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Finite element response sensitivity analysis of steel-concrete composite beams with 

deformable shear connection

A. Zona1, M. Barbato2 and J. P. Conte3, Member ASCE. 

ABSTRACT

The behavior of steel-concrete composite beams is strongly influenced by the type of shear connection between the

steel beam and the concrete slab. For accurate analytical predictions, the structural model must account for the

interlayer slip between these two components. In numerous engineering applications (e.g., in the fields of structural

optimization, structural reliability analysis and finite element model updating), accurate response sensitivity calcu-

lations are needed as much as the corresponding response simulation results. This paper focuses on a procedure for

response sensitivity analysis of steel-concrete composite structures using displacement-based locking-free frame

elements including deformable shear connection with fiber discretization of the cross-section. Realistic cyclic

uniaxial constitutive laws are adopted for the steel and concrete materials as well as for the shear connection. The

finite element response sensitivity analysis is performed according to the Direct Differentiation Method (DDM).

The concrete and shear connection material models as well as the static condensation procedure at the element

level are extended for response sensitivity computations. Two steel-concrete composite structures for which exper-

imental test results are available in the literature are used as realistic testbeds for response and response sensitivity

analysis. These benchmark structures consist of a non-symmetric, two-span continuous beam subjected to mono-

tonic loading, and a frame sub-assemblage under cyclic loading. The new analytical derivations for response sensi-
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tivity calculations and their computer implementation are validated through Forward Finite Difference (FFD)

analysis based on the two benchmark examples considered. Selected sensitivity analysis results are shown for vali-

dation purposes and for quantifying the effect and relative importance of the various material parameters in regards

to the nonlinear monotonic and cyclic response of the testbed structures. 

CE DATABASE SUBJECT HEADINGS: Finite element models; nonlinear material models; material constitutive parameters;

finite element response sensitivity; steel-concrete composite beams; deformable shear connection. 
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INTRODUCTION

The last decade has seen a growing interest in finite element modeling and analysis of steel-concrete composite

structures, with applications to seismic resistant frames and bridges (Spacone and El-Tawil 2004). The behavior of

composite beams, made of two components connected through shear connectors to form an interacting unit, is sig-

nificantly influenced by the type of connection between the steel beam and the concrete slab. Flexible shear con-

nectors allow development of partial composite action (Oehlers and Bradford 2000) and, for accurate analytical

response predictions, structural models of composite structures must account for the interlayer slip between the

steel and concrete components. Thus, a composite beam finite element able to capture the interface slip is an essen-

tial tool for model-based response simulation of steel-concrete composite structures. The three-dimensional model

for composite beams with deformable shear connection under general state of stress developed by Dall'Asta (2001)

simplifies to the model introduced by Newmark et al. (1951) if only the in-plane bending behavior is considered. In

the Newmark’s model, the geometrically linear Euler-Bernoulli beam theory (i.e., small displacements, rotations

and strains) is used to model the two parts of the composite beam; the effects of the deformable shear connection

are accounted for by using an interface model with distributed bond, while the contact between the steel and con-

crete components is enforced (Fig. 1). The interface slip is small since it is given by the difference in longitudinal

displacements of the steel and concrete fibers at the steel-concrete interface.

Compared to common monolithic beams, composite beams with deformable shear connection present additional

difficulties. Even in very simple structural systems (e.g., simply supported beams), complex distributions of the

interface slip and force can develop; furthermore these distributions can be very sensitive to the shear connection

properties. Different finite elements representing composite beams with deformable shear connection have been

proposed in the literature (Dall'Asta and Zona 2004a, Spacone and El-Tawil 2004). Despite the difficulties encoun-
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tered in the nonlinear range of structural behavior, locking-free displacement-based elements (such as the one used

in this study) produce accurate global and local results provided that the structure is properly discretized (Dall'Asta

and Zona 2002, 2003, 2004a, 2004b, 2004c). Locking-free displacement-based elements were used successfully

for accurate analysis of steel-concrete composite beam structures even in the case of very high gradients of the

interface slip due for example to horizontal concentrated forces produced by external prestressing cables

(Dall’Asta and Zona 2004d). 

Beyond research activities in model-based simulation of structures, recent years have seen a growing interest in the

analysis of structural response sensitivity to various geometric, mechanical, and material properties defining the

structure, and to loading parameters. Indeed, finite element response sensitivities represent an essential ingredient

for gradient-based optimization methods needed in various sub-fields of structural engineering such as structural

optimization, structural reliability analysis, structural identification, and finite element model updating (Ditlevsen

1996, Kleiber et al. 1997). In addition, finite element response sensitivities are invaluable for gaining deeper

insight into the effect and relative importance of system and loading parameters in regards to structural response

behavior.

This paper focuses on materially-nonlinear-only static response sensitivity analysis using displacement-based,

locking-free finite elements for composite beams with deformable shear connection (Dall'Asta and Zona 2002).

Realistic uniaxial cyclic constitutive laws are adopted for the steel and concrete materials of the beam and for the

shear connection. The monotonic and cyclic responses of these material and resulting finite element models are

validated through comparison with experimental test results available in the literature (Ansourian 1981, Bursi and

Gramola 2000). The finite element response sensitivity analysis is performed following the Direct Differentiation

Method (DDM) and validated by means of Forward Finite Difference (FFD) analysis (Conte 2001, Conte et al.

2003) in the context of two realistic steel-concrete testbed structures considered in this study. The first benchmark
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structure consists of a non-symmetric two-span continuous beam subjected to a monotonically increasing concen-

trated force, while the second benchmark structure is a frame sub-assemblage under cyclic loading. Results of sen-

sitivity analysis are used to investigate and quantify the effect and relative importance of the various material

parameters in regards to the monotonic and cyclic nonlinear response of the two testbed structures considered. 

RESPONSE SENSITIVITY ANALYSIS BY THE DIRECT DIFFERENTIATION METHOD

Introduction

If r denotes a generic scalar response quantity (e.g., displacement, strain, stress), then by definition, the sensitivity

of r with respect to the material or loading parameter θ is expressed mathematically as the absolute partial deriva-

tive of r with respect to the variable θ,  where  denotes the nominal value taken by the sensitivity

parameter θ for the finite element response analysis. 

In the sequel, following the notation proposed by Kleiber et al. (1997), the scalar response quantity

depends on the parameter vector  (defined by n time-independent sensitivity parameters, i.e.,

) both explicitly and implicitly through the vector function . According to the notation

adopted herein,  denotes the gradient or total derivative of r with respect to ,  represents the absolute par-

tial derivative of the response quantity r with respect to the scalar variable θi, i = 1, ..., n, (i.e., the derivative of r

with respect to parameter θi considering both explicit and implicit dependencies of r on θi), and  denotes the

partial derivative of r with respect to parameter θi when the vector of variables z is kept constant (fixed). In the par-

r∂
θ∂

------
θ θ0=

, θ0

r �( ) r f �( ) �,( )= �

� θ1 … θn
T

= f �( )

dr
d�
------- �

dr
dθi
-------

r∂
θi∂

-------
z
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ticular and important case in which , the expression  reduces to the partial derivative of r consider-

ing only the explicit dependency of r on parameter θi. For  (case of a single sensitivity parameter), the

adopted notation reduces to the usual elementary calculus notation. The derivations below consider the case of a

single (scalar) sensitivity parameter θ without loss of generality, due to the uncoupled nature of the sensitivity

equations with respect to different sensitivity parameters.

Following the Direct Differentiation Method (DDM) (Conte 2001, Conte et al. 2003), the consistent finite element

response sensitivities are computed at each time step, after convergence is achieved for the response computation.

This requires the exact differentiation of the finite element algorithm for the response calculation (including the

numerical integration scheme for the material constitutive law) with respect to the sensitivity parameter θ. Conse-

quently, the response sensitivity calculation algorithm affects the various hierarchical layers of finite element

response calculation, namely: (1) the structure level, (2) the element level, (3) the section level and (4) the material

level.

Response Sensitivity Analysis at the Structure Level

After spatial discretization using the finite element method, the equilibrium equations of a materially-nonlinear-

only model of a structural system subjected to quasi-static loading condition can be expressed as

(1)

where t = pseudo-time, θ = scalar sensitivity parameter (material or loading variable), u = vector of nodal displace-

ments, R = history dependent structure internal resisting force vector, F = applied quasi-static load vector. The

solution  of Eq. (1) at discrete time  is obtained through the Newton-Raphson iterative procedure, which

consists of solving a linearized system of equations at each iteration, until equilibrium between discrete external

z f �( )= r∂
θi∂

-------
z

� θ θ1= =

R u t θ,( ) θ,( ) F t θ,( )=

un 1+ tn 1+
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and internal resisting forces, i.e., 

, (2)

is satisfied within a prescribed tolerance. In the above equations, the subscript “n+1” indicates that the quantity to

which it is attached is evaluated at time tn+1. The problem can be easily extended to the case of dynamic loading by

adding inertial and damping forces in Eq. (1) and integrating the resulting equations of motion using a time-step-

ping scheme such as the Newmark-β method, which yields a linearized equation similar to Eq. (2) (Conte 2001,

Conte et al. 2003, 2004).

Assuming that  is the converged solution (up to some iteration residuals satisfying a specified tolerance) at

discrete time tn+1, and differentiating Eq. (2) with respect to θ using the chain rule of differentiation (recognizing

the explicit and implicit dependence of R on θ), the following response sensitivity equation at the structure level is

obtained (Conte et al. 2003): 

(3)

where  is the structure consistent (or algorithmic) tangent stiffness matrix at the converged state at time tn+1.

The second term on the right-hand-side (RHS) of Eq. (3) represents the partial derivative of the structure internal

resisting force vector, R(un+1), with respect to sensitivity parameter θ under the condition that the displacement

vector un+1 remains fixed (conditional derivative). It can be expressed as

(4)

Fn 1+ R un 1+( )– 0=

un 1+

KT
stat( )n 1+

dun 1+

dθ
---------------

dFn 1+

dθ
----------------

R un 1+ θ( ) θ,( )∂
θ∂

---------------------------------------
un 1+

–=

KT
stat

R un 1+ θ( ) θ,( )∂
θ∂

---------------------------------------
un 1+

Qn 1+
e( ) qn 1+

e( ) θ( ) θ,( )∂
θ∂

-------------------------------------------------

qn 1+
e( )

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

e 1=

Nel

A=
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where  denotes the direct stiffness assembly operator from the element level (in local element coordi-

nates) to the structure level in global coordinates; Nel represents the total number of finite elements in the structural

model;  is the element internal resisting force vector, and  is the vector of element nodal displacements

in local coordinates. 

Once the RHS of Eq. (3) has been formed, the vector of nodal displacement sensitivities, , can be solved;

subsequently, the unconditional derivatives of all history/state variables at the element, section and material levels

at all integration points are updated as described in the following sections.

Notice that, once the numerical response of the structural system is known at time tn+1, the matrix sensitivity equa-

tion, Eq. (3), is linear and has the same left-hand-side (LHS) matrix operator (consistent tangent stiffness matrix) as

the consistently linearized global equilibrium equations at the end of the iteration which satisfies convergence for

the response calculation at time . Therefore, only the RHS of Eq. (3) needs to be recomputed and since the

factorization of the consistent tangent stiffness matrix is already available at the converged time step tn+1, computa-

tion of the response sensitivities by solving Eq. (3) is very efficient. The RHS of Eq. (3) is recomputed and Eq. (3)

is solved for as many sensitivity parameters θi as needed. 

Response Sensitivity Analysis at the Element Level

The calculation of the conditional derivative of the element resisting force vector on the RHS of Eq. (4) is per-

formed at the element level. Since displacement-based locking-free frame elements for composite beams with

deformable shear connection have internal nodes (Dall’Asta and Zona 2004b), the element internal resisting force

vector needed to assemble the structure resisting force vector is obtained after static condensation of the internal

degrees of freedom (DOFs). The static condensation of the internal DOFs is an algebraic procedure (Bathe 1995),

…{ }
e 1=

Nel
A

Qn 1+
e( ) qn 1+

e( )

dun 1+

dθ
---------------

tn 1+
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corresponding to a partial Gauss elimination, commonly used in finite elements with internal nodes (or DOFs) in

order to reduce the size of the system of equilibrium equations to be solved at the structure level.

The element nodal displacement vector q and element nodal resisting force vector Q can be partitioned according

to the external (subscript e) and internal (subscript i) DOFs as

 and  (5)

The linearized incremental equilibrium equations at the element level can be written in partitioned form as

(6)

where  and  represent linearized increments of  and , respectively,  and  denote the quasi-static

load vectors corresponding to the external and internal DOFs, respectively, and the sub-matrices of the element tan-

gent stiffness matrix are defined as

, , , (7)

where the conditioning on θ expresses the fact that these vector function derivatives are evaluated for the unper-

turbed sensitivity parameter θ. In Eq. (6), it should be noted that  also includes the effects of external distrib-

uted loads and internal resisting forces acting over and within adjacent finite elements. After condensation of the

internal DOFs, Eq. (6) reduces to

(8)

q
qe

qi

= Q
Qe

Qi

=

Kee Kei

Kie Kii

δqe

δqi

Fe Qe–

Fi Qi–
=

δqe δqi qe qi Fe Fi

Kee
Qe∂
qe∂

---------
θ

= Kei
Qe∂
qi∂

---------
θ

= Kie
Qi∂
qe∂

---------
θ

Kei
T= = Kii

Qi∂
qi∂

---------
θ

=

Fe

Kcδqc Fc Qc–=
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where  , and

(9)

In the above equations,  is the condensed element tangent stiffness matrix,  is the condensed quasi-static load

vector, and  is the condensed internal resisting force vector. At convergence of the response calculation at time

tn+1, the incremental quantities , , and  in Eqs. (6) and (8) reduce to zero (within a small finite preci-

sion dependent on the prescribed tolerance) and the quantities appearing in Eq. (9) must be considered as computed

at time tn+1. In particular, this implies that the matrices , , , , and  are the consistent tangent

stiffness matrices obtained through consistent linearization of the equilibrium equations at time tn+1. Thus, they

must be considered as constant quantities with respect to , ,  (since they are linearizing constants) and 

(since evaluated at ). 

After static condensation, Eq. (4) reduces to

(10)

where  denotes the condensed vector of structure resisting forces. In the following, the subscript “n+1” is omit-

ted for the sake of brevity. 

Differentiating Eq. (9)3 with respect to qi for θ fixed and using Eq. (7) yields

qc qe= δqc δqe=→( )

Kc Kee KeiKii
1– Kie–=

Fc Fe KeiKii
1– Fi–=

Qc Qe KeiKii
1– Qi–=

Kc Fc

Qc

δqe δqi δqc

Kee Kei Kie Kii Kc

qe qi qc θ

θ θ0=

Rc un 1+ θ( ) θ,( )∂
θ∂

-----------------------------------------
un 1+

Qc n 1+,
e( ) qn 1+

e( ) θ( ) θ,( )∂
θ∂

-----------------------------------------------------

qn 1+
e( )

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

e 1=

Nel

A=

Rc
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(11)

The above equation indicates that Qc is independent of qi for θ fixed. Thus, 

(12)

Differentiating Eq. (9)3 with respect to θ gives

(13)

Differentiating Eq. (12) with respect to θ using the implicit function theorem of differentiation results in

(14)

which can be rewritten as, using Eqs. (9)1 and (9)3, 

(15)

In Eq. (15), the only term that remains to be derived is . This term is extremely important, since it is needed

to assemble the conditional derivative/sensitivity of the condensed internal resisting force vector at the structure

level as expressed in Eq. (10). It is computed through substituting Eq. (13) into Eq. (15) after solving for  and

 as follows.

In general, we have the following functional dependence of vectors Qe and Qi on the sensitivity parameter θ:

Qc∂
qi∂

---------
θ

Qe∂
qi∂

---------
θ

KeiKii
1– Qi∂

qi∂
---------

θ

– Kei KeiKii
1– Kii– 0= = =

Qc Qc qe θ( ) θ,( )=

dQc
dθ

----------
dQe
dθ

---------- KeiKii
1– dQi

dθ
---------–=

dQc
dθ

----------
Qc∂
qe∂

---------
θ

dqe
dθ
--------

Qc∂
dθ

---------
q

+=

dQc
dθ

---------- Kc
dqe
dθ
--------

Qc∂
dθ

---------
q

+=

Qc∂
dθ

---------
q

dQe
dθ

----------

dQi
dθ

---------



12

(16)

Applying the implicit function theorem of differentiation to Eq. (16) yields

(17)

After solving the matrix sensitivity equation at the structure level, Eq. (3), only the unconditional derivatives, ,

of the element external DOFs in local coordinates are known. Thus, it is necessary to compute at the element level

the unconditioned derivatives, , of the element internal DOFs in local coordinates. In fact, the unconditioned

sensitivities of the history/state variables at the section level can be updated only if the unconditional derivatives of

all the element DOFs (external and internal) are known.

Eq. (2) written at the element level implies that the following relations are verified at convergence, up to a small

numerical tolerance:

(18)

where the zero equalities are satisfied up to some iteration residuals. Differentiating Eq. (18)2 with respect to θ

yields

(19)

Qe Qe qe θ( ) qi θ( ) θ,,( )=

Qi Qi qe θ( ) qi θ( ) θ,,( )=

dQe
dθ

----------
Qe∂
qe∂

---------
θ

dqe
dθ
--------

Qe∂
qi∂

---------
θ

dqi
dθ
--------

Qe∂
θ∂

---------
q

+ + Kee
dqe
dθ
-------- Kei

dqi
dθ
--------

Qe∂
θ∂

---------
q

+ += =

dQi
dθ

---------
Qi∂
qe∂

---------
θ

dqe
dθ
--------

Qi∂
qi∂

---------
θ

dqi
dθ
--------

Qi∂
θ∂

---------
q

+ + Kie
dqe
dθ
-------- Kii

dqi
dθ
--------

Qi∂
θ∂

---------
q

+ += =

dqe
dθ
--------

dqi
dθ
--------

Qe Fe– 0=

Qi Fi– 0=

dQi
dθ

---------
dFi
dθ
--------– 0=
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The term  depends only on the distributed and/or concentrated external forces applied on the internal nodes.

Therefore,  and consequently  can be considered as known and if the parameter θ is not related to the ele-

ment distributed loads, we have

(20)

Substituting Eq. (20) into Eq. (17)2 and solving for  yields

(21)

Substituting Eq. (21) into Eq. (17)1 and performing some algebraic manipulations yield

(22)

By comparing Eq. (22) with Eq. (15), using Eq. (13), we deduce that

(23)

The conditional derivatives  and  are obtained as

(24)

dFi
dθ
--------

dFi
dθ
--------

dQi
dθ

---------

dFi
dθ
--------

dQi
dθ
--------- 0= =

dqi
dθ
--------

dqi
dθ
-------- Kii

1– dQi
dθ
--------- Kie–

dqe
dθ
--------

Qi∂
θ∂

---------–
q⎝ ⎠

⎜ ⎟
⎛ ⎞

=

dQe
dθ

---------- KeiKii
1– dQi

dθ
---------– Kee KeiKii

1– Kie–( )
dqe
dθ
--------

Qe∂
θ∂

---------
q

KeiKii
1– Qi∂

θ∂
---------

q
–

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

Qc∂
θ∂

---------
q

Qe∂
θ∂

---------
q

KeiKii
1– Qi∂

θ∂
---------

q
–=

Qe∂
θ∂

---------
θ

Qi∂
θ∂

---------
θ

Qe∂
θ∂

---------
q

Qi∂
θ∂

---------
q

Q q θ( ) θ,( )∂
θ∂

------------------------------
q

BT z( ) D B z( ) q θ( ) θ,⋅( )∂
θ∂

----------------------------------------------
q

zd
0

L

∫= =
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where D denotes the vector of active stress resultants at the section level and B is the transformation matrix

between the vector of element nodal displacements q and the vector of generalized section deformations d (i.e.,

compatibility equation ). The calculation of the conditional derivative on the RHS of Eq.

(24) is carried out at the section level. 

Response Sensitivity Analysis at the Section Level

In the case of a composite beam with deformable shear connection, the vector of generalized section deformations

is defined as (Dall’Asta and Zona 2004a)

(25)

where ε1 and ε2 are the axial strains at the reference points G1 (concrete slab) and G2 (steel beam), respectively

(Fig. 1), χ is the curvature (same for concrete slab and steel beam) and δ is the slip at the interface between the con-

crete slab and the steel beam. The vector of section stress resultants is defined as (Dall’Asta and Zona 2004a)

 (26)

where N1 is the axial force in the concrete slab, N2 is the axial force in the steel beam, M12 is the summation of the

bending moments in the concrete slab and steel beam, and fs is the interface shear force per unit length. The stress

resultants N1, N2 and M12 are calculated through numerical integration over the concrete and steel parts of the

beam cross-section, which are discretized using a fiber model. 

The calculation of the conditional derivative (for q fixed and therefore for d fixed) of the vector of section stress

resultants in Eq. (24) is carried out as

d z θ,( ) B z( ) q θ( )⋅=

dT z θ,( ) ε1 z θ,( ) ε2 z θ,( ) χ z θ,( ) δ z θ,( )=

DT z θ,( ) N1 z θ,( ) N2 z θ,( ) M12 z θ,( ) fs z θ,( )=
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, (27)

(28)

where σ is the normal stress; y1 and y2 are the reference points of the two components of the composite beam (Fig.

1); and A1 and A2 are the cross-section areas of the concrete slab and steel beam, respectively. The conditional

derivative on the RHS of Eqs. (27) and (28) and the conditional derivative of fs (given d) are calculated at the mate-

rial level, hence the (discretized) material constitutive equations must be defined and differentiated analytically

with respect to the sensitivity parameter θ.

After solving the sensitivity equations at the structure level, Eq. (3) in condensed form, for  and calcu-

lating the unconditional derivatives of the displacements at the (external and internal) nodes,  and

, the unconditioned sensitivities of the generalized section deformations and section stress resultants are

updated. The sensitivities of the section deformations are obtained using the compatibility relations, while the sen-

sitivities of the section stress resultants are evaluated using the unconditional derivatives (with respect to the sensi-

tivity parameter θ) of the material constitutive relations, i.e., 

, (29)

(30)

Response Sensitivity Analysis at the Material Level

Nα∂
θ∂

----------
d

σ y εα z θ,( ) χ z θ,( ) θ, , ,( )∂
θ∂

---------------------------------------------------------------
d

Ad
Aα

∫= α 1 2,=

M12∂
θ∂

-------------
d

y yα–( )
σ y εα z θ,( ) χ z θ,( ) θ, , ,( )∂

θ∂
---------------------------------------------------------------

d
Ad

Aα

∫
⎩ ⎭
⎨ ⎬
⎧ ⎫

α 1=

2

∑=

dun 1+ dθ⁄

dqe dθ⁄

dqi dθ⁄

Nαd
θd

----------
σ y εα z θ,( ) χ z θ,( ) θ, , ,( )d

θd
--------------------------------------------------------------- Ad

Aα

∫= α 1 2,=

M12d
θd

------------- y yα–( )
σ y εα z θ,( ) χ z θ,( ) θ, , ,( )d

θd
--------------------------------------------------------------- Ad

Aα

∫
⎩ ⎭
⎨ ⎬
⎧ ⎫

α 1=

2

∑=
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For every (discretized) material constitutive model, the conditional and unconditional derivatives of the material

state/history variables must be evaluated analytically with respect to the relevant material (sensitivity) parameters.

This can be a challenging task when complex cyclic constitutive models are adopted, as is the case in this paper.

The constitutive law used for the steel of the beam and for the reinforcements in the concrete slab is a uniaxial

cyclic plasticity model with the von Mises yield criterion in conjunction with linear kinematic and isotropic hard-

ening laws. This is the well-known bilinear inelastic material constitutive model. Detailed formulation and differ-

entiation of this model can be found in (Conte et al. 2003). The parameters of this material model consist of (1)

Young’s modulus of elasticity E, (2) the initial yield stress fy, (3) the linear kinematic hardening modulus Hk, and

(4) the linear isotropic hardening modulus Hi. 

The selected constitutive law for the concrete material is a uniaxial cyclic law with monotonic envelope given by

the Popovics-Saenz law (Balan et al. 1997, 2001, Kwon and Spacone 2002). A typical cyclic response of the con-

crete material model adopted herein is given in Fig. 2. Detailed formulation and differentiation of this model can be

found in (Zona et al. 2004). The parameters of this material model consists of (1) the initial modulus of elasticity

Ec, (2) the compressive strength fc and (3) the corresponding strain ε0, (4) the stress ff and (5) the corresponding

strain εf of the control point (inflection point) of the softening branch. 

The constitutive law used for the shear connectors is a slip-force cyclic law with monotonic envelope given by the

Ollgaard et al. (1971) law. The cyclic response of the shear connectors is a modified version of the model proposed

by Eligehausen et al. (1983) and is similar to the model used by Salari and Spacone (2001). A typical cyclic

response of the constitutive model for the shear connectors used in this study is shown in Fig. 3. Detailed formula-

tion and differentiation of this model can be found in (Zona et al. 2004). The parameters of the connection “mate-

rial” model consist of (1) the connection strength fsmax, (2) the ultimate slip δult, and (3) the friction parameter τfr,
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see Fig. 3. 

COMPUTER IMPLEMENTATION

The above formulation for finite element response sensitivity analysis using composite beam elements with

deformable shear connection was implemented in FEDEASLab (Filippou 2002), a general-purpose nonlinear finite

element structural analysis program. FEDEASLab is a Matlab (MathWorks 1997) toolbox suitable for linear and

nonlinear, static and dynamic structural analysis, which provides a general framework for physical parameteriza-

tion of finite element models and response sensitivity computation (Franchin 2004). 

VALIDATION EXAMPLES

Nonlinear monotonic quasi-static test

The first benchmark problem considered is a non-symmetric two-span continuous beam (Fig. 4), tested by

Ansourian (1981) under monotonic quasi-static loading. The beam, denoted CTB1 in (Ansourian 1981), has two

spans 4.00 m and 5.00 m long and is subjected to a vertical concentrated load P applied at the mid-point of the

shorter span. The joist section is an European IPE200; the reinforced concrete slab section is . Due

to the relatively narrow width of the concrete slab, shear lag effects are neglected in its modeling. The reader is

referred to (Ansourian 1981) for all details regarding the geometry and material properties. This problem presents

all the main difficulties typically encountered in the analysis of steel-concrete composite structures, such as con-

crete softening in compression, concrete cracking in tension, and high gradients of slip and shear force along the

connection (Dall’Asta and Zona 2002, 2004c). The structure is discretized uniformly into 18 10-DOF elements, see

Fig. 4, with 5 Gauss-Lobatto points each (Dall’Asta and Zona 2003, 2004c). A quasi-static, monotonic, materially-

nonlinear-only analysis of the beam structure is performed using the incremental-iterative procedure defined above

100 800 mm2×
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in displacement-control mode with the vertical displacement at the point of application of the load taken as the con-

trolled DOF, thus mimicking the physical experiment. The computed load-deflection curves for the two spans are

shown in Fig. 5, where they are compared with the experimental results. It is observed that the analytical predic-

tions are in very good agreement with the experimental results. It is worth mentioning that in spite of the fact that

the loading is monotonic, small unloading and reloading events are experienced at a few Gauss-Lobatto points due

to internal stress redistribution. However, these events do not significantly affect the overall response, i.e., practi-

cally the same results are obtained with nonlinear elastic constitutive laws with the same monotonic envelope

neglecting the cyclic behavior (Dall’Asta and Zona 2003, 2004c).

Sensitivities of various global and local response quantities to all material parameters were computed using DDM

and FFD. Due to space limitation, only the sensitivities to the most important material parameters (i.e., the param-

eters to which the response in question is most sensitive) are shown below. The reader is referred to (Zona et al.

2004) for an exhaustive presentation of the response sensitivity analysis. The sensitivity results are presented in

normalized form, i.e., multiplied by the value of the sensitivity parameter and divided by the value of the response

quantity itself. Thus, the normalized sensitivities represent the percent variation of the subject response quantity for

a unitary percent variation of the sensitivity parameter. In this way, the normalized response sensitivities reveal

directly the relative importance of all the material parameters considered in regards to a given response quantity at

various loading stages of the structure.

Sensitivities of three global response quantities (i.e., rotation ϕ1 at the left support, rotation ϕ2 at the intermediate

support and deflection v3 at mid-point of the non-loaded span, see Fig. 4) to the four most important parameters

(i.e., modulus of elasticity E0 and yield stress fy of the steel beam material, compressive strength fc of the concrete,

and strength fsmax of the shear connection) are shown in Figs. 6 through 9. The sensitivities are plotted as functions
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of the ratio of the deflection v at mid-point of the loaded span to its value at collapse vult predicted analytically (col-

lapse being defined as the point at which the ultimate strain or the ultimate slip is reached for the first time along

any of the material fibers or along the shear connection, respectively). It can be observed that the response sensitiv-

ities to fy are null before yielding occurs for the first time (Fig. 6) as expected since prior to first yield, fy does not

affect the response. Some of the response sensitivities are characterized by strong discontinuities, due to material

state transitions from the elastic to the plastic regime at Gauss-Lobatto point (Conte 2001, Conte et al. 2001, 2003).

These discontinuities appear to be strongly dependent on the load level. The jagged response sensitivities obtained

are the manifestation of a complex structural behavior in which important redistributions of deformation and stress

occur between the steel beam and the reinforced concrete slab through the shear connection, which behaves nonlin-

early from very small slip values. Among the three degrees of freedom considered, the vertical deflection v3 at

mid-point of the non-loaded span is the most sensitive response quantity for every parameter considered. This can

be explained in part by the fact that v3 is more distant from the controlled degree of freedom than the other two

degrees of freedom considered. The sensitivities of the displacement along the controlled degree of freedom (i.e.,

vertical displacement at the point of application of the load) are always zero.

The normalized sensitivities of v3 to the four material parameters considered are compared in Fig. 10. In this way,

it is possible to clearly highlight and quantify the relative importance of the various material parameters at different

load levels. For example, it can be observed that the sensitivities to E0 and fsmax are the most important at the early

stage of the loading history, while as yielding spreads along the steel beam, material parameter fy becomes increas-

ingly important relative to the other parameters. Similar considerations apply to material parameter fc, to which the

sensitivity of v3 increases significantly with increasing load level, even though the strength parameter fc remains

less important than the strength parameter fy at high load levels. 
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Sensitivities of a local response quantity (i.e., shear force per unit length fs) at three locations (i.e., mid-point of the

loaded span at z = 2.00 m, intermediate support at z = 4.00 m and mid-point of the non-loaded span at z = 6.50 m)

to the three most important material parameters (i.e., yield stress fy of the steel beam, compressive strength fc of the

concrete, shear connection strength fsmax) are plotted in Figs. 11 through 13. The sensitivities of fs (at z = 6.50 m)

to the three material parameters fy, fc, and fsmax are plotted together in Fig. 14, clearly highlighting the relative

importance of these three parameters. It is noteworthy that the discontinuities due to material state transitions (elas-

tic-to-plastic) are more pronounced than at the global response level. It is also observed that at high load level (ν/

νult > 0.7), the sensitivities of the local response fs increase more strongly with the load level than the global

response sensitivities previously considered (see Figs. 6 to 10). 

All the sensitivity results shown were computed using the DDM and validated by the FFD method using increas-

ingly small perturbations of the sensitivity parameter. Due to space limitation, the comparison between DDM and

FFD results is shown herein only for two cases. The first case considered is the sensitivity of the deflection v3 of

the non-loaded span to the shear connection strength fsmax (Fig. 15 and close-up in Fig. 16); four levels of perturba-

tion of parameter fsmax were considered, namely ∆θ/θ = 10−1, 10−2, 10−3, 10−6. The second case considered is the

sensitivity of the interface shear force fs at mid-span of the non-loaded span (z = 6.50 m) to the concrete compres-

sive strength fc (Fig. 17 with close-up in Fig. 18). The same four levels of perturbation were considered for param-

eter fc (∆θ/θ = 10−1, 10−2, 10−3, 10−6). In both cases, it is shown that the FFD results converge asymptotically to

the DDM results as ∆θ/θ becomes increasingly small, and that the FFD results for ∆θ/θ = 10−3 are close to the

DDM results. 

Figs. 19, 20, and 21 show the effects of the prescribed tolerance δ (used in the energy-based convergence criterion

for response calculation) upon convergence of the FFD sensitivity results to their DDM counterparts. In these fig-
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ures, the response quantity of interest is the rotation ϕ1 of the left end node of the two-span continuous beam and

the sensitivity parameter θ is the shear connection strength fsmax. The sensitivity results are plotted for v / vult > 0.6.

Global and local response sensitivities might present irregularities such as the one plotted in Fig. 19 where the sen-

sitivity is plotted for an insufficiently small tolerance (δ = 10−8) and for the small tolerance δ = 10−16, which was

found to be the largest tolerance leading to the correct DDM results. Fig. 20 shows the sensitivity results obtained

through FFD analysis with a perturbation ∆fsmax/fsmax = 10−2 with δ = 10−8 and δ = 10−16, respectively, compared

with the DDM results (obtained using δ = 10−16); in this case, no difference can be noticed between the FFD results

obtained using two different values of the tolerance δ (i.e., δ = 10−8 and δ = 10−16). Fig. 21 shows the same sensi-

tivity results, but using a perturbation ∆fsmax/fsmax = 10−3 for the FFD analysis. In this case, it is noticed that the

FFD results are not in good agreement with the DDM results when an insufficiently small tolerance (δ = 10−8) is

adopted for the iterative response calculation. This example and other examples in (Zona et al. 2004) show that the

choice of a strict enough convergence tolerance for the iterative response calculation is important for response sen-

sitivity analysis, since Eq. (2) is the starting point of the DDM. Use of an inadequate convergence tolerance for

response calculation may lead to loss of agreement between response sensitivity results obtained using the DDM

and FFD analysis (e.g., an insufficiently small convergence tolerance δ can lead to erroneous DDM results and

very inaccurate FFD results if the perturbation of the sensitivity parameter is “too small” in relation to δ). 

Nonlinear cyclic quasi-static test

The second benchmark problem considered is a frame sub-assemblage tested by Bursi and Gramola (2000) sub-

jected to quasi-static cyclic loading (Fig. 22). The frame sub-assemblage, denoted as IPC (intermediate partial con-

nection) in (Bursi and Gramola 2000), has a steel-concrete composite beam 4.00 m long made of a European
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IPE300 steel section and a reinforced concrete slab 1200 mm wide. The shear-lag effects are considered in a sim-

plified way by reducing the slab width to 820 mm over the entire length of the beam (Bursi and Gramola 2000).

The steel column is a European HE360B section. The reader is referred to (Bursi and Gramola 2000) for all details

regarding the geometry, material properties, and the loading history. This sub-assemblage is representative of the

behavior of steel-concrete composite frames adopted for seismic-resistant buildings. In addition to the difficulties

encountered in the previous example, this case includes problems related to the more complex loading history

which is cyclic. 

The frame sub-assemblage is uniformly discretized into 5 10-DOF composite frame elements for the beam and one

frame element for the column. A materially-nonlinear-only cyclic, quasi-static analysis of the frame sub-assem-

blage is performed using the incremental-iterative procedure defined above in displacement control mode with the

horizontal displacement of the steel beam centroid at the left end of the beam selected as the controlled DOF (as in

the experimental tests). The computed load-deflection curve is displayed in Fig. 23, where it is compared with the

experimental results. It is observed that analytical and experimental results are in good agreement, despite the fact

that the finite element model does not include the effects of local buckling (nonlinear geometry) in the steel beam

during the push phase of the cyclic loading in the last set of cycles. The extra “fatness” of the computed hysteresis

loops is due to the bilinear shape and lack of smoothness of the 1-D J2 plasticity model used for the steel beam and

the steel reinforcements in the concrete slab. 

Sensitivities of various global and local response quantities to all material parameters were computed using DDM

and FFD. Here, for the sake of brevity, only selected sensitivity results are presented. The response sensitivities are

only multiplied by the value of the sensitivity parameter (and not divided by the value of the response which can be

very small due to its cyclic nature). The normalized sensitivities can thus be interpreted as hundred times the

change in the subject response quantity for a unitary percent variation of the sensitivity parameter. 
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The global response quantities considered in this example are the horizontal displacement w of the steel

beam centroid at the right-end of the beam and the vertical deflection v of the beam at mid-span; their ana-

lytical predictions are plotted in Fig. 24 as functions of the load step number. The sensitivities of v are

shown in Fig. 25 for the steel beam material parameters (i.e., θ = yield stress fy, modulus of elasticity E0,

and kinematic hardening modulus Hk) and in Fig. 26 for material parameters related to the concrete slab

and the shear connection (θ = shear connection strength fsmax, concrete compressive strength fc, and mod-

ulus of elasticity E0r of the steel reinforcements). Similarly, the sensitivities of w are shown in Fig. 27 (θ =

fy, E0, Hk) and in Fig. 28 (θ = fsmax, fc, E0r). It was found (Zona et al. 2004) that the two DOFs v and w are

most sensitive to the steel beam parameters (fy, E0, Hk) and the shear connection strength fsmax. 

The local response quantity considered here is the axial force N2 in the steel beam at mid-span which is

plotted in Fig. 29 as a function of the load step number. The sensitivities of this local response quantity to θ

= fy, fsmax, fc are shown in Fig. 30. These three material parameters control the inelastic behavior of each

component (steel beam, shear connection, and concrete slab) of the composite beam and thus influence the

diffusion of the applied axial force from the steel beam to the concrete slab. It was found that for N2, fy is

once again the most important response parameter (Zona et al. 2004). The sensitivities of N2 as well as

other internal forces (shear, bending moment) to most of the material parameters were found to be very

erratic (high frequency spikes and discontinuities). 

The vertical dotted lines in Figures 24 to 30 mark the end of the last loading step or beginning of the first

unloading step. Careful examination of the results revealed that no discontinuities occurred exactly at

unloading events. This is consistent with prior results on simpler benchmark problems (Conte et al. 2003).

It thus appears that discontinuities in finite element response sensitivities are due to material state transi-
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tions from elastic to plastic and not vice versa. 

All the sensitivity results presented were computed using the DDM and validated by FFD using increasingly small

perturbations of the sensitivity parameters. Due to space limitation, the comparison between DDM and FFD results

is shown here only for two cases. The first case consists of the sensitivity of the vertical deflection v at mid-span to

the concrete strength fc (Fig. 31). For the FFD analysis, three levels of perturbation of parameter fc were consid-

ered, namely ∆θ/θ = 10−2, 10−3, 10−5. The second case consists of the sensitivity of the axial force N2 in the steel

beam at mid-span to the shear connection strength fsmax (Fig. 32). The same three levels of perturbation (i.e., ∆θ/θ

= 10−2, 10−3, 10−5) were considered for parameter fsmax. From these two figures and their close-ups, the FFD

results are shown to converge asymptotically to their DDM counterparts as the perturbation of the sensitivity

parameter becomes increasingly small. In these two cases, the FFD results are converged to the DDM results for

∆θ/θ = 10−5.

CONCLUSIONS

This paper focuses on materially-nonlinear-only analytical response sensitivity analysis, using displacement-based

finite elements in conjunction with the Direct Differentiation Method (DDM), of composite beams with deform-

able shear connection under quasi-static monotonic and cyclic loading conditions. Realistic uniaxial constitutive

models are used for the steel and concrete materials as well as for the shear connection. The concrete and shear

connection material models as well as the static condensation procedure at the element level are extended for

response sensitivity computations using the DDM. Two benchmark problems that have been the object of experi-

mental testing are used to illustrate the proposed methodology for response sensitivity analysis. The first bench-

mark problem consists of a two-span asymmetric continuous beam subjected to monotonic loading with a

concentrated force. The second benchmark problem consists of a frame sub-assemblage subjected to quasi-static
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cyclic loading. The finite element response prediction is validated using experimental results available in the liter-

ature for the two benchmark problems. The response sensitivity analysis results obtained according to the Direct

Differentiation Method (DDM) are validated by means of Forward Finite Difference (FFD) analysis. Selected

results of response sensitivity analysis are presented in an effort to quantify the effect and relative importance of

various material constitutive model parameters in regards to the nonlinear quasi-static monotonic and cyclic

response of a tested steel-concrete composite beam. Using the benchmark problem considered, it is also shown that

use of an inadequate convergence tolerance in the nonlinear finite element response calculation may introduce

numerical errors in response sensitivity analysis results obtained using both the DDM and FFD analysis.

The algorithms developed in this study for nonlinear finite element response sensitivity analysis of steel-concrete

composite structures have direct applications in structural optimization, structural reliability analysis, and nonlin-

ear finite element model updating for this type of structures.
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Fig. 1   Kinematics of 2-D composite beam model
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Fig. 2   Hysteretic concrete material model

Fig. 3   Hysteretic model of shear connection
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Fig. 4   (a) Configuration of the Ansourian CTB1 continuous beam, 
(b) degrees of freedom of the 10-DOF composite beam element used
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Fig. 5   Beam CTB1: load-deflection curves

Fig. 6   Beam CTB1: global response sensitivities to fy 
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Fig. 7   Beam CTB1: global response sensitivities to E0 

Fig. 8   Beam CTB1: global response sensitivities to fc 
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Fig. 9   Beam CTB1: global response sensitivities to fsmax 

Fig. 10   Beam CTB1: Sensitivity of global response v3 to fy, E0, fc and fsmax
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Fig. 11   Beam CTB1: sensitivity of shear force fs (at different locations) to fc

Fig. 12   Beam CTB1: sensitivity of shear force fs (at different locations) to fy
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Fig. 13   Beam CTB1: sensitivity of shear force fs (at different locations) to fsmax

Fig. 14   Beam CTB1: sensitivity of shear force fs (at z = 6.50 m) to fc, fy and fsmax.
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Fig. 15   Beam CTB1: sensitivity of mid-span deflection v3 to fsmax using DDM and FFD

Fig. 16   Beam CTB1: sensitivity of mid-span deflection v3 to fsmax using DDM and FFD (close-up)
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Fig. 17   Beam CTB1: sensitivity of shear force fs to fc using DDM and FFD

Fig. 18   Beam CTB1: sensitivity of shear force fs to fc using DDM and FFD (close-up)
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Fig. 19   Beam CTB1: effect of convergence tolerance for response calculation on DDM results

Fig. 20   Beam CTB1: effect of convergence tolerance for response calculation on agreement between 
response sensitivity results obtained using DDM and FFD (case in which FFD results converge 
to DDM)
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Fig. 21   Beam CTB1: effect of convergence tolerance for response calculation on agreement between 
response sensitivity results obtained using DDM and FFD (case in which FFD results do not 
converge to DDM)

Fig. 22   Frame IPC: configuration of test specimen
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Fig. 23   Frame IPC: load-deflection curves 

Fig. 24   Frame IPC: vertical displacement v at mid-span and horizontal displacement w at the right end of 
the beam as functions of the load step number
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Fig. 25   Frame IPC: sensitivities of the beam mid-span vertical deflection v to steel beam material 
parameters

Fig. 26   Frame IPC: sensitivities of the beam mid-span deflection v to parameters related to concrete slab 
and shear connection
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Fig. 27   Frame IPC: sensitivities of the beam horizontal displacement w to steel beam material 
parameters

Fig. 28   Frame IPC: sensitivities of the beam horizontal displacement w to parameters related to concrete 
slab and shear connection
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Fig. 29   Frame IPC: axial force N2 in the steel beam at mid-span as a function of the load step number

Fig. 30   Frame IPC: sensitivities of axial force N2 in the steel beam at mid-span to fy, fsmax, fc
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Fig. 31   Frame IPC: sensitivities of vertical deflection v to fc using DDM and FFD

Fig. 32   Frame IPC: sensitivities of the axial force N2 to fsmax using DDM and FFD
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