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Abstract

Algebraic Geometry of Hidden Markov and Related Models

by

Andrew James Critch

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

This thesis embodies a collection of algebraic techniques and results on hidden
Markov models, related models in quantum physics called Matrix Product State
models, and finally discrete directed acyclic graphical models.

Chapter 1 explores the statistical problems of model selection and parameter iden-
tifiability from the perspective of algebraic geometry, in the case of hidden Markov
models (HMMs) where all the hidden random variables are binary. Its main con-
tributions are (1) a new parametrization for every such HMM via a birational map
with an explicit inverse for recovering the hidden parameters in terms of observables,
(2) a semialgebraic model membership test to determine if a discrete probability
distribution can arise from such an HMM, and (3) minimal defining equations for
the set of probability distributions arising from the 4-node fully binary model, com-
prising 21 quadrics and 29 cubics, which were computed using Gröbner bases in the
cumulant coordinates of Bernd Sturmfels and Piotr Zwiernik. The new model pa-
rameters in (1) are rationally identifiable in the sense of Seth Sullivant, Luis David
Garcia-Puente, and Sarah Spielvogel, and each model’s Zariski closure is therefore a
rational projective variety of dimension 5. Gröbner basis computations for the model
and its graph are found to be considerably faster using these parameters. In the case
of two hidden states, (2) supersedes a previous algorithm of Alexander Schönhuth
which is only generically defined, and the defining equations (3) yield new invariants
for HMMs of all lengths ≥ 4. Such invariants have been used successfully in model
selection problems in phylogenetics, and one can hope for similar applications in the
case of HMMs.

In Chapter 2, we study the representational power of matrix product states (MPS)
with binary virtual bonds for entangled qubit systems. We do this by giving polyno-
mial expressions in a pure quantum state’s amplitudes which hold if and only if the
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state is a translation invariant matrix product state or a limit of such states. For
systems with few qubits, we give these equations explicitly, considering both periodic
and open boundary conditions. Using the classical theory of trace varieties and trace
algebras, we explain the relationship between MPS and hidden Markov models and
exploit this relationship to derive useful parameterizations of MPS. We present four
conjectures on the identifiability of MPS parameters.

Chapter 3 develops new parameters for use with directed acyclic graphical (DAG)
models on discrete variables, which can simplify symbolic computations for tree
models with hidden variables having more than two states. This development is
the first step toward generalizing work of Smith and Zwiernik on binary trees, and
makes it possible for some of the techniques used in Chapters 1 and 2 to be applied
to graphical models with variables having more than two states.
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Chapter 0

Introduction

Algebraic statistics is the application of commutative algebra and algebraic geom-
etry to the study of statistical models. Linear models in science and statistics —
literally, equations and formulae which take a linear form — are constantly studied
and manipulated using the techniques from linear algebra, such as matrix inversion,
Gaussian elimination, singular value decomposition, hyperplane arrangements, and
so on. Commutative algebra and algebraic geometry are together the analogue of
linear algebra for studying models which involve quadratic or higher degree polyno-
mials.

Many of the most commonly used statistical models are finite-dimensional fami-
lies of probability distributions parametrized by polynomials, which are called alge-
braic statistical models. Gaussian models, exponential families, hidden Markov mod-
els, phylogenetic tree models, directed and undirected graphical models, structural
equation models, and deep belief networks are all algebraic statistical models. For
an introduction and overview of some biological applications, see Algebraic Statistics
for Computational Biology, by Pachter and Sturmfels [28].

As an example, consider a coin A and parameters ai = Pr(A = i) for i = 0, 1

X Y Z

A

Figure 0.1: A näıve Bayes model with three observables
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specifying its distribution. Suppose the outcome of A determines the distributions
of three other coins, X, Y , and Z before they are flipped. That is, parameters
xij = Pr(X = j|A = i), yik = Pr(Y = k|A = i), and zi` = Pr(Z = `|A = i),
determine the effect of A on each of the other coins. These dependencies are depicted
in Figure 0, called a causal diagram. This particular diagram is called a näıve Bayes
model. When this process runs, each outcome (A,X, Y, Z) = (i, j, k, `) has some
probability pi,j,k,` of occurring, given by the polynomial expression

pijk` = Pr(A = i,X = j, Y = k, Z = `) = aixijyikzi`.

Since a0 + a1 = 1 and xj0 + xj1 = 1, etc., if we choose the seven parameters a1, xj1,
yk1, and z`1 freely in [0, 1], then the other seven parameters are uniquely determined.
As we vary the free parameters, we obtain different probability tables p according to
(1), thus defining a polynomial map φ : [0, 1]7 → R2×2×2×2. The set of 2× 2× 2× 2
probability tables p which can be explained or modeled as arising from such a causal
diagram of coins is hence the image of φ.

Many statistical properties of this model translate to algebraic or geometric prop-
erties of the map φ. For example, pardoning jargon for the moment, we have the
following dictionary of non-trivial equivalences:

Algebraic geometry Statistics

φ is injective. The parameters can always be learned with sufficient
data.

φ has smooth fibres. The Bayesian Information Criterion (BIC) will accu-
rately penalize this model in model selection algo-
rithms.

The signed topological
Euler characteristic of
image(φ)+ is 1.

There is 1 critical point in maximum likelihood estima-
tion from generic data.

Most statistical models have more complicated geometry than this one, and have
correspondingly more subtle statistical behavior. Such is the case for hidden Markov
models, which I’ll describe next.

Hidden Markov models (HMM), the topic of Chapter 1, are machine learning
models with diverse applications, including natural language processing, gesture
recognition, genomics, and Kalman filtering of physical measurements in robotics
and aeronautics. An HMM treats a series of observed phenomena, such as words
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H1 H2 H3 H4 · · · (hidden)
T T Tπ

V1 V2 V3 V4 · · · (visible)

E E E E

Figure 0.2: An HMM of length 4

being recorded by a microphone, as arising from a series of hidden or unobserved
variables, such as the English text in the mind of a speaker that she is hoping to
produce on-screen. An HMM-based learning algorithm updates its past beliefs about
hidden variables based on present measurements of observables. For example, if a
computer thinks you’ve said “ice cream”, and you then say “loudly”, for grammat-
ical reasons, it may update its previous opinion to “I scream” while you are still
speaking.

In more detail, an HMM of length n involves n hidden nodes (random variables)
Hi and n visible nodes Vi. We will write HMM(`,m, n) for an HMM of length
n where the hidden nodes have ` states and the visible nodes have m states. In
any HMM, the variables affect each other according to a causal diagram with some
parameter matrices π, T , and E, respectively of size 1 × `, ` × `, and ` × m. A
diagram with n = 4 is depicted in Figure 2. The parameter matrices determine how
the probabilistic effects work, according to the formulae

πi = Pr(Hi = 0), Tij = Pr(Ht = j |Ht−1 = i), Eij = Pr(Vt = j |Ht = i).

Given the parameter matrices π, T , and E, any particular m-ary string v =
(v1, . . . , vn) has a certain probability pv = P (V = v | π, T, E) of being observed, so
we obtain an m×m× · · · ×m table of probabilities, p. The set of all tables p which
can arise from such a causal process is denoted by HMM(`,m, n). The entries of
such p are forced to satisfy some implicit polynomial equations, and one can ask for
constructive description of the set of all such equations, which is called an ideal.

Since the initial work of Bray and Morton [8], it has remained an open question
to construct this ideal of polynomial equations satisfied by a given HMM. The ideal
of (2, 2, 3) was determined by Schönhuth [32], and Chapter 1 of this thesis shows:

Theorem 1 (1.4.1). All but a measure-zero subset of HMM(2,m, n) can be parametrized
by a single generically injective polynomial map U → ∆2n−1

p with an explicitly known,
rational inverse formula, where U ⊆ R5 is a 5-dimensional open set cut out by known
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Figure 0.3: An MPS of length 4 with periodic boundary conditions

algebraic inequalities. In geometric terms, the Zariski closure of HMM(2,m, n) in
P2n−1 is a rational projective variety.

The proof makes use of classical invariant theory results of Sibirskii [33] and
others on so-called trace algebras. Using this new parametrization, along with a new
coordinate system called cumulant coordinates developed by Sturmfels and Zwiernik
[37]. We also establish the following result:

Theorem 2 (1.3.1). Inside the hyperplane
∑

v pv = 1, the ideal of polynomial equa-
tions satisfied by every p ∈ HMM(2, 2, 4) is minimally generated by 21 homogeneous
quadric and 29 homogeneous cubic equations. Each of these 50 equations can be used
to derive 2m−1[(n− 3) + (n− 6) + · · ·+ (n− 3bn

3
c)] polynomial equations satisfied by

HMM(2,m, n) for each m ≥ 2 and n ≥ 4.

HMM are an important test case for the application of algebraic techniques to sta-
tistical modeling. In particular, parameter estimation and model selection methods
used in applications of HMM do not explicitly take into account their algebraic con-
straints, so there may be significant performance gains to be achieved by considering
their geometry in this way.

In Chapter 2, our focus turns to matrix product state (MPS) models are used in
condensed matter physics to express an entangled quantum state tensor in terms of
a combination of simpler tensors connected by virtual bonds. For example, in Figure
0, if A is a d×D×D tensor, the resulting MPS ψ is a d× d× d× d tensor Ψ — one
d for each free “wire” – whose entries are given by

ψi1i2i3i4 =
∑

j∈{0,...,D−1}4
Aj1i1j2A

j2
i2j3
Aj3i3j4A

j4
i4j1
.

MPS can be used to represent “stable” states of matter, and so classifying such states
reduces to understanding the set of tensors representable as MPS (see Chen, Gu, and
Wen [10]). The closure of this set is an algebraic variety, and in this paper, we study
its geometry.
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Using a reparametrization technique similar to that used on HMM above, I de-
rived some polynomial constraints which must be satisfied by MPS of various formats.

Theorem 3 (2.1.3). A four-qubit state Ψ is a limit of binary periodic translation
invariant MPS if and only if the following irreducible polynomial in its entries van-
ishes:

ψ2
1010ψ

4
1100 − 2ψ6

1100 − 8ψ1000ψ1010ψ
3
1100ψ1110 + 12ψ1000ψ

4
1100ψ1110

− 4ψ2
1000ψ

2
1010ψ

2
1110 + 2ψ0000ψ

3
1010ψ

2
1110 + 16ψ2

1000ψ1010ψ1100ψ
2
1110

− 4ψ0000ψ
2
1010ψ1100ψ

2
1110 − 16ψ2

1000ψ
2
1100ψ

2
1110 + 4ψ0000ψ1010ψ

2
1100ψ

2
1110

− 4ψ0000ψ
3
1100ψ

2
1110 − 4ψ0000ψ1000ψ1010ψ

3
1110 + 8ψ0000ψ1000ψ1100ψ

3
1110

− ψ2
0000ψ

4
1110 + 2ψ2

1000ψ
3
1010ψ1111 − ψ0000ψ

4
1010ψ1111 − 4ψ2

1000ψ
2
1010ψ1100ψ1111

+ 4ψ2
1000ψ1010ψ

2
1100ψ1111 + 2ψ0000ψ

2
1010ψ

2
1100ψ1111 − 4ψ2

1000ψ
3
1100ψ1111

+ ψ0000ψ
4
1100ψ1111 − 4ψ3

1000ψ1010ψ1110ψ1111 + 4ψ0000ψ1000ψ
2
1010ψ1110ψ1111

+ 8ψ3
1000ψ1100ψ1110ψ1111 − 8ψ0000ψ1000ψ1010ψ1100ψ1110ψ1111

− 2ψ0000ψ
2
1000ψ

2
1110ψ1111 + 2ψ2

0000ψ1010ψ
2
1110ψ1111 − ψ4

1000ψ
2
1111

+ 2ψ0000ψ
2
1000ψ1010ψ

2
1111 − ψ2

0000ψ
2
1010ψ

2
1111.

Theorem 4 (2.1.4). The ideal of constraints on binary translation invariant MPS
with periodic boundary conditions is minimally generated by 3 quartics, 27 sextics,
and possibly some higher degree polynomials.

Aside from implicitly classifying states of matter, the proofs illustrate a connec-
tion between HMM and MPS first suggested by my collaborator Jason Morton, which
we hope will begin a transfer of techniques between graphical statistical modeling
and condensed matter physics.

In Chapter 3, we focus on a general method of reparametrizing directed acyclic
graph (DAG) models on discrete variables. In a discrete DAG model, the nodes of
the graph represent discrete random variables, and each variable is affected by its
parent according to a conditional probability table, in a way similar to HMM. It
is typical in applications that one can only observe a subset of the nodes, so one
is interested in the joint marginal probability distribution induced on these nodes,
called the observed distribution.

In the case when the DAG is a tree, Smith and Zwiernik [35] defined new co-
ordinates called tree cumulants which allow for an extremely symbolically efficient
expression of the observed distribution in terms of certain new parameters. The new
parameters were at first somewhat mysterious and it was unclear whether they could
be generalized for models with non-binary variables, i.e., variables taking on more
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than two states. However, through discussions with Zwiernik, it became clear that
they were in fact linear regression coefficients in a certain sense that would allow for
their generalization. In Chapter 3, we develop the first step in this generalization,
which in fact applies not only to trees but all discrete DAG models:

Theorem 5. Given a discrete directed acyclic graph model G and a multiset S of
observed nodes, the moment µS is given by the following automatic contraction equa-
tion:

µS =
∑
H⊂G

sinks(H)⊆S⊆nodes(H)

∏
v∈nodes(H)

β
pa(v;H)

vm(v;H,S)

This result will be used in future work with S. Lin, P. Zwiernik, and L. Weihs
to generalize the tree cumulant parametrization of Smith and Zwiernik [35] for ap-
plication to tree models where each variable can take on an arbitrary number of
states.
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Chapter 1

Hidden Markov models with two
hidden states

1.1 Introduction

This chapter is based on my paper, Binary hidden Markov models and varieties, to
appear in the Journal of Algebraic Statistics [1]. It is motivated primarily by the
statistical problems of model selection and parameter identifiability, viewed from the
perspective of algebraic geometry. Hidden Markov models (HMMs) are defined in
Section 1.2, and here we focus on the simplest HMMs: those where all the hidden
nodes are binary. Most questions about this case are answered by reducing to the
case where the visible nodes are also binary. The hope is that eventually a very
precise geometric understanding of HMMs can be attained that provides insight into
their statistical properties.

The history of this and related problems has two main branches of historical
lineage: that of hidden Markov models, and that of algebraic statistics.

In Section 1.2, we define hidden Markov models and related concepts needed for
the remainder of the chapter. Their history began with a series of papers by Leonard
E. Baum and others beginning with Baum and Petrie [4], after the description by
Stratonovich [36] of the “forward-backward” algorithm that would be used for HMM
parameter estimation. HMMs have been used extensively in natural language pro-
cessing and speech recognition since the development of DRAGON by Baker [2]. As
well, since Krogh, Mian, and Haussler [19] used HMM for finding genes in the DNA
of E. coli bacteria, they have had many applications in genomics and biological se-
quence alignment; see also Yoon [42]. Now, HMM parameter estimation is built into
the measurement of too minds kinds of measurements to reasonably count here.
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Our second historical tributary, algebraic statistics, is the application of commu-
tative algebra and algebraic geometry to the study of statistical models, especially
those models involving non-linear relationships between parameters and observables.
It was first described at length in the 2001 monograph Algebraic Statistics by Pis-
tone, Riccomagno, and Wynn [30]. Subsequent introductions to the subject include
Algebraic Statistics for Computation Biology by Pachter and Sturmfels [28], and Lec-
tures in Algebraic Statistics by Drton, Sturmfels, and Sullivant [14]. Also notable is
Algebraic Geometry and Statistical Learning Theory by Watanabe [41], for its focus
on the problem of model selection.

The methods of algebraic statistics are much younger than hidden Markov models,
and so the algebraic geometry of these models is far from fully explored. HMMs are
hence an important early example for the theory to investigate. Here we focus on
algebraic and geometric questions about HMMs coming from model selection and
parameter identifiability.

The algebraic analogue of model selection is implicitization, i.e., finding poly-
nomial defining equations for the Zariski closures of binary hidden Markov models.
Here we use the term “model” synonymously with the set of probability distributions
arising from the model. Polynomials vanishing on a model are called invariants: if
a polynomial f is equal to a constant c at every point of the model (i.e., f does
not vary with the model parameters), then we encode this equation by calling f − c
“an invariant”. Model selection and implicitization are more than simply analogous;
polynomial invariants have been used successfully in model selection by Casanellas
and Fernandez-Sanchez [9] and Eriksson [15] for phylogenetic trees.

Such polynomial invariants have been difficult to specify for hidden Markov mod-
els, perhaps due to the high codimension of the models. One way to specify them is
to exhibit a set of defining equations for the model, a finite collection of invariants
which carve out the model in space, and combine to form the set of all its invariants,
called an ideal. Bray and Morton [8] found many invariants using linear algebra,
but did not exhibit defining equations for any model, and in fact their search was
actually for invariants of a model that was slightly modified from the HMM proper.
Schönhuth [32] found a large family of HMM invariants arising as minors of certain
non-abelian Hankel matrices, and found that they constitute defining equations for
the 3-node binary HMM, which is the simplest non-degenerate HMM. However, this
seemed not to be the case for models with n ≥ 4 nodes: Schönhuth reported on a
computation of J. Hauenstein which verified numerically that the 4-node model was
not cut out by the Hankel minors.

In Section 1.3, we will make use of moment and cumulant coordinates as exposited
by Sturmfels and Zwiernik [37], as well as a new coordinate system on the parameter
space, to find explicit defining equations for the 4-node binary HMM. The shortest
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quadric and cubic equations are fairly simple; to give the reader a visual sense, they
look like this:

g2,1 = m23m13 −m2m134 −m13m12 +m1m124

g3,1 = m3
12 − 2m1m12m123 +m∅m

2
123 +m2

1m1234 −m∅m12m1234

Here each m is a moment of the observed probability distribution. These equations
are not generated by Schönhuth’s Hankel minors, and so provide a finer test for
membership to any binary HMM of length n ≥ 4 after marginalizing to any 4 equally
spaced nodes.

The algebraic analogue of parameter identifiability is the generic or global injec-
tivity or finiteness of a map of varieties that parametrizes the model, or in the case
of identifying a single parameter, constancy of the parameter on the fibers of the
parameterization. Sullivant, Garcia-Puente, and Spielvogel [38] provide an excellent
discussion of this topic in the context of identifying causal effects; see also Meshkat,
Eisenberg, and DiStefano [23] for a striking application to identification for ODE
models in the biosciences.

In Section 1.4, for the purpose of parameter identification in binary hidden
Markov models, we express the parametrization of a binary HMM as the composition
of a dominant and generically finite monomial map q and a birationally invertible
map ψ. An explicit inverse to ψ is given, which allows for the easy recovery of
hidden parameters in terms of observables. The components of the monomial map
are identifiable combinations in the sense of Meshkat, Eisenberg, and DiStefano [23].
The formulae for recovering the hidden parameters are fairly simple when exhibited
in a particular order, corresponding to a particular triangular set of generators in a
union of lexicographic Gröbner bases for the model ideal. To show their simplicity,
the most complicated recovery formula looks like this:

u =
m1m3 −m2

2 +m23 −m12

2(m3 −m2)

As a corollary, in Section 1.4 we find that the fibers of φn are generically zero-
dimensional, each consisting of two points which are equivalent under a “hidden
label swapping” operation.

Section 1.5 describes describes how the parametrization of every fully binary
HMM, or “BHMM”, can be factored through a particular 9-dimensional variety
called a trace variety, which is the invariant theory quotient of the space of triples
of 2 × 2 matrices under a simultaneous conjugation action by SL2. As a quotient,
the trace variety is not defined inside any particular ambient space. However, its
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H1 H2 H3 · · · (hidden)
T T Tπ

V1 V2 V3 · · · (visible)

E E E

Figure 1.1: Hidden Markov models as Bayesian networks.

coordinate ring, a trace algebra, was found by Sibirskii [33] to be generated by 10
elements, which means we can embed the trace variety in C10. We prove the main
results of Section 1.4 in the coordinates of this embedding. As a byproduct of this
approach, in section Section 1.5 we find that the Zariski closures of all BHMMs with
n ≥ 3 are birational to each other.

Finally, Section 1.6 explores some applications of our results, including model
membership testing, classification of identifiable parameters, a new grading on HMMs
that can be used to find low-degree invariants, the geometry of equilibrium BHMMs,
and HMMs with more than two visible states.

1.2 Definitions

Important note: In this chapter, we will work mostly with BHMMs — HMMs
in which both the hidden and visible nodes are all binary — because, as will be
explained, all our results will apply to models with any number k ≥ 2 of visible
states by reducing to this case.

Throughout, we will be referring to binary hidden Markov processes, distributions,
maps, models, varieties, and ideals. Each of these terms is used with a distinct
meaning, and effort is made to keep their usages consistent and separate.

Binary Hidden Markov processes and distributions

A binary hidden Markov process is a statistical process which generates random
binary sequences. It is based on the simpler notion of a binary (and not hidden)
Markov chain process, and can be depicted as a causal Bayesian network, or directed
graphical model, as shown in Figure 1.1.

Definition 1.2.1. A Binary Hidden Markov process will comprise 5 data: π, T ,
E, and (Ht, Vt). The pair (Ht, Vt) denotes a jointly random sequence (H1, V1, H2, V2, . . .)
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of binary variables, also respectively called hidden nodes and visible nodes, with range
{0, 1}. Often a bound n on the (discrete) time index t is also given. The joint dis-
tribution of the nodes is specified by the following:

• A row vector π = (π0, π1), called the initial distribution, which specifies a prob-
ability distribution on the first hidden node H1 by Pr(H1 = i) = πi;

• A matrix T =

[
T00 T01

T10 T11

]
, called the transition matrix, which specifies condi-

tional “transition” probabilities by the formula Pr(Ht = j |Ht−1 = i) = Tij,
read as the probability of “transitioning from hidden state i to hidden state j”.1

Together, π and T define what is traditionally called a Markov chain process
on the hidden nodes Hi.

• A matrix E =

[
E00 E01

E10 E11

]
, called the emission matrix, which specifies condi-

tional “emission” probabilities by the formula Pr(Vt = j |Ht = i) = Eij, read
as the probability that “hidden state i emits the visible state j”.

To be precise, the parameter vector θ = (π, T, E) determines a probability dis-
tribution on the set of sequences of pairs ((H1, V1) . . . (Hn, Vn)) ∈ ({0, 1}2)n, or if
no bound n is specified, a compatible sequence of such distributions as n grows. In
applications, only the joint distribution on the visible nodes (V1, . . . , Vn) ∈ {0, 1}n
is observed, and is called the observed distribution. This distribution is given by
marginalizing (summing) over the possible hidden states of a BHM process:

Pr(V = v | θ = (π, T, E)) =
∑

h∈{0,1}n
Pr(h, v| π, T, E) =

∑
h∈{0,1}n

Pr(h |π, T ) Pr(v |h,E)

=
∑

h∈{0,1}n
πh1Eh1,v1

n∏
i=2

Thi−1hiEhi,vi (1.1)

Definition 1.2.2. A Binary Hidden Markov distribution is a probability dis-
tribution on sequences v ∈ {0, 1}n of jointly random binary variables (V1, . . . , Vn)
which arises as the observed distribution of some BHM process according to (1.1).

As we will see in Section 1.4, different processes (π, T, E,Ht, Vt) can give rise to
the same observed distribution on the Vt, for example by permuting the labels of the
hidden variables, or by other relations among the parameters.

Those already familiar with Markov models in some form may note that:

1Schönhuth [32] uses T for different matrices, which I will later denote by P .
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• The matrices T and E are implicitly assumed to be stationary, meaning that
they are not allowed to vary with the “time index” t of (Ht, Vt).

• The distribution π is not assumed to be at equilibrium with respect to T , i.e. we
do not assume that πT = π. This allows for more diverse applications.

Remark 1.2.3. The term “stationary” is sometimes also used for a process that is at
equilibrium; we will reserve the term “stationary” for the constancy of matrices T ,E
over time.

Binary Hidden Markov maps, models, varieties, and ideals

Statistical processes come in families defined by allowing their parameters to vary,
and in short, the set of probability distributions that can arise from the processes in
a given family is called a statistical model. The Zariski closure of such a model in an
appropriate complex space is an algebraic variety, and the geometry of this variety
carries information about the purely algebraic properties of the model.

In a binary hidden Markov process, π, T , and E must be stochastic matrices,
i.e., each of their rows must consist of non-negative reals which sum to 1, since these
rows are probability distributions. We denote by Θst the set of such triples (π, T, E),
which is isometric to the 5-dimensional cube (∆1)5. We call Θst the space of stochastic
parameters. It is helpful to also consider the larger space of triples (π, T, E) where
the matrices can have arbitrary complex entries with row sums of 1. We write ΘC
for this larger space, which is equal to the complex Zariski closure of Θst, and call it
the space of complex parameters.

We will not simply replace Θst by ΘC for convenience, as has sometimes been done
in algebraic phylogenetics. For the ring of polynomial functions on these spaces, we
write

C[θ] := C[πj, Tij, Eij]

/(
1 =

∑
j

πj =
∑
j

Tij =
∑
j

Eij for i = 0, 1
)

so as to make the identification Θst ⊆ ΘC = SpecC[θ]. Here Spec denotes the
spectrum of a ring; see [12] for this and other fundamentals of algebraic geometry.

Now we fix a length |v| = n for our binary sequences v, and write

Rp,n := C[pv | v ∈ {0, 1}n] C2n

p := Spec(Rp,n)

Rp,n := Rp,n

/
(1−

∑
|v|=n

pv) C2n−1
p := Spec(Rp,n)

P2n−1
p := Proj(Rp,n)
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We will often have occasion to consider the natural inclusions,

ιn : C2n−1
p ↪→ C2n

p ιn : C2n−1
p ↪→ P2n−1

p .

Convention 1.2.4. Complex spaces such as C2n will usually be decorated with a
subscript to indicate the intended coordinates to be used on that space, like the p
in C2n

p above. Likewise, a ring will usually be denoted by R with some subscripts to
indicate its generators.

Definition 1.2.5. For each n ≥ 3, we introduce the following objects:

• The Binary Hidden Markov map or modeling map on n nodes is the map
which sends a parameter vector θ to the distribution p it induces on the vector
of observable variables, according to (1.1). We denote this distribution by
φBHMM(n), or simply φn:

φn : ΘC → C2n−1
p ,

φ#
n (pv) :=

∑
h∈{0,1}n

πh1Eh1,v1

n∏
i=2

Thi−1hiEhi,vi

The word “model” is also frequently used for the map φn. This is a very
reasonable usage of the term, but I reserve “model” for the image of the allowed
parameter values:

• BHMM(n), the Binary Hidden Markov model on n nodes, is the image

ιnφn (Θst) ⊆ P2n−1
p ,

of the stochastic parameter space Θst, i.e., the set of observed distributions
which can arise from some BHM process, considered as a subset of P2n−1

p via
ιn. Being the continuous image of the classically compact cube Θst ' ∆5

1,
BHMM(n) is also classically compact and hence classically closed.

• BHMM(n), the Binary Hidden Markov variety on n nodes, is the Zariski
closure of BHMM(n), or equivalently the Zariski or classical closure of ιnφn(ΘC),
in P2n−1

p .

• IBHMM(n), the Binary Hidden Markov ideal on n nodes, is the set of homoge-
neous polynomials which vanish on BHMM(n), i.e., the homogeneous defining
ideal of BHMM(n). Elements of IBHMM(n) are called invariants of the model.
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In summary, probability distributions arise from processes according to modeling
maps, models are families of distributions arising from processes of a certain type, and
the Zariski closure of each model is a variety whose geometry reflects the algebraic
properties of the model. The ideal of the model is the same as the ideal of the variety:
the definition of Zariski closure is the largest set which has the same ideal of vanishing
polynomials as the model. In a rigorous sense (namely, the anti-equivalence of the
categories of affine schemes and rings), the variety encodes information about the
“purely algebraic” properties of the model, i.e., properties that can be stated by the
vanishing of polynomials.

The number of polynomials that vanish on any given set is infinite, but by the
Hilbert Basis theorem, one can always find finitely many polynomials whose vanishing
implies the vanishing of all the others, called a generating set for the ideal. To
compute a generating set for IBHMM(n), we will need the following proposition:

Proposition 1.2.6. The ideal IBHMM(n) is the homogenization of ker(φ#
n ◦ ι#n ) with

respect to pΣ :=
∑
|v|=n pv.

Proof. The affine ideal ker(φ#
n ◦ ι#n ) cuts out the Zariski closure X of ιn ◦ φn(ΘC)

in C2n

p , and this closure lies in the hyperplane {pΣ = 1} = C2n−1
p . Let X ′ be the

projective closure of X in P2n−1
p , so that I(X ′) is the homogenization of ker(φ#

n ◦ ι#n )
with respect to pΣ.

The cube Θst is Zariski dense in ΘC, so ιn ◦φn(Θst) is Zariski dense in ιn ◦φn(ΘC),
which is Zariski dense in X, which is Zariski dense in X ′. Therefore X ′ = BHMM(n),
and I(X ′) = IBHMM(n), as required.

HMMs with more visible states via BHMM(n)

All the results of this chapter apply also to HMMs with k ≥ 3 visible states, provided
the number of hidden states is d = 2. The idea is to encode such a hidden Markov
process in a collection of BHM processes, and apply our methods to those.

Consider an HMM(2, k, n) process P , which has 2 hidden states, k visible states
1 . . . k, and n (consecutive) visible nodes. As in Definition 1.2.1 and (1.9), P is given
by a 2×k matrix E of emission probabilities, along with a 1×2 matrix π and a 2×2
matrix T describing the two-state hidden Markov chain. For ` ∈ {1 . . . , k}, we define
a BHMM(n) process P ` by defining binary variables V `

t , where V `
t = 1 if Vt = ` and

V `
t = 0 otherwise. Figure 1.2 is a Bayesian network depicting this dependency.

Formally, as in Definition 1.2.1, the BHMM(n) process P ` is defined to be the
quintuple
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H1 H2 H3 · · · (hidden)
T T Tπ

V1 V2 V3 · · · (visible)

E E E

V `
1 V `

2 V `
3 · · · (binary)

Figure 1.2: Converting an HMM with many visible states into HMMs with two visible
states

(π, T, E`, Ht, V
`
t ), where E` is the emission matrix from the Ht to the V `

t ,

E` =

[
1− E0` E0`

1− E1` E1`

]
The HMM(2, k, n) process P is encoded in the processes P ` in the sense that the
value of Vt is recoverable as the unique ` such that V `

t = 1. Thus any polynomial
invariant constraining the joint distribution of the V `

t for some ` implies a constraint
on the joint distribution of the Vt. In other words, for each `, we can lift invariants
for BHMM(n) to invariants for HMM(2, k, n) by the substitution

p`i1...in 7→
∑
{pj1...jn | jt = ` if and only if it = 1 for each 1 ≤ t ≤ n}

For example, p`1010 7→ p`∗`∗, where “∗” denotes an index to be summed over {1, . . . , n}\
{`}. In this way, any invariant for BHMM(n) yields k invariants for HMM(2, k, n).

As well, as ` varies, we obtain all the entries of E as entries of some E`. So any
formula for identifying the parameters of BHMM(n) in terms of observables can be
applied to identify the parameters of an HMM(2, k, n) process P as they arise as
parameters of the BHMM(n) processes P `.

We shall remark throughout when results for the model BHMM(n) can also be
applied to the model HMM(2, k, n) using this encoding method.

1.3 Defining equations of BHMM(3) and BHMM(4)

Theorem 1.3.1. The homogeneous ideal IBHMM(4) of the binary hidden Markov va-
riety BHMM(4) is minimally generated by 21 homogeneous quadrics and 29 homo-
geneous cubics.
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Since Schönhuth [32] found numerically that his Hankel minors did not cut out
BHMM(4) even set-theoretically, these equations are genuinely new invariants of
the model. Moreover, they are not only applicable to BHMM(4), because a BHM
process of length n > 4 can be marginalized to any 4 evenly-spaced hidden-visible
node pairs to obtain a BHM process of length 4. When there are n node pairs, there
are f(n) = (n − 3) + (n − 7) + · · · + (n − 3bn−1

3
c) equally-spaced sequences of four

node pairs, and thus f(n) linear maps from BHMM(n) to BHMM(4), each of which
allows us to write 21 quadrics and 29 cubics which vanish on BHMM(n). Thus we
obtain a super-exponential number, 50 ·f(n), of invariants for BHMM(n) as n grows.
Finally, using the encoding of Section 1.2, we can even obtain 50 · k · f(n) invariants
of HMM(2, k, n) via the k different reductions to BHMM(n).

Our fastest derivation of Theorem 1.3.1 in Macaulay2 (see Grayson and Stillman
[22]) uses the birational parametrization of Section 1.4, but in only a single step,
so we defer the lengthier discussion of the parametrization until then. Modulo this
dependency, the proof is described in Section 1.3, using moment coordinates (Section
1.3) and cumulant coordinates (Section 1.3).

In probability coordinates, the generators found for IBHMM(4) have the following
sizes:

• Quadrics g2,1, . . . , g2,21: respectively 8, 8, 12, 14, 16, 21, 24, 24, 26, 26, 28, 32, 32, 41,
42, 43, 43, 44, 45, 72, 72 probability terms.

• Cubics g3,1, . . . , g3,29: respectively 32, 43, 44, 44, 44, 52, 52, 56, 56, 61, 69, 71, 74, 76, 78,
81, 99, 104, 109, 119, 128, 132, 148, 157, 176, 207, 224, 236, 429 probability terms.

As a motivation for introducing moment coordinates, we note here that these gener-
ators have considerably fewer terms when written in terms of moments:

• Quadrics g2,1, . . . , g2,21: respectively 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 10, 10, 10, 17
moment terms.

• Cubics g3,1, . . . , g3,29: respectively 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 10, 12,
12, 13, 14, 16, 18, 21, 27, 35 moment terms.

To give a sense of how they look in terms of moments, the shortest quadric and cubic
are

• g2,1 = m23m13 −m2m134 −m13m12 +m1m124, and

• g3,1 = m3
12 − 2m1m12m123 +m∅m

2
123 +m2

1m1234 −m∅m12m1234.
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Let us compare this ideal with IBHMM(3), the homogeneous defining ideal of BHMM(3).
Schönhuth [32] found that IBHMM(3) is precisely the ideal of 3×3 minors of the matrix

A3,3 =


p000 + p001 p000 p100

p010 + p011 p001 p101

p100 + p101 p010 p110

p110 + p111 p011 p111

 (1.2)

Schönhuth defines an analogous matrix An,3 for BHMM(n), but then remarks
that J. Hauenstein has found, using numerical rank deficiency testing (see Bates
et al. [3]) with the algebraic geometry package Bertini (see Bates et al. [6]), that
minors3(An,3) does not cut out BHMM(n) when n = 4. In general, Schönhuth shows
that IBHMM(n) = (minors3(An,3) : minors2(Bn,2)) for a particular 2×3 matrix Bn,2, but
computing generators for this colon ideal is a costly operation, and so no generating
set for IBHMM(n) was found for any n ≥ 4 by this method. Instead, we will use the
moment coordinates and cumulant coordinates exposited by Sturmfels and Zwiernik
[37].

Moment coordinates

When the length n of the observed binary sequences v is understood, for each subset
I of [n] = {1, . . . , n}, we define the I th moment coordinate by

mI :=
∑
{pv | vt = 1 for all t ∈ I} (1.3)

This is just an expression for the probability that Vt = 1 for all t ∈ I. For example,
when n = 5, m14 = p1++1+, and m∅ = p+++++ = 1, following the usual conven-
tion that “+” denotes an index to be summed over. Thus, moments are particular
linear expressions in probabilities. They can also be derived from a moment gener-
ating function as in Sturmfels and Zwiernik [37], which in our case reduces to the
above. The mI ∈ Rp,n provide alternative linear coordinates on P2n−1

p in which some
previously intractable BHM computations become feasible.

We will sometimes use the notation mv for the moment mI when v is the indicator
string of I. For example, m01010 = m24, m10000 = m1, and m00000 = m∅. The string
notation has the advantage of making the value n = 5 apparent, and is also convenient
in the Baum formula for moments (Proposition 1.5.1) as explained in Section 1.5.

When working with BHMMs, the expression for mI in terms of the parameters
(π, T, E) is in fact independent of n. That is, if I ⊆ [n] and I ′ denotes I considered
as a subset of [n′] for some n′ > n, then

φ#
n (mI) = φ#

n′(mI′) (1.4)
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This can be seen in many ways, for example using the Baum formula for moments
(Proposition 1.5.1), or by noting from the interpretation of mI as a marginal prob-
ability that it can be computed without considering the states of nodes Ht and Vt
where t is larger than the largest element of I.

Just as for probabilities, for moments we can define rings and spaces

Rm,n := C[mI | I ⊆ [n]] C2n

m := Spec(Rm,n),

Rm,n := Rm,n

/
〈1−m∅〉 C2n−1

m := Spec(Rm,n), (1.5)

P2n−1
m := Proj(Rm,n).

Convention 1.3.2. To avoid having notation for too many ring isomorphisms, we will
use (1.3) to treat mI as an element of Rp,n, thus creating literal identifications

Rm,n = Rp,n C2n

m = C2n

p ,

Rm,n = Rp,n C2n−1
m := C2n−1

p , (1.6)

P2n−1
m := P2n−1

p .

Note also that we obtain natural ring inclusions Rm,n ⊆ Rm,n′ whenever n < n′,
which respect the BHM maps φn because of (1.4).

As a first application of moment coordinates, we have

Proposition 1.3.3. The homogeneous ideal IBHMM(3) is generated in moment coor-
dinates by the 3× 3 minors of the matrix

A′3,3 =


m000 m000 m100

m100 m010 m110

m010 m001 m101

m110 m011 m111

 =


m∅ m∅ m1

m1 m2 m12

m2 m3 m13

m12 m23 m123


In particular, the projective variety BHMM(3) is cut out by these minors.

Proof. Observe that Schönhuth’s matrix A3,3 in (1.2) is equivalent under elementary
row/column operations to A′3,3, so minors3(A′3,3) = minors3(A3,3) = IBHMM(3).

Proposition 1.3.4. The ideal IBHMM(n) is the homogenization of ker(φ#
n ) with respect

to m∅.

Proof. From Proposition 1.2.6 we know that IBHMM(n) is the homogenization of
ker(φ#

n ◦ ι#n ) with respect to m∅ =
∑
|v|=n pv. From (1.6), we can identify Rm,4

with the polynomial subring of Rm,4 obtained by omitting m∅, so that ker(φ#
4 ◦ ι

#
4 ) =

ker(φ#
4 ) + 〈1−m∅〉. Since the additional generator 1−m∅ homogenizes to 0, ker(φ#

4 )
has the same homogenization as ker(φ#

4 ◦ ι
#
4 ), hence the result.
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Cumulant coordinates

Cumulants are non-linear expressions in moments or probabilities which seem to
allow even faster computations with binary hidden Markov models. Let

Rk,n := C[kI | I ⊆ [n]]

Rk,n := Rk,n

/
〈k∅〉

C2n−1
k := Spec(Rk,n)

where, as with moments, we may freely alternate between writing kv and writing kI ,
where I is the set of positions where 1 occurs in v. For building generating functions,
let x1, . . . , xn be indeterminates, and write xv = xI for xv11 · · ·xvnn =

∏
i∈I xi. Let J

be the ideal generated by all the squares x2
i . Following Sturmfels and Zwiernik [37],

we introduce the moment and cumulant generating functions, respectively, as

fm(x) :=
∑
I⊆[n]

mIx
I ∈ Rm,n[x]/J fk(x) :=

∑
I⊆[n]

kIx
I ∈ Rk,n[x]/J

We now define changes of coordinates

κn : C2n−1
m → C2n−1

k κ−1
n : C2n−1

k → C2n−1
m

by the formulae

κ#
n (fk) = log(fm) =

(fm − 1)

1
+ · · ·+ (−1)n+1 (fm − 1)n

n
(1.7)

κ−#
n (fm) = exp(fk) = 1 +

(fk)

1
+ · · ·+ (fk)

n

n!

That is, we let κ#
n (kI) be the coefficient of xI in the Taylor expansion of log fm about

1, and let κ−#
n (mI) be the coefficient of xI in the Taylor expansion of exp fk about

0. Note that in the relevant coordinate rings Rm,n and Rk,n, m∅ = 1 and k∅ = 0.
This is why we only need to compute the first n terms of each Taylor expansion: the
higher terms all vanish modulo the ideal J .

Proposition 1.3.5. The expressions κ#
n (kI) and κ−#

n (mI), i.e., writing of cumulants
in terms of moments and conversely, do not depend on n.

Proof. By Sturmfels and Zwiernik [37], these formulae are re-expressed using Möbius
functions, which do not depend on the generating functions above, and in particular
do not depend on n.
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Deriving IBHMM(4) in Macaulay2

This section describes the proof of Theorem 1.3.1 using Macaulay2. These compu-
tations were carried out on a Toshiba Satellite P500 laptop running Ubuntu 10.04,
with an Intel Core i7 Q740 .73 GHz CPU and 8gb of RAM. In light of Proposition
1.3.4, we will aim to compute ker(φ#

4 ◦ ι
#
4 ), which can be understood geometrically

as the (non-homogeneous) ideal of the standard affine patch of BHMM(4) where
m∅ =

∑
|v|=4 pv = 1. To reduce the number of variables, as in Proposition 1.3.4 we

continue to make the identification

Rm,4 = C[mI |∅ 6= I ⊆ [4]] ⊆ Rm,4

We begin by providing Macaulay2 with the map φ#
4 : Rm,4 → C[θ] in moment

coordinates (Section 1.3), because probability coordinates result in longer, higher
degree expressions. This can be done by composing the expression of φ#

n (pv) in
Definition 1.2.5 with the expression of mv = mI in (1.3), or alternatively using
the Baum formula for moments (Proposition 1.5.1) , which involves many fewer
arithmetic operations.

Macaulay2 runs out of memory (8gb) trying to compute ker(φ#
4 ), and as expected,

this memory runs out even sooner in probability coordinates, so we use cumulant
coordinates instead (Section 1.3). We input

κ#
4 : Rk,4 → Rm,4

using coefficient extraction from (1.7), and compute the composition φ#
4 ◦κ

#
4 . Then,

it is possible to compute
Ik,4 := ker(φ#

4 ◦ κ
#
4 )

which takes around 1.5 hours. Alternatively, we can compute Ik,4 by expressing
the cumulants in terms of the birational parameters of Section 1.4 (i.e. using ψ4 in
place of φ4), which takes less than 1 second and yields 100 generators for Ik,4.

Subsequent computations run out of memory with this set of 100 generators,
so we must take some steps to simplify it. Macaulay2’s trim command reduces
the number of generators of Ik,4 to 46 in under 1 second. We then order these
46 generators lexicographically, first by degree and then by number of terms, and
eliminate redundant generators in reverse order, which takes 19 seconds. The result
is an inclusion-minimal, non-homogeneous generating set for Ik,4 with 35 generators:
24 quadrics and 11 cubics.

Now we compute Im,4 := κ#(Ik,4) = κ#(ker(φ#
4 ◦ κ

#
4 )) = ker(φ#

4 ), i.e., we push

forward the 35 generators for Ik,4 under the non-linear ring isomorphism κ#
4 to obtain

35 generators for Im,4 = ker(φ#
4 ): 2 quadrics, 7 cubics, 16 quartics, 5 quintics, and
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5 sextics. In under 1 second, Macaulay2’s trim command computes a new set
of 39 generators for Im,4 with lower degrees: 21 quadrics, 14 cubics, and 4 quartics,
which turns out to save around 1 hour of computing time in what follows. These
generators have many terms each, and eliminating redundant generators as in the
previous paragraph turns out to be too slow to be worth it here, taking more than 2
hours, so we omit this step.

Finally, we apply Proposition 1.3.4 to compute IBHMM(4) as the homogenization
of Im,4 with respect to m∅. In Macaulay2, this is achieved by homogenizing the 39
generators for Im,4 with respect to m∅ and then saturating the ideal they generate
with respect to m∅. This saturation operation takes about 29 minutes, and yields
a minimal generating set of 50 polynomials: 21 quadrics and 29 cubics. Since proba-
bilities are linear in moments, their degrees are the same in probability coordinates.
Moreover, since these are homogeneous generators for a homogeneous ideal, they are
minimal in a very strong sense:

Corollary 1.3.6. Any inclusion-minimal homogeneous generating set for IBHMM(4)

in probability or moment coordinates must contain exactly 21 quadrics and 29 cubics.

We still do not know a generating set for IBHMM(5). Macaulay2 runs out of mem-
ory (8gb) attempting to compute Ik,5, even using the birational parametrization of
Section 1.4. The author has also attempted this computation using the tree cumu-
lants of Smith and Zwiernik [35] in place of cumulants, but again Macaulay2 runs out
of memory trying to compute the first kernel. Presumably the subsequent saturation
step would be even more computationally difficult.

1.4 Birational parametrization of BHMMs

We say that two parameter vectors θ = (π, T, E) and θ′ = (π′, T ′, E ′) for a BHMM(n)
are equivalent if they give rise to the same probability distribution p on the observed
nodes, i.e., if φn(θ) = φn(θ′). A generic θ has only one other θ′ in its equivalence class,
obtainable essentially by swapping the labels {0, 1} of all the Ht simultaneously, as
we’ll describe in Section 1.4. But some θ have larger equivalence classes, as we’ll see
in Section 1.4 in the cases where det(T ) = 0 or det(E) = 0.

It turns out to be possible to algebraically “glue together” some, but not all, pairs
of equivalent θ’s to obtain a new parameter space which still lives in C5, but such
that the map from our new parameters to observables is generically injective, and
has an inverse which is a rational function. This is the intuition behind the following:
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Theorem 1.4.1 (Birational Parameter Theorem). There is a generically two-to-one,
dominant morphism ΘC → C5 such that, for each n ≥ 3, the binary hidden Markov
map φn factors uniquely as follows,

C5 C2n−1
p

ψn
ΘC

φn

and each ψn : C5 → BHMM(n) has a birational inverse map ρn:

C5 BHMM(n)

ψn

ρn

In particular, BHMM(n) is always a rational projective variety of dimension 5, i.e.,
birationally equivalent to P5.

Using the encoding of Section 1.2, the same is true if we allow k > 2 visible
states in the model and replace C5 by C3+k. This theorem will be proven in Section
1.5 using trace algebras and the Baum formula for moments. In the course of this
section and Section 1.5 we will exhibit formulae for ψn and their inverses ρn. The
inverse map ρ3 has a number of practical uses, to be explored in Section 1.6.

Our first step toward Theorem 1.4.1 is to re-parametrize ΘC.

A linear reparametrization of ΘC

Since the hidden variables Ht are never observed, there is no change in the final
expression of pv in Definition 1.2.5 if we swap the labels {0, 1} of all the Ht simul-
taneously. This swapping is equivalent to an action of the elementary permutation
matrix σ = ( 0 1

1 0 ):

sw : ΘC → ΘC

θ = (π, T, E) 7→ (πσ, σ−1Tσ, σ−1E) (1.8)

(In our case σ−1 = σ, but the form above generalizes to permutations of larger
hidden alphabets.) Hence we have that Pr(v |π, T, E) = Pr(v | sw(π, T, E)), i.e.,
φn = φn ◦ sw.

We will make essential use of a linear parametrization of ΘC in which sw has a
simple form. Our new parameters will be η0 := (a0, b, c0, u, v0), with subscript 0’s
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to be explained shortly. Although we have already used the letter v at times to
represent visible binary strings, we hope that the context will be clear enough to
avoid confusion between these usages. We let

π =
1

2

[
1− a0, 1 + a0

]
T =

1

2

[
1 + b− c0, 1− b+ c0

1− b− c0, 1 + b+ c0

]
E =

[
1− u+ v0, u− v0

1− u− v0, u+ v0

] (1.9)

(The rightmost column of E is made intentionally homogeneous in the new param-
eters.) We can linearly solve for η0 in terms of θ by a0 = π1 − π0 etc., so in fact
(a0, b, c0, u, v0) generate the parameter ring C[θ]. In these coordinates, sw acts by

a0 7→ −a0, b 7→ b, c0 7→ −c0, u 7→ u, v0 7→ −v0

In other words, swapping the signs of the subscripted variables a0, c0, v0 has the same
effect as acting on the matrices π, T, E by σ as in (1.8), i.e., relabeling the hidden
alphabet.

Introducing the birational parameters

Since φn ◦ sw = φn, the ring map φ#
n : Rp,n → C[θ] must land in the subring of

invariants C[θ]sw = C[b, u, a2
0, c

2
0, v

2
0, a0c0, a0v0, c0v0] (otherwise there would be a map

f such that f ◦ φn ◦ sw 6= f ◦ φn, a contradiction).
However, φ#

n in fact factors through a smaller subring, conveniently generated by
5 elements:

Lemma 1.4.2 (Parameter Subring Lemma). For all n ≥ 3, the ring map φ#
n lands

in the subring C[η] := C[a, b, c, u, v] of C[θ], where a = a0v0, c = c0v0, v = v2
0.

The proof of this key lemma will be given in Section 1.5 after introducing trace
algebras. To interpret its geometric consequences, write q# for the subring inclusion

q# : C[η] ↪→ C[θ]

a 7→ a0v0, b 7→ b, c 7→ c0v0, u 7→ u, v 7→ v2
0,

write ψ#
n : Rp,n → C[η] for the factorization of φ#

n through q#, and write Θ′C :=
SpecC[η], so Θ′C ' C5. The result:

Corollary 1.4.3. The following diagram of dominant maps commutes
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Θ′C BHMM(n)
ψn

ΘC

φn

q

and q is generically two-to-one.

This corollary in particular implies the first part of the Birational Parameter
Theorem (Theorem 1.4.1), by taking q : ΘC → Θ′C ' C5 as the generically 2 : 1 map.

Remark 1.4.4. The map q is only dominant, and not surjective; for example, it misses
the point (1, 0, 0, 0, 0).

Corollary 1.4.5. For all n ≥ 3, BHMM(n) = image(ιnψn).

Proof. Since q is dominant, image(ιnψn) = image(ιnψnq) = image(ιnφn) = BHMM(n).

The unique factorization map ψ#
n can be computed directly in Macaulay2 for

small n. The expressions in moment coordinates are simpler than in probabilities,
so we present these in the following proposition.

Proposition 1.4.6. The map ψ#
3 is given in moment coordinates by

m∅ = m000 7→ 1

m1 = m100 7→ a+ u

m2 = m010 7→ ab+ c+ u

m3 = m001 7→ ab2 + bc+ c+ u

m12 = m110 7→ abu+ ac+ au+ cu+ u2 + bv

m13 = m101 7→ ab2u+ abc+ bcu+ b2v + ac+ au+ cu+ u2

m23 = m011 7→ ab2u+ abc+ abu+ bcu+ c2 + 2cu+ u2 + bv

m123 = m111 7→ ab2u2 + 2abcu+ abu2 + bcu2 + b2uv + ac2 + 2acu

+ c2u+ au2 + 2cu2 + u3 + abv + bcv + 2buv

We will eventually prove the Birational Parameter Theorem (Theorem 1.4.1) by
marginalization to the case n = 3, which we can prove here:

Proposition 1.4.7. The following triangular set of equations hold on the graph of
ψ3, after clearing denominators, and can thus be used to recover parameters from
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observed moments where the denominators are non-zero:

b =
m3 −m2

m2 −m1

u =
m1m3 −m2

2 +m23 −m12

2(m3 −m2)

a = m1 − u
c = a− ba+m2 −m1

v = a2 − m1m2 −m12

b

(This proposition and the following corollary actually hold for all φn with n ≥ 3,
because of Proposition 1.5.2, and by the encoding of Section 1.2, these same formulae
can be used to recover parameters for HMM(2, k, n) when k > 2 as well.)

Proof. These equations can be checked with direct substitution by hand from Propo-
sition 1.4.6. Regarding the derivation, they can be obtained in Macaulay2 by com-
puting two Gröbner bases of the elimination ideal I = 〈mv−φ3(mv)|v ∈ {0, 1}3〉 over
the ring Rm,3, in Lex monomial order: once in the ring Rm,3[v, c, a, b, u], and once in
Rm,3[v, c, u, b, a]. Each variable occurs in the leading term of some generator in one
of these two bases with a simple expression in moments as its leading coefficient. We
solve each such generator (set to 0) for the desired parameter.

Corollary 1.4.8. The map ψ3 : C5 → BHMM(3) has a birational inverse ρ3. The
map ρ#

3 on moment coordinate functions is given by:

a 7→ m2
2 +m3m1 − 2m2m1 −m23 +m12

2(m3 −m2)
u 7→ −m

2
2 +m3m1 +m23 −m12

2(m3 −m2)

b 7→ m3 −m2

m2 −m1

v 7→ num(v)

4(m3 −m2)2

c 7→ num(c)

2(m2 −m1)(m3 −m2)
, where

num(c) =−m1m
2
2 +m2

1m3 +m2
2m3 −m1m

2
3 −m1m12

+ 2m2m12 −m3m12 +m1m23 − 2m2m23 +m3m23, and

num(v) = m4
2 − 2m1m

2
2m3 +m2

1m
2
3 − 2m2

2m12 − 2m1m3m12 + 4m2m3m12

+ 4m1m2m23 − 2m2
2m23 − 2m1m3m23 +m2

12 − 2m12m23 +m2
23.
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Proof. This can be derived by substituting the solutions for u, a, and b in the previous
propositions into the subsequent solutions for a, c, and v. Alternatively, it can be
checked by direct substitution in Macaulay2, i.e., one computes that ψ#

3 ◦ ρ#(θ) = θ
for each birational parameter θ ∈ {a, b, c, u, v}.

The expressions in Corollary 1.4.8 are considerably simpler in moment coordinates
than in probabilities. Comparing the number of terms, the numerators for a, b, c, u, v
respectively have sizes 5, 2, 10, 4, and 12 in moment coordinates, versus sizes 22, 4,
56, 22, and 190 in probability coordinates. This explains in part why Macaulay2’s
Gröbner basis computations execute in moment coordinates with much less time and
memory.

Statistical interpretation of the birational inverse ρ3

It turns out that the factors appearing in the denominators of Corollary 1.4.8 defining
ρ3 have simple factorizations in terms of the rational and birational parameters:

• m3 −m2 appears in the denominator of all ρ3(θ) except ρ3(b), and

m3 −m2
ψ37→ (b)(ab− a+ c)

q7→ (b)(v0)(a0b− a0 + c0)

• m2 −m1 appears in the denominator of ρ3(b) and ρ3(c), and

m2 −m1
ψ37→ ab− a+ c

q7→ (v0)(a0b− a0 + c0)

Let us pause to reflect on the meaning of these factors.

• The factor v0 occurs in det(E) = 2v0, hence v = v2
0 = 0 if and only if the

hidden Markov chain has “no effect” on the observed variables. The image
locus φ3({v0 = 0}) can thus be modeled by a sequence of IID coin flips with
distribution E0 = E1 = (1 − u, u), so the BHMM is an unlikely model choice.
This is a one-dimensional submodel, parametrizable by u ∈ [0, 1], with
a regular (everywhere-defined) inverse given simply by u = m1. Denote this
model by BIID(n).

• The factor b occurs in det(T ) = b, hence b = 0 if and only if each hidden node
has “no effect” on the subsequent hidden nodes. In this case, the observed
process can be modeled as a sequence of independent coin flips, the first flip
having distribution (1 − α, α) := πE and subsequent flips being IID having
distribution (1 − β, β) := T0E = T1E. The image locus φ3({b = 0}) is hence
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a two-dimensional submodel, parametrizable by (α, β) ∈ [0, 1]2, with a
regular inverse given by α = m1, β = m2. Denote this model by BINID(n),
for “binary independent nearly identically distributed” model, and note that
BINID(n) ⊇ BIID(n) by setting α = β.

• The factor a0b− a0 + c0 occurs in πT − π = 1
2
(−a0b+ a0 − c0, a0b− a0 + c0).

Hence a0b − a0 + c0 = 0 if and only if π is a fixed point of T , i.e., the hidden
Markov chain is at equilibrium. We may define the Equilibrium Binary Hidden
Markov model by restricting φn to the locus {a0b−a0+c0 = 0}, which turns out
to yield a four-dimensional submodel for each n ≥ 3, paramterizable by a
generically 2 : 1 map from (a0, b, u, v0). Denote this submodel by EBHMM(n).

It can be easily shown, with the same methods used here for BHMM(n), that
EBHMM(n) itself has a birational parametrization by (a0v0, b, u, v

2
0) = (a, b, u, v),

where a0, b ∈ [−1, 1], c0 := a0(1−b) ∈ [|b|−1, 1−|b|], v0 ∈ [0, 1], and u ∈ [|v0|, 1−|v0|],
with an inverse parametrization given by

b =
m2

1 −m13

m2
1 −m12

u =
2m1m12 −m1m13 −m123

2(m2
1 −m13)

a = m1 − u v =
a2b−m2

1 +m12

b

The newly occurring denominators here are m2
1−m12 = (b)(a2−v) = (b)(v0)2(a2

0−1)
and m2

1−m13 = (b)2(a2− v) = (b)(v0)2(a2
0− 1). It easy to check that the only points

of EBHMM(n) where these expressions vanish are points that lie in BINID(n). Thus,
for n ≥ 3, BHMM(n) can be stratified as a union of three statistically meaningful
submodels

BHMM(n) = BINID(n) ← 2 dimensional

∪
(
EBHMM(n) \ BINID(n)

)
← 4 dimensional

∪
(
BHMM(n) \

(
EBHMM(n) ∪ BINID(n)

))
← 5 dimensional

each of which has an everywhere-defined inverse parametrization.

Computational advantages of moments, cumulants, and
birational parameters

Our approach has been to work with moments mv and cumulants kv instead of prob-
abilities pv, and the birational parameters a, b, c, u, v instead of the matrix entries
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π1, ti1, ei1. Other than the theoretical advantage that the model map is generically in-
jective on the birational parameter space, significant computation gains in Macaulay2
also result from these choices (see Section 1.3 for laptop specifications):

• Computing kerψ3 = kerφ3, the affine defining ideal of BHMM(3), took less
than 1 second in Macaulay2 when using the birational parameters, compared
to 25 seconds when using the matrix entries and moments, and 15 minutes
when using the matrix entries and probabilities.

• Computing kerψ4 = kerφ4, the affine defining ideal of BHMM(4) took less than
1 second in Macaulay2 when using the birational parameters and cumulant
coordinates (see Sturmfels and Zwiernik [37]), compared to 1.5 hours when
using the matrix entries and cumulant coordinates, and running out of memory
(8gb) when using the matrix entries and probabilities.

Despite these advantages, we have been unsuccessful in computing a full gen-
erating set of invariants for BHMM(5). We hope that further investigation into
reparametrization methods will eventually lead to a solution in this and subsequent
cases.

1.5 Parametrizing BHMMs though a trace

variety

In this section, we exhibit a parametrization of every BHMM through a particular
trace variety called SpecC2,3, which itself can be embedded in C10. We use these
coordinates to prove the Birational Parameter Theorem (Theorem 1.4.1) and the
Parameter Subring Lemma (1.4.2), which were stated without proof.

For this, we will define a map φ∞ through which all the φn factor, and using
a version of the Baum formula for moments, we factor this map further through
SpecC2,3. Then we use a finite set 10 of generators of the ring C2,3 exhibited by
(see Sibirskii [33]) to show that the image of φ∞ lands in the desired subring C[η],
and write ψ∞ for the factorization. Finally, by marginalizing to the case n = 3, we
obtain a birational inverse for ψn from the map ρ3 given in Corollary 1.4.8.



CHAPTER 1. HIDDEN MARKOV MODELS WITH TWO HIDDEN STATES 29

Marginalization maps

For each pair of integers n′ ≥ n ≥ 1, the marginalization map µn
′
n : C2n

′

p → C2n

p is
given by

µn
′

n

#
(pv) :=

∑
|w|=n′−n

pvw.

These restrict to maps µn
′
n : C2n

′−1
p → C2n−1

p , and define rational maps µn
′
n : P2n

′−1
p 99K

P2n−1
p . In moment coordinates, these maps are actually coordinate projections:

µn
′
n

#
(mv) = mv0 where 0 denotes a sequence of n′ − n zeros. In fact, using the

subset notation for moments mI , the corresponding ring maps are literal inclusions:

µn
′
n

#
(mI) = mI . In other words, µn

′
n : C2n

′

m → C2n

m is just the map which forgets those
mI where I * [n].

The Baum formula for moments

The evaluation of equation (1.1) requires O(2n) addition operations. There is a faster
way to compute φ#

n (pv), using O(n) arithmetic operations, by treating the BHM
process as a finitary process (see Schönhuth [32]). We define two new matrices2

(Pi)jk := EjiTjk = Pr(Vt = i and Ht+1 = k |Ht = j and π,E, T ), that is,

P0 :=

[
T00E00 T01E00

T10E10 T11E10

]
and P1 :=

[
T00E01 T01E01

T10E11 T11E11

]
.

Writing 1 for the vector ( 1
1 ) we obtain the matrix expression φ#(pv) = πPv1Pv2 · · ·Pvv1

whose evaluation requires only 4n + 2 multiplications and 2n + 1 additions. This is
known as the Baum formula. We can rewrite this formula as a trace product of 2×2
matrices, where the first trace is actually the trace of a 1× 1 matrix:

φ#(pv) = trace(πPv1Pv2 · · ·Pvn1) = trace((1π)Pv1Pv2 · · ·Pvn)

To create an analogue of this formula in moment coordinates, we let

M0 := P0 + P1 = T M1 := P1 M2 := 1π =

[
π0 π1

π0 π1

]
.

2P can be thought of naturally as a 2× 2× 2 tensor, but we will not make use of this interpre-
tation.
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Proposition 1.5.1 (Baum formula for moments). The binary hidden Markov map
φn can be written in moment coordinates as

φ#
n (mv) = trace(M2Mv1Mv2 · · ·Mvn).

For example, φ#
n (m01001) = trace(M2M0M1M0M0M1).

Proof. By our definition of mv (1.3), we have

φ#
n (mv) =

∑
w≥v

φ#
n (pw) =

∑
w≥v

trace((1π)Pw1Pw2 · · ·Pwn)

= trace

(
(1π)

(∑
w1≥v1

Pw1

)(∑
w2≥v2

Pw2

)
· · ·

( ∑
wn≥vn

Pwn

))

= trace(M2Mv1Mv2 · · ·Mvn).

Truncation and φ∞

Proposition 1.5.2. The binary hidden Markov maps φn form a directed system
of maps under marginalization, meaning that, for each n′ ≥ n ≥ 1, the following
diagrams commute:

ΘC

C2n−1
m

C2n
′−1

mφn′

φn

µn
′
n

C[θ]

Rm,n

Rm,n′φ#
n′

φ#
n

µn
′
n

#

Proof. This can be seen directly from the definition of φn using (1.1) and of mv in
(1.3). Alternatively, observe that because M0 = T is stochastic, M0M2 = M2, so for
any sequence 0 of length n′ − n, the Baum formula for moments (Proposition 1.5.1)
implies that

φ#
n′(mv0) = φ#

n (mv) (1.10)

Thus, to compute φn for all n, it is only necessary to compute those φ#
nmv′

where v′ ends in 1. Motivated by this observation, let Rm,∞ := C[mv1 | v ∈
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{0, 1}n for some n ≥ 0] = C[m1,m01,m11,m001,m101,m011, . . .], which in subset in-
dex notation is simply

Rm,∞ := C[mI | I ⊆ [n] for some n ≥ 0]

= C[m1,m2,m12,m3,m13,m23, . . .]

Then we define φ∞ : ΘC → SpecRm,∞ and φ#
∞ : C[θ] ← Rm,∞ by the formula

φ#
∞(mv10) := φ#

length(v1)(mv1), i.e.

φ#
∞(mI) := φ#

size(I)(mI) (1.11)

Note that by locating the position of the last 1 in a binary sequence v′ 6= 0 . . . 0,
we can write v′ in the form v10 for a unique string v (possibly empty if v′ = 1),
so this map is well-defined. By the same principle, for each n, we can also define
a “truncation” map τ : SpecRm,∞ → C2n−1

m by τ#(mv10) := mv1, which, in subset
index notation, is a literal ring inclusion:

τ#(mI) := mI (1.12)

With this definition, φ#
n factorizes as φ#

n = φ#
∞ ◦ τ#

n . We can summarize this and
Proposition 1.5.2 as follows:

Proposition 1.5.3. For all n′ ≥ n ≥ 1, the following diagrams commute:

ΘC

C2n−1
m C2n

′−1
m

SpecRm,∞

φn
φn′

φ∞

µn
′
n

τn′

C[θ]

Rm,n Rm,n′ Rm,∞

φ#
n

φ#
n′

φ#
∞

µn
′
n

# τ#
n′

Remark 1.5.4. These diagrams exhibit the rings Rm,n and maps φ#
n as a directed

system under the inclusion maps µn
′
n

#
, such that Rm,∞ = colimn→∞Rm,n and φ#

∞ =
limn→∞ φ

#
n .

Now, to prove that φn factors through q, we need only show that φ∞ does.

Factoring φ∞ through a trace variety

Let X0, X1, X2 be 2× 2 matrices of indeterminates,

X0 =

[
x000 x001

x010 x011

]
X1 =

[
x100 x101

x110 x111

]
X2 =

[
x200 x201

x210 x211

]
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and following the notation of Drensky [13], Ω2,3 := C[entries of X0, X1, X2] denotes
the polynomial ring on the entries xijk of these three 2×2 matrices. The trace algebra
C2,3 is defined as the subring of Ω2,3 generated by the traces of products of these
matrices, C2,3 := C[trace(Xi1Xi2 · · ·Xir) | r ≥ 1] ⊆ Ω2,3 and we refer to SpecC2,3 as
a trace variety. We write

ν : Spec Ω2,3 → SpecC2,3 and ν# : C2,3 ↪→ Ω2,3

for the natural dominant map and corresponding ring inclusion. To relate these
varieties to binary HMMs , we define two new maps ω# : Ω2,3 → C[θ] and ξ# :
Rm,∞ → C2,3 by

ω#(Xi) := Mi and ξ#(mv1) := trace

((
X2

∏
i∈v

Xi

)
X1

)
.

Proposition 1.5.5 (Baum factorization). The ring map φ#
∞ factorizes as φ#

∞ =
ω# ◦ ν# ◦ ξ#, i.e., the following diagram commutes:

ΘC

Spec Ω2,3 SpecC2,3

SpecRm,∞

ω

ν

ξ

φ∞

Proof. This is just a restatement of the Baum formula for moments (Proposition
1.5.1) :

ω#(ν#(ξ#(mv1))) = ω# trace

(
X2

∏
i∈v1

Xi

)
= trace

(
M2

∏
i∈v1

Mi

)
= φ#

length(v1)(mv1) = φ#
∞(mv1)

Proving the Parameter Subring Lemma

We begin by seeking a factorization of the map ω# ◦ ν#. For this we apply the
following commutative algebra result of Sibirskii on the trace algebras C2,r:
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Proposition 1.5.6 (Sibirskii, 1968). The trace algebra C2,r is generated by the ele-
ments

trace(Xi) : 0 ≤ i ≤ r,

trace(XiXj) : 0 ≤ i ≤ j ≤ r,

trace(XiXjXk) : 0 ≤ i < j < k ≤ r.

Corollary 1.5.7. The algebra C2,3 is generated by the 10 elements

trace(X0), trace(X1), trace(X2),

trace(X2
0 ), trace(X2

1 ), trace(X2
2 ), trace(X0X1), trace(X0X2), trace(X1X2),

trace(X0X1X2).

Proposition 1.5.8. The ring map ω# ◦ ν# factors through the inclusion

q# : C[η] := C[a, b, c, u, v] ↪→ C[θ] := C[a0, b, c0, u, v0],

i.e., we can write ω# ◦ ν# = q# ◦ r# so that the following diagram commutes:

ΘC

Spec Ω2,3 SpecC2,3

Θ′C

ω

ν

r

q

Proof. We apply ω# to the ten generators of C2,3 given in Corollary 1.5.7 and check
that they land in C[η]. Explicit, we find that:

trace(M0) = b+ 1 trace(M1) = bu+ c+ u trace(M2) = 1

trace(M2
0 ) = b2 + 1 trace(M2

1 ) = b2u2 + 2bcu+c2 + 2cu+ u2 + 2bv

trace(M2
2 ) = 1 trace(M0M1) = b2u+ bc+ c+ u trace(M0M2) = 1

trace(M1M2) = a+ u trace(M0M1M2) = ab+ c+ u

Now, by letting ψ#
∞ := r# ◦ ξ# we may factor the ring map φ#

∞ as

φ#
∞ = ω# ◦ ν# ◦ ξ# = q# ◦ r# ◦ ξ# = q# ◦ ψ#

∞.

Corollary 1.5.9. The following diagram commutes:
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Θ′CΘC

Spec Ω2,3 SpecC2,3

SpecRm,∞
q

r

ψ∞

φ∞

ω

ν

ξ

Proof of the Parameter Subring Lemma. Proposition 1.5.3 and Corollary 1.5.9 to-
gether imply that the following diagrams commute:

Θ′CΘC SpecRm,∞ C2n−1
m

q ψ∞ τn

φn

C[η]C[θ] Rm,∞ Rm,n

q# ψ#
∞ τ#

n

φ#
n

In particular, the map φ#
n factors through C[η], as required.

Proving the Birational Parameter Theorem (Theorem 1.4.1)

Recall that Corollary 1.4.3 implies the first part of the Birational Parameter Theorem
(Theorem 1.4.1), by taking

q : ΘC −→ Θ′C

as the generically 2 : 1 map. Thus, it remains to show that the maps

ψn : Θ′C −→ BHMM(n)

have birational inverses ρn. The inverse map ρ3 was already exhibited in Corollary
1.4.8, and we obtain ρn by marginalization: let

ρn = ρ3 ◦ µn3 .
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Let U ⊆ Θ′C be the Zariski open set on which ψ3 is an isomorphism with inverse
ρ3. Consider the set ψn(U) ⊆ BHMM(n). It is Zariski dense in BHMM(n), and by
Chevalley’s theorem (EGAIV, 1.8.4), it is constructible, so it must contain a dense
open set W ′ ⊆ BHMM(n). Now let W = ψ−1

n (W ′), so we have ψn(W ) = W ′ ⊆
ψn(U).

Proposition 1.5.10. ρn ◦ ψn = Id on W and ψn ◦ ρn = Id on W ′.

Proof. Suppose η̂ ∈ W . Then ρn ◦ ψn(η̂) = ρ3 ◦ µn3 ◦ ψn(η̂) = ρ3 ◦ ψ3(η̂) = η̂ since
η̂ ∈ U . Now suppose p̂ ∈ W ′, so p̂ = ψn(η̂) for some η̂ ∈ W . Then, applying
Proposition 1.5.2,

ψn ◦ ρn(p̂) = ψn ◦ ρn ◦ ψn(η̂) = ψn ◦ ρ3 ◦ µn3 ◦ ψn(η̂)

= ψn ◦ ρ3 ◦ ψ3(η̂) = ψn(η̂) = p̂

This completes the proof of the Birational Parameter Theorem (Theorem 1.4.1).
In fact we have also proven the following:

Theorem 1.5.11. For any n′ ≥ n ≥ 3, there is a commutative diagram of dominant
maps:

C5
η

BHMM(n)

BHMM(n′)
ψn′

ψn

µn
′
nΘC

φn

φn′

q

1.6 Applications and future directions

Besides attempting to compute a set of generators for IBHMM(5), there are many other
questions to be answered about HMMs that can be approached immediately with
the techniques of this chapter.
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A nonnegative distribution in BHMM(3) but not BHMM(3)

It turns out that not all of the probability distributions (non-negative real points)
of BHMM(n) lie in the model BHMM(n). In other words, BHMM(n) ∩ ∆2n−1

p 6=
BHMM(n), so the model must be cut out by some non-trivial inequalities inside the

simplex. To illustrate this, the following real point θ̂ of ΘC does not lie in Θst, but
maps under φ3 to a point p̂ of ∆7

p:

θ̂ = (π̂, T̂ , Ê) =

([
−1

8
9
8

]
,

[
3
4

1
4

1
4

3
4

]
,

[
3
4

1
4

1
4

3
4

])
(1.13)

Moreover, the analysis of Section 1.4 reveals that the fiber φ−1
3 (p̂) consists only

of the point θ̂ and the “swapped” point

θ̂′ = (π̂′, T̂ ′, Ê ′) =

([
9
8
−1

8

]
,

[
3
4

1
4

1
4

3
4

]
,

[
1
4

3
4

3
4

1
4

])
(1.14)

which is also not in Θst. Hence the image point p̂ = φ3(θ̂) = φ3(θ̂′) is a non-negative
point of BHMM(3) that does not lie in BHMM(3).

A semialgebraic model membership test

In light of the fact that not every nonnegative distribution in BHMM(n) is in
BHMM(n), the defining equations of BHMM(n) are not sufficient to test a prob-
ability distribution for membership to the model. Using the encoding of Section 1.2,
membership to HMM(2, k, n) can be tested by reductions to the k = 2 case to recover
the parameters.

So, suppose we are given a distribution p ∈ ∆2n−1
p and asked to determine whether

p ∈ BHMM(n). The following procedure yields either

(1) a proof by contradiction that p /∈ BHMM(n),

(2) a parameter vector θ ∈ Θst such that φn(θ) = p ∈ BHMM(n), or

(3) a reduction of the question to whether p lies in one of the lower-dimensional
submodels of BHMM(n) discussed in Section 1.4.

How to proceed from (3) is essentially the same as what follows, using the bira-
tional parameterizations of the respective submodels given in Section 1.4, which will
ultimately lead to case (1) or (2).
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To begin, we let p′ = µn3 (p) ∈ ∆23−1
p , i.e., we marginalize p to the distribution

p′ it induces on the first three visible nodes. Note that if p ∈ BHMM(n) then
p′ ∈ BHMM(3). Observing the momentsmI of p′, if any denominators in the formulae
of Corollary 1.4.8 vanish, then we end in case (3).

Otherwise, we let (a, b, c, u, v) = ψ−1
3 (p′), choose v0 to be either square root of

v, and let a0 = a/v0, c0 = c/v0. If p were due to some BHM process, then by
Theorem 1.5.11, these would be its parameters, up to a simultaneous sign change of
(a0, b0, v0). With this in mind, we define θ = (π, T, E) using (1.9). If (π, T, E) are
not non-negative stochastic matrices, then p /∈ BHMM(n) and we end in case (1). If
they are, we compute p′′ = φn(θ), and if p = p′′ then we end in case (2). Otherwise
p must not have been in BHMM(n), so we end in case (1).

Note that since all the criteria in this test are algebraic equalities and inequalities,
this procedure implicitly describes a semialgebraic characterization of BHMM(n) for
all n ≥ 3.

Identifiability of parameters

By a rational map on a possibly non-algebraic subset Θ ⊆ Ck, we mean any rational
map on the Zariski closure of Θ, which will necessarily be defined as a function on a
Zariski dense open subset of Θ. We define polynomial maps on Θ similarly.

Let φ : Θ→ Cn be an algebraic statistical model, where as usual we assume Θ ⊆
Ck is Zariski dense, and therefore Zariski irreducible. A (rational) parameter of the
model is any rational map s : Θ→ C. Such parameters form a field, K ' Frac(Ck).
In applications, for example in the work of Meshkat, Eisenberg, and DiStefano [23], it
is important to know to what extent a parameter can be identified from observational
data alone. In other words, given φ(θ), what can we say about s(θ)? This leads to
the following notions of parameter identifiability, as discussed by Sullivant, Garcia-
Puente, and Spielvogel [38], each of which implies the next:

Definition 1.6.1. We say that a rational parameter s ∈ K is

• (set-theoretically) identifiable if s = σ ◦ φ for some set-theoretic function σ :
φ(Θ)→ C. In other words, for all θ, θ′ ∈ Θ, if φ(θ) = φ(θ′) then s(θ) = s(θ′).

• rationally identifiable if s = σ ◦ φ for some rational map σ : φ(Θ) → C (this
notion is used without a name by Sullivant, Garcia-Puente, and Spielvogel
[38]).

• generically identifiable if there is a (relatively) Zariski dense open subset U ⊆ Θ
such that s|U = σ ◦ φ|U for some set-theoretic function σ : φ(U)→ C.
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• algebraically identifiable if there is a polynomial function g(p, q) :=
∑

i gi(p1, . . . , pn)qi

on φ(Θ)×C of degree d > 0 in q (so that gd is not identically 0 on φ(Θ)) such
that g(φ(θ), s(θ)) = 0 for all θ ∈ Θ (and hence all θ ∈ Ck).

For example, from Proposition 1.4.7, we see that for BHMM(n) with n ≥ 3,
the parameter b is rationally identifiable, and therefore generically and algebraically
identifiable. The parameter v0 is algebraically identifiable, because v2

0 = v and v is
rationally identifiable. In general, we can ask question:

Question 1.6.2. What combinations of BHM parameters are rationally identifiable,
generically identifiable, or algebraically identifiable?

To answer this question we introduce a lemma on algebraic statistical models in
general:

Lemma 1.6.3. For any algebraic statistical model φ as above, the sets Kri, Kgi, and
Kai, of rationally, generically, and algebraically identifiable parameters, respectively,
are all fields.

Proof. Since Θ is Zariski irreducible, so is φ(Θ). Hence the set of rational maps on
φ(Θ) is simply the fraction field of its Zariski closure (an irreducible variety), and
Kri is the image of this field under φ#, which must be a field.

For Kgi, the crux is to show that if s, s′ ∈ Kgi and s 6= 0 then s′/s ∈ Kgi. Let
U ⊆ Θ and σ : φ(U) → C be as in the definition for s, and likewise U ′ ⊆ Θ and
σ : φ(U ′)→ C for s′. Let U ′′ = {θ ∈ U ∩U ′ | s(θ) 6= 0}, which, being an intersection
of three Zariski dense open subsets of Θ, is a dense open. We have σ 6= 0 on
φ(U ′′) ⊆ φ(U)∩φ(U ′), so we can let σ′′ = σ′/σ : φ(U ′′)→ C, and then σ′′ ◦φ = s′/s,
so s′/s ∈ Kgi. Thus Kgi is stable under division, and simpler arguments show it is
stable stable under +,−, and ·.

Finally, Kai is expressly the relative algebraic closure in K of the image under
φ# of the coordinate ring of φ(Θ), which is therefore a field.

Proposition 1.6.4. For any algebraic statistical model φ as above, Kri ⊆ Kgi ⊆
Kai ⊆ K.

Proof. This is now just a restatement of Proposition 3 by Sullivant, Garcia-Puente,
and Spielvogel [38].

Now, the answer to our identifiability question for BHM parameters can be given
easily in the coordinates of Section 1.4. Here φ is the BHM map φn. The field Kri

is simply the image q#(Frac(Θ′C)) because by Theorem 1.4.1,

ψ# : Frac(BHMM(n))→ Frac(Θ′C)
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is an isomorphism. Hence the rationally identifiable parameters are precisely the
field of rational functions in (a, b, c, u, v) = (a0v0, b, c0v0, u, v

2
0) (see (1.9) for the

meanings of these parameters). Since K is a quadratic field extension of Kri given
by adjoining v0 =

√
v, and Kai is the algebraic closure of Kri in K (almost by

definition), it follows that Kai = K, i.e., all parameters are algebraically identifiable.
Finally, we observe that, by the action of sw in Section 1.4, there are generically
two possible values of v0 = 1

2
(E11 − E01) for a given observed distribution, namely

±
√
v. Hence v0 /∈ Kgi, and since a quadratic field extension has no intermediate

extensions, it follows that Kri = Kgi, i.e., all generically identifiable parameters are
in fact rationally identifiable. In summary,

Proposition 1.6.5. For BHMM(n) where n ≥ 3,

C(a, b, c, u, v) = Kri = Kgi ( Kai = C(a0, b, c0, u, v0)

Remark 1.6.6. In a sense, the only obstruction between Kai and Kgi is the label
swapping ambiguity, in the sense that Kgi is the fixed field of Kai under the action
of sw.

A new grading on BHMM invariants

The re-parametrized model map ψn is homogeneous in cumulant and moment coor-
dinates, with respect to a Z-grading where deg(mv) = deg(kv) = sum(v), deg(b) = 0,
deg(a) = deg(c) = deg(u) = 1, and deg(v) = 2. This grading allows for fast linear
algebra techniques that solve for low degree model invariants as in Bray and Morton
[8], except that this grading is intrinsic to the model. Bray and Morton’s grad-
ing, which is in probability coordinates, is not on the binary HMM proper, but on
a larger variety obtained by relaxing the parameter constraints that the transition
and emission matrix row sums are 1. The invariants obtained in their search are
hence invariants of this larger variety, and exclude some invariants of BHMM(n).
The grading presented here can thus be used to complete their search for invariants
up to any finite degree.

Equilibrium BHM processes

In Section 1.4 we found that if a BHM process is at equilibrium, our formula for ψ−1
3

is undefined. We may define Equilibrium Binary Hidden Markov Models, EBHMMs,
by restricting φn to the locus {a0b − a0 + c0 = 0}, which turns out to yield a
four-dimensional submodel of BHMM(n) for each n ≥ 3. The same techniques
used here to study BHMMs have revealed that the EBHMMs, too, have birational
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parameterizations, and the ideal of EBHMM(3) is generated by the equations m1 =
m2 = m3 and m12 = m13. The geometry of EBHMMs will need to be considered
explicitly in future work to identify the learning coefficients of BHMM fibers.

Larger hidden Markov models

As we have remarked throughout, many results on BHMM(n) can be readily applied
to HMM(2, k, n), i.e., HMMs with two hidden states and k visible states. For exam-
ple, consider the parameter identification problem. We may specify the process by
a 2× k matrix E of emission probabilities, along with a triple (a0, b, c0) defining the
π and T of the two-state hidden Markov chain as in (1.9). As in Section 1.2, to ob-
tain E0` and E1` from the observed probability distribution for any fixed `, we simply
define a BHM process where V `

t = 1 if Vt = ` and V `
t = 0 otherwise. Applying Propo-

sition 1.4.7 to the moments of the distribution yields values for (a, b, c, u, v) provided
that the denominators involved do not vanish. Letting v0 =

√
v, a0 = a/v0, and

c0 = c/v0, we obtain (a0, b, c0, u, v0) up to a simultaneous sign change on (a0, c0, v0)
corresponding to swapping the hidden alphabet as in Section 1.4. Then E0` = u− v
and E1` = u+ v, and we get π, T as well from (a0, b, c0). We can repeat this for each
` = 1, . . . , k to obtain all the emission parameters, and hence identify all the process
parameters modulo the swapping operation.

As well, as described in Section 1.3 we can obtain

50k[(n− 3) + (n− 7) + · · ·+ (n− 3bn− 1

3
c)]

polynomial invariants of HMM(2, k, n) by reducing to BHMM(n) as above, and
marginalizing to collections of 4 equally-spaced visible nodes to obtain points of
BHMM(4) at which we know the invariants of Theorem 1.3.1 will vanish.

Given these extensions, one can hope that algebraic techniques similar to those
used here could elucidate the geometry of HMMs with any number of hidden states
as well.
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Chapter 2

Matrix product state models with
two-dimensional virtual bonds

This chapter is based on joint work with Jason Morton.

Matrix product states (MPS) provide a useful model of 1-D quantum spin systems
which approximate the ground states of gapped local Hamiltonians [39]. Accordingly
the problem of classifying phases of matter for such chains has been reduced to
understanding equivalence classes (such as under LU operations) in the space of
quantum states representable as matrix product states [40, 17, 10].

With periodic or open boundary conditions, we describe the closure of this space
of states representable by translation invariant binary MPS as an algebraic variety.
Our description is given as an ideal of polynomials in the state’s amplitudes that
vanish if and only if the state is a limit of MPS with N spins and D = d = 2
dimensional virtual and physical bonds. In small cases our description is complete.
In Section 2.1, we exhibit a polynomial which vanishes on a pure state if and only
if it is a limit of binary translation invariant, periodic boundary MPS with N = 4,
and a set of 30 polynomials which vanish when N = 5. We also obtain many linear
equations which are satisfied for N up to 12. In Section 2.2, Theorem 2.2.1 gives an
analogous result for MPS with open boundary conditions and N = 3. Finally we
examine cases where N � 0.

Matrix product states bear a close relationship to probabilistic graphical models
known as a hidden Markov models (HMM) [26]. In Section 2.3, we make this relation-
ship precise by modifying the parametrization of HMM to obtain MPS. We review
the invariant theory of trace identities and trace varieties that was used to study
HMM in Chapter 1, and how these results apply to varieties of MPS. In particular
we obtain a nice parametrization for translation invariant binary MPS with periodic
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boundary conditions. Finally in Section 2.4 we suggest other such relationships be-
tween probabilistic graphical models and tensor network state models. Our results
are complimentary to the connection between invariant theory and diagrammatic
representations explored in [7] and the approaches to quantum state tomography for
MPS developed in [5, 18].

2.1 Representability by translation invariant

matrix product states

First consider a translation-invariant matrix product state with periodic boundary
conditions. Suppose the inner (virtual) bond dimension is D, the outer (physical)
bond dimension is d, and there are N spins. Fix D×D complex parameter matrices
A0, . . . , Ad−1, defining the same D×D×d parameter tensor at each site. This defines
the tensor network state, for ij ∈ {0, . . . , d− 1},

Ψ =
∑

i1,...,iN

tr(Ai1 · · ·AiN )|i1i2 · · · iN〉. (2.1)

Question 2.1.1. Fixing virtual and physical bond dimension, which states are matrix
product states?

Including states which are limits of MPS, a precise answer to this question could
be given as a constructive description of the set of polynomials f in the coefficients
of Ψ such that f(ψi1,...iN ) = 0 if and only if ψ is a limit of MPS. This would describe
the (closure of the) set of MPS as an algebraic variety. See [11] for background on
varieties.

Such a description is possible because of the way MPS are defined. Each co-
efficient ψi1,...,iN is a polynomial function of the parameters arst in the D × D × d

tensor A. Thus (2.1) defines a regular map Ψ : CD2d → CdN , whose image we
denote by PB(D, d,N), the set of tensors representable by translation-invariant ma-
trix product states with periodic boundary conditions. Its closure PB(D, d,N) in
either the Zariski or classical topology is an irreducible algebraic variety consisting
of those tensors which can be approximated arbitrarily well by MPS. We can thus
refine Question 2.1.1 as follows.

Question 2.1.2. Fixing, D, d, and N , what polynomial relations must the coefficients
of a matrix product state satisfy: what is the defining ideal of PB(D, d,N)?

We primarily examine the fully binary case D = d= 2. The invariance of trace
under cyclic permutations of the matrices Ai1 , . . . , AiN means we can immediately
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A A A A A A

Figure 2.1: Translation-invariant MPS with periodic boundary.

restrict to the subspace spanned by binary necklaces (equivalence classes of binary
strings under cyclic permutation). For N = 3 physical legs, this is the coordinate
subspace (ψ000 : ψ100 : ψ110 : ψ111) and all three-qubit states with cyclic symmetry
are matrix product states. For N = 4 it is the six-dimensional coordinate subspace
(ψ0000 : ψ1000 : ψ1100 : ψ1010 : ψ1110 : ψ1111) and not all states are MPS (Theorem
2.1.3). In the N = 5 case the 8 equivalence classes of coefficients under cyclic
permutation are ψ00000, ψ10000, ψ11000, ψ11100, ψ11110, ψ11111, ψ10100, and ψ11010.

Figure 2.2: The eight binary necklaces for N = 5.

For N = 6, . . . , 15 the dimensions of this “necklace space” are 14, 20, 36, 60, 108,
188, 352, 632, 1182, and 2192. In general the number of d-ary necklaces of length N
is given by the following formula of Moreau [24]:

nd(N) =
1

N

∑
`|N

ϕ(`)dN/`,

where ϕ is Euler’s totient function. Thus translation invariant MPS with periodic
boundary of length N and physical bond dimension d live in a linear space isomorphic
to Cnd(N).

Näıvely we have 8 parameters in our 2×2×2 tensor A, but on each virtual bond we
can apply a gauge transformation P ( · )P−1 for P ∈ SL2 without changing the state
[29]. Since SL2 is 3-dimensional, we expect PB(2, 2, 3) to be 5-dimensional. Counting
this way, our expected dimension of PB(D, d,N) is min{D2(d− 1) + 1, nd(N)}. We
expect PB(D, d,N) to be a hypersurface when this equals nd(N), which happens
first when (D, d,N) = (2, 2, 4). In this case our expectation holds:
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Theorem 2.1.3. A four-qubit state Ψ is a limit of binary periodic translation in-
variant MPS with N = 4 if and only if the following irreducible polynomial vanishes:

ψ2
1010ψ

4
1100 − 2ψ6

1100 − 8ψ1000ψ1010ψ
3
1100ψ1110 + 12ψ1000ψ

4
1100ψ1110

− 4ψ2
1000ψ

2
1010ψ

2
1110 + 2ψ0000ψ

3
1010ψ

2
1110 + 16ψ2

1000ψ1010ψ1100ψ
2
1110

− 4ψ0000ψ
2
1010ψ1100ψ

2
1110 − 16ψ2

1000ψ
2
1100ψ

2
1110 + 4ψ0000ψ1010ψ

2
1100ψ

2
1110

− 4ψ0000ψ
3
1100ψ

2
1110 − 4ψ0000ψ1000ψ1010ψ

3
1110 + 8ψ0000ψ1000ψ1100ψ

3
1110

− ψ2
0000ψ

4
1110 + 2ψ2

1000ψ
3
1010ψ1111 − ψ0000ψ

4
1010ψ1111 − 4ψ2

1000ψ
2
1010ψ1100ψ1111

+ 4ψ2
1000ψ1010ψ

2
1100ψ1111 + 2ψ0000ψ

2
1010ψ

2
1100ψ1111 − 4ψ2

1000ψ
3
1100ψ1111

+ ψ0000ψ
4
1100ψ1111 − 4ψ3

1000ψ1010ψ1110ψ1111 + 4ψ0000ψ1000ψ
2
1010ψ1110ψ1111

+ 8ψ3
1000ψ1100ψ1110ψ1111 − 8ψ0000ψ1000ψ1010ψ1100ψ1110ψ1111

− 2ψ0000ψ
2
1000ψ

2
1110ψ1111 + 2ψ2

0000ψ1010ψ
2
1110ψ1111 − ψ4

1000ψ
2
1111

+ 2ψ0000ψ
2
1000ψ1010ψ

2
1111 − ψ2

0000ψ
2
1010ψ

2
1111.

Hence, up to closure, the the set PB(2, 2, 4) of tensors that can be represented in
the form (2.1) where A0 and A1 are arbitrary 2× 2 matrices, is a sextic hypersurface
in the space of 2 × 2 × 2 × 2 tensors invariant under cyclic permutations of the
indices. The 30-term hypersurface equation was found using a parametrization of
the matrices that is similar to the birational parametrization of binary hidden Markov
models given in Chapter 1.

An example of a pure state on four qubits on which the polynomial f of Theorem
2.1.3 is nonvanishing, and so cannot be arbitrarily well approximated by such a
matrix product state, is given by letting ψ1010 = ψ1110 = −1/4 and ψ0000 = ψ1000 =
ψ1100 = ψ1111 = 1/4. In this example, f(Ψ) = 2−5, which is the maximal value of
f(Ψ) attained on corners of the 6-D hypercube.

The other cases with N ≤ 15 when we expect PB to be a hypersurface are when
(D, d,N) = (2, 4, 6), (3, 3, 7), (5, 15, 12), (3, 71, 13), and (2, 296, 14). In general, we
will need many more polynomials to define the space of matrix product states as
their zero locus. As an example, consider PB(2, 2, 5), which we expect to be a five-
dimensional variety in the necklace space C8 = CN2(5).

Theorem 2.1.4. Any homogeneous minimal generating set for the ideal of PB(2, 2, 5)
must contain exactly 3 quartic and 27 sextic polynomials, possibly some higher degree
polynomials, but none of degree 1, 2, 3, or 5.

Proof. Using the bi-grading of Theorem 2.1.5, we decompose the ideal I into vector
spaces Ir,s. For each (r, s) with 1

5
(r + s) ≤ 6, we select a large number of parameter

values Â at random, and use Gaussian elimination to compute a basis for the vector
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space Îr,s of polynomials vanishing at their images Ψ(Â), which is certain to contain
Ir,s. We then substitute indeterminate entries for A symbolically into the polynomials
to ensure that they lie in Ir,s. This yields a bihomogeneous basis for I in total degree
≤ 6.

This is interesting, because the variety only has codimension 3, but requires at
least 30 equations to cut it out ideal-theoretically. Such a collection of 3 quartics and
27 quadrics was found and verified symbolically. Exact numerical tests (intersection
with random hyperplanes) indicate that the top dimensional component of the ideal
they generate is reduced and irreducible of dimension 5, and is therefore equal to
PB(2, 2, 5).

Homogeneity and GLd-invariance

Note that the equation of Theorem 2.1.3 is homogeneous of degree 6, and every
monomial has the same total number of 1s appearing in its subscripts. Every MPS
variety will be homogeneous in such a grading:

Proposition 2.1.5. For any D, d,N , the space of translation-invariant MPS limits
with periodic boundary conditions is cut out by polynomials in which each monomial
has the same total number of 0s, 1s, . . . (d− 1)s appearing in its subscripts.

Proof. In fact we claim that the ideal of PB(D, d,N) is Zd-homogeneous with respect
to d different Z-gradings degi for 0 ≤ i ≤ d− 1, where degi(ΨJ) is the number of oc-
currences of i in J . Since deg(ψJ) := 1

n

∑N−1
i=0 degi(ψJ) = 1, the ideal of PB(D, d,N)

is also homogeneous in the standard grading.
The usual parametrization Ψ, where A0, . . . , Ad−1 have generic entries, is Zd-

homogeneous with respect to the grading above along with letting degi(Aj) = 1
when i = j and 0 when i 6= j. Being a homogeneous map, its kernel, the defining
ideal of PB(D, d,N), is homogeneous in each of these gradings as well.

In fact, the variety is homogeneous in a stronger sense because of an action of
GLd on the parameter space of Ψ. In the example above, the action is given by(

a b
c d

)
(A0, A1) = (aA0 + bA1, cA1 + dA1)

which descends to an action on Ψ by(
g00 g01

g10 g11

)
· ψijkl =

∑
pqrs

gipgjqgkrglsψpqrs.
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The embedding (C∗)d ⊂ GLd as diagonal matrices gives rise to the Zd homogene-
ity of the proposition above.

Linear invariants and reflection symmetry

There are additional symmetries peculiar to the case D = d = 2. For a generic pair
of 2 × 2 matrices A0, A1, there is a one-dimensional family of matrices P ∈ SL2

such that P−1AiP are symmetric. Thus, a generic point Ψ ∈ PB(2, 2, N) can be
written as Ψ(A0, A1) with ATi = Ai, and then ΨJ = tr(

∏
j∈J Aj) = tr((

∏
j∈J Aj)

T ) =
tr(
∏

j∈reverse(J) Aj) = Ψreverse(J). This implies

Proposition 2.1.6. If an N-qubit state Ψ is a limit of binary periodic translation
invariant matrix product states, then it has reflection symmetry: ψJ = ψreverse(J) for
all J .

For N ≥ 6, N -bit strings can be equivalent under reflection but not cyclic permu-
tation, so then PB(2, 2, N) admits additional linear invariants, i.e. linear polynomials
vanishing on the model. For N=6, 7 these are:

PB(2, 2, 6) : ψ110100 − ψ110010

PB(2, 2, 7) : ψ1110100 − ψ1110010 and ψ1101000 − ψ1100010

For small N we can find all the linear invariants of PB(2, 2, N) using the bigrading
of Theorem 2.1.5 as in the proof of Theorem 2.1.4. Modulo the cyclic and reflection
invariants, there are no further linear invariants for N ≤ 7, but PB(2, 2, 8) has a
single “non-trivial” linear invariant,

ψ11010010 + ψ11001100 − ψ11001010 + ψ11101000 − ψ11011000 − ψ11100100.

For N = 9, 10, 11, and 12, PB(2, 2, N) admits 6, 17, 44, and 106 such non-trivial
invariants, in each case unique up to change of basis on the vector space they generate.

2.2 MPS with open boundary conditions

We now consider matrix product states with open boundary conditions, which are
even more similar to hidden Markov models than the periodic version. Here the
state is determined by two boundary state vectors b0, b1 ∈ CD, along with the D×D
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parameter matrices A0, . . . , Ad−1 of the MPS, by

Ψ =
∑

i1,...,iN

bT0Ai1 · · ·AiN b1|i1i2 · · · iN〉 (2.2)

=
∑

i1,...,iN

tr(BAi1 · · ·AiN )|i1i2 · · · iN〉 (2.3)

where B = b1b
T
0 is a rank 1 matrix. We denote the set of states obtainable in this

way by OB(D, d,N), and its closure (Zariski or classical) by OB(D, d,N). We do
not have the cyclic symmetries of the PB model here, so we consider OB(D, d,N) as
a subvariety of CdN . If the Ai and bT0 have non-negative entries with row sums equal
to 1, and b1 is a vector of 1’s, then (2.2) is exactly the Baum formula for HMM, so
in fact the model HMM(D, d,N) studied in Chapter 1 is contained in PB(D, d,N).

The expression (2.3) for Ψ is invariant under the action of SLD on the Ai and
B by simultaneous conjugation. Thus, we may assume B is in Jordan normal form,
i.e. a matrix of all zeroes except possibly in the top left corner. As well, the map
(B,A1, . . . , Ad) 7→ (t−NB, tA1, . . . , tAd) preserves Ψ, so discarding the case B = 0
(which will not change OB) we can assume that the top left entry of B is 1. Thus Ψ
is determined by dD2 parameters, the entries of the Ai. In particular, OB(2, 2, 3) is
parametrized by (a dominant map from) 8 parameters, and lives in an 8-dimensional
space. This parametrization still turns out still to be degenerate:

Theorem 2.2.1. A three-qubit state Ψ is a limit of N = 3 binary translation invari-
ant MPS with open boundary conditions if and only if the following 22-term quartic
polynomial vanishes:

ψ2
011ψ

2
100 − ψ001ψ011ψ100ψ101 − ψ010ψ011ψ100ψ101 + ψ000ψ011ψ

2
101

+ ψ001ψ010ψ011ψ110 − ψ000ψ
2
011ψ110 − ψ010ψ011ψ100ψ110

+ ψ001ψ010ψ101ψ110 + ψ001ψ100ψ101ψ110 − ψ000ψ
2
101ψ110 − ψ2

001ψ
2
110

+ ψ000ψ011ψ
2
110 − ψ001ψ

2
010ψ111 + ψ000ψ010ψ011ψ111 + ψ2

001ψ100ψ111

+ ψ2
010ψ100ψ111 − ψ000ψ011ψ100ψ111 − ψ001ψ

2
100ψ111 − ψ000ψ001ψ101ψ111

+ ψ000ψ100ψ101ψ111 + ψ000ψ001ψ110ψ111 − ψ000ψ010ψ110ψ111

That is, the variety OB(2, 2, 3) is a quartic hypersurface in C8 cut out by the poly-
nomial above. This polynomial previously appeared in the context of the HMM [27].

Proof. The map Ψ and its image are homogeneous in the same grading as described
in Theorem 2.1.5, which we can use as in the proof of Theorem 2.1.4 to search for low
degree polynomials vanishing on the variety. When (D, d,N) = (2, 2, 3) the quartic
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from the theorem appears in this search. The quartic is prime, and therefore defines a
7-dimensional irreducible hypersurface in C8. On the other hand, the Jacobian of the
map Ψ at a random point, e.g. the point where A0, A1 have entries 1, 2, 3, 4, 5, 6, 7, 8
in that order, has rank 7. Therefore OB(2, 2, 3) is of dimension at least 7, and
contained in the quartic hypersurface above, so they must be equal.

From Theorem 2.2.1, we can derive conditions on OB(2, 2, N) for N ≥ 4 as
well. There is a marginalization map from OB(2, 2, N) to OB(2, 2, 3) given by ΨI 7→∑
|J |=N−3 ΨIJ for each I of length 3, which commutes with the assignment b1 7→∑
j3...jN

Aj3 · · ·AjN b1. In fact there are N − 2 such marginalization maps, each given
by choosing 3 consecutive indices I to marginalize to (summing over the remaining
indices J). By composing these maps with the quartic polynomial above, we can
obtain N − 2 quartic polynomials vanishing on OB(2, 2, N).

By analogy to the case of hidden Markov models discussed in the next section,
we make the following

Conjecture 2.2.2. For N ≥ 4, a generic N-qubit state can be recovered from its
marginalization to any three consecutive states. That is, each marginalization map
OB(2, 2, N)→ OB(2, 2, 3) is a birational equivalence of varieties.

The analogous statement with the variety HMM in place of OB is shown to be true
in Chapter 1.

Conjecture 2.2.3. A generic N-qubit (D=d=2) translation invariant matrix product
state Ψ with open boundary conditions is determined up to phase by a reduced density
operator which traces out all but a chain of three adjacent states, but no fewer.

When the three adjacent states are qubits 1, 2, and 3 (the first three legs of
the diagram), this amounts to saying that the group S1 of unit-modulus complex
numbers acts transitively on generic fibres of the real-algebraic map

Ψ 7→

( ∑
i4,...,iN

Ψj1j2j3i4...iNΨ†k1k2k3i4...iN

)
j1j2j3k1k2k3

when restricted to OB(2, 2, N). Here the right hand side denotes an order 6 tensor
with indices j1, j2, j3, k1, k2, k3, and Ψ† denotes complex conjugation.

Conjecture 2.2.4. A generic N-qubit (D=d=2) periodic translation invariant ma-
trix product state Ψ is determined up to phase by a reduced density operator which
traces out all but a chain of four adjacent states, but no fewer.
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T T T T

E E E E

Figure 2.3: Parameterization of an MPS model as a complex HMM using complex
E and T matrices with all row sums equal to z ∈ C and copy dot (comultiplication)
tensor (circle). Contraction of a region of the tensor network enclosed by a dashed
line yields an A tensor.

Similarly, this amounts to saying that S1 acts transitively on generic fibres of the
map

Ψ 7→

( ∑
i5,...,iN

Ψj1j2j3j4i5...iNΨ†k1k2k3k4i5...iN

)
j1j2j3j4k1k2k3k4

when restricted to PB(2, 2, N).

2.3 Matrix product states as complex valued

hidden Markov models

We now explain how the polynomial in Theorem 2.1.3 was obtained, and connect the
classical hidden Markov model and matrix product states through a reparametrizing
rational map. The parametrization of the state Ψ is analogous to that of the moment
tensor of a binary hidden Markov model used in Chapter 1.

Let T be a 2×2 transition matrix and E a 2×2 emission matrix. For a (classical)
hidden Markov model, T and E are nonnegative stochastic matrices (their rows sum
to one), representing a four-dimensional parameter space. For PB, T and E will be
complex with row sums all equal to some constant z ∈ C, so they form parameter
space isomorphic to C5. We parametrize the Ai in terms of (T,E) by

A0 = T, A1 =

(
e01 0
0 e11

)(
t00 t01

t10 t11

)
.

This is shown in Figure 2.3; grouping and contracting the E, T , and copy dot tensors
into an A tensor yields a dense parameterization of an MPS as depicted in Figure
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2.1. We then parameterize E and T with the five parameters u, v0, b, c0, z by setting

E =

(
z − u+ v0 u− v0

z − u− v0 u+ v0

)
and

T =

(
z + u− c0 z − b+ c0

z − b− c0 z + b+ c0

)
.

Composing these formulae with the map (A0, A1) 7→ Ψ yields a restricted parametriza-
tion ρN : C5 → C2N , whose image lies inside PB(2, 2, N).

Proposition 2.3.1. The variety PB(2, 2, N) is at most 5-dimensional, and the image
of our restricted parametrization ρN is dense in it.

Proof. Suppose Ψ = Ψ(A0, A1) for A0, A1 generic. First, we will transform the Ai
by simultaneous conjugation with an element P of SL2 to a new pair of matrices
A′0, A

′
1 such that A′0 has equal row sums and A′1 = DA′0 for a diagonal matrix

D. Generically, A0 is invertible, and we can diagonalize the matrix A1A
−1
0 , so we

write U−1A1A
−1
0 U = D0, and then U−1A1U = DU−1A0U . Next we find another

diagonal matrix D1 ∈ SL2 such that D−1
1 U−1A0UD1 has equal row sums. Then let

P = UD1 and A′i = D−1
1 U−1AiUD1, and we are done with our transformation. Now

Ψ = Ψ(A′0, A
′
1) since simultaneous conjugation does not change trace products. But

now letting z be the common row sum of A′0, we can solve linearly for u, v0, b, and
c0 to obtain Ψ = ρ(u, v0, b, c0, z).

In fact we know from exact computations in Macaulay2 [22] that for 4 ≤ N ≤ 100,
dim PB(2, 2, N) = 5. This is proven by checking that the Jacobian of ρ attains rank
5 at some point with randomly chosen integer coordinates, giving a lower bound of
5 on the dimension of its image.

When parametrized using ρ, there are sufficiently few parameters and the entries
of Ψ are sufficiently short expressions that Macaulay2 is also able to compute the
exact kernel of the parametrization, i.e. defining equations for the model. It is by
this method that we obtain the hypersurface equation of Theorem 2.1.3 as the only
ideal generator for PB(2, 2, 4).

Identifying parameters of MPS

Determining the parameters of an MPS is related to quantum state tomography, and
represents a quantum analog to the identifiability problem in statistics. The extent
to which the parameters can be identified can be addressed algebraically.
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Given D×D matrices A1 . . . Ad with indeterminate entries, we write CD,d for the
algebra of polynomial expressions in their entries that are invariant under simulta-
neous conjugation of the matrices by GL2.

Sibirskii [34], Leron [21], and Procesi [31] showed that the algebra CD,d is gen-
erated by the traces of products tr(Ai0 · · ·Ain) as n ≥ 0 varies. For this reason,
CD,d is called a trace algebra. Its spectrum, Spec CD,d, is a trace variety. Since the

coordinate ring of PB(D, d,N) is a subring of CD,d, we have a map Spec CD,d → CdN

parametrizing a dense open subset of PB(D, d,N).
In the case D = 2, Sibirskii showed further that the trace algebra C2,d is minimally

generated by the elements tr(Ai) and tr(A2
i ) for 1 ≤ i ≤ d, tr(AiAj) for 1 ≤ i < j ≤

d, and tr(AiAjAk) for 1 ≤ i < j < k ≤ d.
For d = 1 . . . 6, the number of such generators is 2, 5, 10, 18, 30, 47. In particu-

lar, when d = 2, the number of generators equals the transcendence degree of the
ring, 5 = 8 − 3. This means SpecC2,2 is isomorphic to C5, yielding for each N a
dominant parametrization φN : C5 → PB(2, 2, N). Gröbner bases for randomly cho-
sen fibers indicate that for N = 4 . . . 10, the map φN is generically k-to-one, where
k = 8, 5, 6, 7, 8, 9, 10, respectively. Continuing this sequence suggests the following.

Conjecture 2.3.2. Using the trace parameterization φN , for N ≥ 5, almost every
periodic boundary MPS has exactly N choices of parameters that yield it.

In other words, forN ≥ 5, the parametrization φN : C5 ' SpecC2,2 → PB(2, 2, N)
is generically N -to-1. Generically, the points of SpecC2,2 are in bijection with the
SL2-orbits of the tensors A. The conjecture implies that, up to the action of SL2,
the parameters of a binary, D = d = 2 translation invariant matrix product state
with periodic boundary are algebraically identifiable from its entries.

2.4 Conclusion

A conjectured dictionary between tensor network state models and classical prob-
abilistic graphical models was presented in [25]. In this dictionary, matrix prod-
uct states correspond to hidden Markov models, the density matrix renormalization
group (DMRG) algorithm to the forward-backward algorithm, tree tensor networks
to general Markov models, projected entangled pair states (PEPS) to Markov or
conditional random fields, and the multi-scale entanglement renormalization ansatz
(MERA) loosely to deep belief networks. In this chapter, we formalize the first of
these correspondences and use it to algebraically characterize quantum states repre-
sentable by MPS and study their identifiability.
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Chapter 3

Tensors and models with more
hidden states

This chapter is based on joint work with Shaowei Lin, Luca Weihs, and Piotr Zwiernik.

In Chapter 1, the hidden variables of the hidden Markov models were all assumed
to be binary, i.e., they could each take on only two possible states. In Chapter 2,
the virtual bonds of the matrix product state models — which are algebraically
very similar to hidden variables — were also assumed to be binary. In each case,
this assumption allowed for a particularly nice reparametrization of the model which
made symbolic computations more tractable.

In this chapter, we study directed acyclic graphical (DAG) models where each
random variable, or node, is allowed to take on an arbitrary finite number of states.
Two things are accomplished. First, we introduce a notational method called auto-
matic tensor contraction which provides a convenient and index-free way to repre-
sent the large but structured polynomials which arise in the study of DAG models.
Second, using this notation, we state and prove a new and symbolically efficient
parametrization (Theorem 3.8.3) of discrete DAG models.

Initially, this work began as an effort to generalize work of Smith and Zwiernik
[35], but turned out to be more broadly applicable. In the case of certain tree-shaped
models on binary variables, Smith and Zwiernik [35] defined new coordinates called
tree cumulants which allow for an extremely symbolically efficient reparametrization.
The new parameters were at first somewhat mysterious and it was unclear whether
they could be generalized for models with non-binary variables, i.e., variables taking
on more than two states. However, through discussions with Zwiernik, it became
clear that they could be viewed as linear regression coefficients in a sense that would
allow for their generalization. This chapter, among other uses, serves as a first step
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in this generalization, which in fact applies not only to trees but all discrete DAG
models.

3.1 Introduction

In a directed acyclic graph (DAG) model, the nodes of the graph represent random
variables, and each variable is affected by its parent according to a some condi-
tional probability distribution. Thus, DAG models on discrete variables are typ-
ically parametrized using conditional probabilities. For example, the DAG model
B ← A→ C where B and C are observed is parametrized as

Pr(BC) =
∑
A

Pr(A) Pr(B |A) Pr(C |A).

These parameterizations are somewhat redundant in that not all the parameters are
free: the rows of a conditional probability matrix must sum to one. In this chapter,
we introduce a more compact parametrization of DAGs using moment tensors µ and
linear regression coefficients β which result in shorter expression lengths and simpler
characterization of statistical independence. Using this, we first derive the following
symbolically efficient expression of the moments of a the sinks of a DAG model, to
be stated and explained more precisely in section 3.8:

Theorem 3.1.1 (3.8.3). Given a discrete DAG model G and a set S ⊆ nodes(G),
the joint moment µS of the nodes S is given by the following formula:

µS =
∑
H⊂G

sinks(H)⊆S⊆nodes(H)

∏
v∈nodes(H)

β
pa(v;H)

vm(v;H,S)

The definition of moments µS is given in Section 3.6, and the tensors β
pa(v;H)

vm(v;H,S) are
defined in Section 3.8. The product here is an operation called automatic contraction
to be defined in section 3.3. Without saying much more, we can note here that as S
varies among all the subsets of of nodes(G), the total number of entries the tensors

β
pa(v;H)
v is exactly equal to the dimension of the standard parameter space of the

model. They also determine the entries of the larger tensors β
pa(v;H)

vm(v;H,S) , and so they
indeed parametrize the model as one would hope.

With this result in place, there are many possible subsequent directions. Models
where not all nodes are observed abound in statistics, for example hidden Markov
models (HMM), phylogenetic trees, restricted Boltzmann machines (RBM) and other
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neural networks. The above formula gives a more efficient way to encode the proba-
bility distribution on the observed nodes of these models. The new parametrization
can be used to study the defining equations of the model, or the inequalities defining
the model inside its Zariksi closure, or to compute the learning coefficients to be
used in the sBIC (singular Bayesian information criterion) for model selection. We
can generalize previous work of Smith and Zwiernik [35] on tree cumulants of binary
tree models. Namely, nearly identical formulae apply for tree models models where
each node can take an arbitrary finite number of states.

3.2 Tensors

In this section, we first give a brief introduction to tensors and lay out the notations
used in this chapter. In the second part, we define affine distributions which gener-
alize probability distributions in the finite discrete case. Loosely speaking, they are
probabilities which sum to one but are allowed to take negative or complex values.

Vectors

There are many standard ways of writing and talking about vectors. Here we illus-
trate very briefly which standard notations and terminology we are using.

Given a vector space V ' Cr, let e1, . . . , er be a basis for V and denote the
coordinates of a vector v ∈ V with respect to this basis by writing v = v1e1 + · · · +
vrer =

∑
i e
i(v)ei, where ei is the function V → C that returns the i-th coordinate

of a vector. Now, let the dual space V∗ be the vector space of linear maps V → C.
Every ` ∈ V∗ can be written as a linear combination ` = `1e1 + · · · + `rer so the
coordinate functions e1, . . . , er form a basis that is dual to e1, . . . , er, i.e. ei(ej) = δij
where δ = (δij) is the Kronecker delta

δij =

{
1 if i = j,

0 otherwise.

Note that we denote the coordinates vi of v ∈ V using subscripts while those of a
vector ` = (`i) in the dual space V∗ are denoted using superscripts.

Tensors

Here we illustrate our notation and terminology for tensors, which aims to avoid the
cumbersome use of indices when possible. There are many ways to define the tensor
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product V ⊗ W of vector spaces V and W . If V ' Cr and W ' Cs, then we can
represent a tensor α ∈ V ⊗ W as an array in Cr×s. The tensor product v ⊗ w of
vectors v = (vi) ∈ V and w = (wj) ∈ W is the array

α = (αij) = (viwj) ∈ V ⊗W

of products of the coordinates of v and w. Thus ⊗ is a bilinear operation, i.e.

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w
v ⊗ (w + w′) = v ⊗ w + v ⊗ w′

(cv)⊗ w = v ⊗ (cw) = c(v ⊗ w)

for all v, v′ ∈ V , w,w′ ∈ W and c ∈ C. Let e1, . . . , er and e′1, . . . , e
′
s be basis vectors

for V and W . Then V ⊗ W is space of all linear combinations
∑

i,j αij ei ⊗ e′j.
When working in a tensor product of vector spaces and their duals, we denote the
coordinates by

v = (vj1···jni1···im) ∈ Va1 ⊗ · · · ⊗ Vam ⊗ V∗b1 ⊗ · · · ⊗ V
∗
bn

where the superscripts and subscripts indicate the vector spaces involved.
The order of a tensor is the dimension of its array of coordinates. For instance,

vectors are tensors of order one while matrices have order two.

3.3 Automatic tensor contractions

In this section, we take a lesson from computer science to simplify our tensor notation.
Tensor equations often involve large numbers of subscripts and superscripts which
can be difficult to read and manipulate, but the form of these formulae are often
determined by the type of particular tensors involved. By carefully defining types of
tensors and how they should interact, many complicated expressions can be written
and manipulated much more simply.

For example, suppose that β ∈ U ⊗U⊗V∗ and γ ∈ V . It is “natural” to evaluate
the expression β ·γ by temporarily considering β as a map V → U⊗U and computing
β(γ). This can be written by equating and summing some indices, commonly known
as contracting indices. Explicitly, say {u0, . . . , u`} is a basis for U and {v0, . . . , vm}
is a basis for V with dual basis {v0, . . . , vm}, so there are unique constants βji and
γk such that

β =
∑
ijk

βkijui ⊗ uj ⊗ vk and γ =
∑
`

γ`v`.
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Evaluating “β(γ)” amounts to contracting the index pair {k, `}, i.e., replacing the
symbol ` by k and summing over k as follows:

∑
ij

(∑
k

αkijβk

)
ui ⊗ uj

To define an operation “·” such that β · γ evaluates this way automatically, we
can declare that a pair of indices in an expression involving “·” should be contracted
if and only if they correspond to dual vector spaces. Some conditions will be needed
for this operation to be well defined; for example, if δ = (δm) ∈ U∗, then in the
expression β · δ it is ambiguous whether to contract m with i or j, because they both
correspond to U .

In general, given a symbolic array expression for a tensor α = (αi1,...,in) ∈ V1 ⊗
· · · ⊗ Vn, we say that the index symbol ik corresponds to the vector space Vk, and
write Corr(ik) = Vk. In the example above, Corr(i) = Corr(j) = U , Corr(k) = V∗,
and Corr(`) = V . Thus, determining whether k should be contracted with ` in the
expression β ·γ amounts to checking the equality of vector spaces Corr(k) = Corr(`)∗.
So if we are careful about what me mean by vector space equality (as opposed to
mere isomorphism), then we can decide how indices should be contracted by carefully
deciding in advance what vector spaces they will correspond to. This is analogous
to defining types in a programming language in order to simplify subsequent code.

Notation 3.3.1 (Vector space equality conventions). We distinguish between literal
equality and isomorphism of vector spaces. For example, if v1, v2, w1, w2 are distinct
symbols, V = 〈v1, v2〉C and W = 〈w1, w2〉C, then V 6= W although V ' W . We
consider

• V∗∗ = V for every finite vector space V . We have implemented this in com-
putations by having V∗ “remember” that it is a dual space, and declare that
taking its dual “removes the ∗”.

• (U ⊗ V)⊗W = U ⊗ (V ⊗W). We have implemented this computationally by
having a tensor product of vector spaces “remember” which vector spaces it is
a tensor product of, so that both of the above expressions can be told to “drop
parentheses” and equal to U ⊗ V ⊗W .

• V ⊗ U 6= U ⊗ V in general unless V = U .

Now we are ready to state some symmetric conditions under which will make our
automatic contractions well-defined:
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Definition 3.3.2 (Sufficiently symmetric tensors). We say that a tensor α is V-
symmetric if it is invariant under permutation of indices corresponding to V . For
example, if α = (αijk) ∈ V ⊗W⊗V , then α is V-symmetric if and only if αijk = αkji
for all i, j, k. If α has no V indices or exactly one V index, and we consider it trivially
V-symmetric. We say that α is sufficiently symmetric if for every vector space V such
that α has both V and V∗ indices, either

• α is V-symmetric and has at least as many V-indices as V∗-indices, or

• α is V∗-symmetric and has at least as many V∗ indices as V indices.

Definition 3.3.3. If α is a sufficiently symmetric tensor, we define the automatic
contraction Auto(α) to be the tensor obtained from α by contracting every pair of
indices (i, j) corresponding to a pair of dual vector spaces (Vi,Vj). The sufficient
symmetry condition ensures that this definition is well-defined.

Notation 3.3.4. If α = α1 ⊗ · · · ⊗ αn is sufficiently symmetric then we write

α1 · α2 · · · · αn−1 · αn

in place of Auto(α). For example, if α = (αijk) ∈ U ⊗ V ⊗W , β = (β`m) ∈ U∗ ⊗ X ,
and γ = (γrs) ∈ V∗ ⊗X , then

α · β · γ :=
∑
ij

(αijkβ
i
mγ

j
s) ∈ W ⊗X ⊗X .

We will take much advantage of this notation, especially to simplify formulae in
which an unspecified number of tensors are being contracted.

The following lemma illustrates how matrix inversion interacts with automatic
contraction, which will be useful later:

Lemma 3.3.5. If A ∈ U ⊗ V is invertible (considered either as a map U∗ → V or
V∗ → U) with inverse A−1 ∈ U∗ ⊗ V∗, then for any B ∈ U∗ ⊗W, and C ∈ U ⊗ X ,

B · C = (A ·B) · (A−1 · C).

Example 3.3.6. Here is a good place to illustrate some examples of automatic
contraction. Suppose A ∈ U ⊗ U is symmetric and invertible, and denote its inverse
by A−1 ∈ U∗⊗U∗. First, note that the automatic contraction A ·A−1 is well-defined
and equal to the scalar dim(U), not an identity matrix, because we end up summing
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over both indices of A, yielding the trace of the identity. Next, if B ∈ U∗ ⊗W , and
C ∈ U ⊗ X , observe that

B · C = (B · A) · (A−1 · C)

6= B · (A · A−1) · C = B · dim(U) · C = dim(U)B · C

In particular, the automatic contraction expression B ·A ·A−1 ·C is not well-defined,
and indeed, α = B⊗A⊗A−1⊗C does not satisfy the sufficient symmetry condition
because there are more U indices than U∗ indices and the U indices in A cannot be
permuted with the U index in C. The reader is invited to please think critically
about our use of automatic contraction throughout this chapter, and observe that
our use of symmetry and occasional parentheses are adequate.

3.4 Affine and probability distributions

A finite measure space can be specified by a finite set I, called the set of outcomes
or indices, along with a map p : I → C called its distribution or mass function. Since
p is simply an element of the vector space CI , for each ι ∈ I we write pι for p(ι),
and call the pι entries of p.

Definition 3.4.1 (Affine and probability distributions). If
∑

ι∈I pι = 1, we say p
is an affine distribution, and if also the entries pι are all nonnegative real numbers,
we say p is a probability distribution. This corresponds to the usual definition of a
probability distribution in the finite discrete case.

In this chapter, we study affine distributions p ∈ CI where I is the finite discrete
set

I = I1 × · · · × In = {0, . . . , k1} × · · · × {0, . . . , kn} (3.1)

for some positive integers n, k1, . . . , kn. We write

U := CI ' C(k1+1)×···×(kn+1) and Ur := CIr ,

and make the natural identification U = U1⊗· · ·⊗Un. For index classification reasons,
we consider the sets Ir to be disjoint, so that the vector spaces Ur are considered
distinct, even if they are sometimes isomorphic.

Notation 3.4.2 (Multiset subscripts). Given an index ι = (ι1, . . . , ιn) ∈ I and a
multiset A ⊆ [n] we write

ιA := (ιj)j∈A ∈ IA :=
∏

j∈A Ij
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UA :=
⊗

j∈A Ur = CIA

For example, if n = 4, ι = (5, 6, 7, 8), and A = (1, 2, 2, 2, 4), then ιA = (5, 6, 6, 6, 8).
In computations, we implement a multiset A as a list, so that it is easy to take sums
and products indexed by A as written above. In writing, we use the language of
multisets rather than lists because it is easier to read and write

∏
r∈A f(r) instead of∏|A|

i=1 f(Ai).

Next we introduce marginal distributions. Consider a matrix p = (pij) ∈
C(k1+1)×(k2+1) as a table. One would typically write its row sums and column sums
in the margins of the table, so we call the vector of row sums and the vector of
column sums marginal distributions. We write P1 := [p0+, . . . , pk1+] for the result of
marginalizing to the first index, i.e., summing over the second index. Likewise we
write P2 = [p+0, . . . , p+k2 ] for the marginal distribution on the second index. More
generally, given any multiset A ⊆ [n] and distribution p ∈ U = U[n], the marginal
distribution PA ∈ UA is the tensor with entries

(PA)a :=
∑

ι∈I: ιA=a

pι for all a ∈ IA. (3.2)

In particular P[n] = p, and if p is affine, then P∅ = 1 and every marginal distribution
is also affine.

The reader is hereby reassured that we will use subscripts consistently with this
convention throughout this chapter: whenever the symbol P has two subscripts, e.g.
(PA)a, the first subscript always stands for a subset of (or multiset of elements in)
[n], and the second subscript a always stands for an index in IA. For example, if we
write (P1)2, the 1 is short for the subset {1} of [n] and the 2 is taken as an index in
I{1}, so that (P1)2 = p2++···.

We also note that the operation of marginalization P 7→ PA can be written as a
contraction. For any vector space V define 1 : V → C as the map that maps any
vector v to the sum of its coefficients. For any r ∈ [n] we write 1(r) : Ur → C and
1(A) := ⊗r∈A1(r). Then for any subset A ⊆ [n], the marginalization PA is

PA = 1([n] \ A) · P.

3.5 Independence and conditional independence

In statistics and algebraic geometry, independence and conditional independence
show up in many places. Families of distributions satisfying these properties are
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respectively called independence models and mixture models. Meanwhile, in geom-
etry these point sets are called Segre varieties and secant varieties. The geometry of
many classical tensor spaces is studied at length in the book Tensors: Geometry and
Applications by Landsberg [20].

Independence

Given disjoint subsets A,B ⊂ [n] we say that A is independent of B if, using Notation
3.4.2,

(PAB)ab = (PA)a(PB)b for every a ∈ IA and b ∈ IB
and we denote this by A ⊥⊥ B. In other words, PAB can be written as a tensor product

PAB = PA ⊗ PB.

It follows that for any subset I of A ∪B, we have

PI = PI∩A ⊗ PI∩B.

This notion of independence can be generalized to the joint independence of a par-
tition.

Definition 3.5.1. Given a partition B1| · · · |Br of B ⊆ [n] we say that B1 ⊥⊥ · · · ⊥⊥ Br

if
PB = PB1 ⊗ . . .⊗ PBr .

Consequently, for any other subset I ⊂ B, we have PI = PB1∩I ⊗ · · · ⊗ PBr∩I .

Example 3.5.2. The Segre variety ΣI is the subvariety of all rank one tensors x in
P(k1+1)···(kn+1)−1. It is parametrized by tr ∈ Pkj for r = 1, . . . , n by x = t1 ⊗ · · · ⊗ tn.
In particular,

ΣI = {1 ⊥⊥ · · · ⊥⊥ n}.

Conditional independence

Let U be the vector space CI and UA the subspace CIA . Let A,B be two disjoint
subsets of [n]. In what follows we write AB for A ∪ B and a for {a}. Define the
conditional distribution of B given A to be the tensor PB|A ∈ UB ⊗ U∗A such that

(PA)a(PB|A)ab = (PAB)ab for every a ∈ IA, b ∈ IB. (3.3)
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This tensor is uniquely defined if the marginal distribution PA is nondegenerate, i.e.
(PA)b 6= 0 for all a ∈ IA. Note that if p is affine (has entry sum 1) then the “columns”
(PB|A)a• are affine for every a ∈ IA

Using multiset subscript notation, the tensor PAA ∈ UA⊗UA has entries (PAA)aa′ =
δaa′(PA)a. This allows us to rewrite the definition of conditional independence (3.3)
as a very simple automatic contraction:

PB|A = PAB · P−1
AA. (3.4)

Example 3.5.3. Let I = I1×I2 = {0, 1}×{0, 1} so that U ' C2×2 and U1 ' U2 '
C2. Given a distribution p = P12 ∈ U , the conditional distribution P2|1 ∈ U2 ⊗ U∗1 is
the tensor with

(P2|1)0
0 = p00

p0+
, (P2|1)0

1 = p10
p0+
,

(P2|1)1
0 = p01

p1+
, (P2|1)1

1 = p11
p1+
.

Hence, the conditional distribution is well defined as long as the distribution p lies
outside the hyperplane arrangement described by p0+p1+ = 0.

Given pairwise disjoint subsets A,B,C ⊂ [n] we say that B is conditionally
independent of C given A, or B ⊥⊥ C|A, if for each a ∈ IA such that (PA)a 6= 0,

(PBC|A)abc = (PB|A)ab (PC|A)ac for every b ∈ IB, c ∈ IC .
In terms of tensors, this can be written as

(PBC|A)a• = (PB|A)a• ⊗ (PC|A)a•.

More generally, we have the following definition using tensors.

Definition 3.5.4. Given disjoint subsets A,B ⊂ [n] and a partition B1| · · · |Br of
B, we say that B1 ⊥⊥ · · · ⊥⊥ Br|A if for each a ∈ IA,

(PB|A)a• = (PB1|A)a• ⊗ · · · ⊗ (PBr|A)a•.

Consequently, given any subset I ⊂ B, we also have (PI|A)a• = (PB1∩I|A)a• ⊗ · · · ⊗
(PBr∩I|A)a•.

Mixtures and secants

Note that if B ⊥⊥ C|A then we can express the marginal distribution PBC as

(PBC)bc =
∑
a∈IA

(PA)a(PB|A)ab (PC|A)ab .

Using automatic contraction, this equation can be written succinctly as

PBC = PAA · PB|A · PC|A
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3.6 Moment tensors

In chapter 1, we took advantage of moment coordinates in the symbolic computation
of the defining ideals of certain models with binary variables. Using tensors, here
we develop a generalization of those moment coordinates for models with variables
having more than two states.

Suppose temporarily that I = I1 × I2, so that p = (pij) ∈ CI = CI1×I2 . As
usual, we write Ii = {0, 1, . . . , ki}. By adding all rows of p to its first row and all its
columns to its first column we obtain new matrix

µ̄12 =


1 p+1 · · · p+k2

p1+ p11 · · · p1k2
... · · · ...

pk1+ pk11 · · · pk1k2

 . (3.5)

which we call a total moment matrix. (The statistical interpretation that justifies
this terminology is explained at the end of this section.) We denote the top left
corner of this matrix by µ∅ = 1 ∈ C, the bottom left block by µ1 ∈ Ck1 , the top
right block by µ2 ∈ Ck2 , and the remaining block by µ12 ∈ Ck1×k2 . We refer to these
blocks as (non-central) moments.

To extend this construction in a notationally compact way to the general case
where p is a tensor in CI = CI1×···×In , we can represent the row and column opera-
tions performed above via automatic contractions with elementary matrices that we
will call M(1) and M(2), defined as follows. For r = 1, . . . , n, we define new and
distinct vector spaces

Vr := 〈v0, . . . , vkr〉C ' Ckr+1 and Vr := 〈v1, . . . , vkr〉C ⊆ Vr,

and for each r, we define a map M(r) : Ur → Vr by u0 7→ v0 and ui 7→ v0 + vi when
i 6= 0. As matrices,

M(r) =

[
1 1T

0 Ikr

]
∈ Vr ⊗ U∗r , so M(r)−1 =

[
1 −1T

0 Ikr

]
∈ U r ⊗ V∗r . (3.6)

Here 0,1 ∈ Ck denote the vector of zeros and ones respectively, and Ik is the k × k
identity matrix. Then the matrix µ̄ in (3.5), where n = 2, is equal to M(1) ·M(2) ·p.
For the case of general n where p is a higher order tensor, for each multiset A ⊆ [n]
we let M(A) := ⊗r∈AM(r), and define a total moment tensor,

µ̄A := M(A) · PA ∈ VA.
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Definition 3.6.1. We define the moment tensor, µA ∈ VA, as the block of µ̄A
consisting of those entries with no 0 in their index.

Example 3.6.2. Suppose n = 2, I1 = {0, 1, 2} and I2 = {0, 1}. Then for instance

µ̄12 =

 1 p+1

p1+ p11

p2+ p21

 =

[
1 µ2

µ1 µ12

]
, µ̄1 =

 1
p1+

p2+

 =

[
1
µ1

]
, and

µ̄11 =

 1 p1+ p2+

p1+ p1+ 0
p2+ 0 p2+

 =

[
1 µ1

µ1 µ11

]
, so

µ12 =

[
p11

p21

]
, µ1 =

[
p1+

p2+

]
and µ11 =

[
p1+ 0
0 p2+

]
.

Remark 3.6.3. We avoid using transpose notation µT2 in the block decomposition
for µ̄12 above because µ̄12 ∈ V1⊗V2 is covariant in both indices, so we remain agnostic
as to which direction in the array is “horizontal”. As well, with higher order tensors,
there is no single notion of transposition.

In Example 3.6.2 above, observe how µ̄1 appears as a sub-tensor of µ̄12. This
phenomenon conveniently generalizes as follows:

Lemma 3.6.4. Let B ⊆ A ⊆ [n] then for every a ∈ IA with support in B

(µ̄A)a = (µ̄B)aB .

Proof. We have

(µ̄A)a = (µ̄B∪(A\B))aB0 = M(B)aB ·M(A \B)0 · pB∪(A\B).

Since M(A \B)κ0 = 1 for every κ ∈ IA\B then the above is equal to

M(B)aB · 1(A \B) · pB∪(A\B) = M(B)aB · pB = (µ̄B)aB .

Remark 3.6.5. Unlike P11, the tensor µ̄11 is not diagonal, but it is symmetric, and
the block µ11 is in fact diagonal.

By the above lemma, the block structure observed in the n = 2 case above
generalizes as follows: for each a ∈ IA and b ∈ IB,

(µ̄AB)a0 = (µ̄A)a and (µ̄AB)0b = (µ̄B)b. (3.7)
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Thus, as an array, any total moment tensor µ̄C is a disjoint union of the moments
µA where A ⊆ C (as multisets if they are multisets). In particular, as an array the
tensor µ[n] is the union of the tensors µA as A ranges over all subsets of [n].

Next, we define central moments. We let M ′(r) : Ur → Vr be the matrices

M ′(r) :=

[
1 0T

−µr Ilr

]
◦M(r), so M ′(r)−1 = M(r)−1 ◦

[
1 0T

µr Ilr

]
.

where ◦ denotes usual matrix multiplication (as a composition of linear maps). Then
let

M ′(A) :=
⊗
r∈A

M ′(r) (3.8)

to define a total central moment tensor

µ̄′A := M ′(A) · PA ∈ VA.

As for non-central moments, we define the (central) moment µ′A as the block of µ̄′A
entries with no 0 in their index, and analogously to (3.7) we have

(µ̄′AB)a0 = (µ̄′A)a and (µ̄′AB)0b = (µ̄′B)b. (3.9)

To get a sense for how these quantities behave, observe that µ′r = 0 for r = 1, . . . , n.
As well, for any r, s ∈ [n], using the block decomposition arising from Vr = C ⊕ Vr
and Vs = C⊕ Vs we have

µ̄rs =

[
1 µs
µr µrs

]
∈ Vrs and µ̄′rs =

[
1 0
0 µrs − µr ⊗ µs

]
∈ Vrs

so we see that µ′rs = µrs − µr ⊗ µs, and in particular,

rank(µ̄rs) = rank(µ̄′rs) = 1 + rank(µ′rs).

This is convenient, because rank(µ̄rs) = rank(Prs) ≤ 1 if and only if r ⊥⊥ s. We record
this as a proposition:

Proposition 3.6.6. For any two r, s ∈ [n], we have r ⊥⊥ s⇐⇒ µ′rs = 0.

Statistical interpretation of moments

The tensor M(A) can be interpreted as an operator which computes the expecta-
tion of a certain formal random variable. Although this interpretation will not be
necessary for proofs, it was the motivation behind most of our approach.
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To make this interpretation precise, we define a formal random variable to be a
map X with domain equal to a complex measure space. In our case the measure
space is I with measure distribution p. If the measure space is a probability space
then X is a random variable in the usual sense. When a formal random variable is
vector-valued, say X : I → V , it makes sense to talk about expressions like the mean
or expectation of X as defined by

E[X] :=
∑
ι∈I

pιX(ι) ∈ V

even though the values pι are not probabilities. Other expressions typically defined
in statistics also translate directly to this context.

To interpret µA as an expectation, for each r ∈ [n] we define a special formal
random vector Cr : I → Ir → Vr with values Cr(ι) = 0 if ιr = 0 and otherwise
Cr(ι) = vιr . The values {0, v1, v2, . . . , vkr} are called the states of Cr, which form the
shape of a “corner” in the positive orthant. Then letting CA :=

⊗
r∈A Cr, we have

the alternative definition
µA = E(CA)

as the Ath moment of the system of random vectors C. We can likewise define random
variables Cr := Cr + v0 ∈ Vr and CA :=

⊗
r∈A Cr so that

µ̄A = E(CA).

As for central moments, defining random variables C ′r := Cr − µr and C ′A :=
⊗

r∈A C ′r
gives us the interpretation

µ′A = E(C ′A)

of µ′A as a central moment in the usual sense (i.e., as the expectation of a random
variable whose mean is 0).

3.7 Regression tensors

Linear regression is fundamental in the analysis of classical Gaussian random
variables. For example, directed Gaussian graphical models are defined by regressing
each node on the collection of its parent nodes. We now explore linear regression for
formal discrete random variables as a way to reparametrize directed discrete graphical
models. We will introduce our various regression coefficients at first in a form that is
most convenient for our proofs, and explain their statistical meaning in Section 3.7.
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For any two disjoint multisets A,B ⊆ [n], we define the total regression tensor

µ̄B|A := µ̄AB · µ̄−1
AA (3.10)

= (M(A) ·M(B) · PAB) · (M(A) ·M(A) · PAA)−1

= (M(A) ·M(B) · PAB) · (M(A)−1 ·M(A)−1 · P−1
AA)

= M(B) · PBA · P−1
AA ·M(A)−1 (by lemma 3.3.5)

= M(B) · PB|A ·M(A)−1. (3.11)

Here, µ̄−1
AA ∈ V∗A⊗V∗A denotes the inverse of the tensor µAA ∈ VA⊗VA, as in Lemma

3.3.5, and similarly for P−1
AA ∈ U∗A ⊗ U∗A and M(A)−1 ∈ UA ⊗ V

∗
A.

For example, when n = 2, in the block decomposition arising from Vr = C⊕ Vr
we can use the definition µ̄2|1 := µ̄12 · µ̄−1

11 directly to compute that

µ̄2|1 =


1 0 · · · 0
p01
p0+

p11
p1+
− p01

p0+
· · · pk11

pk1+
− p01

p0+
p02
p0+

p12
p1+
− p02

p0+
· · · pk12

pk1+
− p02

p0+
... · · · ...

p0k2
p0+

p1k2
p1+
− p0k2

p0+
· · · pk1k2

pk1+
− p0k2

p0+

 ∈ V2 ⊗ V
∗
1 (3.12)

The above block formation generalizes for larger n:

Lemma 3.7.1. Writing 0 ∈ IB for a sequences of all zeroes, we have for all a ∈ IA,

(µ̄B|A)a0 = δa0 .

Proof.

(µ̄B|A)a0 =
∑
a′∈IA

(µ̄−1
AA)aa

′
(µ̄AB)a′0

Since (µ̄AB)a′0 = (µ̄A)a′ = (µ̄AA)a′0 by (3.7), the above equations can be rewritten as

(µ̄B|A)a0 =
∑
a′∈IA

(µ̄−1
AA)aa

′
(µ̄AA)a′0 = δa0

where the last equation follows by the definition of the inverse tensor.

Statistical interpretation of regression tensors

The motivation for this terminology is that, following the statistical interpretation
of moments given in Section 3.6, µ̄B|A is actually the coefficient of linear regression
expressing CB in terms of CA defined in that section:
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E(CB|CA) = µ̄B|A CA.
That is, for every a ∈ IA, E[CB|CA(a)] = µ̄B|ACA(a), which explains why µ̄B|A is
called a regression tensor.

A useful observation is that the regression tensor holds information about inde-
pendence and conditional independence.

Lemma 3.7.2. If µ−1
AA is a well defined tensor then A ⊥⊥ B if and only if the block

(µ̄B|A)6=0
6=0 is a zero tensor.

3.8 Directed acyclic graphical models

Directed acyclic graphical (DAG) models on discrete variables are traditionally de-
scribed by parametrizing their joint probability distribution in terms of conditional
and root probabilities. Often, only a subset S of the nodes in graph represent ob-
served random variables, and in this section, we study how these models can be
described more efficiently by parametrizing their moments in terms of linear regres-
sion coefficients. This parametrization can be expressed combinatorially in terms of
subgraphs H of the graph such that sinks(H) ⊆ S ⊆ nodes(H).

Given a directed acyclic graph G = (V,E) and a finite set Iv = {0, 1, . . . , kv} for
each node v ∈ V , we study a special family of affine distributions in U := CI where
I :=

∏
v∈V Iv.

Definition 3.8.1. For any subgraph H ⊆ G, we write

pa(v;H) := the set of parents of v in H, and

ch(v;H) := the set of children of v in H.

When H = G, we simply write pa(v) and ch(v) respectively for the sets of parents
and children of v in G.

An affine distribution p is said to belong to the model G if there are conditional
probability tensors Pv|pa(v) such that:

pι =
∏
v∈V

(Pv|pa(v))
ιpa(v)
ιv for all ι ∈ I. (3.13)

By treating the conditional probabilities Pv|pa(v) as parameters we are able to char-
acterize all distributions P[n] that can be factored according to G as above. We refer
to this set of distributions as the fully observed graphical model for G.
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These models are very well understood algebraically; for example, see [16]. How-
ever, as soon as some of the nodes in the graph represent portion of data that is not
observed, they become much harder to analyze. If only a subset S ⊆ V of the nodes
are observed, this corresponds to taking the marginal distribution PS, where p = PV
satisfies (3.13).

An example that occurs frequently in applications is that of a rooted tree, that is, a
directed tree with a unique inner source node called the root. In this case, we assume
that the leaves of the tree are observed; these leaves are the sinks. Meanwhile all the
other nodes are assumed to be hidden

Now suppose G = (V,E) is any DAG. The parametrization in (3.13) can be
written as an automatic contraction (Section 3.3),

p = PV =
∏
v∈V

Pv|ch(v)|+1pa(v)

where v|ch(v)|+1 denotes vv . . . v︸ ︷︷ ︸
|ch(v)|+1 times

, so that each

Pv|ch(v)|+1pa(v) ∈ U⊗(|ch(v)|+1)
v ⊗ U∗pa(v).

For example, if G = 2← 1→ 3 , then we have

P123 = P111 · P2|1 · P3|1, i.e.,

(P123)ι = (P1)ι1(P2|1)ι1ι2(P3|1)ι1ι3 . (3.14)

To generalize this formula, for any set of observed nodes S and subgraph H ⊆ G we
define the multiplicity of v in S and H to be

m(v;H,S) := |ch(v;H)|+
{

0 if v /∈ S
1 if v ∈ S (3.15)

For example, if G = 2← 1→ 3 and S = {2, 3} then the marginal distribution P23

is obtained by summing over all possible values of ι1 in equation (3.14) above:

P23 = P11 · P2|1 · P3|1.

Graphical linear regression coefficients

Our next result provides a formula for the moments of the observed nodes in terms of
blocks of regression tensors which arise from regressing each variable on its parents.
We continue to work with a DAG model G = (V,E), and for any κ ∈ Ipa(v) and
v ∈ nodes(G) we will write κ(v) for the value of κ indexed by v and similarly for
κ ∈ Ipa(v;H).
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Definition 3.8.2 (Graphical linear regression coefficients). For each subset of nodes
A ⊆ pa(v), we define the regression coefficient

βAv ∈ Vv ⊗ V∗A

by extracting entries of µ̄v|pa(v) as follows. For each κ ∈ IA, we define a new index
κ′ ∈ Ipa(v) by

κ′(u) =

{
κ(u) if u ∈ A
0 if u /∈ A

and then for every (iκ) ∈ Iv × IA where i 6= 0 we let

(βAv )κi := (µ̄v|pa(v))
κ′

i

In other words, βAv “forgets” the upper indices of µ̄v|pa(v) which correspond to vertices
that are not in A by always using a 0 at that index position. We sometimes refer to
the tensor β∅v as a residual mean, because it is the mean of the residual in the linear
regression of Cv on its parents (see Section 3.6).

More generally, for each integer m > 0 we define the tensor βAvm ∈ (Vv)⊗m ⊗ V∗A
such that for each (ι, κ) ∈ (Iv)m × IA with 0 /∈ ι, we have

(βAvm)κι := (µ̄vm|pa(v))
κ′

ι = (µ̄m′|pa(v))
κ′

ι0, (3.16)

where the last equation holds for any m′ > m by Lemma 3.6.4. Thus, for each κ ∈ IA
with 0 /∈ κ, (βAvm)κ• is a diagonal tensor with the entries of (βAv )κ• along its diagonal.

We will show that these β tensors allow us to express µS efficiently as a summation
over certain subgraphs of G.

Theorem 3.8.3. Given a discrete directed acyclic graph model G and a multiset S
of observed nodes, the moment µS is given by the following automatic contraction
equation:

µS =
∑
H⊂G

sinks(H)⊆S⊆nodes(H)

∏
v∈nodes(H)

β
pa(v;H)

vm(v;H,S)

Example 3.8.4. Before proving the result, let us walk through it in a very simple
example (more examples follow after the proof). Consider a model where G is the
graph

A

B C
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supposing each variable has 3 states. The fully observed joint distribution of this
model is p ∈ CIA×IB×I×C ' C3×3×3, whose entries we denote by pabc.

The moments µS of this model will live in tensor products of the vector spaces
VA ' C2, VB ' C2, and VC ' C2. To compute the moment µB ∈ VB, we apply
Theorem 3.8.3 where S = {B}, which needs the only the three tensors β∅A ∈ VA,
βAB ∈ VB ⊗ V∗A, and β∅B ∈ VB. These tensors arise as blocks of the larger tensors
µ̄A|∅ = µ̄A ∈ VA ' C3 and µ̄B|A ∈ VB ⊗ V∗A ' C3×3 as follows:

µ̄A|∅ =


1

p1++

p2++

 =

 1

β∅A

 , and

µ̄B|A =


1 0 0

p01+
p0++

p11+
p1++
− p01+

p0++

p21+
p2++
− p01+

p0++

p02+
p0++

p12+
p1++
− p02+

p0++

p22+
p2++
− p02+

p0++

 =

 1 0

β∅B βAB


Note that the tensor β∅A is essentially a vector, and the tensor βAB is essentially a
matrix.

There are two subgraphs H ⊆ G such that sinks(H) ⊆ {B} ⊆ nodes(H): the

graph A→ B , which gives rise to automatic contraction term βAB · β∅A, and B ,
giving rise to the term β∅B. Hence the theorem simply says that

µB = βAB · β∅A + β∅B =

 p11+
p1++
− p01+

p0++

p21+
p2++
− p01+

p0++

p22+
p1++
− p02+

p0++

p22+
p2++
− p02+

p0++

 p1++

p2++

+

 p01+
p0++

p02+
p0++

 =

 p+1+

p+2+


where in the last step we used the fact that p1+++p2++ = 1−p0++. Similarly we have
µC = βAC · β∅A + µ∅C . The moment µBC is more interesting: the formula involves four

subgraphs, namely B ← A→ C , B ← A C , B A→ C , and B C , which in
that order give rise to the sum

µBC = β∅AA · βAB · βAC + β∅A · βAB · β∅C + β∅A · β∅B · βAC + β∅B · β∅C
Here the tensor β∅AA is defined according to Definition 3.6.1 as a block of µ̄AA|∅ as
follows:

µ̄AA|∅ =


1 p1++ p2++

p1++ p1++ 0

p2++ 0 p2++

 =

 1 β∅A

β∅A β∅AA

 , so β∅AA =

 p1++ 0

0 p2++


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It is interesting to note that considered as matrix, it turns out that β∅AA = diag(β∅A),
while it is not true that µ̄∅AA 6= diag(µ∅A). This is a nice feature of the β tensors as
we have defined them. As well, note that here β∅A = µA because A has no parents,
but generically β∅B 6= µB and β∅C 6= µC .

Note also the the model of all p = PABC arising from this DAG model for some
assignment of conditional probabilities pv|pa(v) is a 14-dimensional model, which is
parametrized generically injectively (and hence birationally) by the 14 entries of

the tensors of β
pa(v)
v considered as indeterminates. This is always the case for fully

observed DAG models, because the tensors β
pa(v)
v incorporate all the non-constant

entries of the conditional moments µ̄v|pa(v), as can be seen for instance in Example
3.8.4, and the moments µ̄v|pa(v) are in bijection with the usual model parameters
Pv|pa(v) via (3.11).

We now proceed with the proof of the theorem. The reader is invited to work
through the meaning of the proof in terms of the example above, or Example 3.8.5
immediately following the proof.

Proof of Theorem 3.8.3. For brevity, let us write β(v;H) = β
pa(v;H)

vm(v;H,S) , m(v) = m(v;G,S),
and m(v;H) = m(v;H,S). We continue to write V = nodes(G) and E = edges(G).

First observe by (3.11) and (3.8) and that

∏
v∈V

µ̄vm(v)|pa(v) =
∏
v∈V

M(v)⊗m(v) · Pvm(v)|pa(v) ·
∏

w∈pa(v)

M(w)−1


Here, for every v ∈ V , M(v) occurs as many times as M(v)−1, except once more for
each time v occurs in S, so most of them cancel and so the above expression is

∏
v∈V

µ̄vm(v)|pa(v) =

(∏
s∈S

M(s)

)
·

(∏
v∈V

Pvm(v)|pa(v)

)
= M(S) · PS = µ̄S

using (3.13) and the definition of µ̄S. In summary,

µ̄S =
∏
v∈V

µ̄vm(v)|pa(v) (3.17)

We will now manipulate the above contraction in coordinate form to arrive at the
desired result.

The first step is essentially to rewrite the contraction as a summation which uses
one summation symbol for each edge in the graph G, where the symbol for an edge
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ranges over the states of the source node of that edge. To make this precise, we
define

IE :=
∏
uv∈E

Iu

For any edge uv ∈ E and κ ∈ IE we write κ(uv) ∈ Iu for the entry of κ indexed by uv.
For any vertex v of G we define subsequences κ(pa(v)) := (κ(uv) | u ∈ pa(v)) ∈ Ipa(v)

and κ(ch(v)) := (κ(vu) | u ∈ ch(v)) ∈ I |ch(v)|
v . Then we can rewrite the contraction

(3.17) in terms of scalars by saying that for each ι ∈ IS

(µ̄S)ι =
∑
κ∈IE

 ∏
v∈V \S

(µ̄vm(v)|pa(v))
κ(pa(v))
κ(ch(v)) ·

∏
v∈S

(µ̄v|pa(v))
κ(pa(v))
ι(v)κ(ch(v))


︸ ︷︷ ︸

(F)

(3.18)

Now for every κ ∈ IE, we define a corresponding subgraph Hκ as follows. Let
Eκ := {uv ∈ E | κuv 6= 0}, and Vκ be the union of S and the endpoints of all the
edges uv ∈ Eκ. We then let Hκ be the subgraph of G with vertices Vκ and edges Eκ.
Note that S ⊆ nodes(Hκ) = Vκ by construction.

The point now is that the product (F) in equation (3.18) is equal to 0 unless
sinks(Hκ) ⊆ S. To see this, suppose there is some u ∈ sinks(Hk) \ S. This means
that κch(v) = 0, so by Lemma 3.7.1, (µ̄vm(v)|pa(v))

κpa(v)
κch(v) = δ

κpa(v)
0 However, by the

construction of Hκ, since v /∈ S and v is not the source of an edge in Eκ (it has
no children in Hκ), it must be the target of an edge in Eκ. That is, we must have
κpa(v) 6= 0, so the Kronecker δ

κpa(v)
0 = 0, and hence (F) = 0. Hence the only non-zero

terms in equation (3.18) must occur when sinks(Hκ) ⊆ S, so we can rewrite it as

(µ̄S)ι =
∑
H⊂G

sinks(H)⊆S⊆nodes(H)

∑
κ∈IE
Hκ=H

(F).

Also, if v /∈ Vκ then we have κ(pa(v)) = 0 and κ(ch(v)) = 0, so

(µ̄vm(v)|pa(v))
κ(pa(v))
κ(ch(v)) = (µ̄vm(v)|pa(v))

0
0 = 1

and we may remove these factors from the product (F) without changing it, i.e.,

(F) =
∏

v∈Vk\S

(µ̄vm(v)|pa(v))
κ(pa(v))
κ(ch(v)) ·

∏
v∈S

(µ̄v|pa(v))
κ(pa(v))
ι(v)κ(ch(v)).

Now, the sequence κ(ch(v;Hκ)) is equal to κ(ch(v)) with all occurrences of 0
removed, so by equation (3.16) we can write

(µ̄vm(v)|pa(v))
κ(pa(v))
κ(ch(v)) = β(v;H)

κ(pa(v))
κ(ch(v;Hκ))
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and assuming now that ι contains no zeroes, we can also write

(µ̄vm(v)|pa(v))
κ(pa(v))
ι(v)κ(ch(v)) = β(v;H)

κ(pa(v))
ι(v)κ(ch(v;Hκ)).

Putting these together, we have

(F) =
∏

v∈Vκ\S

β(v;H)
κ(pa(v))
κ(ch(v;Hκ)) ·

∏
v∈S

β(v;H)
κ(pa(v))
ι(v)κ(ch(v;Hκ))

and observe that ∑
κ∈IE
Hκ=H

(F) =

 ∏
v∈nodes(H)

β(v;H)


ι

where the latter product is an automatic tensor contraction. Finally, we assumed ι
has no zeroes, so have (µS)ι = (µ̄S)ι, hence summing over H we obtain as required

(µS)ι =

 ∑
H⊂G

sinks(H)⊆S⊆nodes(H)

∏
v∈nodes(H)

β(v;H)


ι

Example 3.8.5. Consider the following directed acyclic graph G.

1

2 3

4

and consider observing S = {4}. The joint probability

P = P111 · P22|1 · P33|1 · P4|23, i.e., pijk` = (P1)i(P2|1)ij(P3|1)ik(P4|23)jk`

is a product of conditional and root probabilities. Meanwhile, the marginal proba-
bility P4 is

P4 = P11 · P2|1 · P3|1 · P4|23.

Short formulae such as this one often have a long expansion in terms of conditional
and root probabilities. For instance, when all the random variables have two states,
the model has 9 free parameters: (P1)1, (P2|1)0

1, (P2|1)1
1, (P3|1)0

1, (P3|1)1
1, (P4|23)00

1 ,
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(P4|23)01
1 , (P4|23)10

1 , and (P4|23)11
1 . The probability (P4)1 expands into a quartic poly-

nomial with 25 terms after substituting

(P1)0 = 1− (P1)1,

(P2|1)i0 = 1− (P2|1)i1 for i ∈ {0, 1},
(P3|1)i0 = 1− (P3|1)i1 for i ∈ {0, 1},

(P4|23)jk0 = 1− (P4|23)jk1 for j, k ∈ {0, 1}.

Alternatively, by equation (3.17) we can parametrize this model using moments and
regression coefficients as

µ̄4 = µ̄11 · µ̄2|1 · µ̄3|1 · µ̄4|23.

To apply Theorem 3.8.3, observe that the subgraphs {H | sinks(H) ⊆ {4} ⊆
nodes(H)} are:

4

3

4

2

4

1

3

4

1

2

4

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

which respectively give rise to the terms of the following sum for µr (ommitting ·’s):

µ4 = β∅4 + β∅3β
3
4 + β∅2β

2
4 + β∅1β

1
3β

3
4 + β∅1β

1
2β

2
4 (3.19)

+β∅2β
∅
3β

23
4 + β∅1β

1
3β
∅
2β

23
4 + β∅1β

1
2β
∅
3β

23
4 + β∅11β

1
2β

1
3β

23
4 .

When k1 = k2 = k3 = k4 = 1, all of the tensors’ array dimensions are 1, so they are
effectively scalars. Thus, the model can be parametrized by the 9 scalar parameters

β∅1 , β
∅
2 , β

∅
3 , β

∅
4 , β

1
2 , β

1
3 , β

2
4 , β

3
4 , β

23
4

using the 9-term quartic polynomial (3.19). Recall that the entries of β∅11 are deter-
mined by the entries of β∅1 , and in this situation they are both just the same scalar.
The transformation between conditional probabilities and regression coefficients is
the linear map

β∅1 = β∅11 = (P1)1,
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β∅2 = (P2|1)0
1, β1

2 = (P2|1)1
1 − (P2|1)0

1,
β∅3 = (P3|1)0

1, β1
3 = (P3|1)1

1 − (P3|1)0
1,

β∅4 = (P4|23)00
1 , β2

4 = (P4|23)10
1 − (P4|23)00

1 ,
β3

4 = (P4|23)01
1 − (P4|23)00

1 ,

β23
4 = (P4|23)11

1 + (P4|23)00
1 − (P4|23)01

1 − (P4|23)10
1 .

Moreover, the moment µ4 is equal to the probability (P4)1.

When the graph G is a rooted tree, this graphical model can also be parametrized
using the means µv instead of the residual means β∅v where v varies over all the nodes
of G. More specifically, because each node has at most one parent, we have

µvd = β∅vd + β
pa(v)

vd
µpa(v).

This equation lets us express each β∅
vd

in terms of µvd which in turn only depends
on µv. Thus, we can alternatively parametrize the model using parameters µv and
β

pa(v)
v for each node v.

Example 3.8.6. Consider the following rooted tree with three leaves.

r

a

1 2 3

There are 14 sink-connected subgraphs with {1, 2, 3} as sinks, giving us the expansion

µ123 = β∅1β
∅
2β
∅
3 + β∅1β

∅
2β
∅
rβ

r
3 + β∅aβ

a
1β
∅
2β
∅
3 + β∅aβ

a
1β
∅
2β
∅
rβ

r
3 + β∅rβ

r
aβ

a
1β
∅
2β
∅
3

+ β∅rrβ
r
aβ

a
1β

r
3β
∅
2 + β∅aβ

a
2β
∅
1β
∅
3 + β∅1β

∅
aβ

a
2β
∅
rβ

r
3 + β∅1β

∅
rβ

r
aβ

a
2β
∅
3 + β∅rrβ

r
aβ

a
2β

r
3β
∅
1

+ β∅aaβ
a
1β

a
2β
∅
3 + β∅aaβ

a
1β

a
2β
∅
rβ

r
3 + β∅rβ

r
aaβ

a
1β

a
2β
∅
3 + β∅rrβ

r
aaβ

a
1β

a
2β

r
3 .

By expressing the residual means β∅v in terms of the means µv via the formulas

β∅1 = µ1 − µaβa1 , β∅2 = µ2 − µaβa2 , β∅3 = µ3 − µrβr3 ,
β∅a = µa − µrβra, β∅aa = µaa − µrβraa,

we get the following 11-term expansion

µ123 =µ3(µaa − µ2
a)β

a
1β

a
2 + µ2(µrr − µ2

r)β
r
aβ

a
1β

r
3 + µ1(µrr − µ2

r)β
r
aβ

a
2β

r
3

+ (µrr − µ2
r)(β

r
aa − 2βraµa)β

a
1β

a
2β

r
3 + µ1µ2µ3.



CHAPTER 3. TENSORS AND MODELS WITH MORE HIDDEN STATES 76

In terms of central moments,

µ′123 = µ′rrβ
r
aaβ

a
1β

a
2β

r
3 .

These methods allow one to generalize previous work of Smith and Zwiernik [35]
on binary tree cumulants to apply to trees where nodes can take any number of
states.

3.9 Conclusion

In general, the large polynomials involved in parameterizing discrete models are more
easily and compactly expressed using the method of automatic tensor contraction
developed here, which we hope will facilitate further investigation into the algebraic
structure of these models.

As well, using the new parameterization in Theorem 3.8.3 of discrete DAG models
in terms of regression coefficients, the symbolic expression length of the parameteri-
zations are smaller, which facilitate their study by methods such as Gb̈ner bases.

Finally, with this new parametrization we are ready to generalize the work of
Smith and Zwiernik [35] on tree cumulants for application to trees with more states
at each node, as tree cumulants are defined in terms of the moments of the observed
distribution as defined here. Indeed, in future work we will show a derivation of
the tree cumulants formula directly from Theorem 3.8.3 by specializing to the case
of binary trees on binary variables. I have been joined by S. Lin, P. Zwiernik, and
L. Weihs on this project, and preliminary computational and experiments show that
the new parametrization method, which generalizes tree cumulants, is more efficient
than using conditional probabilities, as we expect.
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