurons in hidden layer will add complexity on the 

ANN, which can lead to overfitting. Basically, in the case of overfitting, not all the neurons in 

hidden layer are trained because of the excessiveness of information processing ability. [51] 

Bhoopal et al developed a back-propagation ANN with 9 neurons in each hidden layer, and their 

model performed a successfully predicted their fuel cell stack voltage and current. [52] 

Figure 17 shows a sample prediction results for ANN with the number of neuron equal to 20. 

Obviously, our ANN prediction results show a great agreement with our experimental data. 

Specifically, total of 4 ANN configurations were tested, namely, 5 neurons, 10 neurons, 20 

neurons, and 30 neurons. According to the results shown in Table 5, it yields that minor 

difference can be observed when changing the number of neurons in hidden layer, with the 

lowest MAPE equals to 5.52% using 20 neuron hidden layer configuration. However, when 

using 30 neurons in each hidden layer the prediction results are even worse than that of other 

trials, which implies the total of 1180 data fed into this ANN is not enough. What’s more, 

excessive neurons in ANN will cause a longer time for training our ANN. Therefore, we set 

neuron number to 20 in our latter simulation. 
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Figure 17 Predicted current density vs. actual current density &absolute percentage error [20 

neuron configuration] 

 

 

Table 5 Prediction accuracy using different number of neurons 

Neuron number in hidden layer MAPE (%) 𝐴𝑃𝐸𝑚𝑎𝑥(%) 

5 6.88 37.4 

10 5.65 39 

20 5.52 28.1 

30 7.47 17.7 

 

 



39 
 

4.2 Effect of training data size 
 

As stated previously, selecting a proper size of data set to fit for the complexity of ANN is a very 

important step in ANN construction. Because of the limitation in our available experimental 

data, thus we need to find an optimum number of training data fed into our ANN which does not 

cause either underfitting or overfitting. Three different size of data were fed to our ANN, 

namely, 500, 700, and 1000 training & validation data. Figure 18 shows a general result for all 

three prediction trails. Specifically, Figure 19 and Figure 20 show prediction results for selected 

data points from one I-V curve, and it can be observed that for our ANN model complexity, the 

1000 training & validation data size can provide more information to training our ANN, while 

500 and 700 data set cannot produce accurate results. Figure 21 is a linear fitting between 

Figure 18 General prediction of current density [training data number variation] 
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predicted and actual experimental results for 1000 training & validation data set. The relationship 

between predicted and actual current density is: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0.966 ∗ 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 −

368.82, and the slope is very close to 1 shows the similarity between predicted and actual 

experimental data is high. However, the relatively “large” interception value is caused by the 

very large value of current density, which can reach up to around 18000 (
𝐴

𝑚2). The high 

coefficient of determination (CoD = 0.976) demonstrates a very high portion of prediction 

current data can be predicted by our experimental data by using this linear fitting model. 

 

Figure 19 Plot of current density vs. power output curve [training number variation] 
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Figure 20 Plot of polarization curve [training number variation] 

 

Figure 21 Linear fitting between predicted current density and actual current density [1000 

training data] 
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4.3 Effect of activation function 
 

Selecting a proper activation function for ANN can enhance model’s ability to solve 

various types of problem while remain computational efficiency and converging speed. This 

section discusses using different activation function and their training results. The functions we 

used are logistic sigmoid, hyperbolic tangent, rectified linear units and simple linear function. 

From the general prediction result in Figure 22, it is obvious that simple linear activation 

function doesn’t have the ability to capture the highly nonlinear behavior of PEMFC 

performance curve. A I-V and I-P curve selected from whole testing data set were plotted in 

Figure 23 and Figure 24 as well. Clearly, hyperbolic tangent (𝑡𝑎𝑛ℎ(𝑥)) function as activation 

function in our model exhibits the most accurate prediction, with mean absolute percentage error 

of 6.15%. 𝑅𝑒𝐿𝑢(𝑥) function is popular in recent ANN research because of its ease in 

computation, fast in training speed, and non-saturate property. However, it is not the best choice 

for our model, which is mainly because 𝑅𝑒𝐿𝑢(𝑥) function has dying neuron problem when input 

value 𝑥 is less than or equal to 0. What’s more, the 𝑅𝑒𝐿𝑢 basically is a linear function with a 

constant gradient when 𝑥 > 0, and it may not be able to capture the highly nonlinear behavior of 

PEMFC performance. The relation between hyperbolic tangent and logistic sigmoid, 

𝑡𝑎𝑛ℎ(𝑥) = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1                                             (52) 

The tanh (𝑥) function shows greater gradient in 𝑥 ∈ (0,1) than that of sigmoid function. 

Therefore, the ANN learning speed when using tanh (𝑥) function as activation function can be 

increased in a limited number of training epoch. 
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Table 6 Table of prediction accuracy using different activation functions 

Type of activation function Mean absolute percentage error (%) 

Simple linear 1110 

Rectified Linear Units (ReLu) 23.2 

Logistic sigmoid 17.6 

Hyperbolic tangent (Tanh) 6.15 

Note: MAPE is calculated by all predicted data, not data from that particular I-V curve 

 

 

Figure 22 General prediction of current density [activation function variation] 
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Figure 23 Plot of polarization curve [activation function variation] 

 

Figure 24 Plot of current density vs. power output curve [activation function variation] 
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4.4 Effect of random vs. ordered training data selection 
 

The results for two different simulations are compared in this section. 1000 training data 

and 180 testing data were selected in two different manners, respectively, randomly selection and 

ordered selection. Prediction result for randomly selected data trial shows a higher accuracy than 

that of ordered selected data. According to Figure 25 and Figure 26, even the maximum absolute 

percentage error (𝐴𝑃𝐸𝑚𝑎𝑥) for two trails are very similar, with value of 𝐴𝑃𝐸𝑚𝑎𝑥,𝑜𝑟𝑑𝑒𝑟𝑒𝑑 =

15.4% and 𝐴𝑃𝐸𝑚𝑎𝑥,𝑟𝑎𝑛𝑑𝑜𝑚 = 14.9%, the overall performance for random data trail is better 

than that of ordered data trail. Because the shuffle of raw data set before selection can help with 

a completed coverage of input information, while the training data selected in order may cause 

the missing of some input information. In addition, from Figure 25, another significant discovery 

can be observed that in small current density region, the prediction accuracy is not as high as it in 

large current density region. 

Figure 25 Predicted current density vs. actual current density & absolute percentage error plot 
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Figure 26 Predicted current density vs. actual current density & absolute percentage error plot 

[randomly selected training data] 

 

4.5 Effect of selected training data set 
 

Olabi et al successfully used ANN into Taguchi analysis with lack of experimental 

available data. [53] To investigate the ANN’s ability to provide accurate prediction with 

incomplete input data signal, and filter out noisy signal, we intentionally excluded all data with 

𝑅𝐻𝑐 = 0.25 out of training and validation data set. We picked one I-V curve (total of 30 data 

points) from 𝑅𝐻𝑐 = 0.25 group to test whether our ANN can perform a prediction with those 

void experimental data. Furthermore, to compare our results, we picked one additional data from 

the testing I-V curve and put into the training and validation data set. Then, we repeated this 

process with three individual data from low, middle and high current density region. Figure 27 

shows the ANN can provide an accurate prediction without the information from 𝑅𝐻𝑐 = 0.25 



47 
 

data set. Table 7 shows the prediction accuracy and the improvement by adding one data point 

from 𝑅𝐻𝑐 = 0.25 from small, middle and large current density region. The very high coefficient 

of determination (𝑅2) means the predicted value can be expressed by our linear fitting model 

very well. 

 

Figure 27 Polarization curve plot for predicted current density and actual current density 

[with/without 𝑅𝐻𝑐 = 0.25 data point] 
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Table 7 Linear fitting results for simulation trails with/without 𝑅𝐻𝑐 = 0.25 data point 

With/without 𝑅𝐻𝑐 = 0.25 

data set 

MAPE 

(%) 

𝑅2 Linear fitting equation 

None 3.42 0.99939 𝑦 = 1.016𝑥 − 27.92 

Small 3.05 0.99936 𝑦 = 0.996𝑥 − 63.16 

Middle 3.08 0.99902 𝑦 = 1.013𝑥 − 117.8 

Large 3.18 0.99917 𝑦 = 0.998𝑥 − 55.46 

 

 

Moreover, we investigated the ANN’s ability to filter out the noisy signal in the training 

data set. One fake data point was created on purpose. For comparison, a correct data point is 

selected at the same current density. Table 8 shows specifications for those two data points. Each 

of them was added into 500 training & validation data set in two different trails, and the results 

shows that the fake data point can reduce the model prediction accuracy. However, even fed with 

noisy data, the model still came out with a solid prediction on the testing I-V curve from 𝑅𝐻𝑐 =

0.25 data group, with its MAPE = 4.48%. 
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Figure 28 Polarization curve plot with/without fake data point 

 

Table 8 Specifications for true & fake added into training data set 

Data type Specifications 

 

Temperature 

(K) 

𝑅𝐻𝑐 𝑅𝐻𝑎 

Voltage 

(V) 

Current density 

(
𝐴

𝑚2
) 

True data 333 0.25 0.75 0.72 3000 

Fake data 333 0.25 0.75 0.75 3000 

Note: True data is measured from the testing I-V curve, the fake data is 

created by adding some output voltage. 
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Table 9 Linear fitting results for simulation trails with fake/true data point 

Type MAPE (%) 𝑅2 Linear fitting equation 

With fake data 4.48 0.9984 𝑦 = 0.9942𝑥 − 37.46 

With true data 4.18 0.9981 𝑦 = 1.003𝑥 − 123.3 
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Chapter 5: Conclusion 
 

In this study, a backpropagation ANN model was developed in python programming tool 

to predict PEM fuel cell performance or I-V curves. A database of > 1500 fuel cell performance 

were generated from a 3D physical model to cover the fuel cell operation in a wide range of 

temperatures, anode relative humidity, cathode relative humidity, etc. The effects of number of 

neurons in each hidden layer, the activation function applied on each hidden layer, the number of 

training & validation data set, and the selective data set were investigated. Various prediction 

results show that a backpropagation ANN model can predict the behavior of a typical PEMFC’s 

performance curve (I-V curve) with a reasonable accuracy. As a result, ANN can be an 

alternative method to find the relationship between the inputs and outputs when physical models 

are not present. The ANN simulations were carried out using Python platform. The main results 

are listed as below, 

1. The number of neurons applied on each hidden can affect the complexity of our ANN 

model. To avoid either underfitting or overfitting issues, a proper complexity of our ANN model 

needs to be found to fit with the training data provided. With current size of available data set, it 

is found that using 20 neurons in each hidden layer yielded the most accurate result with MAPE 

equals to 5.52% 

2. In terms of training & validation data size, feeding 1000 data into ANN resulted the 

high accuracy prediction. In addition, 500 and 700 training data set fed into ANN can provide 

reasonable results. 
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3. Using hyperbolic tangent as activation function in each hidden layer and simple linear 

function as activation function on output layer can capture the behavior of PEMFC performance 

curve best, with its prediction MAPE equals to 6.15%. 

4. Randomly selected training & validation data set can cover more signal information 

over the entire range of input parameters, which cause a better prediction than that of ordered 

selected training & validation data set. 

5. ANN successfully predicted the 𝑅𝐻𝑐 = 0.25 I-V curve when the training data set is 

lack of 𝑅𝐻𝑐 = 0.25 information. In other words, ANN can provide performance prediction even 

with incomplete data information, which can significantly reduce the number of required 

experiments. In addition, ANN is also able to filter out the noise training data. Our ANN model 

achieved a prediction with MAEP equals to 4.48% when noise data is present. 
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Appendix 
 

1. code for ANN construction 

 

import numpy as np 

import csv 

 

fc_input = [] 

with open("FC_2_Data_Input.csv") as csvfile: 

    reader = csv.reader(csvfile, quoting=csv.QUOTE_NONNUMERIC) # change contents to floats 

    for row in reader: # each row is a list 

        fc_input.append(row)        

fc_input = np.asarray(fc_input) 

 

fc_output = [] 

with open("FC_2_Data_Output.csv") as csvfile: 

    reader = csv.reader(csvfile, quoting=csv.QUOTE_NONNUMERIC) # change contents to floats 

    for row in reader: # each row is a list 

        fc_output.append(row) 

fc_output = np.asarray(fc_output) 

 

fc_test_input = [] 

with open("FC_Test_Input.csv") as csvfile: 

    reader = csv.reader(csvfile, quoting=csv.QUOTE_NONNUMERIC) # change contents to floats 

    for row in reader: # each row is a list 

        fc_test_input.append(row)        

fc_test_input = np.asarray(fc_test_input) 

fc_test_input = fc_test_input[:180,:] 
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X = fc_input 

Y = fc_output 

Y_true = Y 

Z = fc_test_input 

 

 

X_a = 0.1 

X_b = 0.9 

X_range = np.max(X,axis=0)-np.min(X,axis=0) 

X_min = np.min(X,axis=0) 

X = ((X_b-X_a)*(X - X_min) / X_range)+X_a 

 

Y = np.log10(Y) 

Y_a = 0.1 

Y_b = 0.9 

Y_range = np.max(Y,axis=0)-np.min(Y,axis=0) 

y_log_true_min = np.min(Y,axis=0) 

# Y = Y-np.min(Y,axis=0)/Y_range 

Y = ((Y_b-Y_a)*(Y - np.min(Y,axis=0)) / Y_range)+Y_a 

 

Z = ((X_b-X_a)*(Z - X_min) / X_range)+X_a 

 

# Above portion is for loading data only 

 

import tensorflow as tf 

import config 

import matplotlib.pyplot as plt 

 

class train: 
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    def __init__(self, X, Y): 

        print('') 

        print('Training Neural Networks. This might take a while...') 

        print('') 

        self.X = X 

        self.Y = Y 

        self.data = np.concatenate((X,Y),axis=1) 

        self.n, self.xdim = self.X.shape 

        self.ydim = self.Y.shape[1] 

        self.x_train, self.y_train, self.x_valid, self.y_valid = self.splitData() 

        self.model = self.trainXY() 

 

    def splitData(self, train_ratio=0.7, valid_ratio=0.3): 

        k1 = np.int(np.floor(self.n * train_ratio)) 

        k2 = np.int(np.floor(self.n * (train_ratio+valid_ratio))) 

        if k2>self.n: 

            k2 = self.n 

        d = self.data 

        np.random.shuffle(d) # select data randomly 

        xd = self.xdim 

        x_train = d[:k1,:xd] 

        y_train = d[:k1,xd:] 

        x_valid = d[k1:k2,:xd] 

        y_valid = d[k1:k2,xd:] 

        return x_train, y_train, x_valid, y_valid 

 

    def trainXY(self): # train with tensorflow 

        model = tf.keras.models.Sequential([ 

          tf.keras.layers.Dense(config.n_neurons, input_shape=(self.xdim,), activation=config.activation), 
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          tf.keras.layers.Dense(config.n_neurons, 

input_shape=(config.n_neurons,),activation=config.activation), 

          tf.keras.layers.Dense(self.ydim, input_shape=(config.n_neurons,), activation='linear')]) 

        model.compile(optimizer=config.optimizer, 

                      loss=config.loss, 

                      metrics=config.metric) 

        history_1 = model.fit(self.x_train, self.y_train, epochs = config.epochs, verbose=1) 

        model.evaluate(self.x_valid,  self.y_valid, verbose=2) 

        weights = model.get_weights() 

        np.savetxt('weight.csv' , weights , fmt='%s', delimiter=',') 

        # print(weights) 

         

        #plot 

        plt.plot(history_1.history['loss']) 

        plt.title('model loss') 

        plt.ylabel('loss') 

        plt.xlabel('epochs') 

        plt.legend(['train', 'test'], loc='upper left') 

         

        plt.show() 

        return model 

 

# train 

model = train(X,Y) 

 

# predict 

y_pred = model.model(Z) 

y_p_1=tf.keras.backend.eval(y_pred) 

y_p_2 = (y_p_1-0.1)/0.8 

y_p = np.power(10,y_p_2*Y_range+y_log_true_min) 
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2. Code for parameters initialization 

 

# configs for tf 

activation = 'tanh' # choose from 'tanh' and 'sigmoid' 

n_neurons = 30 # number of neurons in hidden layer 

epochs = 5000 

loss = 'mean_squared_error' 

metric = [] 

optimizer = 'adam' 




