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ABSTRACT
Background. Gene regulatory variation has been proposed to play an important role
in the adaptation of plants to environmental stress. In the central highlands of Mexico,
farmer selection has generated a unique group of maize landraces adapted to the
challenges of the highland niche. In this study, gene expression in Mexican highland
maize and a reference maize breeding line were compared to identify evidence of
regulatory variation in stress-related genes. It was hypothesised that local adaptation in
Mexican highlandmaizewould be associatedwith a transcriptional signature observable
even under benign conditions.
Methods. Allele specific expression analysis was performed using the seedling-leaf
transcriptome of an F1 individual generated from the cross between the highland
adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown
under benign conditions. Results were compared with a published dataset describing
the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments.
Results. A total of 2,386 genes were identified to show allele specific expression. Of
these, 277 showed an expression difference between Palomero Toluqueño and B73
alleles under benign conditions that anticipated the response of B73 cold, heat, salt
and/or UV treatments, and, as such, were considered to display a prior stress response.
Prior stress response candidates included genes associatedwith plant hormone signaling
and a number of transcription factors. Construction of a gene co-expression network
revealed further signaling and stress-related genes to be among the potential targets of
the transcription factors candidates.
Discussion. Prior activation of responses may represent the best strategy when stresses
are severe but predictable. Expression differences observed here between Palomero
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Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked
to stress-related genes in Palomero Toluqueño. Considered alongside gene annotation
and population data, allele specific expression analysis of plants grown under benign
conditions provides an attractive strategy to identify functional variation potentially
linked to local adaptation.

Subjects Agricultural Science, Genetics, Plant Science
Keywords Abiotic stress, Allele specific expression, Maize, Palomero Toluqueño

INTRODUCTION
Extensive study across different plant species has identified a range of transcriptional
responses to abiotic stresses. Although basic responses are typically conserved, variation in
the regulation of stress-responsive genes has been observed among individuals and varieties,
potentially playing an important role in adaptation to stressful environments (Hannah
et al., 2006; Swanson-Wagner et al., 2012; Rengel et al., 2012; Lasky et al., 2014). From an
agronomic perspective, biotechnological approaches to enhance crop stress tolerance
to abiotic stress often aim to manipulate gene expression rather than engineer protein
sequences (e.g., Kamthan et al., 2016). Similarly, efforts to identify suitable material for
breeding towards these same goals have drawn on natural cis-acting regulatory variation
acting on stress-responsive gene expression (e.g., Mao et al., 2015). As such efforts are
intensified in the face of mounting concern regarding the impact of climate change on crop
productivity, there is ever greater interest in the genetic basis of variation in stress-responses
(Des Marais, Hernandez & Juenger, 2013).

Crop landrace varieties represent an invaluable genetic resource. Collectively, the range
of environments exploited by landraces typically exceeds that of improved varieties,
and individual landraces may be adapted to conditions that would be considered
stressful in conventional agriculture (Ruiz Corral et al., 2008; Romero Navarro et al., 2017).
Nonetheless, although landraces represent a compelling source for enhancing abiotic
stress tolerance in breeding programs, the task of identifying useful genetic variants
and transferring them to breeding material is far from trivial (Sood et al., 2014). In
addition to the complication of working with often heterogenous landrace germplasm,
reproducing stress conditions for evaluation is costly and difficult. Furthermore, stress is
not well reflected by a single experimental treatment, but rather represents a continuous
environmental range defined by interacting variables acting over the lifetime of the plant.
Large-scale phenomics efforts are an attempt to implement the factorial designs required
to capture such complexity (Houle, Govindaraju & Omholt, 2010; Furbank & Tester, 2011),
but they require a substantial investment in infrastructure that may not be feasible in
many research contexts. A number of approaches aim to leave aside such difficulties,
and to identify candidate genes directly from genomic data through the incorporation
of environmental variables into population genetic and genome wide association studies
(Coop et al., 2010; Lasky et al., 2015). Here, as a further alternative, transcriptome data
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is explored for signatures of an enhanced stress response hardwired in locally adapted
material, and evident under benign conditions.

Stress responses are considered to be an adaptation to an unpredictable, often suboptimal
environment. Under benign conditions, however, activation of these same pathways, by
exogenous application of plant hormones or mutation of genes involved in signaling
pathways, is associated with growth retardation (Staswick, Su & Howell, 1992; Hu et al.,
1996; Bowling et al., 1997; Ellis & Turner, 2001), indicating both their potential cost to
the plant, and the benefit of maintaining tight regulation. Nonetheless, when conditions
are adverse, but predictably so, it may be advantageous to anticipate activation of stress
pathways and avoid the delay between stimulus and response inherent in plasticity (Levins,
1968; Von Heckel, Stephan & Hutter, 2016). In cultivated systems, non-adapted varieties
can benefit from mild priming stress treatments that activate protective mechanisms and
prepare the plants for future more severe environmental challenges (Van Hulten et al.,
2006; Hilker et al., 2016). In practice, however, the first exposure to a stress may be severe,
placing the unprepared organism at risk. Here, the hypothesis is addressed that anticipation
of stress responses is a hallmark of local adaptation in marginal environments, presenting
an opportunity to identify genetic variation related to enhanced stress tolerance that is
expressed under benign conditions.

Comparative transcriptome analysis of stress tolerant and non-tolerant varieties provides
a powerful approach to identify the molecular mechanisms underlying tolerance variation
(e.g., Hayano-Kanashiro et al., 2009; Von Heckel, Stephan & Hutter, 2016). The number of
differentially accumulating transcripts, however, may be large, and the data reflect both
cis-acting and trans-acting regulatory variation. Critically, per se comparison of varieties
has little power to characterize the genetic architecture of stress tolerance or to identify
causative genetic variation. In addition, when material is diverse, phenological differences
can make it difficult to devise an appropriate sampling strategy. With the development of
sequencing based methods to study the transcriptome, it is possible to make use of natural
sequence variation to quantify allele specific expression (ASE) in F1 hybrid individuals
generated from the cross of two different lines of interest (Springer & Stupar, 2007b; Springer
& Stupar, 2007a; Zhang & Borevitz, 2009; Lemmon et al., 2014). Characterization of ASE in
F1 material avoids the problems of comparing parents that may be very different in growth
and development by evaluating both alleles within the same cellular environment, directly
revealing cis-acting genetic variation for transcript accumulation (Springer & Stupar, 2007b;
Lemmon et al., 2014;Waters et al., 2017).

In this study, a transcriptome dataset was examined for evidence of cis-regulatory
variation linked to stress-associated genes in Palomero Toluqueño (PT), a maize landrace
originating from the highlands of Central Mexico (Prasanna, 2012; Perales & Golicher,
2014). The Mexican highland environment exposes maize plants to a number of abiotic
stresses: bringing plants to maturity under low-temperatures necessitates planting early in
the year, exposing seedlings to late frosts and water deficit before onset of the annual rains;
throughout the growing season, low-temperature, high-levels of UV radiation and hail
storms pose further challenges (Eagles & Lothrop, 1994; Lafitte & Edmeades, 1997; Jiang et
al., 1999; Mercer, Martínez-Vásquez & Perales, 2008; Ruiz Corral et al., 2008). The unique
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group of Mexican highland maize landraces, including PT, has been shown previously
to be superior in the highland niche to maize originating from temperate, mid-altitude
tropical or lowland tropical regions, with respect to seedling emergence, photosynthetic
efficiency, and tolerance to frost, cold, drought and hail (Eagles & Lothrop, 1994; Mercer,
Martínez-Vásquez & Perales, 2008). To identify evidence of regulatory variation that
might underlie adaptation to these conditions, an F1 was generated between PT and the
midwest-adapted maize reference line B73, and the leaf transcriptome analyzed under
benign greenhouse conditions to detect ASE. Results of the analysis were compared with
a published study in which B73 seedlings were exposed to cold, heat, salt and UV stress
treatments (Makarevitch et al., 2015). A total of 277 genes were identified showing a pattern
of ASE under benign conditions that mirrored the response of the same gene under stress
in B73, hereafter referred to as prior stress response (PSR). The PSR candidate set included
transcription factors and genes associated with plant hormone signalling, a number of
which are discussed in more detail and presented as candidates for future functional
analysis.

MATERIALS AND METHODS
Plant material, RNA preparation, and sequencing
Seed of theMexican highland landrace Palomero Toluqueño accessionMexi5 was obtained
from the International Maize and Wheat Improvement Center (CIMMYT; stock GID
244857). The original collection was made near the city of Toluca, in Mexico state
(19.286184N, −99.570871W), at an elevation of 2,597 masl. An F1 hybrid stock was
generated from the cross between the inbred line B73 and PT, grown under standard
greenhouse conditions (27 ◦C day, 24 ◦C nights; 15 h days, 9 h nights; 30% humidity.
Ames, Iowa) and total RNA was extracted from leaf tissue of a single, 14 day-old seedling
using the Qiagen RNeasy Plant Mini Kit (cat ID 74904) according to the manufacturer’s
protocol. RNA integrity was assessed by spectrophotometry and agarose gel electrophoresis.
Library preparation was performed using the Illumina protocol as outlined in the TruSeq
RNA Sample Preparation Guide (15008136 A, November 2010) and paired-end sequencing
was carried out on the Illumina HiSeq 2000 platform. Raw data is available in the NCBI
(http://www.ncbi.nlm.nih.gov) Sequence Read Archive under accession SRP011579. Plant
growth conditions in the Makarevitch study (Makarevitch et al., 2015) were described
previously in the published report. Briefly, whole above ground tissue was collected for 14
day old seedlings. For cold stress, seedlings were incubated at 5 ◦C for 16 h. For heat stress,
seedlings were incubated at 50 ◦C for 4 h. For high salt stress, plants were watered with
300 mM NaCl 20 h prior to tissue collection. For UV stress, plants were irradiated using
UV-B lamps for 2 h prior to tissue collection.

Allele Specific Expression (ASE) analysis
Allele specific expression (ASE) analysis was based on the method of Lemmon and
collaborators (Lemmon et al., 2014) and the detailed pipeline is presented as Data
S1 (pipeline). A set of 39475 B73 transcripts was generated by selecting the longest
predicted transcript for each gene annotated in the AGPv3.22 B73 reference genome
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(ftp://ftp.ensemblgenomes.org/pub/release-22/). Six transcripts whose sequences consisted
of only, or mostly, undefined (N) bases were removed (GRMZM2G031216_T01,
GRMZM2G179334_T01, GRMZM2G307432_T01, GRMZM2G316264_T01, GR-
MZM2G406088_T01 and GRMZM2G700875_T01), resulting in a set of 39,469 sequences.
A total of 151,168,196 paired-end reads from the B73xPT F1 transcriptome were trimmed
using Trimmomatic (Bolger, Lohse & Usadel, 2014) and aligned using bwa mem (Li, 2013)
to the set of B73 transcripts. The resulting alignment was processed using samtools,
bcftools and vcfutils (Li et al., 2009; Li, 2011a; Li, 2011b) to identify polymorphisms.
We then created a set of PT pseudo-transcripts by substituting the identified sequence
variants into the B73 reference transcripts. A single fasta file was created that contained two
sequences per locus, one B73 transcript and one PT pseudo-transcript, and B73xPT F1 reads
were re-aligned to this F1 pseudo-reference using bowtie2 (Langmead & Salzberg, 2012)
with eXpress (Roberts et al., 2011; Roberts & Pachter, 2013) recommended parameters. The
number of reads per B73 and/or PT transcript was then quantified using eXpress. A total
of 9,256 transcripts were identified to contain polymorphisms, allowing estimation of ASE.
Genes were considered to show ASE when the number of associated reads assigned to B73
or PT transcripts was significantly different (χ2 test against an equal number of counts;
p< 0.05; Bonferroni correction for multiple tests) and the absolute log2-transformed ratio
of PT/B73 reads was >1.

Gene Ontology annotation, enrichment analyses and comparison of
ASE genes to published data
Candidate ASE genes were assigned to Gene Ontology categories (release 52 available
at ftp://ftp.gramene.org/pub/gramene). Obsolete annotations were replaced by the
corresponding ‘‘consider’’ or ‘‘replaced_by’’ category(ies) in the ontology file (go.obo)
available at http://www.geneontology.org/ (dated 2016-09-19). Categories associated with
at least 10 genes were considered in further analysis. Enrichment analyses were performed
comparing ASE candidates against the 9,256 polymorphic gene set, using the Bingo (Maere,
Heymans & Kuiper, 2005) Cytoscape (Shannon et al., 2003) plugin, using a hypergeometric
test and controlling for multiple tests using Benjamini and Hochberg False Discovery Rate
at 1%. Categories were called PT up or PT down using a threshold of abs(median logFC)
≥1. Enrichment analysis of the 1938 TF targets gene set was performed against the 11,299
genes represented on the microarray (see ‘‘Reconstruction of gene co-expression network’’
section below).

Candidate ASE genes were cross-referenced to a published study describing
transcriptional responses in maize seedlings exposed to cold, heat, salt and UV stresses
(Makarevitch et al., 2015). Although a number of inbred lines were analyzed in the
Makarevitch study, only the B73 data was used in the comparison with the B73xPT
transcriptome. Genes were considered to show prior stress response (PSR) with respect
to a given stress when: (1) identified as ASE; (2) responding significantly to stress in the
Makarevitch study (absolute log2 fold change >1; called as significant in the Makarevitch
study; calls ‘‘up’’ or ‘‘on’’ in the published study were considered here as ‘‘up’’, similarly,
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‘‘down’’ or ‘‘off’’ were considered as ‘‘down’’); (3) the sign of ASE was concordant with the
sign of stress response.

Fst values for population level differentiation between Mesoamerican and South
American highland and lowland maize populations (Takuno et al., 2015) were obtained
from https://github.com/rossibarra/hilo_paper/tree/master/fst; where multiple SNPs were
associated with a single gene, the values reported correspond to the SNP showing the
highest Fst in Mesoamerica.

Reconstruction of gene co-expression network
Publicly availablemaizeAffymetrixmicroarray datawas downloaded from theArrayExpress
website (http://www.ebi.ac.uk/arrayexpress/; experiments E-GEOD-10023, E-GEOD-
12770, E-GEOD-12892, E-GEOD-18846, E-GEOD-19785, E-GEOD-22479, E-GEOD-
28479, E-GEOD-31188, E-GEOD-40052, E-GEOD-41956, E-GEOD-48406, E-GEOD-
48536, E-GEOD-54310, E-GEOD-59533, E-GEOD-69659, E-MEXP-1222, E-MEXP-1464,
E-MEXP-1465, E-MEXP-2364, E-MEXP-2366, E-MEXP-2367, E-MEXP-3992). Low
quality CEL files identified using the arrayQualityMetrics (Kauffmann, Gentleman &
Huber, 2009) R package were discarded. Using the sample data relationship file (sdrf)
associated with each experiment, samples for B73 leaves were selected, resulting in a high
quality, homogeneous dataset of 165 CEL files.

Probeset sequences for the maize Affymetrix microarray were aligned using seqmap
(Jiang & Wong, 2008) to the AGPv3.22 transcripts with no mismatches allowed, and
probesets whose probe sequences did not align or aligned to transcripts corresponding
to more than one locus were discarded. Probesets that were represented by less than
4 probe sequences were also discarded. This resulted in a list of 11,299 probesets
that unambiguously matched one locus. The list of 11,299 probesets was used to
create a custom chip definition file (CDF) using the ArrayInitiative python package
(http://wellerlab.uncc.edu/ArrayInitiative/), and to filter the original Affymetrix
Maize.probe_tab file to create a custom probe_tab file. The custom CDF and custom
probe_tab file were then used to create the corresponding cdf and probe_tab R packages
using the makecdfenv (Irizarry et al., 2006) and AnnotationForge (Carlson & Pages, 2017)
R packages, respectively. The microarray name in the 165 CEL files was then modified
to match the custom cdf and probe_tab packages name, and these modified CEL files
were normalized using gcrma (Wu & Gentry, 2017). The resulting normalized dataset was
then used as input for the ARACNE algorithm (Margolin et al., 2006a; Margolin et al.,
2006b), and inference was carried out for the 7 ASE and stress-responsive transcription
factors (see ‘Results’) at DPI 0.1 as previously described (Chávez Montes et al., 2014).

RESULTS
A total of 2,386 genes exhibited allele specific expression in the
B73xPT F1 hybrid
To identify regulatory variation associated with stress-related genes, high throughput
sequencing was used to quantify transcript abundance in leaves harvested from an F1
seedling generated from the cross between the Mexican highland landrace PT and the
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Figure 1 ASE candidate genes are assigned to a range of biological process Gene Ontology categories.
Hierarchical tree of Gene Ontology biological process categories represented in ASE loci. Nodes represent
categories, with the root GO:0008150 biological process as the uppermost node. Edges represent the parent-
child (i.e., ‘‘is_a’’) relationship between categories. Node color indicates the median ASE (log2 PT/B73) for
the genes in the category, with light blue indicating negative values and dark red indicating positive values.
Node size is proportional to the number of loci assigned to corresponding category. Some category names
were abbreviated for clarity.

reference line B73. Alignment to the B73 reference gene models identified 9,256 genes
containing at least one sequence variant that could be used to distinguish the products of
B73 and PT alleles. For 2,386 (26%) of these 9,256 polymorphic transcripts, the number of
reads corresponding to the B73 allele differed significantly (p< 0.05; Bonferroni correction
formultiple tests) from the number of reads corresponding to the PT allele with an absolute
log2 fold change >1, and these genes were considered to exhibit allele specific expression
(ASE; Data S2 [F1_ counts]). For 1,412 (59%) of the ASE candidate genes, accumulation
of the PT transcript was lower than that of the B73 transcript (log2 PT/B73 <−1; hereafter,
‘‘PT-down’’), while for the remaining 974 (41%) of the ASE candidates, the PT transcript
was accumulated at higher levels (log2 PT/B73 >1; hereafter, ‘‘PT-up’’).

To obtain an overview of the ASE candidates, a Gene Ontology (GO) analysis was
performed. The set of 2386 ASE candidates was not enriched for any specific GO categories
with respect to the 9,256 polymorphic gene set, but, nonetheless, many individual genes
belonged to biological processes categories related to stress responses, including responses
to heat (GO: 0009408), cold (GO: 0009409) and salt (GO: 0009651) (Fig. 1). Overall, 52
biological process categories were represented by at least 10 genes. Of these, 38 (73%) were
PT-down (based on the median log2 PT/B73 of the associated genes), and 11 (21%) were
PT-up, and the remaining three categories had a median log2 PT/B73 close to 0 (Data S3
[ASE_loci_GO_P]). A similar pattern was observed for molecular function categories: 57
categories were associated with at least 10 ASE genes, 42 PT-down, 12 PT-up and three
showing no trend (Data S4 [ASE_loci_GO_F]).

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3737#supp-2
http://dx.doi.org/10.7717/peerj.3737#supp-3
http://dx.doi.org/10.7717/peerj.3737#supp-4
http://dx.doi.org/10.7717/peerj.3737


A total of 277 genes showed prior stress responses
To identify evidence of prior stress response (PSR) in PT, the ASE gene set was compared
with a previous study reporting changes in the transcriptome of B73 seedlings exposed to
cold, heat, salt or UV treatments (Makarevitch et al., 2015). Of these treatments, cold and
UV stress are directly relevant to plant performance in the highland niche, and salt stress
may be considered to some extent a proxy for drought conditions. PT is not predicted to
be adapted to heat stress, and, as such, the heat treatment provides an interesting contrast
to the other conditions, although, as described below, many genes in this study were
responsive to multiple stresses. A total of 1,407 stress responsive genes identified in the
Makarevitch study were present also in the 9,256 polymorphic gene set for which ASE had
been evaluated (Data S2 [F1_counts]). Of these 1,407 genes, 432 (31%) showedASE, a slight
enrichment compared with the 2,386 (26%) ASE genes in the 9,256 polymorphic gene set
as a whole (ASE, Makarevitch: 432; ASE, non-Makarevitch: 1,963; non-ASE, Makarevitch:
984; non-ASE, non-Makarevitch: 5,886; χ2

= 15.7, d.f .= 1, p< 0.001). From this 432
gene set, a gene was considered to exhibit PSR in PT if the sign of ASE was concordant
with the sign of B73 stress response: i.e., PT-up and induced by stress in B73, or PT-down
and repressed by stress in B73. On this basis, a set of 277 PSR candidates was identified
(Figs. 2A–2D; Data S5 [Maka_can_ annot]). The majority of these 277 genes respond to
two or more stress treatments (Figs. 3A–3C), but often in different directions such that
they present stress-specific PSR (Figs. 3B–3C): 194 were identified as showing PSR with
respect to one treatment, 62 with respect to two, 17 with respect to three, and 4 with respect
to all four (Fig. 3C). Of the 277 genes, 92 showed PSR with respect to cold, 65 with respect
to heat, 136 with respect to salt, and 92 with respect to UV (Fig. 3B). The number of PSR
genes with respect to any given stress was proportional to the number of genes responding
to that stress in the 1,407 polymorphic gene set (cold, PSR: 92, non-PSR: 631; heat, PSR:
65, non-PSR: 374; salt, PSR: 136, non-PSR: 736; UV, PSR: 92, non-PSR: 444; χ2

= 5.2,
d.f .= 3, p= 0.16), and there was no indication of an enrichment for PSR with respect to
any one of the four treatments. In contrast to the complete ASE gene set, the majority of
the 277 PSR genes were PT-up (181 PT-up, 96 PT-down; Data S5 [Maka_can_annot]),
although this general trend was not observed when the UV treatment was considered alone,
where the majority of PSR genes were PT-down (34 PT-up, 58 PT-down; Fig. 2D).

Hormone related genes and transcription factors showed constitutive
stress responses in PT
A primary aim of the analysis was the definition of a small number of candidate genes for
future functional analysis. For this purpose, the PSR candidate genes were cross-referenced
with the classical maize gene list, a curated set of 4,908 well-annotated genes, many
linked with existing functional data (the ‘‘combined set’’ gene list was obtained from
www.maizegdb.org/gene_center/gene and filtered for unique gene identifiers). Of the 277
PSR candidate genes, 48 were present in the classical gene list (Fig. 4; Data S5 [Maka_
can_annot]), including 9 genes associated with hormone homeostasis (Table 1) and 12
transcription factors (TFs; Table 2; Jin et al., 2017) that were considered of special interest.
The 277 PSR candidates were cross referenced with a published study of population

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 8/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3737#supp-2
http://dx.doi.org/10.7717/peerj.3737#supp-5
http://dx.doi.org/10.7717/peerj.3737#supp-5
www.maizegdb.org/gene_center/gene
http://dx.doi.org/10.7717/peerj.3737#supp-5
http://dx.doi.org/10.7717/peerj.3737


Figure 2 ASE identifies PSR in PT with respect to B73. ASE (log2 PT/B73) in control F1 leaves for the
1,407 sequence variant, stress-responsive gene set against B73 stress response (log2 stress/control) for (A)
cold, (B) heat, (C) salt and (D) UV treatments as reported in the Makarevitch dataset. Numbers in each
quadrant represent the count of genes called as significant in ASE and stress comparisons. In each plot,
the quadrants represent (clockwise from upper left) genes up ASE/down stress, up ASE/up stress, down
ASE/up stress, down ASE/down stress. Genes called as up ASE/up stress or down ASE/down stress are con-
sidered to show PSR and are shown as filled circles. Other genes are shown as points. Axes through the
origin are shown as red dashed lines. A small number of genes outside the axis range are not shown, but
are considered in the gene count.
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Figure 3 PSR candidates may respond to multiple stresses in B73. (A) Number of genes from the 277
PSR gene set that responded to cold, heat, salt, UV or a combination of stresses in the Makarevitch B73
study. (B) Number of genes called as PSR in PT with respect to each stress from the same 277 gene set. (C)
Counts with respect to number of stresses of genes in A and B. Numbers above bars give counts.
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Table 1 ASE and stress-responsive hormone-related genes. List of genes involved in hormone biosynthesis, transport or catabolism present in the
277 PSR gene set. ASE call indicates biased expression of the PT allele (1) or B73 allele (−1). Response to stress indicates the name of the stress for
which the gene was called as differentially expressed in the Makarevitch dataset. Prior stress response indicates the stress condition for which the sign
of the ASE call and the stress response coincide.

Gene id Symbol Molecular function Hormone ASE
call

Response to
stress

Prior stress
response

GRMZM2G070563 – auxin efflux carrier auxin transport 1 heat, salt, uv heat, salt
GRMZM2G072632 – auxin efflux carrier auxin transport 1 heat, salt, uv heat, salt
GRMZM2G112598 – auxin efflux carrier auxin transport 1 heat, salt, uv heat, salt
GRMZM2G475148 – auxin efflux carrier auxin transport 1 heat, salt heat, salt
GRMZM2G072529 Acco31 1-aminocyclopropane-

1-carboxylate oxidase
ethylene biosynthesis 1 cold, heat,

salt, uv
cold, heat,
salt, uv

GRMZM2G020761 – putative cytochrome P450
(castasterone C-26 hydroxylase)

brassinosteroid catabolism −1 cold, salt, uv cold, uv

GRMZM2G148281 Opr7 12-oxo-phytodienoic acid reductase jasmonate biosynthesis −1 salt, uv salt
GRMZM2G168474 Czog1 cis-zeatin O-glucosyl transferase cytokinin homeostasis 1 salt salt

level differentiation between Mesoamerican and South American highland and lowland
maize (Takuno et al., 2015). Fst estimates and significance were reported for 183 of the
PSR candidates, 22 which showed significant differentiation (p< 0.1) between highland
and lowland Mesoamerican populations, including the hormone associated gene Czog1
(GRMZM2G168474; Data S5 [Maka_can_annot]). The number of PSR candidates showing
significant Fst was as expected based on the overlap with the 1,407 polymorphic gene set
(Fst reported for 1,032 of 1,407 genes; PSR, Fst p< 0.1: 22; PSR, Fst p>= 0.1: 161;
non-PSR, Fst p< 0.1: 100; non-PSR, Fst p>= 0.1: 749; χ2 < 1, d.f .= 1, p= 1). To gain
insight into potential TF targets and their role in stress responses, a gene co-expression
network for the PSR TFs was generated using available maize Affymetrix microarray data
and the ARACNE algorithm. Seven of the 12 TFs were unambiguously identified in the
maize Affymetrix microarray probeset, and were co-expressed with 1,938 genes (Data S6
[tfs_ASE_01_suppl]). Co-expressed genes represent potential targets of TF action, and, as
such, may not themselves exhibit ASE. Indeed, of the 1,938 genes associated with the 7 TFs,
1,097 were present in the polymorphic gene set, but only 239 showed ASE. A total of 344
of the 1,938 co-expressed genes (17%) were responsive to one or more stress treatments
in the Makarevitch dataset (Fig. 5). A GO analysis detected enrichment in the 1,938
gene co-expression set with respect to translation, photosynthesis and non-mevalonate
isoprenoid pathway categories (Data S7 [Bingo_aracne]).

DISCUSSION
From a starting set of 9,256 polymorphic genes, we identified 2,386 genes presenting allele
specific expression (ASE) in seedling leaves of a B73xPT F1 hybrid individual. Comparison
of the ASE gene list with a published dataset reporting B73 stress responses (Makarevitch et
al., 2015) identified a subset of 277 (out of 432) prior stress response (PSR) candidate genes
exhibiting a bias in transcript accumulation between PT and B73 alleles that mirrored the
B73 response to one or more stress treatments. No enrichment was observed in GO term
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Figure 4 Classical PSR candidate genes.Heatmap representation of ASE (log2 PT/B73) and B73 re-
sponse to cold, heat, salt and UV stress (log2 stress/control) as reported in the Makarevitch dataset for
PSR candidates in the maize classical gene list. Asterisks (*) in the stress columns indicate a given gene was
called as PSR with respect to that stress.
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Table 2 ASE and stress-responsive TFs. List of TFs present in the 277 PSR gene set. PlantTFDB family indicates the TF family according to the
PlantTFDB (Jin et al., 2017). ASE call indicates biased expression of the PT allele (1) or B73 allele (−1). Response to stress indicates the name of the
stress for which the gene was called as differentially expressed in the Makarevitch dataset. PSR indicates the stress condition for which the sign of the
ASE call and the stress response coincide. In Affymetrix array indicates whether the TF is represented in the maize Affymetrix microarray.

Gene id Symbol PlantTFDB family ASE call Response to
stress

Prior stress response In affymetrix
array?

GRMZM2G159937 Bhlh57 bHLH 1 cold, salt, uv cold, uv no
GRMZM2G148333 Ereb202 ERF 1 uv uv yes
GRMZM2G010920 Glk18 G2-like −1 heat, uv uv no
GRMZM2G127537 Hb11 HD-ZIP 1 salt, uv salt yes
GRMZM2G041127 Hb54/ZmHdz10 HD-ZIP 1 cold, heat, salt cold yes
GRMZM2G049695 Mybr24 MYB-related 1 salt, uv salt, uv no
GRMZM2G121753 Mybr89 MYB-related −1 cold, salt, uv uv no
GRMZM2G127379 NacTF25/ZmNAC111 NAC −1 cold, salt, uv cold no
GRMZM2G162739 NacTF5 NAC −1 cold, salt, uv salt yes
GRMZM2G003715 NacTF61 NAC 1 cold, uv cold, uv yes
GRMZM2G312201 NacTF70 NAC 1 uv uv yes
GRMZM2G071907 Wrky50 WRKY 1 salt salt yes

assignments in either the ASE gene set or the PSR gene set. Nonetheless, given that ASE
is assaying cis-acting variation, a small number of genes associated with a given GO term
may have biological significance. The ASE gene set showed a bias towards lower expression
of the PT allele, reflected in the observation that the median value of ASE for the majority
of GO categories associated with ASE genes was also negative. Contrary to this trend, the
subset of 277 selected PSR candidates showed a bias towards higher expression of the PT
allele (181 of 277 presented higher expression of the PT allele), also reflected in the 1,407
polymorphic genes that overlapped with the Makarevitch set.

The bulk of the PSR gene set (206 of 277) responded to two or more stresses in the
Makarevitch B73 data, although in the majority (194 of 277) of cases the PSR itself was with
respect to a single stress only (Fig. 3), indicating that in many cases the sign (up/down) of
the response in B73 differed between stresses (Data S5 [Maka_ can_annot]). By definition,
a gene could not show PSR with respect to both of two different stresses if the B73 responses
were opposing. There was no evidence that genes showing opposing stress responses in
B73 were less likely to show ASE, and consequently, PSR in PT—indeed, such genes were
actually better represented in the 277 PSR gene set (156 of 277; 56%) than in the 1,407
polymorphic and stress-responsive gene set (511 of 1,407; 36%). As such, many ASE
events may appear contradictory with respect to any given stress, i.e., PT-up ASE in genes
repressed by B73 under stress, or PT-down ASE in genes induced by B73, especially in the
context of cold and UV treatments, against which PT is considered to be well adapted.
The spatio-temporal dynamics of stress responses, however, are complex (e.g., Secco et al.,
2013), and the resolution of the present analysis, based on single time points and tissues,
is limited. For example, the previously characterized salt associated HD-ZIP transcription
factorHb54 (also namedZmHdz10, GRMZM2G041127;Zhao et al., 2011;Zhao et al., 2014)
showed PT-up ASE, but was repressed by salt treatment in the Makarevitch dataset, and
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Figure 5 Co-expression networks for PSR TFs and their putative stress-responsive targets.Nodes rep-
resent genes and edges represent co-expression as calculated by the ARACNE algorithm at DPI 0.1. (A)
Network of seven PSR TFs (labeled centres of circles) with their co-expressed, stress-responsive (genes
called up/on or down/off in the Makarevitch dataset) putative targets. Triangles indicate genes that were
called as presenting ASE. (B–E) Network filtered to retain only co-expressed genes responsive to (B) cold,
(C) heat, (D) salt or (E) UV treatments, as indicated. In the filtered networks the red and blue colors indi-
cate up or down regulation (as log2 FC from the Makarevitch dataset), respectively, under the correspond-
ing stress.
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consequently not considered to show PSR. In this case, however, an additional functional
study reports Hb54 to indeed be induced by salt treatment (Zhao et al., 2014), albeit at a
different time point, and with a different treatment than that applied in the Makarevitch
study (300 mM NaCl for 20 h in Makarevitch et al.; 200 mM NaCl for 3–12 h in Zhao et
al.). The study of Zhao and colleagues reports also that constitutive expression of Hb54
in Arabidopsis and rice increases ABA sensitivity and tolerance to drought and salt stress.
In light of these data, PT-up ASE of Hb54 may indeed have biological relevance, reflected
by the number and nature of associated co-expression candidates (Fig. 5). In the absence
of further characterization, it would be premature to discount the potential phenotypic
impact, or adaptive value, of other examples where ASE in PT is opposed to the B73 stress
response reported in the Makarevitch data.

Previous studies have highlighted the importance of cis-acting regulatory variation
in driving diversity in plant stress responses (e.g., Waters et al., 2017). The generation
of novel physiological strategies to confront stress conditions may be most efficient
when a change in the regulation of a single gene has multiple, coordinated downstream
consequences. Mechanistically, two functional categories of clear interest are hormones,
systemic regulators of physiology at the whole plant level, and transcription factors
(TFs), with their capacity to impact multiple downstream targets through a regulatory
cascade. The 277 PSR gene list includes eight hormone-related genes (Table 1), including
genes implicated in the metabolism of cytokinin (Czog1; Martin et al., 2001), jasmonate
(ZmOpr7 ; Yan et al., 2012) and ethylene (Acco31; Gallie & Young, 2004; Avila et al., 2016).
Additional PSR candidates included Ks2 (GRMZM2G093526; ZmKSL5), a gene related to
the ent -kaurene synthase required for gibberellin biosynthesis, but more likely involved
in the more specialized kauralexin A series biosynthesis pathway (Fu et al., 2016), and
Thi2 (GRMZM2G074097), encoding a thiamine thiazole synthase activity required for
synthesis of the thiazole moiety during the production of thiamin (vitamin B1; Woodward
et al., 2010). With regard to the latter candidate, B vitamins, although not strictly plant
hormones, can play an analogous role inwhole plant physiology in the face of stress (Hanson
et al., 2016). Thiamin application has been reported to alleviate the impact of abiotic stress
in a number of crops, including maize (e.g., Kaya et al., 2015), and thiamin synthesis has
been proposed as a target for transgenic biofortification (e.g., Dong, Stockwell & Goyer,
2015). Identification of PT-up ASE associated with Thi2 represents a compelling target for
further analysis. Furthermore, both Thi2 and the related gene Thi1 (GRMZM2G018375)
were also co-expressed with the PT-up ASE drought and salt associated HD-ZIP TF
Hb54 (Zhao et al., 2014; Table 2; Fig. 5; Data S6). Interestingly, the PSR candidates Czog1
and Ks2 were reported previously to show significant population level differentiation
between highland and lowland mesoamerican maize populations (Fst; p= 0.004, p= 0.04,
respectively; Takuno et al., 2015), indicating that variation at these loci may indeed play a
role in local adaptation.

In total, twelve TFs were present in the 277 PSR candidate gene set (Table 1), including
four NAC TFs. The NAC TFs are a plant-specific family implicated broadly in abiotic
stress responses (Nakashima et al., 2012; Puranik et al., 2012; Nuruzzaman, Sharoni &
Kikuchi, 2013; Nakashima, Yamaguchi-Shinozaki & Shinozaki, 2014), previously proposed
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as a target for engineering multiple stress tolerance (Shao, Wang & Tang, 2015). The
potential role of NAC TFs in a generalized stress response is reflected by the observation
that the candidates ZmNacTF5 (GRMZM2G162739), ZmNacTF25 (also named ZmNac111,
GRMZM2G127379;Mao et al., 2015), ZmNacTF61 (GRMZM2G003715) and ZmNacTF70
(GRMZM2G312201) responded to three, three, two and one stress treatments, respectively
(Table 2). The genes ZmNacTF5 and ZmNacTF25 showed PT-down ASE, and PSR with
respect to salt and cold, respectively, while the genes ZmNacTF61 and ZmNacTF70 showed
PT-up ASE and PSR with respect to cold and UV, respectively. In B73, insertion of a
miniature inverted-repeat transposable element (MITE) in the ZmNacTF25 promoter
has been reported previously to be associated with reduced gene expression (relative to a
number of tropical lines) and increased susceptibility to drought (Mao et al., 2015). The
accumulation of ZmNacTF25 transcripts in B73, however, is reduced under cold in the
Makarevitch dataset, indicating a potential trade-off between temperate and tropical lines,
and possible relevance of the PT-down ASE in the highland niche. The gene ZmNacTF61
was notable for strong PT-up ASE (log2 PT/B73 = 3.26 and 2.15), up-regulation under
both cold and UV stress, and association with a large number (116) of strongly cold- and
UV- induced co-expression candidates, including the jasmonate biosynthetic genes Opr7
and Lox4 (Figs. 4 and 5; Data S6).

Candidate PSR genes presented here were identified on the basis of ASE under benign
conditions. Investigation of the degree to which ASE is maintained under stress conditions
is required to determine whether the level of expression of these candidates remains plastic
in PT, albeit with an expression level different from B73, or whether expression has been
canalized to a constitutively responsive state (Waddington, 1942; Levins, 1968; Von Heckel,
Stephan & Hutter, 2016). Nonetheless, the potential to identify relevant cis-regulatory
variation through exploration of the transcriptome under benign conditions presents an
attractive avenue to investigate stress response and local adaptation. A number of the
candidates identified here suggest testable predictions regarding hormone accumulation
and expression of candidate TF targets in the PT landrace. In a number of cases, ASE was
observed in genes reported previously to show significant genetic differentiation between
lowland and highland Mexican maize populations, offering further evidence of a link
to adaptation to the highland niche (Data S5 [Maka_can_ annot]). A recent study in
monkey flower (Mimulus guttatus) using ASE analysis to compare locally adapted coastal
and inland accessions has found cis-regulatory effects to be the main driver for regulatory
variation, providing a precedent for the approach proposed here (Gould, Chen & Lowry,
2017). Validation of specific candidate genes will require functional characterization, but
it is anticipated that this will be greatly facilitated by continued development of resources
for maize reverse genetics and the generation of introgression lines derived from Mexican
highland maize.

CONCLUSIONS
Expression differences were observed between PT and B73 alleles under benign conditions
thatmirror the B73 response to cold, heat, salt and/orUV treatments. The observed patterns
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of expression indicate the presence of cis-acting regulatory variation differentiating the
PT landrace from the B73 reference inbred. Regulatory variants linked to classical genes
associated with signaling and stress-responses potentially contribute to the adaptation of
PT to the Mexican highland environment.

ACKNOWLEDGEMENTS
We acknowledge Patrice Dubois for assistance in the generation of F1 seed stock, and
Patrick Schnable and Cheng Ting Yeh for generation of transcriptome data.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by UC-MEXUS (CN-15-1476), the National Science Foundation
(No.1546719) and the Consejo Nacional de Ciencia y Tecnología (EDOMEX-2011-C01-
165873 to RACM). Unpublished RNA-Seq data shared by Patrick Schnable (Iowa State
University) was generated using support from the National Science Foundation (IOS-
1027527). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
UC-MEXUS: CN-15-1476.
National Science Foundation: No. 1546719.
Consejo Nacional de Ciencia y Tecnología: EDOMEX-2011-C01-165873.
National Science Foundation: IOS-1027527.

Competing Interests
Jeffrey Ross-Ibarra is an Academic Editor for PeerJ.

Author Contributions
• M. Rocío Aguilar-Rangel analyzed the data, wrote the paper, prepared figures and/or
tables, reviewed drafts of the paper.
• Ricardo A. Chávez Montes wrote the paper, prepared figures and/or tables, reviewed
drafts of the paper.
• Eric González-Segovia and Jeffrey Ross-Ibarra wrote the paper, reviewed drafts of the
paper.
• June K. Simpson reviewed drafts of the paper.
• Ruairidh J.H. Sawers conceived and designed the experiments, performed the
experiments, contributed reagents/materials/analysis tools, prepared figures and/or
tables, wrote the paper, reviewed drafts of the paper.

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

Transcriptome data is available from the NCBI (http://www.ncbi.nlm.nih.gov) Sequence
Read Archive under accession number SRP011579.

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 17/23

https://peerj.com
http://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/sra?term=SRP011579
http://dx.doi.org/10.7717/peerj.3737


Data Availability
The following information was supplied regarding data availability:

Raw data is in the form of transcriptome data available in from the NCBI Sequence Read
Archive.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.3737#supplemental-information.

REFERENCES
Avila LM, Cerrudo D, Swanton C, Lukens L. 2016. Brevis plant1, a putative inositol

polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal
of Experimental Botany 67:1577–1588 DOI 10.1093/jxb/erv554.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30:2114–2120 DOI 10.1093/bioinformatics/btu170.

Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X. 1997. The cpr5mutant of Arabidop-
sis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell
9:1573–1584.

CarlsonM, Pages H. 2017. AnnotationForge: code for building annotation database
packages. R package version 1.18.0.

Chávez Montes RA, Coello G, González-Aguilera KL, Marsch-Martínez N, De Folter S,
Alvarez-Buylla ER. 2014. ARACNe-based inference, using curated microarray data,
of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biology
14:97 DOI 10.1186/1471-2229-14-97.

Coop G,Witonsky D, Di Rienzo A, Pritchard JK. 2010. Using environmental cor-
relations to identify loci underlying local adaptation. Genetics 185:1411–1423
DOI 10.1534/genetics.110.114819.

DesMarais DL, Hernandez KM, Juenger TE. 2013. Genotype-by-environment
interaction and plasticity: exploring genomic responses of plants to the abiotic
environment. Annual Review of Ecology, Evolution, and Systematics 44:5–29
DOI 10.1146/annurev-ecolsys-110512-135806.

DongW, Stockwell VO, Goyer A. 2015. Enhancement of thiamin content in ara-
bidopsis thaliana by metabolic engineering. Plant & Cell Physiology 56:2285–2296
DOI 10.1093/pcp/pcv148.

Eagles HA, Lothrop JE. 1994.Highland maize from central mexico—its origin, charac-
teristics, and use in breeding programs. Crop Science 34:11–19
DOI 10.2135/cropsci1994.0011183X003400010002x.

Ellis C, Turner JG. 2001. The Arabidopsis mutant cev1 has constitutively active jas-
monate and ethylene signal pathways and enhanced resistance to pathogens. Plant
Cell 13:1025–1033.

Fu J, Ren F, Lu X, Mao H, XuM, Degenhardt J, Peters RJ, Wang Q. 2016. A tandem ar-
ray of ent-Kaurene synthases in maize with roles in Gibberellin and more specialized
metabolism. Plant Physiology 170:742–751 DOI 10.1104/pp.15.01727.

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3737#supplemental-information
http://dx.doi.org/10.7717/peerj.3737#supplemental-information
http://dx.doi.org/10.1093/jxb/erv554
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1186/1471-2229-14-97
http://dx.doi.org/10.1534/genetics.110.114819
http://dx.doi.org/10.1146/annurev-ecolsys-110512-135806
http://dx.doi.org/10.1093/pcp/pcv148
http://dx.doi.org/10.2135/cropsci1994.0011183X003400010002x
http://dx.doi.org/10.1104/pp.15.01727
http://dx.doi.org/10.7717/peerj.3737


Furbank RT, Tester M. 2011. Phenomics–technologies to relieve the phenotyping
bottleneck. Trends in Plant Science 16:635–644 DOI 10.1016/j.tplants.2011.09.005.

Gallie DR, Young TE. 2004. The ethylene biosynthetic and perception machinery is
differentially expressed during endosperm and embryo development in maize.
Molecular Genetics and Genomics 271:267–281 DOI 10.1007/s00438-004-0977-9.

Gould BA, Chen Y, Lowry DB. 2017. The gene regulatory landscape of local adaptation.
BioRxiv. DOI 10.1101/145805.

HannahMA,Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK. 2006. Natural
genetic variation of freezing tolerance in Arabidopsis. Plant Physiology 142:98–112
DOI 10.1104/pp.106.081141.

Hanson AD, Beaudoin GA, McCarty DR, Gregory JF. 2016. Does abiotic stress
cause functional B vitamin deficiency in plants? Plant Physiology 172:2082–2097
DOI 10.1104/pp.16.01371.

Hayano-Kanashiro C, Calderón-Vázquez C, Ibarra-Laclette E, Herrera-Estrella L,
Simpson J. 2009. Analysis of gene expression and physiological responses in three
Mexican maize landraces under drought stress and recovery irrigation. PLOS ONE
4:e7531 DOI 10.1371/journal.pone.0007531.

Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK,
Kunze R, Mueller-Roeber B, Rillig MC, Rolff J, Romeis T, Schmülling T, Steppuhn
A, Van Dongen J, Whitcomb SJ, Wurst S, Zuther E, Kopka J. 2016. Priming and
memory of stress responses in organisms lacking a nervous system. Biological Reviews
of the Cambridge Philosophical Society 91:1118–1133 DOI 10.1111/brv.12215.

Houle D, Govindaraju DR, Omholt S. 2010. Phenomics: the next challenge. Nature
Reviews. Genetics 11:855–866 DOI 10.1038/nrg2897.

HuG, Richter TE, Hulbert SH, Pryor T. 1996. Disease lesion mimicry caused by
mutations in the rust resistance gene rp1. Plant Cell 8:1367–1376.

Irizarry RA, Gautier L, HuberW, Bolstad B. 2006.makecdfenv: CDF Environment
Maker. R package version 1.52.0.

Jiang C, Edmeades GO, Armstead I, Lafitte HR, HaywardMD, Hoisington D. 1999.
Genetic analysis of adaptation differences between highland and lowland tropical
maize using molecular markers. Theoretical and Applied Genetics 99:1106–1119
DOI 10.1007/s001220051315.

Jiang H,WongWH. 2008. SeqMap: mapping massive amount of oligonucleotides to the
genome. Bioinformatics 24:2395–2396 DOI 10.1093/bioinformatics/btn429.

Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G. 2017. PlantTFDB 4.0: toward
a central hub for transcription factors and regulatory interactions in plants. Nucleic
Acids Research 45:D1040–D1045 DOI 10.1093/nar/gkw982.

Kamthan A, Chaudhuri A, KamthanM, Datta A. 2016. Genetically modified (GM)
crops: milestones and new advances in crop improvement. Theoretical and Applied
Genetics 129:1639–1655 DOI 10.1007/s00122-016-2747-6.

Kauffmann A, Gentleman R, HuberW. 2009. arrayQualityMetrics—a bioconductor
package for quality assessment of microarray data. Bioinformatics 25:415–416
DOI 10.1093/bioinformatics/btn647.

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 19/23

https://peerj.com
http://dx.doi.org/10.1016/j.tplants.2011.09.005
http://dx.doi.org/10.1007/s00438-004-0977-9
http://dx.doi.org/10.1101/145805
http://dx.doi.org/10.1104/pp.106.081141
http://dx.doi.org/10.1104/pp.16.01371
http://dx.doi.org/10.1371/journal.pone.0007531
http://dx.doi.org/10.1111/brv.12215
http://dx.doi.org/10.1038/nrg2897
http://dx.doi.org/10.1007/s001220051315
http://dx.doi.org/10.1093/bioinformatics/btn429
http://dx.doi.org/10.1093/nar/gkw982
http://dx.doi.org/10.1007/s00122-016-2747-6
http://dx.doi.org/10.1093/bioinformatics/btn647
http://dx.doi.org/10.7717/peerj.3737


Kaya C, Ashraf M, Sonmez O, Tuna AL, Polat T, Aydemir S. 2015. Exogenous applica-
tion of thiamin promotes growth and antioxidative defense system at initial phases
of development in salt-stressed plants of two maize cultivars differing in salinity
tolerance. Acta Physiologiae Plantarum 37:1741 DOI 10.1007/s11738-014-1741-3.

Lafitte HR, Edmeades GO. 1997. Temperature effects on radiation use and biomass
partitioning in diverse tropical maize cultivars. Field Crops Research 49:231–247
DOI 10.1016/S0378-4290(96)01005-2.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature
Methods 9:357–359 DOI 10.1038/nmeth.1923.

Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay JK, Richards JH, Keitt TH,
Juenger TE. 2014. Natural variation in abiotic stress responsive gene expression and
local adaptation to climate in Arabidopsis thaliana.Molecular Biology and Evolution
31:2283–2296 DOI 10.1093/molbev/msu170.

Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE,
Hyma K, Acharya C, Mitchell SE, Buckler ES, Brenton Z, Kresovich S, Morris GP.
2015. Genome-environment associations in sorghum landraces predict adaptive
traits. Science Advances 1(6):e1400218 DOI 10.1126/sciadv.1400218.

Lemmon ZH, Bukowski R, Sun Q, Doebley JF. 2014. The role of cis regulatory evolution
in maize domestication. PLOS Genetics 10:e1004745
DOI 10.1371/journal.pgen.1004745.

Levins R. 1968. Evolution in changing environments. Princeton: Princeton University
Press.

Li H. 2011a. Improving SNP discovery by base alignment quality. Bioinformatics
27:1157–1158 DOI 10.1093/bioinformatics/btr076.

Li H. 2011b. A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics 27:2987–2993 DOI 10.1093/bioinformatics/btr509.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. ArXiv preprint. arXiv:1303.3997.

Li H, Handsaker B,Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R. 2009. 1,000 genome project data processing subgroup. The se-
quence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
DOI 10.1093/bioinformatics/btp352.

Maere S, Heymans K, Kuiper M. 2005. BiNGO: a Cytoscape plugin to assess over-
representation of gene ontology categories in biological networks. Bioinformatics
21:3448–3449 DOI 10.1093/bioinformatics/bti551.

Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM.
2015. Transposable elements contribute to activation of maize genes in response to
abiotic stress. PLOS Genetics 11:e1004915 DOI 10.1371/journal.pgen.1004915.

MaoH,Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran L-SP, Qin F. 2015. A transposable
element in a NAC gene is associated with drought tolerance in maize seedlings.
Nature Communications 6:Article 8326 DOI 10.1038/ncomms9326.

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 20/23

https://peerj.com
http://dx.doi.org/10.1007/s11738-014-1741-3
http://dx.doi.org/10.1016/S0378-4290(96)01005-2
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1093/molbev/msu170
http://dx.doi.org/10.1126/sciadv.1400218
http://dx.doi.org/10.1371/journal.pgen.1004745
http://dx.doi.org/10.1093/bioinformatics/btr076
http://dx.doi.org/10.1093/bioinformatics/btr509
http://arXiv.org/abs/1303.3997
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/bti551
http://dx.doi.org/10.1371/journal.pgen.1004915
http://dx.doi.org/10.1038/ncomms9326
http://dx.doi.org/10.7717/peerj.3737


Margolin AA, Nemenman I, Basso K,Wiggins C, Stolovitzky G, Dalla Favera R,
Califano A. 2006a. ARACNE: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7
DOI 10.1186/1471-2105-7-S1-S7.

Margolin AA,Wang K, LimWK, Kustagi M, Nemenman I, Califano A. 2006b. Reverse
engineering cellular networks. Nature Protocols 1:662–671 DOI 10.1038/nprot.2006.106.

Martin RC, MokMC, Habben JE, Mok DW. 2001. A maize cytokinin gene encoding an
O-glucosyltransferase specific to cis-zeatin. Proceedings of the National Academy of
Sciences of the United States of America 98:5922–5926 DOI 10.1073/pnas.101128798.

Mercer K, Martínez-Vásquez Á, Perales HR. 2008. Asymmetrical local adaptation of
maize landraces along an altitudinal gradient. Evolutionary Applications 1:489–500
DOI 10.1111/j.1752-4571.2008.00038.x.

Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. NAC
transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta
1819:97–103 DOI 10.1016/j.bbagrm.2011.10.005.

Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 2014. The transcriptional
regulatory network in the drought response and its crosstalk in abiotic stress
responses including drought, cold, and heat. Frontiers in Plant Science 5:Article 170
DOI 10.3389/fpls.2014.00170.

NuruzzamanM, Sharoni AM, Kikuchi S. 2013. Roles of NAC transcription factors in the
regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology
4:Article 248 DOI 10.3389/fmicb.2013.00248.

Perales H, Golicher D. 2014.Mapping the diversity of maize races in Mexico. PLOS ONE
9:e114657 DOI 10.1371/journal.pone.0114657.

Prasanna BM. 2012. Diversity in global maize germplasm: characterization and utiliza-
tion. Journal of Biosciences 37:843–855 DOI 10.1007/s12038-012-9227-1.

Puranik S, Sahu PP, Srivastava PS, PrasadM. 2012. NAC proteins: regulation and role
in stress tolerance. Trends in Plant Science 17:369–381
DOI 10.1016/j.tplants.2012.02.004.

Rengel D, Arribat S, Maury P, Martin-Magniette M-L, Hourlier T, Laporte M, Varès
D, Carrère S, Grieu P, Balzergue S, Gouzy J, Vincourt P, Langlade NB. 2012. A
gene-phenotype network based on genetic variability for drought responses reveals
key physiological processes in controlled and natural environments. PLOS ONE
7:e45249 DOI 10.1371/journal.pone.0045249.

Roberts A, Pachter L. 2013. Streaming fragment assignment for real-time analysis of
sequencing experiments. Nature Methods 10:71–73 DOI 10.1038/nmeth.2251.

Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. 2011. Improving RNA-Seq
expression estimates by correcting for fragment bias. Genome Biology 12:Article R22
DOI 10.1186/gb-2011-12-3-r22.

Romero Navarro JA,WillcoxM, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado
E, Terron A, Delgado HV, Vidal V, Ortega A, Banda AE, Montiel NO, Ortiz-
Monasterio I, Vicente FS, Espinoza AG, Atlin G,Wenzl P, Hearne S, Buckler ES.

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 21/23

https://peerj.com
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://dx.doi.org/10.1038/nprot.2006.106
http://dx.doi.org/10.1073/pnas.101128798
http://dx.doi.org/10.1111/j.1752-4571.2008.00038.x
http://dx.doi.org/10.1016/j.bbagrm.2011.10.005
http://dx.doi.org/10.3389/fpls.2014.00170
http://dx.doi.org/10.3389/fmicb.2013.00248
http://dx.doi.org/10.1371/journal.pone.0114657
http://dx.doi.org/10.1007/s12038-012-9227-1
http://dx.doi.org/10.1016/j.tplants.2012.02.004
http://dx.doi.org/10.1371/journal.pone.0045249
http://dx.doi.org/10.1038/nmeth.2251
http://dx.doi.org/10.1186/gb-2011-12-3-r22
http://dx.doi.org/10.7717/peerj.3737


2017. A study of allelic diversity underlying flowering-time adaptation in maize
landraces. Nature Genetics 49:476–480 DOI 10.1038/ng.3784.

Ruiz Corral JA, Durán Puga N, Sánchez González J de J, Ron Parra J, González
Eguiarte DR, Holland JB, Medina García G. 2008. Climatic adaptation and
ecological descriptors of 42 mexican maize races. Crop Science 48:1502–1512
DOI 10.2135/cropsci2007.09.0518.

Secco D, JabnouneM,Walker H, Shou H,Wu P, Poirier Y,Whelan J. 2013. Spatio-
temporal transcript profiling of rice roots and shoots in response to phosphate
starvation and recovery. The Plant Cell 25:4285–4304 DOI 10.1105/tpc.113.117325.

Shannon P, Markiel A, Ozier O, Baliga NS,Wang JT, Ramage D, Amin N, Schwikowski
B, Ideker T. 2003. Cytoscape: a software environment for integrated mod-
els of biomolecular interaction networks. Genome Research 13:2498–2504
DOI 10.1101/gr.1239303.

Shao H,Wang H, Tang X. 2015. NAC transcription factors in plant multiple abiotic
stress responses: progress and prospects. Frontiers in Plant Science 6:Article 902
DOI 10.3389/fpls.2015.00902.

Sood S, Flint-Garcia S, WillcoxMC, Holl JB. 2014. Mining natural variation for maize
improvement: selection on phenotypes and genes. In: Tuberosa R, Graner A,
Frison E, eds. Genomics of plant genetic resources. Dordrecht: Springer Netherlands,
615–649.

Springer NM, Stupar RM. 2007a. Allelic variation and heterosis in maize: how do two
halves make more than a whole? Genome Research 17:264–275
DOI 10.1101/gr.5347007.

Springer NM, Stupar RM. 2007b. Allele-specific expression patterns reveal biases
and embryo-specific parent-of-origin effects in hybrid maize. The Plant Cell
19:2391–2402 DOI 10.1105/tpc.107.052258.

Staswick PE, SuW, Howell SH. 1992.Methyl jasmonate inhibition of root growth
and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant.
Proceedings of the National Academy of Sciences of the United States of America
89:6837–6840.

Swanson-Wagner R, Briskine R, Schaefer R, HuffordMB, Ross-Ibarra J, Myers CL,
Tiffin P, Springer NM. 2012. Reshaping of the maize transcriptome by domestica-
tion. Proceedings of the National Academy of Sciences of the United States of America
109:11878–11883 DOI 10.1073/pnas.1201961109.

Takuno S, Ralph P, Swarts K, Elshire RJ, Glaubitz JC, Buckler ES, HuffordMB, Ross-
Ibarra J. 2015. Independent molecular basis of convergent highland adaptation in
maize. Genetics 200:1297–1312 DOI 10.1534/genetics.115.178327.

VanHultenM, Pelser M, Van Loon LC, Pieterse CMLJ, Ton J. 2006. Costs and benefits
of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences
of the United States of America 103:5602–5607 DOI 10.1073/pnas.0510213103.

VonHeckel K, StephanW, Hutter S. 2016. Canalization of gene expression is a major
signature of regulatory cold adaptation in temperate Drosophila melanogaster. BMC
Genomics 17:574 DOI 10.1186/s12864-016-2866-0.

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 22/23

https://peerj.com
http://dx.doi.org/10.1038/ng.3784
http://dx.doi.org/10.2135/cropsci2007.09.0518
http://dx.doi.org/10.1105/tpc.113.117325
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.3389/fpls.2015.00902
http://dx.doi.org/10.1101/gr.5347007
http://dx.doi.org/10.1105/tpc.107.052258
http://dx.doi.org/10.1073/pnas.1201961109
http://dx.doi.org/10.1534/genetics.115.178327
http://dx.doi.org/10.1073/pnas.0510213103
http://dx.doi.org/10.1186/s12864-016-2866-0
http://dx.doi.org/10.7717/peerj.3737


Waddington CH. 1942. Canalization of development and the inheritance of acquired
characters. Nature 150:563–565 DOI 10.1038/150563a0.

Waters AJ, Makarevitch I, Noshay J, Burghardt LT, Hirsch CN, Hirsch CD,
Springer NM. 2017. Natural variation for gene expression responses to abiotic
stress in maize. The Plant Journal: For Cell and Molecular Biology 89:706–717
DOI 10.1111/tpj.13414.

Woodward JB, Abeydeera ND, Paul D, Phillips K, Rapala-Kozik M, FreelingM,
Begley TP, Ealick SE, McSteen P, ScanlonMJ. 2010. A maize thiamine aux-
otroph is defective in shoot meristem maintenance. The Plant Cell 22:3305–3317
DOI 10.1105/tpc.110.077776 .

Wu J, Gentry RI. 2017. gcrma: background adjustment using sequence information. R
package version 2.48.0.

Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RJN,
Kolomiets MV. 2012. Disruption of OPR7 and OPR8 reveals the versatile functions
of jasmonic acid in maize development and defense. The Plant Cell 24:1420–1436
DOI 10.1105/tpc.111.094151.

Zhang X, Borevitz JO. 2009. Global analysis of allele-specific expression in Arabidopsis
thaliana. Genetics 182:943–954 DOI 10.1534/genetics.109.103499.

Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B. 2014.
A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively
regulates drought and salt tolerance in both rice and Arabidopsis. Plant & Cell
Physiology 55:1142–1156 DOI 10.1093/pcp/pcu054.

Zhao Y, Zhou Y, Jiang H, Li X, Gan D, Peng X, Zhu S, Cheng B. 2011. Systematic analy-
sis of sequences and expression patterns of drought-responsive members of the HD-
Zip gene family in maize. PLOS ONE 6:e28488 DOI 10.1371/journal.pone.0028488.

Aguilar-Rangel et al. (2017), PeerJ, DOI 10.7717/peerj.3737 23/23

https://peerj.com
http://dx.doi.org/10.1038/150563a0
http://dx.doi.org/10.1111/tpj.13414
http://dx.doi.org/10.1105/tpc.110.077776 
http://dx.doi.org/10.1105/tpc.111.094151
http://dx.doi.org/10.1534/genetics.109.103499
http://dx.doi.org/10.1093/pcp/pcu054
http://dx.doi.org/10.1371/journal.pone.0028488
http://dx.doi.org/10.7717/peerj.3737



