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ABSTRACT OF THE DISSERTATION 

 
Tracing Atmospheric Emissions from Cities Using Atmospheric Measurements and Plant Radiocarbon 

by 

Cindy Cristina Yañez 

Doctor of Philosophy in Earth System Science 

University of California, Irvine, 2024 

Professor Claudia Czimczik, Chair 

Human activities release greenhouse gases and air pollutants into the atmosphere, causing global 

climate change and other widespread impacts on the Earth System. These emissions are concentrated in 

cities, where most humans live and where most transportation, energy generation and consumption occur. 

While many cities are taking action to reduce their emissions, verifying the success of such efforts is 

difficult, especially at local scales in complex urban environments. Without reliable monitoring of urban 

emissions trends, it is uncertain whether attempted solutions are effective and our ability to steer climate 

policy is limited. 

In my dissertation, I provide novel information about spatial and temporal patterns of 

anthropogenic gas emissions and our capacity to monitor emissions in urban environments. In my first 

study, I used a mobile laboratory to measure on-road carbon monoxide (CO) and carbon dioxide (CO2). 

The ratio of these two gases (CO/CO2) is a useful metric for assessing the success of regulations intended 

to reduce air pollutant emissions from vehicles. The results show that California’s policies and 

technological advancements have made the Los Angeles traffic fleet more efficient. However, combustion 

efficiency worsened during the COVID-19 pandemic and in Salt Lake City, likely because of changes to 

traffic conditions and fleet composition that offset progress in reducing vehicle CO emissions. 

In Chapter 2, I focus on quantifying fossil fuel CO2 (ffCO2) emission reductions that occurred 

during the COVID-19 pandemic using the mobile measurements from Chapter 1 and a community-sourced 

dataset of plant radiocarbon (14C). These two datasets reveal a significant reduction in ffCO2 in California’s 

urban areas in 2020 due to social distancing measures imposed by the pandemic. Furthermore, ffCO2 
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emissions rebounded to pre-pandemic levels by 2021, but not uniformly, with some areas taking longer to 

return to “normal” than others. The study demonstrated the capacity for plant 14C samples to capture ffCO2 

emission reductions with shifts in human behaviors. This implied that plant sampling could be an 

informative and accessible tool for ffCO2 monitoring in cities that lack CO2 monitoring infrastructure as 

climate change mitigation policies take effect. This motivated us to conduct further tests comparing ffCO2 

patterns indicated by plant 14C analysis with more established ffCO2 monitoring approaches. 

In Chapter 3, I collected turfgrass 14C samples along an urban to rural gradient in Southern 

California alongside measurements of in situ surface CO2 and remotely sensed total column CO2. The ffCO2 

patterns indicated by each of these metrics agreed well with each other, suggesting that plant 14C analysis 

can independently provide similar quality information about urban ffCO2 emissions, but at a finer resolution 

since it is more operationally feasible to sample plants. In conjunction with surface CO2, plant 14C can also 

provide insight on CO2 contributions from biogenic fluxes, but more work is needed to inform nature-based 

climate solutions in cities. Future work should use the insights in these studies to monitor trends in urban 

ffCO2 emissions and guide policymakers during the transition away from fossil fuels. 

 

 

 

 

 

 



 

1 

INTRODUCTION 

 

Climate Change and Cities 

Greenhouse gas (GHG) emissions from human activities are causing global climate change, leading 

to profound and widespread damage to the environment and society. The buildup of GHG’s in the 

atmosphere has already warmed the Earth’s average temperature by 1C relative to the period 1850 to 1900 

(Masson-Delmotte et al., 2021). Unless large-scale systemic changes to our energy, transportation, and land 

use practices are made to limit further greenhouse gas (GHG) emissions, an additional 1-4C of global 

warming could occur by the end of the century (IPCC, 2023).  

The outcome of the climate crisis heavily depends on the extent to which fossil fuel carbon dioxide 

(ffCO2) emissions are reduced. CO2 is of critical focus because it is the dominant GHG contributing to 

global temperature increases, accounting for approximately 75% of warming (Masson-Delmotte et al., 

2021). Atmospheric CO2 levels have risen by approximately 50% by 2024 compared to pre-industrial levels 

primarily due to combustion of fossil fuels. While non-CO2 greenhouse gases like methane (CH4) and 

nitrous oxide (N2O) have a stronger warming potential than CO2 over short timescales, CO2 constitutes the 

vast majority (approximately 80%) of GHG emissions and has a long and variable lifetime in the 

atmosphere (Archer et al., 2009; United States Environmental Protection Agency, 2023). However, 

reducing ffCO2 emissions is challenging because they are deeply ingrained into our economy and mobility. 

The majority of energy used by modern society is produced by combustion of fossil fuels. The main sources 

of anthropogenic CO2 emissions in the United States are transportation (35%), electricity generation (31%), 

industrial processes (15%), and commercial and residential buildings (11%) (United States Environmental 

Protection Agency, 2023). Rapid and deep interventions are needed in each these sectors to mitigate ffCO2 

emissions, such as electrifying transportation systems, transitioning into renewable energy sources, 

reducing energy demand/reliance, incorporating sustainable urban planning, and adopting efficient building 

infrastructure (IPCC, 2023). 
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The majority of ffCO2 emissions originate in cities, where fossil fuel combustion is still the primary 

fuel for transportation and building heating systems. Fossil fuel combustion is also the primary source of 

air pollution. Addressing both GHG emissions and the health risk posed by air pollution makes urban areas 

a key priority for emission mitigation efforts (Crippa et al., 2021; Gurney et al., 2022). Many cities have 

declared plans to reach low-carbon or net-zero emissions targets within the next few decades and are taking 

action to decrease their consumption of fossil fuels (Seto et al., 2021). Some cities have started making 

progress in reducing their emissions after centuries of increasing ffCO2 emissions that were coupled with 

economic growth (Crippa et al., 2021). However, at the city scale, it is challenging to quantify 

spatiotemporal trends in ffCO2 emissions and to gauge the success of local policy initiatives. 

Challenges for Monitoring Urban CO2 Emissions 

Quantifying ffCO2 emissions is critical to determine whether actions to reduce emissions are 

effective, and thus, whether we are on track to meet emission reduction targets. Additionally, ffCO2 

monitoring is needed to inform policymakers and stakeholders of specific locations or processes that should 

be of highest priority for mitigative action. However, quantifying urban ffCO2 emissions remains a severe 

challenge. Studies have identified concerning discrepancies in ffCO2 estimates between scientific 

assessments and self-reported city emission inventories (Gurney et al., 2021; Lauvaux et al., 2020).  

City accounting efforts typically estimate ffCO2 emissions using activity and consumption data 

(e.g., population, vehicle miles traveled, electricity usage) that is scaled by emission factors (e.g., grams of 

CO2 emitted per mile traveled). However, such self-reported inventories may not be standardized across 

cities, are difficult to test for accuracy or predict uncertainty, and tend to under-report emissions by 20% 

on average (Gurney et al., 2021; Seto et al., 2021).  

Within the scientific community, data-driven modeling approaches and environmental 

measurements are used to quantify urban ffCO2 emissions. Atmospheric measurements are advantageous 

over inventories because they can provide uniform, independent information and represent all emission 

sources (and sinks) that may be overlooked in an inventory, providing the capacity to detect unknown 
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sources or fugitive emissions (Duren & Miller, 2012). Such atmospheric monitoring systems have made 

progress in quantifying city-wide emissions to within 10% uncertainty, a scale that is relevant for evaluating 

emission mitigation trends (Turnbull et al., 2019). However, the application of atmospheric measurements 

for city ffCO2 monitoring in practice still faces significant obstacles. Maintaining these measurements 

requires large infrastructural and financial commitments coupled with sustained long-term involvement of 

scientific experts, making them unfeasible for all but the biggest cities in affluent countries.  

One major problem for urban ffCO2 monitoring is disentangling the fossil fuel derived 

contributions from the total CO2 signal. This challenge arises because CO2 is a long-lived, well-mixed gas 

with large natural sources including outgassing from the ocean, respiration of living organisms, 

decomposition of organic matter, and wildfires. CO2 also has large natural sinks such as dissolution into 

the ocean, photosynthesis, and weathering. On a global, annual scale, these sources and sinks would be in 

balance if not for anthropogenic CO2 emissions. Still, the ffCO2 emissions (~10 GtC yr-1 globally) are much 

smaller than these large and temporally variable natural fluxes (~210 GtC yr-1 globally) (Friedlingstein et 

al., 2022), making them difficult to isolate. Additional complexity arises because the atmosphere is a 

dynamic system that continually mixes and transports ffCO2 emissions in ways that differ with geography 

and weather. This makes attributing spatiotemporal patterns of CO2 to ffCO2 emissions using atmospheric 

CO2 measurements alone complicated, especially within a complex urban environment.  

Atmospheric CO2 Tracers: Carbon Monoxide and Radiocarbon 

Measurements of other gas species can be used as tracers to distinguish the fossil fuel derived 

portion of observed CO2 signals. Carbon monoxide (CO) is one useful proxy. CO is co-emitted with CO2 

during the incomplete combustion of fossil fuels. However, CO has a much shorter atmospheric lifetime 

than CO2 (two months vs 300 – 1000 years, respectively) due to its chemical sinks (i.e., reaction with 

hydroxyl radical). Direct CO emissions (excluding chemical production in the atmosphere) mainly come 

from anthropogenic sources (50% globally) and biomass burning (36%), while the natural sources of direct 

CO emissions are small (16%) (Zheng et al., 2019). These attributes make CO a useful proxy for recently 



 

4 

emitted ffCO2, since it can be more directly tied to fossil fuel combustion than CO2 measurements (Silva et 

al., 2013; Turnbull et al., 2006; Warneke et al., 2012). However, the effectiveness of CO as a tracer varies 

in space and time. This is because the amount of CO that is co-emitted with ffCO2 depends on combustion 

conditions and emission control systems. As CO is a toxic gas, there are regulations in place to minimize 

CO emissions during combustion processes. For example, in many places, cars are required to have catalytic 

converters that destroy CO before it is released from the vehicle tailpipe. Thus, the effectiveness of using 

CO as a ffCO2 tracer depends on how stringently it is regulated and the technology that is in place to prevent 

its emission. The resulting variability in combustion ratios limits the use of CO for tracking ffCO2 emissions 

(Djuricin et al., 2010). 

A more direct ffCO2 tracer is radiocarbon (14C), a radioactive isotope of carbon that is produced 

naturally by nitrogen interactions with cosmogenic radiation in the stratosphere (Libby, 1955; Schuur et al., 

2016). Fossil fuels originate from ancient plant material that stopped exchanging carbon with the 

atmospheric millions of years ago. Since radiocarbon has a short half-life of only 5,730 years, it only takes 

about 50,000 years for a dead organism to lose all its 14C by radioactive decay (at least to a point that we 

can no longer distinguish it from background). Thus, fossil fuels have long lost their 14C content, giving 

them a unique signature (Levin et al., 2003). The other major CO2 sources (biosphere and ocean exchange), 

have much greater (younger) 14C values, reflecting the timescales of their ongoing exchange with the 

atmosphere (Graven et al., 2020a).  

While 14C is recognized as the “gold standard” tracer for ffCO2 emissions, its biggest limitation is 

the laborious and expensive cost of measuring it, which leads to low resolution datasets. 14C is a rare isotope, 

accounting for only 1 out of every trillion carbon atoms. Accumulating enough 14C for adequate 

measurement in air (at ~420 ppm CO2 in the clean atmosphere at the time of writing) requires large volume 

samples. Air samples collected in 5 – 6 L flasks require a lot of time and manual labor to prepare for 14C 

analysis, since the CO2 needs to be purified and extracted from the air sample. Cost-effective sampling 

approaches, such as analyzing plant 14C instead of air, can potentially make 14C analyses more accessible 

and operationally feasible, given that plants concentrate atmospheric CO2 during growth. 
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Plant 14C analysis is an alternative approach for monitoring ffCO2. Plants integrate the atmospheric 

14CO2 signature into their tissue when they conduct photosynthesis. They also have a much higher carbon 

content than air samples, making their 14C easier to measure with lower sample volumes. Thus, plants have 

potential to serve as cost-effective ffCO2 monitors in urban environments, where there are heterogeneous 

emissions over short spatial gradients (Gurney et al., 2012). However, while plant 14C analysis has been 

demonstrated to effectively map spatial ffCO2 patterns (Hsueh et al., 2007a; Riley et al., 2008; Santos et 

al., 2019; Wang & Pataki, 2010), limited work has utilized plant 14C to track temporal trends in ffCO2 

emissions. Further research is needed to advance its applicability for monitoring ffCO2 emission trends in 

cities. 

Organization of Research 

This dissertation includes three studies that measure spatiotemporal ffCO2 patterns within complex 

urban environments and in the context of human activity. Spatial patterns are assessed along urban-rural 

gradients within large metropolitan areas and sampling near known emission sources. Temporal trends in 

response to changes in human activity are assessed, such as policy interventions and the COVID-19 

pandemic. In quantifying these spatial and temporal patterns, this research elucidates our capacity to 

monitor urban ffCO2 emissions using atmospheric CO2 measurements and tracers.  

In Chapter 1, I evaluate trends in on-road CO/CO2 ratios in two cities: Los Angeles (LA), CA and 

Salt Lake City (SLC), UT, USA. The study is based on on-road measurements of CO and CO2 that I 

collected using a mobile laboratory and compared against similar measurements collected in SLC and in 

2013. These measurements indicate that LA’s on-road CO/CO2 ratios have decreased over time, aligning 

with the anticipated outcomes of California’s stringent regulation of CO emissions from mobile sources. 

However, CO/CO2 ratios increased in SLC, indicating that the combustion efficiency of the SLC traffic 

fleet got worse over time. To elucidate the cause of the worsening trend, the COVID-19 pandemic provided 

more clues since it also led to increases in CO/CO2. These results suggest that progress in CO-reducing 

technology in vehicles can be outpaced by traffic conditions, such as speed, and the fleet composition. The 
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results also imply that CO’s effectiveness as a tracer for ffCO2 emissions is diminishing, as CO emissions 

are decreasing and variable.  

In Chapter 2, I combine the mobile measurements presented in Chapter 1 with plant 14C analyses 

to assess whether reductions in emissions due to the COVID-19 pandemic were detectable with these 

atmospheric measurements. The study engaged citizen scientists across California to collect invasive annual 

grass samples from across the state, which we analyzed for 14C content. The on-road mobile measurements 

show a 60% decrease in excess CO2 on Los Angeles freeways in 2020, when mobility was reduced to limit 

virus spread. Additionally, plant 14C indicated a reduction in ffCO2 in 2020 relative to pre-2020 datasets. 

After COVID mobility restrictions were lifted, I observed a heterogeneous rebound in ffCO2 emissions that 

is likely related to the various responses to the relaxation of physical distancing measures. The study 

demonstrated that plants are sensitive to ffCO2 emission changes, both spatially and temporally, and thus a 

powerful tool for tracking future ffCO2 emission reductions in cities. 

Lastly, in Chapter 3, I compare plant 14C to two prominent urban ffCO2 atmospheric monitoring 

approaches: in situ observational networks and total column measurements. I collected plant 14C samples 

alongside atmospheric CO2 measurements across an urban to rural gradient in Southern California. I 

establish quantitative relationships between plant 14C and atmospheric CO2, strengthening the reliability of 

similar analyses in places that lack CO2 monitoring infrastructure. This research also demonstrates that 

turfgrass is a suitable medium for capturing spatiotemporal ffCO2 emission patterns, enabling 14C analysis 

at intra-annual timescales and in more locations. 

Together, my PhD research significantly advanced our understanding of CO and plant 14C as tracers 

of ffCO2 in cities. The findings indicate that plant 14C can improve the coverage and resolution of ffCO2 

emissions information in urban areas. This opens new opportunities for tracking ffCO2 trends in cities that 

lack measurements and high-resolution analyses to assess spatial disparities in emissions. In conjunction 

with advances in 14C measuring technology, such as the Mini Carbon Dating System, plant 14C samples can 

be measured at higher throughput using elemental analysis combined with 14CO2. Future work can apply 
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these advances in plant 14C analyses to validate decarbonization progress and guide local actions toward 

ffCO2 mitigation goals. 
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Chapter 1 Contrasting Trends in Vehicle Combustion Efficiency in Los 

Angeles, CA and Salt Lake City, UT 
 

Adapted from:  

Yañez, C. C., Bares, R., Czimczik, C.I., Lin, J., Zhang, J., Bush, S.E., & Hopkins, F.M. 

Contrasting Trends in Vehicle Combustion Efficiency in Los Angeles, CA and Salt Lake City, 

UT. Under Revision.  

1.1 Introduction 

Urban areas are hotspots for the emission of trace gases that are harmful to human health and the 

environment. Many of these air pollutants and greenhouse gases are emitted on road from vehicles. In cities, 

the transportation sector accounts for a large share of anthropogenic carbon monoxide (CO) and carbon 

dioxide (CO2) emissions, since both gases are co-emitted during the burning of petroleum-derived fuels in 

gasoline- and diesel-powered vehicles. In the United States, 38% of anthropogenic CO emissions (United 

States Environmental Protection Agency, 2017) and 29% of CO2 emissions (United States Environmental 

Protection Agency, 2023) originate from on-road mobile sources. CO, a criteria pollutant that results from 

incomplete or inefficient combustion, is hazardous to human health, a precursor to other harmful air 

pollutants such as ozone, and contributes to climate change. CO2 is a potent greenhouse gas and the most 

critical determinant of climate change in this century (Masson-Delmotte et al., 2021).  

Air pollutant regulation (i.e., the 1970 U.S. Clean Air Act) and technological advances (i.e., 

catalytic converters) have led to significant improvements in air quality and a decline in air pollution-related 

mortality in many cities (Colmer et al., 2020; Sullivan et al., 2018; Zhang et al., 2018). Specifically, 

requirements for catalytic converters on new vehicles reduced the amount of CO and unburned 

hydrocarbons emitted from vehicles by oxidation reactions that convert them to CO2. Newer vehicle models 

are more fuel-efficient, and CO emissions have decreased despite increases in the number of vehicles on 

the road and vehicle miles traveled. Ambient CO mixing ratios have substantially declined in urban areas 
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(Li et al., 2022; Lopez-Coto et al., 2022; McDonald et al., 2013; Warneke et al., 2012; Winkler et al., 2018), 

especially within jurisdictions that enforce strict emission controls, such as the State of California. In the 

San Francisco metropolitan area for instance, CO mixing ratios measured in vehicles traveling on a major 

highway decreased from 9.7 ppmv to 0.5 ppmv (a 95% reduction) between 1980 and 2011 (Flachsbart & 

Ott, 2019). In Los Angeles, the CO mixing ratio decreased from 20 ppmv in the 1960s to 0.4 ppmv in 2010, 

with an average decrease of 8% per year (Warneke et al., 2012). However, while urban CO emissions have 

declined, global CO2 emissions from the on-road sector have continued to grow due to increasing 

transportation (Lamb et al., 2021). In contrast to technological advances that reduced CO, reducing CO2 

emissions requires higher fuel economy or fundamental changes to the vehicle fuel source (e.g., electric 

and hydrogen vehicles). 

The ratio of CO/CO2 is a useful metric that is indicative of vehicle combustion efficiency. 

Combustion efficiency denotes how effectively the vehicle engine converts fuel into energy, and 

consequently the degree to which polluting by-products (i.e., CO) are emitted in the process. Lower 

CO/CO2 ratios indicate improvements in combustion efficiency as well as the effectiveness of catalytic 

converters equipped by gasoline vehicles in reducing CO emissions, and thus the ratio can be used to 

evaluate the success of efforts to reduce pollutant emissions from traffic. In cities, the CO/CO2 ratio has 

generally been declining over time alongside reductions in CO emissions (Popa et al., 2014). However, the 

trend varies by location, reflecting the stringency of policies (Warneke et al., 2012) and the timing of the 

introduction of emission reduction policies. As such, CO/CO2 ratios tend to be higher in places that have 

less stringent pollution regulations and vehicle fleets with less efficient technology (Che et al., 2022; Silva 

et al., 2013). 

In addition to serving as an indicator of combustion efficiency, the CO/CO2 ratio is also useful for 

studies aiming to quantify fossil fuel CO2 signals based on atmospheric CO2 measurements. Because CO is 

a short-lived gas relative to CO2 and is co-emitted during incomplete combustion of fossil fuels, the CO/CO2 

ratio can be used as a tracer to distinguish fossil fuel CO2 emissions from other sources such as biogenic 

fluxes, oceanic exchange and wildfires (Gamage et al., 2020; Silva et al., 2013; Suntharalingam, 2004; 
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Turnbull, Karion, et al., 2011). Thus, observations of temporal-spatial variations in the CO/CO2 ratio 

provide critical insight regarding CO2 sources and for validating the success of emission reduction efforts. 

However, spatial and temporal variations in the CO/CO2 ratio complicate its application as a tracer. Thus, 

changes to the CO/CO2 ratio over time need to be re-assessed to determine the continued usefulness of this 

approach. 

In this study, we investigate multi-year trends in the traffic combustion efficiency using 

observations of the on-road CO/CO2 ratio in greater Los Angeles (LA) and Salt Lake City (SLC), two major 

metropolitan areas in the western U.S. with air quality problems and contrasting vehicle emission control 

policies. Measurements were conducted in both cities during the summers of 2013 and 2019, and 

additionally in LA in 2020 and 2021 to capture changes in traffic related to the coronavirus-19 (COVID-

19) pandemic. We measured on-road CO/CO2 using mobile laboratories equipped with fast response, high 

precision trace gas analyzers. Alternative approaches for estimating on-road emissions rely on assumptions 

about the traffic fleet characteristics and driving conditions in order to extrapolate measurements made in 

emission testing laboratories (e.g., EPA MOVES) or on individual vehicles (e.g., portable emissions 

measurement systems). In contrast, our measurements represent the actual average combustion efficiency 

of the real-world vehicle fleet on interstate highways during daytime in these locations. We chose interstate 

highways to avoid the influence of non-vehicle sources, cold starts, and to keep our inter-city comparisons 

free of biases related to road network design. Thus, our approach allows a direct assessment of the integrated 

impact of vehicle emission control policies, vehicle fleet dynamics, and traffic conditions on air quality 

near roadways. We hypothesized that LA would have a lower and more rapidly decreasing CO/CO2 ratio 

than SLC due to the earlier adoption of strict vehicle emission control policies in California compared to 

Utah.  



 

11 

1.2 Materials and Methods 

1.2.1 Study areas 

We focus on two urban areas in the western U.S.: Los Angeles, CA and Salt Lake City, UT. The 

Los Angeles (LA) metropolitan area hosts 18 million residents across approximately 88,000 km2 in 

Southern California, while Salt Lake City (SLC) has 1.2 million residents in approximately 20,000 km2. 

Both locations have historically suffered from poor air quality due to anthropogenic pollutant emissions 

that get trapped by atmospheric temperature inversions and surrounding mountains (Bares et al., 2018; 

Mackey et al., 2021; Mouteva et al., 2017). Both LA and SLC are classified as maintenance areas for 

ambient CO levels due to former violations of air quality standards and are thereby required by the U.S. 

Clean Air Act to implement measures to reduce on-road emissions. The on-road transportation sector 

dominates fossil fuel-derived CO2 emissions (CO2) in both cities, constituting 43% of LA’s (Gurney et al., 

2019) and 38% of SLC’s emissions (Patarasuk et al., 2016). On-road mobile sources also constitute the 

largest source of CO emissions in the counties where the two cities reside, comprising 47% and 56% of CO 

emissions in LA County and Salt Lake County, respectively (United States Environmental Protection 

Agency, 2017). 

California and Utah differ in the stringency of their statewide regulations concerning on-road 

emissions. The State of California was the first jurisdiction in the U.S. to regulate motor vehicle emissions 

of CO (1966) and CO2 (Pavley, 2002). Since the 1960s, California has been granted waivers by the U.S. 

Environmental Protection Agency to write its own air pollutant regulations that are enacted separately from 

national laws and are more stringent. These policies include progressively stricter emission standards for 

vehicles sold in the state, on-board diagnostics (or “check engine” light) systems, and enhanced vehicle 

inspection/maintenance (I/M) programs intended to identify gross polluters (e.g., smog checks) in urban 

areas (California Air Resources Board, 2023b). Further, the state also has incentive programs to encourage 

retirement of old vehicles and the purchase of low polluting vehicles (California Air Resources Board, 

2022). In addition, California has strict mandates on fuel formulations, and introduced cleaner-burning, low 
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sulfur fuel standards with its adoption of the LEV III standards in 2012. Thus, trends in LA’s on-road 

CO/CO2 ratio should be decreasing in response to strict statewide emission regulations, incentivized fleet 

turnover and cleaner burning fuels.  

In contrast, SLC is in the State of Utah, where vehicle sales and emission regulations generally 

follow federal policies that are less stringent and are usually adopted years after similar policies in 

California. Currently, Utah has ongoing incentive programs for repair or replacement of vehicles that fail 

I/M checks and offers incentives for the purchase of clean air vehicles (UDEQ, 2023), albeit at a smaller 

scale than California. While smog checks are required in SLC as part of federally approved I/M programs 

since it is both an ozone and fine particulate matter nonattainment area, they are not a statewide requirement 

in Utah. Furthermore, federal Tier 3 fuel standards, which are highly similar to California’s LEV III 

standard, were introduced in April of 2014 (Control of Air Pollution From Motor Vehicles: Tier 3 Motor 

Vehicle Emission and Fuel Standards, 2014). As Utah is a small, somewhat isolated, market for vehicle 

fuel, the arrival of Tier 3 fuels occurred significantly later than the federal promulgation, with arrival of 

these fuels largely due to local political action and incentives. As a result, Tier 3 fuels were phased into the 

SLC market in 2020 and later, lagging California’s adoption by over seven years. Hence, due to Utah’s 

later and less stringent adoption of on-road emission regulations compared to California, we expect that 

traffic combustion efficiency in SLC will not have improved as much as in LA. 

1.2.2 On-road trace gas measurements 

We measured the on-road mixing ratios of CO and CO2 in LA and SLC using cavity ringdown 

spectrometers (Picarro, Sunnyvale, California) installed inside vehicle-based mobile laboratories following 

similar protocols as Bush et al. (2015) and Hopkins et al. (2016). Measurements were made on weekdays 

between July 15-31, 2019 in LA and August 14-29, 2019 in SLC. We compared our observations to similar 

data collected between June 14 - July 7, 2013 in LA and August 9-17, 2013 in SLC (Bush et al., 2015; 

Hopkins et al., 2016). Additionally, we collected similar measurements in LA on July 9-31, 2020 and July 

15-17, 2021 to assess changes during the COVID-19 pandemic. 



 

13 

 The mobile platform was a 2017 Mercedes Sprinter cargo van for the LA 2019-2021 surveys 

(Yañez et al., 2022), and a 2009 Hyundai Santa Fe Google Street View car for the SLC 2019 surveys (Miller 

et al., 2019). The 2013 surveys utilized the same 2011 Ford Transit Connect van in both cities. The mobile 

laboratories were fabricated to stream ambient air into the analyzer with the inlet sampling air several inches 

above the roof near the front of the vehicle. More specifically, the inlet on the LA 2019-2021 mobile 

laboratory was plumbed through a hole on the van’s ceiling behind the driver’s seat (approximately 3.5 m 

height above the road surface, and 10 cm above the roof of the vehicle). The SLC 2019 platform’s inlet was 

installed several centimeters above the roof line at the rear edge of the front window (Apte et al., 2017). 

The 2013 mobile laboratory’s inlet was attached to a telescopic mast that was extended to approximately 1 

m above the vehicle roof during these surveys (Bush et al., 2015). Geospatial coordinates and 

meteorological information were continuously recorded during the drives using compact GPS (Garmin GPS 

16x in LA 2019-2021 and SLC 2013, Garmin 18x in SLC 2019) and weather sensors (LA only) mounted 

to the vehicle rooftops. 

For year-to-year comparisons, datasets were filtered to only include overlapping locations 

(measurements within a 50 m buffer of each other). We also only compared data collected on freeways 

(“primary” roads as defined by the U.S. Census Bureau). After these filters, our dataset represents 

approximately 470 km of road in LA and 60 km in SLC, most of which were sampled two or more times 

per survey. This includes segments of over ten freeways in LA (State Routes (SR-) 1, 22, 57, 60, 73, 91 and 

Interstate (I-) 5, 10, 105, 110, 210, 405 and 710) and two freeways in SLC (I-15 and 80). Our dataset is 

representative of an integrated traffic emissions signal, and we expect minimal influence from non-road 

sources. One measurement day (August 16, 2013) in SLC was affected by smoke from a nearby wildfire 

and excluded from the analysis (Fig. A1). 

1.2.3 Data processing 

Details describing the processing done on the 2013 datasets are described in Bush et al. (2015) and 

Hopkins et al. (2016). For the 2019-2021 LA measurements, the Picarro G2401 analyzer was calibrated 
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twice daily using air standard gas cylinders that contained known mixing ratios of CO2 and CO. The mixing 

ratios in the standards were corrected against NOAA-certified tanks that were accurate to the World 

Meteorological Organization scale (WMO-CO2-X2007). The analyzer sampled directly out of the standard 

gas cylinder for three minutes before and after each survey. A correction was then applied to the data based 

on a two-point linear fit between the known and measured values. 

For the 2019 SLC campaign, instrumentation was calibrated in a laboratory environment upon 

arriving in SLC, and again upon installation into mobile lab, to account for changes in ambient pressures 

and instrumentation drift during shipping. Throughout the campaign, both CO and CO2 were calibrated at 

least weekly with CO calibration gases sourced from Scott-Marrin and diluted using a Teledyne T751H 

portable zero air system and a Teledyne T750 portable dynamic dilution calibrator. Calibration gases for 

CO2 were generated at the University of Utah and are traceable to the WMO standard (Bares et al., 2019). 

To synchronize the observations from the various instruments, data were integrated into 5-second 

averages and then gridded by averaging consecutive measurements into 100 m road intervals. Only daytime 

data collected between 11:00 and 16:00 (local time) was used in the analysis, when the planetary boundary 

layer is deep, and air is presumably well mixed. 

We calculated excess values above a background (denoted with subscript “xs”; e.g., CO2xs) for all 

gas mole fraction measurements by subtracting a regional background value from all observations. The 

background values are the ambient mixing ratios of CO and CO2 of the regional atmosphere prior to being 

polluted by anthropogenic emissions. We characterized the background for each city and month using the 

“cleanest” measurements in our dataset by selecting the lowest mole fraction value of each survey day and 

averaging the lowest 20% of these minima (Hopkins et al., 2016). The uncertainty of the background was 

estimated as the standard deviation of the minima (Table A1). The LA 2019 dataset was exceptionally 

polluted since we only collected measurements on freeways and did not capture background conditions 

Therefore, we characterized its background using data from San Clemente Island (33.92°N, -118.49°E, 489 

m a.s.l.), an offshore site that began collecting continuous in situ measurements of GHG mixing ratios in 

2015 (J. Kim, Pers. Comm., 2022). In the summer months, the San Clemente Island (SCI) site samples 
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marine air masses flowing into the LA area from the Pacific Ocean, making it an adequate summer 

background for this region (Verhulst et al., 2017). For the non-2019 years when SCI data was available, 

CO2 and CO background values derived from SCI measurements agreed within one sigma to the measured 

minima approach used here. For instance, in 2020 the CO2 background was 410.0 ± 2.1 ppmv using the 

SCI July daytime average and 413.6 ± 6.7 ppmv using the lowest 20% of daily minima. The CO background 

was 82.1 ± 8.9 using SCI and 72.2 ± 36.8 using the minima. Considering the high enhancement levels of 

CO and CO2 observed on the road, differences in the background estimation technique only result in a 

difference of 1.1 ppbv/ppmv in COxs/CO2xs at most. Further, although the CO background was lower by 15-

19 ppb in 2020 compared to 2019 and 2021, this does not affect our results. Even if we used a constant CO 

background for 2019-2021, the median COxs/CO2xs values would only change by 0.01-0.15 ppbv/ppmv. 

Thus, the different background approach in LA 2019 should not invalidate the comparison against other 

years.  

We focus our analysis on spatial and temporal trends in the ratio of COxs/CO2xs (ppbv/ppmv), not 

the individual COxs and CO2xs measurements. This is because the mixing ratios are not directly comparable 

between surveys due to differences in the fluid dynamics of the inlet configuration of the different mobile 

platform designs. The vehicle used for the 2013 surveys (both LA and SLC) was equipped with a telescopic 

mast that extended the sample inlet to 1 m above the vehicle roof, likely leading to measurements of traffic 

emissions that had mixed and risen above the surface. On the other hand, neither vehicle used in 2019-2021 

had a mast, instead capturing air much closer to the vehicle’s roof. Fluid dynamics simulations show that 

air captured closer to the roof line is likely composed of polluted mixtures from closer to the ground that 

traveled up along the vehicle body into the inlet (W. Mui, Pers. Comm., 2023). The latter configuration 

leads to higher CO2 and CO mole fractions. However, this should not affect the COxs/CO2xs ratios because 

the air mixtures originate from the same source.  
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1.3 Results and Discussion 

1.3.1 Trends in COxs/CO2xs between 2013 and 2019 

Measurements of on-road COxs/CO2xs ratios revealed contrasting temporal trends in the combustion 

efficiency of vehicle fleets in LA and SLC between 2013 and 2019 (Fig. 1.1). Values for COxs/CO2xs in LA 

and SLC were similar in 2013 but diverged in 2019. In LA, we observed a reduction in the on-road 

COxs/CO2xs ratio from a median COxs/CO2xs value of 5.0 ppbv/ppmv in 2013 to 2.6 ppbv/ppmv in 2019 (Fig. 

1.1a-b). In SLC, the median COxs/CO2xs value increased from 4.1 ppbv/ppmv in 2013 to 6.4 ppbv/ppmv in 

2019 (Fig. 1.1c-d). The median COxs/CO2xs ratio of each city was statistically different between years 

according to Mood’s median test (p-value < 0.05). In LA, the COxs/CO2xs ratios were more variable in 2013 

compared to 2019, with the interquartile range decreasing from 3.3 in 2013 to 1.4 and 2019. The opposite 

was observed in SLC, where the interquartile range increased from 2.4 in 2013 to 5.8 in 2019. Furthermore, 

the data became less skewed in LA, with skewness values decreasing from 5.0 in 2013 to 2.2 in 2019, but 

in SLC, skewness values increased from 3.8 in 2013 to 6.9 in 2019. The changes in skewness are also 

exemplified by Lorenz curves and the Gini indices of each survey’s COxs, CO2xs, and COxs/CO2xs values 

(Fig. A2). Overall, the LA 2019 measurements had the lowest and least variable ratios and the SLC 2019 

measurements had the highest and most variable ratios, with a maximum of 184 ppbv/ppmv. Taken 

together, our data shows that combustion efficiency increased from 2013 to 2019 in LA but decreased in 

SLC. 
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Figure 1.1. Histograms showing the distribution of COxs/CO2xs for each mobile survey: (left panels) Los 

Angeles in (a) 2013 and (b) 2019, (right panels) Salt Lake City in (c) 2013 and (d) 2019. The solid vertical 

lines indicate the median and the dashed line indicates the mean value of each survey. For visualization 

purposes and comparison between surveys, the x-axis has been truncated. Inset maps on each panel show 

the full data distribution of each survey without truncation. 

 

In LA, the reduction in COxs/CO2xs ratio between 2013 and 2019 was generally observed across the 

entire basin, while the changes in SLC were more spatially heterogeneous (Fig. 1.2). We observed several 

recurring COxs/CO2xs hotspots in both 2013 and 2019, indicating persistent effects of traffic features such 

as steep roads and major freeway junctions on combustion efficiency. We considered hotspots as locations 

where COxs/CO2xs exceeded the 95th percentile of observations in that city and year. In LA, COxs/CO2xs 

ratios were elevated on steep roads, such as on SR-73 and SR-241, where COxs/CO2xs exceeded 12 

ppbv/ppmv in 2019. This is likely because engine load is increased when driving upslope and thereby 

reduces the combustion efficiency. Additional reappearing hotspots were observed in LA near the junction 

of SR-57 and SR-60 near Pomona and near the SR-134 and SR-710 junction near Pasadena on both years. 
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Combustion efficiency likely decreases near freeway junctions since they often experience congestion, 

stop-and-go conditions, and frequent acceleration as vehicles merge. Similarly, in SLC hotspots were 

observed on the eastern portion of I-80 leading up to the Wasatch mountains. Additionally, new SLC 

hotspots were observed in 2019 that were not observed in 2013 that could potentially be due to construction 

or traffic conditions. Overall, SLC freeways had notably higher COxs/CO2xs in 2019 compared to 2013, 

especially on I-15 and near its junction with SR-201 and I-80.  

We compared the COxs/CO2xs trends we observed to the California Air Resources Board’s EMFAC 

model (California Air Resources Board, 2021). We downloaded annual CO and CO2 emission estimates (in 

tons per year) for the South Coast Air Basin for the years 2013 and 2019-2021. We converted the emissions 

into molar units and calculated the CO/CO2 ratio (in units of 1000 mol CO / mol CO2) to match our 

observations in units of ppbv/ppmv. Based on the EMFAC output, the fleet-wide CO/CO2 decreased by 

42% between 2013 and 2019. This corresponds well with our observed median change of 48% over the 

same period. Thus, our observations and EMFAC agree that the fleetwide combustion efficiency improved 

between 2013 and 2019 in LA. Furthermore, assuming the reduction rate was linear and constant over the 

six years, this indicates a decreasing trend in CO/CO2 of -7.1% yr-1 using EMFAC and -8.0% yr-1 based on 

our observations. This is on par with earlier reports of a -7.8% yr-1 trend from 1960 to 2010 based on 

regional atmospheric observations (Warneke et al., 2012). Based on EMFAC, annual on-road CO emissions 

decreased by 38% in 2019 relative to 2013 (or 28,500 tons CO yr-1) alongside these improvements in vehicle 

combustion efficiency. 
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Figure 1.2. Maps showing the ratio of COxs/CO2xs for each mobile survey: (left panels) Los Angeles in (a) 

2013 and (b) 2019, (right panels) Salt Lake City in (c) 2013 and (d) 2019. 

 

1.3.2 Trends in Los Angeles COxs/CO2xs during the COVID-19 pandemic 

The COVID-19 pandemic allowed us to further study the effects of traffic conditions on vehicle 

combustion efficiency. Emergency physical distancing mandates were imposed in California starting in 

March of 2020 to reduce rates of virus transmission (CA Executive Order N-33-20). This resulted in an 

abrupt shift to remote work and learning, the closure of “non-essential” businesses and entertainment 

venues, and strict limitations on domestic and international travel. Consequently, there was a drastic 

reduction in freeway traffic and congestion in the year 2020.  

We repeated the LA on-road measurements in July 2020 and 2021 to assess how the combustion 

efficiency was affected by the sudden changes in commuter traffic (Fig. 1.3). We found that the median 

COxs/CO2xs increased from 2.7 ppbv/ppmv in 2019 to 6.1 ppbv/ppmv in July 2020, indicating a downturn 

in the fleet combustion efficiency during COVID-19 restrictions. The COxs/CO2xs observations were also 

more variable in 2020, with the interquartile range increasing from 1.4 in 2019 to 3.7 in 2020. As pandemic-
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related mobility restrictions were gradually relaxed, traffic patterns eventually returned to pre-pandemic 

levels. By July 2021, on-road COxs/CO2xs decreased to a median value of 2.5 ppbv/ppmv and an interquartile 

range of 1.4 which coincide with the pre-pandemic (2019) observations. This indicates that the increased 

COxs/CO2xs ratios in 2020 were temporary and returned to the previous state of combustion efficiency by 

2021.  

 
Figure 1.3. Histograms and maps of on-road COxs/CO2xs observations in Los Angeles in July (a-b) 2019, 

(c-d) 2020, during COVID-19 pandemic related traffic reductions, and (e-f) 2021.The dashed lines on the 

histograms are the median COxs/CO2xs values for each survey. The x-axes on the histograms have been 

truncated for visualization purposes. 

 

The stark reductions in LA’s traffic combustion efficiency in 2020 indicate that on-road CO2 and 

CO emissions were substantially affected by changing driving patterns during the COVID-19 pandemic. In 

July 2020, LA’s on-road CO2xs levels were reduced by 60% relative to July 2019, with a near complete 

rebound by July 2021 (Fig. A3). We attribute the 2020 CO2xs reductions to the decrease in the number of 

vehicles on the road, since CO2 emissions are directly proportional to the amount of fuel burned. However, 

on-road COxs levels did not show a significant change between 2019-2021 (Fig. A3). This implies that 
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worsened combustion efficiency maintained the typical on-road CO levels despite there being fewer 

vehicles on the road in 2020.  

Using the median COxs/CO2xs observations in 2019 and 2020 as emission factors and on-road CO2 

emissions from EMFAC (65.7 million tons in 2019 and 58.5 million tons in 2020), we calculate that the 

worsened combustion efficiency led to 130,000 more tons of CO emitted in 2020 than would have been 

emitted if the combustion efficiency had remained at the 2019 level. This amounts to 20% of the South 

Coast Air Basin’s total annual CO emissions (653,000 tons yr-1), based on 2017 CO inventory estimates 

(California Air Resources Board, 2023a). Thus, the less efficient vehicle combustion during the pandemic 

led to a marked effect on CO emissions relative to the total CO budget. The potential causes of the decreased 

combustion efficiency in 2020 are discussed in the following section. 

1.3.3 Evaluation of the potential contributors to COxs/CO2xs trends 

In summary, our measurements indicate an improvement in traffic combustion efficiency in LA 

since 2013, except for during the COVID-19 pandemic when combustion efficiency worsened. Conversely, 

combustion efficiency in SLC showed a decline between 2013 to 2019. Policy interventions and 

technological advances should be reducing COxs/CO2xs in both cities, with potentially stronger reductions 

in LA than SLC due to stricter and earlier adoption of regulatory measures in California. However, our 

measurements indicate a more complex interplay of factors because COxs/CO2xs increased in SLC and 

during COVID-19 in LA, opposing the expected decrease with emissions control measures. In this section, 

we discuss traffic and fleet characteristics that increase COxs/CO2xs and evaluate their potential contributions 

based on our observations, relevant literature, and the vehicle composition in LA and SLC. 

An increase in heavy-duty vehicle activity would decrease COxs/CO2xs because diesel engines 

produce substantially less CO per unit of fuel burned than gasoline-powered engines (Held et al., 2001; 

Kelp et al., 2020; S. S. Park et al., 2011; Wen et al., 2019). Thus, heavy-duty vehicles cannot explain the 

COxs/CO2xs increase we observed during COVID-19 and in SLC unless real-world CO/CO2 emission ratios 

from heavy-duty vehicles differ grossly from expectation. Additionally, cold engine starts lead to higher 
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COxs/CO2xs but are unlikely to occur during summer and on interstate freeways where our measurements 

took place. Construction activity may cause higher COxs/CO2xs due to less efficient off-road equipment, but 

would have episodic effects on the data, not an overarching shift in the distribution as we observed.  

Vehicle speeds. In general, CO and CO2 emission rates increase at low (< 30 mph) and high (> 55 

mph) speeds (Ammoura et al., 2014; Held et al., 2001; Jaikumar et al., 2017; Mei et al., 2021). However, 

the effect of speed on CO/CO2 ratios varies with vehicle class, fuel type, and age (Fig. A4; Fig A5). Vehicles 

were driving faster during the two surveys in which we observed increases in COxs/CO2xs (LA 2020 and 

SLC 2019). Based on traffic count data (California Department of Transportation, 2023; Utah Department 

of Transportation (UDOT), 2023), the median speed increased significantly in LA by 5 mph in 2020 

compared to 2019 (Fig. 1.4; p-value < 0.05 using Mood’s median test). Other reports also indicated faster 

driving speeds and more aggressive driving in 2020, which led to higher rates of severe crashes despite 

fewer vehicles on the road (Dong et al., 2022; NHTSA, 2021). When traffic conditions returned to pre-

pandemic levels in 2021, both the median traffic speed and the COxs/CO2xs values returned to 2019 levels. 

In SLC, median traffic speeds increased by 3 mph in 2019 compared to 2013, coinciding with increased 

COxs/CO2xs ratios. This may be due to a speed limit increase on I-15 which was implemented in 2015 

(Davidson, 2014; Hu, 2017). While we did not measure COxs/CO2xs in SLC in 2020-2021, it is notable that 

the increasing speed trend continued during those years. 
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Figure 1.4. Box plots of hourly traffic speed, derived from the ratio of reported vehicle miles traveled 

(VMT) per vehicle hour traveled (VHT), for (a) Los Angeles freeways (I-5, I-405, I-605, I-210, SR-60, and 

SR-91) and (b) Salt Lake City freeways (I-15 and I-80) over the month each mobile survey was conducted. 

Only daytime hours are included (11AM - 4PM local time). VMT and VHT data were downloaded from 

the Performance Measurement Systems data sources (CalTrans, 2022; UDoT, 2022). 

 

We tested the effect of faster speeds on CO/CO2 the California Air Resources Board’s EMFAC 

model by simulating annual CO and CO2 emissions if all vehicles were driving in their nighttime speed 

conditions, which we assume to represent free-flow traffic. Based on this scenario analysis, EMFAC 

predicts that CO/CO2 emission ratios decrease by 12% at faster speeds (Table A2; Fig. A4). However, 

EMFAC only models emissions for speeds up to 70 mph and many drivers commonly exceed this speed. 

Some studies, using portable emissions measurement systems installed on running vehicles have found that 

CO/CO2 ratios increase at faster speeds, especially when the driving style is aggressive, defined by faster 

speeds and bursts of acceleration (S. Park et al., 2010; Suarez-Bertoa et al., 2019; Tzirakis et al., 2007; Zhu 

et al., 2022). However, other studies (and EMFAC) have observed that CO/CO2 decreases or does not 

change significantly with speed (Ammoura et al., 2014; Lee et al., 2020; Mei et al., 2021). The discourse is 

probably because the effect of faster speeds on CO/CO2 emissions varies by vehicle fuel, class, age, and 

driving style. Based on EMFAC, CO/CO2 decreases with speed for modern passenger cars but increases 

for some light-duty trucks and older vehicles (Fig. A4 and A5). SLC’s fleet mix has more passenger trucks 
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than LA (Fig. A6) and is older (Fig. A7). Thus, speed could be an important factor affecting our 

measurements, since COxs/CO2xs increased for both surveys in which speed increased (LA 2020 and SLC 

2019). However, the impact of speed is dependent on the fleet composition (i.e., vehicle age, fuel, and 

category) and likely is not the only factor contributing to COxs/CO2xs increases. 

Vehicle age. Older vehicles on the road would lead to increases in COxs/CO2xs ratios (Table A2), 

especially if they are driving fast (Fig. A5). Newer vehicle models are continually improved to emit less 

pollutants, while older models may have outdated emission control technology (Jaiprakash et al., 2017). 

Further, as vehicles age, the effectiveness of their on-board emission control devices such as catalytic 

converters decrease. It is possible that older vehicles played a role in the two surveys in which COxs/CO2xs 

increased. On average, SLC has older vehicles than LA (Fig. A7). During the COVID-19 pandemic, older 

vehicles may have become more prominent on the road, which would contribute to the increased COxs/CO2xs 

ratios we observed. While many Californians switched to teleworking during the pandemic, “essential 

workers” resumed work that was essential to maintain safety, health, and sanitary services (California State 

Government, 2022). Those driving in 2020 may have largely been service and/or blue-collar workers who 

may have limited ability to purchase newer vehicles. Further, public transportation use plummeted during 

the pandemic due to physical distancing recommendations. Regular transit users may have increased their 

driving of old vehicles if they could not afford a more modern car. We simulated the impact of older vehicles 

in EMFAC and found that if the 2020 traffic fleet reverted to the 2013 fleet (an older-vehicle scenario), on-

road CO/CO2 ratios would increase by 84% relative to the default scenario (Table A2). If the older vehicles 

were driving fast and/or with an aggressive driving style, these effects occurring simultaneously could 

compound COxs/CO2xs increases (Fig. A5).  

The combination of an older vehicle fleet and higher speeds in SLC relative to LA, and during 2020 

in LA relative to 2019 and 2021, is the most likely explanation for our real-world CO/CO2 observations 

(Table A2). While we recognize that for most of the vehicle fleet, speed has a decreasing effect on CO/CO2 

in theory, the characteristics of the SLC fleet (older and more light-duty trucks) and the circumstances 

around the COVID-19 pandemic could lend toward increased CO/CO2 at faster speeds, especially if the 
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driving style is aggressive. Our dataset captures the net fleet-wide CO/CO2, and thus is not suited to 

distinguish which vehicles caused the increase. Further work using portable emissions measurement 

systems or chassis dynamometer tests is needed to isolate the vehicle-specific effects. Such tests were used 

to inform emission rates in EMFAC but are limited for this comparison because (1) emissions under real-

world driving conditions differ from the controlled test cycles on which EMFAC is based (i.e. higher than 

70 mph speeds and more aggressive driving styles) and/or (2) because the pandemic led to broad fleet 

composition changes that were not captured by the model. Further, very few studies measuring emissions 

under real-world driving directly report CO/CO2 ratios (Zhu et al., 2022). Nonetheless, we believe the 

complex effects of speed on emissions could decrease combustion efficiency and warrant further research 

especially on emissions and combustion efficiency at high vehicle speed (>70 mph). 

1.3.4 Implications for fossil fuel CO2 quantification 

Besides the use of COxs/CO2xs as an indicator of combustion efficiency, the ratio can also be used 

to quantify emissions of fossil fuel-sourced CO2 (ffCO2). This is critical for measurements that attempt to 

quantify anthropogenic CO2 emissions mostly coming from fossil fuels, given that the biosphere contributes 

significantly to CO2 emissions, even in cities (Miller et al., 2020). Since incomplete combustion of fossil 

fuels results in co-emitted CO and CO2, the ratio of the two gases has been used as a tracer to distinguish 

CO2 emissions from non-anthropogenic CO2 sources (Gamage et al., 2020; Lopez et al., 2013; Maier, Levin, 

et al., 2023; Maier, Rödenbeck, et al., 2023; Turnbull, Karion, et al., 2011; Vogel et al., 2010). The CO2 

enhancement is calculated as:  

𝑓𝑓𝐶𝑂2 =  
𝐶𝑂𝑜𝑏𝑠  −  𝐶𝑂𝑏𝑔

𝑅𝐶𝑂/𝐶𝑂2
 

Eq. 1.1 

where COobs is the measured CO mixing ratio, CObg is the CO background (usually determined 

from a remote or upwind site), and RCO/CO2 is the ratio between CO and CO2 in units of ppbv/ppmv. Ideally, 

RCO/CO2 would be calculated based on the correlation between CO and the radiocarbon-based estimate of 
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the CO2 signal, since the radiocarbon isotope is the most direct atmospheric proxy for fossil fuel emissions 

(Turnbull, Karion, et al., 2011). 

The uncertainty in CO2 calculations using this approach depends on the variability in RCO/CO2 for 

the particular location and time period of the study. For instance, in previous work, an RCO/CO2 value of 14 

± 2 ppbv/ppmv resulted in CO2 values that varied by approximately ± 15% based on the upper and lower 

RCO/CO2 values and background conditions in Sacramento, CA in 2009 (Turnbull, Karion, et al., 2011). 

However, with CO emissions declining in urban areas, uncertainty in CO2 would increase as RCO/CO2 

approaches zero. Using the variability in measured on-road COxs/CO2xs ratios to quantify uncertainty in 

RCO/CO2 (i.e., 3.0 ± 1.6 in LA 2019), the resulting CO2 values vary by 34-114%. This large uncertainty is 

conservative, given that LA 2019 was our least variable survey and other years and SLC had larger standard 

deviations ranging from 4.7 to 17.1 ppbv/ppmv. Given the spatial and temporal variability in the ratio 

observed in this study, the uncertainty in ffCO2 using this method is substantial. This approach requires a 

robust correlation between CO and CO2, which we did not observe in our data (Fig. A8). In our 

observations, we assumed that all of the CO2xs we measured on-road was from fossil sources, yet COxs and 

CO2xs were not strongly correlated, with R2 values less than 0.19 (Fig. A8). The correlation weakened over 

time. The 2019-2021 observations had lower R2 values (ranging from 0 to 0.16) than the 2013 

measurements in both cities (R ranging from 0.17 to 0.19). Previous work has also described inconsistencies 

and large uncertainties in CO/CO2 that make CO an unreliable tracer for ffCO2 emissions on its own 

(Ammoura et al., 2014; Djuricin et al., 2010; Gamnitzer et al., 2006). Other trace gas species such as NO2 

may be suitable alternative tracers (Konovalov et al., 2016; Yang et al., 2023a), but updated studies 

evaluating such proxies against radiocarbon observations, the most direct tracer for CO2, are urgently 

needed to ensure robust tracking of climate change mitigation measures. 

In summary, using on road measurements of CO and CO2 mole fractions, we observed changes in 

vehicle combustion efficiencies in two western U.S. cities (Los Angeles, CA and Salt Lake City, UT) over 

2013 and 2021, a period that includes substantial changes in vehicle age and speed. Our measurements 

show that stricter emission regulations and mitigation incentives successfully lowered on-road CO 
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emissions over a six-year period in LA. In contrast, the combined effects of traffic conditions and the fleet 

composition led to a net worsening of fleet combustion efficiency in SLC, and during the COVID-19 

pandemic in LA. Although our observations are not the ideal toolset for identifying the mechanistic drivers 

of the CO/CO2 ratio for individual vehicles, they are able to uniquely measure the complex mix of sources 

and drivers in the real world that may differ from the model-based predictions. Future work should further 

evaluate the effects of traffic conditions on urban emissions and policymakers should consider the negative 

effects of elevated driving speeds on air quality. Furthermore, the success of CO emission regulations will 

make it more challenging for studies to apply CO as a tracer for quantifying fossil fuel CO2 emissions from 

cities.  
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Chapter 2 Reductions in California’s Fossil Fuel Carbon Dioxide 

Emissions during the COVID-19 Pandemic 
 

Adapted from:  

Yanez, C. C., Hopkins, F. M., Xu, X., Tavares, J. F., Welch, A., & Czimczik, C. I. (2022). 

Reductions in California's urban fossil fuel CO2 emissions during the COVID‐19 

pandemic. AGU Advances, 3(6), e2022AV000732. 

 

2.1 Introduction 

Carbon dioxide (CO2) emissions associated with fossil fuel consumption (ffCO2) are the dominant 

cause of climate change (Masson-Delmotte et al., 2021). Hence, there is an urgent need to quantify ffCO2 

emissions to support the success of climate change mitigation efforts. Urban areas account for 30-84% of 

global ffCO2 emissions (Seto et al., 2014), despite encompassing less than 1% of the Earth’s land area 

(Zhou et al., 2015). While being disproportional contributors to climate change, cities are also at the 

forefront of climate change mitigation actions (Rosenzweig et al., 2010), making them a top priority for 

quantifying and monitoring ffCO2 emission reduction efforts. 

Satellite-borne instruments can detect CO2 enhancements (i.e., 6 ppm above background) over large 

cities (Kiel et al., 2021; Schwandner et al., 2017), and urban tower networks continuously measure CO2 

levels in a small selection of cities in more economically developed countries. However, these atmospheric 

observation systems are limited in their ability to detect trends in ffCO2 at the neighborhood scale (~1 km2) 

that is needed to inform local policy makers on the outcome of mitigation actions (Duren & Miller, 2012). 

The abrupt halt of economic activity at the beginning of the coronavirus disease pandemic 

(COVID-19), with strictest regulations in place in the U.S. from March to May of 2020, provided an 

unplanned experiment on the sensitivity of atmospheric greenhouse gas (GHG) observations to changes in 

human behavior. Restrictions intended to prevent the spread of the virus caused a wide scale disruption of 
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human activities and consequently the largest reduction in global ffCO2 emissions than has ever been 

observed, inducing rapid emission reductions larger than any historical human crisis or climate agreement 

(Le Quéré et al., 2021). These emission reductions provide insight on potential climate mitigation strategies, 

such as decreasing transportation emissions through increased flexibility in remote work. Several studies 

quantified emission reductions during the pandemic using activity-based models (“bottom up” estimates) 

that scale sector-based activity and consumption data with ffCO2 emission coefficients. One study 

calculated a 17% (11 to 25%) reduction in daily global ffCO2 emissions in April 2020 relative to 2019, 

based on a compilation of activity data and information on the intensity of mandated lockdowns (Le Quéré 

et al., 2020). Hourly to daily activity data indicated an overall global ffCO2 decline of 8% in the first half 

of 2020 relative to 2019 (Liu et al., 2020). 

Pandemic related emission reductions have also been assessed using atmospheric observations 

(“top-down” estimates). For instance, several cities have established in situ tower observation networks that 

continuously measure the total CO2 mixing ratio. One such study reported a 30% reduction in the San 

Francisco Bay Area’s CO2 levels during the first six weeks of California’s statewide Stay-At-Home Order 

(March 22 to May 4, 2020) relative to the six weeks before the order (Turner, Kim, et al., 2020). Similar 

reductions were reported for the Los Angeles (34 ± 6%) and Washington DC/Baltimore metropolitan areas 

(33 ± 11%) in April 2020 relative to the previous two years (Yadav et al., 2021). Alternative ground-based 

atmospheric measurements were also used to assess ffCO2 emission reductions during the pandemic. Strong 

reductions in CO2 fluxes (-5 to -87%) were observed during lockdown periods relative to the same times in 

previous years in 11 European cities using eddy-covariance measurements of CO2 exchange (Nicolini et 

al., 2022). Atmospheric oxygen measurements were applied as novel tracers for ffCO2 emissions in the 

United Kingdom and detected a 23% (14 to 32%) ffCO2 reduction in 2020 annual emissions relative to a 

modeled scenario without the COVID-19 pandemic (Pickers et al., 2022).  

Pandemic-related emission reductions were also observed in some remotely sensed data. One study 

combined bottom-up estimates and observations of nitrogen oxides (NOx, pollutants that are co-emitted 

with CO2 during fossil fuel combustion) from the Tropospheric Monitoring Instrument (TROPOMI) to 
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calculate a 12% decline in China’s ffCO2 emissions in the first four months of 2020 relative to 2019 (Zheng 

et al., 2020). However, studies analyzing data from CO2-observing satellites (such as OCO-2 and GOSAT) 

could not conclusively detect pandemic-related emission reductions because of sparse data retrievals, low 

resolution, and weak signals (Buchwitz et al., 2021; Chevallier et al., 2020).  

Quantifying ffCO2 emission reductions (i.e., isolating fossil fuel contributions from the total CO2 

signal) remains a key challenge for climate change mitigation efforts, especially at localized spatial scales. 

This is because ffCO2 emissions are superimposed on large and poorly constrained fluxes from land 

ecosystems (e.g., photosynthesis and respirations of plants and soil microorganisms) that vary seasonally 

and interannually in response to temperature, the timing and amount of precipitation, drought, fire, plant 

life stage, and management (irrigation, harvest) as well as emissions from biofuel combustion and human 

metabolism (e.g., respiration, sewage). Recent work in the LA metropolitan area revealed that biospheric 

fluxes contribute a significant proportion (up to 30%) to the excess level of CO2 observed in the urban 

atmosphere (Miller et al., 2020). Thus, an effective ffCO2 monitoring system requires a direct way to isolate 

fossil fuel sources from other entangled CO2 fluxes, high spatial resolution, and accessibility to global cities.  

One high resolution, sector-specific approach is the deployment of mobile GHG observatories that 

map fine scale patterns in ffCO2 emissions from vehicle sources on urban roads (Bush et al., 2015). Such 

mobile measurements offer distinct sensitivity to traffic-related ffCO2 emissions since the signal is 

dominated by nearby vehicle emissions and ambiguity related to transported air mixtures from other sources 

is reduced. During the COVID-19 pandemic, one mobile study observed dramatic reductions in on-road 

enhancements of CO2 (-41 ppm or a 63% reduction) relative to a period before lockdowns in Beijing, China 

(Liu et al., 2021). 

Radiocarbon analysis of plants is another promising approach for quantifying urban ffCO2 trends 

at the local scale. Radiocarbon (14C, a radioactive carbon isotope with a half-life of 5,730 years) is a unique 

tracer for ffCO2 because fossil fuel-derived CO2 is millions of years old and devoid of 14C due to radioactive 

decay, while other sources of CO2 have 14C signatures similar to the current atmosphere (Graven et al., 

2020a; Levin et al., 2003; Santos et al., 2019; Turnbull et al., 2006). Currently, an input of 1 ppm of ffCO2 
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into the atmosphere results in a depletion of ambient Δ14CO2 by 2.4‰. Since plants assimilate CO2 during 

photosynthesis, plant 14C reflects the 14CO2 signature of the surrounding atmosphere integrated over the 

period when the plants are photosynthetically active. Where ffCO2 emissions dilute 14C in the atmosphere, 

plants are depleted in 14C (appear older in 14C age). Thus, plants offer a natural and efficient network of 14C 

observations and can be used to map fine-scale spatial patterns in ffCO2 in places without established CO2 

monitoring infrastructure (Hsueh et al., 2007a; Riley et al., 2008; Santos et al., 2019; Wang & Pataki, 2010). 

Several studies have measured the 14C of ambient air to quantify ffCO2 trends in urban areas (Miller 

et al., 2020; Newman et al., 2016; Turnbull et al., 2011); however, plants offer time-integrated monitoring 

of 14C that could more feasibly be used to monitor ffCO2 spatial patterns in global cities than deploying air 

sampling stations at the same scale. Preparation for 14C analysis is significantly faster for plant samples and 

can be done with just 4 mg of plant tissue since plants are approximately 40% C, while air samples (< 

0.04% C) require expensive canisters and larger volume samples (approximately 5 L) and longer processing 

times to get a large enough 14C sample for AMS analysis. This means that more 14C samples can be analyzed 

leading to higher spatial resolution urban ffCO2 datasets than with air samples. During COVID-19 

lockdowns in New Zealand, the 14C of weekly-sampled grasses tracked changes in local ffCO2 emissions 

that coincided with the stringency of COVID-related restrictions and detected a 75% ± 3 peak reduction in 

ffCO2 emissions (Turnbull et al., 2022).  

Here, we quantify changes in ffCO2 emissions during select periods of the COVID-19 pandemic 

(spring and summer of 2020 and 2021) in California, USA, with a focus on the state’s two largest urban 

areas: the LA metropolitan area and the San Francisco Bay Area (SFBA). The State of California is the 

world’s fifth largest economy (based on the state’s GDP of 3.36 trillion USD in 2021, bea.gov) and has 

enacted landmark climate action legislation. Statewide policies that restricted mobility likely altered ffCO2 

emission patterns during the pandemic, such as the Stay-At-Home order that required the closing of all 

“non-essential” businesses from March 19 to May 4, 2020 (Executive Order N-33-20). To examine the 

impacts of these policies on ffCO2 emissions, we use two approaches that can isolate CO2 derived from 

fossil sources, are spatially resolved, and do not require establishment of CO2 monitoring infrastructure. 
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First, we measured the mixing ratio of CO2 on freeways in the LA area using a mobile GHG observatory. 

Second, we analyzed the 14C content of annual grasses collected by community scientists across the state. 

Together, our data offer a unique insight into anthropogenic CO2 emissions in California’s urban regions 

during the COVID-19 pandemic and support the further use of plant 14C analysis to evaluate 

decarbonization efforts in other cities.  

2.2 Methods 

2.2.1 On-road CO2 measurements 

We measured the on-road mixing ratios of CO2 in the LA metropolitan area using a cavity ringdown 

spectrometer (G2401, Picarro) installed inside a mobile laboratory (2016 Mercedes Sprinter cargo van). 

The same platform has been used by previous studies to observe GHG and pollutant concentrations 

(Carranza et al., 2022; Thiruvenkatachari et al., 2020). Ambient air was continuously pumped into the 

Picarro from an inlet on the roof of the van behind the driver’s seat, approximately 3 m above the road 

surface. We simultaneously collected position and meteorological data using a global satellite positioning 

device (GPS 16X, Garmin) and a compact weather sensor (METSENS500, Campbell Scientific) that were 

mounted on the roof of the vehicle.  

Measurements were collected on freeways during daytime hours on weekdays in July 2019, 2020, 

and 2021. We filtered the datasets from each year to only include locations that overlapped with the 2020 

dataset, focusing the analysis on approximately 750 km of road. To minimize meteorological effects on our 

results, we only used data collected between 11 AM to 4 PM local time, when the planetary boundary layer 

is well-developed and surface layer air is well-mixed (Ware et al., 2016). These times exclude typical rush 

hour traffic periods and make our analysis conservative since rush hour emissions were likely the most 

strongly reduced in 2020 as commuters switched to working from home. We also filtered out data from 

days that were overcast and otherwise experienced similar weather conditions during all three surveys. 

Different filtering strategies would be required for cities that experience different meteorology than LA.  
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We calibrated the analyzer before and after each survey using gas cylinders with CO2 mixing ratios 

that have been corrected against the NOAA WMO-CO2-X2007 scale. For each calibration, the analyzer 

inlet was directed to sample air from compressed gas cylinders with known mixing ratios of CO2 for three 

minutes. We used two standard tanks that spanned the range of CO2 mixing ratios we observed on the road 

(Table A1). We then applied a two-point correction to the data based on the linear relationship between the 

known and measured values. The measurements are precise to <1 ppm for all surveys based on the standard 

deviation of the calibration runs. The calibrated data was aggregated into 5-second intervals and gridded 

into 100-m road segments to synchronize trace gas, weather, and position measurements. 

Urban CO2 enhancements (CO2xs) were calculated by subtracting a background that represents the 

CO2 mole fraction of air coming into the LA area before it is enhanced by local emissions. For urban studies, 

background characterization generally depends on latitude, seasonal wind patterns, and topography. 

Previous studies in other cities have used CO2 measurements from upwind rural areas or a high elevation 

site to represent the background (Mitchell et al., 2018; Turnbull et al., 2019). Since westerlies prevail in 

LA in July, a suitable background can be represented by the inflowing marine air that originates in the 

Pacific Ocean (Newman et al., 2016; Verhulst et al., 2017). Thus, we characterized the CO2 background 

using flask sample data from NOAA’s Global Monitoring Division’s site at Cape Kumukahi, Hawaii 

(19.54°N, 154.82°W, 15 m elevation). The NOAA GMD data is publicly available at https://gml.noaa.gov/ 

(Dlugokencky et al., 2021), and hosts a network of over 50 sites that monitor trace gas concentrations 

around the world. Previous work has found that Cape Kumukahi’s CO2 levels are similar to the local LA 

background for summer months (Hopkins et al., 2016). Based on the July average of all flask measurements 

at Cape Kumukahi, we estimate the CO2 background was 411.0 ± 2.0 ppm in 2019, 412.9 ± 1.2 ppm in 

2020, and 416.7 ± 1.7 ppm in 2021. On July 31, 2020, we measured similar CO2 mixing ratios (413 ± 1.4 

ppm) in the in-flowing marine air at Dockweiler Beach (33.94°N, -118.44°E), which supports the 

application of Cape Kumukahi as an adequate LA background. We assume that the observed CO2 

enhancements are solely derived from on-road emissions. It is possible that some of these enhancements 
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are influenced by biosphere fluxes and wildfire emissions. However, we expect that these contributions are 

relatively small and do not affect the results.  

2.2.2 Radiocarbon analysis of plants 

We measured the 14C content of invasive annual grasses to map CO2 trends across the state of 

California. The typical growing season of these species lasts from March to May, which coincided with 

California’s statewide Stay-At-Home Order (March 19 to May 4, 2020) and made them useful bio-monitors 

of fossil fuel emission-reductions during the period of strictest COVID-19 measures in this area. 

Because plant 14C reflects the CO2 assimilated from the atmosphere during photosynthesis, 

differences in 14C depletion between plant samples are driven by local differences in ambient 14CO2 

composition and particularly the amount of fossil fuel influence. Studies around the world have mapped 

CO2 patterns using a variety of plant species appropriate for their study area including tree rings in LA 

(Djuricin et al., 2010), evergreen tree leaves in Italy (Alessio et al., 2002), corn leaves in the United States 

(Hsueh et al., 2005) and Beijing, China (Xi et al., 2011), annual grasses in California (Riley et al., 2008; 

Wang & Pataki, 2010), ipê leaves in Rio de Janeiro (Santos et al., 2019), turfgrasses in New Zealand 

(Turnbull et al., 2022), and wheat crops in India (Sharma et al., 2023). Thus, cities can apply this technique 

to quantify CO2 patterns by sampling a commonly found plant species that is photosynthetically active 

during the time integration period of interest. Unlike stable isotope signatures, plant 14C content does not 

vary based on photosynthetic pathway, water use efficiency or other growth factors. Such factors are 

corrected for since the measured plant 14C/12C ratios are normalized to a δ13C value of -25‰. Other than 

fossil fuel influence, the biggest drivers of 14C differences between plant species would be from the usage 

of stored carbon in perennial plants (Vargas et al., 2009) and from local topographic conditions (i.e., 

photosynthetic fixation of soil-respired CO2 in depressions). 

We recruited community scientists to collect plant samples from their neighborhoods. We 

distributed a packet that contained scientific background information, sampling/mailing instructions, and 

photos to aid with plant identification. We also held informational webinars, gave presentations at 
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community college classrooms, and uploaded videos online demonstrating how to collect and mail the 

samples. Nearly 400 plant samples were submitted for the study. Most samples were collected on residential 

properties or along roadsides in public areas. The plant samples were mailed in paper envelopes along with 

the species, latitude, longitude, and date of collection. Collection dates for the samples ranged from late 

spring through the summer. Most plants were Bromus tectorum L. (cheatgrass), Bromus diandrus ROTH. 

(ripgut brome), Avena fatua L. (wild oat), or Avena barbata POTT EX LINK (slender oat). We inventoried 

all samples and information, confirmed their species (if identifiable), and recorded whether they were green 

or senesced. We also photographed all samples, focusing on their identifying features. These species 

represent a lower limit on annual ffCO2 values since their growth period follows winter rain and wind events 

that cleanse pollution from the atmosphere. 

We analyzed the 14C content of 188 samples from the 2020 growing season and 82 samples from 

the 2021 growing season. We excluded plants that were not annual species, did not contain flowers, and 

any that showed signs of decay (rot, mold). We prioritized analysis of samples that were expected to have 

high CO2 signals (urban areas) and were collected at similar locations in both years. To prepare the samples 

for 14C analysis, we weighed out approximately 4 mg of plant tissue, focusing on flowers to target carbon 

fixed from the atmosphere during March to May. Samples were then sealed into pre-combusted quartz tubes 

with cuprous oxide, evacuated and combusted at 900°C for 3 h. The resulting CO2 was purified 

cryogenically on a vacuum line, quantified manometrically, and converted to graphite using a sealed-tube 

zinc reduction method (Xu et al., 2007). The graphite was analyzed for 14C at the W. M. Keck Carbon Cycle 

Accelerator Mass Spectrometer facility (NEC 0.5MV 1.5SDH-2 AMS) at the University of California, 

Irvine alongside processing standards and blanks. The measurement uncertainty ranged from 1.4 to 2.1‰. 

We use the Δ14C notation (‰) for presentation of results [Eq. 2.1],  

 ∆
14

C = 1000 ∙ (FM ∙ exp (
1950 - y

8267
) - 1) Eq. 2.1 

where y is the year of sampling, FM is the fraction modern calculated as the 14C/12C ratio of the 

sample divided by 95% of the 14C/12C ratio of the oxalic acid (OX) I standard measured in 1950, 8267 years 

https://plants.usda.gov/home/plantProfile?symbol=BRDI3
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is the mean lifetime of 14C, and 1950 is the reference year for “modern”. Mass-dependent isotopic 

fractionation of the sample is accounted for in the fraction modern term (Trumbore et al., 2016). This 14C 

notation includes a correction for the decay of the OX I standard since 1950, giving the absolute 14C content 

of our samples during the year they were collected. 

We used a mass balance approach (Santos et al., 2019; Turnbull, Karion, et al., 2011) to quantify 

the fossil fuel contribution to the local CO2 signal (Cff) at each sample location. In the following equations, 

Ci terms denote CO2 mixing ratios (units of ppm) from each contributing source and Δi terms denote the 

corresponding 14C signature for each source in units of per mil (‰).  

 Cobs ≅ Cbg+ Cff Eq. 2.2 

 Cobs ∆obs ≅ Cbg∆bg+ Cff∆ff Eq. 2.3 

 
Cff ≅ Cbg

(∆
bg

 - ∆obs)

(∆
obs

 - ∆ff)
 Eq. 2.4 

Here, we assume the observed mixing ratio of CO2 (units of ppm) at a location is the sum of two 

contributions: the CO2 background (Cbg) and a fossil fuel contribution (Cff) [Eq. 2.2]. The isoproduct for 

each CO2 source must also be conserved [Eq. 2.3]. Combining Equations 2.2 and 2.3, we can calculate Cff 

for each sample [Eq. 2.4]. All other values are known: Δobs is the measured 14C content of the plant sample. 

For Cbg we use the average CO2 mixing ratio measured at Cape Kumukahi (Dlugokencky et al., 2021) 

between March and May. Cbg was 416.7 ± 1.1 ppm for the 2020 and 419.4 ± 0.8 ppm for the 2021 growing 

season, respectively. The Δ14C of background air (Δbg) is characterized by monthly-integrated air samples 

collected in a remote location Pt. Barrow, Alaska (X. Xu, Pers. Comm., 2021) and was -2.8 ± 1.3‰ for the 

2020 and -6.2 ± 1.7‰ for the 2021 growing season, respectively. Δff is -1000‰, the known fossil fuel 14C 

signature. Based on the average standard deviation of replicate plant samples and error propagation of the 

measurement uncertainty, the uncertainty in a Cff estimate is 1 ppm. Our equations assume biogenic 14C 

inputs (such as from fires or heterotrophic respiration) are small enough to be neglected in the mass balance 

budget. Previous work has shown that this effect is constant and relatively small (Newman et al., 2016). 

The plant growing season (March to May) is outside of California’s wildfire season, so we do not expect 
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wildfire emissions to affect the plant 14C signatures. We also assume that the samples were not affected by 

14C emissions from nuclear power plants since there is only one such facility that is active in California (the 

Diablo Canyon Power Plant in San Luis Obispo County). The nearest plant sample was approximately 17 

km northeast of the facility, which is not in the path of the area’s dominant wind direction and is likely too 

far to intercept the emissions. 

We expect that meteorology had minimal impact on our 14C analysis since the plant samples 

experienced similar meteorological conditions across both study years, and because our plants only 

assimilate CO2 during daytime hours. Thus, sampling excludes periods of strong atmospheric stability such 

as nighttime and early mornings that have increased CO2 levels that are not driven by changes in ffCO2 

emissions (Djuricin et al., 2010; Newman et al., 2016; Verhulst et al., 2017).  

2.3 Results and Discussion 

2.3.1 Reduced CO2 enhancements on Los Angeles freeways 

We observed substantial reductions in on-road CO2 enhancements (CO2xs) in the LA metropolitan 

area during the pandemic (Fig. 2.1). The mean CO2xs value (± SD) on LA freeways was 119 ± 50 ppm lower 

in July 2020 compared to July 2019 (Table 2.1), a -60 ± 16% change with CO2xs reductions observed 

universally across all sampled freeways. By July 2021, COVID-related changes in behavior were reduced 

and CO2xs rebounded by 153 ± 40 ppm compared to 2020 (Table 2.1). This equates to a 17 ± 29% increase 

in CO2xs levels in July 2021 relative to July 2019. The 2021 CO2xs increases were not uniformly distributed. 

Many freeways still had CO2xs values that were lower relative to 2019, although not nearly as low as in 

2020. Heavily trafficked areas had CO2xs levels as much as 40% higher than 2019 (Fig. B1). Furthermore, 

CO2xs values were less variable in 2020 (interquartile range of 33 ppm) and 2021 (interquartile range of 43 

ppm) compared to 2019 (58 ppm), indicating more homogeneous CO2xs on roadways during the pandemic 

(Fig. B2). 
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Figure 2.1. On-road CO2xs observed near midday on Los Angeles freeways before (2019) and during the 

COVID-19 pandemic (2020 and 2021). Choropleth maps show CO2xs observations in (a) July 2019, (b) July 

2020, and (c) July 2021. Green triangles show locations of plant 14C samples collected in 2020 and 2021. 

Basemap shows topography for elevations >300 m as hillside shading based on a Digital Elevation Model 

from USGS.  

 

Changes in traffic patterns during the pandemic are likely the main cause of the changes in on-road 

CO2xs values we observed. In addition to the number of cars on road, previous work has shown that on-road 

CO2 mixing ratios are sensitive to traffic conditions such as speed, distance between cars and road grade 

(Maness et al., 2015). In July 2020, schools and businesses were operating in a remote or hybrid work 

model and many commercial facilities were closed, leading to substantial traffic reductions. Data from the 

California Department of Transportation’s Performance Measurement System (PeMS) indicates that the 

vehicle miles traveled (VMT) on Southern California freeways was on average 12% lower in July 2020 

compared to July 2019 (Caltrans, 2021). With fewer vehicles on the road in July 2020, there were wider 

distances between cars, fewer traffic jams, and fewer CO2 emissions. 
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Table 2.1. Changes in CO2 levels during the COVID-19 pandemic in California based on on-

road mobile surveys and observations of 14C in plants and/or air. 

Region Pre-pandemic 2020 2021 COVID-19a Reboundb 

CO2xs (ppm) via on-road mobile surveys 

LA 199 ± 42c  80 ± 27 233 ± 29  -119 ± 50* 153 ± 40*  

CO2 (ppm) based on 14C in plants and/or air 

CA 4 ± 5d 4 ± 4  5 ± 5 0 ± 6  1 ± 6  

CA co-located n.a. 5 ± 5  5 ± 6 n.a. 0 ± 8 

LA 11 ± 9e  6 ± 5 9 ± 7 -5 ± 10* 3 ± 9  

LA co-located n.a. 9 ± 9 11 ± 10 n.a. 2 ± 13 

Pasadena 23 ± 4f 3 13 ± 2 -20 ± 4* 10 ± 2* 

Irvine 7 ± 4g 6  4 ± 1 -1 ± 4 -2 ± 1 

Notes: Asterisk (*) indicates the means were significantly different based on Welch’s t-test. Further details for these calculations are in Table B2. 

Uncertainties are standard deviations. Values that do not have uncertainties indicate a sample size of 1. For these cases, the uncertainty in the 

CO2 estimate is assumed to be 1 ppm based on the differences in replicated plant samples. Values in regular font represent all the samples 

collected in that year, while values in italicized font represent only co-located plant samples that were collected in both 2020 and 2021 less than 

150 m apart. 
aCalculated as the difference between the 2020 (intense physical distancing measures and mobility restrictions) and pre-pandemic columns. The 

pre-pandemic observations are based on datasets from various years and are described in the subsequent footnotes and Table B2. 
bCalculated as the difference between 2021 and 2020 (relaxation of physical distancing measures and mobility restrictions)  
cJuly 2019 on-road mobile measurements. 

d2005 plant 14C observations (Riley et al., 2008).  

eBased on 2005 plant 14C observations (Wang & Pataki, 2010) and 2015-2016 air 14C samples (Miller et al., 2020).  

fPredicted value based on a linear extrapolation of 2006-2013 air 14C samples (Newman et al., 2016) assuming the trend continued and there had 

been no pandemic. 

g2019 air 14C samples (Xu, pers. Comm., 2020). 

 

 

Nationwide studies conducted during the same period deduced that CO2 emissions started 

recovering after reaching minima in March or April of 2020, and that by July of 2020 (our study period), 

the reductions had largely diminished (Harkins et al., 2021; Le Quéré et al., 2020; Liu et al., 2020). Daily 

ground transportation emissions in the U.S. were estimated to only be reduced by 7-8% in July 2020 

compared to 2019 (Harkins et al., 2021; Liu et al., 2020). Interestingly, our LA observations indicate much 

larger reductions to on-road CO2 emissions during that period (~60%). This is likely because our 

measurements were collected in an area where emissions are dominated by passenger vehicles. In California 

and in LA, the transportation sector is the largest source of CO2 emissions (45% of total), so changes in 

traffic patterns during the pandemic were more likely to have a discernable impact on this region’s CO2 

budget. A 60% decrease in on-road emissions is consistent with a previous estimate that the LA area’s total 
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emissions were reduced by 30% in the spring of 2020 relative to 2018-2019 (Yadav et al., 2021). A budget 

balance calculation with a 30% reduction in total LA emissions in 2020 equates to a 67% reduction in on-

road emissions if we assume non-vehicle CO2 sources were held constant and the on-road sector accounted 

for 45% of LA’s CO2 emissions before the pandemic. However, previous studies have shown that the 

pandemic-related emission reductions are not completely attributable to changes in traffic (Liu et al., 2020; 

Yadav et al., 2021), so our ~60% reduction result is still higher than what other studies estimated. On-road 

CO2 measurements are likely to detect the transportation-sector emission changes with higher sensitivity 

than tower- and space-based observations since signal detection is not as dependent on atmospheric 

transport.  

While our data revealed striking reductions in CO2 mixing ratios, it is not trivial to translate changes 

in on-road CO2 mixing ratios into reductions in ffCO2 emissions. One reason for this is confounding effects 

of changes in vehicle speeds on CO2 emissions. There is a nonlinear relationship between vehicle speeds 

and emission rates, such that vehicles emit more CO2 at very low and very high speeds (Fitzmaurice et al., 

2022). In 2020, our average speed was 9 km h-1 faster than 2019 and 12 km h-1 faster than 2021, which 

suggests a decrease in congestion in 2020. Within the range of our average speeds (64 to 76 km/hr), there 

is not expected to be a substantial change in CO2 emission rates (Fitzmaurice et al., 2022). However, these 

averages do not capture the non-constant speeds during periods of congestion that make vehicles less 

efficient and increase both CO2 emissions (Boriboonsomsin & Barth, 2008) and roadway enhancements. 

Faster speeds produce more CO2 emissions because vehicle engines are doing more work and using more 

fuel, but they also create more turbulence near the road that effectively mixes vehicle emissions, thereby 

reducing on-road CO2 enhancements. Nonetheless, we did not find a significant relationship between our 

measurements of CO2xs and vehicle speed (Fig. B3). We estimated how much vehicle speed would affect 

our measurements using a model where on-road CO2xs levels scale with vehicle speed to a power of -⅓ 

(Baker, 1996; Maness et al., 2015). Assuming that total highway emissions (Q) are related to CO2xs and 

vehicle speed (v) by Equation 2.5 where κ is a constant of proportionality based on theoretical atmosphere 

and traffic conditions, a 9 km/hr increase in speed as observed in 2020 only causes total emissions to 
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increase by less than 5%. Thus, we attribute the measured CO2xs reductions to the smaller number of cars 

on the road, not the changes in speed. 

 CO2xs= κ Q v-1/3 Eq. 2.5 

Interestingly, our on-road observations did not scale proportionally with vehicle miles traveled 

(VMT), a metric that has been used to infer CO2 emissions from the transportation sector  (Gately et al., 

2015; Gurney et al., 2020). While we observed a 60 ± 16% reduction in CO2xs in July 2020 relative to July 

2019, VMT in the LA area was only reduced by 12% during the same time periods (CalTrans, 2021). VMT 

does not adequately capture the strong CO2 signal we observed because it does not account for the effects 

of driving behavior, congestion, vehicle speeds, and fleet composition on CO2 emissions (Rao et al., 2017), 

all of which likely changed during 2020. While relationships between emissions and speed are incorporated 

in some models, less work has incorporated the effects of stop-and-go driving, which is likely to produce 

higher CO2 emissions. Less congestion in 2020 could have reduced ffCO2 emissions in ways that have not 

been fully explored. Other studies also reported large discrepancies between ffCO2 emission estimates 

based on governmental traffic data, fuel-based models, and novel cell phone-based mobility datasets 

(Gensheimer et al., 2021; Harkins et al., 2021; Oda et al., 2021). Future work is needed to consolidate these 

different metrics for estimating transportation CO2 emissions and to better understand what information 

each of these datasets represents. 

Assuming the measured 60% reduction in on-road CO2xs translates into a 60% reduction in annual 

interstate CO2 emissions (7.6 Mt C yr-1 in 2012; Rao et al., 2017), given that interstates are the primary road 

type included in this analysis, this equates to an avoided 4.6 Mt C. The estimated total emissions for the 

LA area was 47.2 ± 5.2 Mt C yr-1 in 2015 (Gurney et al., 2019). This would imply that LA’s total ffCO2 

emissions were reduced by 10% if all the pandemic-induced reductions in 2020 were solely due to changes 

to on-road interstate emissions (neglecting ffCO2 changes in other sectors, such a residential, industry, and 

non-interstate roads). Interstate emissions constitute only 40% of LA’s on-road emissions (Rao et al., 2017). 

If we instead assume the COVID-induced traffic reductions resulted in a 60% reduction in ffCO2 for the 
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entire on-road sector (including all road types), then ffCO2 emissions were reduced by 11.4 Mt C, or 24% 

of LA’s total ffCO2 emissions. 

2.3.2 Reduced CO2 emissions during the Stay-At-Home order 

14C analyses of plant species were used to map ffCO2 patterns, whereby lower ∆14C values indicate 

higher CO2 inputs (Fig. 2.2). In 2020, the average ∆14C (± SD) was -11.3 ± 8.6‰ (n=188) statewide, and -

15.9 ± 12.5‰ (n=53) in the LA area, -10.2 ± 5.5‰ (n=91) in the SFBA, and -10.3 ± 5.6‰ (n=12) in the 

San Joaquin Valley. This equates [Eq. 2.4] to average fossil fuel contributions of 4 ± 5 ppm statewide, and 

6 ± 5 ppm in the LA area, 3 ± 2 ppm in the SFBA, and 3 ± 2 ppm in the San Joaquin Valley. The cleanest 

samples were found in California’s northern coast (∆14C of -5.3 ± 3.7‰, n = 5). Generally, ∆14C of plants 

collected in urban areas were more depleted and more variable than in non-urbanized regions, indicating 

higher and locally variable emissions of ffCO2 (Fig. 2.2). Sample collection was biased toward urban areas, 

with 77% of samples collected either in the LA area or SFBA, leading to higher uncertainty in predictions 

in other regions of the state (Fig. B4). However, we expect rural and remote areas such as northern 

California and the Sierra Nevada Mountains to have similar 14C values as the background and little 

variability (Riley et al., 2008). Thus, while we do not have a lot of plant samples in these areas, we do not 

expect to see substantial COVID-effects on ffCO2 levels. 
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Figure 2.2. The ∆14C (‰) of annual grass samples collected in California, USA and the corresponding Cff 

values in 2020. Blue points indicate locations where plants were collected in both 2020 and 2021, while 

pink points indicate 2020-only locations. Background colors were mapped using an ordinary kriging 

interpolation of 2020 plant ∆14C values using the Spatial Analyst toolbox in ESRI’s ArcMap software. The 

uncertainty in the kriging prediction is presented in Fig. B4. 

 

To assess our 2020 plant 14C observations in the context of long-term trends in the region, we 

compared our data to existing records of 14C in plants and/or air from Irvine, CA (a coastal city south of 

LA) and Pt. Barrow, AK (a remote location far from ffCO2 sources) (Fig. 2.3). We infer urban ffCO2 

emission reductions during the 2020 Stay-At-Home order relative to the 14C records shown in Figure 2.3 

based on two metrics: variability in 14C (standard deviation of mean) and the difference in 14C from the 

hemispheric background (Pt. Barrow, Alaska). Reduced variability in 14C indicates reduced ffCO2 levels 

since emissions lead to anomalous and spatially variable 14C values. The standard deviations of plant ∆14C 

samples collected in the LA metropolitan area were 25.4‰ in 2005 (n=79, Wang & Pataki, 2010), 12.5‰ 

in 2020 (n=53), and 15.4‰ in 2021 (n=27). Thus, plant 14C was less variable during California’s 2020 Stay-

At-Home order. 
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Figure 2.3. A record of ∆14C measurements from 2003-2021. Average plant 14C from various studies are 

shown as green points with error bars showing the standard deviation. Green circles represent statewide 

data (this study and Riley et al. 2008) while triangles represent only the Los Angeles metropolitan area (this 

study and Wang & Pataki, 2010). Air-based 14C observations are shown as gray lines (X. Xu, Pers. Comm., 

2021) and blue triangles (Miller et al., 2020). Shaded green bars represent the typical annual grass growing 

season in California (March to May). 

 
Furthermore, 2020 samples were more similar to the hemispheric background than in other years. 

Compared to Pt. Barrow, LA area 14C samples were depleted by 26 ± 3‰ in 2005 (plant samples; Wang & 

Pataki, 2010), 25 ± 2‰ in 2015, 30 ± 4‰ in 2016 (flask samples; Miller et al., 2020), 13 ± 2‰ in 2020, 

and 19 ± 3‰ in 2021 (this study’s plant samples; average depletion ± standard error of the mean). The 

mean 2020 depletion is significantly smaller than pre-pandemic years to a 95% confidence interval, 

indicating that ffCO2 levels were reduced in 2020. Translating the 14C depletion from background into fossil 

fuel-sourced CO2 enhancements [Eq. 2.4], the mean Cff in LA during pre-pandemic years ranged from 10-

13 ppm (Table B2). However, during the pandemic the mean Cff reduced to 6 ± 5 ppm (Table 2.1). Thus, 

we calculate ffCO2 levels were reduced by 5 ± 10 ppm relative to pre-pandemic observations. 

These samples reflect varying locations within the Los Angeles region, and hence we are assuming 

that both prior and current plant samples as well as previous flask samples are similarly representative of 

the region. To minimize the impact of these assumptions, we also estimated ffCO2 emission reductions in 

one location, Pasadena, a city in the northeast LA basin that receives polluted air from the LA region during 
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afternoon hours (Newman et al., 2008). Based on a linear extrapolation of the Pasadena air record (Newman 

et al., 2016), the mean ∆14C during the 2020 growing season (March to May) would have been -55.5 ± 

8.8‰ had there been no pandemic, translating to a local enhancement of 23 ± 4 ppm CO2 above background 

[Eq. 2.4], but a plant sample collected in 2020 approximately 4 km away had an enhancement of only 3 ± 

1 ppm CO2 (Fig. 2.4). This difference indicates a reduction of 20 ± 4 ppm ffCO2 in Pasadena during the 

2020 Stay-At-Home order. In 2021, plants were sampled in this location again and had an average ∆14C of 

-35.7 ± 4.5 ‰ (n=6), an enhancement of 13 ± 2 ppm CO2. This value is closer to, but still significantly 

different from, the predicted 2021 mean value (-60 ± 9.4‰ or 24 ± 5 ppm CO2 enhancement), indicating a 

partial but not complete rebound to the pre-pandemic emissions trend. In summary, we found that plant 14C 

data was able to capture interannual changes in local ffCO2 during the pandemic. 

 
Figure 2.4. Growing season Δ14C of ambient CO2 in Pasadena, CA, a city within the northeast Los 

Angeles basin. The blue circles show the average growing season (March to May) Δ14C of ambient CO2 at 

Caltech [Newman et al., 2016], with error bars showing the minimum and maximum Δ14C measurements. 

The line is a linear regression of these data with shading indicating the 95% confidence intervals. The green 

triangles show the measured Δ14C of plant samples collected approximately 4 km away from the Caltech 

site in 2020 (n=1) and 2021 (n=6, error bars show standard deviation).   
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2.3.3 Changes in CO2 during the rebound period (2020 to 2021) 

Although the pandemic continued into the 2021 growing season, virus-restricting mandates were 

relaxed and California’s vehicle miles traveled were 30% higher than the same period in 2020 (Caltrans, 

2021). We observed large spatial variations and heterogeneity in 14C during the second spring and summer 

of the pandemic. Based on a subset of samples collected at similar locations (< 150 m away) in both 2020 

and 2021, we find that ffCO2 levels did not change significantly between 2020 and 2021 at the statewide 

scale, with a mean change of 0 ± 8 ppm (Table 2.1). This average belies significant local variability in 

changes in ∆14C between 2020 to 2021 (Fig. B5).  

 
Figure 2.5. The difference in Cff values from 2020 to 2021 between plant samples repeatedly collected in 

California’s urban areas: (a) the San Francisco Bay Area and (b) the Los Angeles metropolitan area. Points 

show sample locations colored by their change in Cff. Redder colors indicate CO2 emission increases in 

2021 compared to 2020. Background colors were calculated using an Ordinary Kriging interpolation of Cff 

in ESRI’s ArcMap software. Cff changes by land use class are shown in (c). 
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The disparity in CO2 emission rebounds in 2021 could be related to variations in pandemic 

responses as the economy recovered after the Stay-At-Home Order. We observed larger emission rebounds 

in LA than SFBA (Figs. 2.5 & B6). SFBA had more instances of ∆14C values that either increased or only 

decreased as much as the long-term global 14C trend between 2020 and 2021. The SFBA had a slower 

relaxation of COVID-19 prevention measures than other regions of California. Here, and also in Orange 

County in the LA area, many people continued to work from home into 2021, which may explain why 

emission reductions generally persisted even after lockdown restrictions were lifted (blue areas in Fig. 2.5 

a,b). In LA neighborhoods, working from home was not an option for many “essential” workers, which 

might contribute to samples showing a stronger emission rebound in 2021 (red areas in Fig. 2.5b). These 

neighborhoods also have a greater density of freeways.   

We used city land use data to further investigate the ffCO2 emission sectors represented by plant 

samples collected in the LA area and SFBA (45 sample pairs, Fig. 2.5c). We found that the majority of 

plants were collected in areas classified as residential (58% of paired samples) or open space/recreation 

(29%). While there is large variation in 14C within each category and results indicate that heterogeneity 

within regions/sectors was larger than the COVID-induced changes, there is a small trend toward higher 

CO2 emissions in residential, open space/recreation and industrial areas, and a trend toward lower emissions 

from educational and public spaces. This is consistent with a return to normal of many activities, whereas 

schools in California stayed closed through the 2021 growing season and many government sector 

employees continued work from home. These sector-averaged trends are larger when all data is used (Fig. 

B7) but are on the order of ±1-2 ppm, which is not much larger than the uncertainty in our Cff estimates (±1 

ppm). 

The heterogeneity in year-to-year changes elucidates the highly localized sensitivity of plant 14C 

and indicates that this approach is a simple, yet effective method to monitor interannual changes in the 

ffCO2 burden at the neighborhood scale. Thus, this approach could effectively track changes in local 

emissions if plants are periodically collected in direct proximity (< 20 m) from ffCO2 emission sources. For 

instance, the Great Highway, a major north-south thoroughfare on San Francisco’s western edge, was closed 
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to vehicles from April 2020 to August 2021. The road was converted into a car-free active transportation 

route, with access permitted only to pedestrians and bicyclists. Vehicle traffic was rerouted to 19th Avenue, 

a portion of CA State Route 1 less than 3 km east of the Great Highway. In 2020, plants collected along 

these two roads had very similar ∆14C values (0.8‰ difference, which is within the measurement 

uncertainty). In 2021, a plant collected on the Great Highway was still statistically indistinguishable from 

the 2020 samples (0.7‰ difference), while a plant sample collected on 19th Avenue was significantly more 

depleted relative to the 2020 sample (-24.8‰ difference, equivalent to an increase of 10 ppm Cff). This 

indicates higher ffCO2 emissions on 19th Avenue where traffic increased in 2021, while ffCO2 emission 

reductions near the Great Highway persisted while the roadway remained closed to vehicles. 

All in all, we observed varying degrees of ffCO2 reductions and rebound during the COVID-19 

pandemic at various domains and spatiotemporal scales (Table 2.1). Year-to-year differences were more 

evident in urban domains (i.e., LA, Pasadena) than in statewide means or in coastal samples (e.g., Irvine). 

2.3.4 Best practices and recommendations for future plant radiocarbon studies 

Future work should conduct strategic experiments to better understand the correspondence between 

plant 14C and other ffCO2 atmospheric monitoring metrics. This will improve the applicability of plant 14C 

analysis as a tool for monitoring decarbonization in cities around the world. Plant 14C analysis reflected 

trends in ambient ∆14CO2, with plant values having reasonable correspondence with air records from Irvine, 

CA and Pt. Barrow, AK (Fig. 2.3). However, our plant 14C-based results contrast with our on-road CO2xs 

observations where we observed a return to pre-pandemic conditions by July 2021. This is because the two 

datasets represent different emission sources and geographic regions. While the CO2xs data specifically 

represents the LA area’s on-road sector, our plant samples are mainly representative of statewide 

residential, open space and recreational areas, which showed a more heterogeneous response to the lifting 

of COVID-related restrictions. No plant samples were collected within 500-m of the roads surveyed with 

the mobile observatory (Fig. 2.1), so the two datasets were not directly comparable. A more strategic 
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sampling approach could reveal the relationship between these two approaches and the capacity of plants 

to monitor changes in transportation-sector emissions. 

The spatial sensitivity (“footprint”) of a plant is expected to be very localized (<100 m) but may 

vary for each sample depending on the local topography and air ventilation conditions. Previous work has 

shown that plants are predominantly influenced by emissions within 20 to 40 m (Lichtfouse et al., 2005; 

Turnbull et al., 2022). In contrast, atmospheric CO2 measurements from rooftop/tower sites integrate signals 

over larger spatial scales (~10 km) since the inlet is higher above the ground (Kort et al., 2013). This makes 

tower sites well-suited for continuous monitoring of net ffCO2 trends over an entire city using the CO2 

differential between a set of inflow- and outflow-representative sites. However, the localized spatial 

sensitivity of plants could be advantageous for studies seeking to investigate emissions at the neighborhood 

scale or from specific ffCO2 sources (i.e. individual facilities or roads). Such analyses would require a 

strategic sampling design, targeting specific emission sources such as major roads (Turnbull et al., 2022). 

Without such targeted sampling, aggregated plant 14C results in complex urban environments can be 

difficult to interpret since they represent highly local ffCO2 emissions that may vary based on individual 

and immeasurable factors (i.e., human behaviors) within a neighborhood. With appropriately targeted 

sample pairs, however, plant 14C can effectively reveal ffCO2 reduction outcomes of local decarbonization 

measures (e.g., the Great Highway case described in Section 2.3.3). Plant-based monitoring of ffCO2 

emissions could also potentially be an appropriate proxy for exposure to co-emitted air pollutants such as 

from vehicle traffic and may be able to elucidate environmental justice concerns between neighborhoods. 

Future investigations are needed to assess this. 

It is important to constrain the timing of carbon uptake as much as possible to distinguish spatially 

driven changes from temporal changes. Atmospheric 14CO2 undergoes large temporal oscillations (Fig. 2.3) 

with the amplitude and seasonality driven by the timing of 14C production and descendance into the 

troposphere, natural and anthropogenic CO2 fluxes, and seasonal meteorology (wind and air mixing 

conditions). While the timing of flask sample collection is well-known, the timing of CO2 uptake by plants 

is more uncertain. However, plant samples compensate for that by integrating over daytime hours of their 
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photosynthetic period, hence, reducing significant short-term variability observed in flask samples (e.g., 

Miller et al., 2020) to yield a seasonal average ffCO2. 

By sampling annual grasses, we have assumed that our ∆14C analysis represents the growing season 

of these species in the region. We verified this assumption using downscaled remotely sensed observations 

of solar induced fluorescence (SIF, Fig. B8) (Turner, Köhler, et al., 2020) from the TROPOMI instrument 

onboard the Sentinel-5 Precursor satellite. Using the date of maximum SIF observance to represent the 

timing of peak growth, we found that all senesced plants had peak growth dates from March to May. We 

also observed some temporal agreement between plant ∆14C and ambient ∆14CO2 measured in Irvine, CA 

(Figs. B8 & B9), indicating potential applications of plant 14C at the sub-seasonal scale. However, many 

∆14C values did not coincide with the Irvine trend and were more strongly driven by their distance to major 

roads (Fig. B8c), showing that the main driver of the samples’ 14C content is proximity to ffCO2 emissions, 

with seasonality a secondary driver. SIF observations can help constrain the timing of plant growth for 

future studies to disentangle the spatial and temporal drivers of plant 14C. Future studies could also 

potentially use purposely grown plants to monitor ffCO2 (i.e., turfgrasses, Fig. B9), and actively manage 

the growing period to the timing of interest, which would allow similar analyses at smaller time scales and 

for other times of the year besides the annual grass growing season.  

2.4 Conclusions 

We quantified changes in fossil fuel consumption during the COVID-19 pandemic when California 

implemented aggressive mitigation measures, that included Stay-At-Home and work-from-home orders, 

travel limitations, and experienced widespread economic shutdown. On-road surveys of excess CO2 

demonstrated a drastic but temporary reduction in ffCO2 emissions on LA freeways, with only about half 

the typical ffCO2 emissions in July of 2020 and a return to pre-pandemic levels by July 2021. The analysis 

of 14C in annual plants also revealed a measurable reduction in LA’s ffCO2 emissions in the spring of 2020 
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and 2021, indicated by a smaller offset between plant 14C and 14C of well-mixed northern hemispheric CO2, 

and less variation in plant 14C compared to previous years.  

Our complementary approaches captured the heterogeneous reality of mandated and voluntary 

movement restrictions in California during the pandemic. Our study focused on a region rich in high quality 

datasets (i.e., previous 14C records, a neighborhood scale bottom-up inventory, and an in-situ tower 

network) which allowed us to assess ffCO2 emission reductions in the context of long-term trends. Mobile 

surveys can detect year-to-year differences in ffCO2 trends from the on-road sector with high confidence, 

but further work is needed to relate on-road CO2 enhancements to vehicle emissions and their drivers. 

Future research to constrain the spatial and temporal representation of periodically surveyed plants can 

support the tracking of decarbonization outcomes in cities and neighborhoods without investment in energy- 

and maintenance-demanding infrastructure. To account for the extreme variability of emissions sources in 

urban environments, however, plant-based ffCO2 monitoring should focus on temporally repeated sampling 

of active plants in well-ventilated areas in the direct vicinity of specific emission sources. 
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Chapter 3 Plant Radiocarbon Across an Urban-Rural CO2 Gradient 

Matches Surface and Column CO2 Observations 
 

Adapted from:  

Yañez, C. C., Dubey, M., Hopkins, F.M, Meyer, A., Xu, X., Romero, J., Kim, J., Parker, H., & 

Czimczik, C.I. Plant Radiocarbon Across an Urban-Rural CO2 Gradient Matches Surface and 

Column CO2 Observations. In Prep.  

3.1 Introduction 

The majority of fossil fuel carbon dioxide (ffCO2) emissions originate in urban areas, so 

decarbonizing cities is a priority for mitigating climate change (Crippa et al., 2021; Gurney et al., 2022). 

While many cities have ambitious plans to reach low- or net-zero emission targets within the next few 

decades (Seto et al., 2021), the lack of robust methods for quantifying urban ffCO2 emissions makes the 

success of local emission reduction efforts uncertain (Duren & Miller, 2012). Ideally, urban ffCO2 

emissions should be quantified using methods that are both sensitive enough to detect spatiotemporal 

emission variations at scales relevant to policymakers (i.e., cities to neighborhoods) and accessible to cities 

around the world. However, these criteria are not met by any existing approach. Further development of 

ffCO2 quantification approaches that are robust and operationally feasible is urgently needed to support 

climate change mitigation efforts. 

To address this challenge, efforts to establish atmospheric CO2 monitoring in cities have 

strengthened over the last decade, including investments in infrastructure to measure CO2 mole fractions in 

(a) the lower troposphere (hereby referred to as “surface CO2”) and (b) total atmospheric columns of air 

(“XCO2”). Surface CO2 is measured on rooftops or towers in city networks (Karion et al., 2020; Mitchell 

et al., 2022; Verhulst et al., 2017; Xueref-Remy et al., 2018). Alternatively, XCO2 can be measured 

remotely from the ground (Dietrich et al., 2021; Hedelius et al., 2018; Wunch et al., 2009) or from space 

(Eldering et al., 2019; Fang et al., 2023; Kiel et al., 2021) across urbanized regions. Surface CO2 and XCO2 
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each have their merits and limitations for ffCO2 monitoring based on the distinct spatial and temporal scales 

at which they are sensitive to ffCO2 emissions, meteorology, and atmospheric transport. Although 

significant enhancements of surface CO2 and XCO2 are detected in cities (Hakkarainen et al., 2016; 

Hedelius et al., 2018; Kort et al., 2012; Schwandner et al., 2017; Wunch et al., 2009), these measurements 

alone cannot disaggregate and directly quantify ffCO2 emissions. Due to the well-mixed, long-lived nature 

of CO2 in the atmosphere, the observed CO2 signal is dominated by the changing background and fluxes 

arising from biospheric and oceanic interactions, while ffCO2 emissions constitute a relatively small portion 

of the measured CO2 mole fraction. Thus, additional information is needed to estimate ffCO2 emission 

trends, such as prior emission estimates from bottom-up inventories (Lauvaux et al., 2020; Lian et al., 2023) 

or measurements of fossil fuel tracer species like nitrogen oxides, carbon monoxide, or carbon isotopes 

(Newman et al., 2016; Turnbull, Tans, et al., 2011; Wu et al., 2022; Yang et al., 2023b).  

The “gold standard” tracer for ffCO2 emissions is radiocarbon (14C), a radioactive isotope of carbon 

with a half-life of 5,730 years (Graven et al., 2020b). Fossil fuels have a distinct 14C signature because they 

originate from ancient plant material from which all initial 14C has decayed away.  Radiocarbon analysis of 

urban air 14CO2 samples has been used to determine temporal variations in urban CO2 contributions 

(Djuricin et al., 2010; Newman et al., 2016; Turnbull, Tans, et al., 2011), elucidate the presence of 

substantial biospheric CO2 fluxes in cities (Miller et al., 2020), and evaluate ffCO2 emission inventories 

(Basu et al., 2020). Plants provide time-integrated ambient 14C information since they record the 14C 

signature of CO2 assimilated during photosynthesis. Previous studies used plant 14C to map spatial patterns 

of urban ffCO2 (Hsueh et al., 2007b; Riley et al., 2008; Santos et al., 2019; Wang & Pataki, 2010) and, 

more recently, measure temporal emission variations related to interannual changes in human activity 

(Turnbull et al., 2022; Yañez et al., 2022). In cities, plant 14C offers some advantages over air 14CO2 samples. 

Plants (a) provide high spatial resolution information about ffCO2 emissions at the neighborhood scale since 

their sampling footprint is small (< 100 m) (Turnbull et al., 2022; Yañez et al., 2022) (b) have a much higher 

carbon content than air (40-50% vs.0.04% C, respectively), thus little material (1-2 mg of plant biomass vs. 

5 L of air) is needed for 14C analysis, and (c) are cheaper to ship and easier to process in the laboratory, 
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making routine operations more feasible. Despite these advantages, few studies have explored the capacity 

of plant 14C to independently track urban ffCO2 emission trends over time, especially on intra-annual 

timescales. This is because temporal and spatial uncertainties are not fully understood, and more work is 

needed to integrate plant 14C data with surface CO2 and XCO2 observations. 

In this study, we couple seasonal plant 14C, XCO2, and continuous surface CO2 observations to 

quantify ffCO2 emission patterns across the Los Angeles metropolitan area. Los Angeles is an ideal study 

location because it has established long-term, continuous atmospheric measurements with which to 

compare our plant 14C observations, including air 14CO2 (Xu, Pers. Comm., 2023), surface CO2 (Verhulst 

et al., 2017), and XCO2 (Wunch et al., 2009). Previous plant 14C data in California only constrained ffCO2 

trends at annual resolution since they relied on the collection of annual invasive grasses that grow in the 

spring (Riley et al., 2008; Wang & Pataki, 2010; Yañez et al., 2022). In contrast, we repeatedly sampled 

irrigated turfgrasses, which are widely distributed across the region and reflect emission changes on time 

scales of 1-2 weeks year-round. We establish quantitative relationships between plant 14C, surface CO2, and 

XCO2 and evaluate how plant 14C fits into the current state of atmospheric CO2 science by comparing with 

recent air 14CO2 observations (Miller et al., 2020). Finally, we discuss the potential of plant 14C to 

independently monitor ffCO2 trends in other cities that are committed to lowering emissions but lack 

ground-based CO2 measurement infrastructure to measure their progress.  

3.2 Methods 

3.2.1 Site characteristics 

We measured turfgrass 14C and atmospheric CO2 in the Los Angeles (LA) area, focusing on five 

sites that span an urban to rural gradient (Table 3.1, Fig. 3.1). We repeated our sampling in three-month 

intervals between May 2022 and March 2023 to assess seasonal variations. The sites were selected based 

on their population density, location within the LA basin, and presence of long-term, continuous 

measurement infrastructure including surface CO2 measurements via the LA Megacities (LAM) network 
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(Kim et al., 2022; Verhulst et al., 2017), ground-based XCO2 measurements via the Total Carbon Column 

Observing Network (TCCON) (Wunch et al., 2009), and atmospheric 14CO2 measurements (Xu, Pers. 

Comm., 2023). Most sites were located on university campuses where we could access electricity to power 

instruments and irrigated turfgrass lawns for plant 14C sampling. We also periodically visited two secondary 

sites (MWO and SMM) to evaluate XCO2 background conditions. 

 

Table 3.1. Overview of CO2 observation sites in the Los Angeles area in relation to existing 

Total Carbon Column Observing Network (TCCON) and LA Megacities (LAM) network sites. 
ID Site location Population  

density* 
Lat. 
(°N) 

Long. 
(°W) 

Elevation  

(m a.s.l.) 
Existing  

instrumentation 

Urban to rural gradient 

DLA Downtown LA; University of Southern California 8304 34.02 118.28 59 LAM 

PAS Pasadena; California Institute of Technology 6040 34.14 118.13 240 LAM, TCCON  

IRV Irvine; University of California Irvine 4689  33.64 117.84 41 LAM, Air 14CO2  

RIV Riverside; University of California Riverside 3878  33.98 117.32 330 LAM 

BEA Beaumont; Noble Creek Regional Park 1749 33.95 116.99 795 n.a. 

Background Sites 

VIC Victorville 1829 34.61 117.29 1370 LAM 

SMM** Santa Monica Mountains; Stunt Ranch Reserve 287  34.09 118.66 409 n.a. 

AFRC NASA Armstrong Flight Resource Center 7 34.96 117.88 700 TCCON 

SCI San Clemente Island 4 32.92 118.49 489 LAM 

MWO*** Mount Wilson Observatory  2  34.22 118.06  1677 LAM 
 

*City population density: persons per square mile in 2020 (www.census.gov). Population density for SMM, AFRC, SCI, MWO 

was determined by census tract (not city), since these locations have populations of less than 5000 people. 

**SMM was only visited in August and November 2022 

***MWO was only visited in August 2022 
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Figure 3.1. Map showing study sites in the Los Angeles area in Southern California, USA. Background 

colors indicate CO2 emissions from the Hestia-LA annual 2015 emissions inventory, which has a spatial 

resolution of 1 km × 1 km (Gurney et al., 2019). Grid cells with less than 1 ktC emissions yr-1 were 

excluded for visualization purposes. Diamond symbols indicate site locations, with darker red  

colors indicating more urbanization. Sites that were used to estimate background CO2 levels are in gray. 

 

3.2.2 Plant radiocarbon (14C) analysis 

At each site, we collected a series of turfgrass samples for 14C analysis up to 1 km away from where 

we conducted XCO2 measurements (Fig. C4). During our first campaign in May 2022, we collected five 

samples in each cardinal direction in 100 to 500 m intervals but reduced the sampling for following 

campaigns (2-4 samples east and west of the XCO2 measurements). We targeted landscaped turfgrasses in 

well-ventilated areas, avoiding local depressions to prevent biases that may arise from photosynthetic 

fixation of plant- or soil-respired CO2. We used gardening shears to clip the top 2 cm of turfgrass and mixed 

several clippings within about 4 m2. Samples were stored in paper envelopes until analysis. In the lab, 

samples were sonicated and rinsed with Milli-Q water and subsequently dried overnight at 60°C. We then 

homogenized the samples by either clipping them into small pieces or grinding to powder using a mortar 
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and pestle. We do not expect the two homogenizing techniques to have a strong effect on our results, but 

we did observe 14C differences of up to 4‰ between the two methods, indicating the uncertainty due to 

sample heterogeneity (Fig. C5). 

For 14C analysis, approximately 4 mg were combusted with 80-100 mg cupric oxide in pre-baked 

quartz tubes for 3 hours at 900℃. The resulting CO2 was purified cryogenically on a vacuum line, converted 

to graphite using a Zinc-reduction method (Xu et al., 2007), and analyzed for 14C at the W. M. Keck Carbon 

Cycle Accelerator Mass Spectrometer (KCCAMS) facility at the University of California Irvine. We report 

our 14C results using the ∆14C notation (units of ‰), which represents the absolute amount of 14C in the 

sample in the year it was measured, including a correction for the radioactive decay of the reference standard 

(Trumbore et al., 2016). The measurement uncertainty was less than 2‰ for all samples. Based on duplicate 

measurements, ∆14C values varied by up to 4‰ (Fig. C5), which we use to quantify the uncertainty in our 

plant ∆14C observations. We estimate that our ∆14C measurements represent a temporal integration period 

of 1-2 weeks, based on the rate at which the grass grows and the frequency at which it is mowed. The spatial 

resolution is expected to be very localized, with a grass sample fixing CO2 within 100 m (Turnbull et al., 

2022). 

We calculate local fossil fuel enhancements (Cff), or the fossil fuel contribution to the total CO2 

signal, based on our plant 14C measurements and a mass balance approach (Miller et al., 2020; Turnbull et 

al., 2022, 2006) [Eq. 3.1 – 3.2]: 

Cobs = Cbg + Cbio + Cff Eq. 3.1 

∆obsCobs = ∆bgCbg + ∆bioCbio + ∆ffCff Eq. 3.2 

Where Csource terms represent contributions to the total CO2 mixing ratio in units of ppm, and Δsource 

terms represent each of the sources’ Δ14C signatures in units of ‰. The sources of C are denoted in the 

subscripts of each term, where “obs” indicates our observations, “bg” the background, “ff” fossil fuel, and 

“bio” the terrestrial biosphere. ∆obs are our turfgrass ∆14C observations and Cobs are the observed surface 

CO2 mole fractions at each site. For the ∆bg, we use air ∆14CO2 measurements collected at a remote site in 
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Utqiagvik, AK (Xu, Pers. Comm, 2023). We estimate Cbg based on daytime CO2 mole fractions measured 

at two surface sites that have previously been determined to represent background during different times of 

the year in LA (Verhulst et al., 2017; Kim et al., 2023). The Cbg estimation is discussed in more detail in 

Section 3.2.5. We consider ∆bio as the mean ∆obs since plants assimilate ambient ∆14CO2 levels as in Miller 

et al. (2020). ∆ff is -1000‰, the known ∆14C signature of fossil fuels. In our analysis, we estimate and 

compare multiple versions of Cff that either account for Cbio or neglect it. Under each case, the derivation is 

described in detail in Appendix C. The resulting Cff equation when we neglect Cbio is: 

𝐶𝑓𝑓 = 𝐶𝑏𝑔  
∆𝑏𝑔 − ∆𝑜𝑏𝑠

∆𝑜𝑏𝑠 − ∆𝑓𝑓
 Eq. 3.3 

We also incorporate analysis of air ∆14CO2 from samples collected in Irvine, CA (Xu, Pers. Comm, 

2023) for comparison against the plant 14C. The Irvine air samples are collected continuously in flasks over 

approximately 1 month periods. It is important to note that unlike the plants, these air samples represent 

both day- and nighttime conditions. 

3.2.3 Surface CO2 observations 

Surface CO2 measurements were taken from the LA Megacities (LAM) network at DLA, PAS, 

IRV, and RIV (Kim et al., 2022). At these sites, CO2 mole fractions are measured in situ on rooftops or 

towers using cavity ringdown spectrometers. Instrumentation and calibration protocols have been described 

previously and CO2 mole fraction measurement uncertainties were estimated to be 0.07 ppm (Verhulst et 

al., 2017). Only measurements collected between 10:00 to 16:00 local time (Pacific time zone) were used 

in our analysis to coincide with the timing of XCO2 observations and plant 14C datasets that only capture 

daytime conditions. 

At BEA and SMM, we measured surface CO2 using a Picarro G2401 cavity ringdown spectrometer. 

We set the sampling inlet approximately 3 m above the ground by attaching the tubing to the top of a canopy 

tent. To calibrate our measurements, we measured two NOAA standard compressed gas cylinders with 

known CO2 mole fractions (410.4 to 507.0 ppm) matched to the WMO 2007 CO2 scale. We then scaled our 

data based on the linear relationship between the measured and known CO2 mole fractions. The correction 
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had a slope of 1.018 and a y-intercept of -2.7 ppm. Based on the standard deviation of the calibration 

measurements, the Picarro G2401 had a CO2 measurement precision of 0.5 ppm. It is important to note that 

the sampling height at BEA and SMM was much lower than at the LAM sites (10-50 m), which is likely to 

result in different CO2 mole fractions. 

3.2.4 Total Column CO2 (XCO2) measurements 

We measured the total atmospheric column averaged dry air mole fraction of CO2 (XCO2) using a 

portable sun-tracking Fourier transform infrared spectrometer (EM27/SUN, Bruker, Billerica, USA). Each 

site was visited at least twice during each campaign to gauge day-to-day variability. The EM27/SUN 

measures solar radiation in the near infrared wavelengths where CO2 has known absorbance signatures. The 

instrument records solar interferograms approximately every eleven seconds. We also collected coinciding 

surface pressure measurements that are needed for XCO2 retrievals using a portable ZENO weather station 

(Campbell Scientific, Logan, USA). Using the GGG2020 retrieval algorithm, the interferograms were 

subsequently transformed into spectra and XCO2 values were calculated by fitting the observed spectra and 

forward-modeled solar spectra that are based on a priori vertical CO2 profiles (Laughner et al., 2023; Wunch 

et al., 2015). These retrievals are automated for EM27/SUN measurements in the EGI software suite 

(Hedelius et al., 2016). The stability and measurement capabilities of EM27/SUN spectrometers are well 

documented in existing literature (Chen et al., 2016; Dietrich et al., 2021; Gisi et al., 2012; Hedelius et al., 

2016).  

For each sampling campaign, we calibrated our XCO2 measurements against the PAS TCCON, 

which is maintained to a high measurement standard of 0.2% precision for CO2 mole fractions, or a 0.8 

ppm 2σ uncertainty for a single measurement (Wunch et al., 2010). We applied a correction to our data 

based on the slope of a linear fit forced through the origin between 10-minute averaged EM27 and TCCON 

measurements collected side by side, as done in previous work (Hedelius et al., 2016; Frausto-Vicencio et 

al., 2022). We found strong agreement between the EM27 and TCCON, with an R2 value greater than 0.99 

across all our measurements (Fig. C6). The slopes of the seasonal linear fits were applied as scaling factors 
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to correct the XCO2 data from the EM27/SUN to the TCCON. The XCO2 scaling factors were 1.0018, 

1.0022, and 1.0022 in spring, summer and fall 2022, respectively and 1.0016 in winter 2023.  

We considered whether our measurements were influenced by wildfire CO2 emissions that may 

have been transported over long distances. Daily satellite imagery from MODIS suggests that we did not 

intercept any smoke plumes (Appendix C). Thus, the main contributors to variations in our XCO2 

enhancements are urban emissions, biospheric fluxes within the LA region, and the effects of advection and 

boundary layer dynamics. 

3.2.5 Estimating the CO2 background 

Surface CO2 background 

Urban CO2 enhancements (Cxs) were calculated by subtracting a background from the surface CO2 

observations (Cobs) as follows [Eq. 3.4]:  

Cxs = Cobs − Cbg Eq. 3.4 

All values are in units of ppm. We calculate Cbg as the average daytime (10:00 to 16:00 local time) 

CO2 mole fraction at a chosen background site. The choice of background site depends on prevailing wind 

conditions which vary seasonally. In LA, on-shore winds from the Pacific Ocean prevail during spring and 

summer, and periodic off-shore winds from the desert northeast of LA occur during fall and winter 

(Verhulst et al., 2017; Kim et al., 2023). Thus, we use either San Clemente Island (SCI) or Victorville (VIC) 

as the background site depending on wind flow and data availability (Table 3.1, Fig. 3.1). 

We found that SCI was an adequate background site for most of the year (May to Dec). SCI had 

consistently stable and relatively low CO2 mole fractions in these months, with average daily values (± SD) 

of 423.2 ± 1.1 ppm and 414.8 ± 2.0 ppm for the days in which we measured in the spring (May 2022) and 

summer (Jul to Aug, 2022), respectively. For Nov to Dec, CO2 mole fractions at SCI were more variable, 

averaging (± SD) 423.7 ± 2.8 ppm, potentially because of episodic reversal of wind patterns. Although VIC 

could be a more suitable background site for some of these days, data was either not available or had average 
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CO2 levels 2-7 ppm higher than SCI. Thus, we use SCI as the background for fall measurements, except on 

Nov 18 and 23 when VIC data was available and observed 1-6 ppm lower CO2 values than SCI. For winter 

measurements (Feb to March), we used VIC to represent the background, resulting in an average daily 

background of 426.7 ± 1.8 ppm. There was no data available for either SCI or VIC from March 7, 9, 24 or 

28 so we interpolated neighboring daily VIC averages to represent the background on those days, resulting 

in a mean Cbg of 426.5 ± 4.0 ppm. 

XCO2 background 

To estimate urban XCO2 enhancements, we subtract a background from our XCO2 observations as 

follows [Eq. 3.5]: 

∆XCO2 = XCO2 − XCO2bg Eq. 3.5 

We use a daily-varying background based on XCO2 measurements collected at the AFRC TCCON 

site, located in a remote location in the Mojave Desert approximately 100 km north of LA (Table 3.1, Fig. 

3.1). The applicability of AFRC as an XCO2 background site relies on the diurnal mixed layer dynamics in 

the air basin. XCO2 at the PAS TCCON site is similar to AFRC in the mornings but becomes enhanced in 

the afternoons when emissions have accumulated within the LA basin’s surface mixed layer which is 

trapped by the surrounding mountains. By midday, XCO2 values in PAS are typically enhanced by 2.3 ± 

1.2 ppm relative to AFRC (Hedelius et al., 2017, 2018). Eventually the mixed layer height increases enough 

to allow the trapped, polluted air to flow out over the mountains and XCO2 levels in PAS become similar 

to the free troposphere and at AFRC. To focus on the peak daily XCO2 enhancement, we only use 

EM27/SUN measurements recorded between 12:00 to 15:00 (local time), when the differences between 

PAS and AFRC are most prominent. 
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3.3 Results and Discussion 

3.3.1 Spatiotemporal Patterns of CO2 

Plant 14C generally increased from DLA to PAS, RIV, IRV, and BEA respectively, capturing the 

expected urban to rural spatial gradient of ffCO2 (Fig. 3.2a). For all the samples analyzed, mean Δ14C values 

(± SD) were -53 ± 12‰ in DLA, -47 ± 7‰ in PAS, -31 ± 5‰ in RIV, -26 ± 9‰ in IRV, and -22 ± 5‰ in 

BEA. More negative values correspond to more ffCO2 polluted air. For reference, the average ambient 

Δ14CO2 observed at Utqiagvik, AK during the study period was -7 ± 2‰, which represents the 14C 

background in a remote site with no local fossil fuel influence. We also compared against air Δ14CO2 

measurements at IRV which averaged -29 ± 12‰ over the study period in agreement with the IRV mean 

plant 14C data. 

The observed plant Δ14C values translate into fossil fuel enhancements (Cff, Eq. 3.3) of 2 to 26 ppm 

(Fig. C1). Cff values generally decreased along the urban to rural gradient, with mean Cff of 17 ± 6 ppm in 

DLA, 15 ± 3 ppm in PAS, 7 ± 2 ppm in RIV, 5 ± 4 ppm in IRV, and 3 ± 3 ppm in BEA, averaging across 

seasons. The lowest Cff was observed in the rural site (BEA) for all seasons except summer when IRV was 

more enriched in 14C. This is likely due to IRV’s coastal location and strong onshore winds in the summer 

that transport its ffCO2 emissions inland. 
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Figure 3.2. Temporal trends in ∆14C, XCO2 and surface CO2 measurements collected in and around the 

Los Angeles area. (a) Points are plant ∆14C observations averaged and colored by site. Lines are ambient 

∆14CO2 measurements from air samples collected in Utqiagvik, AK (gray) and Irvine, CA (orange). (b) 

Points are daily-averaged XCO2 observations colored by site, with error bars representing the daily standard 

deviation. Orange and black lines are daily-averaged XCO2 observations from the TCCON PAS and AFRC 

sites, respectively. (c) Points are daytime (10:00 – 16:00 PT), daily-averaged surface CO2 measurements 

colored by site. Lines are daytime daily-averaged surface CO2 measurements at SCI and VIC background 

sites. 

 

The seasonal differences between the plant ∆14C observations, up to ~15‰, were dwarfed by the 

spatial differences, up to 50‰ (Fig. 3.2a). The seasonal mean Δ14C (±SD) for all the samples taken together 

was -35 ± 12‰ in spring, -39 ± 16‰ in summer, -45 ± 18‰ in fall and -47 ± 12‰ in winter. Thus, the 

seasonal means are not significantly different. Previous studies have determined that seasonal changes in 
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ffCO2 emissions are minor in LA, and that intra-annual differences in ambient Δ14CO2 are primarily due to 

changing atmospheric dynamics (wind speeds and directions and planetary boundary layer height) that 

facilitate more trapping of ffCO2 emissions (Hedelius et al., 2018; Miller et al., 2020; Newman et al., 2016). 

Thus, the lack of temporal variability in plant 14C indicates that ffCO2 patterns do not change substantially 

within the course of the year. 

Across the study period, the lowest Δ14C values (highest Cff) were generally observed during Nov 

to Dec, especially at DLA, which is near many ffCO2 emission sources. During the fall and winter (Nov to 

Feb), cooler temperatures and shorter days reduce the mixed layer height, trapping (14C-depleted) emissions 

in the basin. This is exemplified by the air-based Δ14CO2 measurements in IRV (Fig. 3.2a), which showed 

a sharp decline in Dec. However, we did not observe the same effect in the IRV plant samples, because 

plants do not capture CO2 overnight when (14C-depleted) CO2 concentrations are most elevated. This 

suggests that temporal variability in plant 14C is less sensitive to meteorological changes than to persistent 

local emission sources. 

Generally, the XCO2 and surface CO2 observations also captured the expected urban to rural spatial 

gradient; however, the site-to-site differences were not as pronounced as those observed in the plant 14C 

data. Daily daytime averages ranged from 416 to 526 ppm for surface CO2 and 416 to 422 ppm for XCO2. 

Surface CO2 and XCO2 measurements have a much larger sampling footprint than the plants, and thus, they 

are not as sensitive to fine scale (~100 m) variability like the plant samples. However, unlike plant 14C, 

temporal variability (from daily to seasonal) in atmospheric CO2 was considerably larger than the 

differences between sites (Fig. 3.2 b-c).   

The different temporal variability between plant 14C, surface CO2, and XCO2 is expected due to the 

different spatiotemporal characteristics inherent to each measurement. The maximum ffCO2 contribution 

was observed in November based on plant 14C, whereas the maximum excess XCO2 occurred in May for 

all sites and was more randomly distributed in the surface CO2 data. Surface CO2 changes were noisier than 

∆14C and XCO2 measurements, which made seasonality less prominent. This is expected because surface 

CO2 measurements commonly intercept sporadic CO2 plumes from local emissions that overpower 



 

65 

fluctuations in the background. Since the XCO2 measurements incorporate CO2 in the entire atmospheric 

column, local emissions at the surface are diluted and the overall signal is dominated by seasonality that is 

driven by meteorology and/or natural fluxes at the regional scale. As such, our data highlight an advantage 

of the temporally integrative nature of plants: their 14C is more sensitive to local emissions than XCO2 

measurements while being less noisy than surface CO2. This indicates that plant 14C coupled with surface 

CO2 and/or XCO2 observations can serve complementary purposes since the atmospheric CO2 

measurements can better capture temporal variations while plant 14C sampling can better capture local scale 

ffCO2 patterns within a city or neighborhood. 

 

3.3.2 Correlations between ffCO2 metrics 

By subtracting a background from the measurements presented in Fig. 3.2, we calculate first-order 

estimates of ffCO2 patterns. Specifically, we use equations [Eq. 3.3 – 3.5] to estimate the urban 

enhancements of each ffCO2 metric (i.e., plant 14C, surface CO2, and XCO2). We treat each metric separately 

and assume we only have the plant 14C, surface CO2, or XCO2 measurements and an estimate of the 

background for each. We consider these “first order” estimates because we neglect biospheric terms in 

order to make each equation solvable independently (i.e., so that plant Cff can be solved without Cobs from 

the surface network). To calculate surface Cxs, we calculate the two-week average of the daily afternoon 

(12:00 to 15:00 local time) measurements. We use two-week averages to coincide with the time period that 

we expect the turfgrasses were integrating CO2. Since the XCO2 dataset is not continuous, we could not 

take two-week averages and instead aggregated the measurement days by site and season. Here, we only 

use XCO2 measurements collected in the afternoon (12:00 to 15:00 local time), when the mixed layer is 

most developed and consequently when the XCO2 average at the AFRC TCCON is the most representative 

of background conditions.  

We then examine the relationship between each of these metrics (Fig. 3.3). Plant Cff had a 

significant linear relationship with both surface CO2xs and ∆XCO2. This suggests that plant 14C data can 

independently provide similar information as surface in situ CO2 networks and has potential for validating 
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spatiotemporal XCO2 trends in cities. These correlations indicate that despite their differences in 

spatiotemporal resolutions, plant Cff, surface CO2xs, and ∆XCO2 all capture intra-region ffCO2 emission 

patterns. 

 

Figure 3.3. Correlations between plant fossil fuel enhancements derived from 14C analysis (“Plant Cff”) 

and (a) excess surface CO2 based on in situ measurements collected on rooftops/towers (“Surface CO2xs”) 

and (b) total column CO2 enhancements (∆XCO2) based on ground-based solar spectra measurements. The 

colors of the points indicate the site, with darker red colors representing more urbanized sites.  

 
Although these urban emission metrics were correlated, they each inform emissions 

characterizations with distinct sensitivity. Plant Cff and surface CO2xs are similar, with their values ranging 
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from 0 to 30 ppm (Fig. 3.3a). Therefore, plant 14C sampling can create snapshots of surface ffCO2 in cities 

that lack surface CO2 networks or possibly supplement unmeasured locations in places that do have a 

ground network. ∆XCO2 is a more diluted signal than the other two metrics, with the resulting values 

ranging by only about 2 ppm (-1.5 to 1.5 ppm, Fig. 3.3b). The uncertainty of the ∆XCO2 values is at least 

1.4 ppm, based on the root squared sum of the measurement uncertainties (1 ppm each from the EM27/SUN 

and TCCON AFRC). Thus, the ffCO2 signal is relatively low for XCO2 measurements relative to its 

uncertainty and poses a challenge for intra-city ffCO2 monitoring using total column measurements. Among 

these three metrics, plant sampling is the most operationally feasible since the plants are highly sensitive to 

local ffCO2 emissions, enabling monitoring at higher spatial resolution than surface CO2 or XCO2 

measurements without the need for any infrastructure or instrumentation at the study site. 

3.3.3 Source attribution using plant 14C 

In the previous section, we examined the use of plant 14C to quantify ffCO2 emission trends 

independently (without relying on atmospheric CO2 observations at the study site). When both 14C and CO2 

measurements are available at the same location and time, it becomes possible to apportion the biogenic 

and fossil contributions to the observed CO2 signal. Previous work has estimated that biosphere fluxes can 

contribute approximately 25% of the annual Cff enhancement in LA (Miller et al., 2020). Here, we consider 

the Cbio terms in the mass balance equations and solve them using the surface CO2 measurements as Cobs, 

thereby allowing the surface CO2 network to inform the plant 14C analysis. Following the isotopic mixing 

analysis in Miller et al. (2020), we estimate the ∆source of LA’s emissions by rearranging the mass balance 

equations (Appendix C), which can subsequently be used to estimate the percentage of fossil and biospheric 

contributions [Eq. 3.6]: 

∆source = fff ∆ff + fbio ∆bio Eq. 3.6 

 

where fff is the fossil fraction, fbio is the biospheric fraction, ∆ff is the known fossil fuel ∆14C 

signature of -1000‰, and ∆bio is the biospheric ∆14C signature. We assume ∆bio is equal to the mean ∆obs 

since plants up take ambient ∆14CO2. Then, ∆source is determined as the slope of a York linear regression 
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between (∆  C)xs and Cxs (Fig. 3.4), based on a rearranging of the mass balance equations (Eq. 3.1 – 3.2;  

Appendix C). If ∆source equals -1000‰ (the fossil fuel 14C signature), this would indicate that fossil fuels are 

the only source of Cxs, and that biospheric fluxes are negligible. It is important to note that we expect the 

fossil fuel 14C signature to be closer to -933‰ (not -1000‰) due to requirements that biogenic ethanol be 

blended into gasoline in California (Newman et al., 2016). For Cobs, we used the afternoon average of the 

surface CO2 observations for the two weeks before the samples were collected at each site, to represent the 

expected temporal integration of turfgrass 14C samples. 

 

 

Figure 3.4. Isotopic mixing analysis used to determine ∆source, following the same protocol as in Miller et 

al. (2020). Green triangles are calculated from plant ∆14C and in situ CO2 measurements aggregated by site 

and season (including DLA, PAS, IRV, and RIV). Gray points are measurements made by Miller et al. 

(2020) at three sites in LA using flask analysis of air ∆14CO2 and CO2 in 2015-2016. The linear fits were 

calculated using a York regression method (York et al., 2004), which considers the error in both x and y. 

The slope of the fit line (∆source) and its uncertainty for each dataset is shown on the lower left, with the 

green line/slope calculated based on the plant 14C data and the black line/slope was calculated using air 
14CO2 data from Miller et al. (2020). 
 

Using our turfgrass 14C and CO2 measurements averaged by site and season, we estimate ∆source is 

-749 ± 258‰, which is similar to the results in Miller et al. (2020) (-783 ± 11‰), albeit with a much larger 

uncertainty (Fig. 3.4). Based on ∆source derived from plant 14C and assuming ∆ff is -1000‰, we estimate Cxs 

fractions from fossil and biogenic sources of 74% and 26%, respectively. If we instead assume the fossil 
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fuel 14C signature is -933‰ due to ethanol in gasoline, we calculate that 79% of the CO2 enhancement is 

due to fossil fuels and 21% from the biosphere. This corresponds with Miller et al.’s finding that in LA, the 

fossil and biogenic fractions of Cxs are approximately 80% and 20%, respectively. This indicates that 

isotopic mixing analyses using urban plant samples can achieve similar results as air-based ∆14CO2 

measurements with larger uncertainty but less effort. The largest source of uncertainty in our ∆source slope 

calculated with plant 14C samples is the variability in Cobs over the two-week averaging period. We used 

the standard deviation of the daily afternoon means for two-weeks of data to represent the uncertainty of 

each Cxs value. This uncertainty is quite large (7 ppm on average), since Cxs varies substantially at two-

week timescales at urban sites. In contrast, the uncertainty in Cxs for the air samples used in the Miller et 

al. analysis was only 0.9 ppm on average, based on the measurement uncertainty of flask CO2 samples and 

the background. Thus, our uncertainty is larger because it considers atmospheric variability over a much 

longer temporal period than Miller et al.’s flask samples (two weeks vs minutes, respectively). Nonetheless, 

the overall results were still comparable, indicating that plants can trace ffCO2 patterns and achieve similar 

results as atmospheric 14C measurements. 

 

 

 

 

 

 

 



 

70 

 

Figure 3.5. Source attribution of Cxs to Cff and Cbio for each site in (a) spring, (b) summer, (c) fall and (d) 

winter. Bars represent the average Cxs (blue), Cff (gray), and Cbio (green) for a site and season. Uncertainty 

is calculated using a Monte Carlo simulation described in Appendix C. Sites with “NA” indicate that surface 

CO2 observations were not available for the calculation. The net ecosystem exchange (NEE) estimates were 

provided by the Solar Induced Fluorescence for Urban biogenic Fluxes (SMUrF) model (Wu et al., 2021). 

Hourly NEE estimates from SMUrF were averaged for the LA Basin region on a monthly basis for the most 

recent year available (2019), specifically, May, August, November, and March for spring, summer, fall, 

and winter, respectively. 

 
Lastly, we calculate Cxs, Cff and Cbio on a sample-by-sample basis and aggregate by site and season 

(Fig. 3.5). Our findings indicate that the majority of Cxs (70-100%) is attributable to ffCO2 emissions. The 

error bars for Cxs and Cff overlap, making them proxies for one another. Biospheric fluxes contribute a 

notable amount of the Cxs (on average 24% of the fossil fuel enhancement) but vary by site and season. It 

is important to note that the uncertainty in Cbio is large (larger than its magnitude), which propagates from 

the variability in Cxs. Cbio does not appear to have consistent spatial patterns between the sites. Generally, 

we observe that Cbio is a larger C sink in the fall and winter compared to the spring and summer. We 

compared our findings to modeled estimates of hourly net ecosystem exchange (NEE) from the Solar 

Induced Fluorescence for Urban Biogenic Fluxes (SMUrF) model (Wu & Lin, 2021; Wu et al., 2021), 

where positive NEE values indicate net emissions of CO2 from biospheric sources (positive Cbio), while 

negative values indicate net CO2 uptake from the biosphere (negative Cbio). On average over the LA region, 

NEE is estimated to be slightly negative (-0.6 to -0.2 µmol m2 s-1) during our study months, except in March 

(winter; Fig. 3.5d). Our 14C analysis and SMUrF modeled NEE indicate that LA’s biospheric fluxes are 

small with large uncertainty. Further analysis of plant 14C and direct flux measurements along biogenic flux 
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gradients could help better understand urban biosphere fluxes and be impactful for guiding nature-based 

climate change solutions in cities. 

3.4 Conclusions 

Our analysis demonstrates that plant 14C is a powerful tool for monitoring ffCO2 emissions and 

supporting climate change mitigation efforts in cities. Compared to atmospheric measurements of surface 

CO2 and XCO2, plants offer the most localized ffCO2 signal, making it possible to investigate urban 

emissions at high spatial resolution. We show that plant 14C can provide insight to ffCO2 sources in cities 

that lack surface CO2 observing infrastructure and may help ground-truth spatiotemporal trends in XCO2 

observed by satellites, which struggle with quantifying ffCO2 patterns at the local scale. In cities with 

ongoing surface CO2 measurements, plant 14C also offers similar insights to biogenic CO2 sources as 

atmospheric 14CO2 sampling at a fraction of the cost. However, more work is needed to understand 

spatiotemporal variations in urban biogenic fluxes and to guide nature-based climate solutions. 
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CONCLUSIONS 

 

Summary of this work 

The goal of this dissertation was to quantify spatial and temporal trends in air pollutant and ffCO2 

emissions in cities. The research was motivated by the pressing need to inform policymakers on the 

effectiveness of fossil fuel emission mitigation measures. In Chapter 1, I evaluated the progress of efforts 

intended to reduce carbon monoxide (CO) emissions from vehicles. I compared on-road CO/CO2 levels 

measured with mobile laboratories in two cities (Los Angeles, CA and Salt Lake City, UT) across years 

between 2013 to 2021. The observations indicated that stringent regulations and advances in cleaner 

burning technology have effectively improved the vehicle combustion efficiency in Los Angeles between 

2013 and 2019. However, combustion efficiency worsened in 2020 when traffic characteristics and fleet 

characteristics were drastically altered by the COVID-19 pandemic. Additionally, in Salt Lake City, 

combustion efficiency worsened between 2013 and 2019. These findings indicate that regulatory efforts to 

reduce vehicle CO emissions can be offset by less efficient traffic characteristics, such as aggressive driving 

styles and a less efficient fleet. 

In Chapter 2, I demonstrated that plant radiocarbon (14C) sampling captured ffCO2 emission 

reductions associated with a drastic reduction in human activity during the COVID-19 pandemic. Analysis 

of plant 14C samples collected in California revealed temporal ffCO2 emission trends across years that 

aligned with the timing of social distancing measures. Further, plant 14C indicated that emission trends 

varied at the neighborhood scale, with some communities maintaining emission reductions longer than 

others. The pandemic served as an analogy for a large-scale emissions reduction that we would expect to 

see over time with effective emission mitigation policies. The observed sensitivity of plant 14C to changes 

in human activity implies that plant sampling can be an informative technique to gauge the success of 

climate action policies, especially in cities that lack operational CO2 monitoring infrastructure. 
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In Chapter 3, I evaluated plant 14C as an indicator of ffCO2 trends against more established urban 

monitoring approaches: in situ surface CO2 and remotely sensed total column CO2 (XCO2). I measured 

plant 14C, surface CO2, and XCO2 along an urban to rural gradient in Southern California in three-month 

intervals for one year. Plant 14C captured the strongest spatial contrast in CO2 between the sites, advantaged 

by its sensitivity at local spatial scales. The plants did not indicate significant temporal changes in ffCO2 

within the year of measurements. Surface CO2 and XCO2 captured stronger temporal variability than the 

plants, but this variability was more likely because of meteorology and seasonality of natural CO2 fluxes, 

not ffCO2 emissions. Furthermore, mixing analysis combining the 14C and surface CO2 measurements 

revealed that biogenic CO2 fluxes, such as from urban vegetation, respiration, and biofuel burning, 

contribute a notable but uncertain amount of excess CO2. This research further strengthened the application 

of plant 14C as an urban ffCO2 monitoring technique since the observations showed that plants could provide 

similar information as other monitoring approaches but with higher spatial resolution. 

Together, these three studies indicate that our capacity to monitor urban ffCO2 trends is improving. 

My research suggests effective and detectable emission reductions regarding CO emissions from the on-

road sector and ffCO2 emissions during the COVID-19 pandemic. This work also uncovered ongoing 

complexities in reducing and monitoring emissions, such as the interplay of factors like traffic 

characteristics that can counter progress. Additionally, he heterogeneity of emission trends at highly local 

scales underscores the need for high resolution environmental measurements. This work can be used to 

support the implementation of practical ffCO2 monitoring approaches in cities, such as plant 14C analysis. 

All in all, this dissertation advanced our capacity to track urban ffCO2 emission trends, enabling new 

opportunities for accessible and effective ffCO2 information for future scientists, community members, and 

policy makers.   

Future directions 

As climate action policies take effect, large spatiotemporal changes in ffCO2 emissions are 

anticipated over time. Through the investigations in this dissertation, I learned valuable lessons for most 
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effectively capturing these trends using atmospheric observations and supporting the success of emission 

mitigation efforts. Numerous opportunities remain to further extend this research and to continue improving 

quantification of urban ffCO2 emissions.  

On-road emissions. Chapter 1 revealed the complexity of vehicle combustion efficiency and how 

on-road CO emission reductions can be confounded by traffic characteristics and changes to the fleet 

characterization. The ongoing mystery that our dataset could not explicitly answer is what specifically 

caused those increases in CO/CO2. We observed the net effect of policies, technology, and traffic 

conditions, but further measurements or modeling would be needed to detangle the drivers that led to the 

increased CO/CO2. The worsened combustion efficiency during COVID-19 also contradicted EMFAC, 

California’s official on-road emissions inventory that is used for mobile source regulations. Thus, additional 

work to better understand this could have major implications for the inventory and could lead to new 

recommendations for traffic regulations. The impacts of speed on CO/CO2 were particularly complex. It 

would be beneficial to compare on-road measurements with a mobile laboratory like UCR’s 

LIME/AVOCADO to emissions tests conducted with portable emission measurement systems that are 

installed on individual vehicles. The advantages of each approach would be complimentary and could 

elucidate the causes of high CO emissions under different driving conditions. 

The observations in Chapter 1 also indicated that the application of the CO/CO2 ratio as a fossil 

fuel tracer is weakening as vehicle combustion efficiency is improved. This finding could be further tested 

using radiocarbon measurements of vehicle exhaust emissions. Coinciding measurements of on-road CO, 

CO2, and 14CO2 would provide useful information about vehicle fuel, combustion efficiency, and inform 

mixing models of urban emissions. Up-to-date estimates of the CO:CO2ff ratio based on 14C would allow 

studies using urban CO2 measurements to attribute emissions from the transportation sector. 

Plant 14C Analysis: This work demonstrated that plant 14C analysis is a robust tracer for spatial 

and temporal variations in ffCO2 emissions in cities. By setting up that foundation, this work supports the 

application of such analyses for future urban ffCO2 monitoring in new places and repeating periodically in 

the same places to track progress. Most of this work was conducted in the Los Angeles megacity, one of 
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the most equipped cities in the world for monitoring ffCO2 emissions. Further research should now consider 

other cities that have less access to high quality datasets. For instance, many cities in the Global South are 

increasing ffCO2 emissions with economic development. Although satellite measurements are expected to 

increase spatial coverage of XCO2 data, many cities lack operational ground-truthing infrastructure to 

validate the trends observed remotely. As we observed in Chapter 3, plant-based CO2 enhancements 

correlate with XCO2 enhancements, indicating the potential of plants to cost-effectively validate CO2 

patterns observed by satellites. In such cities where emissions are expected to increase but there is a lack of 

existing data, it is particularly crucial to collect records now to set a baseline that we can evaluate emission 

reductions against in the future. We cannot go back in time to collect atmospheric data so plants are 

additionally useful because they can even be stored (i.e., in a herbarium) and analyzed later (Carbone et al., 

2023).  

The local scale sensitivity of plant 14C analysis is currently an under-utilized advantage for urban 

ffCO2 monitoring. In this work, we aggregated our plant sampling to regional scales, and only focused in 

on the hyperlocal information in a few cases (e.g., the Great Highway in Chapter 2). However, future work 

could repeat sample plants near a known emission source that is expected to be decarbonizing and track its 

emission reductions over time. For example, plants could be periodically collected next to a highway, and 

they would likely detect ffCO2 reductions as more electric vehicles replace gasoline and diesel fueled 

vehicles. Additionally, the City of Los Angeles announced a goal for all buildings to have net zero emissions 

by 2050, and thus will be removing gas-powered appliances from residential and commercial buildings. 

Plant sampling could be used to track this progress, and to identify highest emitting buildings to prioritize. 

These are exciting opportunities to partner with community members and create clear demonstrations that 

could guide future policymaking.  

Another important direction is using plant 14C analysis to elucidate heterogeneity in ffCO2 

emissions at the census tract scale. Fossil fuel CO2 emissions are usually co-emitted with emissions of 

hazardous air pollutants like CO, NOx, and particulate matter, that are often harder to attribute their sources 

and interpret their measurements. Surveying plants in communities with racial or income-based disparities 
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could bring to light environmental injustice that should be considered when developing climate mitigation 

policy. Such projects can include community science opportunities that could empower historically 

marginalized communities by engaging them in monitoring their own air quality. This high-resolution 

tracking could inform on fine-scale disparities to air pollution exposure in urban areas and whether emission 

benefits of air pollution regulations are equitably distributed.  
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APPENDIX A 

Supporting Information for Ch 1: Contrasting trends in vehicle combustion efficiency in 

Los Angeles, CA and Salt Lake City, UT 

 
Section A1. Wildfire influence 

Wildfires emit CO and CO2 and thus could have caused elevated mixing ratios in both gases, but 

especially for CO, if smoke was present in the study areas. To assess the potential influence of wildfires on 

our measurements, we evaluated daily satellite imagery captured by MODIS sensors onboard NASA’s 

Aqua and Terra satellites, which detect fires, thermal anomalies and smoke plumes 

(https://worldview.earthdata.nasa.gov/). We found that there were no wildfires near the sites on the majority 

of the study days. The only measurement day when the satellite imagery captured a nearby fire and smoke 

reaching the study area was on August 16, 2013 in SLC. Our measurements may have detected this smoke 

plume. We observed elevated CO and COxs/CO2xs values on August 16, 2013 compared to the other SLC 

2013 measurement days (Fig. A1). Average CO levels were 928 ppb on August 16, whereas on the other 

measurement days, the mean CO mixing ratio was between 328 to 440 ppb. COxs/CO2xs values were 

similarly elevated on this day, with a mean value of 10.9 ppb/ppm on August 16, 2013 whereas on other 

days the mean ranged from 4.5 to 6.2 ppb/ppm. We assume that these enhancements were due to wildfire 

smoke and thus excluded this day from the analysis. 

 

https://worldview.earthdata.nasa.gov/
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Figure A1. Histograms showing the distribution of on-road CO mixing ratios measured during 

the SLC 2013 survey on (a) days when we do not see wildfire influence (August 8, 13, and 15, 

2013) and (b) on a day when the area was visibly contaminated with wildfire smoke (August 16, 

2013). Similarly, (c) shows the distribution of COxs/CO2xs ratios on non-fire days and (d) shows 

the distribution of COxs/CO2xs ratios on the fire day.   
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Table A1. Dates and estimated CO and CO2 background values for each survey.  
Year City Dates CO2 (ppm) CO (ppb) 

2013 Los Angeles June 14 - July 7 395.2 ± 3.6 75.6 ± 30.3 

2013 Salt Lake City August 8-16 377.1 ± 4.8 62.5 ± 36.5 

2019 Los Angeles July 15-31 407.9 ± 1.7 91.2 ± 11.0 

2019 Salt Lake City August 14-29 390.1 ± 5.9 67.5 ± 16.9 

2020 Los Angeles July 9-31 413.7 ± 6.7 72.2 ± 36.8 

2021 Los Angeles July 15-17 418.4 ± 20.6 87.3 ± 34.0 

Background values were calculated by averaging the lowest 20% of the daily minimum measurements for all surveys except LA 

2019. Because we did not sample background conditions and only measured on city streets or freeways in LA 2019, we instead 

characterized the background using the monthly average of measurements at San Clemente Island, an offshore tower site upwind 

of Los Angeles (J. Kim, Pers. Comm., 2020).  
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Figure A2. Lorenz curves showing the disproportionality of COxs (top panels), CO2xs (middle 

panels), and COxs/CO2xs (bottom panels) for each mobile survey in Salt Lake City (SLC) and Los 

Angeles (LA) between 2013 and 2021. The Gini index (g) is a measure of inequality, where 

larger g values indicate a more skewed distribution (i.e., few road segments having a large share 

of COxs values). 
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Figure A3. Frequency distributions of on-road COxs, CO2xs, and the ratio COxs/CO2xs before (a-

c), during (d-f) and after (g-i) COVID-19-related traffic reductions in Los Angeles, CA. The 

values in the plots are the mean ± standard deviation. 
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Table A2. Results of simulated traffic fleet changes on on-road CO and CO2 emissions based on 

the EMFAC 2021 model (CARB, 2021). 

Scenario Changes made to default 2020 fleet Annual 

CO 

emissions 

(g) 

Annual 

CO2 

emissions 

(g) 

CO/CO2 

ratio 

(g/g) 

CO/CO2 

ratio  

(1000 mol 

CO/ mol 

CO2) 

Percent 

change 

relative to 

default  

Default 

EMFAC 

2020 

conditions 

None 360.23 104229.6 0.003456 5.43 0.00% 

Increase 

heavy-duty 

vehicle miles 

Keep total VMT the same, but assign light 

duty passenger vehicles (LDA) VMT to 

zero, and redistribute the LDA miles to the 

other vehicle categories proportionally. 

Essentially, this is a scenario where there 

are zero LDA vehicles but the  fleetwide 

VMT stays the same. 

469.8 137430.59 0.003418 5.37 -1.09% 

Faster speeds 

Default VMT and fleet composition but 

made all vehicles drive faster by forcing all 

vehicle categories to drive in their 

"nighttime" (1AM) conditions all the time.  

313.12 102751.99 0.003047 4.79 -11.83% 

Older vehicle 

fleet 

Ran EMFAC with the 2013 vehicle fleet 

instead of the 2020 fleet. Forced the speed 

conditions to be the same as 2020 and VMT 

to be the 2020 values for each vehicle 

category. Thus, speed, VMT and fleet 

composition is the same as the default, but 

with older vehicles on the road.  

720.95 113280.62 0.006364 10.00 84.14% 

 

  



 

93 

Figure A4. Effect of speed on CO and CO2 emission rates (CO/CO2) for light-duty vehicle 

categories. Data is from EMFAC 2021, is aggregated by vehicle age, and is based on the fleet 

characterization in the year 2020 in the South Coast Air Basin. Colors represent different fuel 

types (diesel, gasoline, and plug-in hybrid).  
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Figure A5. Effect of speed on CO and CO2 emission rates by vehicle age, with lighter colors 

indicating newer model years. The data was downloaded from EMFAC 2021, using annual 

emissions from the year 2020 in the South Coast Air Basin. Only gasoline-powered light-duty 

vehicle categories are shown.  
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Figure A6. Fleet composition (% of vehicle miles traveled (VMT) by vehicle category) of (a) 

Salt Lake County and (b) Los Angeles County in 2017. The SLC data was compiled by the 

Department of Air Quality (UDAQ, pers. Comm. 2023) and is what is used to run the EPA 

MOVES model. The LA County data was downloaded from EMFAC2021 

(https://arb.ca.gov/emfac/). Vehicle categories were simplified and reclassified for direct 

comparison between EMFAC and MOVES classifications. 
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Figure A7. The 2017 vehicle age distributions of (left) passenger cars and (right) passenger 

trucks for (top row) the U.S. nationwide fleet, (middle row) the Salt Lake County fleet and 

(bottom row) the Los Angeles County fleet. The national age distribution is the 2017 default 

input used in EPA MOVES, downloaded from https://www.epa.gov/moves/previous-moves-

versions-and-documentation. The Salt Lake County age distribution data was compiled by the 

Utah Department of Air Quality for use in the Ozone State Implementation Plan (UDAQ, pers. 

Comm. 2023). The LA County data was derived from the 2017 vehicle population in 

EMFAC2021 and is based on vehicle registration data from the California Department of Motor 

Vehicles (https://arb.ca.gov/emfac/fleet-db/). Note that 30+ year old vehicles were excluded 

(model years 1988 and older) to more realistically represent the vehicles being driven on the 

highways. 30+ year old passenger vehicles are expected to contribute a minimal fraction of 

vehicle miles traveled.   

https://www.epa.gov/moves/previous-moves-versions-and-documentation
https://www.epa.gov/moves/previous-moves-versions-and-documentation
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Figure A8. Linear correlation between CO2xs and COxs for each survey in (left) Salt Lake City, 

UT and (right) Los Angeles, CA. Points and regression lines are colored by year, as indicated by 

the color of the linear equation text. The y-axis has been truncated for visualization purposes. 

The window captures >99% of the data, but COxs values between 6000-14000 ppb are not 

included in the figure. All linear regressions had a p-value < 0.05. 
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APPENDIX B 

Supporting information for Ch 2: Reductions in California’s fossil fuel carbon dioxide 

emissions during the COVID-19 pandemic 

 

 

 

 
Figure B1. The percent change in CO2XS in the Los Angeles metropolitan area in July relative to 

2019 for a) 2020 and b) 2021 calculated from on-road surveys.  
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Figure B2. Boxplots showing the distribution of on-road CO2XS values measured on Los 

Angeles freeways before the COVID-19 pandemic (2019) and during the pandemic (2020 and 

2021). Diamond symbols indicate the mean of each year. 

 

 

 

 

 

 

Figure B3. The relationship between vehicle speed and CO2xs values measured for each year’s 

mobile surveys.  
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Figure B4. The variance in the ordinary kriging interpolation of the plant 14C values across 

California. Areas with higher variance have larger uncertainty in the interpolation prediction 

showed in Figure 2.2. 
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Figure B5. Difference in radiocarbon values of plant samples collected in the same locations in 

California in 2020 and 2021. Each bar represents the difference between samples collected 

within 500 m of each other (ΔΔ14C = Δ14C2021 - Δ14C2020, N=59 pairs). The shaded region 

indicates -3.5‰, the expected annual global change in atmospheric 14CO2, hence any ∆∆ value 

more negative than -3.5‰ indicates an increase in fossil fuel CO2 from 2020 to 2021 
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Figure B6. The variance in the ordinary kriging interpolation of the change in Cff in the San 

Francisco Bay Area (a) and the Los Angeles Metropolitan Area (b). Areas with higher variance 

indicate larger uncertainty in the predicted kriging values presented in Figure 3. 
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Figure B7. Boxplots showing the distribution of fossil fuel contributions by sector for the full 

dataset (all samples, not just co-located as in Fig. 2.3). 

 

 

 

 
 

 

 

https://files.slack.com/files-pri/T018SUM33HD-F02UTEGR030/air_grass.png
https://files.slack.com/files-pri/T018SUM33HD-F02UTEGR030/air_grass.png
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Figure B8. An attempt to use remotely sensed measurements of solar induced fluorescence (SIF) 

to better predict the timing of plant sample growth. (a) ∆14C of plants collected in 2020, with the 

timing of peak growth predicted by SIF if the plant was already senesced during collection 

(yellow points) or predicted by the collection date if the plant was green (green points). Error 

bars surrounding the yellow points show the range of dates when 30% of peak plant growth 

occurred. Blue line shows ∆14CO2 of air samples collected in Irvine, CA (Xu, pers. Com). 

Vertical dashed lines indicate the period where the Stay-At-Home Order was in effect. (b) 

Locations of plant samples that had similar predicted peak growth dates (April 15, 2020 ± 2 

days) but vastly different ∆14C values from each other. (c) ∆14C increased nonlinearly with 

distance from major roads for the same set of samples from panel (b).  
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Figure B9. The Δ14C of ambient CO2 and plant samples collected at the University of California 

in Irvine, CA. Solid error bars show the measurement error and dashed error bars show SD of 

replicated samples. Open triangles are Bermuda turfgrass samples (Cynodon dactylon) while 

closed triangles are annual grass species (Bromus diandrus Roth). 

 

 

 

Table B1. Mobile survey dates and calibration parameters used to correct on-road CO2 data 

measured using a Picarro G2401 analyzer. 
Year Survey dates Standard 1 

(ppm CO2) 

Standard 2 

(ppm CO2) 

Slope 

(mean ± SD) 

Intercept 

(mean ± SD) 

Precision* 

(ppm CO2) 

2019 July 15-17, 19, 

23-26, 29-31 

 

564 1021 0.985 ± 0.001 19.0 ± 0.4 0.5 

2020 July 9-10, 23-

24, 30-31 

 

551 1028 1.00 ± 0.01 3.2 ± 8.0 0.9 

2021 July 16-17 420.4 551 1.00 ± 0.001 -1.1 ± 0.3 0.1 

*Precision was defined as the average standard deviation of all calibration runs 

  



 

106 

 

Table B2. Δ14C and background values used to calculate the results in Table 2.1 of the main text.  
Region Year Type Study n Δobs (‰) Δbg (‰) Cbg (ppm) Cff 

(ppm) CA 2005 plant Riley et al. (2008) 128 47.6 ± 13.7 57.5 ± 3.1 384.5 ± 1.9 4 ± 5 

CA 2020 plant This study 188 -11.3 ± 8.6 -2.8 ± 1.3 416.7 ± 1.1 4 ± 4 

CA 2020 plant This study (co-located) 49 -13.5 ± 11.0 -2.8 ± 1.3 416.7 ± 1.1 5 ± 5 

CA 2021 plant This study 82 -16.6 ± 12.0 -6.2 ± 1.7 419.4 ± 0.8 5 ± 5 

CA 2021 plant This study (co-located) 49 -17.5 ± 13.0 -6.2 ± 1.7 419.4 ± 0.8 5 ± 6 

LA 2005 plant Wang & Pataki (2010) 79 31.2 ± 25.4 57.5 ± 3.1 384.5 ± 1.9 10 ± 10 

LA 2015 air Miller et al. (2020) 76 -10.3 ± 19.5 14.8 ± 1.1 405.2 ± 2.8 10 ± 8 

LA 2016 air Miller et al. (2020) 24 -17.2 ± 18.3 13.0 ± 1.9 407.7 ± 1.0 13 ± 8 

LA 2020 plant This study 53 -15.9 ± 12.5 -2.8 ± 1.3 416.7 ± 1.1 6 ± 5 

LA 2020 plant This study (co-located) 10 -22.8 ± 21.1 -2.8 ± 1.3 416.7 ± 1.1 9 ± 9 

LA 2021 plant This study 27 -25.7 ± 15.4 -6.2 ± 1.7 419.4 ± 0.8 9 ± 7 

LA 2021 plant This study (co-located) 10 -31.7 ± 21.9 -6.2 ± 1.7 419.4 ± 0.8 11 ± 10 

Pasadena 2020a air Newman et al. (2016) n/a -55.5 ± 8.8 -2.8 ± 1.3 416.7 ± 1.1 23 ± 4 

Pasadena 2020 plant This study 1 -10.8 -2.8 ± 1.3 416.7 ± 1.1 3 ± 1 

Pasadena 2021 plant This study 6 -35.7 ± 4.5 -6.2 ± 1.7 419.4 ± 0.8 13 ± 2 

Irvine 2019 air Xu (pers. comm) 4 -17.5 ± 8.0 -2.2 ± 2.1 415.2 ± 1.0 7 ± 4 

Irvine 2020 plant This study 1 -15.9 -2.8 ± 1.3 416.7 ± 1.1 6 ± 1 

Irvine 2021 plant This study 3 -16.5 ± 1.6 -6.2 ± 1.7 419.4 ± 0.8 4 ± 1 

Note: To calculate changes in Cff from 14C observations, we use Eq. 2.4 with the background characterized by 14C observations in 

Pt. Barrow, AK (Xu, pers. comm) and the CO2 background characterized by observations at Cape Kumukahi, HI (Dlugokencky 

et al., 2021). All air 14C data is subset to the annual grass growing season (March to May) to match the temporal integration of 

the plant samples. Uncertainties are represented by the standard deviation unless n =1. Italicized rows indicate subsets of the data 

in the previous row where only co-located samples (plants collected in both 2020 and 2021 within 150 m apart) are included in 

the calculation. 
aThe 2020 Pasadena value is a hypothetical no-pandemic scenario and was estimated based on a linear extrapolation of 2006-

2013 air 14C data (Newman et al., 2016) 
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APPENDIX C 

Supporting Information for Ch 3: Plant Radiocarbon across an Urban-Rural CO2 

Gradient Matches Surface and Column CO2 Observations 

 

 

Isotope mass balance calculations 

 
Our estimates of Cff are based on the following two mass balance equations (Turnbull et al., 2011; 

Miller et al., 2020):  

 

where Ci terms indicate CO2 mixing ratios (in units ppm) and ∆i terms indicate ∆14C values (in units 

of ‰). The subscripts indicate the source, where “obs” are our observations, “bg” is the background, “ff” 

is from fossil fuels, and “bio” is from the biosphere. We use two different approaches in the manuscript to 

estimate the fossil contributions to our observations: one neglecting the biosphere terms (Section 3.3.3) and 

one including them (Section 3.3.4). The latter follows a two end member mixing analysis that is described 

in Miller et al. (2020) to estimate the fossil fraction (fff) of our aggregated samples. Below, we show the 

derivations under both cases. 

Calculating Cff, ignoring Cbio terms Calculating fff, including Cbio terms 

Mass balance equations: 

 

Treating Cobs as an unknown, we substitute the Cobs 

term from the first equation to the second to 

eliminate it: 

 
 

Now we can solve for Cff since all other terms are 

measured or known: 

 

Mass balance equations: 

 

 
 

Assuming we measured Cobs at the locations 

where the plants were collected, the unknowns 

in this case are Cff and Cbio. Following Miller et 

al. (2020), we re-arranged the equations in 

terms of “excess” values above background as 

follows:  
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We estimate ∆source as the slope of a linear 

regression of (∆ ✕ C)xs and Cxs. Where ∆source is 

the flux-weighted average isotopic signature of 

the fossil and biogenic fractions 

 

We can then solve for fff (the fraction of Cxs 

that is contributed by fossil fuels) using the 

following substitution:  

 

 
 

Subsequently, we can also solve for fbio. 

 
Additionally, we can calculate Cff and Cbio sample by sample based on the following derivation, 

assuming we know Cobs, ∆obs, Cbg, ∆bg. This approach was taken for the analysis presented in Figure 3.5 of 

the main text. We start with the same mass balance equation, except now we separate the Cbio term into 

respiration and photosynthesis terms: Cbio = Cr + Cp.  

 

We solve for Cff by substituting the Cp term from the first equation into the second and setting 

∆p = ∆bg. The rearranged equation then becomes: 
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Following Miller et al. (2020), we assume the biospheric disequilibrium (∆r - ∆bg) is 50‰ and 

that Cr = 5 ppm. Thus, the second term is 0.25 ppm. All values in the first term are known so we can 

solve for Cff. Subsequently, we can estimate Cbio as:  

 

 
Uncertainty analysis 

To quantify the uncertainty in our plant 14C-derived Cff and Cbio estimates (Fig. 3.5 of the main 

text), we consider the uncertainty in the Ci and ∆i terms in the mass balance equations as described in the 

table below. These quantities are also used as inputs for the York regression in Figure 3.4 of the main text. 

Term Estimation approach 
Uncertainty 

range (varies) 

Cobs Standard deviation of two-week averages (the integration 

period of turfgrasses) 
2 to 13 ppm 

Cbg Standard deviation of monthly average Cobs at chosen 

background site (SCI or VIC).  
1 to 4 ppm 

 

Following Miller et al. (2020), we assign 100% uncertainty 

to this term. 0.25 ppm 

∆obs Standard deviation of average ∆obs of samples collected at a 

given site and season (e.g., DLA in Spring).  
4 to 14 ‰ 

∆bg The larger of either (a) the standard deviation of the 

monthly average ∆obs at Utqiagvik, AK or (b) the 

maximum measurement uncertainty of ∆obs at Utqiagvik, 

AK within the month 

1.5 to 3.5‰ 

∆ff Zero uncertainty because fossil fuels have no radiocarbon 0‰ 

 
To estimate the uncertainty in the mean Cff and Cbio for a given site and season, we consider three 

approaches: (1) the standard deviation of the mean Cff and Cbio by site and season, (2) propagating the 

uncertainty through the mass balance equations using a standard partial derivative approach, and (3) 

estimating uncertainty based on a Monte Carlo simulation with 10,000 randomized runs. In Figure 3.5 of 
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the main text, we chose the Monte Carlo approach, but also include the results for the other two approaches 

here.  

The first uncertainty option simply considered the uncertainty as the standard deviation of the Cff 

and Cbio averages. However, this approach does not capture the uncertainty that should propagate from Cobs 

and Cbg, and we think underestimates the uncertainty. The alternative error bars are shown below and are 

smaller than the error bars in the main text. 

 
 

Figure C1. An alternative of Figure 3.5 of the main text, but the error bars are represented by the 

standard deviation of the means instead of the Monte Carlo-propagated uncertainties. 

 
The second uncertainty option is derived using a standard error propagation approach: calculating 

the partial derivatives of each term in the equation and taking the root of the squared sums. The resulting 

uncertainty equations for Cxs, Cff and Cbio are as follows.  

Uncertainty in Cxs: 

 

 

Uncertainty in Cff, where “dise” is the biospheric disequilibrium term: 
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Uncertainty in Cbio: 

 

 
Using these equations, we calculate uncertainty ranges of 2-6 ppm for Cff and 3-14 ppm for Cbio. 

We also cross referenced these results with a Monte Carlo simulation (uncertainty approach #3), where we 

randomly sampled 10,000 artificial data points within the uncertainty ranges of Cobs, ∆obs, Cbg, and ∆bg and 

calculated the standard deviations of the mean Cff, Cxs, and Cbio of all runs. We arrived at nearly identical 

uncertainty in Cxs, Cff, and Cbio as resulted from the error propagation equations above.  

Influence of wildfires 

We considered whether wildfire emissions may have been captured by our data by examining daily 

fire anomalies and smoke plume imagery captured by the MODIS sensor on board NASA’s Terra and Aqua 

satellites. The product (Satellite Detections of Fire, 2021 update) is publicly available online at 

https://worldview.earthdata.nasa.gov/. Only two measurement days had relevant thermal anomalies with 

smoke potentially being transported to our sites (May 26, 2022 and August 1, 2022, photos below). 

However, we did not observe anomalous CO2 or CO values on these days, so we do not think our 

measurements were affected by these events. 

  

https://worldview.earthdata.nasa.gov/
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Figure C2. Thermal anomalies detected by MODIS on May 26, 2022 (BEA), showing some 

smoke coming from the east. 

 

 
 

Figure C3. August 1, 2022 (RIV) - A fire anomaly within the LA basin, with some smoke 

possibly being mixed with clouds. 
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Figure C4. Maps showing turfgrass sampling locations at five sites along an urban to rural 

gradient. Colors indicate the fossil fuel enhancement (Cff) derived from analysis of the plant 14C 

content.  
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Figure C5. Correlation between ∆14C of duplicate plant samples that were homogenized using 

different methods (cutting into small pieces on the y-axis versus grinding into powder using 

mortar and pestle on the x-axis). The maximum difference between the ∆14C results was 4.4‰, 

which we use to quantify the uncertainty in our ∆14C measurements based on intra-sample 

heterogeneity. 
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Figure C6. Calibration of XCO2 (ppm) and XCO (ppb) measured with the EM27/SUN against 

the Caltech TCCON. Measurements were collected side-by-side for 1-2 days per season. The 

data shows the ten-minute averages of coinciding measurements. Colors indicate different 

seasons, with “m” being the slope of the linear fits for each season. The slopes were used as 

correction factors to calibrate the EM27/SUN data. The dashed line shows the 1-to-1 line.  
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