
UC Irvine
UC Irvine Previously Published Works

Title
Discrete R symmetries for the MSSM and its singlet extensions

Permalink
https://escholarship.org/uc/item/47q5d3t6

Journal
Nuclear Physics B, 850(1)

ISSN
0550-3213

Authors
Lee, Hyun Min
Raby, Stuart
Ratz, Michael
et al.

Publication Date
2011-09-01

DOI
10.1016/j.nuclphysb.2011.04.009

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution License, availalbe at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47q5d3t6
https://escholarship.org/uc/item/47q5d3t6#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Nuclear Physics B 850 (2011) 1–30

www.elsevier.com/locate/nuclphysb

Discrete R symmetries for the MSSM and its singlet
extensions

Hyun Min Lee a, Stuart Raby b, Michael Ratz c, Graham G. Ross a,d,
Roland Schieren c, Kai Schmidt-Hoberg d, Patrick K.S. Vaudrevange e,∗

a Theory Group, CERN, 1211 Geneva 23, Switzerland
b Department of Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210, USA

c Physik-Department T30, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany
d Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX 1 3NP, UK

e Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,
80333 München, Germany

Received 24 February 2011; accepted 14 April 2011

Available online 19 April 2011

Abstract

We determine the anomaly free discrete R symmetries, consistent with the MSSM, that commute with
SU(5) and suppress the μ parameter and nucleon decay. We show that the order M of such Z

R
M

symme-

tries has to divide 24 and identify 5 viable symmetries. The simplest possibility is a Z
R
4 symmetry which

commutes with SO(10). We present a string-derived model with this Z
R
4 symmetry and the exact MSSM

spectrum below the GUT scale; in this model Z
R
4 originates from the Lorentz symmetry of compactified

dimensions. We extend the discussion to include the singlet extensions of the MSSM and find Z
R
4 and Z

R
8

are the only possible symmetries capable of solving the μ problem in the NMSSM. We also show that a
singlet extension of the MSSM based on a Z

R
24 symmetry can provide a simultaneous solution to the μ and

strong CP problem with the axion coupling in the favoured window.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Supersymmetric extensions of the standard model (SM), such as the minimal supersymmetric
extension, the MSSM, promise to eliminate the hierarchy problem. However they also introduce
serious potential problems and to be viable they must evade the μ-problem and the problem
associated with new baryon- and lepton-number violating terms. This suggests that there should
be an additional underlying symmetry capable of controlling these terms. Dangerous dimension
four operators can be forbidden by R- or matter parity [1–3], which is an anomaly free Z2
subgroup of the continuous baryon minus lepton symmetry U(1)B−L. Dimension five proton
decay operators can be forbidden by ‘baryon triality’ [4], which combines with matter parity to
‘proton hexality’ [5,6]. The latter is the unique anomaly free discrete non-R symmetry forbidding
the dangerous operators while allowing the usual Yukawa couplings, the μ-term and the effective
neutrino mass operator. Anomaly freedom is believed to be a necessary property of discrete
symmetries as otherwise quantum gravity effects may render them inefficient [4,7–9].

However, there are two unpleasant properties of these traditional discrete symmetries. First,
they do not allow to address the μ problem. Second, they do not commute with the symmetries
of the grand unified theories (GUTs) SU(5) or SO(10) [10]. In [11] a discrete R symmetry was
identified which can address the μ problem and commutes with SO(10). This Z

R
4 symmetry is

anomaly free through cancellation by the Green–Schwarz (GS) mechanism. In a recent paper
[12] we have shown that this Z

R
4 is the unique possibility which commutes with SO(10), and

we have pointed out that it also solves the problem associated with dimension five proton decay
operators. Furthermore it contains matter parity as a Z2 subgroup that is left unbroken after
supersymmetry breaking.

In this paper we extend the discussion to consider the possible discrete symmetries of the
MSSM which commute with SU(5). As we shall see, there are only five possibilities with the
simplest one being the Z

R
4 . Our analysis applies to singlet extensions of the MSSM as well.

The paper is organized as follows. In Section 2 we prove that there are only five (generation-
independent) discrete Z

R
M symmetries which (i) commute with SU(5), (ii) allow the usual

Yukawa couplings and dimension five neutrino mass operator and (iii) address the μ and pro-
ton decay problems of the MSSM. Section 3 is dedicated to a more detailed discussion of the
simplest such symmetry, Z

R
4 . We present a globally consistent string compactification with the

exact MSSM spectrum below the compactification scale. The model exhibits the Z
R
4 symmetry,

which originates from the Lorentz group of compactified dimensions. In Section 4 we discuss
discrete R symmetries in singlet extensions of the MSSM. In a theory with the usual NMSSM
couplings the discrete R symmetries can, apart from suppressing the proton decay rate, provide
us with a solution to the NMSSM hierarchy problem. In a different singlet extension, in which the
singlet couples quadratically to the Higgs bilinear, we will identify a unique discrete R symme-
try capable of solving the μ and strong CP problems simultaneously. Finally, Section 5 contains
our conclusions. In two appendices we present a re-derivation of discrete anomalies in the path
integral approach and collect anomaly coefficients for discrete R and non-R symmetries.

2. Discrete symmetries of the MSSM

In this section we discuss discrete symmetries of the MSSM which commute with SU(5) and
can solve the μ problem. As we shall see, the assumption that matter ZM charges commute with
SU(5) allows us to restrict possible ZM symmetries of the MSSM, as well as singlet extensions,
to only few possibilities. We start in Section 2.1 by showing that one cannot address the μ
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problem with non-R symmetries. In Section 2.2 we then turn to the discussion of discrete R

symmetries, for which we prove that the order M has to divide 24. Finally, in Section 2.2.2, we
classify all possible charge assignments.

2.1. Non-R discrete symmetries

We start by discussing non-R symmetries. We show that such discrete symmetries that are
consistent with SO(10) or SU(5) relations for matter, i.e. universal charges for quarks and lep-
tons, cannot forbid the μ term (cf. the similar discussion in [13]).

Consider a ZM symmetry under which the three generations of Q, U and E carry discrete
charge q

g

10 while L and D carry q
g

5
, where g labels the generation index. Our conventions are

given in Appendix B. If the ZM charges obey the even stronger SO(10) relations (i.e. q
g

10 = q
g

5
),

the following discussion applies as well. The anomaly coefficients A3 := ASU(3)C-SU(3)C-ZM
,

A2 := ASU(2)L-SU(2)L-ZM
, A1 := AU(1)Y -U(1)Y -ZM

and A0 := Agrav-grav-ZM
are (cf. Eq. (B.17)

in Appendix B)

A3 = 1

2

3∑
g=1

(
3 · qg

10 + q
g

5

)
, (2.1a)

A2 = 1

2

3∑
g=1

(
3 · qg

10 + q
g

5

)+ 1

2
(qHu + qHd

), (2.1b)

A1 = 1

2

3∑
g=1

(
3 · qg

10 + q
g

5

)+ 3

5
· 1

2
· (qHu + qHd

), (2.1c)

A0 =
3∑

g=1

(
10 · qg

10 + 5 · qg

5

)+ 2qHu + 2qHd
, (2.1d)

where the sum runs over the generation indices g and qHu and qHd
denote the ZM charges of the

up-type and down-type Higgs doublets, respectively. Anomaly freedom requires

(A1�i�3 mod η) = 1

24
(A0 mod η) = ρ (2.2)

with ρ �= 0 in the case of GS anomaly cancellation (cf. Eq. (A.23) in Appendix A.3). Here we
define

η :=
{

M for M odd,

M/2 for M even.
(2.3)

Condition (2.2) implies

A2 − A3 = 0 mod η (2.4)

and hence, also in the case of generation-dependent ZM charges,

1

2
(qHu + qHd

) = 0 mod η. (2.5)
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On the other hand, the condition that the μ term is allowed is

qHu + qHd
= 0 mod M. (2.6)

We therefore see that, if we demand SU(5) relations for matter charges, a non-R ZM symmetry
cannot be used to address the μ problem, even if we allow for GS cancellation of anomalies.

2.2. Discrete R-symmetries

Having seen that non-R symmetries cannot be used to address the μ problem, we turn to
discuss discrete R symmetries. In this subsection, we derive constraints on the order M of Z

R
M

symmetries that can solve the μ problem and accommodate the structure of the MSSM.

2.2.1. A constraint on the order M

After adding the contribution of the gauginos and gravitino the anomaly coefficients are

AR
3 = 1

2

3∑
g=1

(
3q

g

10 + q
g

5

)− 3, (2.7a)

AR
2 = 1

2

3∑
g=1

(
3q

g

10 + q
g

5

)+ 1

2
(qHu + qHd

) − 5, (2.7b)

AR
1 = 1

2

3∑
g=1

(
3q

g

10 + q
g

5

)+ 3

5

[
1

2
(qHu + qHd

) − 11

]
, (2.7c)

AR
0 = −21 + 8 + 3 + 1 +

3∑
g=1

[
10
(
q

g

10 − 1
)+ 5

(
q

g

5
− 1

)]+ 2(qHu + qHd
− 2), (2.7d)

where q10, q5, qHu and qHd
denote the R charges of the matter and Higgs superfields, i.e. matter

fermions and Higgsinos have charges q − 1.
In the case ρ �= 0, the GS mechanism requires the presence of an axion, such that AR

0 is to be
amended by the axino/dilatino contribution (qã = −1).

Subtracting the coefficients from each other leads to the universality conditions

AR
2 − AR

3 = 0 mod η � qHu + qHd
= 4 mod 2η, (2.8a)

AR
1 − AR

3 = 0 mod η �
3

5

[
1

2
(qHu + qHd

) − 6

]
= 0 mod η. (2.8b)

Eq. (2.8a) is equivalent to

1

2
(qHu + qHd

) = 2 + η� (2.9)

with an integer �. Inserting this into Eq. (2.8b) yields

3

5
[�η − 4] = kη (2.10)

with another integer k. Altogether we find

[3� − 5k] = 12/η =
{

24/M, for M even,
(2.11)
12/M, for M odd.
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Table 2.1
Phenomenologically attractive charge assignments. The charges qsh

Hu
and qsh

Hd
are Higgs charges shifted in such a way

that the anomaly coefficients AR
i

(1 � i � 3) are manifestly universal. ρ is the universal value of the anomaly coefficients;
ρ �= 0 indicates GS cancellation of anomalies.

M q10 q5 qHu qHd
qsh
Hu

qsh
Hd

ρ AR
0 (MSSM)

4 1 1 0 0 16 16 1 1
6 5 3 4 0 28 24 0 1
8 1 5 0 4 24 28 1 3

12 5 9 4 0 28 24 3 1
24 5 9 16 12 88 84 9 7

Table 2.2
Charge assignments which satisfy only the first two criteria. Both assignments have ρ = 0.

M q10 q5 qHu qHd
qsh
Hu

qsh
Hd

3 2 0 1 0 10 12
6 2 0 4 0 28 24

In both cases 24/M has to be integer, i.e. M has to divide 24. Thus the possible values of M are
3, 4, 6, 8, 12 and 24.1 In what follows, we consider all these possibilities.

2.2.2. Classification
Given the constraints on the order M , it is straightforward to classify all phenomenologically

attractive charge assignments. Here we assume that the charge assignments are family blind.
Though not absolutely necessary it does ensure that the symmetry does not prevent mixing be-
tween families in the fermion mass matrix. The classification was done by a scan over all possible
values of M . In addition to forbidding the μ term we require that

1. Mixed gauge–Z
R
M anomalies cancel, i.e. AR

1�i�3 = ρ mod η;

2. Yukawa couplings 10 10Hu and 10 5Hd as well as the neutrino mass Weinberg operator
5Hu5Hu are allowed;

3. R-parity violating couplings are forbidden.

Under these constraints the allowed charge assignments are given in Table 2.1.
For completeness we note that there are only two more charge assignments that are allowed

demanding just the first two conditions. They are given in Table 2.2.
One may ask whether there are additional discrete symmetries, such as Z

(R)
O × Z

(R)
P , which

cannot be written as single Z
(R)
M symmetries but also fulfill the three criteria above. The only

candidates for such symmetries are based on the two patterns shown in Table 2.2. We find that
by amending these assignments by the usual matter parity one arrives at the Z

R
6 symmetry of

Table 2.1. Hence our classification also comprises the Z
(R)
O × Z

(R)
P case. Of course, in extensions

of the MSSM, extra states can enjoy additional symmetries.

1 We exclude the case M = 2 since there are no meaningful order 2 discrete R symmetries (cf. e.g. [14]).
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2.2.3. Dimension five nucleon decay operators
Note that the third condition is sufficient to eliminate baryon and lepton number violation

due to dimension four terms in the Lagrange density. However in the MSSM at dimension five
there are problematic operators allowed that generate nucleon decay. To be consistent with the
bounds on nucleon decay these must be suppressed by a mass scale more than eight orders above
the Planck scale, a major problem. However in the case of the Z

R
M symmetries these operators

are automatically absent. To see this note that the requirement that up- and down-type Yukawa
couplings be allowed implies

3q10 + q5 + qHu + qHd
= 4 mod M. (2.12)

Combining this with Eq. (2.8a) gives

3q10 + q5 = 0 mod M, (2.13)

showing that (for M �= 2) the troublesome dimension five operators 10 10 10 5 are automatically
forbidden whenever the Yukawa couplings are allowed.

2.2.4. The gravitational anomaly constraint
For all charge assignments, the MSSM contribution to the gravitational anomaly is

AR
0 (MSSM) = 7 mod η. (2.14)

All cases except for M = 6 have ρ �= 0 and hence require the presence of an axion a. Call the
multiplet containing the axion S,

S|θ=0 = s + ia; (2.15)

later we will identify S with the dilaton. From the coupling to the gauge fields
∫

d2θSWαWα

one infers that the axino/dilatino has R charge −1. Therefore, after adding the axino/dilatino
contribution we obtain

AR
0 (MSSM + axino/dilatino) = 6 mod η. (2.16)

The condition for anomaly freedom is

1

24

(
AR

0 mod η
)= AR

i mod η (2.17)

for 1 � i � 3. Now, since AR
i ∈ Z and since the order M , and therefore η, divides 24, this

condition is equivalent to

AR
0 = 0 mod η. (2.18)

From Eq. (2.16) we see that the cases M = 4 and 12 are anomaly free. The case M = 6 is
anomaly free with an axion that is singlet under Z

R
6 . All the other cases require additional states

in order to cancel the gravitational anomaly.
However this does not necessarily require additional states in the low energy spectrum. This is

because states contributing to the anomaly can acquire mass when the symmetry is spontaneously
broken. Since the R symmetry is broken in the hidden sector when supersymmetry is broken
these states can acquire a mass of order the supersymmetry breaking scale in the hidden sector
which can be as large as 1013 GeV. With this in mind we will not consider the gravitational
anomaly any further.
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Table 2.3
Field content of an SO(10) × Z̃

R
M

model which can produce the symmetries in Table 2.1.

(a) MSSM field content (b) Higgs sector

Label SO(10) Z̃
R
M

Label SO(10) Z̃
R
M

Mi 16 rMi
ψH 16 rψH

H 10 rH ψ
H

16 rψ
H

(c) Z̃
R
M

-charges for different values of M , the resulting Z
R
M

-charge as a linear combination of the U(1)X charge QX

and the Z̃
R
M

charge r . In the last column we list the value of the SO(10)–SO(10)–Z̃
R
M

anomaly ρ

M rMi
rH rψH

rψ
H

Z
R
M

ρ

6 3 2 2 4 5(−4QX + 5r) 2
8 4 2 7 1 3(QX − 5r) 3

12 9 8 8 4 5(−4QX + 5r) 5
24 12 2 23 1 7(QX − 5r) 11

2.2.5. Compatibility with SO(10)

By looking at the symmetries in Table 2.1 we observe that only the Z
R
4 symmetry is compat-

ible with a complete unification of quarks and leptons (q10 = q5). We will now show that also
the other cases can potentially be in accordance with SO(10). The Z

R
M can be a mixture of the

U(1)X subgroup of SO(10) and an additional Z̃
R
M symmetry which commutes with SO(10).

The crucial point is to realize that SO(10) has rank five, and SU(5) and the SM gauge group
have rank four. Hence, there is an extra U(1)X factor. We will denote the U(1)X charge by QX .
The branching rules are [15]

SO(10) ⊃ SU(5) × U(1)X, (2.19a)

10 → 52 + 5−2, (2.19b)

16 → 10−1 + 53 + 1−5. (2.19c)

Consider an SO(10) GUT with an additional Z̃
R
M symmetry as given in Table 2.3. If the SU(5)

singlets contained in the 16 and 16 representations, ψH and ψH , attain VEVs, which have U(1)X
charge QX = ±5, we arrive at the following breaking pattern

SO(10) × Z̃
R
M → SU(5) × Z

R
M. (2.20)

Note that there appears to be an additional Z5 symmetry, which does however not constrain any
couplings since it is the non-trivial center of SU(5) (cf. [16,17]).

In summary, we can obtain our Z
R
M symmetries from an SO(10) GUT. However, the scenarios

presented here are only toy models. First of all, further Higgs fields are needed to break SU(5)

down to the SM. In addition, to obtain doublet–triplet splitting and get rid of dimension five
operators larger Higgs representations are needed. Also, anomaly matching (cf. [16]) forces us to
introduce extra representations because the value of ρ does not equal the one given in Table 2.1.

These considerations also show that the SU(5) relations are mandatory. Since SU(5) and the
standard model gauge group have the same rank, there is no U(1) with which our Z

R
M s could mix

upon breaking SU(5).
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3. A simple Z
R
4 symmetry in the MSSM

In Table 2.1 we survey all symmetries and charge assignments which commute with SU(5).
The simplest one, the Z

R
4 , commutes also with SO(10). In what follows we will discuss this case

in more detail.

3.1. Non-perturbative terms

The gauge invariant superpotential of the MSSM contains

W = μHuHd + κiLiHu

+ Y
ij
e HdLiEj + Y

ij
d HdQiDj + Y

ij
u HuQiUj

+ λ
(0)
ijkLiLjEk + λ

(1)
ijkLiQjDk + λ

(2)
ijkUiDjDk

+ κ
(0)
ij HuLiHuLj + κ

(1)
ijk�QiQjQkL� + κ

(2)
ijk�UiUjDkE�

+ κ
(3)
ijkQiQjQkHd + κ

(4)
ijkQiUjEkHd + κ

(5)
i LiHuHuHd. (3.1)

We see immediately that the coefficients μ, κi , λ
(0)
ijk , λ

(1)
ijk , λ

(2)
ijk , κ

(1)
ijk�, κ

(2)
ijk�, κ

(3)
ijk , κ

(4)
ijk and κ

(5)
i

are forbidden by Z
R
4 perturbatively while Y

ij
e,d,u and κ

(0)
ij are allowed. In what follows we will

show that at the non-perturbative level μ as well as κ
(1)
ijk� and κ

(2)
ijk� will be induced while the R

parity violating couplings κi and λ as well as the κ(3−5) remain zero. The reason is that the latter
are forbidden by a Z2 subgroup of Z

R
4 which is equivalent to matter parity. This subgroup is

unbroken by the supersymmetry breaking sector and thus remains a symmetry of the full theory.
Let us spell out the argument in somewhat more detail. Call the Z

R
4 transformation ζ ,

ζ : matter superfield → i · matter superfield,

Higgs superfield → Higgs superfield,

θ → i · θ,

W → −W . (3.2)

Now look at the transformation ζ 2, under which matter superfields transform with a minus,
Higgs superfields go into themselves and θ → −θ . The transformation fermion → −fermion
and θ → −θ is a symmetry of any SUSY theory, therefore ζ 2 is equivalent to matter parity,
and, in particular, anomaly free with ρ = 0. One can use the path integral (cf. Appendix A) to
show that correlators that vanish due to a non-anomalous symmetry with ρ = 0 also vanish at the
quantum level. Therefore, the matter parity subgroup contained in the Z

R
4 will not be violated by

quantum effects.
On the other hand, correlators which are only forbidden by Z

R
4 but not by Z2, i.e. which are

invariant under ζ 2, can be non-trivial at the quantum level. A convenient way to parametrize ef-
fective couplings describing these effects involve the S field, which shifts under the Z

R
4 symmetry

as (cf. Eq. (A.22))

S → S + i

2
�GS. (3.3)

The discrete shift of S is given by (cf. Eq. (A.23))
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�GS = 1

4π
(AG-G-ZR

4
mod 2) = 1 + 2ν

4π
(3.4)

with ν ∈ Z. This allows us to write down terms

�Wnp = exp

(
−8π2 1 + 2n

1 + 2ν
S

)[
B0 + μHuHd + κ

(1)
ijk�QiQjQkL�

+ κ
(2)
ijk�UiUjDkE�

]
(3.5)

with some coefficients B0, μ and κ
(1,2)
ijk� and n ∈ Z. Such superpotential terms are Z

R
4 covariant,

i.e. the exponential transforms with a minus under Z
R
4 while the terms in the square brackets are

invariant. Due to the fact that S enters the gauge kinetic function, these terms are proportional to

e
−8π2 1+2n

1+2ν
1
g2 . For n = ν = 0 they can be interpreted as originating from t’Hooft instanton effects.

The 8π2 in the exponential can also be obtained directly in a stringy computation [18]. The
crucial property of the non-perturbative couplings (3.5) is that they are naturally suppressed.

The critical question concerns now the interpretation of the e−8π2 1+2n
1+2ν

S terms. So far we have
shown that such terms are Z

R
4 covariant. In the MSSM as a ‘stand-alone’ theory, SU(3)C or

SU(2)L instantons can generate such terms, but their magnitude turns out to be very small.
Whether or not further terms, with given n and ν, appear depends on the model. Let us now
make the very common assumption that there is a hidden sector that gets strong at some in-
termediate scale Λ. Then the non-perturbative terms related to the strong dynamics may well
be the source of supersymmetry breakdown [19,20]. Given non-renormalizable interactions be-
tween the MSSM and the hidden sector, communicated by some messenger fields, Λ sets the
magnitude of the MSSM soft terms, msoft ∼ Λ3/M2∗ , with M∗ being the messenger scale. In
such settings, holomorphic, i.e. superpotential, terms can also be induced by higher-dimensional
operators. That is, the �Wnp terms can appear with magnitude msoft ∼ Λ3/M2∗ , but in principle
they may also be absent if there are no higher-dimensional operators connecting the MSSM sec-
tor with the hidden sector exhibiting strong dynamics. In other words, if the MSSM fields are
singlets under the hidden sector gauge interactions, there is, a priori, no guarantee that the �Wnp
terms appear with reasonable size. If the scale of MSSM soft terms is related to some hidden sec-
tor strong dynamics, we expect the holomorphic terms also to appear, unless there are additional
symmetries beyond Z

R
4 that forbid such couplings. Assuming that the dominant non-perturbative

scale is related to supersymmetry breakdown we expect that the �Wnp terms are of the order
of the soft supersymmetry breaking terms. We will mainly focus on gravity mediation, where
M∗ = MP and these terms are of the order of the gravitino mass m3/2 (in Planck units). Below
in Section 3.5 we will present an explicit string theory example in which the non-perturbative μ

term is directly connected to m3/2.
At this point let us mention that for the case of discrete R symmetries we disagree with

statements made recently in [14], where it was claimed that, in the context of gravity mediation,
R symmetries will be broken at the Planck scale and be therefore ineffective. The claim relies
on the observation that there are fields with Planck scale VEVs that break the R symmetry. The
derivation of this result relies on the inequality |〈W 〉| � 1

2fr |F | (cf. Eq. (9) in [14]) where fr

is the R-axion decay constant. This was derived for the case of continuous R symmetries by
taking the limit of an infinitesimal transformation [14]. For the case of discrete R symmetries
the inequality is no longer true and there is no requirement that R-non-singlets acquire Planck
scale VEVs. In this case the R symmetry can be broken at a much lower scale. This is the case
in the supergravity examples discussed here. In them the breaking of the R symmetry occurs



10 H.M. Lee et al. / Nuclear Physics B 850 (2011) 1–30
non-perturbatively at an intermediate scale in a hidden sector and it is the superpotential VEV
〈W 〉 rather than a field VEV that is the order parameter for R symmetry breaking. Since the
superpotential only appears at the non-perturbative level it is small. Also all other R symmetry
breaking terms are small. This applies also to other schemes such as the one discussed in [21],
where a small 〈W 〉 is a consequence of an approximate R symmetry. Here the R symmetry is
broken perturbatively, but again the order parameter, i.e. the superpotential VEV, is very small.
In conclusion, R symmetries are a useful tool also, or in particular, in gravity mediation, where
the same parameter, the small superpotential VEV, both sets the scale of soft masses and cancels
the vacuum energy. In what follows, we discuss how the connection between the �Wnp terms
and m3/2 arises in the scheme of Kähler stabilization.

3.2. Dilaton stabilization and supersymmetry breaking

At the present stage of the discussion, the S field has no potential and supersymmetry is
unbroken. An economical way to rectify this situation is to invoke the stringy scheme of Kähler
stabilization [22–25] (see also Appendix C).2 In this case the term of the form e−bS represents
a hidden sector gaugino condensate [20], which sets the scale for supersymmetry breakdown.
According to the above discussion, in the presence of our Z

R
4 symmetry

b = 8π2 1 + 2n

1 + 2ν
. (3.6)

Let us discuss what that means in the case of a hidden SU(Nc) theory with Nf chiral superfields
in the Nc + Nc representations. Here the coefficient b is given by

b = 3

2β
= 3 · 8π2

3Nc − Nf

. (3.7)

Therefore

3

3Nc − Nf

= 1 + 2n

1 + 2ν
. (3.8)

In the scheme under consideration, supersymmetry is broken by a non-trivial VEV of FS .
This leads to gaugino and soft scalar masses, following the pattern of the so-called “dilaton dom-
inated scenario” [26]. This scenario has a number of phenomenologically attractive features. In
particular, due to flavour universality in the soft breaking sector, it avoids the SUSY FCNC prob-
lem. Also, most of the physical CP phases, e.g. arg(A∗M), vanish which ameliorates the SUSY
CP problem. However in the dilaton dominated case the vacuum structure may favour an unac-
ceptable colour breaking minimum [27]. Other phenomenological aspects have been discussed
in [28].

Moreover, the (non-perturbative) superpotential acquires a non-trivial VEV as well,

〈W 〉 ∼ e−b〈S〉 �= 0. (3.9)

All gauge invariant terms which have been forbidden because they have zero R charge can now be
obtained by multiplying them with 〈W 〉. 〈W 〉 will hence be the order parameter for R symmetry
breaking. Inserting this in Eq. (3.5) we find that there will be a μ term of the order of 〈W 〉,

2 Alternatively, other stabilization schemes, such as racetrack mechanisms, may be applicable here.
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i.e. of the order of the gravitino mass m3/2, as well as κ
(1)
ijk� ∼ 10−15/MP. On the other hand,

terms which have odd Z
R
4 charge cannot be obtained by multiplying them by e−b〈S〉; these are

precisely the R parity violating couplings κi , λ(0), λ(1) and λ(2) in Eq. (3.1), showing again that
matter parity will not be broken.

3.3. Phenomenology

The suppression of the κ(1) term leads to a situation in which dimension five proton decay will
be unobservably small. Therefore, proton decay will proceed through dimension six operators
mediated by gauge boson exchange.

In settings with discrete R symmetries one should worry about the cosmological domain wall
problem [29]. The domain walls form at the stage of R symmetry breaking, typically the scale
of supersymmetry breaking. For the case of gravity mediation this is at an intermediate scale of
O(1012) GeV. Provided the Hubble scale during inflation is below this scale, domain walls have
sufficient time to form and then they will be inflated away. The requirement that no domain walls
are created after inflation translates in an upper bound on the reheat temperature TR , which, given
the other bounds on TR in supersymmetric cosmology, appears rather mild.

A discrete R symmetry may also be useful for inflationary scenarios. For example, in [30], it
is argued that a Z

R
8 symmetry, with inflaton field φ carrying R charge 2, can be used to guarantee

that the inflaton potential is flat near the origin and give enough inflation.3

In summary, for the case of gravity mediated supersymmetry breaking, non-perturbative ef-
fects naturally generate a μ parameter of the order of the gravitino mass. The symmetry ensures
that the proton decay rate is well below the experimental limit and an exact matter parity is left
that guarantees SUSY particles can only be pair produced and the lightest SUSY particle is sta-
ble. Thus one is left with the usual MSSM phenomenology with negligibly small corrections
from higher dimension terms.

3.4. Z
R
4 literature

A version of the Z
R
4 symmetry has been prosed by Kurosawa et al. [31] where the traditional

version of anomaly constraints was imposed, i.e. the possibility of GS anomaly cancellation
has not been taken into account. This lead to a setting in which extra light charged states were
required to cancel the anomaly.

The Z
R
4 symmetry with GS anomaly cancellation has also been discussed by Babu et al. [11].

There are several aspects in which our analysis differs from or goes beyond [11]:

1. We discuss the uniqueness for the first time.
2. We point out that the Z

R
4 symmetry also suppresses dimension five operators.

3. We present the first discussion of non-perturbative Z
R
4 violating effects.

4. Related to the previous point, Babu et al. only discuss generation of the μ term by the
Giudice–Masiero mechanism. However, there will also be a holomorphic non-perturbative
(i.e. Kim–Nilles type) contribution.

3 Note, their definition of the order of the discrete symmetry differs from ours. What they call Z
R we call Z

R .
4 8
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Table 3.1
Spectrum of the orbifold model from [32]. The representations w.r.t. GSM × [SU(3) × SU(2) × SU(2)]hid, their multi-
plicities (#) and labels are listed.

# Representation Label # Representation Label

3 (3,2;1,1,1) 1
6

Q 3 (3,1;1,1,1)− 2
3

U

8 (3,1;1,1,1) 1
3

D 5 (3,1;1,1,1)− 1
3

D

7 (1,2;1,1,1)− 1
2

L 4 (1,2;1,1,1) 1
2

L

3 (1,1;1,1,1)1 E 33 (1,1;1,1,1)0 N

5 (1,1;3,1,1)0 X 5 (1,1;3,1,1)0 X

6 (1,1;1,1,2)0 Y 6 (1,1;1,2,1)0 Z

5. In [11] the Z
R
4 is argued to originate from an ‘anomalous’ U(1)R . We are not aware of a

model in which such an ‘anomalous’ U(1)R appears in string models. However, we also
cannot rule out this possibility.

6. We present a detailed discussion of the mixed hypercharge coefficient A1.
7. Babu et al. do not discuss the gravitational anomalies.

3.5. String theory realization

In the above discussion we argued that, if some hidden sector strong dynamics was responsible
for supersymmetry breakdown, also a μ term of the right size will be induced by this dynamics. In
order to render our discussion more specific, we will now discuss an explicit, globally consistent
string-derived model. Such models have the important property that they are complete, i.e. unlike
bottom-up (or ‘local’) models they cannot be ‘amended’ by some extra states or sectors. This
allows us to clarify whether or not a reasonable μ term will appear.

Making extensive use of the methods to determine the remnant symmetries described in [17],
we were able to find examples realising the Z

R
4 discussed in Section 3, based on the string model

derived in [32] and similar models, with the exact MSSM spectrum, a large top Yukawa coupling,
a non-trivial hidden sector etc. In what follows, we present an explicit example.

Consider the MSSM candidate model of [32]. It is obtained by the compactification of the
E8 ×E8 heterotic string on a Z2 ×Z2 orbifold with an additional freely acting Z2. At the orbifold
point (where the VEVs of all fields are set to zero) the E8 × E8 gauge group gets broken to

GSM × [
SU(3) × SU(2) × SU(2)

]
hid (3.10)

times eight U(1) factors. One of them, denoted by U(1)anom, appears anomalous, i.e. trQanom =
180 �= 0 using the normalization |tanom|2 = 15. Hence, a one-loop Fayet–Iliopoulos D-term gets
induced. Furthermore, the massless spectrum includes three generations of quarks and leptons
and is summarized in Table 3.1. More details on the model can be found in [33].

Next, we choose a vacuum configuration in which the SM singlets

{φi} = {X4,X5,X3,X4,X5, Y1, Y2,Z1,Z2,

N1,N2,N4,N7,N10,N15,N16,N17,

N20,N21,N25,N27,N28,N30,N32,N33} (3.11)

attain VEVs. These fields are charged with respect to the hidden sector gauge group, the U(1)

factors and several discrete symmetries (i.e. this orbifold compactification provides three Z
R

4
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Table 3.2
Z

R
4 × Z2 charges of the fields with SM quantum numbers.

Quarks and leptons Higgs and exotics

Q1 1 0 U1 1 0 L1 0 0 L1 0 0
Q2 1 1 U2 1 1 L2 0 0 L3 2 0
Q3 1 1 U3 1 1 L3 2 0 L4 0 0

D3 1 1 L2 1 1 L4 2 0 L5 0 0

D7 1 0 L6 1 0 D1 0 0 D1 0 0
D8 1 0 L7 1 0 D2 2 0 D2 2 0

E1 1 0 D4 2 0 D3 0 0
E2 1 1 D5 0 0 D4 2 0
E3 1 1 D6 0 0 D5 2 0

symmetries reflecting the discrete rotational symmetry of the three Z2 orbifold planes and six
Z2 factors coming from the space group selection rule, see Appendix B of [32]). Hence, the φi

VEVs of Eq. (3.11) break these (gauge and discrete) symmetries and it turns out that

GSM × Z
R
4 × Z2 (3.12)

remains unbroken, where Z
R
4 is a mixture of an orbifold Z

R
4 and other symmetries.4 The Z

R
4 ×Z2

charges of the SM charged fields are listed in Table 3.2. From there we see that the Z
R
4 factor

gives a stringy realisation of the Z
R
4 symmetry described in a bottom-up approach in Section 3.

Furthermore, the φi VEVs also provide mass terms for the exotics, which are massless at the
orbifold point, and allow us to cancel the Fayet–Iliopoulos D-term.

In detail, we find four Fayet–Iliopoulos monomials, i.e. monomials that are gauge invariant
except for a total negative U(1)anom charge such that their VEVs can cancel the positive Fayet–
Iliopoulos term in the D-term potential (cf. [34]). The monomials read{

N4
28Y1Y2, N4

28Z1Z2, N4
33Y1Y2, N4

33Z1Z2
}
,

with Qanom(FI monomial) = −15. Further, we find monomials with zero or positive U(1)anom
charge involving all φi fields from Eq. (3.11). Hence, this represents a D-flat configuration.

Matter fields are identified as fields with Z
R
4 charge 1, see Table 3.2, and are given by Q1, Q2,

Q3, U1, U2, U3, E1, E2, E3, D3, D7, D8, L2, L6 and L7. An inspection of the discrete charges
of the Higgs candidates, i.e. the remaining L and L fields, reveals that there is one massless
Higgs pair at the perturbative level. Unfortunately, the additional Z2, which we cannot break,
forbids some Yukawa couplings such that the charged lepton and d-type Yukawa couplings Ye

and Yd have rank 2.
More explicitly, we have computed the couplings using the well-known string selection rules

[35,36], which have been extended to the case of non-local GUT breaking [32]. For the Higgs
mass matrix we find

MHiggs =

⎛⎜⎜⎝
0 N15 0 0

0 φ13 0 0
φ11 0 N10 φ3

φ11 0 φ3 N10

⎞⎟⎟⎠ , (3.13)

4 Meanwhile a very similar string model exhibiting vacua without the extra Z2 has been found [18].
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Fig. 1. Absence of induced QQQL operators. Either one vertex or the mass term is forbidden by Z
R
4 .

where for example φ3 denotes a sum of known monomials in the fields of Eq. (3.11) starting at
degree three. Therefore a linear combination of L1 and L2 as well as a linear combination of L1,
L4 and L5 remains massless. The mass matrix of the extra colour triplets

{δi} = {D1,D2,D3,D4,D5}, (3.14a)

{δi} = {D1,D2,D4,D5,D6} (3.14b)

is

Mextra triplets =

⎛⎜⎜⎜⎝
0 N1 φ9 0 0

N2 0 0 N16 N20
0 φ3 φ13 0 0

N28 0 0 N10 φ3

N33 0 0 φ3 N10

⎞⎟⎟⎟⎠ . (3.15)

So we see that most exotics decouple at the linear level in the VEV fields φi , one pair of exotic
triplets gets masses at order nine in the φi fields and another one at order three. One may speculate
that this leads to the presence of colour triplets somewhat below the GUT scale, which may
account for the fact that, within the MSSM, the strong fine structure constant α3 = g2

3/(4π) turns
out to be about 3% smaller than α1 and α2 at MGUT. An important feature of the Z

R
4 symmetry

is that integrating out the triplets does not give rise to dimension 5 proton decay operators, as
each triplet that couples to quarks and leptons pairs up with a triplet that does not (cf. the similar
discussion in [37]). In other words, the mass partner δ of a triplet δ that couples to Q�Lk (and
therefore has Z

R
4 charge 0) cannot couple to Qi Qj (Fig. 1).

The Yukawa couplings are

Yu = L1

(1 0 0
0 φ4 φ4

0 φ4 φ4

)
+ L2

(
φ12 0 0
0 φ4 φ4

0 φ4 φ4

)
, (3.16a)

Yd = L1

( 0 φ22 φ22

φ22 0 0
φ22 0 0

)
+ L4

( 0 1 φ12

1 0 0
φ12 0 0

)
(3.16b)

+ L5

( 0 φ12 1
φ12 0 0
1 0 0

)
= YT

e . (3.16c)

As already mentioned, Yd and Ye have rank 2.
A crucial property of the string embedding is that, unlike in the bottom-up approach, we have

obtained an understanding of the origin of the Z
R
4 symmetry. In stringy language discrete R sym-

metries originate from what is called “H -momentum conservation” [35], which reflects discrete



H.M. Lee et al. / Nuclear Physics B 850 (2011) 1–30 15
rotational symmetries of compact space–time dimensions. In our orbifold we have three T
2/Z2

orbifold planes which can be rotated against each other by 180◦. Each rotational symmetry man-
ifests itself as a discrete order four R symmetry in the effective field-theoretic description of the
model. The remnant Z

R
4 discussed above is a linear combination of such symmetries and other

discrete symmetries, either coming from the space group selection rule or emerging from contin-
uous U(1) symmetries through spontaneous breaking (see the general discussion in [17]). Note
also that such discrete R symmetries can already appear anomalous at the orbifold point [38].
That is, no mixing with the so-called anomalous U(1) is required to obtain a Z

R
M symmetry

whose anomalies are canceled by the GS mechanism.5

Perhaps the most important property of the model is that there is a proportionality between the
holomorphic mass term connecting L1 and L1 and the superpotential VEV. This relation can be
derived in an SU(6) orbifold GUT limit of the model, where it emerges due to gauge invariance
in extra dimensions [39] (cf. also the field-theoretic discussion in [40,41]). Let us comment that
the same SU(6) gauge symmetry also enforces the tree-level equality between the gauge and
top–Yukawa couplings [42]. We hence see that, at least in this model, the superpotential VEV is
both a measure for the gravitino mass, as usual, and the μ term.

4. Singlet extensions

In Section 2.2 we have shown that the requirement of universality for the mixed gauge anoma-
lies constrains the order M of a potential Z

R
M symmetry to be a divisor of 24. As we have seen,

this analysis carries over in an obvious way to singlet extensions of the MSSM, since additional
SM singlet fields cannot change the constraints coming from the mixed gauge anomalies. In such
extensions the MSSM subsector still has to obey the criteria derived in Section 2.2. However, the
extra (singlet) fields can be subject to additional symmetries.

In what follows we concentrate on two simple singlet extensions in which one or two singlet
fields, respectively, are added. The first part of the discussion, Section 4.1, is on the so-called
NMSSM, in which the singlet couples to the Higgs bilinear and there are cubic self-interactions.
Section 4.2 is dedicated to a singlet extension of the MSSM which is capable of addressing the
strong CP problem.

4.1. NMSSM

In the NMSSM, there is one additional singlet N with superpotential

W = W μ=0
MSSM + λNHuHd + κN3. (4.1)

Let us now consider what this implies for the order M of a Z
R
M symmetry.

4.1.1. Constraints from NMSSM couplings
There are three different classes of Z

R
M symmetries for which the N3-term of Eq. (4.1) implies

different charges for the singlet N , i.e.

5 The generality of the Z
R
4 symmetry connected with a Z2 orbifold suggests that Z

R
4 invariant models may also be

obtained in other orbifold constructions such as Z6-II or Z4 × Z2 orbifolds of T
6.
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Table 4.1
Charge assignments for the Z

R
4 symmetry.

M q10 q5 qHu qHd
qN

4 1 1 0 0 2

Table 4.2
Charge assignments for the Z

R
8 symmetry.

M q10 q5 qHu qHd
qN

8 1 5 0 4 6

M = 0 mod 3 ⇒ no N3 term possible, (4.2)

M = 1 mod 3 ⇒ qN = M + 2

3
mod M, (4.3)

M = 2 mod 3 ⇒ qN = 2M + 2

3
mod M, (4.4)

with qN the Z
R
M charge of N .

M = 1 mod 3. Let us first consider the case M = 1 mod 3. The term λNHuHd together with
Eq. (2.8a) then implies(

M + 2

3
mod M

)
+ (4 mod 2η) = 2 mod M

⇒ M + 8

3
= 0 mod M. (4.5)

This equation has only one non-trivial solution for integer M , namely M = 4. Note that in this
case qN = 2 mod 4 and a linear term in N is also allowed in the superpotential. Strictly speaking
this is not the NMSSM but it is viable if the linear term is very small. We will discuss later why
this may be natural.

Following the analysis of Section 2.2 and using Eq. (4.3), the unique charge assignment com-
patible with the Weinberg operator is shown in Table 4.1.

This is exactly the Z
R
4 symmetry which we discussed in Section 3. We have seen that the

mixed gauge anomaly coefficients of this symmetry satisfy the Green–Schwarz condition. Of
course the singlet does not change these coefficients, so the analysis still applies.

M = 2 mod 3. Let us now consider the case M = 2 mod 3. The term λNHuHd together with
Eq. (2.8a) then implies

2M + 8

3
= 0 mod M. (4.6)

The solutions to this equation are M = 2,8. As we have noted earlier there are no meaningful
M = 2 R symmetries. The M = 8 case however is very interesting since, in this case, qN =
6 mod 8 and the linear term in N is forbidden. Following the analysis of Section 2.2 and using
Eq. (4.4), the unique charge assignment compatible with the Weinberg operator is shown in
Table 4.2.

As the singlet does not contribute to mixed gauge anomalies, we know already from Table 2.1
that the Z

R symmetry has AR (MSSM) = ρ = 1.
8 1�i�3
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4.1.2. The hierarchy problem
Searching for possible Z

R
M symmetries in the context of the NMSSM we found that there are

only two potential candidates: a Z
R
4 and a Z

R
8 symmetry. The Z

R
4 symmetry is actually a subgroup

of the Z
R
8 symmetry, hence both symmetries are closely related. While the Z

R
4 commutes with

SO(10) the Z
R
8 only commutes with SU(5). In both cases all dimension four and five baryon and

lepton number violating operators are forbidden (except for the Weinberg operator), consistent
with what we found in Section 2.2.

A potential problem with NMSSM models arises because SUSY breaking breaks the R sym-
metry and in radiative order a linear term in N is generated in the superpotential. If the coefficient
of this linear term is larger than the square of the electroweak scale it will lead to a large VEV
for the singlet N and therefore to a destabilization of the SUSY solution to the gauge hierarchy
problem. This has been studied in detail by Abel [43] who showed that the only dangerous op-
erators that induce divergent tadpoles arise either from even terms in the superpotential or odd
terms in the Kähler potential. He also showed that an R symmetry can avoid such terms because
of the different R charges of the super- and Kähler-potential (cf. also [44]). From the charge
assignments of Tables 4.1 and 4.2 for the singlet N and the Higgs fields it is easy to show that
the super- and Kähler-potentials actually do have exactly this structure in both the Z

R
4 and the

Z
R
8 case and so in both cases radiative corrections do not destabilise the SUSY solution to the

hierarchy problem.
The main difference between Z

R
4 and Z

R
8 is that the former allows a linear term even at

tree level. Does this mean that it is necessary to have the full Z
R
8 symmetry when building

the NMSSM? In effective theories, such as those describing the massless degrees of freedom
in string compactifications, the superpotential starts with cubic terms in the fields and the lin-
ear term only appears through the coupling of the singlet field to fields acquiring VEVs. If the
only (non-moduli) fields, φ, with VEVs above the electroweak scale are in the hidden sector
the coupling will be suppressed by messenger field masses, M∗, which may be as large as the
Planck scale. Allowing for trilinear couplings to messenger fields as well as trilinear couplings
between messenger and hidden sector fields and assuming no additional symmetries, the leading
term in the superpotential after integrating out the messenger fields is Nφ4/M2∗ with the mes-
senger scale M∗. Taking Planck scale messengers, the constraint that this should not disturb the
hierarchy is that 〈φ〉 �

√
MWMP which is satisfied if the dominant VEV comes from the SUSY

breaking sector. In this case it is sufficient to impose just the Z
R
4 symmetry when building the

NMSSM.
The role of the SM singlets ψ

(i)
2 with R-charge 2 (such as N for the case Z

R
4 ) has recently

been discussed in the context of singlet (moduli) stabilization [18]. There it was found that for
a superpotential with generic coefficients the number of singlets with R-charge 2 should not ex-
ceed the number of fields φ

(j)

0 with R-charge 0 since otherwise the F -term conditions would

overconstrain the system. Moreover, the ψ
(i)
2 fields pair up with an equal number of φ

(j)

0 fields.
That is, for generic superpotential coefficients one might not expect to find vacua with an unbro-
ken Z

R
4 symmetry and a massless singlet with R-charge 2. However, it is quite conceivable that

there are symmetries between the F -terms. In such a situation the ψ
(i)
2 −φ

(j)

0 mass matrix won’t
have full rank such that one is effectively left with one (or more) singlet(s) with R-charge 2.
It will be interesting to see if this situation can be realized in string models in which there are
additional symmetries, such as D4 [45,46], relating the superpotential coefficients.
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4.1.3. Non-perturbative effects
Non-perturbative effects may also be important in determining the low energy phenomenol-

ogy. From Eq. (3.5) we see that the superpotential has a term of the form

�Wnp = B0e−bS (4.7)

with a constant b. This parametrizes the non-perturbative effects discussed above, and may be
interpreted as a hidden sector gaugino condensate. It provides the order parameter for local su-
persymmetry and generates the gravitino mass

〈�Wnp〉
M2

P

∼ 〈λλ〉
M2

P

∼ m3/2. (4.8)

�Wnp has R-charge 2 (cf. the discussion in Section 3) and similar non-perturbative effects can
contribute to further terms in the superpotential. The crucial property of the non-perturbative
couplings is that they are naturally suppressed. To parametrize these effects we denote by a
superfield Y a non-perturbative term of the form given in Eq. (4.7) (scaled by the factor M−2

P )
carrying R-charge 2 and we construct the superpotential involving Y that is consistent with the
relevant R symmetry.

The lowest superpotential terms in Y have the form

�W
Z

R
4

= Y + Y 2N + YN2 + YHuHd

∼ m3/2M
2
P + m2

3/2N + m3/2N
2 + m3/2HuHd, (4.9)

�W
Z

R
8

= Y + Y 2(N + YN2 + YHuHd

)
∼ m3/2M

2
P + m2

3/2N + m3
3/2

M2
P

N2 + m3
3/2

M2
P

HuHd. (4.10)

All of these terms have magnitude determined by the gravitino mass scale. For gauge media-
tion this scale can be very small and these terms negligible. For gravity mediation however the
gravitino mass scale is the scale of supersymmetry breaking in the visible sector and the unsup-
pressed terms cannot be neglected. In this case, the magnitude of the �W

Z
R
4

terms is such as
to reproduce the superpotential of the S-MSSM [47,48], where, apart from the usual NMSSM
couplings also holomorphic mass terms for the singlets and the Higgs fields of the order m3/2

are introduced. This extension of the SM has been shown to significantly reduce the fine tuning
needed to accommodate the LEP Higgs mass bound [47,48]. Our analysis yields a justification
for the small holomorphic terms, which have so far just been imposed by hand.

Interestingly the form of the non-perturbative effects is very sensitive to the underlying sym-
metry. For the case of Z

R
4 there are additional unsuppressed linear and quadratic terms in N as

well as a non-perturbative contribution to the Higgsino mass. For the case of Z
R
8 only the linear

term in N is unsuppressed. Because the magnitude of all these terms is determined by the grav-
itino mass they will not disturb the SUSY solution to the hierarchy problem. However, for the
case of gravity mediation, the terms cannot be neglected and may be expected to significantly
change the NMSSM phenomenology. Given the different non-perturbative terms appearing in
the Z

R and Z
R we may expect these to have different phenomenological implications.
4 8
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4.2. Discrete R symmetries and the strong CP problem

The axion solution to the strong CP problem remains the most convincing to date. Since it is
based on the existence of a Peccei–Quinn (PQ) symmetry that forbids the μ term it is of interest
to ask whether a discrete R symmetry can play the role of the PQ symmetry. Let us start by
briefly discussing the role of axions in our setup with Z

R
M symmetries with particular focus on

a possible solution of the strong CP problem. One potential candidate for such an axion is the
universal Green–Schwarz axion, a = ImS, cf. Eq. (2.15). As discussed in Appendix C, in the case
of Kähler stabilisation we are — to leading order — left with a massless GS axion. However, as
was e.g. shown in [49], the corresponding axion decay constant is of order the Planck scale if we
demand the usual value for the unified gauge coupling. This is well outside the cosmologically
allowed range 1010 GeV < fa < 3 × 1011 GeV, assuming no fine tuning in the initial axion
VEV [49].

Kim and Nilles [50] have proposed an interesting model that naturally gives an axion decay
constant in the favoured range. They achieve this by requiring that the coupling of the MSSM sin-
glet field that contains the axion to the Higgs supermultiplets be quadratic with a superpotential
of the form

W = α

MP
N2HuHd. (4.11)

If the inverse mass scale, MP, associated with this operator (the mediator scale) is taken to be the
Planck scale with α = O(1) an electroweak scale μ term of O(m3/2) is generated if the singlet
VEV (〈N〉 ≡ fa) is in the desired range. This corresponds to 〈N〉 = O(

√
m3/2MP) for the case

of gravity mediated supersymmetry breaking with m3/2 close to the electroweak breaking scale.
Furthermore, the theory has a global (accidental) U(1) PQ symmetry under which HuHd and
the singlet N transform non-trivially. Hence, the VEV of N breaks the PQ symmetry and for the
case of gravity mediated supersymmetry breaking the scale of breaking is of O(1010–1011 GeV).
So the associated axion coming from the singlet N has the right properties to solve the strong
CP-problem [50].

One has to ensure that higher-dimensional operators, which explicitly break the PQ symmetry,
do not spoil the solution.6 An additional complication in the construction of a viable model is
that one needs an |N |6 term in the scalar potential to get an intermediate scale VEV of the
correct magnitude if the soft supersymmetry breaking mass of the N field is O(m3/2). Since a
superpotential term N4 breaks the PQ symmetry too strongly to give a viable axion at least one
additional singlet (called X) is needed to generate the |N |6 term in the F -term potential. Let us
consider whether the Z

R
M symmetries can give such a structure.

In order to construct a viable model with intermediate scale breaking we start with the super-
potential

W = α

MP
N2HuHd + β

MP
XN3, (4.12)

which requires Z
R
M charges qN = −1 and qX = 5, cf. Table 2.1. Including soft SUSY breaking

mass terms, this gives the potential

6 A continuous R symmetry can protect the PQ symmetry at higher orders if it is broken only by the superpotential
VEV and the intermediate scale VEVs of singlets [51].
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V =
∣∣∣∣ 2α

MP
NHuHd + 3β

MP
XN2

∣∣∣∣2 +
∣∣∣∣ β

MP
N3

∣∣∣∣2 + m2
N |N |2 + m2

X|X|2 (4.13)

that has the required |N |6 stabilising term. Provided m2
X is negative, the field X acquires a

VEV

〈X〉 ∼ O
(〈N〉3/M2

P

)
, (4.14)

where we have used 〈Hu〉 ∼ 〈Hd〉 ∼ (〈N〉2/MP) = O(m3/2). The superpotential in Eq. (4.12)
has a global U(1) PQ symmetry under which HuHd , N and X transform non-trivially. However
the superpotential is not the most general one allowed by an underlying discrete R symmetry
for this will allow additional terms of the form NpXq for p,q integer, where the values of
p,q are constrained by the choice of Z

R
M . Such terms will break the PQ symmetry generating a

mass for the would-be axion. If the axion solution to the strong CP problem is to be maintained
this contribution to the mass should be five orders of magnitude smaller than the corresponding
contribution from QCD, δma � 10−5m

QCD
a � 10−9 eV [52,53]. This puts a strong constraint

on the discrete symmetry for it must be large enough to forbid the additional terms to a high
order.

Including the NpXq term in Eq. (4.12) one sees that it is the interference between the last two
terms in |FX|2 that gives the dominant contribution because the VEV of X is smaller than the
VEV of N . This term is of O(Np+3Xq−1/M

p+q+1
P ) in the potential and gives a contribution to

the axion mass given by

δm2
a = O

(
Np+1Xq−1/M

p+q−2
P

)= O
(
Np+3q−2/M

p+3q−4
P

)
. (4.15)

The leading terms for the candidate Z
R
M symmetries (for which 5q − p − 2 = 0 mod M) are N2,

N4, X2, NX3 and N8X2 corresponding to p +3q −2 = 0,2,4,8 and 12 for M = 4,6,8,12 and
24 respectively. The constraint δm2

a < 10−18 eV2 is equivalent to p + 3q − 2 > 8 so we see that
only Z

R
24 is large enough to accommodate this method of simultaneously generating the μ term

and solving the strong CP problem.
Note that the singlets also induce baryon and lepton number violation as well as a small

amount of R parity violation. In the case of the Z
R
24 the leading order terms (cf. Table 2.1) are

given by

XN3

M5
P

10 10 10 5 and
XN2

M3
P

10 5 5. (4.16)

With intermediate scale VEVs for N and 〈X〉 = O(〈N〉3/M2
P) the contribution of these opera-

tors to nucleon decay is strongly suppressed lying below the irreducible dimension 6 operator
contribution. Also the R parity violation is negligible. In summary, a singlet extension of the
MSSM with a Z

R
24 symmetry provides us with a simultaneous solution to the μ and strong CP

problems. The phenomenological implications for the Higgs structure may differ significantly
from the NMSSM and remain to be analysed.

5. Conclusions

We have discussed possible discrete symmetries for the MSSM which commute with SU(5).
We have seen that, in order to address the μ problem, these have to be R symmetries. We
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have surveyed all possible discrete Z
R
M symmetries. Anomaly cancellation requires that the

order M be a divisor of 24. We identified 5 phenomenologically viable symmetries for the
MSSM.

The simplest of the 5 MSSM symmetries is a Z
R
4 which commutes with SO(10). This symme-

try forbids all R-parity violating couplings, dimension five proton decay operators and the μ term
at tree-level while allowing the usual Yukawa couplings and the neutrino mass operator. At the
non-perturbative level the μ term and the dimension five proton decay operators are generated.
We argued that in settings in which supersymmetry breaking is related to some non-perturbative
dynamics the μ term will be of the order of the MSSM soft terms. In particular, in gravity me-
diation we will have μ ∼ m3/2 and coefficients of the dimension five proton decay operators

κ
(1,2)
ijk� ∼ m3/2/M

2
P , i.e. sufficiently suppressed. Thus the Z

R
4 symmetry provides us with a simul-

taneous solution to the arguably two most severe problems of the MSSM. We have discussed
how to embed the Z

R
4 into string theory. Specifically, we have constructed a Z2 × Z2 orbifold

with this Z
R
4 and the exact MSSM spectrum below the compactification scale, in which the Z

R
4

originates from the Lorentz symmetry of compactified dimensions. Due to the Z
R
4 anomaly, the

μ term is generated at the non-perturbative level. There is an exact matter parity and dimension
five proton decay is well below experimental limits.

We have discussed the role of discrete symmetries in singlet extensions of the MSSM. There
are two possible symmetries consistent with the structure of the NMSSM, Z

R
4 and Z

R
8 , both of

which are capable of solving the hierarchy problem. The Z
R
8 allows the usual couplings while

forbidding the linear term for the singlet at the perturbative level. In the Z
R
4 case, one obtains

holomorphic mass terms for the singlet and the Higgs at the non-perturbative level. We have
argued that the size of such terms is of the order m3/2, leading to an S-MSSM-like scheme in
which the smallness of the explicit mass terms for the singlets and Higgs finds an explanation.
As another application we have discussed how discrete R symmetries can lead to approximate
PQ U(1) symmetries capable of solving the strong CP problem. Given the upper bound on the
order of Z

R
M , M � 24, we identified Z

R
24 as the unique possibility for solving the μ- and strong

CP problems simultaneously.
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Appendix A. Discrete anomalies in the path integral approach

In this appendix we re-derive Abelian discrete anomalies with the path integral method, fol-
lowing [38,54]. Among other things, we will describe how this allows us to understand the
discrete version of the Green–Schwarz mechanism.
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A.1. Path integral derivation of anomalies

Consider a theory described by a Lagrange density L with a set of fermions Ψ =
[ψ(1), . . . ,ψ(M)], where ψ(m) denotes a field transforming in the irreducible representation (ir-
rep) R(m) of all internal symmetries. A general transformation Ψ → U Ψ or, more explicitly,⎡⎣ ψ(1)

...

ψ(M)

⎤⎦→
⎛⎝U(1) 0

. . .

0 U(M)

⎞⎠⎡⎣ ψ(1)

...

ψ(M)

⎤⎦ , (A.1)

which leaves L invariant (up to a total derivative) denotes a classical symmetry.
A classical symmetry implies that certain correlators vanish at the classical level. To see this,

consider the correlator

Cn1...nM
= 〈(

ψ(1)
)n1 · · · (ψ(M)

)nM
〉
. (A.2)

Now, if the field combination (ψ(1))n1 · · · (ψ(M))nM is not invariant under the symmetry trans-
formation, we arrive at the (premature) conclusion that Cn1...nM

= 0.
Classical chiral symmetries can be broken by quantum effects, i.e. have an anomaly. Specifi-

cally, consider a chiral transformation

Ψ (x) → Ψ ′(x) = exp(iαPL)Ψ (x), (A.3)

where α = αanomTanom with Tanom denoting the generator of the transformation and αanom being
a parameter, and PL is the left-chiral projector.

We wish now to show that this implies vanishing correlators at the classical level may appear
at the quantum level. To this end, write the correlator as a path integral,

Cn1...nM
=
∫

DΨ DΨ
(
ψ(1)

)n1 · · · (ψ(M)
)nM eiS , (A.4)

where S denotes the action, which is left invariant under (A.3). Now recall that under the trans-
formation (A.1) the path integral measure undergoes a non-trivial change [55,56],

DΨ DΨ → J (α) DΨ DΨ , (A.5)

where the Jacobian of the transformation is given by

J (α) = exp

{
i
∫

d4x A(α)

}
. (A.6)

The crucial observation is now that in the presence of a non-trivial Jacobian the full quantum cor-
relator can be invariant. This is true regardless of whether the transformation (A.1) is continuous
or discrete, or whether it is gauged or global.

The anomaly function A appearing in (A.6) decomposes into a gauge and a gravitational part
[57–59],

A(α) = Agauge(α) + Agrav(α), (A.7)

with

Agauge(α) = 1

32π2
Tr[αF F̃ ], (A.8)

Agrav(α) = − 1 RR̃ Tr[α]. (A.9)

384π2
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We have suppressed index contractions, i.e. F F̃ = F μν F̃μν . Here Fμν = [Dμ,Dν] is the
field strength of the gauge symmetry, such that Fμν = (∂μAν − ∂νAμ) for a U(1) symmetry,

Fμν = Fa
μνTa for non-Abelian gauge groups, and F̃ μν = 1

2εμνρσ Fρσ denotes its dual. Similarly,

R represents the Riemann curvature tensor and RR̃ = 1
2εμνρσ Rμν

λγ Rρσλγ . The trace ‘Tr’ runs
over all internal indices.

Now we specialize to the case where α is a ZM transformation. For the anomaly to be absent,
i.e. J (α) = 1, we arrive at the conditions [38,54]

G–G–ZM :
∑
r(f )

�
(
r(f )

)
q(f ) = 0 mod η, (A.10a)

grav–grav–ZM :
∑
m

q(m) = 0 mod η, (A.10b)

where (cf. Eq. (2.3))

η =
{

M for M odd,

M/2 for M even,

and q(m) denotes the ZM charge. The first sum runs over all irreducible representations r(f ) of
G with Dynkin index �(r(f )) while the second sum runs over all fermions. Our conventions are
such that �(N) = 1/2 for SU(N) and �(N) = 1 for SO(N). (A.10) are the traditional discrete
anomaly conditions [4,8] with the difference that the Z

3
M constraints do not appear; we will

discuss Z
3
M anomalies separately in Section A.4.

A.2. Green–Schwarz mechanism and re-derivation of δGS

Consider a theory with simple gauge group G and an ‘anomalous’ Abelian gauge factor
U(1)anom. Under U(1)anom the dilaton superfield S shifts according to

S → S + i

2
δGSΛ(x) (A.11)

with Λ denoting the U(1)anom transformation, i.e. the chiral superfields follow the rule

Φ(f ) → e−iQ(f )
anomΛΦ(f ). (A.12)

The corresponding transformation of the vector superfield Vanom is

Vanom → Vanom + i

2

(
Λ − Λ†) (A.13)

with ReΛ|θ=0 = α. In what follows, we derive the Green–Schwarz coefficient δGS from the
requirement of invariance of the full action.

The dilaton-dependent part of the Lagrange density is

Ldilaton = −
∫

d4θ ln
(
S + S† − δGSVanom

)
+
[∫

d2θ
S

4
TrWαWα + h.c.

]
+ gravity terms. (A.14)
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The first line of this Lagrange density is already invariant under the combined transformations
(A.11) and (A.13). The trace in the second line is supposed to run over all gauge factors, including
U(1)anom.

Decomposing the scalar component of the dilaton into a real and an imaginary (or axionic)
part,

S|θ=0 = s + ia, (A.15)

leads to the usual couplings of the axion a

L ⊃ −a

8
FanomF̃anom − a

8
FaF̃ a + a

4
RR̃, (A.16)

where F and Fanom denote the gauge field strength of G and U(1)anom respectively.
Hence, under a U(1)anom transformation with parameter α the axionic Lagrange density shifts

by

�Laxion = − α

16
δGSFanomF̃anom − α

16
δGSFaF̃ a + α

8
δGS RR̃. (A.17)

The Green–Schwarz term δGS can now be inferred by demanding that the transformation of the
axion a cancels the anomalous variation of the path integral measure. The latter can be absorbed
in a change of the Lagrange density

�Lanomaly = α

32π2
FanomF̃anomAU(1)3

anom

+ α

32π2
FaF̃ aAG-G-U(1)anom

− α

384π2
RR̃Agrav-grav-U(1)anom . (A.18)

The coefficients A are the anomaly coefficients given by

AU(1)3
anom

= 1

3

∑
m

(
Q(m)

anom

)3 = 1

3
trQ3

anom, (A.19a)

Agrav-grav-U(1)anom =
∑
m

Q(m)
anom = trQanom, (A.19b)

AG-G-U(1)anom =
∑
r(f )

�
(
r(f )

)
Q

(f )
anom, (A.19c)

where Q
(m)
anom denotes the U(1)anom charge. The first two sums run over all left-handed Weyl

fermions while the last sum runs over all irreducible representations r(f ) of G and �(r(f )) is the
Dynkin index.

The axion shift allows us to cancel the grav–grav–U(1)anom, U(1)3
anom and G–G–U(1)anom

anomalies by demanding �Lanomaly + �Laxion = 0. This fixes the Green–Schwarz constant to
be given by

2π2δGS = 1

24
trQanom = 1

3
trQ3

anom = AG-G-U(1)anom , (A.20)

which is in agreement with the result obtained in a string computation [60].
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A.3. Discrete Green–Schwarz mechanism

The Green–Schwarz mechanism also works if we replace U(1)anom by a discrete ZM . In this
case the parameter α is no longer continuous but α = 2πn

M
with some integer n. Of course, there

is no gauge field associated with the ZM , i.e. Eq. (A.13) does not apply here. The discussion then
goes as in the previous subsection. The discrete Green–Schwarz constant is now defined in such
a way that under the ZM transformation of fields

Φ(f ) → e−i 2π
M

q(f )

Φ(f ) (A.21)

the dilaton shifts according to

S → S + i

2
�GS, (A.22)

where �GS is fixed only modulo η,

πM�GS ≡ 1

24
Agrav-grav-ZM

= AG-G-ZM
mod η. (A.23)

The anomaly coefficients can be obtained from Eq. (A.19) by replacing the U(1)anom charges
Q

(m)
anom by the ZM charges q(m). Note that, unlike in the continuous case, the transformation of

the axion is only fixed modulo η. In the main body of the paper we obtain constraints on possible
discrete symmetries and charge assignments from the requirement that Eq. (A.23) possesses a
solution, i.e. that the AG-G-ZM

coefficients for different gauge factors G coincide modulo η.

A.4. A comment on Z
3
M anomalies

If the discrete symmetry is embedded in a continuous symmetry, the universality relations
(A.20) also imply that

Agrav-grav-ZM
− 8A

Z
3
M

= 0 mod η, (A.24)

with

A
Z

3
M

= N
∑
m

(
q(m)

)3
, (A.25)

where N is a normalization factor compensating for the rescaling of the original U(1) charges
Q(m) to integer ZM discrete charges q(m). However, this relation is an embedding constraint
rather than a true anomaly constraint. That is, if this relation is not satisfied, this does not nec-
essarily imply a non-trivial variation of the path integral measure [38], and therefore it does not
mean that classically forbidden correlators will appear at the quantum level.

The Z
3
M anomaly constraints have lead to some confusion in the literature. Banks and Dine [9]

gave an argument for why there are no Z
3
M anomaly constraints. Following [8] they embedded

the ZM into a U(1) symmetry; however they broke this down to a ZP ·M symmetry and were able
to show that, while there is only a ZM for the chiral states, the extra heavy states ‘see’ a ZP ·M
and can be chosen such that the anomaly conditions following from the U(1) constraints can be
satisfied through their extra contributions.

From this one might conclude that, in order to satisfy the Z
3
M anomaly, the true symmetry

has to be ZP ·M rather than ZM . However, this is not necessarily the case as there can be dis-
crete symmetries that cannot be obtained from continuous symmetries by spontaneous breaking
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in four dimensions. That is, the constraints from embedding ZM in non-anomalous continuous
symmetries are sufficient to ensure anomaly freedom but not necessary.

In order to be specific, let us look at the stringy origin of the Z
R
4 symmetry discussed in Sec-

tion 3 of the main body of the paper. The Z
R
4 has a clear geometric interpretation in terms of

remnants of the Lorentz group of compactified dimensions. However, some of the states trans-
forming non-trivially under our Z

R
4 are twisted states. These states are chiral massless states

which appear only after orbifolding, i.e. after we have broken the continuous Lorentz symmetry
down to a discrete subgroup. So it appears that there is no continuous interpolation between the
continuous U(1) and the discrete Z

R
4 . Hence the derivation of discrete anomalies based on em-

bedding discrete symmetries in continuous symmetries might not apply. On the other hand, the
path integral method still works. This is consistent with the fact that in our orbifold construction
there is no underlying Z

R
8 while we believe that the theory is UV complete.

Appendix B. ZM and Z
R
M anomaly coefficients

We start by looking at the MSSM amended by ordinary, i.e. non-R, discrete symmetries,
where the fermions have the same charges as the superfields Φ(f ) and turn then to the discussion
of discrete R symmetries.

B.1. Anomaly coefficients for non-R ZM symmetries

The anomaly coefficients for discrete non-R ZM symmetries are well known [4,8,9],

AG-G-ZM
=
∑
r(f )

�
(
r(f )

) · q(f ), (B.1a)

Agrav-grav-ZM
=
∑
m

q(m). (B.1b)

These coefficients can be re-derived in the path integral approach [38] (cf. Appendix A). In
Eq. (B.1a) we sum over all irreducible representations r(f ) of G while in Eq. (B.1b) we sum over
all fermions. �(r(f )) denotes the Dynkin index of the representation r(f ). The discrete charges
q are integers which are defined modulo M . Moreover, there might be mixed U(1) anomalies if
the normalization of the U(1) factors is known. The coefficients are

AU(1)-U(1)-ZM
=
∑
m

q(m) · (Q(m)
)2 (B.1c)

with Q(m) denoting the normalized U(1) charges. We will discuss this coefficient in more detail
below.

Traditional anomaly freedom requires that for all anomaly coefficients

A = 0 mod η. (B.2)

However, discrete anomalies can be canceled by the Green–Schwarz mechanism, in which case
one has to demand

AG-G-ZM
= AU(1)-U(1)-ZM

= 1

24
Agrav-grav-ZM

= ρ mod η. (B.3)

An important comment concerns the mixed U(1)–ZM anomaly coefficient (B.1c). Mixed
U(1)–U(1)–ZM anomalies are mostly ignored as they do not give meaningful constraints un-
less one knows the normalization of the charges [6,61]. Typically the sum in Eq. (B.1c) is not
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invariant under shifting some discrete charges by M . To see this, let us consider the example of
hypercharge. We will denote the unnormalized U(1)Y charge by Q

(m)
Y . The anomaly coefficient

reads

A1 =
∑
m

3

5

(
Q

(m)
Y

)2
q(m) = ρ mod η. (B.4)

We have the freedom to shift the ZM charges by integer multiples of M , i.e. we can define
new ZM charges q ′ (m) = q(m) + k(m)M with k(m) ∈ Z. With the new charges the condition for
anomaly freedom is

3

5

∑
m

(
Q

(m)
Y

)2(
q(m) + k(m)M

)= ρ mod η (B.5)

⇒ A1 + 3

5
M

∑
m

k(m)
(
Q

(m)
Y

)2

︸ ︷︷ ︸
=:n

= ρ mod η. (B.6)

We can choose the k(m) such that n is an arbitrary integer because, for example, QY (E) = 1.
Hence, we arrive at

A1 = ρ − 3

5
nM + mη, m ∈ Z. (B.7)

This can be rewritten as

M odd: 5A1 = 5ρ + (5m − 3n)M, (B.8)

M even: 5A1 = 5ρ + (5m − 6n)
M

2
. (B.9)

Since 5m − 3n and 5m − 6n are arbitrary integers, we get

5A1 = 5ρ mod η. (B.10)

B.2. Anomaly coefficients for Z
R
M symmetries

Now consider a Z
R
M symmetry, under which, by convention, the superpotential transforms as

W → e2π iqW /MW (B.11)

with qW = 2. Accordingly, the superspace coordinates transform as

θ → e2π i/Mθ, (B.12)

such that d2θ transforms oppositely to W . Superfields Φ(f ) = φ(f ) +√
2θψ(f ) + θθF (f ) follow

the law

Φ(f ) → e2π iq(f )/MΦ(f ). (B.13)

Correspondingly, the fermions transform as

ψ(f ) = e2π i(q(f )−1)/Mψ(f ). (B.14)

For discrete R symmetries, the anomaly coefficients read (cf. Appendix A)
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AG-G-ZR
M

=
∑
r(f )

�
(
r(f )

) · (q(f ) − 1
)+ �(adjG), (B.15a)

AU(1)-U(1)-ZR
M

=
∑
m

(
Q(m)

)2 · (q(m) − 1
)
, (B.15b)

Agrav-grav-ZR
M

= −21 +
∑
G

dim(adjG) + #
(
U(1)

)+
∑
m

(
q(m) − 1

)
. (B.15c)

Here q(f ) denote the Z
R
M charges of the superfields, the charges of the corresponding fermions

are shifted by one unit, qψ(f ) = q(f ) − 1. In Eq. (B.15a) �(adjG) = C2(G) represents the con-
tribution from the gauginos, #(U(1)) denotes the number of U(1) gauginos. The first and second
term on the right-hand side of Eq. (B.15c) represent the contributions from the gravitino and
gauginos. A necessary condition for anomaly cancellation is the universality

AG-G-ZR
M

= AU(1)-U(1)-ZR
M

= 1

24
Agrav-grav-ZR

M

= ρ mod η. (B.16)

ρ is a constant, which is related to the discrete shift (A.22) of the axion via ρ = πM�GS.

B.3. Summary of anomaly coefficients

The anomaly coefficients are given by

A
G-G-Z(R)

M

=
∑
r(f )

�
(
r(f )

)(
q(f ) − R

)+ �(adjG) · R, (B.17a)

A
U(1)-U(1)-Z(R)

M

=
∑
m

(
Q(m)

)2(
q(m) − R

)
, (B.17b)

A
grav-grav-Z(R)

M

= R ·
[
−21 +

∑
G

dim(adjG) + #
(
U(1)

)]+
∑
m

(
q(m) − R

)
, (B.17c)

where we distinguish between discrete non-R (R = 0) and R (R = 1) symmetries. #(U(1)) de-
notes the number of U(1) gauginos. As discussed above, the mixed U(1)–U(1)–Z

(R)
M anomaly

is only meaningful if one knows the normalization. In general, the coefficient A
U(1)–U(1)–Z

(R)
M

is

not invariant under shifts of the Z
(R)
M charges by integer multiples of M .

Appendix C. A comment on Kähler stabilization

A possible way to stabilize the dilaton is through non-perturbative corrections to the Kähler
potential [22,23]. Such corrections are expected to vanish in the limit of zero coupling and also
to all orders in perturbation theory. The form of these corrections has been studied in the lit-
erature [24,25,62]. For a favourable choice of the parameters, this correction may allow one to
stabilize the dilaton at a realistic value, ReS � 2, while breaking supersymmetry [24,25,62–64].
A common parametrization of the non-perturbative corrections reads

eK = eK0 + eKnp, (C.1)

eKnp = cxp/2e−q
√

x, (C.2)

with K0 = − ln(2x), x = ReS, and parameters subject to K ′′ > 0 and p,q > 0. Supersymmetry
is broken spontaneously by the F term of the dilaton,
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Fig. 2. Dilaton potential for {c1, c2,p1,p2, q} = {−28.8292,22.6129,2,3,4}.

FS ∼ 〈λλ〉
MP

. (C.3)

For a single gaugino condensate, one has

W = d exp

(
−3S

2β

)
, (C.4)

where 3/(2β) = 8π2/N and d = −N/(32π2e) for a condensing SU(N) group with no matter.
Note that the scalar potential is independent of ImS. That is, we are left with a GS axion.

The problem with this scheme is that the vacuum energy at the local minimum is typically
positive (cf. [63]). Although Eq. (C.2) represents the ‘standard’ choice of the Kähler potential,
there are no arguments that forbid additional terms of the same structure. That is, following
Shenker’s arguments [22] one may replace Eq. (C.2) by

eKnp = (
c1x

p1/2 + c2x
p2/2)e−q

√
x. (C.5)

In fact there seems to be no reason for not writing even more terms in the parentheses. One can
then tune the vacuum energy in the local minimum to zero by carefully adjusting the coefficients
(Fig. 2).

Of course there is still no reason for why the vacuum energy should vanish at the local mini-
mum, but the above arguments may show that, in principle, the vacuum energy can be tuned to
zero in this scheme.

References

[1] G.R. Farrar, P. Fayet, Phys. Lett. B 76 (1978) 575.
[2] S. Dimopoulos, H. Georgi, Nucl. Phys. B 193 (1981) 150.
[3] S. Dimopoulos, S. Raby, F. Wilczek, Phys. Lett. B 112 (1982) 133.
[4] L.E. Ibáñez, G.G. Ross, Nucl. Phys. B 368 (1992) 3.
[5] K.S. Babu, I. Gogoladze, K. Wang, Phys. Lett. B 570 (2003) 32, hep-ph/0306003.
[6] H.K. Dreiner, C. Luhn, M. Thormeier, Phys. Rev. D 73 (2006) 075007, hep-ph/0512163.
[7] L.M. Krauss, F. Wilczek, Phys. Rev. Lett. 62 (1989) 1221.
[8] L.E. Ibáñez, G.G. Ross, Phys. Lett. B 260 (1991) 291.
[9] T. Banks, M. Dine, Phys. Rev. D 45 (1992) 1424, hep-th/9109045.

[10] S. Förste, H.P. Nilles, S. Ramos-Sánchez, P.K.S. Vaudrevange, arXiv:1007.3915 [hep-ph].
[11] K.S. Babu, I. Gogoladze, K. Wang, Nucl. Phys. B 660 (2003) 322, hep-ph/0212245.



30 H.M. Lee et al. / Nuclear Physics B 850 (2011) 1–30
[12] H.M. Lee, et al., Phys. Lett. B 694 (2011) 491, arXiv:1009.0905 [hep-ph].
[13] L.J. Hall, Y. Nomura, A. Pierce, Phys. Lett. B 538 (2002) 359, hep-ph/0204062.
[14] M. Dine, J. Kehayias, Phys. Rev. D 82 (2010) 055014, arXiv:0909.1615 [hep-ph].
[15] R. Slansky, Phys. Rept. 79 (1981) 1.
[16] C. Csáki, H. Murayama, Nucl. Phys. B 515 (1998) 114, hep-th/9710105.
[17] B. Petersen, M. Ratz, R. Schieren, JHEP 0908 (2009) 111, arXiv:0907.4049 [hep-ph].
[18] R. Kappl, et al., arXiv:1012.4574 [hep-th].
[19] E. Witten, Nucl. Phys. B 188 (1981) 513.
[20] H.P. Nilles, Phys. Lett. B 115 (1982) 193.
[21] R. Kappl, H.P. Nilles, S. Ramos-Sánchez, M. Ratz, K. Schmidt-Hoberg, P.K. Vaudrevange, Phys. Rev. Lett. 102

(2009) 121602, arXiv:0812.2120 [hep-th].
[22] S.H. Shenker, Presented at the Cargese workshop on random surfaces, Quantum Gravity and Strings, Cargese,

France, May 28–June 1, 1990.
[23] T. Banks, M. Dine, Phys. Rev. D 50 (1994) 7454, hep-th/9406132.
[24] J.A. Casas, Phys. Lett. B 384 (1996) 103, hep-th/9605180.
[25] P. Binétruy, M.K. Gaillard, Y.-Y. Wu, Nucl. Phys. B 493 (1997) 27, hep-th/9611149.
[26] V.S. Kaplunovsky, J. Louis, Phys. Lett. B 306 (1993) 269, hep-th/9303040.
[27] J. Casas, A. Lleyda, C. Munoz, Phys. Lett. B 380 (1996) 59, arXiv:hep-ph/9601357.
[28] S.A. Abel, B.C. Allanach, F. Quevedo, L. Ibáñez, M. Klein, JHEP 0012 (2000) 026, hep-ph/0005260.
[29] S.A. Abel, S. Sarkar, P.L. White, Nucl. Phys. B 454 (1995) 663, hep-ph/9506359.
[30] K. Kumekawa, T. Moroi, T. Yanagida, Prog. Theor. Phys. 92 (1994) 437, arXiv:hep-ph/9405337.
[31] K. Kurosawa, N. Maru, T. Yanagida, Phys. Lett. B 512 (2001) 203, hep-ph/0105136.
[32] M. Blaszczyk, et al., Phys. Lett. B 683 (2010) 340, arXiv:0911.4905 [hep-th].
[33] H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, K. Schmidt-Hoberg, P.K.S. Vaudrevange, Additional material

for a Z
R
4 string vacuum, http://einrichtungen.ph.tum.de/T30e/orbifolds/Z4Rvacuum1.pdf, 2011.

[34] F. Buccella, J.P. Derendinger, S. Ferrara, C.A. Savoy, Phys. Lett. B 115 (1982) 375.
[35] L.J. Dixon, D. Friedan, E.J. Martinec, S.H. Shenker, Nucl. Phys. B 282 (1987) 13.
[36] S. Hamidi, C. Vafa, Nucl. Phys. B 279 (1987) 465.
[37] K.S. Babu, S.M. Barr, Phys. Rev. D 48 (1993) 5354, hep-ph/9306242.
[38] T. Araki, et al., Nucl. Phys. B 805 (2008) 124, arXiv:0805.0207 [hep-th].
[39] F. Brümmer, R. Kappl, M. Ratz, K. Schmidt-Hoberg, JHEP 1004 (2010) 006, arXiv:1003.0084 [hep-ph].
[40] A. Hebecker, J. March-Russell, R. Ziegler, arXiv:0801.4101 [hep-ph].
[41] F. Brümmer, S. Fichet, A. Hebecker, S. Kraml, JHEP 0908 (2009) 011, arXiv:0906.2957 [hep-ph].
[42] P. Hosteins, R. Kappl, M. Ratz, K. Schmidt-Hoberg, JHEP 0907 (2009) 029, arXiv:0905.3323 [hep-ph].
[43] S.A. Abel, Nucl. Phys. B 480 (1996) 55, hep-ph/9609323.
[44] C. Panagiotakopoulos, K. Tamvakis, Phys. Lett. B 446 (1999) 224, hep-ph/9809475.
[45] T. Kobayashi, S. Raby, R.-J. Zhang, Nucl. Phys. B 704 (2005) 3, hep-ph/0409098.
[46] T. Kobayashi, H.P. Nilles, F. Plöger, S. Raby, M. Ratz, Nucl. Phys. B 768 (2007) 135, hep-ph/0611020.
[47] S. Cassel, D. Ghilencea, G. Ross, Nucl. Phys. B 825 (2010) 203, arXiv:0903.1115 [hep-ph].
[48] A. Delgado, C. Kolda, J.P. Olson, A. de la Puente, Phys. Rev. Lett. 105 (2010) 091802, arXiv:1005.1282 [hep-ph].
[49] P. Fox, A. Pierce, S.D. Thomas, hep-th/0409059.
[50] J.E. Kim, H.P. Nilles, Phys. Lett. B 138 (1984) 150.
[51] K.-Y. Choi, E.J. Chun, H.M. Lee, Phys. Rev. D 82 (2010) 105028, arXiv:1002.4791 [hep-ph].
[52] M. Kamionkowski, J. March-Russell, Phys. Lett. B 282 (1992) 137, hep-th/9202003.
[53] S.M. Barr, D. Seckel, Phys. Rev. D 46 (1992) 539.
[54] T. Araki, Prog. Theor. Phys. 117 (2007) 1119, hep-ph/0612306.
[55] K. Fujikawa, Phys. Rev. Lett. 42 (1979) 1195.
[56] K. Fujikawa, Phys. Rev. D 21 (1980) 2848.
[57] L. Álvarez-Gaumé, E. Witten, Nucl. Phys. B 234 (1984) 269.
[58] L. Álvarez-Gaumé, P.H. Ginsparg, Ann. Phys. 161 (1985) 423.
[59] K. Fujikawa, S. Ojima, S. Yajima, Phys. Rev. D 34 (1986) 3223.
[60] W. Lerche, B.E.W. Nilsson, A.N. Schellekens, Nucl. Phys. B 289 (1987) 609.
[61] L.E. Ibáñez, Nucl. Phys. B 398 (1993) 301, hep-ph/9210211.
[62] P. Binétruy, M.K. Gaillard, Y.-Y. Wu, Phys. Lett. B 412 (1997) 288, hep-th/9702105.
[63] T. Barreiro, B. de Carlos, E.J. Copeland, Phys. Rev. D 57 (1998) 7354, hep-ph/9712443.
[64] W. Buchmüller, K. Hamaguchi, O. Lebedev, M. Ratz, Nucl. Phys. B 699 (2004) 292, hep-th/0404168.

http://einrichtungen.ph.tum.de/T30e/orbifolds/Z4Rvacuum1.pdf

	Discrete R symmetries for the MSSM and its singlet extensions
	1 Introduction
	2 Discrete symmetries of the MSSM
	2.1 Non-R discrete symmetries
	2.2 Discrete R-symmetries
	2.2.1 A constraint on the order M
	2.2.2 Classiﬁcation
	2.2.3 Dimension ﬁve nucleon decay operators
	2.2.4 The gravitational anomaly constraint
	2.2.5 Compatibility with SO(10)


	3 A simple Z4R symmetry in the MSSM
	3.1 Non-perturbative terms
	3.2 Dilaton stabilization and supersymmetry breaking
	3.3 Phenomenology
	3.4 Z4R literature
	3.5 String theory realization

	4 Singlet extensions
	4.1 NMSSM
	4.1.1 Constraints from NMSSM couplings
	M= 1 mod 3.
	M= 2 mod 3.

	4.1.2 The hierarchy problem
	4.1.3 Non-perturbative effects

	4.2 Discrete R symmetries and the strong CP problem

	5 Conclusions
	Acknowledgements
	Appendix A Discrete anomalies in the path integral approach
	A.1 Path integral derivation of anomalies
	A.2 Green-Schwarz mechanism and re-derivation of δGS
	A.3 Discrete Green-Schwarz mechanism
	A.4 A comment on ZM3 anomalies

	Appendix B ZM and ZMR anomaly coefﬁcients
	B.1 Anomaly coefﬁcients for non-R ZM symmetries
	B.2 Anomaly coefﬁcients for ZMR symmetries
	B.3 Summary of anomaly coefﬁcients

	Appendix C A comment on Kähler stabilization
	References




