
UC Berkeley
UC Berkeley Previously Published Works

Title
On the conditions for efficient interoperability with threads

Permalink
https://escholarship.org/uc/item/47q525qm

ISBN
978-1-4503-2642-1

Authors
Ibrahim, Khaled Z
Yelick, Katherine

Publication Date
2014-06-10

DOI
10.1145/2597652.2597657

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47q525qm
https://escholarship.org
http://www.cdlib.org/

On the Conditions for Efficient Interoperability with
Threads: An Experience with PGAS Languages Using Cray

Communication Domains

Khaled Z. Ibrahim, Katherine Yelick
Lawrence Berkeley National Laboratory

One Cyclotron Road, Berkeley, CA 94720, USA
{KZIbrahim, Kayelick}@lbl.gov

ABSTRACT
Today’s high performance systems are typically built from
shared memory nodes connected by a high speed network.
That architecture, combined with the trend towards less
memory per core, encourages programmers to use a mix-
ture of message passing and multithreaded programming.
Unfortunately, the advantages of using threads for in-node
programming are hindered by their inability to efficiently
communicate between nodes.
In this work, we identify some of the performance prob-

lems that arise in such hybrid programming environments
and characterize conditions needed to achieve high commu-
nication performance for multiple threads: addressability of
targets, separability of communication paths, and full direct
reachability to targets. Using the GASNet communication
layer [6] on the Cray XC30 as our experimental platform,
we show how to satisfy these conditions. We also discuss
how satisfying these conditions is influenced by the commu-
nication abstraction, implementation constraints, and the
interconnect messaging capabilities.
To evaluate these ideas, we compare the communication

performance of a thread-based node runtime to a process-
based runtime. Without our GASNet extensions, thread
communication is significantly slower than processes–up to
21× slower. Once the implementation is modified to address
each of our conditions, the two runtimes have comparable
communication performance. This allows programmers to
more easily mix models like OpenMP, CILK, or pthreads
with a GASNet-based model like UPC, with the associated
performance, convenience and interoperability advantages
that come from using threads within a node.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—Network operating systems; D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel and Dis-
tributed programming

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of the national government of United States. As such,
the Government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only..
ICS’14, June 10–13 2014, Munich, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2642-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2597652.2597657.

Keywords
Interoperability, Communication Paradigms, Programming
Languages, Processes, Threads

1. INTRODUCTION
As hardware designers continue to take advantage of tran-

sistor density increases while addressing power issues, com-
puting systems are growing increasingly complex, with tens
of cores per chip and and multiple chips organized into shared
or distributed memory systems. HPC platforms have wit-
nessed multiple transitions, with vector machines using mostly
shared memory, massively parallel processors using distributed
memory, and multicore processors again using shared mem-
ory. The multicore era in HPC has brought back shared
memory programming within the node, because it is both
convenient for programmers and efficient in terms of mem-
ory usage and intra-node communication.
Extreme-scale systems currently use hierarchal shared and

distributed resources, which leads to multiple programming
models. Software abstractions to efficiently deal with re-
source sharing are typically different from those requiring
privatization and protection. Processes provide the natural
abstraction for protection, while threads provide the lowest
overhead abstraction for sharing. For instance, the Message
Passing Interface, MPI uses processes as the default mech-
anism for parallel execution, while OpenMP is built on top
of threads.
In a threaded model, access to shared resources such as

network buffers involves mutual exclusion to coordinate ac-
cess to the resource. Processes simplify access to these re-
sources through privatization and protection, allowing con-
current accesses without worrying about serialization at the
user level. On the other hand, processes have disadvantages
for parallelism within a node, leading to memory overhead
due to replication of data and time overhead due to expen-
sive sharing mechanisms, i.e., mmap files for data sharing
or RPC for code sharing. While most node programming
models use threads to provide low-overhead shared-memory
programming, these threads cannot initiate communication
efficiently to other nodes in scalable systems. We measure up
to 41× slowdown for transferring small messages by threads
compared with processes. These constraints also influence
the application tuning efforts and strategies while using hy-
brid programming.
Many research efforts discussed techniques for reducing

the overhead associated with using threads while injecting
messages to the interconnect [2, 4, 16, 3, 15]. The main

23

theme of these efforts is to parallelize message injection by
reducing the size of critical regions that protect shared re-
sources, including the use of multiple communication end-
points when allowed by the underlying messaging system.
This only partly solves the problem because it never fully
eradicates serialization. As such, the performance gap be-
tween threads and processes continues to increase with the
number of cores per node, on all systems we explored.
In this work, we identify the necessary conditions to make

threads communicate efficiently enough that they are com-
parable to process performance. These conditions are tar-
geting addressability, separability, and reachability. The ad-
dressability condition requires precisely specifying the target
of a transfer before initiating it. The separability condition
assures a fully parallel transfer management for independent
messages. The reachability condition requires having a di-
rect path to each possible target. We show the details of
how to satisfy these conditions to improve a pthread-based
implementation of GASNet [6]. Our implementation cur-
rently works on Cray Gemini and Aries interconnects, used
by multiple machines of the top ten supercomputers in the
world [18]. Our technique is conceptually simple but effec-
tive. It combines the creation of multiple communication
domains with redundant registration for memory segments
with interconnect driver to create fully parallel communi-
cation paths for threads. Through the performance of mi-
crobenchmarks and applications, we show that GASNet can
deliver the same performance regardless of the composition
of threads and processes chosen by the runtime.
The contributions of this work include: a detailed descrip-

tion and analysis of our work to improve the support for
threading in GASNet, and our definition of the necessary
conditions to allow threads to communicate efficiently. To
the best of our knowledge, our released software is the only
publicly available solution on latest Cray supercomputers,
where the inter-node communication performance of pro-
cesses and threads matches. The presented work can easily
be implemented on other platforms as well. It also enables
efficient integration of PGAS programming languages, such
as UPC, with programming models that rely on threading
models, for instance, HabaneroC and OpenMP.
The rest of this paper is organized as follows: After de-

scribing experimental setup in Section 2, we briefly describe,
in Section 3, the motivation of supporting programming
models based on processes and threads in modern runtimes
and the challenges in achieving efficient interoperability. We
present GASNet and our work to achieve efficient interoper-
ability between processes and threads in Section 4. We also
layout the necessary conditions to achieve optimal interop-
erability in general. Performance analysis of our scheme is
presented in Section 5. We discuss related work in Section 6,
and conclude in Section 7.

2. EXPERIMENTAL SETUP
We used NBP benchmarks written in UPC, which are dis-

tributed with Berkeley UPC. We also use a UPC implemen-
tation of the UTS benchmark [12]. For micro-benchmarking,
we used a modified version of an OSU microbenchark [14]
to measure the bidirectional latency of data transfers with
concurrent communication.
Most of the presented experiments in this study are car-

ried out on Cray XC30 supercomputer (Edison) [1], installed
at NERSC. Edison peak performance is 2.39 petaflops/sec.

Each node has two socket Ivy-Bridge processors at 2.4GHz
and 64 GB memory. The Edison interconnect (named Aries)
has a Dragonfly topology [5]. Aries uses tiled router archi-
tecture, where 4 nodes are connected to each router. Traf-
fics from different nodes are multiplixed by the router on a
packet-by-packet basis thus allowing nodes to exceed their
fair share of the bandwidth. The messaging unit can be
programmed using the Generic Network Interface (GNI),
and the Distributed Shared Memory Application (DMAPP)
APIs. GASNet library, similar to Cray MPI implementa-
tion, is developed on top of GNI. The same APIs are used
on earlier generation Cray XE06 (Hopper), with the Gem-
ini interconnect. We also conducted microbenchmarking of
other runtimes on the IBM BlueGene/Q BGQ (Mira) at
Argonne National Laboratory, and the Trestles infiniband
cluster at San Diego Supercomputing Center.

3. SCALABLE RUNTIME DESIGNS
Most scalable runtimes, such as MPI [9] and UPC [19],

rely on processes in designing their runtimes because they
provide a protection mechanism in accessing resources. The
operating system provides replicated software data struc-
tures to manage shared hardware resources such as the net-
work interface (NIC). This relieves the messaging runtime
from using mutual exclusion to access the interconnect. Threads
can be used within a compute node to utilize shared memory
programming models such as OpenMP, but they suffer long
latencies to communicate across nodes due to serialization,
as detailed in this section.

3.1 Process-based Runtimes
The namespace (address space) replication mechanism with

processes matches well distributed hardware resources, which
are dominant in scalable machines. Figure 1 shows the
communication domain abstraction used in Cray XE06 and
XC30 supercomputers. The job spawner creates and dis-
tributes application processes on computational nodes based
on the user request. These processes collectively create a
communication domain using the information provided by
the spawner runtime. Each process creates endpoints, and
completion queues through which it can inject transfers,
track their completions, or get notifications for incoming
messages. Applications typically register part of their mem-
ory to allow faster communication. With memory registra-
tion, the OS guarantees not to change the mapping between
the virtual and physical memory. Depending on the pro-
gramming model, the registration information can be ex-
changed at the beginning of the application by the runtime,
or on demand. GNI provides two communication mecha-
nisms, a messaging mechanism with mailbox like semantics,
and a Remote Direct Memory Access (RDMA) mechanism
for one-sided communication. The messaging mechanism
allows efficient two-sided small transfers, while the RDMA
mechanism delivers higher performance for large transfers.
A single communication domain is typically created by the

runtime for an application, except when multiple runtimes
are used by the same application, for instance, mixing UPC
and MPI or using GNI messaging and DMAPP collectives.

3.2 Thread-based Runtimes
The advent of multicore to node designs makes memory

sharing within a node and thus hierarchal designs more com-
mon in HPC systems. Threading is an attractive abstrac-

24

C
om

m
un

ic
at

io
n

D
om

ai
n

V-NIC

C
om

pl
et
io
n

Q
ue
ueMemory

Process 0

EndEP 3
EP 2

end point 1

...

V-NIC

Registered
Memory

Process 1
End Points

V-NIC

Registered
Memory

Process m-1
End Points

.

.

.

V-NIC

Registered
Memory

Process m
End Points

V-NIC

Registered
Memory

Process m+1
End Points

V-NIC

Registered
Memory

Process 2m-1
End Points

endpoint

C
om
pl
et
io
n

Q
ue
ue

Figure 1: Cray GNI Communication Domain ab-
straction: each process is assigned a unique access
point that can be used without mutual exclusion.

tion for sharing architectural resources because they expose
sharing to the application and the runtime using a single
namespace (virtual address space). The resource shar-
ing makes the development of runtimes for shared-memory
programming models, such as OpenMP, much simpler. It
also makes the development of tasking runtimes, such as
HebaneroC, more efficient. In these models, the workload
is distributed between working threads to achieve load bal-
ancing. At the OS level, threads share the page tables, file
resources, etc. This means that no protection is provided
between executing threads, but a smaller memory footprint
is used by the application.
The only limitation for threads is that a correct access

to mutable shared resources could require mutual exclusion.
Applications and runtimes can use locks, atomics or transac-
tions to enforce serialization. For HPC workloads, one of the
most critical shared resources for performance is the network
interface. Enforcing serialization for accessing the network
leads to a significant performance penalty. For instance, ac-
cessing the network massaging endpoint is not thread-safe
in Cray GNI, leading to the serialized multiplexing depicted
in Figure 2. Other massaging system, such as IBM PAMI,
provides a thread-safe access to endpoints [8] when multiple
threads do not share the context of an endpoint.

C
om

m
un

ic
at

io
n

D
om

ai
n

V-NIC

C
om

pl
et
io
n

Q
ue
ueMemory

Process 0 End

EP 3
EP 2

end point 1

...

C
om

pl
et
io
n

Q
ue
ue

Thread 0

Thread 1

Thread m-1

V-NIC

C
om

pletion
Q
ueue

Memory

Process 1End

EP 3
EP 2

end point 1

...

C
om

pletion
Q
ueue

Thread 0

Thread 1

Thread m-1

Figure 2: Default support of multithreading through
multiplexing threads, with runtime mutual exclu-
sion, into the same interconnect access point.

3.3 Internode Communication Performance of
Processes vs. Threads

To quantify the performance of using threads to send mes-
sages (or memory transfers) to remote nodes, we show two

scalable programming models, MPI for two-sided communi-
cation and UPC (based on GASNet) for one-sided communi-
cation. Although MPI also provides one-sided communica-
tion support, it is not well tuned on all the implementations
we explored, including Cray MPI implementation, OpenMPI
and MPICH.
The bidirectional latency microbenchmark is based on OSU

benchmarks [14]. We measure the latency by issuing a single
non-blocking send and posting a non-blocking receive to the
target rank, then waits for the completion of both messages.
Ranks are placed such that each pair resides in different
nodes. The communication between a pair is bi-directional.
We report the average latency over thousands of messages
after warming.
When threads are used with MPI, we used different tags

to resolve pairing ambiguity. We also use different communi-
cators between threads because some runtimes use a hash of
the rank and the communicator to parallelize the injection to
the network [8]. Communicators have per rank membership,
thus allowing different threads to use different communica-
tor leads to subscription of each rank with all communica-
tors. For threading with MPI, we experimented with three
modes: MPI_THREAD_MULTIPLE, which allows all threads to
inject messages to the interconnect, MPI_THREAD_FUNNELED
where the main thread injects the messages of all threads, in
addition to the default mode of one thread per process. For
funneling, we do not account for the extra synchronization
to notify the main thread with the readiness for messages of
other threads.
We created a UPC version of the same benchmark using

one-sided get transfers with similar to MPI benchmark pair-
ing of threads. We report for Berkeley UPC, based on GAS-
Net, which supports processes and threads models; whereas
Cray UPC supports only processes. Because the shared
address space of each UPC thread is semantically similar,
whether the runtime (GASNet) uses processes or pthreads,
we did not need any additional handling at the application
level. GASNet supports three threading modes analogous
to MPI [6].
As shown in Figure 3, for 8B messages, processes deliver

the lowest latency for data transfers, independent of the con-
currency level. This observation is valid for both program-
ming languages, UPC and MPI, and different implementa-
tions of MPI. The network can sustain more traffic, thus
runtime overhead and serialization dictate the performance.
The use of threads increases the latency of transferring mes-
sages because most runtimes serialize the access to their data
structure using locks, atomics, or transactions. For 8B mes-
sages at concurrency level of 24, Figure 3.a&b, the latency
increase for MPI threads over processes by 41×, while for
UPC the increase is 21×. The gap increases with the level
of concurrency, which is an alarming trend because future
systems are expected to have more cores. The difference
decreases as the message size increases because the perfor-
mance becomes bounded by the available bandwidth. For
2KB messages using UPC, the latency ratio for threads to
processes gets reduced to 12× and approaches 1× for 2MB
messages. Using funneling to the main thread can lead to
better performance than parallel injection by all threads.
We found similar performance trends, to those shown in

Figure 3, on other runtimes including OpenMPI [13], MPICH [10],
MVAPICH [11] on different interconnects including Cray
Gemini and Infiniband clusters. In some runtimes, such as

25

(a) (b) (c)

Figure 3: bidirectional Latency microbenchmark of UPC and MPI programming models for processes
vs. two threading models (THREAD MULTIPLE for full threaded injection to the interconnect, and
THREAD FUNNELED for relaying communication to the main thread).

OpenMPI, the high performance byte transport layer is dis-
abled when threading is enabled. This leads to a larger per-
formance gap between threads and processes. As such, many
scalable runtimes disable threading support by default. We
measured up to 366× latency increase for threads compared
with processes for MPICH implementation on Infiniband
cluster (Trestles) at a concurrency level of 32. MVAPICH
has up to 96× latency increase on the same cluster.
In the systems we explored, the best runtime in handling

this problem is IBM MPI implementation on BGQ systems,
shown in Figure 3.c. The latency difference between pro-
cesses and threads is at most 4× for 16-way concurrency.
BGQ systems support L2 atomic locks that lower the se-
rialization overhead. These efficient locks are suitable for
single socket nodes, which is a distinct path for architect-
ing nodes that is not prevalent. IBM MPI implementation
uses PAMI endpoints and context abstractions, which could
allow fully concurrent injection of messages to the intercon-
nect. Processing incoming messages with threads cannot be
fully parallelized [8], though.

4. IMPROVING GASNET THREADING
SUPPORT USING MULTIPLE
COMMUNICATION DOMAINS

We argue for a runtime to support full concurrent com-
munication by an execution abstraction, such as threads, it
needs to satisfy three conditions: unambiguous addressabil-
ity of remote targets, separability of communication paths,
and full direct reachability between all communication par-
ties. In this section, we discuss the challenges associated
with these conditions and the way we handled them in GAS-
Net [6], Global Address Space Networking, to improve one-
sided communication primitives.

4.1 GASNet Runtime and Base Threading
Support

GASNet is a scalable communication library that pro-
vides, at the core of its functionality, APIs supporting active
messages (AMs). Memory segments are typically registered
for communication between ranks of an application. Like-
wise, AM handler functions are registered with the library.
An AM carries both a payload and a handler id of the task
to be executed at the remote side. AMs give unique ids only
to processes (calling them nodes).
GASNet provides another set of communication primitives

for one-sided memory transfers and collectives, called ex-
tended APIs, which does not require any remote side pro-
cessing of the data. These primitives typically exploit net-
work accelerated remote memory access (RMA) mechanisms.
GASNet library is used by multiple parallel partitioned

global address space (PGAS) programming languages such
as UPC, Titanium, and Co-Array Fortran. Each of these
languages uses a different subset of GASNet functionality.
The library supports pthreads in three modes resembling
MPI’s support, where the language runtime should declare
if one or more threads need to concurrently call GASNet.
If threading support is requested, GASNet enforces serial-
ization of accesses to shared runtime resources through mu-
tual exclusion (using locks or atomics). GASNet provides
different builds depending on the level of threading support.
This allows removing unnecessary handling for thread safety
if only one thread per process is used.

4.2 One-sided Primitives and Threading
One-sided communication typically involves transfer be-

tween a local memory and a remote memory, using either
put or get primitives. The remote memory can either reside
locally (within a node) or at a remote node. Most intercon-
nect HPC systems provide a hardware acceleration mecha-
nism for one-sided primitives. Although these APIs are not

26

the core APIs for GASNet, they are the most critical to per-
formance for many high-level programming languages, such
as UPC. In this section, we focus on how to improve the
support of threaded one-sided communication in GASNet.

4.2.1 Addressability of the Remote Destination
One-sided communication in GASNet uses a tuple of a

registered address and process id for the remote part of the
transfer. The process id is used solely to resolve the affinity
of the memory address to a particular compute node. The
affinity is enough for GASNet runtime to manage the trans-
fer, and the participation of the remote process is typically
not needed. PGAS languages, such as UPC, use these tuples
to create a global unique name for each shared memory ad-
dress. One-sided communication in GASNet does not care
about which entity is going to operate on the data at the
remote location. Thus, the use of threads within a process
does not pose any address ambiguity challenge.

4.2.2 Separability of Communication Paths
Separability of communication paths is the condition where

independent transfers do not get serialized unnecessarily by
the runtime. Full separability requires special handling dur-
ing data transfer injection, progress and advancement, and
reception. Separability of communication paths necessitates
carful communication resource allocation and management.
Communication resources include the runtime data struc-

tures used in holding the communication state. Communica-
tion management involves mechanisms and state machines
used in initiating communication, advancing the progress,
and checking for completions. We argue that to support
threads efficiently we need full separability of resources and
management by each thread.
To achieve separability of resources at the GASNet run-

time level, we use exclusive per thread resource pools. This
alleviates the need for locks or atomics in the case of having
shared resources. Examples of these resources are communi-
cation handles and descriptors, and internal bounce buffers.
Likewise, we ensured that all used libraries do not use any
shared resources. For instance, most memory allocation li-
braries use the shared heap to allocate memory, thus causing
serialization. We made sure that the memory allocator uses
a distinct heap per thread.
The challenge we faced is that the interface of the Cray

GNI library is not thread-safe. Assigning a distinct endpoint
to a thread is not enough to achieve concurrent injection to
the interconnect. In this work, we solve this problem by cre-
ating a separate communication domain for each thread (or
group of threads). When each thread is assigned a separate
domain, as shown in Figure 4, all threads can concurrently
inject to the GNI layer without any serialization.

4.2.3 Full Direct Reachability to All Remote Targets
The challenge with the creation of multiple communica-

tion domains is that it makes it potentially difficult to have
full reachability to all memory addresses. Using multiple do-
mains, each thread subscribes to a different communication
domain. Registering the memory of affinity to a particular
thread leads to unreachable destination memory segments
because each thread can only see the memory of threads
subscribing to its domain. The shared memory is typically
split between executing units. A shared memory segment
always has affinity to one execution unit, which is responsi-

ble for registering this segment of the shared memory with
the messaging runtime. It is also responsible for exchanging
information about these segments. In the base implemen-
tation, only the main thread does the registration of the
whole memory assigned to the process. Multiple processes
sharing a node register their segments independently and
then exchange information. Thus, each memory segment is
registered once with the interconnect.
To solve this problem, we register the whole memory of

affinity to the process that this thread belongs to. This leads
to redundant registrations of the same memory depending
on the number of communication domains created by the
runtime. These redundant registrations (aliasing), shown in
Figure 4, allow full direct reachability for each thread to
the whole shared address space. In fact, this allows multi-
path reachability to each memory location. Fortunately, this
does not affect the consistency model provided by GASNet
because GASNet always guarantees remote completion of
put operations. The implication of redundant registration
on the registration resources is discussed in Section 5.2.

4.3 Active Messages and Threading
GASNet active message APIs allow sending a request to

execute a handler procedure at a remote destination. The
request carries the data, the destination and the handler id.
It supports a strict request reply mechanism, thus the desti-
nation can send at most one reply to the sender. The target
id in a reply is implicit (the sender of the request). GASNet
AMs can be used in many management tasks by high-level
programming languages, for instance, to implement synchro-
nization primitives and collectives.

4.3.1 Addressability of the Remote Destination
The destination of an active message, similar to MPI, is

only a process, and the handler can be executed by any
thread belonging to the process. Unlike one-sided primitives,
the destination process strictly specify the partner respon-
sible for processing the message, not just the affinity of the
destination memory. The specification of processes as the
only valid target arose when most HPC node architectures
were a single core, or processes were thought as the main
scalable runtime abstraction. GASNet AMs do not rec-
ognize threads as addressable entities. Allowing the active
message handler to be executed by any thread belonging to
the target process can be looked at as a flexibility because it
allows low-loaded threads to execute the handler. If multiple
communication domains are used, this causes complexity in
runtime design to maintain correct execution as discussed in
the next sections.

4.3.2 Separability of Communication Paths
Active message (AM) requests and replies require explicit

resource allocation at the sender side. The receive side
resources is transparently managed by the runtime. This
makes concurrent injection of AMs by different threads an
easy task using multiple communication domains. The re-
ceiver of an AM does not post any explicit receive, thus
resource management at the receive side is completely con-
trolled by the runtime. Separability of resources manage-
ment is complicated because processing an incoming AM
should not be done by multiple threads. Thus, the recep-
tion cannot be fully parallelized and a centralized decision
with a mutual exclusion mechanism needs to be used.

27

4.3.3 Full Direct Reachability to All Remote Targets
The reliance of active messages (AM) on addressing pro-

cesses makes direct reachability achievable with one com-
munication domain even with multithreading. The reach-
ability of AMs is dependent on not only the arrival of the
data to the destination but also on the execution of the
handler by the target. The data reachability for large mes-
sages is achieved using multiple domains, using the one-sided
RDMA. The handler information are sent using small mes-
sages, where most vendors provide a mechanism for efficient
mailbox short messages on pre-allocated buffers. The mes-
saging mechanism is solely used for the data and the AM
descriptor when the payload in small.
The GASNet AM specification of the handler execution

imposes the following runtime behavior: any thread trying
to make progress should check for arrival of AMs because
of the possibility that this thread is the only one doing so.
If multiple paths of arrival are possible, all paths should be
checked for incoming messages. On the other hand, if mul-
tiple threads are ready to execute a handler only one should
do so. Thus, the use of multiple domains for AMs creates the
possibility for all threads advancing all domains. Each ad-
vancement requires a mutually exclusive access of the com-
munication domain. Therefore, having multiple reachability
paths can lead to a significant serialization problem.

C
om

m
un

ic
at

io
n

D
om

ai
n

V-NIC

Process 0
(thread 0)

End points V-NIC

Process 1
(thread 0)

End points

C
om

m
un

ic
at

io
n

D
om

ai
n

V-NIC

Process 0
(thread 1)

End points V-NIC

Process 1
(thread 1)

End points

C
om

m
un

ic
at

io
n

D
om

ai
n

V-NIC

Process 0
(thread m-1)

End points V-NIC

Process 1
(thread m-1)

End points

C
om

pl
et
io
n

Q
ue
ueMemory

C
om

pletion
Q
ueue

Memory

.

.

.

.

.

.

Figure 4: Multipath through the use of multiple
communication domains. Each thread can subscribe
to a distinct domain. The same address space is re-
dundantly registered in multiple domains.

If all threads are addressable, then we will need for direct
reachability communication domain count equals the square
of thread concurrency. The resources needed for a commu-
nication domain make the number allocatable of domains
limited, as detailed in Section 5.2.
In our implementation, we made the choice of restrict-

ing AM handler processing to the first domain to minimize
the potential serialization. The data transfer part can go
through any domain, especially for large transfers. The first
domain is by default accessible to the first thread of a pro-
cess. Given that some languages using GASNet may use
other than the first thread for receiving and processing AMs,
we make all threads infrequently advance the progress of the

first domain AMs. Only the first thread within a process has
a low latency in processing the AM reception. We use an
environment variable to control how frequently each thread
should check and advance the AM domain.

5. ANALYSIS OF THE USE OF MULTIPLE
COMMUNICATION DOMAINS

In this section, we show that the use of multiple com-
munication domains improves the performance of threaded
one-sided communication dramatically. We also show the
impact on the performance of active messages. We finally
discuss the resource issues associated with the use of multi-
ple communication domains.

5.1 Improvement of the performance of one-
sided primitives

In Figure 5, we show that the performance of a one-sided
get, with different levels of thread concurrency and domain
count. We show the latency for small to medium mes-
sage sizes on Cray XC30 (Edison). We plot performance of
threads relative to using pure processes for communication,
for the microbenchmark presented in Section 3.3. The first
observation is that using domain count matching the number
of threads yields performance equivalent to process-based
implementation (at most 8% difference for small messages)
due to infrequent handling active messages. Without ac-
tive messages, the performance perfectly matches, and even
yields a slightly better performance for threads.
The improvement is larger for high thread concurrency

and small messages. The improvement for threads perfor-
mance is up to 31.5× for 8B messages with 24-thread con-
currency. The improvement decreases with the increase of
the message size because the bottleneck shifts to bandwidth
availability. For 2KB messages the improvement is up to
14.6×. The largest message we observed improvement for is
128KB. In earlier generation Cray Machines, XE 06 (Hop-
per), the largest message to see benefit is 32KB, smaller than
that for XC30 (Edison).
The second observation is that using a domain count less

than the thread count significantly reduces the latency of
injection. The latency is reduced monotonically with the
number of domains. Thus depending on the resource con-
straints of allocating domains, increasing the domain count
can bring the internode communication of the threads closer
to processes.

5.2 Resources Allocation
Multiple resource constraints affect the approach presented

in this work: the maximum domain count allowed by the
messaging library, and the available memory registration re-
source, and memory allocation per process. In this section,
we discuss the implication of these resource limits.
Most interconnect runtimes impose a restriction on the

number of domains that can be allocated. On Cray XE06
(Hopper), we can allocate at most 30 domains. On Cray
XC 30 (Edison), the number of domains is at most 120. On
other architectures such as IBM BGQ, PAMI allows 48-64
communication contexts. The impact of this restriction is
that we cannot have communication domains equal to the
square of the thread concurrency, up to 64 in most recent
supercomputers. This makes direct reachability using sep-
arate domains not feasible for active messages. One-sided

28

Figure 5: Improvement of message latency with the
number of domains for small to medium message
sizes on Cray Edison (Aries interconnect).

communication requires domain count at most equal to the
number of cores.
A more challenging restriction is the limited registration

resources of the memory with the NIC. Some interconnects,
such as Gemini (Cray XE06), have limited hardware re-
sources for storing the registration information. This lim-
its the number of memory pages registered per domain.
Having redundant registration stress the limited centralized
resource. Accelerated RDMA mechanisms rely heavily on
memory registration. Fortunately, the registration resources
depend mostly on the page count, not the page size. As
such, the use of huge pages allows allocating larger regis-
terable memory per thread. In Table 1, we show that the
registration resources decline with the number of domains,
especially with small pages (4KB), to reach only 64MB per
thread when 24 communication domains are used. Using
huge pages significantly alleviates this restriction and push
the limit to 4GB. Fortunately, for the newer generation Cray
XC30, this restriction is no longer an issue, and the reg-
istration resources are designed such that it can hold the
maximum allocatable memory per process for any number
of communication domains.
We also observed a restriction that the maximum allocat-

able memory, by libc, for a process is 8GB, which is smaller
than the available physical memory. It is possible to allocate
larger memory using posix allocators. The consequence of
the last two restrictions is that we may need to use mul-
tiple processes to achieve optimal resource allocation. For
instance, we allocate one process per NUMA node and use
threads to exploit all cores within that node.

Table 1: Cray Hopper max. registration per thread

Domain Count small pages huge pages (8MB)
1 512MB 8GB
2 512MB 8GB
4 256MB 8GB
8 128MB 4GB
24 64MB 4GB

Another comment is that even though the requested net-
work resources are increased with the creation of multiple

communication domains, the use of threads usually reduces
the physical memory used by the application compared with
processes. The saving for threads comes from sharing code
segments, and using a single page table per process (shared
by all threads). Applications developers also do not use
data replication in thread-based programming model, which
is typical with processes in distributed programming lan-
guages. The runtimes developed over threads are also known
to have a smaller memory footprint.

Figure 6: Impact of the choice of polling masks on
the latency of GASNet Active Messages.

5.3 Impact on Active Message Performance
As discussed earlier, to avoid frequent locking of commu-

nication domains by all threads, we make active message
(AM) descriptors go through the first communication do-
main. To guarantee forward progress, we allow all threads
to infrequently advance the AM engine using a mask value1.
The larger the mask, the less frequent advancement to the
AM domain. This leads to the trends shown in Figure 6
by TestAM benchmark2. The latency can increase by up to
76×, when the polling mask changes from 1 to 511. Obvi-
ously the difference gets smaller as we reduce the number of
domains. These latency values are the max for all threads.
Note, the performance of the first thread is typically not im-
pacted by the use of multiple domains or the polling mask.
Figure 7 shows the impact on one-sided transfer latencies

when the mask is changed. We notice that the mask value
of one increases the latency of messages by at most 2.73×
for the smallest messages. The difference decreases with the
increase in message size until it becomes neutral for messages
above 128K. The other observation is that with the smallest
mask (highest frequency of polling), the latency is much
smaller than using a single domain, shown in Figure 3, by
up to 7.3×.
The trends shown in Figures 6 & 7 may suggest that to

balance the performance of one-sided primitives with AMs
we need to choose a mask value of 0x7. We do not follow
that because we know that most languages using GASNet
rely more on the one-sided primitives performance. Con-
sequently, we made the default value 0x1FF. To alleviate
the impact on AMs, we modify the use pattern of upper
layer runtimes to GASNet. For instance, unified parallel C
(UPC) runtime is modified such that synchronizations that
use GASNet always elect the first thread to receive AMs.
The default behavior is such that threads within a process
1The mask value is set using the environment variable
GASNET_AM_DOMAIN_POLL_MASK.
2TestAM is a benchmark distributed with GASNet.

29

elect a thread (normally the last arrival) to perform AMs
in behalf of the process. We will show that this strategy
proves suitable for applications written in UPC in the fol-
lowing section.

Figure 7: Impact of choice of polling masks on the
latency of get operations.

5.4 UPC Application Performance
with Communication Domains

To test the efficiency of the presented scheme, we use mul-
tiple UPC applications from NBP benchmark. Our objective
is to measure the impact of using programming models rely-
ing on processes with those relying on threads. Fortunately,
Berkeley UPC can run with single threaded processes, or
with multi-threading. A UPC thread is mapped either to a
process or a thread. Berkeley UPC uses GASNet communi-
cation library to achieve portability. All UPC threads (pro-
cesses or pthreads) initiate communication (no funneling).
The presented applications mostly rely one-sided primitives
for communication. They also use synchronization primi-
tives and collectives that use AMs. We use 16 UPC threads
per node and 16 nodes to make it easier to create power of
two, or square processes needed to run these benchmarks.
We varied the mapping of UPC threads within a node from
using two processes per node and 8 threads per process to
mapping all UPC threads to processes. We did not extend
our run to one process (16 pthreads) per node because Cray
XC30 has two NUMA domains per node. All the studied ap-
plications do not have explicit NUMA locality control and
system utilities on Cray machines allow controlling NUMA
allocation only at the process level. All the runs are relative
to process-based implementation, which use xpmem shared
memory, between processes for intra-node communication.

The base performance is that associated with one com-
munication domain. As shown in Figure 8, the performance
degrades as we use more threads with a single communica-
tion domain. For CG, the slowdown can reach up to 5.5× for
the use of 8 threads per process. For other applications, the
slowdown is at most 61%. The amount of slowdown depends
on the message sizes used by the application. The smaller
the message sizes the higher the performance slowdown. As
shown Figure 8, as we increase the number of communica-
tion domains the performance improves monotonically for all
applications. The difference between processes and threads
implementations becomes bounded to less than 10%. The
processing of active messages is a contributing factor to the
small mismatch between processes and threads implementa-
tions. Our choice of the mask for frequency of polling AMs
proves efficient for overall performance of the studied appli-
cations. Although, we modified the UPC runtime to make
AM calls done by the first thread, we still need for compli-
ance with GASNet specifications do infrequent advancement
from all threads to the active message domain. As per GAS-
Net specifications, in a threaded mode any thread should be
able to advance the progress of the runtime. This infrequent
polls cause a small serialization overhead. We should note
that allowing highly concurrent access could reduce the per-
formance because of congestion.

5.5 Remarks on Efficient Interoperability
Conditions

Satisfying the presented conditions for concurrent wait-
free communication are influenced by multiple factors: the
specifications by the programming model, the runtime de-
sign constraints and implementation strategy, and the capa-
bilities of the messaging systems of the interconnect.
The specifications can influence the addressability of the

target with different execution abstractions. We showed that
communication primitives in one-sided models do not suffer
any addressability issue whether we use processes or threads,
while AMs in GASNet suffer an addressability problem for
reasons embedded in their specifications. Addressability can
be tackled by either having a convention of using communi-
cation resources or by amending the specifications. We ar-
gue that long-term solution should consider modifying the
specification, for the convention might be difficult to follow
or to enforce.
Separability of paths and full reachability are typically op-

posing forces. One can have separable resources and man-
agement on current programming models that lead to lim-
ited reachability. Berkeley UPC provides teams, conceptu-
ally similar to MPI communicators, which allow independent
progress within each team. Participation in a single team
can lead to a reachability problem to some targets, and dy-
namic change of teams can lead to a separability problem.
Separability is also influenced by the language specifications.
If a language imposes certain ordering semantic for thread
execution, then this limits the separability while processing
transfers.
What eased the integration of this work to GASNet is

that it was done transparently with respect to its legacy in-
terfaces and specifications. For instance, although multiple
domains and reachability paths are introduced, the com-
pletion semantic and ordering guarantees are not modified.
Part of this ease came from the fact that addressability in

30

PGAS languages does not rely on the execution abstraction
(processes or threads).
This work shows encouraging results for the integration

projects of UPC with other programming models that rely
on threading. These results guarantee threads to be able to
communicate without serialization by the runtime.
This will not only simplify runtime integration, but will

also simplify application development activities. Applica-
tion developers, being aware of inefficiency of initiating com-
munication from threads, add additional code for prepro-
cessing and postprocessing messages. A main thread typi-
cally collects partial results from all compute threads and
distributes incoming messages, which involves unnecessary
synchronization. Efficient communication by threads can
make such practice obsolete.
The importance of this work is likely to increase in future

systems because the number of cores per node is increasing.
The trends for memory size growth does not show them
coping up. Most applications are also likely to run in strong-
scaling regime, forcing them to rely on the performance of
small messages at high concurrency.

6. RELATED WORK
Interoperability of scalable runtimes, such as MPI and

UPC, with shared memory programming has become criti-
cally important with the advent of multi and manycore de-
signs to node architectures. The support of thread-based
programming models, in scalable communication runtimes,
is the subject of many research proposals and prototypes [2,
4, 16, 3, 15]. Most of these proposals target two-sided MPI
programming model. MPI, up to 3.0 specifications, deals
with threads as non-addressable entities [9, 7], and requires
the ability to reason a serial order of concurrent pthreads
execution.
The first issue these proposals tried to address is making

threads addressable. They propose assigning threads rank
ids [17], or using an endpoint per thread [8, 16, 3]. While
mapping ranks to threads conflicts with the MPI specifica-
tion, most endpoint proposals try to use some convention to
resolve the mapping between threads and the communica-
tion resources. For instance, they associate each thread with
a unique endpoint that can be mapped to a communication
context within the communication rank.
These proposals assume thread-safety of accessing end-

points, which is true on IBM PAMI [8, 16] if each context is
associated with a unique endpoint. Allowing low-overhead
injection of messages does not guarantee the creation of fully
separable communication paths. Separability of managing
the communication resources is typically challenging at the
receive side. Contexts are typically collectively advanced,
which can be done by a communication thread. The cost
of advancing all contexts is typically small in IBM BGQ
because locking relies on a low-overhead L2 atomic, which
is suitable only for single-socket node designs. Kumar et
al [8] details why it is tricky to parallelize MPI IRecv and
MPI WaitAll with threads, even with the use of PAMI end-
points because of the specification constraints of MPI.
The other approach to address thread support is to re-

duce the runtime overhead of implementing mutual exclu-
sion. Proposals of fine-grained locking or lock-free atomics
show promising results in reducing the impact of serializa-
tion [2]. Their objective is to make serialization event very
brief. Fine-grained per object locking requires a special care

to preserve single ordering in locking or deadlocks become a
possibility. In large scale runtimes, this simple requirement
can be a challenge. This approach looks at the serialization
within the interconnect driver as an orthogonal issue. We
note that the base GASNet [6] implementation uses lock-free
data structures (manipulated with atomics) and still suffer
a large penalty as we scale the number of cores especially for
small messages. The overhead in serialized access to a non
thread-safe messaging APIs (such as Cray GNI) was their
main performance bottleneck.
This work introduces a comprehensive analysis for this

problem and provides a solution suitable for PGAS lan-
guages, which rely one-sided primitives. Our work is pub-
licly released thus allowing other runtime designers to exper-
iment with it, especially those targeting one-sided abstrac-
tions.

7. CONCLUSIONS
Hybrid shared and distributed memory are becoming the

standard for massively parallel machines. While threads
have both a lower memory footprint and some performance
advantages for intra-node programming, we have shown that
they often exhibit significant performance problems in inter-
connect communication. This penalty was as high as 21× for
UPC and 41× for MPI in our measurements. We present the
necessary conditions for efficient interoperability of process-
based scalable programming languages with thread-based
node models. We implemented this in the context of an
extension to GASNet communication library. The first con-
dition, addressability, is found orthogonal to the execution
abstraction, processes or threads, for one-sided communi-
cation. The second condition, separability, requires restruc-
turing the runtime to avoid having shared resources between
threads and also the creation of multiple communication do-
mains on top of the messaging library. The third condition,
reachability, is addressed by using redundant registration
(aliasing) of the shared memory segments.
GASNet active messages are shown bounded by their lim-

itation of restricting the addressability to processes lead-
ing to a difficulty in achieving full parallelization of their
transfers with threads. Overall, our approach significantly
improves performance of inter-node thread-based communi-
cation, allowing it to match the performance of processes in
microbenchmarks. We also compared these in an applica-
tion setting and measured up to 5× performance improve-
ment for NBP benchmarks build with a hybrid implemen-
tation using processes and threads. Aside from improving
the performance of GASNet-based programming languages,
our analysis also identifies the key features that lower level
network APIs and hardware need to support for good hy-
brid performance. We believe these design principles will
be increasingly important as the number of cores per node
continues to grow.

Acknowledgments
This research used resources of the National Energy Re-
search Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy un-
der Contract No. DE-AC02-05CH11231, and resources of
the Argonne Leadership Computing Facility at Argonne Na-
tional Laboratory, which is supported under contract DE-
AC0206CH11357.

31

(a) (b)

(c) (d)

Figure 8: Performance of UTS and NPB applications using different thread concurrency levels and commu-
nication domains. All runs use 16 UPC threads per node and 16 Cray XC30 (Edison) nodes.

8. REFERENCES
[1] National Energy Research Scientific Computing

Center, Edison Supercomputer.
http://www.nersc.gov/users/computational-systems/-
edison/configuration.

[2] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and
R. Thakur. Fine-grained multithreading support for
hybrid threaded mpi programming. IJHPCA,
24(1):49–57, 2010.

[3] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir,
and R. Thakur. Enabling MPI Interoperability
Through Flexible Communication Endpoints.
EuroMPI, pages 13–18, 2013.

[4] G. Dozsa, S. Kumar, P. Balaji, D. Buntinas,
D. Goodell, W. Gropp, J. Ratterman, and R. Thakur.
Enabling concurrent multithreaded mpi
communication on multicore petascale systems. Recent
Advances in the Message Passing Interface, Lecture
Notes in Computer Science, 6305:11–20, 2010.

[5] G. Faanes, A. Bataineh, D. Roweth, T. Court,
E. Froese, B. Alverson, T. Johnson, J. Kopnick,
M. Higgins, and J. Reinhard. Cray cascade: a scalable
HPC system based on a Dragonfly network. The
International Conference on High Performance
Computing, Networking, Storage and Analysis, pages
103:1–103:9, 2012.

[6] Global-Address Space Networking (GASNet).
Specification v1.8. http://gasnet.lbl.gov.

[7] W. Gropp and R. Thakur. Thread-safety in an MPI
implementation: Requirements and analysis. Parallel
Computing, 33(9):595 – 604, 2007.

[8] S. Kumar, A. Mamidala, D. Faraj, B. Smith,
M. Blocksome, B. Cernohous, D. Miller, J. Parker,
J. Ratterman, P. Heidelberger, D. Chen, and
B. Steinmacher-Burrow. PAMI: A Parallel Active

Message Interface for the Blue Gene/Q
Supercomputer. The 26th IEEE International Parallel
Distributed Processing Symposium (IPDPS), pages
763–773, 2012.

[9] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard Version 3.0.
www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf,
Sept 2012.

[10] MPICH2 v 3.0.4.
http://www.mcs.anl.gov/research/projects/mpich2/ .

[11] MVAPICH2 v 2.0b. http://mvapich.cse.ohio-state.-
edu/overview/mvapich2/.

[12] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan,
P. Sadayappan, and C.-W. Tseng. UTS: An
Unbalanced Tree Search Benchmark. The 19th Intl.
Workshop on Languages and Compilers for Parallel
Computing (LCPC 2006), Nov. 2006.

[13] OpenMPI v 1.7.3. http://www.open-mpi.org.
[14] OSU benchmarks. OMB 4.2. Network-Based

Computing Laboratory, Ohio State University,
http://mvapich.cse.ohio-state.edu/benchmarks/.

[15] G. Saxena. Thread safety for hybrid programming in
thread-as-rank model. Master’s thesis, The University
of Edinburgh, Aug. 2013.

[16] G. Tanase, G. Almasi, H. Xue, and C. Archer.
Network endpoints for clusters of smps. The 24th
IEEE International Symposium onComputer
Architecture and High Performance Computing
(SBAC-PAD), pages 27–34, 2012.

[17] H. Tang and T. Yang. Optimizing threaded mpi
execution on smp clusters. The 15th International
Conference on Supercomputing, pages 381–392, 2001.

[18] Top 500 Supercomputers. http://www.top500.org.
[19] UPC Consortium.

http://upc.lbl.gov/docs/user/upc spec 1.2.pdf.

32

View publication statsView publication stats

https://www.researchgate.net/publication/266657950

