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ABSTRACT OF THE DISSERTATION

Higher Comparison Maps for the Spectrum of a Tensor Triangulated Category

by

Beren James Sanders

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Paul Balmer, Chair

For each object in a tensor triangulated category, we construct a natural continuous map

from the object’s support—a closed subset of the category’s triangular spectrum—to the

Zariski spectrum of a certain commutative ring of endomorphisms. When applied to the

unit object this recovers a construction of P. Balmer. These maps provide an iterative ap-

proach for understanding the spectrum of a tensor triangulated category by starting with

the comparison map for the unit object and iteratively analyzing the fibers of this map via

“higher” comparison maps. We illustrate this approach for the stable homotopy category of

finite spectra. In fact, the same underlying construction produces a whole collection of new

comparison maps, including maps associated to (and defined on) each closed subset of the

triangular spectrum. These latter maps provide an alternative strategy for analyzing the

spectrum by iteratively building a filtration of closed subsets by pulling back filtrations of

affine schemes.
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CHAPTER 1

Introduction

Triangulated categories have their origins in Verdier’s work on the homological foundations

of Grothendieck’s algebraic geometry and, independently, in Puppe’s work on the founda-

tions of stable homotopy theory. In the intervening half century, the notion of a triangulated

category has proved to be a predestined structure that is found throughout the algebraic and

topological branches of modern pure mathematics. Indeed, examples of triangulated cate-

gories arise in a truly diverse range of mathematical disciplines from algebraic geometry

and homological algebra to stable homotopy theory, noncommutative topology and modular

representation theory. The abstract theory is motivated by a rich variety of concrete exam-

ples and provides theorems that are applicable to a wide range of subjects. At the same

time, triangulated categories provide a platform for transferring ideas and techniques be-

tween these disparate subjects. For example, one can take an idea from algebraic geometry

(such as gluing sheaves), generalize the idea to the abstract world of triangulated categories,

and then see what it says about “gluing representations” in modular representation theory.

It is a truly interdisiciplinary subject.

Many triangulated categories arising in nature come equipped with natural ⊗-product

structures—that is, they are tensor triangulated categories—and in recent years there has

been a growing appreciation for the significance of these ⊗-structures. For example, a (nice)

scheme can be recovered from the tensor triangulated structure of its derived category of
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perfect complexes, but not from the triangulated structure alone (see [Bal10a, Remark 64],

for example). Using the ⊗-structure, Balmer [Bal05] has introduced the spectrum of a ten-

sor triangulated category. Just as the spectrum of a commutative ring provides a geometric

approach to commutative algebra, the spectrum of a tensor triangulated category provides

a geometric approach to the study of tensor triangulated categories—an approach referred

to as tensor triangular geometry by its originators. This dissertation makes a contribution

to tensor triangular geometry and the antenatal reader is referred to [Bal10b] for an intro-

duction to this relatively new field and for additional background that leads to the present

work.

Determining the spectrum of a given tensor triangulated category is a highly non-trivial

problem, which is essentially equivalent to classifying the thick triangulated ⊗-ideals in

the category—in other words, classifying the objects of the category up to the naturally

available structure: ⊗-products, ⊕-sums, ⊕-summands, suspensions, and cofibers. Major

classification theorems in algebraic geometry, modular representation theory and stable ho-

motopy theory give complete descriptions of the spectrum in several important examples,

but one of the goals of tensor triangular geometry is to go the other way—to develop tech-

niques for determining the spectrum (and thereby solve the classification problem), or to at

least say something interesting about the spectrum when a full determination proves to be

too ambitious.

In any tensor triangulated category, the endomorphism ring of the unit is commutative,

and the first step towards saying something about the spectrum of a general tensor trian-

gulated category was taken in [Bal10a] where continuous maps

ρ : Spc(K)→Spec(EndK(1)) and ρ• : Spc(K)→Spech(End•
K(1))

were defined going from the triangular spectrum to the (homogeneous) spectrum of the
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(graded) endomorphism ring of the unit. These “comparison maps” are often surjective and

so attention focuses on understanding conditions under which they are injective and more

generally on understanding their fibers. If K = Dperf(A) is the derived category of perfect

complexes of a commutative ring A, then EndK(1) is isomorphic to A and ρ turns out to

be a homeomorphism. This can be proved directly and provides an alternative proof of the

affine case of the Hopkins-Neeman-Thomason theorem. On the other hand, if G is a finite

group, k is a field, and K = Db(kG-mod) with ⊗ = ⊗k, then End•
K

(1) is group cohomology

H•(G,k) and it is known using the classification theorem of Benson-Carlson-Rickard that

the map ρ• is a homeomorphism. A more direct proof of the injectivity of ρ• in this example

would provide a new proof of the Benson-Carlson-Rickard theorem. In general, however,

one cannot expect the (graded) endomorphisms of the unit to determine the global structure

of the whole category and we are left with the important general problem of understanding

the fibers of these comparison maps.

In this dissertation, we will construct new comparison maps which generalize those men-

tioned above. More specifically, for each object X in a tensor triangulated category K we will

define maps

ρX : supp(X )→Spec(RX ) and ρ•X : supp(X )→Spech(R•
X )

from the support of X (a closed subset of the triangular spectrum) to the (homogeneous)

spectrum of a certain (graded-)commutative ring of (graded) endomorphisms of X , which

recover the original comparison maps when X = 1. The author’s initial interest in these new

comparison maps stems from the fact that they provide a method for studying the fibers

of the original maps. This in turn leads to an iterative strategy for studying the spectrum

based on a repeated analysis of the fibers of a sequence of generalized comparison maps.

The idea runs as follows. Given an arbitrary tensor triangulated category K, we can take
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the unit object and consider the comparison map ρ1 : Spc(K)→Spec(R1). Understanding the

fibers of this map reduces by a localization technique to the case when R1 is a local ring.

If the unique closed point m = 〈 f1, . . . , fn〉 is finitely generated then it is straightforward to

show that the fiber ρ−1
1

({m}) is equal to the support of the object X1 := cone( f1)⊗·· ·⊗cone( fn).

This fiber can then be examined more closely by considering the “higher” comparison map

ρX1 : supp(X1) → Spec(RX1) associated with the object X1. The same procedure can then

be used to study the fibers of ρX1 and the process repeats itself. Following any particular

thread in this process produces a linear filtration

Spc(K)⊃ supp(X1)⊃ supp(X2)⊃ ·· · ⊃ supp(Xn)

which can be extended for however long the rings involved possess finitely generated primes.

One of the difficulties with this method is that to understand the fiber over a non-closed

point we must first apply a localization procedure. The reason is that for a finitely generated

prime p = 〈 f1, . . . , fn〉, the support of cone( f1)⊗ ·· ·⊗ cone( fn) is actually the preimage of the

closure {p}=V (p) rather than the fiber over p. More generally,

ρ−1
X (V (I))= supp(cone( f1)⊗·· ·⊗cone( fn))

for any finitely generated ideal I = 〈 f1, . . . , fn〉. Thus, rather than examining the fibers of a

comparison map ρX , an alternative strategy is to take a look at the preimages of all of the

Thomason closed subsets V (I) ⊂ Spec(RX ).1 Choosing generators of the ideal I provides us

with an object of K whose support is the closed subset ρ−1
X (V (I)) and we can examine this

subset further via the comparison map associated with this “generator” object.2

1Recall that a Thomason closed subset is the same thing as a closed subset whose complement is quasi-
compact. In the case of an affine scheme Spec(A) this a closed set of the form V (I) for a finitely generated ideal
I ⊂ A, while in the case of Spc(K) this is a closed subset of the form supp(a) for an object a ∈K. These notions
will be reviewed in Section 2.4.

2A “generator” of a closed subset Z⊂Spc(K) is an object a ∈K with supp(a)=Z.
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Both of these strategies suffer from the fact that (a) they only deal with finitely gen-

erated primes and Thomason closed subsets (which may be an undesirable limitation in

non-noetherian situations) and (b) they involve non-canonical choices of generators. The

fundamental idea in both approaches is to examine a Thomason closed subset Z⊂Spc(K) by

the comparison map associated with an object which generates Z, but this comparison map

depends on the choice of generator. Such considerations lead to the desire for a “generator-

independent” comparison map which only depends on the Thomason closed subset on which

it is defined, and more generally for a comparison map associated to every closed subset of

the spectrum.

Indeed, the map ρX is just one of a host of new comparison maps introduced in this work.

The most general construction associates a natural, continuous map

ρΦ :
⋂

X∈Φ
supp(X )→Spec(RΦ)

to each set of objects Φ⊂K that is closed under the ⊗-product. Taking Φ= {X⊗n | n ≥ 1} gives

the map ρX above, while taking Φ = {a ∈ K | supp(a) ⊃ Z} gives a map ρZ : Z → Spec(RZ)

associated to (and defined on) an arbitrary closed subset of the spectrum. Following on

from the previous discussion, the latter “closed set” comparison maps ρZ afford perhaps the

most robust strategy for studying the spectrum. The idea is to iteratively build a filtration

of closed subsets by pulling back filtrations of the affine schemes Spec(RZ). This idea has

the advantage that it utilizes all closed subsets (not just Thomason ones) and is purely

deterministic: no choices are involved. The hope is that ultimately the filtration will become

fine enough to completely determine the spectrum. Although certain difficulties prevent

these strategies from working out in the full generality that one might hope, the author

nevertheless considers them to be the primary justification for the theory developed in this

dissertation.
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In any case, one example where none of the difficulties arise is the stable homotopy

category of finite spectra SHfin. This is an elusive example for tensor triangular geometry.

Although the structure of the space Spc(SHfin) is known via the work of Devinatz, Hopkins

and Smith (cf. Section 6.5), the unit comparison map

C2,∞ C3,∞ · · · Cp,∞ · · ·

Spc(SHfin)=

ρ1

��

...
...

...

C2,n+1 C3,n+1 · · · Cp,n+1 · · ·

C2,n C3,n · · · Cp,n · · ·
...

...
...

C2,2 C3,2 · · · Cp,2 · · ·

SHfin
tor

Spec(Z)= 2Z 3Z · · · pZ · · ·

(0)

is far from injective and understanding the fibers (which are given by the collection of

Morava K-theories) is related to the important problem of understanding residue fields

in tensor triangular geometry. In any case, the iterative procedure we have mentioned

above works out very nicely in this example, and it provides one illustration of how the

higher comparison maps can work out in practice. However, determining the comparison

maps in this example—in particular, determining the structure of the rings R•
X —requires

the full strength of the results in [HS98] on nilpotence and periodicity in stable homotopy

theory. In particular, it presupposes knowledge of the classification of thick subcategories

in SHfin. Nevertheless, these results allow us to show that the new comparison maps refine

the view of SHfin provided by Balmer’s original comparison map ρ1. This is an important

test for our theory as other generalizations of the original maps have failed to provide ad-
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ditional insight into this example. Stated differently, although our application of the theory

to SHfin ultimately depends on the classification of thick subcategories, our work never-

theless demonstrates that the spectrum of this topological category is completely seen by

purely algebro-geometric invariants. The original algebraic invariant Spech(End•
K

(1)) sees

very little, but our “higher” algebraic invariants see everything.

Outline of the dissertation

The original results of the dissertation are confined to the last two chapters. The first four

chapters are preliminary in nature. In detail:

Chapter 2 contains miscellaneous material on idempotent completion, monoidal cate-

gories, graded rings and spectral spaces. It could arguably be put as an appendix but since

it contains remarks that we would like to bring to the reader’s attention we have opted to

include it as part of the narrative.

Chapter 3 covers the theory of triangulated categories from the basic definitions to

Brown representability and Bousfield localization. In particular, we define the notion of

a tensor triangulated category in Section 3.3 with a careful treatment of the compatibility

between the tensor structure and the triangulated structure. Examples are considered in

Section 3.8. Finally, in the last section we set the stage for the next chapter by briefly dis-

cussing the thick subcategory classification theorems of Hopkins-Neeman-Thomason and

Benson-Carlson-Rickard.

Chapter 4 provides a bare-bones account of the spectrum of a tensor triangulated cate-

gory as introduced by Paul Balmer. We only include those notions and definitions which are

required for understanding the rest of the dissertation.

Chapter 5 is devoted to our main contribution: the theory of higher comparison maps. In
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this chapter we construct the new comparison maps and lay the foundations of their basic

theory. For example, we establish their naturality and universality, show that passing to

the idempotent completion does not change anything, and develop a technique for localiz-

ing with respect to primes in RΦ (which has been alluded to in the discussion above and

generalizes the “central localization” of [Bal10a]). Other results include establishing that

the object comparison maps ρX are invariant under a number of natural operations that

can be performed on the object X such as taking suspensions, or duals, or ⊗-powers, etc.

In addition, we establish some connections of a topological nature between the target affine

scheme Spec(RΦ) and the domain of ρΦ; for example, we show that the domain is connected

if and only if Spec(RΦ) is connected. Other results of that nature include establishing that

the image of ρΦ is always dense in Spec(RΦ).

Chapter 6 is devoted to stable homotopy theory. The purpose of this chapter is to il-

lustrate how the iterative method for analyzing the spectrum via higher comparison maps

works out in the example of the stable homotopy category of finite spectra. This is accom-

plished in the final section of the dissertation: Section 6.6. The first five sections provide

background from chromatic homotopy theory and are included for the benefit of the reader.

The results of this dissertation have been published in [San13]. Besides some more

detailed proofs and more extensive preliminary discussion, all the main results can be found

in that paper.

Finally, it is worth mentioning that [DS14] has also defined generalizations of the origi-

nal comparison maps from [Bal10a]. However, that work focuses on invertible objects in the

category and goes in quite a different direction than our theory.

A remark about foundations: In our exposition of the theory of triangulated cate-

gories, we are careful to mention places where set-theoretic difficulties arise, but we are
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nevertheless loose (and somewhat schizophrenic) with our language. For example, we say

that a category “need not exist in our universe” synonymously with “need not be locally

small.” Which statement is the accurate one depends on which choice of foundations you

choose. In any case, the theory of higher comparison maps—and tensor triangular geome-

try in general—applies to essentially small tensor triangulated categories, for which such

issues do not arise.

Finally, recall that a subcategory is said to be replete if it is closed under isomorphisms.
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CHAPTER 2

Preliminaries

This chapter contains miscellaneous material on idempotent completion, monoidal cate-

gories, graded rings, and spectral spaces. The theory of triangulated categories will be

covered in the next chapter. The reader might be perplexed by the amount of detail we

provide in the section on monoidal categories. We have included this material in order to

be precise about the axiomatics of tensor triangulated categories (and also to make some

remarks missing from the standard references) but the quizzical (and well-informed) reader

can fitfully skim that section. The material on idempotent completion and spectral spaces

is perhaps less standard.

2.1 Idempotent completion

Morally speaking, an additive category is idempotent complete if it has all the direct sum-

mands it “should have.” Every category can be embedded in an idempotent complete cate-

gory and it is a theorem of Balmer and Schlichting [BS01] that the idempotent completion of

a triangulated category remains triangulated. Idempotent completion makes several promi-

nent appearances in modern mathematics—for example, in Grothendieck’s construction of

categories of pure motives (cf. [And04, Chapter 4]) and in Thomason’s work on localization

in algebraic K-theory (cf. [TT90] and Remark 3.7.17). In the theory of triangulated cate-

gories, the significance of thick subcategories rather than mere triangulated subcategories
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hints at the relevance of idempotent completion in that context. As we shall see, idempo-

tent completion is a very mild construction and we should not feel guilty about performing

it whenever convenient. In particular, it doesn’t affect the spectrum (see Proposition 4.4.3)

and in Section 5.5 we shall show that a tensor triangulated category and its idempotent

completion have “the same” theory of higher comparison maps.

Definition 2.1.1. An idempotent endomorphism e : X → X is a split idempotent if there

exists a factorization

X

f   

e // X

Y
g

>>

with the property that f ◦ g = idY . A category is idempotent complete if every idempotent

endomorphism splits.

Remark 2.1.2. In an additive category, the idempotent
(1 0

0 0
)

: A⊕B → A⊕B is a split idem-

potent. Conversely, if e : X → X is an idempotent such that both e and 1− e are split then

X ' im e⊕ker e in such a way that e becomes the idempotent
(1 0

0 0
)
. Thus, in an idempotent

complete additive category, every idempotent arises from a direct-sum decomposition.

Definition 2.1.3. Let C be a category. The idempotent completion of C is a category C]

defined as follows. The objects are pairs (X , e) where X is an object of C and e : X → X is an

idempotent endomorphism, and the maps are defined by

HomC]((X , e), (Y , f )) := {φ ∈HomC(X ,Y ) | f ◦φ=φ=φ◦ e}

with composition induced by composition in C. The functor C→ C] given by X 7→ (X , idX ) is

fully faithful and embeds C as a full replete subcategory of C].

Remark 2.1.4. The category C] is idempotent complete. Indeed, an idempotent (X , e)
φ−→ (X , e)
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splits as

(X , e)
φ //

φ !!

(X , e)

(X ,φ)
φ

==

since φ2 = φ is the identity morphism of (X ,φ) in C]. In fact, it is easy to show that the

canonical functor i : C→ C] is the universal functor from C to an idempotent complete cate-

gory. More precisely, if F :C→D is any functor to an idempotent complete category D then

there exists a functor F̃ :C]→D such that F̃ ◦ i = F and, moreover, any two such functors F̃

are naturally isomorphic. This property characterizes C] up to equivalence of categories.

Remark 2.1.5. A category is idempotent complete iff the canonical functor C → C] is an

equivalence of categories. In fact, this is the same as saying that C→ C] is an isomorphism

of categories since the image of C is a replete subcategory of C].

Remark 2.1.6. If A is an additive category then A] is also additive and the canonical functor

A ,→ A] embeds A as a full additive subcategory of A]. We’ll see in Section 4.4 that the

idempotent completion of a (tensor) triangulated category is again a (tensor) triangulated

category.

Proposition 2.1.7 (Freyd). Let A be an additive category which has countable coproducts

and which has the property that an idempotent e splits if and only if 1− e splits. Then every

idempotent in A splits. In other words, A is idempotent complete.

Proof. The following proof is taken from [Fre66]. Consider an idempotent e : A → A in A.

Let B :=∐
n∈N A and define maps f : B → B and g : B → B by

B

f=


1−e

e 1−e
e 1−e

...


//B and B

g=


1−e e

1−e e
1−e

...


//B.

Then g◦ f = idB so that f ◦ g : B → B is a split idempotent. By our hypotheses, 1− f ◦ g must
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also split: there exists an object C and maps B
β−→ C and C

γ−→ B such that 1− f ◦ g = γ◦β and

β◦γ= idC:

B

β ��

1− f ◦g // B

C
γ

??

Note that β◦ f ◦ g = β◦ (1−γ ◦β) = β−β◦γ◦β = 0 and hence β◦ f = 0 since g is (split) epi.

Similarly, f ◦ g ◦γ= (1−γ◦β)◦γ= γ−γ◦β◦γ= 0 so that g ◦γ= 0. Now observe that

f ◦ g =
(1−e

e 1−e
e 1−e

...

)(1−e e
1−e e

1−e
...

)
=

(1−e
1

1
...

)

and hence

γ◦β= 1− f ◦ g =
 e

0
0

0
...

 .

In other words, γ◦β= B
p1−→ A e−→ A i1−→ B where i1 and p1 denote the canonical maps for the

coproduct. On the other hand,

0=β◦ f = (β◦i1 β◦i2 β◦i3 ··· )

(1−e
e 1−e

e 1−e
...

)

implies that β◦ in◦(1− e)+β◦ in+1◦ e = 0 for n ≥ 1. Hence (β◦ in◦(1− e)+β◦ in+1◦ e)◦(1− e)=

β◦ in◦(1− e)= 0 for n ≥ 1 and similarly (β◦ in◦(1− e)+β◦ in+1◦ e)◦ e =β◦ in+1◦ e = 0 for n ≥ 1.

It follows that β◦ in =β◦ in ◦ ((1− e)+ e)= 0 for n ≥ 2. Hence B
β−→ C = B

p1−→ A i1−→ B
β−→ C. Now

define maps s : A → C and t : C → A by s = A i1−→ B
β−→ C and t = C

γ−→ B
p1−→ A and observe that

t◦ s = p1 ◦γ◦β◦ i1 = p1 ◦ i1 ◦ e◦ p1 ◦ i1 = e and s◦ t =β◦ i1 ◦ p1 ◦γ=β◦γ= idC. Hence we have

a splitting

A

s ��

e // A

C
t

??

which proves the claim.
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Remark 2.1.8. We’ll see in the next chapter that every triangulated category has the prop-

erty that an idempotent e splits iff 1− e splits; see Lemma 3.1.21. It will therefore follow

that any triangulated category which has countable coproducts is idempotent complete.

2.2 Monoidal categories

Monoidal categories form a basic piece of category theory. The standard reference is [Mac98]

but [EK66] contains additional material.

Definition 2.2.1. A monoidal category consists of a category C, a functor −⊗− :C×C→C,

and an object 1 ∈ C called the unit, together with natural isomorphisms la : 1⊗ a ∼−→ a,

ra : a⊗ 1 ∼−→ a, and αa,b,c : a⊗ (b ⊗ c) ∼−→ (a⊗ b)⊗ c, called the left unitor, right unitor, and

associator, respectively, such that the diagrams

a⊗ (b⊗ (c⊗d)) α //

1⊗α
��

(a⊗b)⊗ (c⊗d) α // ((a⊗b)⊗ c)⊗d

a⊗ ((b⊗ c)⊗d) α // (a⊗ (b⊗ c))⊗d

α⊗1

OO
(2.2.2)

and

a⊗ (1⊗b)

a⊗lb
��

α // (a⊗ 1)⊗b

ra⊗b
��

a⊗b a⊗b

. (2.2.3)

commute for any a,b, c,d ∈C.

Remark 2.2.4. The equality l1 = r1 is included as one of the axioms in [Mac98] but it was

shown in [Kel64] that it follows from (2.2.2) and (2.2.3). Thus most authors do not include it

as part of the definition (e.g. [Bor94, JS93, Kel82]). It is significant for us because it implies

that endomorphisms of the unit object commute. In order to prove this fact, we require the

following lemma.
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Lemma 2.2.5. Let (C,⊗,1,α, l, r) be a monoidal category. The diagrams

1⊗ (a⊗b) α //

la⊗b &&

(1⊗a)⊗b

la⊗bxx
a⊗b

and a⊗ (b⊗ 1)
a⊗rb &&

α // (a⊗b)⊗ 1
ra⊗bxx

a⊗b

commute for any a,b ∈C.

Proof. We’ll only demonstrate the commutativity of the first diagram since the second di-

agram is disposed of similarly. Note that 1⊗− : C→ C is an equivalence—indeed, the left

unitor provides a natural isomorphism between 1⊗− and the identity functor—so in order to

show that the diagram commutes, it suffices to show that it commutes after applying 1⊗−.

The diagram that results is the left triangle of the following diagram:

1⊗ ((1⊗a)⊗b) α //

1⊗(la⊗1)

��

(1⊗ (1⊗a))⊗b

(1⊗la)⊗1

��

α⊗1

""
1⊗ (1⊗ (a⊗b))

1⊗la⊗b --

1⊗α 22

((1⊗ 1)⊗a)⊗b

(r1⊗1)⊗1qq1⊗ (a⊗b) α // (1⊗a)⊗b

The center square commutes by naturality and the right triangle is −⊗b applied to (2.2.3).

In order to show that the left triangle commutes, it suffices to show that the outline of

the diagram commutes since all the maps are isomorphisms. This is demonstrated by the

following diagram:

1⊗ ((1⊗a)⊗b) α // (1⊗ (1⊗a))⊗b
α⊗1

��
1⊗ (1⊗ (a⊗b))

1⊗la⊗b ,,

1⊗α 44

α // (1⊗ 1)⊗ (a⊗b) α //

r1⊗(1⊗1)vv

((1⊗ 1)⊗a)⊗b

(r1⊗1)⊗1rr1⊗ (a⊗b) α
// (1⊗a)⊗b

The top is (2.2.2), the bottom-left is (2.2.3), and the bottom-right commutes by naturality.

Lemma 2.2.6. Let (C,⊗,1,α, l, r) be a monoidal category. Then l1 = r1.

15



Proof. The diagram

1⊗ (1⊗ 1) l1⊗1 //

1⊗l1
��

1⊗ 1
l1
��

1⊗ 1
l1

// 1

commutes by naturality. It follows that l1⊗1 = 1⊗ l1 since l1 is an isomorphism. Lemma 2.2.5

then implies that the diagram

1⊗ (1⊗ 1) α //

1⊗l1=l1⊗1 !!

(1⊗ 1)⊗ 1

l1⊗1}}
1⊗ 1

commutes, while axiom (2.2.3) implies that the diagram

1⊗ (1⊗ 1)

1⊗l1 !!

α // (1⊗ 1)⊗ 1

r1⊗1}}
1⊗ 1

commutes. Precomposing by α−1 we conclude that l1⊗ 1= r1⊗ 1 and hence that l1 = r1 since

−⊗ 1 :C→C is an equivalence.

Lemma 2.2.7. Let (C,⊗,1,α, l, r) be a monoidal category. Any two endomorphisms of the unit

object commute.

Proof. Using the fact that l1 = r1, the commutativity of

1

g

��

f // 1

g

��

1⊗ 1
1⊗g
��

l1

r1
aa

f⊗1 // 1⊗ 1
r1

l1

==

1⊗g
��

1⊗ 1
l1

r1}}

f⊗1
// 1⊗ 1

l1
r1 !!

1
f

// 1

shows that any two endomorphisms f , g ∈EndC(1) commute.
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Remark 2.2.8. The significance of the peculiar choice of axioms in Definition 2.2.1 lies in

Mac Lane’s coherence theorem [Mac63]. The basic idea can be explained as follows. Given

a sequence of objects x1, . . . , xn in a monoidal category, there are various ways we can form

their ⊗-product depending on how we choose to bracket the expression x1 ⊗ ·· · ⊗ xn. For

any two such choices, we can construct an isomorphism from one to the other by iteratively

applying the associator. However, there will typically be several ways to construct such an

isomorphism and we would like all such isomorphisms to coincide. Axiom (2.2.2) asserts

that two particular such isomorphisms

a⊗ (b⊗ (c⊗d)) ∼−→ ((a⊗b)⊗ c)⊗d

coincide, and it is a non-trivial theorem—due to Saunders Mac Lane—that this one “coher-

ence axiom” for the tensor product of four objects implies all “higher coherence axioms” for

the tensor product of an arbitrary number of objects. The inclusion of axiom (2.2.3) enables

one to prove a similar coherence result which takes the unitors and unit object into account.

Remark 2.2.9. The coherence theorem is sometimes expressed casually as the statement

that “all diagrams built from α, l and r commute” but this is not correct. A more accurate

statement is that all “formal” diagrams built from α, l and r commute (see [Mac98, §VII.2]

for a precise statement). The problem with the more general false statement is the pos-

sibility that two “formally different” bracketings might coincide in any particular monoidal

category. For example, it is possible that there might be an equality x1⊗(x2⊗x3)= (x1⊗x2)⊗x3

without α : x1 ⊗ (x2 ⊗ x3) ∼−→ (x1 ⊗ x2)⊗ x3 being the identity, in which case

x1 ⊗ (x2 ⊗ x3) α //

α
��

(x1 ⊗ x2)⊗ x3

(x1 ⊗ x2)⊗ x3 x1 ⊗ (x2 ⊗ x3)

α

OO

is a diagram built from α which does not commute. An explicit example of this phenomenon

is provided by the small skeleton of the category of sets with monoidal structure induced
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from the Cartesian product. In this monoidal category the countable set N has the property

that N× (N×N)= (N×N)×N but the associator is not the identity (see [Mac98, page 164]).

Remark 2.2.10. Despite these caveats, one form of Mac Lane’s theorem states that any

monoidal category is monoidally equivalent (see Definition 2.2.40 below) to a strict monoidal

category—one in which α, l and r are identities. By invoking this theorem, some authors

make the blanket assumption that their monoidal categories are strict and thereby drop

α, l and r from their consideration and notation. In the present work, we will typically

omit associators from our diagrams but in doing so we do not intend to replace our cate-

gory by a strict monoidal category; rather, our suppression of associators is just a notational

convenience (or a notational abuse) used to keep our diagrams to a digestible size. All the

diagrams can be inflated and reworked to include the missing associators.

Notation 2.2.11. While on the topic of notational abuses, let us agree to write (C,⊗,1) for a

monoidal category rather than the exhausting (C,⊗,1,α, l, r).

Definition 2.2.12. A symmetric monoidal category is a monoidal category (C,⊗,1) equipped

with a natural isomorphism τa,b : a⊗b ∼−→ b⊗a called the symmetry such that

a⊗ 1
ra ��

τa,1 // 1⊗a

la��
a

(2.2.13)

a⊗b id //

τa,b ��

a⊗b

b⊗a
τb,a

@@
(2.2.14)

(a⊗b)⊗ c
τa⊗b,c
��

α−1
// a⊗ (b⊗ c)

a⊗τb,c // a⊗ (c⊗b)

α
��

c⊗ (a⊗b) α // (c⊗a)⊗b
τc,a⊗b

// (a⊗ c)⊗b

(2.2.15)

commute for any a,b, c ∈C.
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Remark 2.2.16. Symmetric monoidal categories also admit a coherence theorem (see [Mac98,

§XI.1] for a precise statement) but in this context it is particularly important to appreciate

the “formal” nature of the result. For example, there is no reason to expect that a diagram

like

x⊗ (x⊗ x)

α
��

1⊗τ //

��

x⊗ (x⊗ x)

α
��

(x⊗ x)⊗ x τ⊗1 // (x⊗ x)⊗ x

should commute. This diagram is not “formal” because it does not make sense if the three

objects are “formally distinct” (cf. Remark 2.2.9) and can only be formed because certain

equalities serendipitously happen to hold. For example, compare the above diagram with

the following one:

x1 ⊗ (x2 ⊗ x3)

α
��

1⊗τ // x1 ⊗ (x3 ⊗ x2)

?
��

(x1 ⊗ x2)⊗ x3
τ⊗1 // (x2 ⊗ x1)⊗ x3).

Nevertheless, the coherence theorem for symmetric monoidal categories ensures that given

a permutation σ ∈ Sn and a collection of objects x1, . . . , xn there is a unique isomorphism

x1⊗·· ·⊗xn
∼−→ xσ(1)⊗·· ·⊗xσ(n) constructed using the symmetry (i.e., constructed using “trans-

positions”) which effects the permutation σ on the ⊗-factors. (Note that we have dropped

associators in accordance with Remark 2.2.10.) This basic fact about symmetric monoidal

categories is used implicitly in the work of Chapter 5. As a consequence, it is not immedi-

ately clear how much of the theory of higher comparison maps (if any) might work in the

more general setting of braided monoidal categories [JS93]; the author has not given this

point serious consideration. (In a braided monoidal category it is the braid group Bn which

acts on an n-fold tensor product rather than the symmetric group Sn.)

Remark 2.2.17. If (C,⊗,1) is a monoidal category then the opposite category Cop inherits

a monoidal structure (Cop,⊗̂,1) where the tensor product is taking in the opposite order:
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X ⊗̂Y :=Y ⊗ X . If C is symmetric then we can just take X ⊗̂Y := X ⊗Y .

Definition 2.2.18. A monoid (A,µ,η) in a monoidal category (C,⊗,1) is an object A ∈ C

equipped with maps µ : A⊗ A → A and η : 1→ A such that

A⊗ A⊗ A
1⊗µ
��

µ⊗1 // A⊗ A
µ
��

A⊗ A
µ // A

and
A⊗ 1 1⊗η //

rA
$$

A⊗ A
µ
��

1⊗ A
η⊗1oo

lAzz
A

commute. In other words, µ is associative and η is a two-sided identity for µ. If the monoidal

category is symmetric then a monoid is said to be commutative if µ=µ◦τA,A.

Example 2.2.19. If R is a commutative ring then the category of R-modules forms a sym-

metric monoidal category (R-Mod,⊗R ,R). The (commutative) monoids in this category are

the (commutative) R-algebras.

Example 2.2.20. If A is any ring then the category of A-A-bimodules provides an example

of a monoidal category (A-Mod-A,⊗A, A) which is not symmetric.

Example 2.2.21. If R is a commutative ring then the chain complexes of R-modules form

a monoidal category (Ch(R),⊗,R) with the usual tensor product of complexes: (X ⊗Y )n =⊕
i+ j=n X i ⊗R Y j with differential d(x⊗ y) := dx⊗ y+ (−1)|x|x⊗d y. The unit is R regarded as

a complex concentrated in degree zero. A monoid in Ch(R) is the same thing as a differen-

tial graded R-algebra. Similarly, the category of graded abelian groups AbZ is a monoidal

category whose monoids are the same thing as graded rings.

Example 2.2.22. The Cartesian product × provides the category of sets with the structure

of a monoidal category (Sets,×,∗) with a one-point set ∗ serving as unit object. A monoid

in this monoidal category is just a monoid in the ordinary sense: a set equipped with an

associative, unital multiplication.

Example 2.2.23. Let G be a finite group and let k be a field. If M and N are two kG-modules

then the k-linear tensor product M⊗k N inherits the structure of a kG-module by letting G
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act diagonally: g.(m⊗n)= (g.m⊗ g.n). With this tensor product the category of kG-modules

forms a symmetric monoidal category (kG-Mod,⊗k,k). A monoid in this category is the same

thing as a k-algebra equipped with an action of G via algebra automorphisms.

Remark 2.2.24. A monoidal category can admit several symmetries turning it into a sym-

metric monoidal category. For example, the category of graded abelian groups AbZ has two

natural symmetries: x⊗ y 7→ y⊗ x and x⊗ y 7→ (−1)|x|·|y|y⊗ x. With respect to the second

symmetry, the commutative monoids are the graded rings which are “graded-commutative”

while the commutative monoids with respect to the first symmetry are the graded rings

which are genuinely commutative. We’ll discuss graded-commutative rings in more detail

in Section 2.3.

Remark 2.2.25. Monoids in additive monoidal categories behave like rings. In such circum-

stances it is common to use the term “ring” or “algebra” instead of monoid. For example,

monoids in the stable homotopy category of spectra (see Chapter 6) are called “ring spectra.”

Definition 2.2.26. Let (A,µ,η) be a monoid in a monoidal category (C,⊗,1). A left A-module

is an object M ∈C equipped with a map ρ : A⊗M → M such that

A⊗ A⊗M
1⊗ρ //

µ⊗1
��

A⊗M
ρ

��
A⊗M

ρ // M

and
1⊗M

η⊗1 //

lM %%

A⊗M
ρ

��
M

commute. These are the natural analogues of the usual module axioms: (a1a2).x = a1.(a2.x)

and 1.x = x. Every object X ∈ C gives rise to a so-called “free A-module” A⊗ X with action

ρ : A⊗ A⊗ X
µ⊗1−−−→ A⊗ X .

Definition 2.2.27. A lax monoidal functor (C,⊗,1) → (D,⊗,1) between monoidal categories

consists of a functor F : C → D together with a morphism ϕ0 : 1D → F(1C) and a natural
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transformation ϕa,b : Fa⊗Fb → F(a⊗b) such that

Fa⊗ (Fb⊗Fc) α //

1⊗ϕb,c
��

(Fa⊗Fb)⊗Fc
ϕa,b⊗1

// F(a⊗b)⊗Fc
ϕa⊗b,c
��

Fa⊗F(b⊗ c)
ϕa,b⊗c // F(a⊗ (b⊗ c)) F(α) // F((a⊗b)⊗ c)

(2.2.28)

Fa⊗ 1 1⊗ϕ0 //

rFa
��

Fa⊗F1
ϕa,1
��

Fa F(a⊗ 1)
F(ra)

oo

and

1⊗Fa
ϕ0⊗1//

lFa
��

F1⊗Fa
ϕ1,a
��

Fa F(1⊗a)
F(la)

oo

(2.2.29)

commute for any a,b, c ∈ C. A strong monoidal functor is a lax monoidal functor with the

property that ϕa,b and ϕ0 are isomorphisms. A (lax or strong) symmetric monoidal functor

is a (lax or strong) monoidal functor F :C→D between symmetric monoidal categories such

that

Fa⊗Fb
τFa,Fb
��

ϕa,b // F(a⊗b)

F(τa,b)
��

Fb⊗Fa
ϕb,a // F(b⊗a)

(2.2.30)

commutes for each a,b ∈C.

Remark 2.2.31. A lax (symmetric) monoidal functor F : C → D preserves (commutative)

monoids. Indeed, if (A,µ,η) is a (commutative) monoid in C then the maps

1D
ϕ0−→ F1C

F(η)−−−→ F A and F A⊗F A
ϕA,A−−−→ F(A⊗ A)

F(µ)−−−→ F A

give F A the structure of a (commutative) monoid in D. Similarly, if (X ,ρ) is a left A-module

then the map

F A⊗F X
ϕA,X−−−→ F(A⊗ X )

F(ρ)−−−→ F X

gives F X the structure of a left F A-module in D.

Definition 2.2.32. Let F,G : C → D be two lax monoidal functors. A monoidal natural

transformation θ : F →G is a natural transformation such that

1
ϕ0 //

ϕ0   

F1

θ
��

G1

and
Fa⊗Fb

ϕ

��

θa⊗θb // Ga⊗Gb
ϕ

��
F(a⊗b)

θa⊗b // G(a⊗b)
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commute for all a,b ∈C.

Remark 2.2.33. Monoidal categories, lax monoidal functors, and monoidal natural transfor-

mations form a 2-category MonCat. An “equivalence of monoidal categories” is best defined

to be an equivalence in this 2-category but the next couple of results establish that this is the

same thing as a strong monoidal functor that is an equivalence of the underlying categories

(see Definition 2.2.40 below).

Lemma 2.2.34. Let F : C→D be a strong monoidal functor which admits a right adjoint.

The right adjoint G : D→ C inherits the structure of a lax monoidal functor such that the

unit η : idC →GF and counit ε : FG → idD are monoidal natural transformations.

Proof. Define Ga⊗Gb →G(a⊗b) to be the natural map adjoint to

F(Ga⊗Gb)
ϕ−1

−−→ FGa⊗FGb ε⊗ε−−→ a⊗b

and define 1→ G1 to be the map adjoint to F1
ϕ−1

0−−→ 1. It is a routine verification that these

maps give G the structure of a lax monoidal functor in such a way that the unit and counit

are monoidal natural transformations. This is a well-known fact although it is hard to find

a proof in the literature. In any case, it follows from the more general results of [Kel74].

Corollary 2.2.35. Let F : C → D be a strong monoidal functor that is an equivalence of

categories. Then F is an equivalence in the 2-category MonCat.

Remark 2.2.36. This tells us that a strong monoidal functor is an equivalence of monoidal

categories (in the sense of being an equivalence in MonCat) if and only if it is an equiva-

lence of the underlying categories. However, since the 1-morphisms in MonCat are the lax

monoidal functors, we need the following lemma to complete the picture:

Lemma 2.2.37. Let F : C → D be a lax monoidal functor that is an equivalence in the

2-category MonCat. Then F is a strong monoidal functor.

23



Proof. According to our hypotheses there exists a lax monoidal functor G : D→ C together

with monoidal natural isomorphisms η : idC
∼−→ GF and ε : FG ∼−→ idD. The fact that these

natural isomorphisms are monoidal (cf. Definition 2.2.32) implies that

1

id
((

ϕ0 // F1
Fϕ0 // FG1

ε1
��
1

and
1

id
��

ϕ0 // G1
Gϕ0 // GF1

1

η1

66
(2.2.38)

commute. The first diagram provides a left inverse for ϕ0 : 1→ F1 and the following diagram

demonstrates that it is also a right inverse:

F1
Fϕ0 //

Fη1 ##

FG1

FGϕ0
��

ε1 // 1
ϕ0 // F1

FGF1
εF1

66

Here the left triangle is F applied to the second diagram in (2.2.38) and the right trian-

gle commutes by the naturality of ε. It remains to check that ϕ : Fa⊗ Fb → F(a⊗ b) is

an isomorphism. Since G is an ordinary equivalence of categories, it suffices to check that

Gϕ : G(Fa⊗Fb)→GF(a⊗b) is an isomorphism. The fact that η and ε are monoidal (cf. Def-

inition 2.2.32) implies that

GF(a⊗b)

a⊗b

ηa⊗b
∼

88

ηa⊗ηb

∼
&&

G(Fa⊗Fb)

Gϕ

OO

GFa⊗GFb

ϕ

OO and

FG(a⊗B)
εa⊗b
∼

&&
F(Ga⊗Gb)

Fϕ

OO

a⊗b

FGa⊗FGb

ϕ

OO

εa⊗εb

∼
88 (2.2.39)

commute. The left diagram shows that

GF(a⊗b)
η−1

a⊗b //a⊗b
ηa⊗ηb //GFa⊗GFb

ϕ //G(Fa⊗Fb)

is a right inverse for Gϕ : G(Fa⊗Fb) → GF(a⊗ b) and it remains to show that it is also a

left inverse. Since F is an equivalence we need only show this after applying F. To this end,
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consider the following commutative diagram:

FG(Fa⊗Fb)

ε

""

FGϕ // FGF(a⊗b)

ε ''

Fη−1
// F(a⊗b)

F(η⊗η)// F(GFa⊗GFb)
Fϕ // FG(Fa⊗Fb)

F(a⊗b)
F(η⊗η) // F(GFa⊗GFb)

Fϕ

OO

F(GFa⊗GFb)

Fϕ

OO

Fa⊗Fb

ϕ
77

Fη⊗Fη --
FGFa⊗FGFb

ϕ

OO

ε⊗ε

55

id // FGFa⊗FGFb

ϕ

OO

The top line is the morphism that we claim is the identity. This follows from the commuta-

tivity of the diagram since the morphism

FGFa⊗FGFb
ϕ−→ F(GFa⊗GFb)

Fϕ−−→ FG(Fa⊗Fb)

which forms the left and right sides of the diagram is an isomorphism by (2.2.39).

Definition 2.2.40. An equivalence of monoidal categories is a strong monoidal functor that

is an equivalence of the underlying categories. By Corollary 2.2.35 and Lemma 2.2.37 this

is the same thing as an equivalence in the 2-category of monoidal categories, lax monoidal

functors, and monoidal natural transformations. In fact, these results also show that it is

the same thing as an equivalence in the 2-category of monoidal categories, strong monoidal

functors, and monoidal natural transformations.

Remark 2.2.41. Similarly, an equivalence of symmetric monoidal categories is a strong sym-

metric monoidal functor that is an equivalence of the underlying categories. As above this

is the same thing as an equivalence in the analogous 2-categories of symmetric monoidal

categories (with lax or strong symmetric monoidal functors and monoidal natural transfor-

mations). The only point to check is that if the functor F :C→D in Lemma 2.2.34 is a strong

symmetric monoidal functor then the induced lax monoidal structure on its right adjoint is

also symmetric monoidal.
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Proposition 2.2.42. Let F :C→D be an equivalence of categories and suppose that C has the

structure of a (symmetric) monoidal category. Then D admits the structure of a (symmetric)

monoidal category such that F is an equivalence of (symmetric) monoidal categories.

Proof. Choose a quasi-inverse G : D → C with natural isomorphisms η : idC
∼−→ GF and

ε : FG ∼−→ idD. Define the bifunctor −∧− :D×D→D to be the composite

D×D
G×G−−−→C×C

−⊗−−−−→C
F−→D.

In other words, x∧ y := F(Gx⊗G y). Let 1D := F1C and define natural “unitor” maps

1D∧ x = F(GF1C⊗Gx)
F(η−1

1
⊗1)−−−−−−→ F(1⊗Gx)

F(lGx)−−−−→ FGx
εx−→ x

and

x∧ 1D = F(Gx⊗GF1C)
F(1⊗η−1

1
)−−−−−−→ F(Gx⊗ 1) F(rGx)−−−−→ FGx

εx−→ x.

Furthermore, define a natural “associator” map x∧ (y∧ z)→ (x∧ y)∧ z by

F(Gx⊗GF(G y⊗Gz)
F(1⊗η−1) // F(Gx⊗ (G y⊗Gz))

F(α)
��

F((Gx⊗G y)⊗Gz)
F(η⊗1) // F(GF(Gx⊗G y)⊗Gz).

Finally, if C is symmetric then define a natural “symmetry” map

x∧ y= F(Gx⊗G y)
F(τGx,G y)−−−−−−→ F(G y⊗Gx)= y∧ x.

The commutativity of the unit axiom (2.2.3) can be checked by a brute force expansion of the

definitions—but the diagram is too large to be typeset on the page. Alternatively, we can

observe the following. Note that the diagram we need to check is F applied to a diagram of

the following form

Ga⊗GF(−)

1⊗− ,,

− // GF(−)⊗Gb.

−⊗1rrGa⊗Gb
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By precomposing this diagram with the appropriate unit morphism η we obtain a diagram

Ga⊗−

1⊗−
--

1⊗η
%%

− // −⊗Gb
η⊗1

yy

−⊗1
qq

Ga⊗GF(−)
1⊗−

&&

// GF(−)⊗Gb
−⊗1

xx
Ga⊗Gb

and since the unit morphism is an isomorphism it suffices to check the commutativity of this

“larger” diagram. However, one readily sees from the definitions that this larger diagram is

merely

Ga⊗ (GF1⊗Gb)

1⊗(η−1⊗1)
��

α // (Ga⊗GF1)⊗Gb

(1⊗η−1)⊗1
��

Ga⊗ (1⊗Gb)

1⊗l --

α // (Ga⊗ 1)⊗Gb)

r⊗1qqGa⊗Gb

which evidently commutes. A similar angle of approach can be used to dispose of the

hexagon axiom (2.2.2). By peeling away the outer layer of tensor products, observe that

the diagram we need to check is F applied to a diagram like the inner rectangle of the

following diagram:

Ga⊗− // (Ga⊗Gb)⊗ (Gc⊗Gd)

η⊗η
��

// −⊗Gd

η⊗1
��

id

��
Ga⊗−

id
22

1⊗−
��

1⊗η // Ga⊗GF(−)

1⊗η−1

OO

1⊗GF(−)
��

// GF(−)⊗GF(−) // GF(−)⊗Gd −⊗Gd
η⊗1oo

Ga⊗−

id ,,

1⊗η // Ga⊗GF(−)

1⊗η−1

��

// GF(−)⊗Gd

GF(−)⊗1

OO

−⊗Gd

−⊗1

OO

η⊗1oo

Ga⊗− // −⊗Gd

η⊗1

OO

id

BB

As above it suffices to check that the larger diagram commutes. By looking at the definitions
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one sees fairly immediately that this “larger” diagram is actually just the following

Ga⊗ (Gb⊗ (Gc⊗Gd)) α //

1⊗α
��

(Ga⊗Gb)⊗ (Gc⊗Gd) α // ((Ga⊗Gb)⊗Gc)⊗Gd

Ga⊗ ((Gb⊗Gc)⊗Gd) α // (Ga⊗ (Gb⊗Gc))⊗Gd.

α⊗1

OO

Finally, suppose that C is symmetric. The commutativity of (2.2.13) is shown by the following

F(Ga⊗GF1C) F(τ) //

F(1⊗η−1)
��

F(GF1C⊗Ga)

F(η−1⊗1)
��

F(Ga⊗ 1C)

F(rGa) --

F(τ) // F(1C⊗Ga)

F(lGa)qqFGa
εa

��
a

while the commutativity of (2.2.14) is immediate. Finally, observe that diagram (2.2.15) is

F applied to a diagram like the inner rectangle of the following diagram

−⊗Gc

η⊗1
��

τ

$$

Ga⊗−−oo −oo

1⊗η
��

1⊗− // Ga⊗−

−

zz

η⊗1
��

GF(−)⊗Gc

τ
��

Ga⊗GF(−)−oo
1⊗GF(−)

// Ga⊗GF(−)

−
��

Ga⊗GF(−) − // GF(−)⊗Gb GF(−)⊗1// GF(−)⊗Gb

Ga⊗−
1⊗η
OO

− // −⊗Gb

η⊗1

OO

−⊗1 // −⊗Gb

1⊗η
OO

and it suffices to check that the outer diagram commutes. We see from the definitions that

the outer diagram is precisely

(Ga⊗Gb)⊗Gc

τ
��

Ga⊗ (Gb⊗Gc)αoo 1⊗τ // Ga⊗ (Gc⊗Gb)

α
��

Gc⊗ (Ga⊗Gb) α // (Gc⊗Ga)⊗Gb τ⊗1 // (Ga⊗Gc)⊗Gb.

This establishes that D has the structure of a (symmetric) monoidal category. Next we wish

to show that F : C→D is a strong (symmetric) monoidal functor (cf. Definition 2.2.27). To
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this end, define ϕ0 : 1D → F1C to simply be the identity idF1C and define a natural isomor-

phism ϕ : Fx∧F y ∼−→ F(x⊗ y) by

F(GFx⊗GF y)
F(η−1

x ⊗η−1
y )−−−−−−−−→ F(x⊗ y).

The commutativity of the left diagram in (2.2.29) is given by the following diagram

F(GFa⊗GF1C)

F(1⊗η−1)
��

id // F(GFa⊗GF1C)

F(η−1⊗η−1)
��

F(GFa⊗ 1C)

F(r)
��

F(η−1⊗1)
// F(a⊗ 1C)

F(r)
��

FGFa
εFa=F(ηa)−1

// Fa

and the commutativity of the right diagram in (2.2.29) is similar. Next we check the com-

mutativity of (2.2.28). Using the same technique as earlier, we see that the diagram is F

applied to the middle rectangle of

GFa⊗ (−)

1⊗−

$$

1⊗η
��

(−) // −⊗GFc

η⊗1
��

(−)⊗1 // −⊗GFc

η⊗1
��

(−)

zz

GFa⊗GF(−)

1⊗GF(−)
��

(−) // GF(−)⊗GFc GF(−)⊗1 // GF(−)⊗GFc

(−)
��

GFa⊗GF(−) (−) // a⊗ (b⊗ c) α // (a⊗b)⊗ c

GFa⊗ (−)

1⊗η
OO

(−) // a⊗ (b⊗ c) α // (a⊗b)⊗ c

and from the definitions we see that the outline of the diagram is

GFa⊗ (GFb⊗GFc) α //

1⊗(η−1⊗η−1)
��

(GFa⊗GFb)⊗GFc
(η−1⊗η−1)⊗1 // (a⊗b)⊗GFc

1⊗η−1

��
GFa⊗ (b⊗ c)

η−1⊗1 // a⊗ (b⊗ c) α // (a⊗b)⊗ c

which commutes by the naturality of α. Finally, in the symmetric case the commutativity

of (2.2.30) is immediate from the definitions. This completes the proof. The author has

proved this proposition partly to exercise his muscles—but it does actually turn up; e.g., see

Remark 3.7.6.
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Definition 2.2.43. A closed symmetric monoidal category is a symmetric monoidal category

(C,⊗,1) equipped with a functor F(−,−) : Cop ×C→ C, called “internal hom,” and an isomor-

phism

HomC(a⊗b, c)'HomC(a,F(b, c))

natural in all three variables a,b, c ∈C.

Example 2.2.44. Let R be a commutative ring. The set of R-linear maps HomR(X ,Y ) be-

tween any two R-modules is itself an R-module and provides an internal hom for the sym-

metric monoidal category (R-Mod,⊗R ,R). A more interesting example is provided by the

category of chain complexes of R-modules Ch(R). The internal hom is given by a complex

F(X ,Y ) whose component in degree n is F(X ,Y )n = ∏
i∈ZHomR(X i,Yi+n) with differential

defined by (d f )(x) = d( f x)− (−1)| f | f (dx). The zero cycles of this complex give the ordinary

maps of chain complexes, while the zeroth homology gives the homotopy classes of maps of

chain complexes:

HomCh(R)(X ,Y )= Z0(F(X ,Y )) and HomK(R)(X ,Y )= H0(F(X ,Y )).

Remark 2.2.45. A closed symmetric monoidal category is essentially the same thing as a

symmetric monoidal category with the property that −⊗b has a right adjoint for each b ∈C.

Indeed, if we denote the right adjoint of −⊗b by F(b,−) :C→C then we have isomorphisms

HomC(a⊗ b, c) ' HomC(a,F(b, c)) which are natural in a and c. However, it is a basic fact

from category theory (see [Mac98, §IV.7, Thm. 3]) that the functors F(b,−) extend uniquely

to a bifunctor F(−,−) : Cop ×C→ C such that the above isomorphisms are also natural in b.

Thus, if all the −⊗ b have right adjoints then we can produce the required internal hom.

Any two such choices of internal hom will be canonically isomorphic so there is very little

difference between these two points of view.
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Notation 2.2.46. The unit and counit of the adjunction −⊗b a F(b,−) will be denoted by

coev : a → F(b,a⊗b) and ev : F(b,a)⊗b → a

and called “coevaluation” and “evaluation,” respectively.

Definition 2.2.47. An object X in a symmetric monoidal category (C,⊗,1) is said to be du-

alizable if there exists an object DX and morphisms η : 1→ DX ⊗X and ε : X ⊗DX → 1 such

that

X ' X ⊗ 1 1⊗η //X ⊗DX ⊗ X ε⊗1 //1⊗ X ' X (2.2.48)

and

DX ' 1⊗DX
η⊗1 //DX ⊗ X ⊗DX 1⊗ε //DX ⊗ 1' DX (2.2.49)

are the identity morphisms. This is equivalent to saying that there is an object DX such

that DX ⊗− is right adjoint to −⊗ X .

Remark 2.2.50. Dualizability is a kind of finiteness condition. For example, the dualizable

objects in the category of vector spaces over a field k are precisely the finite-dimensional

vector spaces. More generally, the dualizable objects in R-Mod for a commutative ring R are

the finitely generated projective modules [DP80, Example 1.4] and a complex of R-modules

is dualizable in Ch(R) if and only if it is a bounded complex of finitely generated projective

modules [DP80, Example 1.5].

Lemma 2.2.51. If (D1X ,η1,ε1) and (D2X ,η2,ε2) are two duals of an object X then the map

θ : D1X → D2X defined by

D1X ' 1⊗D1X
η2⊗1−−−→ D2X ⊗ X ⊗D1X 1⊗ε1−−−→ D2X ⊗ 1' D2X

is an isomorphism with inverse θ−1 : D2X → D1X given by

D2X ' 1⊗D2X
η1⊗1−−−→ D1X ⊗ X ⊗D2X 1⊗ε2−−−→ D1X ⊗ 1' D1X .
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Proof. The following diagram demonstrates that θ−1 ◦θ = idD1 X :

D1X

η1⊗1
��

η2⊗1 // D2X ⊗ X ⊗D1X

η1⊗1
��

1⊗ε1 // D2X

η1⊗1
��

D1X ⊗ X ⊗D1X
1⊗1⊗η2⊗1 //

id ++

D1X ⊗ X ⊗D2X ⊗ X ⊗D1X
1⊗1⊗1⊗ε1 //

1⊗ε2⊗1⊗1
��

D1X ⊗ X ⊗D2X

1⊗ε2
��

D1X ⊗ X ⊗D1X
1⊗ε1 // D1X .

A similar diagram establishes that θ ◦θ−1 = idD2 X .

Remark 2.2.52. Any two duals of X are thus canonically isomorphic provided we remember

the structure maps.

Remark 2.2.53. The uniqueness of duals can of course be interpreted in terms of D1X ⊗−

and D2X ⊗− both being right adjoints of −⊗ X .

Remark 2.2.54. If X is dualizable then its dual DX is itself dualizable; in fact, X is a dual

of DX . Indeed, the maps

1
ηX−−→ DX ⊗ X ' X ⊗DX and DX ⊗ X ' X ⊗DX

εX−→ 1

provide the relevant structure maps. It follows from Lemma 2.2.51 that if D2X denotes any

dual of DX then there is an isomorphism θX : X ∼−→ D2X given by

X ' 1⊗ X
ηDX−−−→ D2X ⊗DX ⊗ X 1⊗τ−−→ D2X ⊗ X ⊗DX

1⊗εX−−−→ D2X ⊗ 1' D2X (2.2.55)

with inverse θ−1
X : D2X ∼−→ X given by

D2X ' 1⊗D2X
ηX⊗1−−−−→ DX ⊗ X ⊗D2X τ⊗1−−→ X ⊗DX ⊗D2X

1⊗εDX−−−−→ X ⊗ 1' X . (2.2.56)

This will be used in the proof of the following proposition.

Proposition 2.2.57. Let (C,⊗,1) be a symmetric monoidal category. Every object is dualiz-

able if and only if there exists a functor D :Cop →C and an isomorphism

HomC(X ⊗Y , Z)'HomC(X ,DY ⊗Z) (2.2.58)
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natural in X , Y and Z. The functor D : Cop → C is unique up to isomorphism and is an

equivalence of categories. It is also a strong monoidal functor when Cop is given the induced

monoidal structure. In other words, D(X ⊗Y )' DX ⊗DY and D1' 1.

Proof. If every object is dualizable then we can construct a functor D : Cop → C by choosing

a dual DX for every object X ∈ C and sending a morphism f : X → Y to the morphism

D f : DY → DX given by

DY ' 1⊗DY
ηX⊗1 //DX ⊗ X ⊗DY

1⊗ f⊗1 //DX ⊗Y ⊗DY
1⊗εY //DX ⊗ 1' DX .

For example, D(idX ) is exactly the composite (2.2.49) which is idDX by assumption—so D

preserves identity morphisms. To show that D preserves composition, let X
f−→ Y

g−→ Z be a

pair of composable morphisms and consider the following diagram:

DZ
η⊗1
��

η⊗1 // DY ⊗Y ⊗DZ
η⊗1⊗1
��

1⊗g⊗1 // DY ⊗Z⊗DZ
η⊗1
��

1⊗ε // DY
ηZ⊗1
��

DX ⊗ X ⊗DZ

1⊗ f⊗1
��

1⊗η⊗1// DX ⊗ X ⊗DY ⊗Y ⊗DZ

1⊗ f⊗1
��

1⊗g⊗1
// DX ⊗ X ⊗DY ⊗Z⊗DZ

1⊗ f⊗1
��

1⊗εZ // DX ⊗ X ⊗DY

1⊗ f⊗1
��

DX ⊗Y ⊗DZ
1⊗η⊗1//

id **

DX ⊗Y ⊗DY ⊗Y ⊗DZ

1⊗ε⊗1
��

1⊗g⊗1
// DX ⊗Y ⊗DY ⊗Z⊗DZ

1⊗εY⊗1
��

1⊗εZ // DX ⊗Y ⊗DY

1⊗ε
��

DX ⊗Y ⊗DZ
1⊗g⊗1 // DX ⊗Z⊗DZ 1⊗ε // DX

Going along the top and down the right-hand side we get D( f )◦D(g), while going down and

along the bottom we get D(g ◦ f ). This establishes the functoriality of our construction.

Next we wish to show that our functor D : Cop → C has the adjunction property (2.2.58).

Given a map X ⊗Y
f−→ Z, we can construct a map X → DY ⊗Z by

X ' 1⊗ X
ηY⊗1−−−−→ DY ⊗Y ⊗ X ' DY ⊗ X ⊗Y

1⊗ f−−−→ DY ⊗Z

and given a map X
g−→ DY ⊗Z we can construct a map X ⊗Y → Z by

X ⊗Y 'Y ⊗ X
1⊗g−−−→Y ⊗DY ⊗Z

εY⊗1−−−→ 1⊗Z ' Z.
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One readily checks that these constructions are inverse to each other. Moreover, checking

that the resulting isomorphisms HomC(X⊗Y , Z)'HomC(X ,DY⊗Z) are natural in X , Y and

Z is a straightforward expansion of the definitions. Note that the construction of D :Cop →C

depends on our initial choice of duals DX for each object X ∈ C. Nevertheless, any two

functors D : Cop → C satisfying the adjunction property (2.2.58) are canonically isomorphic

by formal nonsense.

Next we wish to show that our functor D : Cop → C is an equivalence of categories. By

Remark 2.2.54, given any X ∈ C there is a canonical isomorphism θX : X ∼−→ DX which com-

mutes with the structure maps. We just need to check that θX : X ∼−→ D2X is natural in X .

From the definitions (2.2.55) and (2.2.56), one can check that the following diagram com-

mutes

1

ηDX

��

ηX // DX ⊗ X

τ

��

1⊗θX // DX ⊗D2X

εDX

��
D2X ⊗DX X ⊗DX

θX⊗1oo εX // 1

and this can be used to check the commutativity of the following monstrous diagram:

D2X
D2 f // D2Y

D2X
η⊗1 // D2Y ⊗DY ⊗D2X

1⊗D f⊗1 // D2Y ⊗DX ⊗D2X 1⊗ε // D2Y

Y ⊗DY ⊗ X
1⊗D f⊗1 //

∼
��

θ⊗1⊗θ
OO

Y ⊗DX ⊗ X

θ⊗1⊗θ
OO

∼
��

X ⊗DY ⊗Y
1⊗η⊗1⊗1
��

1⊗D f⊗1 // X ⊗DX ⊗Y
ε⊗1

**X

θ

OO

1⊗η
44

1⊗η **

1⊗η⊗η // X ⊗DX ⊗ X ⊗DY ⊗Y

ε⊗1⊗1⊗1
��

1⊗1⊗ f⊗1⊗1 // X ⊗DX ⊗Y ⊗DY ⊗Y

ε⊗1⊗1⊗1
��

1⊗1⊗ε⊗1

OO

ε⊗ε⊗1 // Y

θ

OO

X ⊗DY ⊗Y
f⊗1⊗1

// Y ⊗DY ⊗Y
ε⊗1

44

X
f // Y

34



Finally, one can check directly that DX ⊗DY is a dual of X ⊗Y and we obtain a canonical

isomorphism D(X ⊗Y ) ' DX ⊗DY . It is also trivial to check that D1 ' 1. The verification

that these isomorphisms provide D :Cop →C with the structure of a strong monoidal functor

is left to the reader.

Remark 2.2.59. If C is a closed symmetric monoidal category then there is a natural map

ν : F(X ,Y )⊗Z → F(X ,Y ⊗Z) (2.2.60)

defined for any three objects X ,Y , Z ∈C which is adjoint to the map

F(X ,Y )⊗Z⊗ X ' F(X ,Y )⊗ X ⊗Z ev⊗1−−−→Y ⊗Z.

An object X is dualizable in the sense of Definition 2.2.47 if and only if ν is an isomorphism

for all Y and Z. In fact, it turns out that X is dualizable if and only if the single map

F(X ,1)⊗X → F(X , X ) is an isomorphism. These claims are discussed in [LMS86, §III.1] but

we will provide a proof in Lemma 2.2.61 below. An object that is dualizable in this sense

(that is, in the sense of Definition 2.2.47) is sometimes called “strongly dualizable” in the

literature in order to differentiate it from other weaker notions. For example, in [DP80] an

object X is said to have a “weak dual” if the functor HomC(−⊗ X ,1) is representable. In

a closed symmetric monoidal category, every object has a weak dual—namely F(X ,1)—but

this object need not be a dual in the sense of Definition 2.2.47.

Lemma 2.2.61. Let X be an object in a closed symmetric monoidal category (C,⊗,1). The

following are equivalent:

(1) X is dualizable in the sense of Definition 2.2.47.

(2) ν : F(X ,Y )⊗Z → F(X ,Y ⊗Z) is an isomorphism for all Y , Z ∈C.

(3) ν : F(X ,1)⊗ X → F(X , X ) is an isomorphism.
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Proof. If X is dualizable then both DX ⊗− and F(X ,−) are right adjoints of −⊗ X . Hence

there is a natural isomorphism αW : DX⊗W ∼−→ F(X ,W) determined by the units and counits

of the two adjunctions. One can check from the definitions that

F(X ,Y )⊗Z ν // F(X ,Y ⊗Z)

DX ⊗Y ⊗Z

αY⊗Z

OO

αY⊗Z

66
(2.2.62)

commutes and hence conclude that ν is a natural isomorphism. Let us sketch the proof of

this claim. Expanding the definitions of αY⊗Z and ν we obtain the following diagram:

DX ⊗Y ⊗Z

αY⊗1
��

coev // F(X ,DX ⊗Y ⊗Z⊗ X )

F(1,αY⊗1⊗1)
��

F(1,τ) // F(X ,Y ⊗Z⊗ X ⊗DX )

F(1,1⊗1⊗ε)
��

F(X ,Y )⊗Z coev // F(X ,F(X ,Y )⊗Z⊗ X )

F(1,1⊗τ)
��

F(X ,Y ⊗Z⊗ 1)
∼
��

F(X ,F(X ,Y )⊗ X ⊗Z)
F(1,ev⊗1) // F(X ,Y ⊗Z).

The commutativity of (2.2.62) thus reduces to the commutativity of

DX ⊗Y ⊗Z⊗ X

αY⊗1⊗1
��

τ // Y ⊗Z⊗ X ⊗DX

1⊗1⊗ε
��

F(X ,Y )⊗Z⊗ X

1⊗τ
��

Y ⊗Z⊗ 1
∼
��

F(X ,Y )⊗ X ⊗Z ev⊗1 // Y ⊗Z

and this can be verified using

DX ⊗Y ⊗ X

αY⊗1

((

coev⊗1
��

id

##
F(X ,DX ⊗Y ⊗ X )⊗ X

F(1,τ)⊗1⊗1
��

ev // DX ⊗Y ⊗ X

τ

��
F(X ,Y ⊗ X ⊗DX )⊗ X

F(1,1⊗ε)⊗1
��

Y ⊗ X ⊗DX

1⊗ε
��

F(X ,Y ⊗ 1)⊗ X

∼
��

Y ⊗ 1⊗Z

∼
��

F(X ,Y )⊗ X ev // Y .
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Modulo the minor details left to the reader, this establishes that (2.2.62) commutes and

hence ν : F(X ,Y )⊗Z → F(X ,Y ⊗Z) is an isomorphism. On the other hand, if F(X ,1)⊗ X →

F(X , X ) is an isomorphism then we can use the inverse to define a map

η : 1 coev−−−→ F(X , X ) ν−1
−−→ F(X ,1)⊗ X

and one can check that together with the map

ε : X ⊗F(X ,1)' F(X ,1)⊗ X ev−→ 1

the pair (X ,F(X ,1)) satisfies Definition 2.2.47 so that X is dualizable with dual F(X ,1). For

example, showing that

X ' X ⊗ 1→ X ⊗F(X , X ) 1⊗ν−1
−−−−→ X ⊗F(X ,1)⊗ X ' F(X ,1)⊗ X ⊗ X ev⊗1−−−→ 1⊗ X ' X

is the identity boils down to showing that

F(X ,1)⊗ X ⊗ X 1⊗τ //

ν⊗1

��

F(X ,1)⊗ X ⊗ X

ev⊗1
��

1⊗ X
∼
��

F(X , X )⊗ X ev // X

commutes. This can be shown using the definition of ν and the naturality of evaluation:

F(X ,1)⊗ X ⊗ X

ν⊗1

((

coev⊗1
��

id

%%
F(X ,F(X ,1)⊗ X ⊗ X )⊗ X ev //

F(1,1⊗τ)⊗1
��

F(X ,1)⊗ X ⊗ X

1⊗τ
��

F(X ,F(X ,1)⊗ X ⊗ X )⊗ X ev //

F(1,ev⊗1)⊗1
��

F(X ,1)⊗ X ⊗ X

ev⊗1
��

F(X ,1⊗ X )⊗ X ev //

∼
��

1⊗ X

∼
��

F(X , X )⊗ X ev // X .
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Similar techniques can be used to establish that F(X ,1)
η⊗1−−→ F(X ,1)⊗X ⊗F(X ,1) 1⊗ε−−→ F(X ,1)

is the identity.

Remark 2.2.63. If X is a dualizable object in a symmetric monoidal category (C,⊗,1) then

the maps 1
η−→ DX⊗X and DX⊗X⊗DX⊗X 1⊗ε⊗1−−−−→ DX⊗X provide DX⊗X with the structure

of a monoid in C. If C is closed symmetric monoidal then this monoid structure on DX ⊗X '

F(X ,1)⊗ X ' F(X , X ) corresponds to the “endomorphism monoid” structure on F(X , X ).

2.3 Graded rings

All graded rings in this dissertation will be Z-graded. Recall that the category of graded

abelian groups AbZ is a monoidal category and that graded rings are precisely the ring ob-

jects in this category (cf. Remark 2.2.25). Note that we take the “external” point of view in

which a graded ring consists of a collection of abelian groups A i equipped with multiplica-

tion maps A i ⊗ A j → A i+ j; we never speak of the direct sum
⊕

i∈Z A i and only ever consider

homogeneous elements.

Remark 2.3.1. There are two symmetries that turn the monoidal category AbZ into a sym-

metric monoidal category. A commutative ring object with respect to one of the symmetries

is a commutative graded ring while a commutative ring object with respect to the other sym-

metry is a “graded-commutative” graded ring: a graded ring satisfying x · y = (−1)|x|·|y|y · x.

Much of commutative ring theory extends to (graded-)commutative graded rings, including

(1) the theory of localization; and

(2) the theory of the (homogeneous) spectrum.

Few references discuss these constructions for graded-commutative rings. It is true that

one can get away with only commutative graded rings by the trick of squaring elements,
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but it is conceptually cleaner and aesthetically nicer to just deal directly with the graded-

commutative rings that arise in practice. One reference which explicitly discusses the theory

for graded-commutative rings is [DS13, Section 2].

Definition 2.3.2. Let S be a multiplicative set (1 ∈ S, S ·S ⊂ S) of central homogeneous

elements in a (graded-)commutative graded ring R•. The localization S−1R• is defined by

(S−1R•)i :=
{ r

s
| deg(r)−deg(s)= i

}
.

It is a (graded-)commutative graded ring in an obvious manner and the map R• → S−1R•

which sends f to f /1 is the universal graded ring homomorphism out of R• which inverts

the elements of S.

Remark 2.3.3. Every element of even degree in a graded-commutative graded ring is cen-

tral. If T is a multiplicative subset of (not necessarily central) homogeneous elements then

S := {±t2 | t ∈ T} is a multiplicative set of central homogeneous elements and the localiza-

tion map R• → S−1R• is the universal graded ring homomorphism out of R• which inverts

the elements of T. Therefore the assumption in Definition 2.3.2 that S consists of central

homogeneous elements results in no real loss of generality.

Definition 2.3.4. Let R• be a graded ring. The graded-center of R• is defined by

Centergr(R•)i :=
{

f ∈ R i | f · g = (−1)i j g · f for each g ∈ R j and j ∈Z
}

.

It is a graded-commutative graded subring of R•. Moreover, R• is graded-commutative if

and only if R• =Centergr(R•).

Remark 2.3.5. Every one-sided homogeneous ideal in a graded-commutative graded ring is

automatically two-sided. This is the fundamental observation which enables one to define

the homogeneous spectrum of a graded-commutative graded ring.
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Definition 2.3.6. The homogeneous spectrum Spech(R•) of a (graded-)commutative graded

ring R• is the set of homogeneous prime ideals equipped with the Zariski topology. The

closed sets are the sets V (I•) := {
p• ∈Spech(R•) | p• ⊃ I•

}
for each homogeneous ideal I• ⊂ R•.

This construction is functorial with respect to the (graded-)commutative graded ring R•.

Lemma 2.3.7. Let R• be a (graded-)commutative graded ring. There is a natural continuous

surjective map (−)0 : Spech(R•) → Spec(R0) which sends a homogeneous prime ideal p• to

p0 := p∩R0.

Proof. It is straightforward to check that (−)0 is well-defined and continuous. In order to

show that it is surjective, fix a prime ideal p ∈ Spec(R0) and let S := R0 \p. This is a multi-

plicative set of central elements in R• and we see that (S−1R•)0 = S−1R0. Since the diagram

Spech(R•) (−)0 // Spec(R0)

Spech(S−1R•)

OO

(−)0 // Spec(S−1R0)

OO

commutes, we are thus reduced to the case when R0 is a local ring with maximal ideal p. In

this case, consider the homogeneous ideal R•p of R•. It is proper and hence contained in a

homogeneous prime ideal q•. One then readily checks that R0 ∩q• = p. Indeed p ⊂ R0 ∩q•

since q• contains p, while R0 ∩q• ⊂ p since p is the maximal ideal of the local ring R0.

Lemma 2.3.8. Let R• be a (graded-)commutative graded ring. The homogeneous spectrum

Spech(R•) is connected iff Spec(R0) is connected.

Proof. A decomposition of Spec(R0) into a disjoint union of non-empty closed sets induces

a similar decomposition of Spech(R•) via the surjective continuous map (−)0 : Spech(R•) →

Spec(R0) of Lemma 2.3.7. On the other hand, suppose Spech(R•)=V (I•)tV (J•) is a disjoint

union of non-empty closed subsets. Without loss of generality we may assume that the
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graded nilradical of R• (i.e., the intersection of all homogeneous prime ideals) is zero. In

this case, Spech(R•) = V (I•)∪V (J•) = V (I•J•) implies that I•J• = 0. On the other hand,

;= V (I•)∩V (J•) = V (I•+ J•) implies that I•+ J• = R• because every proper homogeneous

ideal is contained in a homogeneous prime ideal. In particular, R0 = I0 + J0 and I0J0 = 0.

Thus, 1= x+ y for some x ∈ I0 and y ∈ J0 and using the fact that I0J0 = 0 we see that x2 = x

and y2 = y. We conclude that R0 possesses a pair of orthogonal idempotents x and y. They

are non-trivial since otherwise either I• = R• or J• = R• in which case V (I•) or V (J•) would

be empty; hence Spec(R0) is disconnected.

Definition 2.3.9. A (graded-)commutative graded ring is said to be graded-noetherian if it

satisfies the ascending chain condition on homogeneous ideals; equivalently, if every homo-

geneous ideal is finitely generated.

Remark 2.3.10. The closed sets of Spech(R•) which have quasi-compact complement are

those sets of the form V (I•) for a finitely generated homogeneous ideal I•; for example, see

[BKS07, Lemma 2.2]. Thus Spech(R•) is a noetherian topological space precisely when R•

is a graded-notherian ring (mirroring the situation for ungraded commutative rings).

Remark 2.3.11. Every graded ring R• corresponds to another graded ring R•
op which has

the “opposite” grading: R i
op := R−i. Evidently R•

op is graded-commutative iff R• is graded-

commutative and in this case there is a canonical identification: Spech(R•
op)=Spech(R•).

Definition 2.3.12. A graded ring is a graded-division ring if every nonzero homogeneous

element is invertible. A commutative graded-division ring is called a graded-field. Examples

include a field concentrated in degree zero and the ring of Laurent polynomials k[t, t−1] over

a field. (In fact, if we add “skew Laurent polynomial rings” to the list then we have described

all graded-fields; see [NO82, Corollary I.4.3].)

Remark 2.3.13. Every graded module over a graded-field is graded-free in the sense that it
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has a basis of homogeneous elements. One consequence is that M•⊗ N• = 0 implies that

either M• = 0 or N• = 0 for graded modules over a graded-field. This will have some signif-

icance in Chapter 6 when we consider the Morava K-theories—extraordinary cohomology

theories whose coefficient rings (cf. Section 3.5) are graded-fields.

The final topic to discuss in this section is the notion of a graded-local ring. For the reader’s

convenience we recall the noncommutative notion of a local ring.

Proposition 2.3.14. For a non-zero ring R, the following statements are equivalent:

1. R has a unique maximal left ideal;

2. R has a unique maximal right ideal;

3. R/rad(R) is a division ring;

4. the set of non-units in R forms an ideal;

5. the sum of two non-units is again a non-unit.

A non-zero ring satisfying these conditions is said to be a local ring.

Proof. See [Lam01, Theorem 19.1].

The following graded-analogue of Proposition 2.3.14 is not as widely accessible in the liter-

ature.

Proposition 2.3.15. For a non-zero graded ring R•, the following statements are equivalent:

1. R• has a unique homogeneous left ideal that is maximal among the proper homoge-

neous left ideals;
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2. R• has a unique homogeneous right ideal that is maximal among the proper homoge-

neous right ideals;

3. R•/radg(R•) is a graded-division ring;

4. the homogeneous non-units form a two-sided homogeneous ideal of R•;

5. the sum of two homogeneous non-units of the same degree is again a non-unit;

6. R0 is a local ring.

A non-zero graded ring is said to be graded-local if these conditions hold.

Proof. The proofs of the equivalences of (1) through (5) follow the proofs of the non-graded

case using familiar properties of the “graded Jacobson radical” radg(R). See for example

[NV79, II.8] for a discusion of the graded Jacobson radical. The only potentially surprising

part is the relationship with R0: that a graded ring R• is graded-local iff R0 is a local ring.

For a proof of this claim see [Li12, Section 2].

2.4 Spectral spaces

Definition 2.4.1. A topological space is said to be spectral if it is T0 and quasi-compact; the

quasi-compact open subsets are closed under finite intersection and form an open basis; and

every non-empty irreducible closed subset has a generic point.

Remark 2.4.2. Hochster [Hoc69] showed that a topological space is spectral if and only if it

is homeomorphic to the Zariski spectrum of a commutative ring. On the other hand, the

spectrum of a tensor triangulated category is spectral (cf. Chapter 4) and it follows from the

results of Hochster, Thomason, and Balmer that every spectral space arises in this way.
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Definition 2.4.3. A subset Y ⊂X of a spectral space is Thomason if it is a union of closed

subsets each of which has quasi-compact complement.

Remark 2.4.4. Hochster showed that every spectral space admits a “dual” spectral topol-

ogy whose open sets are precisely the Thomason subsets. The nomenclature comes from

the prominent role these “dual-open” sets play in the work of Thomason [Tho97]; cf. Theo-

rem 4.2.3 in Chapter 4.

Example 2.4.5. If X is a noetherian topological space then Thomason subsets are the same

thing as unions of closed sets—the so-called “specialization-closed” subsets. For example,

it is well-known that a closed subset of an affine scheme Spec(A) has quasi-compact com-

plement iff it is of the form V (I) for a finitely generated ideal I ⊂ A (cf. Remark 2.3.10).

Noetherian spectral spaces are those of the form Spec(A) for a noetherian ring A.

Definition 2.4.6. A spectral map between spectral spaces is a continuous map with the

property that the preimage of any quasi-compact open subset is again quasi-compact. This

is equivalent to being a continuous map that is also continuous with respect to the dual

spectral topologies.

Remark 2.4.7. Any closed subset of a spectral space is again a spectral space and the in-

clusion is a spectral map. A cheap way to see this is to use Hochster’s theorem to reduce

consideration to the case of an affine scheme Spec(A). That a closed subset V (I)⊂Spec(A) is

spectral is clear from the homeomorphism V (I) ' Spec(A/I) and the fact that the inclusion

ϕ : Spec(A/I) ,→ Spec(A) is spectral is clear from the observation that ϕ−1(V (a1, . . . ,an)) =

V (ā1, . . . , ān).

Remark 2.4.8. The homogeneous spectrum of a (graded-)commutative graded ring is a spec-

tral space (see [BKS07, Prop. 2.5] and [DS14, Prop. 2.43]); moreover, the continuous surjec-

tive map (−)0 : Spech(R•) → Spec(R0) from Lemma 2.3.7 is a spectral map. Our comparison
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maps will be spectral maps defined on closed subsets of the spectrum of a tensor trian-

gulated category and mapping to the (homogeneous) spectrum of a (graded-)commutative

(graded) ring.

The result of the following lemma is a minor technical point that will be needed.

Proposition 2.4.9. Let f : X1 → X2 be a spectral map of spectral spaces and suppose that

Z1 ⊂ X1, Z2 ⊂ X2 are two closed subsets such that f (Z1) ⊂ Z2. Then f |Z1 : Z1 → Z2 is a

spectral map.

Proof. Let U ⊂ Z2 be quasi-compact and relatively open. From the quasi-compactness of U

and the fact that the quasi-compact opens form an open basis of X2 it follows that there are

quasi-compact opens U1,U2, . . . ,Un of X2 such that U = Z2∩(U1∪·· ·∪Un). Now Z1∩ f −1(Z2)=

Z1 since f (Z1)⊂ Z2, so Z1∩ f −1(U)= Z1∩ f −1(Z2)∩ f −1(U1∪·· ·∪Un)= Z1∩ f −1(U1∪·· ·∪Un).

Since f is spectral, each f −1(Ui) is quasi-compact open in X1. Since a finite union of quasi-

compact opens remains quasi-compact, f −1(U1 ∪ ·· · ∪Un) is a quasi-compact open of X1.

Since the inclusion Z1 ,→ X1 is spectral, it follows that Z1 ∩ f −1(U1 ∪·· ·∪Un) = Z1 ∩ f −1(U)

is quasi-compact.
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CHAPTER 3

Triangulated categories

In this chapter we present the basic theory of triangulated categories. The most comprehen-

sive textbook on the subject is [Nee01], although [Ver96], [Wei94, Chapter 10], and [GM03,

Chapter 4] provide good introductions. The first two sections cover very standard material.

A few proofs will be given to illustrate the kind of manipulations one performs with triangu-

lated categories, but many results will be deferred to the standard references. In Section 3.3,

we will discuss tensor triangulated categories with a careful treatment of the compatibility

between the triangulated structure and the tensor structure. This material is less standard

although still well-known. Throughout the chapter we are careful to mention how standard

constructions from the theory of triangulated categories interact with the tensor structure.

In Section 3.4, we discuss rigid tensor triangulated categories (those in which every object

is dualizable) as well as rigidly-compactly generated categories. The latter serve as a con-

venient replacement for the notion of a compactly generated triangulated category in the

setting of tensor triangulated categories. Our outline of the general theory is completed in

Sections 3.5–3.7 with a discussion of generalized homology theories, Verdier quotients and

Bousfield localization. Examples will be discussed in Section 3.8. Finally, the last section is

devoted to thick subcategory classification theorems. This sets the stage for the topic of the

next chapter: the theory of tensor triangular geometry.
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3.1 Basic definitions

Let T be an additive category equipped with a self-equivalence Σ :T ∼−→T. A triangle in (T,Σ)

is a diagram of the form X
f //Y

g //Z h //ΣX . The terminology comes from the fact that

if we use the notation Z ◦ //X to denote a “degree one” morphism Z //ΣX then we can

regard a triangle as a diagram of the form

Z
◦
��

X // Y .

[[

The author agrees with the reader that this isn’t a very good reason for using the word

“triangle.” In any case, a morphism of triangles is a commutative diagram

X
u
��

f // Y
v
��

g // Z
w
��

h // ΣX

Σu
��

X ′ f ′ // Y ′ g′
// Z′ h′

// ΣX ′

which we may abbreviate by (u,v,w). It is an isomorphism if u, v and w are isomorphisms.

Definition 3.1.1. A triangulated category is an additive category T equipped with a self-

equivalence Σ : T ∼−→ T and a distinguished class of “exact” triangles satisfying the following

five axioms:

TR0. Every triangle isomorphic to an exact triangle is exact, and for each object X in T the

triangle

X id //X //0 //ΣX

is exact.

TR1. For each morphism f : X →Y in T there exists an exact triangle of the form

X
f //Y //Z //ΣX .
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TR2. A triangle

X
f //Y

g //Z h //ΣX

is exact if and only if the the triangle

Y
g //Z h //ΣX

−Σ f //ΣY

is exact. This is called the “rotation axiom.”

TR3. A commutative diagram of the form

X
u
��

f // Y
v
��

g // Z h // ΣX

X ′ f ′ // Y ′ g′
// Z′ h′

// ΣX ′

where the rows are exact triangles can always be completed to a morphism of triangles

X

u
��

f // Y

v
��

g // Z

w
��

h // ΣX

Σu
��

X ′ f ′ // Y ′ g′
// Z′ h′

// ΣX ′.

TR4. Suppose we are given two composable morphisms f : X → Y and g : Y → Z together

with chosen exact triangles

X
f //Y //C f //ΣX ,

Y
g //Y //Cg //ΣY ,

and

X
g◦ f //Z //Cg◦ f //ΣX .

Then there exists an exact triangle

C f //Cg◦ f //Cg //ΣC f
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such that the unlabelled regions of the following diagram commute

X

g◦ f

''f //

∆

Y

��

g //

∆

Z

��

yy

C f

��

◦

YY

∆

Cg◦oo

◦

ZZ

Cg◦ f

◦

PP

DD

and such that the two paths from Y to Cg◦ f coincide; that is to say, the composite

Y → C f → Cg◦ f coincides with the composite Y → Z → Cg◦ f . This is known as the

“octahedral axiom” because if one grasps Y and pulls the diagram out of the page one

obtains an octahedron, four of whose faces commute and four of whose faces are exact

triangles. (One of the faces is produced by the region of the page outside the diagram,

which is the exact triangle for g ◦ f .)

Y

g

!!

��

X

f

==

g◦ f // Z

��

��
C f

◦

OO

  

Cg

◦

XX

oo

Cg◦ f

◦

XX

>>
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Remark 3.1.2. The self-equivalence Σ :T→T is called “suspension.” The notation and termi-

nology are due to examples arising in topology where Σ is related to the (reduced) suspension

of a (based) topological space; see for example the discussion on “stable homotopy theory”

in Section 3.8. In some sources, Σ is assumed to be an isomorphism rather than merely an

equivalence. This simplifies exposition but there are important examples where Σ is only an

equivalence and in this case we use Σ−1 to denote a specfic choice of quasi-inverse. In any

case, we’ll sometimes abuse notation and make statements that only strictly make sense

if Σ is an isomorphism, but such abuses can be easily rectified by utilizing the isomorphisms

η : idT
∼−→ ΣΣ−1 and ε : Σ−1Σ

∼−→ idT. For example, it follows from the rotation axiom [TR2]

that if the triangle X
f //Y

g //Z h //ΣX is exact then so is

Σ−1Z−Σ−1h//X
f //Y

g //Z (3.1.3)

except that (3.1.3) is not actually a triangle because ΣΣ−1Z 6= Z. The precise statement is

that the triangle

Σ−1Z
−εX ◦Σ−1h //X

f //Y
ηZ◦g //ΣΣ−1Z (3.1.4)

is exact. This follows from the following isomorphism of triangles

X
f // Y

g // Z h //

∼ ηZ
��

ΣX
∼ id
��

X
f // Y

ηZ◦g // ΣΣ−1Z
ΣεX ◦ΣΣ−1h// ΣX

where the last square commutes using the naturality of η:

ΣεX ◦ΣΣ−1h◦ηZ =ΣεX ◦ηΣX ◦h = idΣX ◦h = h.

The bottom triangle is exact since every triangle isomorphic to an exact triangle is exact

[TR0] and hence the rotation axiom [TR2] implies that the triangle (3.1.4) is exact. In any

case, these are unimportant details that we will not dwell upon any longer.
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Remark 3.1.5. Besides the choice of whether to require Σ to be an equivalence or an iso-

morphism, different sources (e.g. [Nee01, Ver96, Wei94]) give slightly different statements

of the axioms. Nevertheless, they all produce the same notion of a triangulated category.

For example, [Hub] discusses seven statements which are all equivalent to the octahedral

axiom. For additional discussion on the choice of axioms see [May], [May01] and [Nee01,

Remarks 1.1.3 and 1.4.7].

Remark 3.1.6. The axioms of a triangulated category are self-dual in the sense that if T is a

triangulated category then the opposite category Top inherits the structure of a triangulated

category. The suspension on Top is taken to be Σ◦ :=Σ−1 regarded as a functor Top →Top and

a triangle X ◦ f ◦−→ Y ◦ g◦
−→ Z◦ h◦

−→ Σ◦(X ◦) is an exact triangle in Top if Σ−1X −h−−→ Z
g−→ Y

f−→ X is

an exact triangle in T.

Lemma 3.1.7. Let X
f //Y

g //Z h //ΣX be an exact triangle. Then g ◦ f = 0 and g is a

weak cokernel of f . That is to say, if u : Y →W is a map such that u ◦ f = 0 then there exists

a map v : Z →W such that u = v◦ g. The map v is not required to be unique. Similarly, f is a

weak kernel of g.

Proof. Applying [TR0] and [TR3], we obtain a factorization

X id // X

f
��

// 0

��

// ΣX

X
f // Y

g // Z // ΣX

of g ◦ f through zero. To show that g is a weak cokernel of f , we can apply [TR3] to

X

��

f // Y
g //

u
��

Z
v
��

h // ΣX

��
0 //W

1
//W // 0

.

in order to obtain the required map v. A similar argument can be used to show that f is a

weak kernel of g.
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Lemma 3.1.8. An endomorphism of an exact triangle

X
u
��

f // Y
v
��

g // Z
w
��

h // ΣX

Σu
��

X
f // Y

g // Z h // ΣX .

is nilpotent if u and v are nilpotent.

Proof. Without loss of generality we may assume that u = v = 0. Then by Lemma 3.1.7 there

exist factorizations

Z

��
w
��

h // ΣX

}}
Y

g // Z

and hence w2 = 0 since

Z

��
w
��

Y
g // Z

w
��

h // ΣX

}}
Z

exhibits a factorization of w2 through h◦ g = 0.

Lemma 3.1.9. A morphism of exact triangles

X
u
��

f // Y

v
��

g // Z

w
��

h // ΣX

Σu
��

X ′ f ′ // Y ′ g′
// Z′ h′

// ΣX ′

is an isomorphism if u and v are isomorphisms.

Proof. Applying [TR3] to the diagram

X ′

u−1

��

f ′ // Y ′

v−1

��

g′
// Z

w̃
��

h′
// ΣX ′

Σu−1

��
X

f // Y
g // Z h // ΣX
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we obtain a map w̃ : Z → Z and one readily checks that

X

0
��

f // Y

0
��

g // Z

w̃◦w−idZ
��

h // ΣX

0
��

X
f // Y

g // Z h // ΣX

is a morphism of exact triangles. Applying Lemma 3.1.8, we conclude that w̃ ◦w− idZ is a

nilpotent element of the ring EndT(Z) and hence w̃◦w is an isomorphism. (If x is a nilpotent

element of a ring then 1+ x is a unit with inverse given by 1− x + x2 − ·· · + (−1)nxn for

some n ≥ 1.) A similar argument establishes that w ◦ w̃ is an isomorphism and it follows

that w itself is an isomorphism. (If a and b are two elements of a ring such that ab and ba

are units then a is a unit.)

Remark 3.1.10. The above result is an analogue of the “5-lemma” for abelian categories.

Remark 3.1.11. Axiom [TR1] asserts that every morphism f : X → Y appears as the first

morphism of an exact triangle

X
f //Y //Z //ΣX .

Moreover, it follows from [TR3] and Lemma 3.1.9 that the object Z appearing in such an

exact triangle is unique up to isomorphism. It is called the “cone” or “cofiber” of f and will

be denoted by cone( f ) or C f . Again the terminology comes from examples arising in topology

(see Section 3.8). However, it is important to bear in mind that although cone( f ) is unique

up to isomorphism there is no canonical choice of isomorphism. This is a fundamental

feature of the theory of triangulated categories which ultimately arises from the fact that

the morphism asserted to exist in [TR3] need not be unique.

Lemma 3.1.12. A morphism f : X →Y is an isomorphism iff cone( f )= 0.
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Proof. By [TR3] there is a map α : 0→ cone( f ) filling in the diagram

X id // X

f
��

// 0 //

α
��

ΣX

X
f // X // cone( f ) // ΣX

and Lemma 3.1.9 implies that α is an isomorphism if f is an isomorphism. On the other

hand, if X
f−→ X → 0→ΣX is an exact triangle then

0 // X id // X

f
��

// ΣX

0 // X
f // X // ΣX

is a morphism of exact triangles and hence f is an isomorphism by Lemma 3.1.9.

Lemma 3.1.13. The direct sum of two exact triangles is an exact triangle. More precisely, if

X
f //Y

g //Z h //ΣX and X ′ f ′ //Y ′ g′
//Z′ h′

//ΣX ′

are two exact triangles then the triangle

X ⊕ X ′

(
f 0
0 f ′

)
//Y ⊕Y ′

(
g 0
0 g′

)
//Z⊕Z′

(
h 0
0 h′

)
//ΣX ⊕ΣX ′ ∼=Σ(X ⊕ X ′)

is exact.

Proof. See [Nee01, Proposition 1.2.3].

Corollary 3.1.14. For any two objects X and Y , the triangle

X i //X ⊕Y
p //Y 0 //ΣX

is exact, where i and p denote the inclusion and projection, respectively.

Corollary 3.1.15. For any two objects X and Y , cone(X 0−→Y )'ΣX⊕Y . More precisely, there

is an isomorphism of triangles:

X 0 // Y // cone(X 0−→Y )

∼
��

// ΣX

X 0 // Y i // ΣX ⊕Y
p // ΣX .
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Lemma 3.1.16. Consider an exact triangle X
f //Y

g //Z h //ΣX . Then f is monic iff f

is split monic iff f is the inclusion of a direct summand iff h = 0 iff there is an isomorphism

of exact triangles

X
f // Y

∼
��

g // Z h // ΣX

X i // Z⊕ X
p // Z 0 // ΣX .

(3.1.17)

Similarly, f is epi iff f is split epi iff f is the projection onto a direct summand iff g = 0 iff

there is an isomorphism of exact triangles

X
f //

∼
��

Y
g // Z h // ΣX

∼
��

Y ⊕Σ−1Z
p // Y 0 // Z i // ΣY ⊕Z.

(3.1.18)

Proof. Lemma 3.1.7 implies that f ◦Σ−1h = 0. It follows that Σ−1h = 0 if f is monic and

hence that h = 0. On the other hand, if h = 0 then Corollary 3.1.15 implies that there

exists an isomorphism of exact triangles (3.1.17). It follows that f is an inclusion of a direct

summand, hence is split monic. The proof of the dual claim is similar.

Remark 3.1.19. The above lemma makes it clear that triangulated categories are very rarely

abelian. Nevertheless, the exact triangles can be thought of as analogues or replacements

for the short exact sequences of abelian categories. Indeed, we have already seen that they

have some of the properties of short exact sequences. For further connections see the notion

of a homological functor (Definition 3.1.30 below) and the discussion on derived categories

in Section 3.8.

Remark 3.1.20. Another consequence of Lemma 3.1.16 is that—with the notable exception

of products and coproducts—very few limits and colimits exist in a triangulated category.

For example, if a morphism f : X →Y admits a cokernel then coker( f ) is a direct summand

of Y and f factors through the inclusion of the complementary direct summand. More

generally, if F : I → T is a diagram in T such that colimi∈I F(i) and
∐

i∈I F(i) exist then the
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canonical epimorphism
∐

i∈I F(i) → colimi∈I F(i) splits and
∐

i∈I F(i) is a direct summand of

colimi∈I F(i). Nevertheless, most triangulated categories which arise in practice have small

coproducts—or at least sit inside a larger triangulated category which has small coproducts.

Lemma 3.1.21. Any triangulated category which admits countable coproducts is idempotent

complete.

Proof. Recall from Proposition 2.1.7 that an additive category with countable coproducts is

idempotent complete if it has the property that an idempotent e splits iff 1− e splits. If the

category is triangulated and e : A → A splits as A
f−→ B

g−→ A then the map f is split epi and

hence Lemma 3.1.16 implies that we have an isomorphism of exact triangles

C // A
∼
��

f // B // ΣC

C i // B⊕C
p // B 0 // ΣC.

The split idempotent e : A → A becomes
(1 0

0 0
)

under the isomorphism A ' B⊕C and hence

1− e becomes the split idempotent
(0 0

0 1
)
.

Remark 3.1.22. Lemma 3.1.21 was proved in [BN93, Proposition 3.2] using the triangulated

category version of a homotopy colimit, but the above proof emphasizes that the result has

very little to do with triangulated categories. In any case, the basic idea in both [BN93] and

[Fre66] is the “Eilenberg swindle” (a.k.a. telescoping sum construction).

Definition 3.1.23. Let T be a triangulated category. A triangulated subcategory of T is a

full additive subcategory S⊂T which is closed under isomorphism of objects, (de)suspension,

and cofibers. A thick subcategory is a triangulated subcategory that is closed under direct

summands. A localizing subcategory is a thick subcategory that is closed under arbitrary

coproducts.
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Remark 3.1.24. Localizing subcategories are usually only considered in triangulated cat-

egories which admit small coproducts. In smaller triangulated categories it is the thick

subcategories which are most important. Note that if T is a triangulated category which

admits small coproducts then any triangulated subcategory S ⊂ T which is closed under

coproducts is automatically thick and hence a localizing subcategory of T. This follows from

Lemma 3.1.21.

Notation 3.1.25. The smallest thick subcategory containing a collection of objects G ⊂ T

is denoted thick〈G〉, while the smallest localizing subcategory containing the collection is

denoted loc〈G〉.

Definition 3.1.26. An exact functor F :T→ S between triangulated categories is an additive

functor F : T → S equipped with a natural isomorphism θ : F ◦Σ ∼−→ Σ◦F with the property

that if X
f−→Y

g−→ Z h−→ΣX is an exact triangle in T then

F X
F f−−→ FY

F g−−→ FZ
θX ◦Fh−−−−→ΣF X

is an exact triangle in S.

Definition 3.1.27. Let (F,θ) : T → S and (F ′,θ′) : T → S be two exact functors. A natural

transformation α : F →G is said to be a trinatural transformation if

FΣX

θX
��

αΣX // F ′ΣX

θ′X
��

ΣF X
ΣαX // ΣF ′X

commutes for each X in T. These are the appropriate morphisms of exact functors.

Lemma 3.1.28. Let F : T → S be an exact functor of triangulated categories. If F has an

adjoint G : S→T (either left or right) then G inherits the structure of an exact functor in such

a way that the unit and counit of the adjunction are trinatural.
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Proof. See [Nee01, Lemma 5.3.6].

Definition 3.1.29. An equivalence of triangulated categories is an exact functor which is an

equivalence of the underlying categories. Lemma 3.1.28 implies that this is the same thing

as an equivalence in the 2-category of triangulated categories, exact functors, and trinatural

transformations.

Definition 3.1.30. Let T be a triangulated category. A homological functor H : T →A is a

covariant additive functor from T to an abelian category A which sends exact triangles to

exact sequences. More precisely, if

X
f // Y

g // Z h // ΣX (3.1.31)

is an exact triangle in T then the sequence

H(X )
H( f ) // H(Y )

H(g) // H(Z)

is exact in A. A cohomological functor H : Top → A is an contravariant additive functor

which sends an exact triangle (3.1.31) to an exact sequence

H(Z)
H(g) // H(Y )

H( f ) // H(X ).

Example 3.1.32. For any object X , the covariant representable functor HomT(X ,−) :T→Ab

is a homological functor, while HomT(−, X ) :Top →Ab is a cohomological functor (see [Nee01,

Lemma 1.1.10]). Further examples will be seen in Section 3.5.

Remark 3.1.33. Let H : T →A be a homological functor. If we define Hi := H ◦Σ−i for each

integer i ∈Z then any exact triangle X
f−→Y

g−→ Z h−→ΣX gives rise to a long exact sequence

· · · // H1(Z)
H1(h) // H0(X )

H0( f ) // H0(Y )
H0(g) // H0(Z)

H0(h)// H−1(X ) // · · ·

Similarly, if we define H i := H ◦Σ−i for a cohomological functor H : Top →A then the exact

triangle gives rise to a long exact sequence

· · · // H−1(X ) H0(h) // H0(Z)
H0(g) // H0(Y )

H0( f ) // H0(X ) H1(h) // H1(Z) // · · ·
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The following terminology is not completely standard but it will be convenient:

Definition 3.1.34. A suspended additive category (A,Σ) is an additive category A equipped

with an auto-equivalence Σ : A ∼−→ A. A stable additive functor : (F,θ) : (A,ΣA) → (B,ΣB)

between suspended additive categories is an additive functor F : A → B equipped with a

natural isomorphism θ : F ◦ΣA
∼−→ΣB ◦F. A stable natural transformation α : (F,θ)→ (F ′,θ′)

between two stable additive functors is a natural transformation such that

FΣX

θX
��

αΣX // F ′ΣX

θ′X
��

ΣF X
ΣαX // ΣF ′X

commutes for each X in A.

Example 3.1.35. Every triangulated category can be regarded as a suspended additive cat-

egory by forgetting the exact triangles and every exact functor is a stable additive functor

between the underlying suspended additive categories.

Example 3.1.36. If A is an additive category then the category AZ of Z-graded objects in A

is a suspended additive category with suspension defined by (ΣX )n := Xn−1. Similarly, the

category of chain complexes Ch(A) is a suspended additive category where the differential

on ΣX is given by dΣX
n :=−dX

n−1. In the same spirit, if R• is a graded ring then the category

of graded R•-modules R•-grMod is a suspended abelian category with suspension defined

by (ΣM)n = Mn−1.

Definition 3.1.37. A stable homological functor H : T → A is a homological functor from

a triangulated category to a suspended abelian category which is equipped with a natu-

ral isomorphism H ◦Σ ' Σ ◦ H. Similarly, a stable cohomological functor H : Top → A is a

cohomological functor equipped with a natural isomorphism H ◦Σ'Σ◦H.

Example 3.1.38. Every homological functor H : T → A gives rise to a stable homological

functor H• : T→AZ by defining Hi := H ◦Σ−i for each i ∈ Z. Similarly, every cohomological
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functor H : Top →A gives rise to a stable cohomological functor H• : Top →AZ by defining

H i := H ◦Σ−i for each i ∈ Z. In Section 3.5, we’ll see examples of stable (co)homological

functors which do not arise in this way from ordinary (co)homological functors.

Lemma 3.1.39. Let α : H → H′ be a stable natural transformation between two stable homo-

logical functors H : T→A and H′ : T→A. Then Iα := {
X | αX is an isomorphism

}
is a thick

subcategory of T. If H and H′ preserve coproducts then Iα is a localizing subcategory of T.

Proof. The naturality of α implies that Iα is a replete subcategory of T. Next consider a

direct sum A ⊕B in T. The fact that H is additive implies that H(A ⊕B) is the biproduct

HA ⊕HB with structure maps H(iA), H(iB), H(pA) and H(pB). Moreover, one can easily

check using the naturality of α that αA⊕B = αA ⊕αB. Hence αA⊕B is an isomorphism iff

αA and αB are isomorphisms. It follows that Iα is closed under direct sums and direct

summands. The stability of α shows that Iα is closed under suspension and desuspension.

Furthermore, if X
f−→Y

g−→ Z h−→ΣX is an exact triangle then we have a commutative diagram

HX
H f //

αX
��

HY
H g //

αY
��

HZ Hh //

αZ
��

HΣX
HΣ f //

αΣX
��

HΣY
αΣY
��

H′X
H′ f // H′Y

H′g // H′Z H′h // H′ΣX
H′Σ f // H′ΣY

and the fact that Iα is closed under cofibers follows from the 5-lemma for abelian categories.

Finally, if H and H′ preserve coproducts then the commutivity of∐
i H(A i)∐

iαAi
��

∼ // H(
∐

i A i)
α∐

i Ai
��∐

i H′(A i)
∼ // H′(

∐
i A i)

(3.1.40)

will show that Iα is closed under coproducts. Precomposing the diagram with the canonical

map H(An)→∐
i H(A i) we get

H(An)

αAn
��

H(iAn )
// H(

∐
i A i)
α∐

i Ai
��

H′(An)
H′(iAn )

// H′(
∐

i A i)
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which commutes by naturality. It follows that (3.1.40) commutes by the universal property

of the coproduct
∐

i H(A i).

Lemma 3.1.41. Let H :T→A be a stable homological functor. The following are equivalent:

(1) H is faithful on objects: if HX = 0 then X = 0.

(2) H reflects isomorphisms: if H f is an isomorphism then f is an isomorphism.

Such a functor is said to be conservative.

Proof. For (1) ⇒ (2), suppose f : X → Y is a morphism such that H f is an isomorphism.

Applying H to an exact triangle for f we obtain an exact sequence

HX
H f
∼ //HY //H cone( f ) //ΣHX

ΣH f
∼ //ΣHY

and it follows that H cone( f ) = 0. Hence cone( f ) = 0 so that f is an isomorphism. The

converse is immediate: if HX = 0 then H(0 : X → X ) is an isomorphism. Hence 0 : X → X is

an isomorphism and therefore X = 0.

Notation 3.1.42. The abelian group of morphisms A → B in an additive category will be de-

noted [A,B] and the Z-graded abelian group of graded morphisms in a suspended additive

category will be denoted [A,B]•. That is, [A,B]i := [Σi A,B]. Note that [A, A] is a ring and

[A, A]• is a Z-graded ring. Also observe that just as an additive functor F : A→B between

additive categories induces a ring homomorphism [X , X ] → [F X ,F X ] between endomor-

phism rings, so too a stable additive functor between suspended additive categories induces

a graded ring homomorphism between graded endomorphism rings [X , X ]• → [F X ,F X ]•.

Notation 3.1.43. If f : X → X and g : Y → Y are two endomorphisms, the notation f ' g

will signify that there exists an isomorphism α : X ∼−→ Y such that g ◦α= α◦ f . Note that if

f ' g then f = 0 iff g = 0 and f is an isomorphism iff g is an isomorphism.

61



3.2 Compact objects

Many important examples of triangulated categories are “compactly generated.” These are

“large” triangulated categories (admitting arbitrary coproducts) which are generated in a

suitable sense from a small subcategory of “compact” objects. They satisfy a fundamental

result from stable homotopy theory called the Brown Representability Theorem which as-

serts that product-preserving cohomological functors are representable. This vital result

(having origins in [Bro62, Bro63]) is included as one of the axioms in [HPS97]’s notion of

an “axiomatic stable homotopy category.” It was [Nee96] who observed that it holds for any

compactly generated triangulated category.

Definition 3.2.1. Let T be a triangulated category. An object X in T is said to be compact

if the representable functor HomT(X ,−) : T → Ab preserves coproducts. Equivalently, an

object X is compact if any map from X to an infinite coproduct factors through a finite

coproduct.

Notation 3.2.2. The collection of all compact objects in T forms a thick subcategory Tc ⊂T.

Definition 3.2.3. A triangulated category T is said to be compactly generated if it has small

coproducts and there exists a set of compact objects G with the property that T = loc〈G ∈G〉.

Remark 3.2.4. If T is a triangulated category with small coproducts and G is a set of compact

objects in T then the condition T = loc〈G ∈ G〉 is equivalent to the condition that an object

X ∈T is zero iff [G, X ]• = 0 for all G ∈ G. A proof is given in [SS03, Lemma 2.2.1]. One

direction is easy: for any fixed X , the collection of all objects Y such that [Y , X ]• = 0 is a

localizing subcategory, so if it contains G then it contains the whole of T. In particular, it

would contain X so that [X , X ]• = 0 and hence X = 0. The other direction is less elementary

and uses finite localization with respect to G; cf. Section 3.7 below.
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Remark 3.2.5. If T is a compactly generated triangulated category with set of compact gen-

erators G then Tc = thick〈G ∈G〉. This follows from [Nee92b, Lemma 2.2].

Theorem 3.2.6 (Brown Representability). Let T be a compactly generated triangulated cat-

egory. Every cohomological functor H : Top → Ab which takes coproducts in T to products

in Ab is representable.

Proof. See [Nee96, Theorem 3.1].

Corollary 3.2.7. Let T be a compactly generated triangulated category and let S be an arbi-

trary triangulated category. Every exact functor F : T→ S which preserves coproducts has a

right adjoint.

Proof. See [Nee96, Theorem 4.1]. For any object s ∈ S, the functor HomS(F(−), s) : Top → Ab

sends coproducts in T to products in Ab. Hence, by Theorem 3.2.6, there exists an object

Gs ∈ T and an isomorphism HomS(Ft, s) ' HomT(t,Gs) natural in t ∈ T. General categorical

nonsense implies that G extends uniquely to a functor G : S → T such that these isomor-

phisms are natural in s too.

3.3 Tensor triangulated categories

Definition 3.3.1. A tensor triangulated category is a triangulated category T that is also a

symmetric monoidal category such that for each object a in T the functors a⊗− : T→ T and

−⊗a :T→T are exact functors of triangulated categories. This includes the data of natural

isomorphisms

λa,b :Σa⊗b 'Σ(a⊗b) and ρa,b : a⊗Σb 'Σ(a⊗b) (3.3.2)
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which are required to be “compatible” with the symmetry, associator and unitor isomor-

phisms of the symmetric monoidal structure. In detail, the three diagrams

1⊗Σa
ρ1,Σa //

lΣa ##

Σ(1⊗a)

Σ(la)zz
Σa

(3.3.3)

Σa⊗ (b⊗ c)

α
��

λa,b⊗c // Σ(a⊗ (b⊗ c))

Σ(α)
��

(Σa⊗b)⊗ c
λa,b⊗1

// Σ(a⊗b)⊗ c
λa⊗b,c// Σ((a⊗b)⊗ c)

(3.3.4)

Σa⊗b
λa,b //

τΣa,b
��

Σ(a⊗b)

Σ(τa,b)
��

b⊗Σa ρb,a
// Σ(b⊗a)

(3.3.5)

are required to commute, while the diagram

Σa⊗Σb
ρΣa,b

��
(−1)

λa,Σb // Σ(a⊗Σb)

Σρa,b
��

Σ(Σa⊗b)
Σλa,b

// Σ2(a⊗b)

(3.3.6)

is required to anticommute.

Remark 3.3.7. Due to (3.3.5), the isomorphisms λ and ρ determine each other and the fol-

lowing diagram analogous to (3.3.3) also commutes:

Lemma 3.3.8. Let T be a tensor triangulated category. The diagram

Σa⊗ 1
rΣa ##

λa,1 // Σ(a⊗ 1)

Σ(ra)zz
Σa

(3.3.9)

commutes for any a ∈T.
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Proof. In the following diagram

Σa⊗ 1

rΣa

%%

τ
��

λa,1 // Σ(a⊗ 1)
Σ(τ)
��

Σ(ra)

yy

1⊗Σa

lΣa
��

ρ1,Σa
// Σ(1⊗a)

Σ(la)
��

Σa Σa

the left and right regions commute by (2.2.13), the top square commutes by (3.3.5), and the

bottom square commutes by (3.3.3).

Remark 3.3.10. There are two further “associator” coherence diagrams analogous to (3.3.4),

which take the suspension out of the second and third coordinate, respectively. The next

two lemmas show that these diagrams follow from the axioms.

Lemma 3.3.11. Let T be a tensor triangulated category. The diagram

a⊗ (Σb⊗ c)

α
��

1⊗λb,c// a⊗Σ(b⊗ c)
ρa,b⊗c// Σ(a⊗ (b⊗ c))

Σ(α)
��

(a⊗Σb)⊗ c
ρa,b⊗1

// Σ(a⊗b)⊗ c
λa⊗b,c// Σ((a⊗b)⊗ c)

commutes for any a,b, c ∈T.

Proof. This is demonstrated by the commutativity of the large diagram on the next page.

The left and right arms commute by (2.2.15). The top and bottom large rectangles com-

mute by (3.3.4). The top-right and bottom-left squares commute by (3.3.5). The top-left and

bottom-right squares commute by naturality; so does the middle rectangle.
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a⊗ (Σb⊗ c)

α

��

τ

��

1⊗λ // a⊗Σ(b⊗ c)

τ

��

ρ // Σ(a⊗ (b⊗ c))

Σ(τ)

��

Σ(α)

��

(Σb⊗ c)⊗a)

α−1

��

λ⊗1 // Σ(b⊗ c)⊗a λ // Σ((b⊗ c)⊗a)

Σ(α−1)
��

Σb⊗ (c⊗a)

1⊗τ
��

λ // Σ(b⊗ (c⊗a))

Σ(1⊗τ)

��
Σb⊗ (a⊗ c)

α

��

λ // Σ(b⊗ (a⊗ c))

Σ(α)

��
(Σb⊗a)⊗ c

τ⊗1

��

λ⊗1 // Σ(b⊗a)⊗ c

Σ(τ)⊗1

��

λ // Σ((b⊗a)⊗ c)

Σ(τ⊗1)

��
(a⊗Σb)⊗ c

ρ⊗1 // Σ(a⊗b)⊗ c λ // Σ((a⊗b)⊗ c)

a⊗ (b⊗Σc)

α

��

1⊗ρ //

1⊗τ
��

a⊗Σ(b⊗ c)

1⊗Στ
��

ρ // Σ(a⊗ (b⊗ c))

Σ(1⊗τ)

��

Σ(α)

��

a⊗ (Σc⊗b)

α

��

1⊗λ // a⊗Σ(c⊗b)
ρ // Σ(a⊗ (c⊗b))

Σ(α)

��
(a⊗Σc)⊗b

τ⊗1

��

ρ⊗1 // Σ(a⊗ c)⊗b λ //

Στ⊗1

��

Σ((a⊗ c)⊗b)

Σ(τ⊗1)

��
(Σc⊗a)⊗b

α−1

��

λ⊗1 // Σ(c⊗a)⊗b λ // Σ((c⊗a)⊗b)

Σ(α−1)
��

Σc⊗ (a⊗b)

τ

��

λ // Σ(c⊗ (a⊗b)

Στ

��
(a⊗b)⊗Σc

ρ // Σ((a⊗b)⊗ c)
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Lemma 3.3.12. Let T be a tensor triangulated category. The diagram

a⊗ (b⊗Σc)

α
��

1⊗ρb,c// a⊗Σ(b⊗ c)
ρa,b⊗c // Σ(a⊗ (b⊗ c))

Σ(α)
��

(a⊗b)⊗Σc
ρa⊗b,c // Σ((a⊗b)⊗ c)

commutes for any a,b, c ∈T.

Proof. This is demonstrated by the commutativity of the diagram on the preceding page.

The left and right arms commute by (2.2.15). The top-left and middle-left squares com-

mute by (3.3.5); so does the bottom large rectangle. The top-right and middle-right squares

commute by naturality. The top large rectangle commutes by Lemma 3.3.11, while the re-

maining large rectangle commutes by (3.3.4).

Remark 3.3.13. The compatibility axioms we require between the symmetric monoidal struc-

ture and the triangulated structure are quite weak. Most of the axioms merely describe

compatibility between the suspension and the monoidal structure and have nothing to do

with exact triangles. The only connection with the exact triangles is the requirement that

a⊗− preserves them. Further axioms connecting the exact triangles with the monoidal

structure have been proposed by [May01] and by [KN02] but these are not required for the

present development of tensor triangular geometry (Chapter 4) nor for our theory of higher

comparison maps (Chapter 5).

Remark 3.3.14. Since a⊗− is an exact functor, any exact triangle X
f−→ Y

g−→ Z h−→ ΣX gives

rise to an exact triangle

a⊗ X
1⊗ f−−−→ a⊗Y

1⊗g−−−→ a⊗Z 1⊗h−−−→ a⊗ΣX 'Σ(a⊗ X ).

We’ll sometimes abuse notation slightly and write

a⊗ X
1⊗ f−−−→ a⊗Y

1⊗g−−−→ a⊗Z 1⊗h−−−→Σ(a⊗ X )

for this exact triangle, thereby omitting the relevant suspension isomorphism.
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Remark 3.3.15. The only mysterious axiom in the definition of a tensor triangulated cate-

gory is the requirement that diagram (3.3.6) anticommutes. In fact, one could get a perfectly

satisfactory theory if we required it to commute, but in all the examples of interest it anti-

commutes instead. One consequence of the fact that (3.3.6) only commutes up to a sign is

that there is ambiguity when we write an isomorphism like Σi+ j(a⊗b)'Σia⊗Σ jb.

Convention 3.3.16. Whenever we write Σi+ j(a⊗ b) ' Σia⊗Σ jb we mean the composite

Σi+ j(a⊗ b) ∼−→Σ j(Σia⊗ b) ∼−→Σia⊗Σ jb obtained by first moving all the relevant suspensions

onto the first factor and then moving the remaining suspensions onto the second factor.

Remark 3.3.17. We can define natural isomorphisms

λ̃a,b :Σ−1a⊗b 'Σ−1(a⊗b) and ρ̃a,b : a⊗Σ−1b 'Σ−1(a⊗b)

by specifying Σλ̃a,b and Σρ̃a,b to be

Σ(Σ−1a⊗b)
λ−1
Σ−1a,b−−−−−→ΣΣ−1a⊗b ' a⊗b 'ΣΣ−1(a⊗b)

and

Σ(a⊗Σ−1b)
ρ−1

a,Σ−1b−−−−−→ a⊗ΣΣ−1b ' a⊗b 'ΣΣ−1(a⊗b)

respectively. This allows us to speak of isomorphisms a⊗Σib ' Σi(a⊗ b) ' Σia⊗ b for any

integer i ∈Z.

Lemma 3.3.18. Let T be a tensor triangulated category. The diagram

Σia⊗Σ jb //

��
(−1)i j

Σi(a⊗Σ jb)

��
Σ j(Σia⊗b) // Σi+ j(a⊗b)

commutes up to the sign (−1)i j for any a,b ∈T and i, j ∈Z.
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Proof. The following diagram establishes the claim when i, j ≥ 0:

Σia⊗Σ jb

ρ
��

(−1)

λ // Σ(Σi−1a⊗Σ jb)

(−1)Σρ
��

Σλ // · · ·
(−1)

Σi−2λ // Σi−1(Σa⊗Σ jb)

Σi−1ρ
��

(−1)

Σi−1λ // Σi(a⊗Σ jb)

Σiρ
��

Σ(Σia⊗Σ j−1b)

Σρ�� (−1)

Σλ // Σ2(Σi−1a⊗Σ j−1b)

Σ2ρ�� (−1)

Σ2λ // · · ·
(−1)

Σi−1λ // Σi(Σa⊗Σ j−1b)

Σiρ�� (−1)

Σiλ // Σi+1(a⊗Σ j−1b)

Σi+1ρ��
...

Σ j−2ρ
��

(−1)

...

(−1)Σ j−1ρ
��

(−1)

...

(−1)Σi+ j−3ρ
��

...

Σi+ j−2ρ
��

Σ j−1(Σia⊗Σb)

Σ j−1ρ
��

Σ j−1λ //

(−1)

Σ j(Σi−1a⊗Σb)

(−1)Σ jρ
��

Σ jλ // · · ·
(−1)

Σi+ j−3λ// Σi+ j−2(Σa⊗Σb)

Σi+ j−2ρ
��

//

(−1)

Σi+ j−2λ // Σi+ j−1(a⊗Σb)

Σi+ j−1ρ
��

Σ j(Σia⊗b) Σ jλ // Σ j+1(Σi−1a⊗b) Σ j+1λ // · · · Σi+ j−2λ// Σi+ j−1(Σa⊗b) Σi+ j−1λ // Σi+ j(a⊗b).

A similar kind of diagram can be used to establish the i ≥ 0, j < 0 case using the diagram

Σa⊗Σ−1b

(−1)

λ //

ρ̃

��

Σ(a⊗Σ−1b)

Σρ̃
��

ΣΣ−1(a⊗b)

∼
��

Σ−1(Σa⊗b) Σ−1λ // Σ−1Σ(a⊗b) ∼ // a⊗b

analogous to (3.3.6). This last diagram can be shown to commute after applying Σ by ex-

panding out the definition of Σρ̃ from Remark 3.3.17:

Σ(Σa⊗Σ−1b)

(−1)

Σλ //

ρ−1

��

Σ2(a⊗Σ−1b)

Σρ−1

��
Σa⊗ΣΣ−1b

∼
��

λ // Σ(a⊗ΣΣ−1b)

∼
��

Σa⊗b

λ

((

λ //

∼

��

Σ(a⊗b)

∼
��

ΣΣΣ−1(a⊗b)

∼
��

ΣΣ−1(Σa⊗b) ΣΣ
−1λ// ΣΣ−1Σ(a⊗b) ∼ // Σ(a⊗b).

A similar approach can be used to prove the remaining cases: i < 0, j ≥ 0 and i < 0, j < 0.
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Remark 3.3.19. It follows from Lemma 2.2.7 that the endomorphism ring of the unit object

in a tensor triangulated category is commutative. The anticommutativity of (3.3.6) ensures

that the graded endomorphism ring of the unit object is graded-commutative:

Lemma 3.3.20. Let T be a tensor triangulated category. The graded endomorphism ring of

the unit object is graded-commutative.

Proof. Let f : Σi1→ 1 and g : Σ j1→ 1 be two graded endomorphisms of the unit. In the

following diagram

Σi+ j1

Σ j f

��

Σi g // Σi1

f

��

Σi+ j(1⊗ 1)
Σi+ j(r1)

Σi+ j(l1)
ff

//

��
(−1)i j

Σi(1⊗Σ j1)

��
Σ j(Σi1⊗ 1) // Σi1⊗Σ j1

f⊗1
��

1⊗g // Σi1⊗ 1
f⊗1
��

r
Σi1

EE

1⊗Σ j1

l
Σ j1ss

1⊗g // 1⊗ 1
r1

l1
##

Σ j1 g
// 1

(3.3.21)

the right and bottom regions commute by naturality, the top-middle square commutes by

Lemma 3.3.18, and the following diagram demonstrates the commutativity of the top region:

Σi+ j1
Σi g // Σi1

Σi+ j(1⊗ 1)
Σi+ j(l1)

ee

// Σi(1⊗Σ j1)

Σi(l
Σ j1)

kk

Σi(1⊗g)//

��

Σi(1⊗ 1)

��

Σi(l1)
::

Σi1⊗Σ j1
1⊗g

// Σi1⊗ 1

r
Σi1

DD

(3.3.22)

Here the top region and middle square commute by naturality, while the right triangle
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reduces to the commutativity of the following two diagrams:

Σ(1⊗ 1) Σ(l1) //

λ−1

��

Σ1

Σ1⊗ 1
rΣ1

99

and
Σ−1(1⊗ 1)

λ̃−1
��

Σ−1(l1) // Σ−11

Σ−11⊗ 1
rΣ−11

88

The commutativity of the first diagram follows immmediately from Lemma 3.3.8. To see

the commutativity of the second diagram, apply Σ and use the definition of Σλ̃ from Re-

mark 3.3.17:

ΣΣ−1(1⊗ 1)
∼
��

ΣΣ−1(l1)=ΣΣ−1(r1) // ΣΣ−11

1⊗ 1
∼
��

r1
// 1

∼
OO

ΣΣ−11⊗ 1 rΣΣ−11 // ΣΣ−11

∼
OO id

__

Σ(Σ−11⊗ 1)
λ

OO

ΣrΣ−11

44

Here the bottom triangle commutes by Lemma 3.3.8 and the rest commutes by natural-

ity. The left triangle of (3.3.22) can be proved in a similar manner using (3.3.3). Finally,

a diagram similar to (3.3.22) demonstrates the commutativity of the bottem-left region

in (3.3.21).

Notation 3.3.23. Let T be a tensor triangulated category. For any integer i ∈Z, we use the

notation πi : T → Ab to denote the functor [Σi1,−] : T → Ab. The notation is inspired by the

example T =SH (see Section 3.8) in which case πi gives the ith stable homotopy groups.

Proposition 3.3.24. Let T be a tensor triangulated category. The functor π• : T → AbZ is

a lax symmetric monoidal functor when AbZ is given the “graded-commutative” symmetric

monoidal structure.

Proof. For any a,b ∈ T and i, j ∈ Z, define πi(a)×π j(b) → πi+ j(a⊗ b) to be the map which
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sends ( f , g) to the composite

Σi+ j1'Σi+ j(1⊗ 1)'Σi1⊗Σ j1
f⊗g //a⊗b.

Note that we are implicitly using Convention 3.3.16 in this definition. That this construction

is bi-additive follows immediately from the fact that −⊗− is additive in each variable. These

maps thus provide a homomorphism of graded abelian groups π•(a)⊗π•(b)→π•(a⊗b) which

is easily checked to be natural in a,b ∈ T. We also have a unit map Z→ π0(1) ⊂ π•(1) which

sends n ∈ Z to n.id1. Showing that these maps give π• the structure of a lax symmetric

monoidal functor amounts to showing that our “external product” πi(a)⊗π j(b)→πi+ j(a⊗b)

is associative, unital and graded-commutative. For three maps f ∈ πi(a), g ∈ π j(b) and

h ∈πk(c), one readily checks that the product ( f · g) ·h is a composite

Σi+ j+k1'Σi+ j+k(1⊗ 1)' (Σi1⊗Σ j1)⊗Σk1
( f⊗g)⊗h−−−−−−→ (a⊗b)⊗ c

while f · (g ·h) is a composite

Σi+ j+k1'Σi+ j+k(1⊗ 1)'Σi1⊗ (Σ j1⊗Σk1)
f⊗(g⊗h)−−−−−−→ a⊗ (b⊗ c).

Expanding the definitions, we see that associativity of our external product follows from the

commutativity of

Σi+ j+k(1⊗ 1) //

��

))

Σi+ j(1⊗Σk1) //

(†)

Σi+ j1⊗Σk1

��
Σi+ j+k(1⊗ (1⊗ 1))

��

Σi+ j(1⊗ 1)⊗Σk1

��
Σi+ j(1⊗Σk1) //

��

Σi+ j(1⊗Σk(1⊗ 1)) //

��

;;

Σi+ j(1⊗ (1⊗Σk1))

(‡)

Σi+ jα // Σi+ j((1⊗ 1)⊗Σk1)

��
Σi(1⊗Σ j+k1)

��

// Σi(1⊗Σ j+k(1⊗ 1))

��

Σi+ j(1⊗ 1)⊗Σk1

��
Σi1⊗Σ j+k1 // Σi1⊗Σ j+k(1⊗ 1) // Σi1⊗ (Σ j1⊗Σk1) α // (Σi1⊗Σ j1)⊗Σk1
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where the unlabelled morphisms are self-explanatory applications of unitors and suspension

isomorphisms. The commutativity of (‡) is demonstrated by the following diagram:

Σi+ j(1⊗Σk(1⊗ 1))

��

// Σi+ j(1⊗ (1⊗Σk1))

��

// Σi+ j((1⊗ 1)⊗Σk1)

��
Σi(1⊗Σ j+k(1⊗ 1))

��

// Σi(1⊗Σ j(1⊗Σk1))

��

(1) Σi(Σ j(1⊗ 1)⊗Σk1)

��

// Σi+ j(1⊗ 1)⊗Σk1

��
Σi(1⊗ (Σ j1⊗Σk1)

��

// Σi((1⊗Σ j1)⊗Σk1)

(2)

// Σi(1⊗Σ j1)⊗Σk1

��
Σi1⊗Σ j+k(1⊗ 1) // Σi1⊗ (Σ j1⊗Σk1) // (Σi1⊗Σ j1)⊗Σk1.

Here (1) commutes by Lemma 3.3.11 and (2) commutes from (3.3.4); the rest follows from

naturality. For the commutativity of (†) we use the following diagram:

Σi+ j(1⊗Σk(1⊗ 1))

id

''

//

��

Σi+ j(1⊗Σk1)

uu

��

// Σi+ j1⊗Σk1

��

Σi+ j+k(1⊗ 1)
1⊗l−1

1

uu
r−1
1

⊗1
��

Σi+ j+k(1⊗ (1⊗ 1))

��

α // Σi+ j+k((1⊗ 1)⊗ 1) // Σi+ j((1⊗ 1)⊗Σk1) Σi+ j(1⊗ 1)⊗Σk1oo

Σi+ j(1⊗Σk(1⊗ 1)) // Σi+ j(1⊗ (1⊗Σk1))

α

OO

Here the top-right square commutes by naturality. The bottom-left rectangle commutes

using Lemma 3.3.12. The rest commutes by naturality and (2.2.3). On the other hand, the

fact that our product is unital follows from

Σi(1⊗ 1)
Σi(r1)

��

// Σi1⊗ 1
r
Σi1yy

f⊗n.id1=n.( f⊗id1)=(n. f )⊗id1 // a⊗ 1
r1
��

Σi1
n. f // a

Σi(1⊗ 1)
Σi(l1)

OO

// 1⊗Σi1

l
Σi1

ee

(n.id1)⊗ f=n.(id1⊗ f )=id1⊗(n. f ) // 1⊗a

l1

OO
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while graded-commutativity follows from

Σi+ j(1⊗ 1)
∼
��

Σi+ j(1⊗ 1)
∼
��

∼ //

(−1)i j

Σi(1⊗Σ j1)

∼
��

Σ j(1⊗Σi1)

∼
��

Σ j(τ) // Σ j(Σi1⊗ 1) ∼ // Σi1⊗Σ j1

f⊗g
��

Σ j1⊗Σi1
g⊗ f

//

τ

33

b⊗a τ
// a⊗b.

For this last diagram, note that τ1,1 = id1⊗1 by (2.2.13) and Lemma 2.2.6. The graded-

commutativity of the top-right square comes from Lemma 3.3.18.

Remark 3.3.25. Since π• :T→AbZ is a lax symmetric monoidal functor, it preserves commu-

tative monoids by Remark 2.2.31. The unit object 1 ∈T has an obvious commutative monoid

structure and every object X ∈T is canonically a left 1-module. Thus π•(1) has the structure

of a graded-commutative ring and π•(X ) has the structure of graded π•(1)-module. These

observations will be considered more systematically in Section 3.5. For now we just want

to note that the graded ring structure on π•(1) inherited via π•(−) from the commutative

monoid structure on 1 agrees with the usual ring structure of π•(1) = [1,1]• regarded as a

graded ring of endomorphisms. For f :Σi1→ 1 and g :Σ j1→ 1 the former product f · g is

Σi+ j1'Σi+ j(1⊗ 1)'Σi1⊗Σ j1
f⊗g //1⊗ 1' 1

while the latter product is

Σi+ j1
Σi g //Σi1

f //1.

That these coincide is demonstrated by

Σi+ j1

Σi g

��

Σi l−1
// Σi(1⊗Σ j1) ∼ //

Σi(1⊗g)
��

Σi1⊗Σ j1

1⊗g
��

f⊗g

��
Σi(1⊗ 1) ∼ //

Σi l1
��

Σi1⊗ 1 f⊗1 //

l1
��

1⊗ 1
∼
��

Σi1 Σi1 Σi1
f // 1.
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Example 3.3.26. Let’s consider some basic (non-triangulated) examples to illustrate the anti-

commutativity of diagram (3.3.6). First consider the category of graded abelian groups AbZ.

Recall that this is a suspended additive category with (ΣX )n := Xn−1 and that the tensor

product of abelian groups provides a tensor product: (X ⊗Y )n :=⊕
i+ j=n X i ⊗Y j. Note that

(Σ(X ⊗Y ))n = ⊕
i+ j=n−1

X i ⊗Y j =
⊕
k∈Z

Xk ⊗Yn−1−k

(ΣX ⊗Y )n = ⊕
i+ j=n

X i−1 ⊗Y j =
⊕
k∈Z

Xk ⊗Yn−1−k

(X ⊗ΣY )n = ⊕
i+ j=n

X i ⊗Y j−1 =
⊕
k∈Z

Xk ⊗Yn−1−k

and we can take the suspension isomorphisms

ΣX ⊗Y =Σ(X ⊗Y )= X ⊗ΣY

to be the identities. In this case diagram (3.3.6) commutes. However, now consider the

category of chain complexes Ch(Ab). This is also a suspended additive category with differ-

ential defined by dΣX
n := −dX

n−1 and with monoidal structure provided by the tensor prod-

uct of chain complexes: (X ⊗Y )n := ⊕
i+ j=n X i ⊗Y j with differential given by d(x ⊗ y) =

dx⊗ y+ (−1)|x|x⊗d y. One can check that the differential

Σ(X ⊗Y )n = ⊕
k∈Z

Xk ⊗Yn−1−k →
⊕
k∈Z

Xk ⊗Yn−2−k =Σ(X ⊗Y )n−1

on Σ(X ⊗Y ) is given by x⊗ y 7→ −dx⊗ y+ (−1)k+1x⊗d y for x ∈ Xk and y ∈Yn−1−k. Similarly,

the differential

(ΣX ⊗Y )n = ⊕
k∈Z

Xk ⊗Yn−1−k →
⊕
k∈Z

Xk ⊗Yn−2−k = (ΣX ⊗Y )n−1

on (ΣX ⊗Y ) is also given by x ⊗ y 7→ −dx ⊗ y+ (−1)k+1x ⊗ d y for x ∈ Xk and y ∈ Yn−1−k.

Thus ΣX ⊗Y = Σ(X ⊗Y ) as complexes and, as before, the identity gives us the suspension

isomorphism. However, the differential

(X ⊗ΣY )n = ⊕
k∈Z

Xk ⊗Yn−1−k →
⊕
k∈Z

Xk ⊗Yn−2−k = (X ⊗ΣY )n−1
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on X ⊗ΣY is given by x⊗ y 7→ dx⊗ y+(−1)k+1x⊗d y for x ∈ Xk and y ∈Yn−1−k. Thus X ⊗ΣY 6=

Σ(X ⊗Y ) as complexes and the identity map is not a map of complexes. Instead, we take the

suspension isomorphism X ⊗ΣY → Σ(X ⊗Y ) to be the map which sends x⊗ y to (−1)kx⊗ y

for x ∈ Xk. Once can then check that with these definitions diagram (3.3.6) commutes up to

a sign. The situation is as follows

ΣX ⊗ΣY
ρΣX ,Y
��

“id” // Σ(X ⊗ΣY )

Σ(ρX ,Y )
��

Σ(ΣX ⊗Y ) “id” // Σ2(X ⊗Y )

and the point is that the definition of ΣρX ,Y :Σ(X ⊗ΣY )→Σ2(X ⊗Y ) on x⊗ y depends on the

degree of x in X while the definition of ρΣX ,Y :ΣX ⊗ΣY →Σ(ΣX ⊗Y ) on x⊗ y depends on the

degree of x in ΣX . More precisely,

(ΣρX ,Y )n = (ρX ,Y )n−1 : (X ⊗ΣY )n−1 =
⊕
k∈Z

Xk ⊗ (ΣY )n−1−k → (X ⊗Y )n−2

sends x⊗ y ∈ Xk ⊗ (ΣY )n−1−k = Xk ⊗Yn−2−k to (−1)kx⊗ y while

(ρΣX ,Y )n : (ΣX ⊗ΣY )n = ⊕
k∈Z

(ΣX )k ⊗ (ΣY )n−k → (ΣX ⊗Y )n−1

sends x⊗ y ∈ (ΣX )k ⊗ (ΣY )n−k to (−1)kx⊗ y and hence as a map defined on
⊕

k∈Z Xk ⊗Yn−2−k

sends x⊗ y ∈ Xk ⊗Yn−2−k to (−1)k+1x⊗ y. A very explicit example can be obtained by taking

X =Y = 1. Recall that the unit 1 is the abelian group Z regarded as a complex concentrated

in degree zero. Diagram (3.3.6) is then

Z1 ⊗Z0
id //

−id
��

Z0 ⊗Z1

id
��

Z1 ⊗Z0
id // Z0 ⊗Z0

where the subscripts indicate the degree of that factor before taking the tensor product. The

horizontal suspension isomorphisms are the identities, but the vertical suspension isomor-

phisms depend on the degree (according to this indexing scheme) of the first factor. Another
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way of appreciating the difference between the suspension isomorphisms Σ(X ⊗Y )'ΣX ⊗Y

and Σ(X ⊗Y ) ' X ⊗ΣY in this example is that the second one introduces a sign because it

passes the suspension past the factor X . This corresponds to the usual sign convention we

have for the differential of a tensor product of complexes, d(x⊗ y) = dx⊗ y+ (−1)|x|x⊗ d y,

where a sign is introduced when we pass the differential past the first variable. Although

Ch(Ab) is not a triangulated category, these comments explain why the derived categories

of Section 3.8 satisfy the anticommutativity axiom (3.3.6).

Example 3.3.27. Topology provides another example of this anticommutative phenomenon.

The category of (compactly generated weakly Hausdorff [McC69, §2]) based topological

spaces is a symmetric monoidal category under the smash product ∧ with the 0-sphere S0

serving as the unit object. There is a natural based homeomorphism ΣX ∼= S1∧X where ΣX

denotes reduced suspension, and in this setting

ΣX ∧Y ∼= S1 ∧ X ∧Y id //S1 ∧ X ∧Y ∼=Σ(X ∧Y )

and

X ∧ΣY ∼= X ∧S1 ∧Y τ∧1 //S1 ∧ X ∧Y ∼=Σ(X ∧Y )

provide suspension homeomorphisms. The category of based spaces is not an additive cate-

gory, so we can’t speak of diagram (3.3.6) anticommuting; nevertheless, we see that

S1 ∧ X ∧S1 ∧Y
τS1∧X ,S1∧Y
��

S1 ∧ X ∧S1 ∧Y

S1∧τX ,S1∧Y
��

S1 ∧S1 ∧ X ∧Y S1 ∧S1 ∧ X ∧Y

can’t possibly commute because the symmetry map S1 ∧S1 τ−→ S1 ∧S1 is not the identity.

In fact, it is not hard to see that under the usual identification S1 ∧S1 ∼= S2 the twist map

becomes a map S2 → S2 of degree −1. It follows that if we pass to the stable homotopy

category (see Section 3.8) then τ : S1 ∧S1 → S1 ∧S1 is −id and the diagram does in fact

anticommute.
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Remark 3.3.28. In our definition of a tensor triangulated category we required the monoidal

structure to be symmetric. This omits some examples from our theory, such as derived cate-

gories of bimodules. On the other hand, we don’t require the monoidal structure to be closed.

If one assumes (as some authors do) that the monoidal structure is a closed symmetric

monoidal structure then additional compatibility axioms should be required which relate the

internal hom with the triangulated structure; namely, the internal hom F(−,−) :Top×T→T

should be exact in each variable. (See Remark 3.1.6 for the triangulated structure on Top.)

This includes the data of two natural isomorphisms

F(a,Σb)'ΣF(a,b) and F(Σa,b)'Σ−1F(a,b) (3.3.29)

which are further required to be adjoint to the maps

ΣF(a,b)⊗a 'Σ(F(a,b)⊗a) Σ(ev)−−−→Σb

and

ΣF(Σa,b)⊗a 'Σ(F(Σa,b)⊗a)' F(Σa,b)⊗Σa ev−→ b

respectively. (The suspension isomorphisms (3.3.2) for the tensor product determine the sus-

pension isomorphisms (3.3.29) for the internal hom—and vice versa.) There is a slightly sub-

tle point here. Indeed, if T is any compactly generated tensor triangulated category whose

tensor product preserves coproducts (a very mild assumption) then Brown representability

(Corollary 3.2.7) implies that every functor −⊗ b has a right adjoint and hence there exists

an internal hom by Remark 2.2.45. However, it does not follow from this abstract argument

that the resulting internal hom need preserve exact triangles. This is quite unfortunate

because such compatibility between the internal hom and the triangulated structure is ac-

tually needed to prove some basic results; for example, see the proof of Proposition 3.4.5

below.
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Definition 3.3.30. A morphism of tensor triangulated categories (or tensor triangulated

functor) is an exact functor of triangulated categories (F,θ) : T → S which is also a strong

symmetric monoidal functor (F,ϕ,ϕ0) :T→ S such that the following diagram commutes

FΣa⊗Fb
θa⊗Fb//

ϕΣa,b
��

ΣFa⊗Fb
λFa,Fb// Σ(Fa⊗Fb)

Σϕa,b
��

F(Σa⊗b)
Fλa,b // FΣ(a⊗b)

θa⊗b // ΣF(a⊗b)

(3.3.31)

for any a,b ∈T.

Lemma 3.3.32. Let F :T→ S be a tensor trianguated functor. Then the diagram

Fa⊗FΣb
Fa⊗θb//

ϕa,Σb
��

Fa⊗ΣFb
ρFa,Fb// Σ(Fa⊗Fb)

Σϕa,b
��

F(a⊗Σb)
F(ρa,b)

// FΣ(a⊗b)
θa⊗b // ΣF(a⊗b)

commutes for any a,b ∈T.

Proof. This is demonstrated by the following diagram:

Fa⊗FΣb

ϕa,Σb

��

τ

''

// Fa⊗ΣFb

τ
��

// Σ(Fa⊗Fb)

Στvv

Σϕa,b

��

FΣb⊗Fa

��

// ΣFb⊗Fa // Σ(Fb⊗Fa)

Σϕb,a
��

F(Σb⊗a)

Fτww

// FΣ(b⊗a)

FΣτ
��

θb⊗a // ΣF(b⊗a)
ΣFτ

((
F(a⊗Σb)

Fρ
// FΣ(a⊗b)

θa⊗b

// ΣF(a⊗b).

The left and right squares commute using the fact that F is symmetric monoidal functor.

The middle square is axiom (3.3.31), while the top-right and bottom-left commute by (3.3.5).

The top-left and bottom-right commute by naturality.

Remark 3.3.33. The naturality of our graded comparison maps introduced in Chapter 5 will

depend on the compatibility axiom (3.3.31) for morphisms of tensor triangulated functors.
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Definition 3.3.34. An equivalence of tensor triangulated categories is a tensor triangulated

functor which is an equivalence of the underlying categories. According to Definition 3.1.29

and Remark 2.2.41 this is the same thing as an equivalence in the 2-category of tensor trian-

gulated categories, tensor triangulated functors, and monoidal trinatural transformations.

Remark 3.3.35. The opposite category Top of a tensor triangulated category T inherits a

canonical tensor triangulated structure with essentially the same exact triangles; cf. Re-

mark 2.2.17 and Remark 3.1.6. Just bear in mind that passing to the opposite category

exchanges suspension with desuspension and modifies some signs.

Remark 3.3.36. In the setting of tensor triangulated categories, we’ll often use the terms

tensor category and tensor functor—abbreviated ⊗-category and ⊗-functor—as synonyms

for “symmetric monoidal category” and “strong symmetric monoidal functor.” Nevertheless,

we’ll often write “strong ⊗-functor” for emphasis.

Definition 3.3.37. A full replete subcategory S ⊂ T of a tensor triangulated category T is

said to be ⊗-ideal if a ∈ T and b ∈ S implies that a⊗ b ∈ S. A thick subcategory that is also a

⊗-ideal is simply called a thick ⊗-ideal. The smallest thick ⊗-ideal containing a collection of

objects G⊂T is denoted thick⊗〈G〉.

3.4 Rigid categories

Recall from Section 2.2 that if every object in a symmetric monoidal category (C,⊗,1) is du-

alizable then by choosing duals we obtain an equivalence D : Cop ∼−→ C which is unique up

to isomorphism and which is a strong ⊗-functor when Cop is given the induced monoidal

structure: D1 ' 1 and D(X ⊗Y ) ' DX ⊗DY . In fact, when C has additional structure, the

functor D often preserves it. For example, if C is a tensor triangulated category then the

compatibility requirements between the suspension and the monoidal structure imply that
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the duality functor D is a stable additive functor provided that Cop is given the opposite sus-

pended structure. In particular, D(ΣX )'Σ−1DX and D(X ⊕Y )' DX ⊕DY . In contrast, the

compatibility requirements between the triangulated structure (more precisely, the exact

triangles) and the monoidal structure are fairly weak (cf. Remark 3.3.13) and there seems

to be no reason why D would automatically preserve exact triangles (cf. Remark 3.3.28).

Therefore, we make this condition part of our definition:

Definition 3.4.1. A tensor triangulated category K is rigid if there exists an exact functor

D :Kop →K and a natural isomorphism [X ⊗Y , Z]' [X ,DY ⊗Z].

Remark 3.4.2. Rigidity is a property of a tensor triangulated category. Any functor between

triangulated categories which is naturally isomorphic to an exact functor inherits the struc-

ture of an exact functor. Thus, since the duality D : Top → T is unique up to isomorphism (if

it exists), we can ask whether one (hence any) choice of duality functor admits the structure

of an exact functor. In other words, a rigid tensor triangulated category is a tensor trian-

gulated category in which every object is dualizable and such that any functorial choice of

duals D :Top →T admits the structure of an exact functor.

The following definition is the tensor-triangulated analogue of the notion of a compactly

generated triangulated category:

Definition 3.4.3. A tensor triangulated category is said to be rigidly-compactly generated if

(1) T is compactly generated by a set of dualizable objects.

(2) The unit is compact.

(3) The symmetric monoidal structure admits a closed monoidal structure compatible

with the triangulation.
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Remark 3.4.4. This (slightly awkward) definition can be rephrased in several cosmetically

different (but logically equivalent) ways. The main point of the definition is that it should

be a compactly generated tensor triangulated category whose compact objects form a rigid

tensor triangulated subcategory. For this to be the case, the ⊗-unit has to be compact and,

moreover, under the very mild assumption that −⊗− preserves coproducts in each variable,

it follows that every dualizable object is compact.

Proposition 3.4.5. If T is a rigidly-compactly generated tensor triangulated category then

the compact objects coincide with the dualizable objects. They form an essentially small,

idempotent complete, rigid tensor triangulated category.

Proof. The fact that 1 is compact and −⊗b preserves coproducts (since it has a right adjoint)

implies that every dualizable object is compact. Indeed, one just needs to check that the

diagram ⊕
i[X , Zi]

∼

��

// [X ,
∐

i Zi]

∼
��

[1,DX ⊗∐
i Zi]

∼
��⊕

i[1,DX ⊗Zi] // [1,
∐

(DX ⊗Zi)]

commutes for every set of objects (Zi)i∈I in T. This is readily accomplished by precomposing

with [X , Zn] → ⊕
i[X , Zi] and using the universal properties defining the maps in the dia-

gram. On the other hand, since T is closed symmetric monoidal, the dualizable objects can

be characterized as those objects X ∈T for which the map ν : F(X ,1)⊗Z → F(X , Z) from Re-

mark 2.2.59 is a natural isomorphism. (This was proved in Lemma 2.2.61.) Using this char-

acterization, we can show that the collection of dualizable objects forms a thick subcategory

of T. The hard part is showing that the cofiber of a map of dualizable objects is again dual-

izable. However, F(−, Z) preserves exact sequences by the assumed compatibility between
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the closed structure and the tensor structure (cf. Remark 3.3.28) so if A
f−→ B

g−→ C h−→ ΣA is

an exact triangle then

F(C,1)⊗Z

ν

��

F(g,1)⊗1 // F(B,1)⊗Z

ν

��

F( f ,1)⊗1 // F(A,1)⊗Z

ν

��

F(Σ−1h,1)⊗1 // F(Σ−1C,1)⊗Z

ν
��

F(C, Z)
F(g,1) // F(B, Z)

F( f ,1) // F(A, Z)
F(Σ−1h,1) // F(Σ−1C, Z)

is a morphism of exact triangles. It follows from Lemma 3.1.9 that if two of the objects in

an exact triangle are dualizable then so is the third. By assumption, T is compactly gener-

ated by a set of dualizable objects G. Remark 3.2.5 implies that Tc = thick〈G〉 but since the

generating objects are dualizable and the dualizable objects form a thick subcategory we

conclude that Tc = thick〈G〉 is contained in the collection of dualizable objects. This proves

that the compact objects coincide with the dualizable objects. In any triangulated category

the compact objects form a thick subcategory, while the dualizable objects in any symmet-

ric monoidal category form a monoidal subcategory. It follows that the compact/dualizable

objects form a tensor triangulated subcategory of T. It is essentially small because it is

generated by a set of objects. It is idempotent complete because it is a thick subcategory

of T and it is rigid because all the objects are dualizable. (The duality functor D(−)' F(−,1)

preserves exact triangles by assumption.)

Remark 3.4.6. As in Remark 3.4.2 being rigidly-compactly generated is a property of a tensor

triangulated structure since any two choices of internal hom are necessarily isomorphic

and the compatibility conditions mentioned in Remark 3.3.28 can (1) be expressed purely

in terms of the structure of the tensor triangulated category and (2) are invariant under

replacing the internal hom with a naturally isomorphic bifunctor.

Remark 3.4.7. A rigidly-compactly generated tensor triangulated category is essentially the

same thing as a “unital algebraic stable homotopy category” in the terminology of [HPS97].
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That reference contains many interesting results about such categories. Dualizable objects

in tensor triangulated categories are also discussed in [Bal07, Section 2].

Remark 3.4.8. Many of the tensor triangulated categories studied by tensor triangular ge-

ometry are rigid categories sitting as the compact/dualizable objects in a larger rigidly-

compactly generated category. We’ll see some examples in Section 3.8.

3.5 Homology theories

Definition 3.5.1. Let T be a tensor triangulated category. Any object E ∈ T gives rise to an

associated stable homological functor E• : T → AbZ defined by Ei(X ) := πi(E⊗ X ) = [ΣiE, X ]

and an associated stable cohomological functor E• : Top → AbZ defined by Ei(X ) := [X ,ΣiE].

We call these the “homology theory” and “cohomology theory” associated to E. Note that if X

is dualizable then E•(X )∼= E−•(DX ) and E•(X )∼= E−•(DX ).

Remark 3.5.2. Recall from Proposition 3.3.24 that π• :T→AbZ is a lax symmetric monoidal

functor when AbZ is equipped with the “graded-commutative” symmetric monoidal struc-

ture:

[Σi1, X ]⊗ [Σ j1,Y ] ⊗−→ [Σi1⊗Σ j1, X ⊗Y ] ∼−→ [Σi+ j1, X ⊗Y ].

Hence by Remark 2.2.31, if E ∈ T has the structure of a ring object then E• := E•(1) ' π•(E)

inherits the structure of a graded ring. Moreover, for any object X ∈ T, the graded abelian

group E•(X ) inherits the structure of a graded module over E•:

π•(E)⊗π•(E⊗ X )→π•(E⊗E⊗ X )
π∗(µ⊗1)−−−−−→π•(E⊗ X ).

Indeed, if E is a ring object in T then the stable homological functor E• : T → AbZ lifts to

a stable homological functor E• : T → E•-grMod. The graded ring E• = π•(E) is called the

“coefficient ring” of the homology theory E•(−). Similarly, the graded abelian group E•(X )

84



inherits the structure of a graded module over the graded ring E• := E•(1) = E−•(1) = E−• and

the cohomological functor E• : Top → AbZ lifts to a stable cohomological functor E• : Top →

E•-grMod. Note that the coefficient ring E• of the cohomology theory is just E• with the

opposite grading.

Remark 3.5.3. If T = SH is the stable homotopy category then a stable homological functor

H• : T → AbZ is essentially the same thing as a (reduced) generalized homology theory in

the sense of the Eilenberg-Steenrod axioms. More precisely, it is the analogue of a (reduced)

generalized homology theory defined on the stable homotopy category rather than on (say)

the category of based CW-complexes. Similarly, stable cohomological functors H• :Top →AbZ

are essentially the same thing as (reduced) generalized cohomology theories. The idea that

an arbitrary object E ∈ T should represent a cohomology theory E• : Top → AbZ was a fun-

damental idea lying at the heart of stable homotopy theory, but it was [Whi62] who first

emphasized that E also provides a homology theory E• : T → AbZ. These homology theo-

ries are extremely important in stable homotopy theory and will play an important role in

Chapter 6.

Remark 3.5.4. If T = SH then the coefficient ring E• = E•(1) is the value of the reduced gen-

eralized homology theory on the 0-sphere S0 which is the same thing as the value of the

corresponding unreduced generalized homology theory on the point ∗. The original axioms

for unreduced (co)homology put forward by Eilenberg and Steenrod included a “dimension

axiom” which asserted that the (co)homology of a point was concentrated in a single degree.

Generalized (co)homology theories are theories satisfying all of the Eilenberg-Steenrod ax-

ioms except for the dimension axiom.

Remark 3.5.5. In this context it is an interesting question to ask whether a given stable

(co)homological functor (a.k.a. generalized (co)homology theory) is the (co)homology theory

associated to an object E ∈T. A necessary condition for a stable cohomological functor H• to
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be represented by an object E is that H• must send coproducts to products: an analogue of

Milnor’s Wedge Axiom. Moreover, it follows from Brown Representability (Theorem 3.2.6)

that this necessary condition is also sufficient. In fact this holds in any compactly gen-

erated category since these categories satisfy the Brown Representability theorem. To be

clear: if H• : Top → AbZ is a stable cohomological functor defined on a compactly generated

triangulated category T which sends coproducts in T to products in AbZ then there exists

an object E ∈ T and a stable natural isomorphism H•(X ) ' E•(X ). However, representability

for homology theories is more subtle. Note that we are not asking for a homology theory

H• : T → AbZ to be a representable functor in the categorical sense; rather, we are asking

for the existence of an object E such that H•(X ) ' [Σ•1,E⊗ X ]. This question is related to

a different kind of representability called “Brown-Adams representability.” Adams [Ada71]

showed (when T =SH) that every cohomological functor

H : (Tc)op →Ab

defined on the subcategory of compact objects Tc ⊂ T is the restriction of a representable

functor [−,E] : Top → Ab and, moreover, every natural transformation [−,E]|Tc → [−,F]Tc be-

tween two such functors is induced by a map E→ F between the representing objects. This

can be used to answer our question in the following way: given a stable homological functor

H• : T→ AbZ one can use duality to define a stable cohomological functor H• : (Tc)op → AbZ

on the subcategory of compact objects by H i(X ) := H−i(DX ). It follows from Adams theorem

that there exists an object E ∈T such that H•(X )' E•(X ) for each compact object X ∈Tc and

hence that H•(X ) ' E•(X ) for each compact X . One then needs a homological analogue of

Milnor’s axiom to ensure that this equivalence extends from compact objects to the whole

category. The correct analogue is the requirement that our original homological functor H•

satisfy

colimαH•(Xα) ∼−→ H•(X ) (3.5.6)
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for every object X where the colimit is over all compact objects Xα → X mapping into X .

The statement then becomes: any stable homological functor H• : SH→AbZ which satisfies

(3.5.6) for every object X ∈SH is representable. Condition (3.5.6) can be generalized satisfac-

torily to any tensor triangulated category generated in a nice enough way from a good collec-

tion of objects—e.g., for a rigidly-compactly generated tensor triangulated category (see e.g.

[HPS97, Definition 2.3.7 and Section 4.1]). However, Adams theorem rarely holds for gen-

eral triangulated categories (see for example [Nee97]). Thus tensor triangulated categories

satisfying homological representability are much rarer than those satisfying cohomological

representability. Those rare categories which do satisfy homological representability (such

as SH) are called “Brown categories” in the axiomatic framework of [HPS97].

We finish this section with a minor technical remark which is needed to understand some

comments made in Chapter 6.

Lemma 3.5.7. Let E be a commutative ring object in a tensor triangulated category T. There

is a natural transformation

E•(X )⊗E• E•(Y )→ E•(X ⊗Y ).

defined for any two objects X ,Y ∈T, which is induced by the map

π•(E⊗ X )⊗π•(E⊗Y )
ϕ−→π•(E⊗ X ⊗E⊗Y )'π•(E⊗E⊗ X ⊗Y )

π•(µ⊗1⊗1)−−−−−−−→π•(E⊗ X ⊗Y ). (3.5.8)

Note that E•(X ) can be regarded as a right E•-module since E• is a commutative monoid in a

symmetric monoidal category.

Proof. We need to check that there is an induced map on the following coequalizer

π•(E⊗ X )⊗π•(E)⊗π•(E⊗Y )
ρ⊗1 //

1⊗λ
// π•(E⊗ X )⊗π•(E⊗Y ) //

ϕ̂

��

π•(E⊗ X )⊗π•(E)π•(E⊗Y )

tt
π•(E⊗ X ⊗Y )
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where ρ and λ denote the right and left actions of E• and ϕ̂ denotes the composite (3.5.8). In

other words, we need to check that ϕ̂◦ (ρ⊗1)= ϕ̂◦ (1⊗λ). To this end, consider the following

diagram

π(E⊗ X )⊗π(E)⊗π(E⊗Y )

ϕ⊗1
��

1⊗ϕ // π(E⊗ X )⊗π(E⊗E⊗Y )
ϕ

��

1⊗π(µ⊗1) // π(E⊗ X )⊗π(E⊗Y )
ϕ

��
π(E⊗ X ⊗E)⊗π(E⊗Y )

π(1⊗τ)⊗1
��

ϕ // π(E⊗ X ⊗E⊗E⊗Y )

π(1⊗τ⊗1⊗1)

vv

π(1⊗τ⊗1)

��

π(1⊗1⊗µ⊗1) // π(E⊗ X ⊗E⊗Y )

π(1⊗τ⊗1)

��

π(E⊗E⊗ X )⊗π(E⊗Y )
ϕ

��
π(E⊗E⊗ X ⊗E⊗Y )

π(µ⊗1⊗1⊗1)
��

π(1⊗1⊗τ⊗1) // π(E⊗E⊗E⊗ X ⊗Y )

π(µ⊗1⊗1⊗1)
��

π(1⊗µ⊗1⊗1) // π(E⊗E⊗ X ⊗Y )

π(µ⊗1⊗1)
��

π(E⊗ X ⊗E⊗Y ) π(1⊗τ⊗1) // π(E⊗E⊗ X ⊗Y )
π(µ⊗1⊗1) // π(E⊗ X ⊗Y )

where we have written π for π• in order to simplify notation. Going along the top and right-

hand side we get ϕ̂◦ (1⊗λ), while

π(E⊗ X )⊗π(E)⊗π(E⊗ X )

τ⊗1
��

ϕ⊗1 // π(E⊗ X ⊗E)⊗π(E⊗ X )

π(1⊗τ)⊗1

��

π(τ)⊗1

ww

π(E)⊗π(E⊗ X )⊗π(E⊗ X )

ϕ⊗1
��

π(E⊗E⊗ X )⊗π(E⊗ X )

π(µ⊗1)⊗1
��

π(τ⊗1)⊗1// π(E⊗E⊗ X )⊗π(E⊗ X )

π(µ⊗1)⊗1
��

ϕ // π(E⊗E⊗ X ⊗E⊗Y )

π(µ⊗1⊗1⊗1)
��

π(E⊗ X )⊗π(E⊗ X ) π(E⊗ X )⊗π(E⊗ X )
ϕ // π(E⊗ X ⊗E⊗Y ).

shows that ϕ̂ ◦ (1⊗ρ) is obtained by going down the left-hand side and along the bottom.

Note that in the bottom-left square of the last diagram we have used the fact that E is

commutative.
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3.6 Verdier localization

The most fundamental construction in the theory of triangulated categories is the Verdier

quotient. Before introducing this construction, we recall the general notion of localization in

category theory.

Definition 3.6.1. Let S be a collection of morphisms in a category C. The localization

C→C[S−1] is defined to be the universal functor out of C which inverts the morphisms in S.

More precisely, C[S−1] is a category equipped with a functor q :C→C[S−1] such that

(1) q(s) is an isomorphism for every s ∈ S; and

(2) for any functor F :C→D such that F(s) is an isomorphism for every s ∈ S, there exists

a unique functor F̄ :C[S−1]→D such that F̄ ◦ q = F.

Remark 3.6.2. The above definition can be rephrased as follows: condition (1) is equivalent

to the statement that for any category D, the functor −◦ q : DC[S−1] →DC factors through

the full subcategory D(C,S) ⊂DC consisting of those functors F :C→D which invert the mor-

phisms in S, and condition (2) is the statement that the functor −◦ q : DC[S−1] →D(C,S) is a

bijection on objects. The point we would like to make is that it actually follows from the def-

inition that −◦ q :DC[S−1] →D(C,S) is fully faithful. In other words, natural transformations

α : F1 → F2 between functors Fi :C→D which invert S correspond bijectively with natural

transformations between the induced functors F̄i :C[S−1]→D. In order to explain this fact,

let Arr(D) denote the “arrow category” whose objects are the morphisms in D and whose

morphisms are the commutative squares of morphisms in D. There are two “projection”

functors p1, p2 : Arr(D) →D and one sees that natural transformations α : F1 → F2 corre-

spond uniquely to functors α̂ :C→Arr(D) such that pi ◦ α̂= Fi for i = 1,2. If the Fi invert S

then one easily observes that α̂ : C→ Arr(D) also inverts S and hence there exists a unique
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functor β :C[S−1]→Arr(D) such that β◦ q = α̂:

C

q
��

α̂ // Arr(D)
p1 //
p2
// D

C[S−1]
∃!β

99

This functor β describes a natural transformation F̄1 → F̄2 and one readily checks that this

construction produces a map

D(C,S)(F1,F2)→DC[S−1](F̄1, F̄2)

which is inverse to the map

DC[S−1](F̄1, F̄2)
−◦q−−→D(C,S)(F1,F2).

The author thanks John Bourke for explaining this point to him.

Remark 3.6.3. If the localization C[S−1] exists then it is unique up to isomorphism; how-

ever, the existence of C[S−1] involves some set-theoretic issues. There is a simple formal

construction of C[S−1] obtained by taking the same objects as C and by taking morphisms

to be equivalence classes of zig-zags of morphisms in C (see [GZ67, Section I.1] for a precise

statement) but this category need not be locally small. More seriously, there is no feasible

way to work with this formal construction—it is useless for all practical purposes. Fortu-

nately, Gabriel and Zisman showed that the localization C[S−1] has a much more accessible

construction when the collection of morphisms S satisfies the conditions of the following

definition. We follow the terminology of [GZ67, Section I.2].

Definition 3.6.4. A collection of morphisms S in a category C is said to admit a calculus of

left fractions if

(1) The collection S is closed under composition and contains all the identity morphisms.
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(2) Any diagram X ′ s←− X
f−→Y in C with s ∈ S can be completed to a commutative square

X
f //

s
��

Y

s′
��

X ′ f ′ // Y ′

such that s′ ∈ S.

(3) Consider two parallel morphisms f , g : X → Y in C. If there is a morphism s : X ′ → X

in S with f ◦ s = g ◦ s then there exists a morphism t : Y →Y ′ in S with t◦ f = t◦ g.

Remark 3.6.5. A “left fraction” is a diagram X
f−→ Y ′ s←− Y with s ∈ S. We abbreviate it ( f , s)

and think of it as a “fraction” s−1 f . The significance of the second axiom is that f s−1 can be

replaced by (s′)−1 f ′; hence, in a zig-zag f1s−1
1 f2s−1

2 · · · fns−1
n all the s−1

i can be “moved to the

left” so that zig-zags reduce to left fractions. Indeed, when S admits a calculus of left frac-

tions the formal construction of C[S−1] in terms of “zig-zags” has the following description

in terms of “fractions”:

Theorem 3.6.6 (Gabriel-Zisman). Let S be a collection of morphisms in a category C admit-

ting a calculus of left fractions. Define S−1C to be the category which has the same objects

as C and whose morphisms X →Y are the equivalence classes of “left fractions” X
f−→Y ′ s←−Y

with f ∈ Mor(C) and s ∈ S, where two left fractions X
f1−→ Y1

s1←− Y and X
f2−→ Y2

s2←− Y are

equivalent if there exists a commutative diagram

Y1

��
X

f1
>>

f3 //

f2   

Y3 Y
s3oo

s1
__

s2��
Y2

OO

with s3 ∈ S. Two equivalence classes [ f , s] and [g, t] are composed by using axiom (2) to
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construct a diagram

Z′′

Y ′

g′ >>

Z′

s′
``

X

f
>>

Y

s
aa

g
==

Z
t

``

where s′ ∈ S, and defining the composite to be [g′ ◦ f , s′ ◦ t]. This is well-defined. There is

a canonical functor C→ S−1C which is the identity on objects and sends X
f−→ Y to [ f , idY ].

It satisfies the universal property for the localization of C with respect to S and thus can be

regarded as the localization C→C[S−1].

Proof. For full details (e.g., that composition is well-defined and that C→ S−1C satisfies the

universal property) see [GZ67, §I.2].

Remark 3.6.7. Even if S is a set of morphisms there is no reason to expect that the equiv-

alence classes of fractions HomS−1C(X ,Y ) between any two objects need form a set. How-

ever, if C is essentially small then the localization C[S−1] ∼= S−1C exists for any collection of

morphisms S which is closed under isomorphisms and admits a left calculus of fractions.

Indeed, choose a small skeleton C0 ⊂C. Given any left fraction (X
f−→Y1

s←−Y ) we can choose

an isomorphism α : Y1
∼−→Y0 for some Y0 ∈C0. Then the diagram

Y1

X

f
>>

f //

α◦ f   

Y1 Ysoo

s
__

α◦s��
Y0

α−1

OO

shows that [(X
f−→ Y1

s←− Y )] = [(X
α◦ f−−→ Y0

α◦s←−− Y )]. Thus HomS−1C(X ,Y ) is a quotient of a

subset of the set
⋃

Y0∈C0 HomC(X ,Y0)×HomC(Y ,Y0) and hence is a set.
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Definition 3.6.8. Let T be a triangulated category and let S⊂ T be a triangulated subcate-

gory. The Verdier quotient T/S is defined to be the localization

T/S :=T[S−1]

where S := {
f ∈Mor(T) | cone( f ) ∈ S}

.

Theorem 3.6.9 (Verdier). Let T be a triangulated category and let S ⊂ T be a triangulated

subcategory.

(1) The collection S := {
f ∈Mor(T) | cone( f ) ∈ S}

admits a left calculus of fractions.

(2) The Verdier quotient T/S admits the structure of a triangulated category such that

q :T→T/S is an exact functor. The exact triangles in T/S are those triangles isomor-

phic to the image of an exact triangle in T.

(3) The Verdier quotient q : T → T/S is the universal exact functor out of T which kills the

objects of S.

(4) The kernel of q :T→T/S is the thick subcategory generated by S.

Proof. Since S is triangulated, the octahedral axiom implies that S is closed under compo-

sition. Next, given X ′ Xsoo f //Y we can construct a morphism of exact triangles

Σ−1Z // X

s
��

f // Y

s′
��

// Z

Σ−1Z // X ′ f ′ // Y ′ // Z

and it follows from Verdier’s lemma (a.k.a. the 9-lemma for triangulated categories) that

cone(s′) ' cone(s); hence s′ ∈ S. Finally, given X ′ s //X
f //
g
//Y we can choose an exact tri-

angle

X ′ s // X

f−g
��

// Z

u��

// ΣX ′

Y
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and obtain a map u by Lemma 3.1.7. Then choosing an exact triangle for u we have

X

��
f−g
��

Z u // Y t // Y ′ // ΣZ

and it follows that t ◦ ( f − g) = 0. Furthermore, note that cone(t) ' Σcone(s) ∈ S so t ∈ S.

This establishes that S admits a calculus of left fractions. Next we wish to establish that

T/S=T[S−1] inherits the structure of a triangulated category from T. It follows from [GZ67,

Chapter I, Corollary 3.2] that T/S is an additive category and that q :T→T/S is an additive

functor. Moreover, since S is stable under suspension, Σ : T → T induces a unique functor

Σ̄ : T/S→ T/S such that Σ̄ ◦ q = q ◦Σ. That this is an equivalence of categories follows from

Remark 3.6.2. The next step is to show that

(1) the collection of morphisms S also admits a “calculus of right fractions” (the notion

dual to Definition 3.6.4); and that

(2) if (u,v,w) is a morphism of exact triangles with u,v ∈ S then there exists a morphism

(u,v,w′) with w′ ∈ S.

These additional facts can be used to show that T[S−1] has the structure of a triangulated

category when equipped with those triangles that are isomorphic to the image of an exact

triangle in T. For a proof see [Ver96, Chapter II, Theorem 2.2.6]. In fact, this triangulated

structure on T/S is the unique such structure such that q :T→T/S is an exact functor when

equipped with the canonical suspension Σ̄ and strict suspension isomorphism q ◦Σ = Σ̄◦ q.

The universal property stated in (3) is easy to establish using the universal property for q

together with Remark 3.6.2. Finally, we will prove that Ker q = thick〈S〉. It is clear that the

kernel of an exact functor is a thick subcategory; hence thick〈S〉 ⊂Ker q. On the other hand,

if q(X )= 0 then [(X 0−→ X id←− X )]= [(X id−→ X id←− X )] implies that there is a morphism s : X → Z
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in S such that

X
s
��

X

id
>>

//

0   

Z Xsoo

id
``

id~~
X

s

OO

commutes. It follows that s is the zero morphism from X to Z and hence cone(s)'ΣX⊕Z ∈ S

by Corollary 3.1.15. Hence X ∈ thick〈S〉.

Remark 3.6.10. Unless T is essentially small there is still the issue that T/S might not exist

in our universe. Nevertheless, in some situations the quotient functor T → T/S admits a

fully faithful right adjoint in which case T/S is equivalent to a full subcategory of T and in

particular exists in our universe. This is the topic of Bousfield localization (see Section 3.7).

Remark 3.6.11. According to the theorem, the kernel killed by Verdier localization T→ T/S

is the thick subcategory generated by S. Thus we typically take S to be a thick subcategory

of T. This is one of the reasons why thick subcategories are important in the theory of

triangulated categories.

Remark 3.6.12. Because the collection of morphisms defining the Verdier quotient admits a

calculus of left fractions, the category T/S has a fairly simple description: it has the same

objects as T and the morphisms X →Y are given by equivalence classes of fractions

[(X
f−→Y ′ s←−Y )]

where s : Y → Y ′ is a morphism such that cone(s) ∈ S. It is straightforward to examine how

the usual constructions in T work in T/S. For example, the suspension of a morphism is

given by

Σ[(X
f−→Y ′ s←−Y )]= [(ΣX

Σ f−−→ΣY ′ Σs←−ΣY )]
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and the direct-sum of two morphisms is

[(X1
f1−→Y ′

1
s1←−Y1)]⊕ [(X2

f2−→Y ′
2

s2←−Y2)]= [(X1 ⊕ X2

( f1 0
0 f2

)
−−−−−→Y ′

1 ⊕Y ′
2

( s1 0
0 s2

)
←−−−−−Y1 ⊕Y2)].

Note that cone
( s1 0

0 s2

) ' cone(s1)⊕ cone(s2) so s1 ⊕ s2 ∈ S. In any case, the only place where

we will actually need this concrete description of the Verdier quotient is in Section 5.7.

The following proposition explains how Verdier localization interacts with the tensor struc-

ture of a tensor triangulated category.

Proposition 3.6.13. Let (T,⊗,1) be a tensor triangulated category and let S ⊂ T be a thick

⊗-ideal. The Verdier quotient T/S inherits a canonical tensor triangulated structure (T/S,⊗̂,1)

such that q : T→ T/S is a tensor triangulated functor. The tensor product −⊗̂− is defined on

objects by A⊗̂B = A⊗B and on morphisms by

[X1
f1−→Y ′

1
s1←−Y1]⊗̂[X2

f2−→Y ′
2

s2←−Y2]= [X1 ⊗ X2
f1⊗ f2−−−−→Y ′

1 ⊗Y ′
2

s1⊗s2←−−−−Y1 ⊗Y2].

Proof. Let S := {
f ∈ Mor(T) | cone( f ) ∈ S

}
. Note that S ×S is a collection of morphisms in

T×T. It is easy to check that (T×T)[(S ×S)−1] = T[S−1]×T[S−1] with the canonical map

given by q×q :T×T→T[S−1]×T[S−1]. Now consider two morphisms s : X →Y and t : A → B

in S. Since s⊗ t = (s⊗B)◦(X⊗ t), the octahedral axiom implies that there is an exact triangle

X ⊗cone(t) //cone(s⊗ t) //cone(s)⊗B //ΣX ⊗cone(t).

It follows that s⊗ t ∈ S since S is assumed to be a ⊗-ideal. Therefore, by the universal

property of localization there exists a unique functor −⊗̂− : T[S−1]×T[S−1] → T[S−1] such

that the following diagram commutes:

T×T
−⊗− //

q×q
��

T

q
��

T[S−1]×T[S−1] −⊗̂− // T[S−1].

(3.6.14)
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It follows immediately from this diagram that A⊗̂B = qA⊗̂qB = q(A ⊗B) = A ⊗B for any

two objects A,B ∈ T[S−1]. Moreover, note that every morphism in T[S−1] is of the form

q(s)−1 ◦ q( f ) for some f ∈Mor(T) and s ∈ S. If f : X →Y ′, s : Y →Y ′, g : A → B′, t : B → B′ are

morphisms in T with s, t ∈ S then the commutativity of (3.6.14) implies that

(
q(s)−1 ◦ q( f )

) ⊗̂ (
q(t)−1 ◦ q(g)

)= (
(q(s)−1 ◦ q( f )) ⊗̂ B

)◦ (
X ⊗̂ (q(t)−1 ◦ q(g))

)
= (

q(s)−1⊗̂B
)◦ (

q( f )⊗̂B
)◦ (

X ⊗̂q(t)−1)◦ (
X ⊗̂q(g)

)
= (

q(s)−1⊗̂B
)◦ (

X ⊗̂q(t)−1)◦ (
q( f )⊗̂B

)◦ (
X ⊗̂q(g)

)
= (

q(s)−1⊗̂q(t)−1)◦ (
q( f )⊗̂q(g)

)
= (

q(s)⊗̂q(t)
)−1 ◦ (

q( f )⊗̂q(g)
)

= q(s⊗ t)−1 ◦ q( f ⊗ g).

In other words, the tensor product −⊗̂− is given on morphisms by

[(X
f−→Y ′ s←−Y )]⊗[(A

g−→ B′ t←− B)]

= [(Y ⊗B s⊗t−−→Y ′⊗B′ id←−Y ′⊗B′)]−1 ◦ [(X ⊗ A
f⊗g−−−→Y ′⊗B′ id←−Y ′⊗B′)]

= [(Y ′⊗B′ id−→Y ′⊗B′ s⊗t←−−Y ⊗B)]◦ [(X ⊗ A
f⊗g−−−→Y ′⊗B′ id←−Y ′⊗B′)]

= [(X ⊗ A
f⊗g−−−→Y ′⊗B′ s⊗t←−−Y ⊗B)].

Next consider the associator, unitor and symmetry isomorphisms of the symmetric monoidal

structure on T. Note that the associator α is a natural transformation from the functor

T×T×T
id×⊗−−−→T×T

⊗−→T (3.6.15)

to the functor

T×T×T
⊗×id−−−→T×T

⊗−→T (3.6.16)

and that these two functors induce the analogous functors on T[S−1]. For example, the
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following diagram

T×T×T

q×q×q
��

id×⊗ // T×T

q×q
��

⊗ // T

q
��

T[S−1]×T[S−1]×T[S−1] id×⊗̂ // T[S−1]×T[S−1] ⊗̂ // T

indicates that (3.6.15) descends to the analogous functor on T[S−1]; similarly for (3.6.16). By

Remark 3.6.2, α corresponds to a natural isomorphism ᾱ between these induced functors.

The relationship between α and ᾱ is that the natural transformation

T×3 q×3
//T[S−1]×3

⊗̂◦(id×⊗̂)
,,

⊗̂◦(⊗̂×id)
22�� ᾱ T[S−1]

coincides with the natural transformation

T×3
⊗◦(id×⊗)

**

⊗◦(⊗×id)

44�� α T
q //T[S−1].

Similar statements hold for the unitor and symmetry isomorphisms. Now note that each of

the axioms for a symmetric monoidal category is an assertion that two particular natural

transformations coincide. By using the isomorphism of categories

T[S−1]T[S−1] q◦−
∼=
//T[S−1](T,S)

from Remark 3.6.2, we can check that two such natural transformations are equal by check-

ing that they coincide after horizontally precomposing by q (or q×n as the case may be)

and this reduces the problem to the corresponding axiom in T. For example, the symmetry

τ : a⊗b ∼−→ b⊗a is a natural transformation

T×T

id
&&

switch

99�� τ T×T

and axiom (2.2.14) asserts the equality of the following two natural transformations:

T×T

id
&&

id

99�� id T×T = T×T

id
&&�� τ
99

id
�� τ

switch // T×T
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In order to check that this axiom holds in T[S−1]—i.e., in order to check that

T[S−1]×T[S−1]

id
**

�� τ̄
55

id
�� τ̄

switch // T[S−1]×T[S−1]

is the identity natural transformation—it suffices to check that

T[S−1]×T[S−1]
q×q // T[S−1]×T[S−1]

id
**

�� τ̄
55

id
�� τ̄

switch // T[S−1]×T[S−1] (3.6.17)

is the identity natural transformation. But according to the definition of τ̄, the natural

transformation

T×T
q×q // T[S−1]×T[S−1]

id --

switch
11�� τ̄ T[S−1]×T[S−1]

is equal to

T×T
id

++

switch
33�� τ T×T

q×q // T[S−1]×T[S−1]

and consequently (3.6.17) is equal to

T×T

id
&&�� τ
99

id
�� τ

switch // T×T
q×q // T[S−1]×T[S−1]

which is the identity by axiom (2.2.14) for T. In conclusion, this establishes axiom (2.2.14)

for T[S−1]. The other axioms required of a symmetric monoidal category can be disposed

of in a similar fashion by pulling back via q×n to reduce them to the corresponding axioms

in T. The same method can be used to produce suspension isomorphisms for T[S−1] and to

check axioms (3.3.3)–(3.3.6). Finally, to check that a⊗̂− : T[S−1] → T[S−1] preserves exact

triangles it suffices to check that it preserves exact triangles in the image of q:

qX
qf //qY

qg //qZ
qh //qΣX = Σ̄qX .
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Applying a⊗̂− and using (3.6.14) we obtain an isomorphism of triangles

qa⊗̂X
qa⊗̂qf // qa⊗̂qY

qa⊗̂qg // qa⊗̂qZ
qa⊗̂qh// qa⊗̂qΣX = qa⊗̂Σ̄qX

ρ̄ // Σ̄(qa⊗̂qX )

q(a⊗ X )
q(a⊗ f )

// q(a⊗Y )
q(a⊗g)

// q(a⊗Z)
q(a⊗h)

// q(a⊗ΣX )
q(ρ)

// qΣ(a⊗ X )= Σ̄q(a⊗ X ).

The right square commutes since—according to the definition of ρ̄ : X ⊗̂Σ̄Y ∼−→ Σ̄X ⊗̂Y —the

following natural transformation

T[S−1]×T[S−1]

ρ̄
��

⊗̂
  

T×T
q×q // T[S−1]×T[S−1]

id×Σ̄ 22

⊗̂ //

T[S−1]

T[S−1] Σ̄

??

coincides with

T×T

ρ
��

⊗

��
T×T

id×Σ //

⊗ 00

T
q // T[S−1].

T Σ

@@

In other words, q(ρa,b) = ρ̄qa,qb. We conclude that T[S−1] is a tensor triangulated category.

Finally, let us observe that q : T → T/S is a tensor triangulated functor. We can simply

take φ0 : 1 id−→ q1 and φX ,Y : qX ⊗̂qY = q(X ⊗Y ) id−→ q(X ⊗Y ) to be the identity morphisms.

The axioms for being a tensor triangulated functor are readily checked by writing out the

diagrams and using the facts we have used repeatedly in the above discussion: for example,

that q∗α= ᾱ∗ q×3. In conclusion, q :T→T/S is a strict tensor triangulated functor.

3.7 Bousfield localization

Before beginning our discussion of Bousfield localization, let us recall a basic fact from cat-

egory theory:
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Lemma 3.7.1. Let F : C�D : G be an adjunction and let S denote the collection of mor-

phisms f ∈Mor(C) such that F( f ) is an isomorphism. The following are equivalent:

(1) The right adjoint G is fully faithful.

(2) The counit ε : FG → idD is an isomorphism.

(3) The induced functor F̃ :C[S−1]→D is an equivalence.

Proof. See [GZ67, Chapter I, Proposition 1.3].

Example 3.7.2. Let S be a thick subcategory of a triangulated category T. If the Verdier

quotient functor q : T→ T/S has a right adjoint then the right adjoint is automatically fully

faithful and hence provides an equivalence between T/S and a full subcategory of T. In par-

ticular, T/S is locally small. The following notion of “Bousfield localization” is closely related

to such Verdier quotients—although at first glance the two notions look quite different.

Definition 3.7.3. A Bousfield localization functor on a triangulated category T is an exact

functor L : T → T equipped with a natural transformation η : idT → L such that Lη is an

isomorphism and Lη = ηL. A morphism f : X → Y is said to be an L-equivalence if L( f ) is

an isomorphism. An object X is said to be L-local if ηX is an isomorphism; equivalently, X

is L-local if it is contained in the essential image ImL. Finally, an object X is said to be

L-acyclic if L(X )= 0; that is, if it is contained in the kernel KerL. Note that the collection of

L-acyclic objects forms a thick subcategory of T since L is assumed to be exact.

Remark 3.7.4. It is easy to check from the definitions that the map ηX : X → LX is the initial

map from X to an L-local object, and that it is also the terminal L-equivalence out of X . In

particular, ηX : X → LX provides an L-equivalence from X to an L-local object LX .
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Remark 3.7.5. If (L,η) is a Bousfield localization functor on a triangulated category T then

the functor L : T → ImL is left adjoint to the inclusion ImL ,→ T. The adjunction isomor-

phism [LX ,Y ] ∼−→ [X ,Y ] is defined (for X ∈ T and Y ∈ ImL) by f 7→ f ◦ηX . The fact that this

is an isomorphism amounts to the statement that ηX is the initial map from X to an L-local

object. In any case, by Lemma 3.7.1, L : T → ImL induces an equivalence T/KerL ∼−→ ImL.

In particular, the quotient functor q : T → T/KerL inherits a (fully faithful) right adjoint

T/KerL →T whose essential image is precisely ImL. The functor L :T→T may be regarded

as either of the composites in the following diagram

ImL � u

''
T

77

''

T

T/KerL

∼

OO

77

and we have two complementary ways of thinking about Bousfield localization. The first

point of view thinks of “Bousfield localization” in terms of the functor T → ImL: it’s a pro-

cess by which we move from T to the category of L-local objects by replacing each object X by

an L-local object LX which is L-equivalent to X . The second point of view thinks of “Bous-

field localization” in terms of the functor T → T/Ker whereby we replace T by the category

T/KerL obtained by formally inverting the L-equivalences. Both points of view have their

advantages and are related, of course, by the equivalence T/KerL ∼−→ ImL.

Remark 3.7.6. If T is a tensor triangulated category and S is a thick ⊗-ideal then T/S is

tensor triangulated and q : T→ T/S is a tensor triangulated functor (cf. Proposition 3.6.13).

Consequently, if the kernel KerL of a Bousfield localization functor L : T → T is a ⊗-ideal

then the category of L-local objects inherits a tensor triangulated structure via the equiva-

lence T/KerL ∼−→ ImL. This is one example where there is some advantage in regarding the

Bousfield localization of T as being T/KerL rather than ImL. Although the category ImL

is a tensor triangulated category it is not a tensor triangulated subcategory of T; rather, it
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inherits the ⊗-structure of T indirectly via the equivalence T/KerL ∼−→ ImL. Note that this

equivalence sends an object X ∈T/KerL to LX ∈ ImL. If we unwind how the ⊗-structure on

T/KerL gets transferred to ImL via Proposition 2.2.42 we see that the unit is L1 and that

X ⊗L Y := L(X ⊗Y ) for two L-local objects X and Y . All algebraic constructions in T pass to

the L-local category via the strong ⊗-functor T→T/S∼= ImL. For example, the L-localization

of a ring object in T is a ring object in the L-local category. If you would like to work exclu-

sively with ImL without using the Verdier quotient then the yoga to keep in mind is that

you can perform all the constructions you want in T but at the end of the day you must apply

L to bring yourself back to the L-local category.

Definition 3.7.7. For any collection of objects E in a triangulated category T, we define the

“left orthogonal” of E to be the subcategory

⊥E= {
X ∈T | [X ,E]= 0 for all E ∈E}

and we define the “right orthogonal” of E to be the subcategory

E⊥ = {
X ∈T | [E, X ]= 0 for all E ∈E}

.

These are both thick subcategories of T. Moreover, ⊥E is localizing if T has coproducts;

dually, E⊥ is colocalizing if T has products.

Warning. Some authors use the opposite convention and write ⊥E for our E⊥.

Lemma 3.7.8. Let (L,η) be a Bousfield localization functor on a triangulated category T.

Then ImL = (KerL)⊥ and KerL =⊥ (ImL). That is to say, an object X is L-local iff [A, X ]= 0

for every L-acyclic object A and an object A is L-acyclic iff [A, X ]= 0 for every L-local object X .

Proof. It is easy to check that any map A → X from an L-acyclic object A to an L-local

object X is zero. The two inclusions ImL ⊂ (KerL)⊥ and KerL ⊂ ⊥(ImL) immediately follow.
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On the other hand, suppose A is an object such that [A, X ] = 0 for all L-local objects X .

Taking X = LA we conclude that ηA = 0. It follows that LA = 0 since the isomorphism

L(ηA) : LA → L2A is then the zero map. This establishes that KerL = ⊥(ImL) and it remains

to show that (KerL)⊥ ⊂ ImL. To this end, note that the statement that [A, X ] = 0 for all

L-acyclic objects A is equivalent to the statement that for any L-equivalence f : A → B, the

induced map [B, X ]
f ∗−→ [A, X ] is an isomorphism. (Just apply [−, X ] to an exact triangle

for f .) Taking f to be ηX : X → LX we conclude that there exists a map θ : LX → X such

that θ ◦ηX = idX . On the other hand, using the naturality of η we have ηX ◦θ = Lθ ◦ηLX =

Lθ ◦LηX = L(θ ◦ ηX ) = idLX and we conclude that ηX is an isomorphism and hence X is

L-local. (The converse also holds: if X is L-local then [B, X ]
f ∗−→ [A, X ] is an isomorphism for

any L-equivalence f : A → B. This can be proved using the universal properties of ηX : X →

LX mentioned in Remark 3.7.4.)

Remark 3.7.9. A morphism of Bousfield localizations (L,η)→ (L′,η′) on the same category T

is a natural transformation α : L → L′ such that η = η′ ◦α. One easily checks using Re-

mark 3.7.4 that if (L,η) and (L′,η′) are two Bousfield localization functors on T having the

same local objects then there is a unique isomorphism (L,η) ∼−→ (L′,η′). Thus, a Bousfield lo-

calization functor is completely determined by its collection of L-local objects. Moreover, by

Lemma 3.7.8, the L-local objects of a Bousfield localization functor determine the L-acyclic

objects; vice versa, the L-acyclic objects determine the L-local objects and hence completely

determine the localization functor. We’ll say that a thick subcategory S⊂ T “admits” Bous-

field localization if there exists an (essentially unique) Bousfield localization functor (L,η)

with KerL = S. The crucial question in the theory of Bousfield localization is to determine

when a thick subcategory admits Bousfield localization.

Proposition 3.7.10. Let S be a thick subcategory of a triangulated category T. The following

are equivalent:
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(1) There exists a Bousfield localization functor (L,η) with KerL = S.

(2) The inclusion S⊥ ,→T has a left adjoint and ⊥(S⊥)= S.

(3) The quotient T→T/S has a right adjoint.

Proof. By Lemma 3.7.8, (KerL)⊥ = ImL and we have already discussed in Remark 3.7.5 and

Lemma 3.7.8 how (1) implies (2) and (3). On the other hand, if S⊥ ,→ T has a left adjoint

then the adjunction provides a monad (L,µ,η) on T. Since the right adjoint is fully faithful,

the counit is an isomorphism by Lemma 3.7.1 so that µ is an isomorphism. In any monad,

µ ◦Tη = idT = µ ◦ηT so since µ is invertible we conclude that Tη = ηT and that this is an

inverse to µ. Thus (L,η) is a localization functor on T. The left adjoint of an exact functor

is exact (cf. Lemma 3.1.28) so L is an exact functor (being the composite of such). Moreover,

the kernel of L is just the kernel of the left adjoint F :T→ S⊥ since the right adjoint S⊥ ,→T

is faithful. We claim that it is equal to S. The adjunction says that [F X ,Y ] = [X ,Y ] for

any X ∈ T and Y ∈ S⊥. It follows that if F X = 0 then [X ,Y ] = 0 for any Y ∈ S⊥ and hence

X ∈ ⊥(S⊥) = S. On the other hand, if X ∈ S then 0 = [X ,Y ] = [F X ,Y ] for any Y ∈ S⊥; but

F X ∈ S⊥ so taking Y = F X we conclude that F X = 0. Similarly, if T → T/S has a right

adjoint then as remarked in Example 3.7.2 the right adjoint is fully faithful, so by the same

argument we have just given we obtain an exact localization functor (L,η) on T. As before

the kernel of L is the same as the kernel of the left adjoint T→T/S which is precisely S.

Remark 3.7.11. In order to have much chance of constructing Bousfield localization func-

tors, we typically assume that T is “large” in the sense that it has all small coproducts. In

this case, by Lemma 3.7.8 and Definition 3.7.7, a necessary condition for S ⊂ T to admit

Bousfield localization is that S must be a localizing subcategory of T. It is easy to see that

the Verdier quotient T/S also has coproducts and that q : T → T/S preserves them. Thus, if

T is compactly generated and T/S is locally small then Brown Representability (specifically
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Corollary 3.2.7) produces the required right adjoint. In other words, if T is a compactly gen-

erated triangulated category then Bousfield localization exists for a localizing subcategory

S ⊂ T if and only if the Verdier quotient T/S is locally small. It is perhaps not surprising

then that the existence of Bousfield localizations is related to foundational questions in set

theory. For example, [CGR14] have proved that if a certain large cardinal axiom called

“Vopěnka’s principle” is included in the axioms of set theory then every localizing subcate-

gory of T admits Bousfield localization provided that T is the homotopy category of a stable

combinatorial model category. As far as the author is aware, it is not known at present

whether Vopěnka’s principle is consistent with ZFC. Nevertheless, in full generality, Bous-

field localizations do not always exist. Indeed, as we have already observed, if S admits

Bousfield localization then in particular T/S must be locally small. However, in Freyd’s book

on abelian categories, he gave an example [Fre64, Chapter 6, Exercise A, pp. 131–132] of a

certain (locally small) abelian category A for which the derived category D(A) is not locally

small. Nevertheless, as observed by [CN09], the homotopy category of acyclic complexes

Kac(A)⊂K(A) is a localizing subcategory of the homotopy category of complexes K(A). Since

D(A)=K(A)/Kac(A), this provides an example of a localizing subcategory in a (locally small)

triangulated category which does not admit Bousfield localization.

Finite localization

Definition 3.7.12. Let L : T→ T be a Bousfield localization functor on a triangulated cate-

gory T. We say that L is a finite localization if the subcategory of L-acyclics is generated by

a set of compact objects. Finite localizations are an important class of Bousfield localization

functors which have been very useful in applications and which do always exist:

Proposition 3.7.13. Let T be a compactly generated triangulated category and let S⊂ T be

a localizing subcategory of T. Assume that there exists a set G of compact objects in T such
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that S= loc〈G〉. Then S admits a Bousfield localization functor.

Proof. The proof is not difficult but we won’t include it. See [HPS97, Definition 3.3.4],

[Kra10, Section 5.6] or [Nee92b].

Remark 3.7.14. The term “finite localization” was coined by Haynes Miller [Mil92] who stud-

ied them in the setting of stable homotopy theory. In Section 3.9, we’ll see an example of

finite localization in modular representation theory.

Remark 3.7.15. Suppose we are in the setting of Proposition 3.7.13. Then S is itself com-

pactly generated and it follows from Remark 3.2.5 that Sc = thick〈G〉. We have a commuta-

tive diagram of exact funtors

Sc � � //� _

��

Tc
� _

��

// Tc/Sc

J��
(T/S)c

��
S
� � // T // T/S

and the following theorem says that the functor J is “almost” an equivalence.

Theorem 3.7.16 (Neeman). Let T be a compactly generated triangulated category and let

S⊂T be a localizing subcategory which is generated by a set of compact objects. Then the

quotient T/S is compactly generated and the functor J : Tc/Sc → (T/S)c is fully faithful; mor-

ever, every object in (T/S)c is a direct-summand of an object in the essential image of J.

Hence J induces an equivalence after idempotent completion: (Tc/Sc)] ∼= (T/S)c.

Proof. See [Nee92b].

Remark 3.7.17. At this point the reader might be refreshed by a retelling of the story of

Thomason and Trobaugh. In his work on localization in algebraic K-theory, Thomason was

led to a question concerning the possibility of extending a complex of vector bundles defined
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on an open subset to a complex of vector bundles defined on the whole space. To be more pre-

cise, fix a quasi-projective noetherian scheme X and an open subset U ⊂ X and let Z = X \U

denote the closed complement. Furthermore, let Db(Vect/X ) denote the derived category of

bounded complexes of vector bundles on X and let Db
Z(Vect/X ) ⊂ Db(Vect/X ) denote the full

subcategory consisting of those complexes whose cohomology is supported in Z; i.e., those

complexes which become acyclic when restricted to U . This is precisely the kernel of the

natural restriction functor Db(Vect/X )→Db(Vect/U) and hence there is an induced functor

Db(Vect/X )
Db

Z(Vect/X )
→Db(Vect/U). (3.7.18)

Thomason was concerned with whether this functor was an equivalence. Unfortunately, it

was well-known that this functor is not essentially surjective—for singular varieties it is

not possible in general to extend a vector bundle defined on an open subset to a bounded

complex of vector bundles on the whole space (although it follows from [Ser55] that this

is possible for smooth varieties). In any case, because it was known that (3.7.18) was not

essentially surjective most people walked away from the problem confident that the functor

couldn’t possibly be an equivalence (and they were right of course). Nevertheless, as related

in the introduction of [TT90], the ghost of a dead friend came to Thomason in a dream

telling him not to give up and this led him to the realization that although (3.7.18) is not

essentially surjective it is surjective up to direct summands: every object in the target is a

direct summand of an object in the essential image. In fact, it turned out to be fully faithful

too and so was an equivalence up to direct-summands—or better, it was an equivalence after

idempotent completion: (
Db(Vect/X )
Db

Z(Vect/X )

)]
∼=Db(Vect/U).

Thomason was so impressed by the ghost’s insight and interest in mortal affairs that he

added him as a coauthor on his paper. Although Thomason is unfortunately no longer grac-
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ing mathematics with his insight, the author can only hope that some day Thomason him-

self will visit in a dream and provide a profound ethereal epiphany. In any case, Neeman

[Nee92b] realized that Thomason’s result was just a particular incarnation of the much

more general Theorem 3.7.16. Indeed, if T = D(QCoh/X ) denotes the derived category of

quasi-coherent sheaves on X then S := DZ(QCoh/X ) ⊂ D(QCoh/X ) is a localizing subcate-

gory and it is certainly true that D(QCoh/X )/DZ(QCoh/X ) ∼= D(QCoh/U). The main point is

that a quasi-coherent sheaf is a far more flexible notion than a vector bundle and there is

no difficulty extending to the whole space: for example, we can take the pushforward of the

inclusion map. This is an example of a finite localization and we have a diagram

Db
Z(Vect/X ) �

� //
� _

��

Db(Vect/X )� _

��

// Db(Vect/X )/Db
Z(Vect/X )

J
��

Db(Vect/U)

��
DZ(QCoh/X ) �

� // D(QCoh/X ) // D(QCoh/X )/DZ(QCoh/X )

precisely matching the situation of Theorem 3.7.16. Further discussion of this story can be

found in [Nee06, Nee92b, TT90].

Smashing localizations

Definition 3.7.19. A Bousfield localization functor L : T → T on a triangulated category T

is said to be a smashing localization if L preserves coproducts. Let’s explain the slightly

bizarre terminology. To this end suppose that T is a tensor triangulated category and that

the L-acyclics form a ⊗-ideal. Then for any object X ∈ T we can apply the exact functor

L(−⊗ X ) to the exact triangle W → 1
η1−→ L1→ΣW to obtain an exact triangle

L(W ⊗ X )→ L(1⊗ X )
L(η1⊗X )−−−−−−→ L(L1⊗ X )→ΣL(W ⊗ X ).
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Since the L-acyclics are assumed to be a ⊗-ideal, L(W⊗X )= 0 and hence L(η1⊗X ) : L(1⊗X )→

L(L1⊗X ) is an isomorphism. We can then use this isomorphism to construct a natural map

αX : L1⊗ X → LX as the composite

L1⊗ X
ηL1⊗X−−−−→ L(L1⊗ X )

L(η1⊗X )−1

−−−−−−−→ L(1⊗ X )' LX .

Now we can prove the following:

Proposition 3.7.20. Let L :T→T be a Bousfield localization functor on a rigidly-compactly

generated tensor triangulated category with the property that the L-acyclics form a ⊗-ideal.

Then L is a smashing localization if and only if the natural map αX : L1⊗ X → LX is an

isomorphism for all X ∈T.

Proof. One direction is immediate: if L1⊗ X ' LX then L preserves coproducts since in a

rigidly-compactly generated category tensoring by an object preserves coproducts (since a⊗−

has a right adjoint). On the other hand, it is easy to check that the set of X such that αX is an

isomorphism forms a thick subcategory (compare Lemma 3.1.39). If L preserves coproducts

then it is a localizing subcategory. Since T is generated by a set of dualizable objects it suf-

fices to check that αX is an isomorphism whenever X is dualizable. Looking at the definition

of αX , we see that we need to show that L1⊗ X is L-local when X is dualizable. Recall from

Lemma 3.7.8 that an object Y is L-local iff [A,Y ] = 0 for every L-acyclic object A. Then ob-

serve (by Remark 2.2.54 and Lemma 2.2.61) that if X is dualizable then L1⊗X ' L1⊗D2X '

L1⊗ F(DX ,1) ' F(DX ,L1) and hence [A,L1⊗ X ] ' [A,F(DX ,L1)] = [A⊗DX ,L1]= 0 since

A⊗DX is L-acylic. This completes the proof.

Remark 3.7.21. A smashing localization is thus given by tensoring by an object. The tensor

product in the stable homotopy category is called the “smash product”: hence the term

“smashing localization.”
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Lemma 3.7.22. Let T be a compactly generated triangulated category. Every finite localiza-

tion L :T→T is a smashing localization.

Proof. We will show that the L-locals are closed under coproducts; it is a straightforward

exercise to show that this implies that L preserves coproducts. To this end, consider a set of

L-local objects X i and let G denote a set of compact generators for KerL = loc〈G〉. For each

G ∈ G we have [G,
∐

X i] = ⊕
[G, X i] = 0 using the fact that G is compact and X i is L-local.

The collection of objects A such that [A,
∐

X i]= 0 is a localizing subcategory of T and hence

[A,
∐

X i]= 0 for every A ∈KerL; hence
∐

X i is L-local.

Remark 3.7.23. The “telescope conjecture” is the converse statement: that every smashing

localization is a finite localization. It appeared in [Rav84] as one of a collection of seven

influential conjectures concerning the structure of the stable homotopy category. The tele-

scope conjecture is the only one of these conjecture which has not been proved; in fact, it is

believed by some experts to be false. Nevertheless, the “telescope conjecture” can be asked

for any triangulated category. See for example [Kra00] and the references therein.

Homological localizations

If T is a tensor triangulated category then for any object E ∈T we can consider the associated

homology theory E• : T → AbZ defined in Section 3.5. An object X is said to be E•-acyclic if

E•(X )= 0. The E•-acyclic objects form a thick subcategory of T and we can ask whether they

admit Bousfield localization. In the specific example T = SH, this was the original question

considered by Bousfield from which the term “Bousfield localization” derives. Indeed, he

proved in [Bou79] that the E•-acyclics admit Bousfield localization for any spectrum E ∈SH.

His proof uses non-triangulated model-theoretic methods, but Margolis [Mar83] gave a proof

which works in any rigidly-compactly generated tensor triangulated category.
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Theorem 3.7.24 (Bousfield; Margolis). Let T be a rigidly-compactly generated tensor trian-

gulated category. For any object E in T there exists an exact localization functor LE : T → T

whose acyclic objects are precisely those objects X ∈T such that E•(X )= 0.

Proof. See [HPS97, Theorem 3.2.2] and [Mar83, Chapter 7].

Remark 3.7.25. The LE-equivalences are precisely those maps f : X →Y such that E•( f ) is an

isomorphism. Intuitively, passing from T to the E•-local category focuses on that “part” of T

that is “seen” by the homology theory E•(−). For example, we wish to make LE-equivalences

isomorphisms because as far as the homology theory E•(−) is concerned LE-equivalent ob-

jects are the same. The idea of studying the structure of the stable homotopy category SH

by localizing with respect to various homology theories was emphasized by [Rav84] and will

turn up again in Chapter 6.

Remark 3.7.26. The term “Bousfield localization” has two meanings in the literature: the

theory of Bousfield localization for triangulated categories and the theory of Bousfield local-

ization for model categories. The two usages are related but different. Bousfield localiza-

tion for model categories is the process by which one can attempt to add additional weak

equivalences to an existing model structure; it is described in detail in [Hir03]. This sub-

ject is actually quite closely related to the theory of Bousfield localization in triangulated

categories. Indeed, Bousfield proved the existence of homological localizations by taking

the standard model structure on spectra and “localizing” this model structure to produce

a new model structure whose weak equivalences were precisely the E•-equivalences. This

model-theoretic approach establishes the crucial point of the whole story—that the category

obtained by inverting the E•-equivalences actually exists—i.e., is locally small (recall Re-

mark 3.7.11). Nevertheless, as implied by the statement of Theorem 3.7.24, the existence of

homological localizations can now be established using purely triangulated techniques.
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3.8 Examples

After one hundred pages of abstract theory, the reader deserves to be presented with some

examples of tensor triangulated categories. We will focus on three of the primary examples:

derived categories of schemes, stable module categories, and the stable homotopy category.

Additional examples are mentioned in [Bal10b] and [HPS97].

Derived categories

Derived categories were introduced by Jean-Louis Verdier in his 1967 thesis in order to

provide the homological algebra necessary for new developments in algebraic geometry—

notably the Grothendieck duality theorem [Har66]. These categories were very different

from the familiar notion of an abelian category [Gro57] and it was Verdier’s attempt to for-

malize their basic structure that led him to define the axiomatic notion of a triangulated cat-

egory. We will first discuss the general notion of the derived category of an abelian category

before discussing particular examples arising in algebraic geometry. Standard references

include Verdier’s thesis [Ver96], the textbooks [GM03, Wei94] and the survey [Kel96].

Definition 3.8.1. Let A be an abelian category. The derived category D(A) is the cate-

gory obtained from the category of chain complexes Ch(A) by formally inverting the quasi-

isomorphisms:

D(A) :=Ch(A)[(quasi-isomorphisms)−1]. (3.8.2)

It has the structure of a triangulated category, as we shall see in Remark 3.8.8 below.

Remark 3.8.3. Unfortunately, this derived category might not exist in our universe (cf. Re-

mark 3.6.3) and in order to construct derived functors one must use a theory of resolutions

of unbounded complexes. For this reason, early authors typically put some boundedness

conditions on their complexes. Nevertheless, it is proved in several sources (e.g. [Wei94,
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Remark 10.4.5] or [AJS00, Corollary 5.6]) that the unbounded derived category D(A) exists

when A is a Grothendieck abelian category—which covers many examples of interest—and

resolutions of unbounded complexes are by now well-understood (see e.g. [Spa88, Ser03,

AJS00]). A particularly detailed account is [KS06, Chapter 14]. An alternative approach is

to use the theory of Quillen model categories. It’s a folklore theorem (proved in [Bek00] and

sometimes attributed to Joyal) that if A is a Grothendieck abelian category then the cate-

gory of chain complexes Ch(A) admits the structure of a Quillen model category whose weak

equivalences are the quasi-isomorphisms and whose cofibrations are the monomorphisms.

However, this “injective” model structure is not well-suited for constructing left derived func-

tors and consequently doesn’t interact well with ⊗-product structures that might exist on A.

For this reason, [Hov01, Gil06, Gil07, CD09] have investigated alternative model structures

on Ch(A) which have better compatibility with ⊗-structures on A.

Remark 3.8.4. The derived category D(A) may equivalently be defined as the category ob-

tained from the homotopy category of chain complexes K(A) by formally inverting the quasi-

isomorphisms:

D(A)=K(A)[(quasi-isomorphisms)−1]. (3.8.5)

Indeed, any functor on Ch(A) which inverts the quasi-isomorphisms must invert homotopy

equivalences and hence factors through the quotient functor Ch(A) → K(A). It follows that

the composite

Ch(A)→K(A)→K(A)[(quasi-isomorphisms)−1]

satisfies the universal property used in the definition of

Ch(A)→Ch(A)[(quasi-isomorphisms)−1]

and hence there is a canonical equivalence of categories between definition (3.8.2) and def-

inition (3.8.5). The second definition is the “better” definition for several reasons. For
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starters, the collection of quasi-isomorphisms do not generally form a calculus of left frac-

tions in Ch(A). Indeed [GZ67, p. 18] shows that if that were the case then Ch(A)[q.i−1]

would be abelian—but that is extremely rare (cf. Remark 3.1.19). On the other hand, the

quasi-isomorphisms do form a calculus of left fractions in K(A) (see Remark 3.8.8 below).

This discussion is closely related to the second reason why (3.8.5) is preferable to (3.8.2): the

triangulated structure of D(A) is inherited from a triangulated structure on K(A). In order

to define this triangulated structure on K(A) we need the following definition:

Definition 3.8.6 (Mapping cone). Let f : X →Y be a morphism of complexes. The mapping

cone of f is the complex cone( f ) defined by cone( f )n := Xn−1 ⊕Yn with differential given by

dcone( f )
n : Xn−1 ⊕Yn

(−dX
n−1 0

− fn−1 dY
n

)
−−−−−−−−→ Xn−2 ⊕Yn−1.

There is an evident short exact sequence of complexes

0→Y → cone( f )→ΣX → 0

obtained by injecting Y and then projecting onto ΣX . Using these maps we can associate a

triangle

X
f // Y // cone( f ) // ΣX

in the category Ch(A) to every morphism of complexes f : X →Y .

Proposition 3.8.7 (Verdier; Puppe). The homotopy category K(A) is a triangulated category

with suspension given by the usual translation of chain complexes and with exact triangles

those triangles X → Y → Z → ΣX which are isomorphic (as a triangle in K(A)) to a triangle

X
f−→Y → cone( f )→ΣX arising from a morphism of complexes f : X →Y .

Proof. See [Ver96, §I.3.3] for Verdier’s original proof. Puppe [Pup67, §9] independently

proved the result minus the octahedral axiom.
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Remark 3.8.8. The derived category D(A) = K(A)[(quasi-isomorphisms)−1] is the Verdier

quotient K(A)/Kac(A) where Kac ⊂ K(A) denotes the thick subcategory of acyclic complexes.

This is because a map of complexes is a quasi-isomorphism iff its mapping cone is acyclic.

Thus by Theorem 3.6.9, D(A) inherits a triangulated structure from the triangulated struc-

ture on K(A). To be precise, the exact triangles are those which are isomorphic (as triangles

in D(A)) to the images of exact triangles in K(A). Furthermore, morphisms in D(A) can be

described as equivalence classes of fractions of morphisms in K(A) (cf. Remark 3.6.12).

Remark 3.8.9. In the derived category D(A) an object A ∈ A is “identified” with all of its

projective resolutions. Moreover, using the description of D(A) in terms of fractions it is

easy to check (cf. [Wei94, Lem. 10.4.6 and Cor. 10.4.7]) that if P is a bounded below complex

of projectives then HomD(A)(P, X )=HomK(A)(P, X ) for any complex X . Thus if A has enough

projectives then for any two objects A,B ∈A we have

HomD(A)(A,ΣiB)'HomD(A)(P,ΣiB)'HomK(A)(P,ΣiB)

= H i(HomCh(A)(P,B))=Exti
A(A,B)

where P → A is any choice of projective resolution.

Remark 3.8.10. The homology functors Hi : Ch(A)→A induce homological functors

Hi : D(A)→A.

By applying these functors to an exact triangle in D(A) we obtain a long exact sequence

in A. Every long exact sequence in homological algebra arises in this manner from an exact

triangle in a derived category. The next couple of remarks will clarify this claim.

Definition 3.8.11 (Mapping cylinder). We saw in Definition 3.8.6 that a morphism of com-

plexes f : X → Y gives rise to a short exact sequence 0 → Y → cone( f ) → ΣX → 0. Shifting
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the second map we obtain a morphism Σ−1 cone( f ) → X . The mapping cylinder of f is de-

fined to be the mapping cone of this morphism Σ−1 cone( f ) → X . More concretely, it is a

complex cyl( f ) defined to be X ⊕ΣX ⊕Y with differential given by

dcyl( f )
n : Xn ⊕ Xn−1 ⊕Yn

dX
n idX

n−1 0
0 −dX

n−1 0
0 − fn−1 dY

n


// Xn−1 ⊕ Xn−2 ⊕Yn−1.

As before it gives rise to a short exact sequence

0→ X → cyl( f )→ cone( f )→ 0

and hence to a triangle

X → cyl( f )→ cone( f )→ΣX .

Proposition 3.8.12. Let 0 → X
f−→ Y

g−→ Z → 0 be a short exact sequence of chain complexes

in an abelian category A. There exists a commutative diagram

0 // X // cyl( f )

β
��

// cone( f )
γ

��

// 0

0 // X
f // Y

g // Z // 0

in Ch(A) which has exact rows, such that β is a homotopy equivalence, while γ is a quasi-

isomorphism. Furthermore, there is a commutative diagram

X // cyl( f ) //

β

��

cone( f ) // ΣX

X
f // Y // cone( f ) // ΣX

(3.8.13)

in K(A) and hence the top row is an exact triangle in K(A). Finally, using the fact that γ is a

quasi-isomorphism we can construct a commutative diagram

X // cyl( f ) //

β
��

cone( f )
γ

��

// ΣX

X
f // Y

g // Z // ΣX

(3.8.14)

in D(A) and conclude that there exists an exact triangle X
f−→Y

g−→ Z →ΣX in D(A).
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Proof. See [Wei94, §1.5 and §10.4].

Remark 3.8.15. Thus every short exact sequence of complexes gives rise to an exact triangle

in D(A) which produces the same long exact sequence in homology as the original short exact

sequence. Note that the bottom triangle in (3.8.14) is not necessarily an exact triangle in

K(A) because the map γ is only a quasi-isomorphism in general. In fact, according to [Wei94,

Exercise 1.5.5], if 0 → X
f−→ Y

g−→ Z → 0 is a short exact sequence of objects in A (viewed as

complexes concentrated in degree zero) then the map γ is a homotopy equivalence iff the

short exact sequence splits. This is the key difference between the triangulated categories

K(A) and D(A): K(A) only has the exact triangles arising from split exact sequences.

Derived categories of schemes

For any scheme X , the category of OX -modules Mod(X ) is a Grothendieck abelian category

so we can consider the derived category D(X ) := D(Mod(X )). It inherits the structure of

a tensor triangulated category by taking the derived tensor product ⊗L
OX

. (For detailed

expositions on how to derive the tensor product in an unbounded situation see [Lip09, §2.5]

or [KS06, §18.6].) On the other hand, if we would like to work with quasi-coherent sheaves

then we typically assume that X is quasi-compact and quasi-separated. For example, these

are the conditions which ensure that the pushforward of a quasi-coherent sheaf remains

quasi-coherent [GD71, Chap. I, Prop. 6.7.1]. For the convenience of the reader, let us recall

that a scheme is quasi-separated if the intersection of two quasi-compact open subsets is

quasi-compact. Their basic properties are studied in [Gro64, §IV.1.2] and [GD71, §I.6.1].

In any case, the assumption that X be quasi-compact and quasi-separated is a very mild

assumption. For example, any noetherian scheme satisfies these conditions, as does any
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affine scheme. For X quasi-compact and quasi-separated we consider the full subcategory

Dqc(X )⊂D(X )

consisting of those complexes of OX -modules whose cohomology sheaves are quasi-coherent.

It is a triangulated subcategory of D(X ) and has arbitrary coproducts. Moreover, the tensor

product of OX -modules preserves quasi-coherent sheaves [GD71, Chap. I, Cor. 2.2.2] and

hence Dqc(X ) is a tensor triangulated subcategory of D(X ). However, Dqc(X ) is still a large

tensor triangulated category. For the purposes of tensor triangular geometry we want to

look at the essentially small “compact part” of Dqc(X ). To this end, let us recall the notion of

a “perfect complex” introduced by Grothendieck and Illusie in [SGA71, Exposés I–III] and

revisited by Thomason in [TT90, Section 2].

Definition 3.8.16. A perfect complex is a complex of OX -modules which is locally quasi-

isomorphic to a bounded complex of vector bundles.

Remark 3.8.17. A perfect complex is not assumed to be quasi-coherent. However, it follows

from [TT90, Prop. 2.2.12 and Rem. 2.2.7] that a perfect complex has quasi-coherent coho-

mology. Thus the collection of perfect complexes forms a full subcategory Dperf(X )⊂Dqc(X ).

Theorem 3.8.18 (Bondal and van den Bergh). Let X be a quasi-compact, quasi-separated

scheme. Then Dqc(X ) is a rigidly-compactly generated tensor triangulated category whose

subcategory of compact-rigid objects is exactly Dperf(X ). In particular, Dperf(X ) is an essen-

tially small, idempotent complete, rigid tensor triangulated category.

Proof. Bondal and van den Bergh [BB03, Theorem 3.1.1] prove that if X is quasi-compact

and quasi-separated then the compact objects in Dqc(X ) are precisely the perfect complexes

and that, moreover, Dqc(X ) is generated by a single perfect complex. On the other hand,

it follows from [SGA71, Exposé I, Section 7] that perfect complexes are dualizable so our

claims follow from Proposition 3.4.5.
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Remark 3.8.19. On the other hand, if X is quasi-compact and quasi-separated then the

abelian category of quasi-coherent sheaves QCoh(X ) is a Grothendieck abelian category

(cf. [SGA71, Exposé II, Lemme 3.1] or [TT90, Appendix B.3]). It is therefore very natural to

consider D(qc/X ) :=D(QCoh(X )).

Theorem 3.8.20 (Bökstedt and Neeman). Let X be a quasi-compact and separated scheme.

The functor D(qc/X ) → D(X ) induced by the inclusion QCoh(X ) ,→ Mod(X ) is fully faithful

and produces an equivalence of triangulated categories D(qc/X ) ∼−→Dqc(X ).

Proof. This is proved in [BN93]; compare [SGA71, Exposé II, Proposition 3.5].

Remark 3.8.21. The statement of the theorem is not true if X is only assumed to be quasi-

compact and quasi-separated. Indeed, Verdier produces examples in [SGA71, Exposé II,

Appendice I] for which the functor D(qc/X ) → Dqc(X ) is not fully faithful; see also [SGA71,

Exposé II, Remarque 3.6].

Remark 3.8.22. By the theorem, if X is quasi-compact and separated then we can choose to

work with D(qc/X ) rather than Dqc(X ). For example, in this case Dperf(X ) is equivalent to

the full subcategory of D(qc/X ) consisting of the quasi-coherent perfect complexes.

Remark 3.8.23. If X is a quasi-compact and quasi-separated scheme which admits an ample

family of line bundles (cf. [TT90, Def. 2.1.1]) then every perfect complex on X is globally

quasi-isomorphic to a bounded complex of vector bundles (cf. [TT90, Prop. 2.3.1]). In this

case we have an equivalence Dperf(X )∼=Db(Vect/X ).

Example 3.8.24. If R is a commutative ring then the derived category of perfect complexes

Dperf(R) is equivalent to the bounded derived category of finitely generated projective mod-

ules Db(R-proj). In fact, according to Remark 3.8.9, the functor Kb(R-proj) → Db(R-proj) is

fully faithful. In summary, we have an equivalence of tensor triangulated categories

Dperf(R)∼=Kb(R-proj)
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where the tensor product on Kb(R-proj) is just the usual tensor product of complexes.

Example 3.8.25. If X is a quasi-projective noetherian scheme then Dperf(X ) ∼= Db(Vect/X ).

Together with Remark 3.8.22 this explains the discussion in Remark 3.7.17.

Modular representation theory

Fix a finite group G, a field k, and consider the category of kG-modules Mod(kG). For various

purposes in modular representation theory, one wants to “discard’ or “ignore” projective

kG-modules. This leads to the following construction:

Definition 3.8.26. The stable module category StMod(kG) is a k-linear category whose ob-

jects are the kG-modules and whose morphisms, denoted HomkG(M, N), are given by

HomkG(M, N) := HomkG(M, N)
PHomkG(M, N)

where PHomkG(M, N) is the k-linear subspace of HomkG(M, N) consisting of those kG-linear

maps which factor through a projective kG-module. Composition is easily seen to be well-

defined.

Remark 3.8.27. The stable module category StMod(kG) is the quotient of Mod(kG) by the

“ideal” PHomk(−,−) in the sense of [Mit72]. The quotient functor Mod(kG) → StMod(kG) is

the universal additive functor which kills the projective modules.

Remark 3.8.28. If the characteristic of k does not divide the order of G then Maschke’s

theorem tells us that every kG-module is projective; consequently, StMod(kG) = 0. We are

therefore only interested in the “modular situation” in which k has positive characteristic

dividing the order of G.

Remark 3.8.29. Although Mod(kG) is an abelian category, the stable version StMod(kG)

is never abelian—provided it is non-zero. Nevertheless, it was observed by Dieter Happel

[Hap88] that it has the structure of a triangulated category:
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Theorem 3.8.30 (Happel). The stable module category StMod(kG) is a triangulated category

with structure given as follows:

(1) The suspension is usually denoted Ω−1. For a kG-module X , Ω−1(X ) is the cokernel of

an embedding of X into its injective hull. Although this construction is not functorial

on Mod(kG), it does provide a functor on the stable category

Ω−1 : StMod(kG)→StMod(kG)

which is, in fact, an equivalence.

(2) Given a short exact sequence 0 //X //Y //Z //0 in Mod(kG), we can choose

an injective hull X ,→ I and form a commutative diagram

0 // X // Y

��

// Z //

��

0

0 // X // I // Ω−1(X ) // 0.

The map Z →Ω−1X is uniquely determined in StMod(kG) and we obtain a triangle

X // Y // Z // Ω−1X

in StMod(kG). The exact triangles in StMod(kG) are those triangles which are isomor-

phic to a triangle arising in this way from a short exact sequence in Mod(kG).

Proof. This is proved in [Hap88]. For further discussion of the stable module category see

[Car96] and [BIK12].

Remark 3.8.31. The inverse of Ω−1 is a functor Ω : StMod(kG) → StMod(kG) which sends

a kG-module X to the kernel of a surjective map P → X from a projective module to X .

Schanuel’s lemma implies that this definition of Ω(X ) is well-defined up to projective direct

summands—i.e., up to isomorphism in StMod(kG). Showing that Ω and Ω−1 are inverse
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equivalences uses the fact that kG is a Frobenius algebra—i.e., that projective and injective

kG-modules coincide. In fact, the construction of the stable module category works for any

Frobenius algebra. See [Hap88] for more details.

Remark 3.8.32. The category of kG-modules Mod(kG) is a symmetric monoidal category: the

tensor product is given by X ⊗k Y with diagonal G-action and the unit is k with the trivial

G-action. Frobenius reciprocity with respect to the trivial subgroup can be used to show that

the functor X ⊗k − : Mod(kG) → Mod(kG) preserves projective kG-modules. It follows that

the symmetric monoidal structure −⊗k − on Mod(kG) descends to a symmetric monoidal

structure on StMod(kG) and we obtain a tensor triangulated category.

Remark 3.8.33. One can just as easily apply the construction to the category mod(kG) of all

finitely generated kG-modules—rather than the category Mod(kG) of all kG-modules—and

thereby produce a stable module category which we denote by stmod(kG). There is an obvi-

ous functor stmod(kG)→StMod(kG) which identifies stmod(kG) with the full subcategory of

StMod(kG) consisting of the finitely generated modules. That the functor is faithful follows

from the fact that if a map between finitely generated kG-modules factors through a projec-

tive module then it factors through a finitely generated projective module. Thus we have a

tensor triangulated subcategory stmod(kG) ⊂ StMod(kG). In fact StMod(kG) is compactly

generated and stmod(kG)= (StMod(kG))c. The simple kG-modules provide a generating set

of compact objects. If G is a p-group then k is a compact generator since it is the only simple

kG-module.

Remark 3.8.34. Another tensor triangulated category related to the representation theory

of G is Db(mod(kG))—the bounded derived category of finitely generated kG-modules. Note

that the tensor product on mod(kG) is exact and hence descends very easily to a tensor

product on Db(mod(kG)). Rickard’s theorem nicely relates the derived and stable categories:

Theorem 3.8.35 (Rickard’s theorem). Let G be a finite group and let k be a field. There is
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an equivalence of tensor triangulated categories

stmod(kG)∼= Db(mod(kG))
Db(proj(kG))

where Db(proj(kG)) denotes the bounded derived category of finitely generated projective

kG-modules.

Proof. The original proof is [Ric89, Theorem 2.1]. The equivalence is induced (recall Re-

mark 3.8.27) by the additive functor mod(kG) → Db(mod(kG))/Db(proj(kG)) obtained by

composing the natural embedding of mod(kG) in Db(mod(kG)) with the Verdier quotient

functor.

Remark 3.8.36. We have already noted that stmod(kG) forms the compact objects of a larger

compactly generated category StMod(kG). The situation isn’t quite so nice for Db(mod(kG)).

Although D(Mod(kG)) is a compactly generated triangulated category, the subcategory of

compact objects is the bounded derived category of finitely generated projective kG-modules:

D(Mod(kG))c ∼= Db(proj(kG)). The correct “large” category for Db(mod(kG)) is the homotopy

category of injective kG-modules: K(Inj(kG)). Indeed it is proved in [BK08] that K(Inj(kG))

is compactly generated and that K(Inj(kG))c ∼=Db(mod(kG)).

Remark 3.8.37. The graded endomorphism ring of the unit object in Db(mod(kG)) is the

group cohomology ring:

End•
Db(mod(kG))(1)=HomDb(mod(kG))(Σ

•k,k)=Ext−•kG(k,k)= H−•(G,k).

On the other hand, as explained in [Car96, Chapter 6], the graded endomorphism ring of

the unit object in stmod(kG) is the Tate cohomology ring:

End•
stmod(kG)(1)=HomkG(k,Ω•k)= Êxt

−•
kG(M, N)= Ĥ−•(G,k).
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The reason for the opposite grading is due to our choice of “homological” grading for endo-

morphism rings: [−,−]• = [Σ•(−),−]. Our convention matches the usual convention in stable

homotopy theory. In any case, keep Remark 2.3.11 in mind.

Stable homotopy theory

A more topological example of a tensor triangulated category is provided by the stable ho-

motopy category SH. In order to motivate this example, we need to recall some classical

homotopy theory. To this end, let ΣX denote (for this section only) the reduced suspension

of a based space X , and let [X ,Y ] denote the set of based homotopy classes of based maps

X → Y . The origins of “stable” homotopy theory lie in the Freudenthal suspension theorem

which states that if X and Y are based finite CW-complexes then the sequence obtained by

iterating the suspension functor

[X ,Y ]→ [ΣX ,ΣY ]→ [Σ2X ,Σ2Y ]→···

eventually becomes an isomorphism. For example, taking X to be the i-dimensional sphere

S i ∼=ΣiS0, the sequence of homotopy groups

πi(Y )→πi+1(ΣY )→πi+2(Σ2Y )→···

eventually stabilizes. The stable value, denoted πs
i (Y ), is called the ith stable homotopy

group of Y . These “stable” homotopy groups πs∗(−) have certain advantages over the ordi-

nary homotopy groups π∗(−); for example, they satisfy the Eilenberg-Steenrod axioms for

a (reduced) generalized homology theory. Nevertheless, they are incredibly difficult to com-

pute: there isn’t a single example of a simply-connected, non-contractible finite CW-complex

whose stable homotopy groups are entirely known. In particular, the stable homotopy

groups of spheres πs∗ := πs∗(S0) remain one of the most complicated and mysterious objects

in the whole of mathematics.
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Besides homotopy groups, there are many other constructions and results in homotopy

theory which “stabilize” after suspending enough times, and the study of such “stable” phe-

nomena became known as “stable homotopy theory.” As the subject developed, experts rec-

ognized that it would be convenient to have a category in which to do stable homotopy theory,

but it was not entirely clear what this category should be. The most basic intuition about the

“stable homotopy category” is that it should be a place where the suspension functor is in-

vertible. The idea is that objects have been “stabilized” by being suspended infinitely many

times, and hence can be infinitely desuspended too. Nevertheless, although various authors

proposed possible definitions, all the proposed frameworks for stable homotopy theory were

deficient in one way or another. In this search for a good definition of SH, Puppe was led

(independently from Verdier) to introduce the axioms of a triangulated category [Pup67]. He

emphasized that not only should Σ be invertible, but the stable homotopy category should

be additive, and it should have exact triangles arising from cofiber sequences.

In any case, the first satisfactory construction of SH was provided by Boardman (see

[Vog70]). Later, several other constructions were proposed (e.g. [Ada74], [Pup73], [BF78])

but they all provided categories equivalent to Boardman’s and it became accepted that any

tensor triangulated category equivalent to Boardman’s was “the” stable homotopy category.

Despite the variety of constructions, there was always a clear idea of what the subcategory of

“finite” or “compact” objects SHfin ⊂SH should be. This category SHfin had a well-established

“canonical” construction going back to the early work of Spanier and J.H.C. Whitehead.

We’ll describe this construction in Definition 3.8.45 below. Nevertheless, the construction

of the larger category SH is a highly non-trivial result. One of the motivations behind the

construction of the larger category is that the objects, called “spectra,” should represent dif-

ferent cohomology theories on the category of spaces. For example, the Eilenberg-MacLane

spaces K(G,n), n ≥ 0 should together produce an object in SH which would represent ordi-
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nary cohomology theory H•(−;G). Classical Brown representability should amount to saying

that cohomology theories become representable as functors on the stable homotopy category.

None of this could be achieved with small finite-dimensional objects or a category like SHfin

which does not possess infinite coproducts.

Due to the different possible constructions of SH, Margolis wrote his book [Mar83] in a

construction-agnostic way by laying out an axiomatic definition for SH and showing that one

of the constructions satisfies his axioms (namely, Adams’ category of CW-spectra [Ada74]).

Basically, Margolis’ axioms (cf. [Mar83, §II.1]) amount to a tensor triangulated category T

admitting small coproducts which is compactly generated by the unit 1 and whose sub-

category of compact objects Tc is equivalent as a tensor triangulated category to the well-

established finite stable homotopy category SHfin. This axiomatic point of view was taken

very seriously in [HPS97] and has been very influential in bringing techniques from stable

homotopy theory into other areas of mathematics.

More recently, the foundations of stable homotopy theory have undergone another shift

by the discovery of Quillen model categories of spectra whose homotopy categories are equiv-

alent to SH but which, moreover, have compatible monoidal structures at the level of the

underlying model categories. This is an extremely important development in algebraic

topology and has led to even more constructions for the stable homotopy category—e.g.,

symmetric spectra [HSS00], orthogonal spectra [MMS01], or the S-modules of [EKM97].

Nevertheless, for the purposes of this dissertation, we will largely follow Margolis’ axiomatic

approach. The more recent developments—although important—are not crucial for the re-

sults of Chapter 6.
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The Spanier-Whitehead category

There is a well-known formal method for inverting an endofunctor on an arbitrary category.

By applying this method to the homotopy category of based CW-complexes hCW∗ one obtains

the so-called Spanier-Whitehead category SW. Although this construction is too naive to be

“the stable homotopy category” it serves as a useful example to consider. The following

discussion is derived from [Mar83, §I.2] which includes proofs for the following claims.

Definition 3.8.38. Let SW denote the category whose objects are pairs (X ,n) where X is a

based CW-complex and n ∈Z is any integer with maps defined by

HomSW((X ,n), (Y ,m)) := colimk[Σk+nX ,Σk+mY ]

where the colimit is over the suspension maps. There is a canonical functor hCW∗ → SW

which sends a based CW-complex X to (X ,0) and SW inherits a “geometric suspension”

Σ : SW→SW from the reduced suspension of based spaces: Σ(X ,n) := (ΣX ,n). In addition,

there is a “formal suspension” Σ′ : SW → SW defined by Σ′(X ,n) := (X ,n+1). The formal

suspension is evidently an automorphism having inverse (X ,n) 7→ (X ,n−1).

Proposition 3.8.39. The following hold:

(1) The two suspensions are naturally isomorphic: (ΣX ,n) ' (X ,n+1). Consequently, the

geometric suspension Σ : SW→SW is an equivalence of categories.

(2) SW is the universal category out of hCW∗ which inverts Σ : hCW∗ → hCW∗. More pre-

cisely, if C is any category equipped with an automorphism T :C→C and F : hCW∗ →C

is a functor such that F ◦Σ' T ◦F then there exists a factorization

hCW∗

��

F // C

SW
F̄

<<
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up to isomorphism such that F̄ ◦Σ′ ' T ◦ F̄; moreover, F̄ is unique up to isomorphism.

(3) SW is an additive category. The direct sum is given by

(X ,m)⊕ (Y ,n)' (Σk−mX ∨Σk−nY ,m+n−k)

where k is any integer such that k−m,k−n ≥ 0.

(4) SW is a symmetric monoidal category. The tensor product is denoted ∧ and is derived

from the smash product of based spaces:

(X ,m)∧ (Y ,n)' (X ∧Y ,m+n).

The unit is (S0,0).

(5) If Y is a finite based CW-complex then HomSW((S0,n), (Y ,0)) ' πs
n(Y ) is the nth stable

homotopy group of Y .

Definition 3.8.40. The (reduced) cone of a based space X is defined by C(X ) := I × X / ∼

where ∼ collapses {0}× X and I × {x0} to a point. The mapping cone of a map of based

spaces f : X → Y is defined by C( f ) := C(X )×Y / ∼ where (1, x) ∼ f (x). There are canonical

maps Y → C( f ) and C( f )→ΣX and hence every map of based CW-complexes gives rise to a

triangle X
f−→ Y → C( f ) → ΣX in hCW∗. Any triangle in hCW∗ which is isomorphic to such

a triangle is called an “unstable exact triangle.”

Proposition 3.8.41. The Spanier-Whitehead category (SW,Σ) is a triangulated category in

which a triangle (X , l)→ (Y ,m)→ (Z,n)→Σ(X , l) is exact if there exists a k ≥ 0 such that the

sequence of morphisms can be represented by maps

Σk+l X →Σk+mY →Σk+nZ →Σk+l+1X

which form an unstable exact triangle in hCW∗.
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Remark 3.8.42. If h• : hCW∗ → AbZ is a reduced homology theory in the classical sense

(cf. [Swi02, pp. 109–117]) then it factors through SW by the universal property of Propo-

sition 3.8.41 part (2). In fact, the induced functor H• : SW → AbZ is a stable homological

functor (in the sense of Definition 3.1.37). Conversely, every stable homological functor

H• : SW→AbZ gives a reduced homology theory on hCW∗ by precomposing with the canon-

ical map hCW∗ →SW. In fact, we have the following very precise result:

Proposition 3.8.43. Let HhCW∗ denote the category of reduced homology theories on hCW∗

and let HSW denote the category of stable homological functors SW → AbZ. Then there is an

equivalence of categories HhCW∗ 'HSW. Similar statements hold for cohomology theories.

Remark 3.8.44. The construction of the Spanier-Whitehead category is very simple but it

has several problems. One of the key problems is that it doesn’t have coproducts. For

example,
∐

n≥1(X ,−n) doesn’t exist in SW. Even worse, the canonical functor hCW∗ → SW

doesn’t preserve the coproducts which exist in hCW∗. Indeed, given a set (X i) of based CW-

complexes, their coproduct in hCW∗ is the infinite wedge sum
∨

i X i but
∐

i(X i,0) 6= (
∨

i X i,0)

in SW. As a consequence of the lack of coproducts, Brown representability doesn’t hold

for SW. In other words (cf. Remark 3.8.42), reduced cohomology theories on hCW∗ do not

become representable as functors on SW. This is one of the key features that algebraic

topologists desired for “the” stable homotopy category and so SW does not give what was

desired. Nevertheless, SW does give the appropriate stabilization for finite CW-complexes:

Definition 3.8.45. The Spanier-Whitehead category of finite CW-complexes SWfin is defined

to be the full subcategory of SW consisting of objects (X ,n) where X is a finite CW-complex.

This is the canonical description of the tensor triangulated category SHfin ∼=SWfin.
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3.9 Classification of thick subcategories

Given a category (such as the category of smooth manifolds) it is highly unlikely that we

will be able to classify the objects of that category up to isomorphism (e.g., classify smooth

manifolds up to diffeomorphism). Faced with such wild problems, we can instead attempt

to provide classification up to a weaker notion of equivalence and there are prominent ex-

amples where this approach has been very successful—for example, the classification of

manifolds up to (various kinds of) bordism (cf. [Sto68]). In particular, the last 20 years have

shown that if the category is triangulated then it is sometimes possible to completely clas-

sify the objects of the category up to the naturally available triangulated structure—in other

words, classify the objects up to suspensions, cofibers, direct sums, and direct summands.

This essentially amounts to a classification of the thick subcategories of the triangulated

category.

The first theorem of this kind arose in stable homotopy theory. Following on from their

work on the Nilpotence Theorem, Hopkins and Smith [HS98] proved a classification theorem

for the thick subcategories of the stable homotopy category of finite spectra SHfin. This is

quite a remarkable theorem. The category SHfin is extremely complicated—for example, we

don’t have a complete understanding of the graded morphisms between any two non-zero

objects. Nevertheless, Hopkins and Smith showed that if one takes a more global approach

by stepping back and looking at the whole category then one can obtain a very satisfying

classification result.

After this work in stable homotopy theory, Hopkins noticed that an analogous result

could be obtained for the derived category of perfect complexes of a commutative ring. Al-

though the proof published in [Hop87] was incorrect, Neeman [Nee92a] showed that the

classification result did hold if the ring was noetherian. Later, Thomason [Tho97] extended
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this result not just to all commutative rings but more generally to Dperf(X ) for any quasi-

compact and quasi-separated scheme X . Furthermore, in modular representation theory,

Benson, Carlson and Rickard [BCR97] obtained an analogous classification theorem for the

stable module category of a finite group.

As was made clear by Thomason’s work, the Benson-Carlson-Rickard theorem, and later

by Balmer, these results are really not classifications of thick subcategories in triangulated

categories—they are really classifications of thick ⊗-ideals in tensor triangulated categories.

This fact was hidden in the first two examples (SHfin and Dperf(R)) because those two cat-

egories are generated by the unit object and this implies that every thick subcategory is

automatically a ⊗-ideal:

Lemma 3.9.1. Let K be a tensor triangulated category that is generated by the unit object:

K= thick〈1〉. Then every thick subcategory of K is in fact a thick ⊗-ideal.

Proof. Given a thick subcategory S⊂K one shows using standard techniques that

{
a ∈K | a⊗ x ∈ S for every x ∈ S}

is again a thick subcategory. It contains 1 and hence is the whole of K and we conclude that

S is a ⊗-ideal.

Remark 3.9.2. Examples of tensor triangulated categories generated in this way by the unit

include: the stable homotopy category of finite spectra SHfin, derived categories of perfect

complexes of affine schemes, and stable module categories stmod(kG) for G a p-group. For

such categories a classification of thick subcategories is the same thing as a classification of

thick ⊗-ideals.

Remark 3.9.3. If T is a tensor triangulated category with the property that a⊗− preserves

coproducts then a similar statement holds for localizing subcategories: if T = loc〈1〉 then

every localizing subcategory is automatically a localizing ⊗-ideal. The proof is the same.
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In the remainder of this section we will briefly recall the classification theorems for Dperf(X )

and stmod(kG) as these results set the stage (and provide motivation) for the topic of the

next chapter: the theory of tensor triangular geometry. The similarity between the state-

ments of the two theorems should be appreciated. A detailed description of the classification

theorem for SHfin will be deferred to Chapter 6.

The Hopkins-Neeman-Thomason theorem

Definition 3.9.4. Let X be a scheme. For any complex of sheaves of OX -modules F•, define

its “cohomological support” to be

suppX (F•) := {
x ∈ X | the stalk complex of OX ,x-modules F•

x is not acyclic
}
.

Lemma 3.9.5. Let F• be a perfect complex on a quasi-compact, quasi-separated scheme X .

Then for any x ∈ X , F•
x is an acyclic complex of OX ,x-modules if and only if F•⊗L

OX
κ(x) is an

acyclic complex of κ(x)-modules. Thus, suppX (F•)= {
x ∈ X |F•⊗L

OX
κ(x) 6= 0 in D(κ(x))

}
.

Proof. See [Tho97, Lemma 3.3].

Theorem 3.9.6 (Tensor-nilpotence). Let X be a quasi-compact and quasi-separated scheme

and let f :E• →F• be a morphism in Dqc(X ) with E• ∈Dperf(X ). Suppose that for every x ∈ X ,

f ⊗L
OX

κ(x)= 0 in D(κ(x)). Then there exists n ≥ 1 such that f ⊗n = 0 in Dqc(X ).

Proof. See [Tho97, Theorem 3.6].

Theorem 3.9.7 (Hopkins-Neeman-Thomason). Let Dperf(X ) denote the derived category of

perfect complexes on a quasi-compact and quasi-separated scheme X . There is an inclusion-

preserving bijection

{
thick ⊗-ideals of Dperf(X )

}←→ {
Thomason subsets of X

}
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which sends a thick ⊗-ideal J to supp(J) := ⋃
F•∈J suppX (F•) and which sends a Thomason

subset Y ⊂ X to the thick ⊗-ideal
{
F• ∈Dperf(X ) | suppX (F•)⊂Y

}
.

Proof. This is [Tho97, Theorem 3.5]. It is easy to check that the two maps are well-defined.

The non-formal part of the proof boils down to the following two claims:

1. If Z ⊂ X is a closed subset which has quasi-compact complement then there exists a

perfect complex E• such that suppX (E•) = Z. This is proved in [Tho97, Lemma 3.4] by

using a bit of algebraic geometry to reduce to the affine noetherian case and then using

the Koszul complex on a set of generators Z = V ( f1, . . . , fn) to produce the required

perfect complex.

2. If E• and F• are perfect complexes on X such that suppX (E•) ⊂ suppX (F•) then E• is

contained in thick⊗〈F•〉. This is the most difficult part and uses Theorem 3.9.6. It is

proved in [Tho97, Lemma 3.14].

For a direct proof of the affine noetherian case see [Nee92a]. The relationship between

Thomason’s proof and the earlier work of Neeman and Hopkins is discussed in [Tho97,

Remark 3.17].

Remark 3.9.8. The key result on which the classification theorem depends is Theorem 3.9.6

which is a direct analogue of the Nilpotence Theorem from stable homotopy theory (cf. Sec-

tion 6.4). As we shall see, in that theory the analogues of the residue fields κ(x) are the

Morava K-theories K(n).

The Benson-Carlson-Rickard theorem

Let G be a finite group and let k be a field of positive characteristic dividing the order of G.

Recall that Proj(H•(G,k)) is the space of homogeneous prime ideals of H•(G,k) equipped
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with the Zariski topology and excluding the unique maximal ideal. A classical result of

Evens and Venkov states that the group cohomology ring H•(G,k) is a finitely generated

k-algebra and hence Proj(H•(G,k)) is a noetherian topological space.

Remark 3.9.9. In any tensor triangulated category T, the graded ring [1,1]• acts in a natural

way on the graded abelian group [X ,Y ]• for any two objects X ,Y ∈T. In particular, recalling

Remark 3.8.37, we see that H•(G,k) acts on Ext•kG(M, M) for any kG-module M.

Definition 3.9.10. For any finitely generated kG-module M, define its “support” to be

suppG(M) :=Proj(H•(G,k)/IG(M))⊂Proj(H•(G,k))

where IG(M)⊂ H•(G,k) denotes the annihilator of Ext•kG(M, M) in H•(G,k).

Remark 3.9.11. This notion of support satisfies a number of natural properties:

(1) suppG(M⊕N)= suppG(M)∪suppG(N);

(2) suppG(M⊗k N)= suppG(M)∩suppG(N);

(3) if 0 → M1 → M2 → M3 → 0 is a short exact sequence of finitely generated kG-modules

then suppG(Mi)⊂ suppG(M j)∪suppG(Mk) for any i, j,k ∈ {1,2,3};

(4) suppG(k)=Proj(H•(G,k));

(5) suppG(M)=; iff M is projective.

The last condition shows that suppG(M) only depends on the stable isomorphism class of M

and therefore suppG can be regarded as a notion of support defined on stmod(kG). Prop-

erty (3) shows that if M1 → M2 → M3 → Ω−1M1 is an exact triangle in stmod(kG) then

suppG(Mi)⊂ suppG(M j)∪suppG(Mk) for any i, j,k ∈ {1,2,3}. It also follows that suppG(M)=

suppG(Ω−1M).
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Remark 3.9.12. The above notion of support for finitely generated kG-modules is very clas-

sical but the proof of the Benson-Carlson-Rickard theorem rests on a well-behaved theory of

support for arbitrary kG-modules. Another ingredient in the proof is an elegant application

of Bousfield localization in terms of so-called “Rickard idempotents” (introduced in [Ric97]).

Conveniently, the notion of support for arbitrary modules can be defined in terms of these

Rickard idempotents.

Definition 3.9.13 (Rickard). Let C ⊂ stmod(kG) be a thick subcategory. Then we can con-

sider finite localization in StMod(kG) with respect to the localizing subcategory loc〈C〉 ⊂

StMod(kG). For any X in StMod(kG) we have an exact triangle

ΓCX → X → LCX →Ω−1ΓCX

where ΓCX ∈ loc〈C〉 and LCX ∈ (loc〈C〉)⊥. Moreover, if C is a thick ⊗-ideal then loc〈C〉 is a

localizing ⊗-ideal (use the proof of Remark 3.9.3) and hence (cf. Lemma 3.7.22 and Proposi-

tion 3.7.20) this finite localization is smashing: ΓCX ' ΓCk⊗k X and LCX ' LCk⊗k X . The

two kG-modules ΓCk and LCk are called the “Rickard idempotents” associated to C. They

are idempotent monoids in StMod(kG). In particular, for a fixed p ∈ Proj(H•(G,k)), let Γp

and Lp denote the Rickard idempotents for the thick ⊗-ideal of all X ∈ stmod(kG) such that

suppG(X )⊂ {p}. Similarly, let Γ̃p and L̃p denote the Rickard idempotents for the thick ⊗-ideal

consisting of those X ∈ stmod(kG) such that suppG(X )( {p}. Finally, define κ(p) :=Γp⊗k L̃p.

Definition 3.9.14. For any kG-module M, define its “support” to be

suppG(M) := {
p ∈Proj(H•(G,k)) | M⊗k κp 6= 0 is not projective

}
.

If M is finitely generated then this coincides with the notion of support defined in Defini-

tion 3.9.10. However, for arbitrary modules the new definition has better properties. For

example, suppG(M⊗k N)= suppG(M)∩suppG(N) and suppG(M)=; iff M is projective.
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Theorem 3.9.15 (Benson-Carlson-Rickard). Let G be a finite group and let k be a field of

characteristic p dividing the order of G. There is an inclusion-preserving bijection

{
thick ⊗-ideals of stmod(kG)

}←→ {
specialization closed subsets of Proj(H•(G,k))

}
which sends a thick ⊗-ideal I to supp(I) :=⋃

M∈I suppG(M) and which sends a specialization

closed subset Y ⊂Proj(H•(G,k)) to the thick ⊗-ideal {M ∈ stmod(kG) | suppG(M)⊂Y }.

Proof. As with Theorem 3.9.7, the non-formal part of the proof boils down to the following

two claims:

(1) If Z is a closed subset of Proj(H•(G,k)) then there exists a finitely generated module M

with suppG(M)= Z.

(2) If C is a thick ⊗-ideal and X is a finitely generated kG-module such that suppG(X ) ⊂

suppG(Y ) for some Y ∈C then X ∈C.

The first claim is relatively straightforward. If Z =V (ξ1, . . . ,ξn) then

Z = suppG(Lξ1 ⊗k · · ·⊗k Lξn)

where the Lξi are the associated “Carlson modules.” They are analogues of the Koszul

complexes in the derived category. For the second claim we use finite localization together

with our notion of support for infinitely generated modules. Indeed, let ΓCk and LCk de-

note the Rickard idempotents associated to the thick ⊗-ideal C. Then suppG(X ⊗k LCk) =

suppG(X )∩suppG(LCk)⊂ suppG(Y )∩suppG(LCk)= suppG(Y ⊗k LCk)=; since Y ⊗k LCk = 0

in StMod(kG). Thus X ⊗k LCk = 0 in StMod(kG) and hence X is contained in C.

Remark 3.9.16. The original papers on support for infinitely generated modules [BCR95,

BCR96] and the proof of the classification theorem [BCR97] assume that k is algebraically

closed and use the language of maximal ideal spectra. In later work, Friedlander and
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Pevtsova [FP07] generalized the classification theorem from finite groups to finite groups

schemes and their paper gives a clear version of the proof using more modern scheme-

theoretic language and without unnecessary assumptions on the field k.
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CHAPTER 4

Tensor triangular geometry

Throughout this chapter let K denote an essentially small tensor triangulated category. As

we saw in Section 3.4, such categories often arise as the compact-dualizable objects in a

larger rigidly-compactly generated tensor triangulated category. In this chapter, we will

give a bare-bones account of the spectrum of K, as introduced by Paul Balmer. This con-

struction allows for an algebro-geometric approach to the study of tensor triangulated cat-

egories which is sometimes referred to as “tensor triangular geometry.” The basic reference

is [Bal05] but the theory has been developed in a series of papers. The survey [Bal10b]

provides a good overview and for our purposes the papers [Bal07, Bal10a] are particularly

relevant.

4.1 Basic definitions

Definition 4.1.1. A thick ⊗-ideal I of K is a thick triangulated subcategory I⊂K with the

property that a ∈K and x ∈ I implies that a⊗ x ∈ I. A prime ideal of K is a thick ⊗-ideal P

with the property that a⊗b ∈P implies that either a ∈P or b ∈P. The spectrum Spc(K) of K

is defined to be the set of prime ideals of K. It is a set since K is essentially small and all

subcategories are replete. For each family of objects E⊂K, define

Z(E) := {
P ∈Spc(K) |E∩P=;}

.
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The collection
{
Z(E)⊂Spc(K) |E⊂K

}
defines the closed sets for a topology on Spc(K) called

the Balmer topology. With this topology Spc(K) becomes a spectral space in the sense of

Hochster (cf. Section 2.4).

Remark 4.1.2. The Balmer topology on Spc(K) is not the “Zariski” topology one would obtain

by mimicing the definition of the Zariski topology on the prime spectrum of a commutative

ring. The closed sets in Spc(K) are of the form Z(E) := {P ∈ Spc(K) | E∩P =;} whereas the

closed sets of the Zariski topology would be of the form V (E) := {P ∈ Spc(K) | P ⊃ E}. There

is a precise sense in which the Balmer and Zariski topologies on Spc(K) are related: both

give spectral topologies in the sense of Hochster and the two topologies are Hochster-dual

(cf. Remark 2.4.4). The fact that Spc(K) has the topology “dual” to the usual Zariski topol-

ogy familiar to algebraic geometers means that some things in tensor triangular geometry

behave a bit differently than one might expect. For example, closure in the Balmer topol-

ogy goes down rather than up: {P} = {Q ∈ Spc(K) |Q⊂P}. In particular, the closed points in

Spc(K) are the minimal primes. Another consequence of the differences between the Balmer

and Zariski topologies is that our comparison maps will be inclusion-reversing.

Remark 4.1.3. Although the spectrum may be equipped with the structure of a locally ringed

space, for our purposes only its topological structure is relevant. This is the reason we use

the notation Spc(K) rather than Spec(K): the former denotes the spectrum regarded only as

a topological space while the latter denotes the spectrum regarded as a locally ringed space.

Definition 4.1.4. Let F :K→L be a tensor triangulated functor. Define a map

Spc(F) : Spc(L)→Spc(K)

by Spc(F)(Q) := F−1(Q). This is a well-defined spectral map. In this way, Spc(−) can be re-

garded as a contravariant functor from the category of essentially small tensor triangulated

categories to the category of spectral spaces.
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Proposition 4.1.5. Let J ⊂ K be a thick ⊗-ideal and let q : K → K/J denote the Verdier

quotient functor. The map Spc(q) : Spc(K/J)→Spc(K) induces a homeomorphism

Spc(K/J) �
� ∼ // //V (J)⊂Spc(K)

where V (J) := {P ∈Spc(K) |P⊃ J}.

Proof. See [Bal05, Proposition 3.11]. Note that there are no issues of existence with the

Verdier quotient K/J since K is essentially small (cf. Remark 3.6.7).

Definition 4.1.6. The support of an object a ∈K is defined to be

supp(a) := {P ∈Spc(K) | a ∉P}.

This notion of support satisfies the following properties:

(1) supp(a) is a closed subset of Spc(K).

(2) supp(0)=; and supp(1)=Spc(K).

(3) supp(Σa)= supp(a).

(4) supp(a⊕b)= supp(a)∪supp(b).

(5) supp(c)⊂ supp(a)∪supp(b) whenever there is an exact triangle a → b → c →Σa.

(6) supp(a⊗b)= supp(a)∩supp(b).

Remark 4.1.7. Although the definition of Spc(K) as a set of “prime ideals” is aesthetically

pleasing to students of algebraic geometry, there is no particular reason why such a defi-

nition is at all interesting. A more conceptual definition of Spc(K)—which has nothing to

do with prime ideals or commutative algebra—is that it is the target of the universal no-

tion of “support” for objects in K. The pair (Spc(K),supp) is the universal notion of support
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satisfying properties 1–6 listed above. For a precise statement see [Bal05, Theorem 3.2].

One could thus define Spc(K) in terms of a universal property and then use Definition 4.1.1

as a particular construction of this universal object in terms of prime ideals. This point of

view is historically accurate as the definition of Spc(K) was motivated by various notions

of “support” arising in subjects like algebraic geometry and modular representation theory

(cf. Definition 3.9.4 and Definition 3.9.10).

Remark 4.1.8. An object a ∈ K is ⊗-nilpotent (i.e. a⊗n = 0 for some n ≥ 1) if and only if

supp(a)=;. This is proved in [Bal05, Corollary 2.4].

Remark 4.1.9. The closed sets supp(a) form a basis of closed sets. Moreover, they are pre-

cisely the closed sets which have quasi-compact complement:

Lemma 4.1.10. Let K be a tensor triangulated category and let Z be a closed subset of

Spc(K). The following are equivalent:

(1) Z is Thomason (cf. Definition 2.4.3);

(2) Z has quasi-compact complement;

(3) Z= supp(a) for some a ∈K.

Proof. We will sketch the proof of (1) implies (2) since (2) clearly implies (1) and [Bal05,

Proposition 2.14] gives the equivalence of (2) and (3). For any closed subset Z ⊂ Spc(K),

KZ := {a ∈K | supp(a)⊂Z} is a thick ⊗-ideal and it is easily checked from the definitions that

Spc(K) \Z⊂ {P ∈ Spc(K) | P⊃KZ} =: V (KZ). On the other hand, if Z is Thomason then one

readily checks that the reverse inclusion holds using the equivalence of (2) and (3). Thus,

if Z is Thomason and closed then Spc(K)\Z= V (KZ) ' Spc(K/KZ) and the spectrum of any

tensor triangulated category is quasi-compact (by [Bal05, Corollary 2.15]).
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4.2 The classification theorem

As we remarked in the introduction, determining Spc(K) is a highly non-trivial problem

which essentially amounts to classifying the objects of the category up to the naturally avail-

able tensor triangulated structure. The precise statement comes from Theorem 4.2.3 below.

Definition 4.2.1. The radical ⊗p
I of a thick ⊗-ideal I⊂K is defined in the usual way

⊗p
I := {a ∈K | a⊗n ∈ I for some n ≥ 1}

and I is said to be radical ⊗-ideal if I= ⊗p
I.

Remark 4.2.2. If K is rigid—that is, if every object is dualizable—then every thick ⊗-ideal is

automatically radical. See [Bal05, Remark 4.3 and Proposition 4.4]. This should be kept in

mind when one reads the following theorem:

Theorem 4.2.3. For any collection of objects E ⊂K, define supp(E) := ⋃
a∈E supp(a) and for

each subset Y ⊂ Spc(K), define KY := {a ∈K | supp(a) ⊂ Y }. These definitions induce order-

preserving bijections

{
radical thick ⊗-ideals of K

}
←→

{
Thomason subsets of Spc(K)

}
.

Proof. See [Bal05, Theorem 4.10].

Remark 4.2.4. For example, if K is a topologically noetherian rigid tensor triangulated cat-

egory then we have a bijection between the thick ⊗-ideals of K and the specialization-closed

subsets of Spc(K). Moreover, if K= thick〈1〉 is generated by the unit then every thick subcat-

egory is automatically a ⊗-ideal (cf. Lemma 3.9.1) so this actually provides a classification

of the thick subcategories of K. The reader is urged to compare Theorem 4.2.3 with Theo-

rem 3.9.7 and Theorem 3.9.15 from Section 3.9.
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One of the pieces of the proof of Theorem 4.2.3 is the following lemma:

Lemma 4.2.5. If I⊂K is a thick ⊗-ideal then Ksupp(I) = ⊗p
I.

Proof. See [Bal05, Proposition 4.9].

We mention it because we need the following result later:

Lemma 4.2.6. If supp(a)⊂ supp(b) then a⊗n ∈ thick⊗〈b〉 for some n ≥ 1.

Proof. Just observe that if supp(a) ⊂ supp(b) ⊂ supp(thick⊗〈b〉) then Lemma 4.2.5 implies

that a is contained in Ksupp(thick⊗〈b〉) = ⊗√thick⊗〈b〉.

4.3 Local categories

The notion of a local tensor triangulated category was introduced in [Bal10a, Section 4]:

Definition 4.3.1. For a tensor triangulated category K the following conditions are equiva-

lent:

1. The space Spc(K) is a local topological space; that is, every open cover Spc(K)=⋃
i∈I Ui

is trivial, in that there exists i ∈ I such that Ui =Spc(K).

2. The space Spc(K) has a unique closed point.

3. The category K has a unique minimal prime.

4. The ideal ⊗p0⊂K of ⊗-nilpotent objects is prime (and is the minimal one).

5. For any objects a,b ∈K, if a⊗b = 0 then a or b is ⊗-nilpotent.

If these conditions hold we say that K is a local tensor triangulated category.
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Example 4.3.2. If P ∈ Spc(K) is a prime ideal of K then the category K/P is local. Indeed,

the ideal (0) is prime in K/P.

Remark 4.3.3. Recall from Remark 4.2.2 that in a rigid tensor triangulated category every

thick ⊗-ideal is automatically radical: a⊗n ∈ I⇒ a ∈ I. It follows that a rigid tensor triangu-

lated category is local iff (0) is a prime.

4.4 Idempotent completion

Recall the notion of idempotent completion from Section 2.1.

Theorem 4.4.1 (Balmer-Schlichting). Let T be a triangulated category. The idempotent

completion T] admits a unique triangulated category structure such the canonical functor

i :T→T] is exact.

Proof. See [BS01].

Remark 4.4.2. If T is a tensor triangulated category then T] is also a tensor triangulated

category with (A, e)⊗ (B, f ) := (A ⊗B, e⊗ f ) and the canonical functor A → A] is a tensor

triangulated functor.

Proposition 4.4.3. Let K be an essentially small tensor triangulated category. The canoni-

cal functor i :K→K] induces a homeomorphism Spc(i) : Spc(K]) ∼−→Spc(K).

Proof. See [Bal05, Corollary 3.14].

4.5 Examples

The classification theorems from Section 3.9 can be used in alliance with Theorem 4.2.3 to

compute the spectrum in several interesting examples.
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Theorem 4.5.1 (Thomason; Balmer). Let X be a quasi-compact, quasi-separated scheme

and let Dperf(X ) denote the tensor triangulated category of perfect complexes on X . There is

a homeomorphism

X ∼−→Spc(Dperf(X ))

which sends x ∈ X to
{
F• ∈ Dperf(X ) | x ∉ suppX (F•)

}
where suppX (−) denotes the cohomolog-

ical support of Definition 3.9.4. Under this homeomorphism the cohomological support in X

of a perfect complex F• coincides with its abstract support in Spc(Dperf(X )).

Proof. This was proved for a noetherian scheme X in [Bal05, Corollary 5.6 and Theorem 6.3]

but it was noted in [BKS07] that the proof really works for quasi-compact, quasi-separated

schemes (as mentioned, for example, in [Bal10b, Theorem 54]).

Remark 4.5.2. The homeomorphism is actually an isomorphism of locally ringed spaces

when the spectrum is equipped with its locally ringed structure (cf. Remark 4.1.3). Thus, a

quasi-compact, quasi-separated scheme can be recovered from its derived category of perfect

complexes. This should be contrasted with the fact that such a scheme cannot be recovered

from its derived category of perfect complexes if we only regard Dperf(X ) as a triangulated

category (without the ⊗-structure); see [Bal10a, Remark 64], for example.

Remark 4.5.3. The assumption that the scheme X is quasi-compact and quasi-separated

is necessary for this reconstruction theorem to hold because the spectrum of any tensor

triangulated category is quasi-compact and quasi-separated.

Theorem 4.5.4 (Benson-Carlson-Rickard; Balmer). Let G be a finite group and let k be a

field. There is a homeomorphism

Proj(H•(G,k)) ∼−→Spc(stmod(kG))
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which sends a point p ∈ Proj(H•(G,k)) to
{
M ∈ stmod(kG) | p ∉ suppG(M)

}
where suppG(−)

denotes the notion of support from Definition 3.9.10. Under this homeomorphism the support

in Proj(H•(G,k)) of a kG-module M coincides with its abstract support in Spc(stmod(kG)).

Proof. See [Bal05, Corollary 5.10 and Theorem 6.3].

Remark 4.5.5. As with Remark 4.5.2, this homeomorphism is an isomorphism of locally

ringed spaces.

4.6 The comparison map

The examples Spc(Dperf(X )) ∼= X and Spc(stmod(kG)) ∼= Proj(H•(G,k)) from the last section

indicate that the spectrum is quite an interesting construction. However, determining the

spectrum in those two examples depends on the deep classification theorems discussed in

Section 3.9. We would like to go the other way around: develop general techniques for

computing the spectrum Spc(K) and then obtain a classification of the thick ⊗-ideals in K by

invoking Theorem 4.2.3. Balmer took the first step in this direction in [Bal10a] by defining

two maps

ρ : Spc(K)→Spec([1,1]) and ρ• : Spc(K)→Spech([1,1]•)

from the tensor triangular spectrum to the Zariski spectrum of the (graded) ring of (graded)

endomorphisms of the unit object. Recall that these rings are (graded) commutative by

Lemma 2.2.7 and Lemma 3.3.20. The first map is defined by P 7→ {
f ∈ [1,1] | cone( f ) ∉ P

}
while the graded map sends P 7→ {

f ∈ [1,1]i | cone( f ) ∉P
}

i∈Z. Balmer establishes two useful

surjectivity criteria for these maps:

Theorem 4.6.1 (Balmer). If the category K is “connective” in the sense that πi(1) = 0 for

i < 0 then the map ρ : Spc(K) → Spec([1,1]) is surjective. If the graded ring [1,1]• is graded-
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coherent (e.g. graded-noetherian) then both comparison maps ρ : Spc(K) → Spec([1,1]) and

ρ• : Spc(K)→Spec([1,1]•) are surjective.

Proof. See [Bal10a, Section 7].

Example 4.6.2. Consider K = Db(mod(kG)) for G a finite group and k a field. Recall from

Remark 3.8.37 that in this example [1,1]• = H−•(G,k) is the group cohomology ring. This

is known to be graded-noetherian by the classical result of Evens and Venkov. Thus the

graded comparison map ρ• : Spc(K) → Spech(H−•(G,k)) = Spech(H•(G,k)) is surjective. In

fact, Balmer [Bal10a, Proposition 8.5] showed that the map ρ• is actually a homeomorphism

by using Theorem 4.5.4 and Rickard’s theorem (cf. Theorem 3.8.35) relating stmod(kG) and

Db(mod(kG)). Unfortunately, this result depends on the Benson-Carlson-Rickard theorem

via Theorem 4.5.4. An alternative proof of the injectivity of ρ• in this example would provide

a new proof of the Benson-Carlson-Rickard theorem.

Example 4.6.3. Let R be a commutative ring and consider K = Dperf(R) = Kb(proj(R)). In

this example, [1,1]• = [1,1] = R and so the map ρ : Spc(Kb(proj(R))) → Spec(R) is surjective

by the “connective” surjectivity criterion. Using Theorem 4.5.1, one can show that it is a

homeomorphism, as indicated, for example, in [Bal10a, Proposition 8.1]. In fact, Balmer

(unpublished) has proved the injectivity of ρ in this example without using Theorem 4.5.1.

This provides a new proof of the affine case of the Hopkins-Neeman-Thomason theorem.

Remark 4.6.4. These are the maps which provide the starting point for the theory of “higher”

comparison maps introduced in the next chapter.

148



CHAPTER 5

Higher comparison maps

5.1 Basic constructions

It is now time to introduce the new comparison maps. As mentioned in the introduction,

there are actually several different constructions, but they are closely related and the fun-

damental ideas are exposed in the simplest example. In all cases, there are graded and

ungraded versions. The proofs for the graded constructions are essentially the same as for

the ungraded ones, but the ideas are more transparent in the ungraded setting. The notion

of a “tensor-balanced” endomorphism will play a central role in these constructions.

Definition 5.1.1. An endomorphism f : X → X in a tensor triangulated category is said to

be ⊗-balanced if f ⊗ X = X ⊗ f as an endomorphism of X ⊗ X .

Remark 5.1.2. The following lemma was established in [Bal10a, Proposition 2.13] in the case

when f : 1→ 1 is an arbitrary endomorphism of the unit and was a crucial technical result

used in the construction of the original unit comparison maps. The key to generalizing

the result to endomorphisms of an arbitrary object X is to restrict ourselves to ⊗-balanced

endomorphisms.

Lemma 5.1.3. If f : X → X is a ⊗-balanced endomorphism then f ⊗2 ⊗cone( f )= 0.

Proof. Recall from Lemma 3.1.7 that a map in an exact triangle is a weak kernel of the map

following it in the exact triangle and is also a weak cokernel of the map preceding it in the
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exact triangle. In particular, the composite of two consecutive maps in an exact triangle is

zero. With these facts in mind, start with an exact triangle X
f−→ X

g−→ cone( f ) h−→ ΣX and

observe that in the following morphism of exact triangles

X ⊗ X
X⊗ f //

f⊗X
��

X ⊗ X
X⊗g //

f⊗X
��

0

))

X ⊗cone( f ) X⊗h //

f⊗cone( f )
��

0

))

Σ(X ⊗ X )

Σ( f⊗X )
��

X ⊗ X
X⊗ f // X ⊗ X

X⊗g // X ⊗cone( f ) X⊗h // Σ(X ⊗ X )

the middle diagonal is zero because (X⊗g)◦( f ⊗X )= (X⊗g)◦(X⊗ f )= X⊗(g◦ f )= 0. It follows

that f ⊗ cone( f ) factors through the X ⊗h of the top row since X ⊗h is a weak cokernel of

X⊗g. One may similarly observe that the right diagonal is zero using the fact that Σ f ◦h = 0.

It follows that f ⊗ cone( f ) factors through the X ⊗ g of the second row since X ⊗ g is a weak

kernel of X ⊗h. This implies that ( f ⊗cone( f ))2 = 0 since we have a factorization

X ⊗cone( f )

��
f⊗cone( f )
��

X ⊗ X
X⊗g // X ⊗cone( f )

f⊗cone( f )
��

X⊗h // Σ(X ⊗ X )

ttX ⊗cone( f )

through (X ⊗h)◦ (X ⊗ g) = 0. Finally, by observing that f ⊗2 = (X ⊗ f )◦ ( f ⊗ X ) = X ⊗ f 2 one

concludes that f ⊗2 ⊗cone( f )= X ⊗ f 2 ⊗cone( f )= X ⊗ ( f ⊗cone( f ))2 = 0.

Notation 5.1.4. Let EX := { f ∈ [X , X ] | f ⊗ X = X ⊗ f } denote the collection of ⊗-balanced

endomorphisms of X .

Proposition 5.1.5. For each object X in a tensor triangulated category K, EX is an inverse-

closed subring of the endomorphism ring [X , X ]. If (0) is a prime in K, for example if K is

rigid and local, then EX is a local ring provided that X 6= 0.

Proof. That EX is an additive subgroup of [X , X ] follows from the fact that X ⊗− and −⊗X

are additive functors: ( f +g)⊗X = ( f ⊗X )+(g⊗X )= (X⊗ f )+(X⊗g)= X⊗( f +g) and 0X ⊗X =
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0X⊗X = X ⊗0X . It clearly contains the multiplicative identity (idX ⊗ X = idX⊗X = X ⊗ idX )

and

( f ◦ g)⊗ X = ( f ⊗ X )◦ (g⊗ X )= (X ⊗ f )◦ (X ⊗ g)= X ⊗ ( f ◦ g)

shows that it is closed under multiplication. Moreover, if g ∈ [X , X ] is an inverse for f ∈ EX

in the full endomorphism ring [X , X ] then

g⊗ X = (g⊗ X )◦ idX⊗X = (g⊗ X )◦ (X ⊗ f )◦ (X ⊗ g)

= (g⊗ X )◦ ( f ⊗ X )◦ (X ⊗ g)= idX⊗X ◦ (X ⊗ g)= X ⊗ g

shows that g is also contained in EX (so that f is a unit in EX ). On the other hand, suppose

that the zero ideal (0) is a prime in K and that X 6= 0. To prove that the non-zero ring EX

is local it suffices (by Proposition 2.3.14) to show that the sum of two non-units is again a

non-unit. To this end, let f1, f2 ∈ EX and suppose that f1 + f2 is a unit. By Lemma 5.1.3,

f ⊗2
1 ⊗cone( f1)= 0 and f ⊗2

2 ⊗cone( f2)= 0. It follows that ( f1 + f2)⊗n ⊗cone( f1)⊗cone( f2)= 0

for n ≥ 3 by expanding ( f1 + f2)⊗n using bilinearity of the ⊗-product and applying the sym-

metry. In more detail, ( f1 + f2)⊗n expands to a sum of 2n endomorphisms of X⊗n each of

which is of the form g1⊗ g2⊗·· ·⊗ gn with each g i either f1 or f2. By applying a permutation

of the factors of X⊗n (using the symmetry) we can ensure that all of the f1’s are on the left.

That is, there exists an isomorphism σ : X⊗n ∼−→ X⊗n such that

X⊗n g1⊗···⊗gn //

∼σ
��

X⊗n

σ∼
��

X⊗n f ⊗i
1 ⊗ f ⊗n−i

2 // X⊗n

commutes for some 0≤ i ≤ n. Using Notation 3.1.43, we have

g1 ⊗·· ·⊗ gn ⊗cone( f1)⊗cone( f2) ' f ⊗i
1 ⊗ f ⊗n−i

2 ⊗cone( f1)⊗cone( f2)

' f ⊗i
1 ⊗cone( f1)⊗ f ⊗n−i

2 ⊗cone( f2)
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for some 0 ≤ i ≤ n. It follows that g1 ⊗·· ·⊗ gn ⊗ cone( f1)⊗ cone( f2) = 0 if n ≥ 3 since in this

case either i or n− i is greater than or equal to 2. We conclude that

( f1 + f2)⊗n ⊗cone( f1)⊗cone( f2)= 0

for n ≥ 3. However, the unit f1 + f2 is a categorical isomorphism. Hence any ⊗-power

( f1 + f2)⊗n is also an isomorphism and so is ( f1 + f2)⊗n ⊗ cone( f1)⊗ cone( f2). It follows that

X⊗n ⊗ cone( f1)⊗ cone( f2) = 0 for n ≥ 3 and hence that cone( f1) = 0 or cone( f2) = 0 since (0) is

prime and X 6= 0 by assumption. In other words, f1 or f2 is an isomorphism (and hence a

unit in EX since EX is an inverse-closed subring of [X , X ]).

Remark 5.1.6. Recall from Remark 4.3.3 that a rigid category is local if and only if the

⊗-ideal (0) = ⊗p(0) is prime. Also recall from Definition 4.3.1 that one of the equivalent

conditions for a tensor triangulated category to be local is that Spc(K) is a local topological

space in the sense that it has no non-trivial open covers. Then for a rigid category we have

a slightly stronger statement than the one given above: if X is a non-zero object in a rigid

tensor triangulated category then EX is local provided that supp(X ) is local as a topological

space. On the other hand, it is known that EX local does not imply that supp(X ) is local,

even when X = 1 (see [Bal10a, Example 4.6]).

Lemma 5.1.7. If F :K→L is a morphism of tensor triangulated categories then the induced

ring homomorphism [X , X ]K → [F X ,F X ]L restricts to a ring homomorphism EK,X → EL,F X .

Proof. This follows from the fact that F :K→L is (by definition) a strong ⊗-functor. Indeed,

if f : X → X is a ⊗-balanced endomorphism in K then the diagram

F X ⊗F X'

idF X⊗F X

&&

F f⊗F X // F X ⊗F X'

idF X⊗F X

xx

F(X ⊗ X )'

F( f⊗X ) //

F(X⊗ f )
// F(X ⊗ X )'

F X ⊗F X
F X⊗F f

// F X ⊗F X
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demonstrates that F f : F X → F X is again ⊗-balanced.

Remark 5.1.8. These results reveal the crucial properties that are secured by restricting

ourselves to ⊗-balanced endomorphisms: they provide us with rings of endomorphisms that

are local when the category is local, behave well with respect to tensor triangular functors,

and have the property that the units are the elements that are categorical isomorphisms.

However, these rings are not necessarily commutative.

Theorem 5.1.9. Let K be a tensor triangulated category and let X be an object in K. For

any commutative ring A and ring homomorphism α : A → EX there is an inclusion-reversing,

spectral map

ρX ,A : supp(X )→Spec(A)

defined by ρX ,A(P) := {a ∈ A | cone(α(a)) ∉P}.

Proof. Recall that supp(X ) = {P ∈ Spc(K) | X ∉ P}. By Lemma 5.1.7, the Verdier quotient

q : K → K/P induces a ring homomorphism EK,X → EK/P,q(X ) and since X ∉ P the target

ring EK/P,q(X ) is a local ring by Proposition 5.1.5. For any element f ∈ EK,X observe that

cone( f ) ∉ P iff q( f ) is not an isomorphism in K/P iff q( f ) is a non-unit in the local ring

EK/P,q(X ). Since the non-units in a local ring form a two-sided ideal, it follows that the

preimage { f ∈ EK,X | cone( f ) ∉P} is a two-sided ideal of EK,X . Moreover, this ideal is “prime”

in the sense that cone( f ·g) ∉P implies that cone( f ) ∉P or cone(g) ∉P. Indeed, the octahedral

axiom applied to the composite f ◦ g = f · g implies that there is an exact triangle of the form

cone(g) → cone(g · f ) → cone( f ) → Σcone(g) and our claim follows from the fact that P is

a triangulated subcategory. In any case, this “prime” ideal of the non-commutative ring

EK,X pulls back via α to a genuine prime ideal ρX ,A(P) of the commutative ring A. This

establishes that the map ρX ,A is well-defined and it is clear from the definition that it is

inclusion-reversing.
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An arbitrary closed set for the Zariski topology on Spec(A) is of the form

V (E)= {
p ∈Spec(A) | p⊃E

}
for some subset E ⊂ A. One readily checks that ρ−1

X ,A(V (E)) = ⋂
a∈E supp(cone(α(a))) and we

conclude that ρX ,A is continuous. Moreover, if V (E) has quasi-compact complement then

V (E)=V (a1, . . . ,an) for some finite collection a1, . . . ,an ∈ A and the preimage

ρ−1
X ,A(V (a1, . . . ,an))=

n⋂
i=1

supp(cone(α(ai)))= supp(cone(α(a1))⊗·· ·⊗cone(α(an)))

also has quasi-compact complement by Lemma 4.1.10.

Remark 5.1.10. Keep in mind that supp(X ) = ; if and only if X is ⊗-nilpotent (cf. Re-

mark 4.1.8) which if K is rigid is the same thing as saying that X = 0 (cf. Remark 4.2.2). On

the other hand, EX is non-zero precisely when X 6= 0.

Remark 5.1.11. If X = 1 then the condition f ⊗ X = X ⊗ f is always satisfied. Indeed, if

la : 1⊗a ' a and ra : a⊗1' a denote the left and right unitors of the monoidal structure then

for any endomorphism f : 1→ 1 the diagram

1⊗ 1

id

��

r1
��

f⊗1 // 1⊗ 1
r1
��

id

��

1
f // 1

1⊗ 1
l1

OO

1⊗ f
// 1⊗ 1

l1

OO

commutes because l1 = r1 (cf. Lemma 2.2.6). Thus E1 = [1,1] and this ring is commutative by

Lemma 2.2.7. Taking X = 1 and α = id[1,1] one sees that the construction of Theorem 5.1.9

recovers the original unit comparison map from [Bal10a] that we described in Section 4.6.

All the results above have corresponding graded analogues. For a graded endomorphism

f : Σk X → X we abuse notation and write f ⊗ X = X ⊗ f when we really mean that the
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following diagram commutes:

Σk(X ⊗ X )' ' Σk X ⊗ X
f⊗X
��

X ⊗Σk X
X⊗ f

// X ⊗ X
(5.1.12)

Proposition 5.1.13. A graded subring E•
X of the graded endomorphism ring [X , X ]• is de-

fined by setting E i
X := { f ∈ [X , X ]i | f ⊗ X = X ⊗ f }. It has the property that a homogeneous

element is a unit in E•
X iff it is a unit in [X , X ]• iff it is a categorical isomorphism. Moreover,

if (0) is a prime in K, for example if K is rigid and local, then E•
X is graded-local provided

that X 6= 0.

Proof. The proof is similar to the ungraded version, one just needs to take the relevant

suspension isomorphisms into account. In particular, the result of Lemma 5.1.3 holds for a

graded endomorphism f : Σk X → X satisfying f ⊗ X = X ⊗ f . On the other hand, one could

save time and conclude that E•
X is graded-local simply by invoking the fact that the Z-graded

ring E•
X is graded-local iff E0

X = EX is local (see Proposition 2.3.15 and [Li12, Theorem 2.5]).

For the sake of illustration, let us demonstrate the proof that E•
X defines an inverse-closed

graded subring of [X , X ]•. To see that E i
X is an additive subgroup of [X , X ]i baptize the

canonical suspension isomorphisms

α :Σi(X ⊗ X )'Σi X ⊗ X and β :Σi(X ⊗ X )' X ⊗Σi X

and observe that

(( f + g)⊗ X )◦α= ( f ⊗ X + g⊗ X )◦α

= ( f ⊗ X )◦α+ (g⊗ X )◦α

= (X ⊗ f )◦β+ (X ⊗ g)◦β= (X ⊗ ( f + g))◦β

for any f , g ∈ E i
X .
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On the other hand, recall that if f :Σi X → X and g :Σ j X → X are homogeneous elements

of the graded endomorphism ring [X , X ]• then their product f · g is by definition f ◦Σi g. The

diagram

Σi+ j(X ⊗ X )

'

' Σi(Σ j X ⊗ X )

Σi(g⊗X )
��

' Σi+ j X ⊗ X

Σi g⊗X
��

( f ·g)⊗X

��

Σi(X ⊗Σ j X )

'

Σi(X⊗g) // Σi(X ⊗ X )

'

' Σi X ⊗ X

f⊗X
��

X ⊗Σi+ j X

X⊗( f ·g)

66X⊗Σi g
// X ⊗Σi X

X⊗ f
// X ⊗ X

shows that if f ∈ E i
X and g ∈ E j

X then the product f · g ∈ [X , X ]i+ j is contained in E i+ j
X . Here

the top-right and bottom-left squares commute by naturality, the bottom-right square is an

incarnation of (5.1.12), and the top-left square is Σi(−) applied to an incarnation of (5.1.12).

Now let f ∈ E i
X be a unit in [X , X ]• say with inverse g : Σ−i X → X . We claim that

g ∈ E−i
X . The idea for the proof is simple enough (cf. the degree zero case in the proof of

Proposition 5.1.5), but things look a bit more complicated when the suspensions are taken

into account. In any case, since Σi g : X → Σi X is a categorical inverse for f , the following

diagram commutes:

X ⊗ X

X⊗Σi g
��

id

ww

Σi(X ⊗ X ) ∼ //

∼
��

X ⊗Σi X

X⊗ f
��

Σi X ⊗ X
f⊗X

//

id
11

X ⊗ X
Σi g⊗X

&&
Σi X ⊗ X .
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In other words, we have a commutative diagram

Σi X ⊗ X ∼
((

X ⊗ X

X⊗Σi g
--

Σi g⊗X 11

Σi(X ⊗ X )

X ⊗Σi X ∼
77

(5.1.14)

and the fact that g ∈ E−i
X is established by the diagram

Σ−i X ⊗ X g⊗X

��

Σ−i(Σi X ⊗ X )
∼

%%
Σ−i(X ⊗ X )

∼
..

∼
00

Σ−i(X⊗Σi g)
..

Σ−i(Σi g⊗X )

00

X ⊗ X

Σ−i(X ⊗Σi X )
∼

99

X ⊗Σ−i X X⊗g

EE

where the center diamond is Σ−i(−) applied to (5.1.14), and the outer edges commute by

naturality.

Lemma 5.1.15. If F : K → L is a morphism of tensor triangulated categories then the in-

duced graded ring homomorphism [X , X ]K,• → [F X ,F X ]L,• restricts to a graded ring homo-

morphism E•
K,X → E•

L,F X .

Proof. This involves verifying that a diagram commutes using the monoidal nature of the

functor. The subtle point is that because of the suspension isomorphisms involved in (5.1.12)

one must utilize the compatibility axioms for morphisms of tensor triangulated categories

(cf. Definition 3.3.30 and Lemma 3.3.32). Getting down to business, let f : Σi X → X be a
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⊗-balanced endomorphism. The diagram that we must show commutes is

Σi(F X ⊗F X ) ∼ //

∼
��

ΣiF X ⊗F X

∼
��

F X ⊗ΣiF X

∼
��

FΣi X ⊗F X

F f⊗1
��

F X ⊗FΣi X
1⊗F f

// F X ⊗F X .

To see this consider the following diagram:

Σi(F X ⊗F X ) ∼ //

∼

��

∼
((

(†)

ΣiF X ⊗ X

∼

��

ΣiF(X ⊗ X )
∼

((
F(Σi(X ⊗ X )) ∼ //

∼
��

F(Σi X ⊗ X )

F( f⊗1)
��

∼ // FΣi X ⊗F X

F f⊗1

��

(†) F(X ⊗Σi X )

∼
��

F(1⊗ f )
// F(X ⊗ X )

∼
((

F X ⊗ΣiF X ∼ // F X ⊗FΣi X
1⊗F f

// F X ⊗F X .

The regions marked (†) commute by the compatibility axiom. The central region is F(−)

applied to (5.1.12) and the remaining two regions commute by naturality. Note that in the

creation of the above diagram we have used the fact that F is a strong ⊗-functor.

Theorem 5.1.16. Let K be a tensor triangulated category and let X be an object in K. For

any (graded-)commutative graded ring A• and graded ring homomorphism α : A• → E•
X

there is an inclusion-reversing, spectral map

ρ•X ,A• : supp(X )→Spech(A•)

defined by ρ•X ,A•(P) := {
a ∈ A i | cone(α(a)) ∉P}

i∈Z.
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Proof. Let P ∈ supp(X ). By Lemma 5.1.15, the localization functor q : K→K/P induces a

graded ring homomorphism E•
K,X → E•

K/P,q(X ). Since X ∉P, Proposition 5.1.13 implies that

the target ring E•
K/P,q(X ) is graded-local. The homogeneous non-units in E•

K/P,q(X ) there-

fore form a two-sided ideal (recall Proposition 2.3.15). Moreover this ideal is “prime” in the

sense that the product of two homogeneous units is again a unit. Indeed, since E•
K/P,q(X ) is

an inverse-closed subring of the graded endomorphism ring [q(X ), q(X )]•, a homogeneous

element of E•
K/P,q(X ) is a unit iff it is a categorical isomorphism; thus if f ∈ E i

K/P,q(X ) and

g ∈ E j
K/P,q(X ) are homogeneous units then so too is f · g = Σ j f ◦ g. In any case, this homo-

geneous “prime” ideal pulls back via the graded ring homomorphism E•
K,X → E•

K/P,q(X ) to a

homogeneous “prime” ideal of the non-commutative ring E•
K,X which in turn pulls back via

α : A• → E•
X to a genuine homogeneous prime ideal of A• and this is exactly what ρ•X ,A•(P) is

defined to be. This shows that the map ρ•X ,A• is well-defined and it is clear from the defini-

tion that it is inclusion-reversing. Showing that it is spectral involves an argument similar

to the one given in the proof of Theorem 5.1.9. For example, if D(a) = {p ∈ Spech(A•) | a ∉ p}

denotes the principal open subset of Spech(A•) defined by a homogeneous element a ∈ A i

then (ρ•X ,A•)−1(D(a)) = {P ∈ supp(X ) | cone(α(a)) ∈P} = supp(X )\ supp(cone(α(a)). (Note that

supp(cone(α(a)) ⊂ supp(Σi X )∪ supp(X ) = supp(X ) from the exact triangle Σi X α(a)−−−→ X →

cone(α(a))→Σi+1X .)

Remark 5.1.17. It is clear from the definitions that there is a commutative diagram

supp(X )

ρX ,A0 ''

ρ•X ,A•
// Spech(A•)

(−)0
��

Spec(A0)

where (−)0 is the surjective spectral map p• 7→ p•∩ A0 considered in Lemma 2.3.7.

Example 5.1.18. Any (graded-)commutative graded subring of E•
X yields an associated com-
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parison map. Obvious examples include the graded-center of E•
X and

{
f ∈Center[X , X ]• | f ⊗ X = X ⊗ f

}
.

A more exotic example is given by

{
f ∈Center[X , X ]• | f ⊗ X ∈Center[X⊗2, X⊗2]•

}
. (5.1.19)

For this third example, note that if f ⊗ X ∈ Center[X⊗2, X⊗2]• then it follows from the fact

that the symmetry τ : X ⊗ X ∼−→ X ⊗ X is in [X⊗2, X⊗2] that f ∈ E•
X ; so (5.1.19) does indeed

give a graded subring of E•
X .

Example 5.1.20. If X = 1 then the condition f ⊗X = X⊗ f holds for any graded endomorphism

and the ring E•
1
= [1,1]• is graded-commutative by Lemma 3.3.20. The map ρ•

1,[1,1]• is the

original graded comparison map from [Bal10a] which we discussed in Section 4.6.

Example 5.1.21. Recall the notion of the graded-center Z•(T) of a triangulated category T

(see [KY11], for example). For a tensor triangulated category T one can define a graded-

commutative graded subring of Z•(T) by setting

Z i
⊗(T) := {

α ∈ Z i(T) | X ⊗αY =αX⊗Y for every X ,Y ∈T}
for each i ∈ Z. Observe that any α ∈ Z i⊗(T) is completely determined by α1 and there is

an obvious isomorphism Z•⊗(T) ∼−→ [1,1]•. However, the definition makes sense for any thick

⊗-ideal I ⊆ T and Z•⊗(I) is not obviously so trivial for I( T. For any object X ∈ I there is a

graded ring homomorphism Z•⊗(I)→ E•
X given by α 7→αX and so we obtain a map supp(X )→

Spech(Z•⊗(I)). Explicitly, it maps a prime P to
{
α ∈ Z•⊗(I) | cone(αX ) ∉P}

. However, for a fixed

prime P and a fixed α ∈ Z•⊗(I) the set
{
Y ∈ I | cone(αY ) ∈ P

}
is readily checked to be a thick

⊗-ideal. It follows that if X generates I as a thick ⊗-ideal then
{
α ∈ Z•⊗(I) | cone(αX ) ∉P}

is

the same as
{
α ∈ Z•⊗(I) | cone(αY ) ∉ P for some Y ∈ I

}
. In other words, if I is generated as a
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thick ⊗-ideal by a single object (equivalently, by a finite number of objects) then every gen-

erator gives the exact same comparison map. In conclusion, every finitely generated thick

⊗-ideal I has an associated (generator-independent) comparison map supp(I)→Spech(Z•⊗(I))

which sends a prime P to
{
α ∈ Z•⊗(I) | cone(αY ) ∉P for some Y ∈ I}.

Remark 5.1.22. In the proof of Theorem 5.1.9, we saw how to associate a “prime” ideal of

the non-commutative ring EX to any prime P ∈ supp(X ) which was then pulled back to

a genuine prime ideal of a commutative ring A via a map A → EX . A suitable theory of

spectra for non-commutative rings might allow us to work directly with the ring EX but this

avenue has not been pursued (and such a theory may not exist—cf. [Rey12]). In any case,

taking commutative rings mapping into EX is a flexible approach which provides for some

interesting examples not obviously tied to the ring EX (e.g., Example 5.1.21 above). On the

other hand, although the maps ρX ,A are useful for some purposes, they will not typically

be natural with respect to tensor triangular functors. The problem is that although the

construction of the ring EX is functorial (recall Lemma 5.1.7), the construction of various

commutative rings A mapping into EX will typically not be. For example, the center of EX is

not a functorial construction, nor is the graded-center of a triangulated category. In the next

section, we will replace EX by a functorial commutative ring RX and obtain a comparison

map ρX : supp(X ) → Spec(RX ) which is natural with respect to tensor triangular functors.

In fact, the construction of ρX will be a special case of a much more general construction,

which will provide us with additional examples of natural comparison maps.

5.2 Natural constructions

Let Φ be a non-empty set of objects in a tensor triangulated category K that is closed under

the ⊗-product (a,b ∈Φ⇒ a⊗ b ∈Φ). For any object X ∈K recall that EX denotes the ring of
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⊗-balanced endomorphisms of X .

Lemma 5.2.1. Suppose f : X → X is an endomorphism of X and g : Y → Y is a ⊗-balanced

endomorphism of Y . If X⊗ f ⊗g = f ⊗X⊗g then f ⊗g is a ⊗-balanced endomorphism of X⊗Y .

Proof. The commutativity of the diagram

X ⊗Y ⊗ X ⊗Y

id

''

τ⊗X⊗Y
��

X⊗Y⊗ f⊗g // X ⊗Y ⊗ X ⊗Y

τ⊗X⊗Y
��

id

ww

Y ⊗ X ⊗ X ⊗Y

τ⊗X⊗Y
��

Y⊗X⊗ f⊗g //

Y⊗ f⊗X⊗g
// Y ⊗ X ⊗ X ⊗Y

τ⊗X⊗Y
��

X ⊗Y ⊗ X ⊗Y

id

''

X⊗τ⊗Y
��

f⊗Y⊗X⊗g // X ⊗Y ⊗ X ⊗Y

X⊗τ⊗Y
��

id

ww

X ⊗ X ⊗Y ⊗Y

X⊗τ⊗Y
��

f⊗X⊗Y⊗g //

f⊗X⊗g⊗Y
// X ⊗ X ⊗Y ⊗Y

X⊗τ⊗Y
��

X ⊗Y ⊗ X ⊗Y
f⊗g⊗X⊗Y // X ⊗Y ⊗ X ⊗Y .

verifies that f ⊗ g ∈ EX⊗Y .

Corollary 5.2.2. For any pair of objects X ,Y ∈K the functors −⊗Y and X ⊗− induce ring

homomorphisms EX → EX⊗Y and EY → EX⊗Y .

Proof. If f ∈ EX then the g = idY case of Lemma 5.2.1 establishes that f ⊗Y ∈ EX⊗Y . Simi-

larly, if g ∈ EY then X ⊗ g ∈ EX⊗Y by taking f = idX in Lemma 5.2.1.

Definition 5.2.3. Define RΦ to be the set
{
(X , f ) : X ∈Φ, f ∈ EX

}/∼ where ∼ is the smallest

equivalence relation such that (X , f )∼ (a⊗X ,a⊗ f ) and (X , f )∼ (X ⊗a, f ⊗a) for every a ∈Φ.

Notation 5.2.4. A subscript fX will indicate that f is an endomorphism of X and [ fX ] will

denote the image of (X , f ) in RΦ.

Lemma 5.2.5. For any isomorphism α : X ∼−→ Y in K, the isomorphism of rings [X , X ] ∼−→

[Y ,Y ] given by f 7→α◦ f ◦α−1 restricts to give an isomorphism α∗ : EX
∼−→ EY . If f ∈ EX then

f ⊗Y = X ⊗α∗( f ) as an endomorphism of X ⊗Y .

162



Proof. This is routine from the definitions. If f ∈ EX then the diagram

Y ⊗Y

id

))

α−1⊗α−1

��

α fα−1⊗Y // Y ⊗Y

α−1⊗α−1

��
id

uu

X ⊗ X

α⊗α
��

f⊗X //

X⊗ f
// X ⊗ X

α⊗α
��

Y ⊗Y
Y⊗α fα−1

// Y ⊗Y

shows that α ◦ f ◦α−1 ∈ EY . A similar diagram shows the converse. Also, if f ∈ EX then

X ⊗α∗( f )= (X ⊗α)◦ (X ⊗ f )◦ (X ⊗α−1)= (X ⊗α)◦ ( f ⊗X )◦ (X ⊗α−1)= f ⊗ (α◦α−1)= f ⊗Y .

Notation 5.2.6. For two endomorphisms fX and gY the notation fX ' gY will indicate that

there exists an isomorphism α : X ∼−→ Y such that α∗( fX ) = gY . This coincides with our

earlier Notation 3.1.43.

Remark 5.2.7. The above lemma implies that in RΦ endomorphisms of X are identified

with endomorphisms of Y via all isomorphisms X ∼−→ Y . In particular, an endomorphism

fX is identified with the “twisted” version σ ◦ f ◦σ−1 for every automorphism σ : X ∼−→ X .

Because of these identifications, an essentially equivalent approach to the construction of

RΦ could be obtained by taking Φ to be a set of isomorphism classes of objects closed under

the ⊗-product. However, such an approach would obscure the fact that these identifications

up to isomorphism are forced by the innocuous identifications f ∼ a⊗ f and f ∼ f ⊗a.

Lemma 5.2.8. Two endomorphisms fX and gY are equivalent in RΦ if and only if there exist

objects a,b ∈Φ such that a⊗ fX ' b⊗ gY if and only if there exists an object c ∈Φ such that

fX ⊗ c⊗Y = X ⊗ c⊗ gY .

Proof. The proof of this lemma is straightforward from the definitions once one appre-

ciates Remark 5.2.7. Since the lemma is important we will give more details than are

really necessary. First we check that the third condition (existence of c ∈ Φ such that
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fX ⊗ c⊗Y = X ⊗ c⊗ gY ) defines an equivalence relation on
{
(X , f ) : X ∈Φ, f ∈ EX

}
. For reflex-

ivity, we take c = X and use the fact that f is ⊗-balanced: fX ⊗X ⊗X = X ⊗ f ⊗X = X ⊗X ⊗ f .

For symmetry, it suffices to show that if fX ⊗ c⊗Y = X ⊗ c⊗ gY then gY ⊗ c⊗ X =Y ⊗ c⊗ fX .

This is evident from the commutativity of

Y ⊗ c⊗ X

id

$$

'

g⊗c⊗X // Y ⊗ c⊗ X

id

zz
'

X ⊗ c⊗Y

'

X⊗c⊗gY //

f⊗c⊗Y
// X ⊗ c⊗Y

'
Y ⊗ c⊗ X

Y⊗c⊗ f // Y ⊗ c⊗ X

where the vertical isomorphisms are those isomorphisms induced by the monoidal symme-

try which swap the appropriate ⊗-factors. Transitivity is fairly immediate: if fX ⊗ c⊗Y =

X⊗c⊗gY and gY⊗d⊗Z =Y⊗d⊗hZ for some c,d ∈Φ then fX⊗c⊗Y⊗d⊗Z = X⊗c⊗gY⊗d⊗Z =

X ⊗ c⊗Y ⊗d⊗hZ . To show that this equivalence relation is stronger than the equivalence

relation defining RΦ we need to show that f ∈ EX is identified with a⊗ f and f ⊗a for any

a ∈ Φ. Indeed, the fact that fX is ⊗-balanced implies that f ⊗ c⊗ a⊗ X = X ⊗ c⊗ a⊗ f and

f ⊗ c⊗ X ⊗a = X ⊗ c⊗ f ⊗a for any object c ∈K. For example:

X ⊗ c⊗ X ⊗a

id

$$

f⊗c⊗X⊗a //

τ⊗1⊗1
��

X ⊗ c⊗ X ⊗a

τ⊗1⊗1
��

id

zz

c⊗ X ⊗ X ⊗a

τ⊗1⊗1
��

c⊗ f⊗X⊗a //

c⊗X⊗ f⊗a
// c⊗ X ⊗ X ⊗a

τ⊗1⊗1
��

X ⊗ c⊗ X ⊗a
X⊗c⊗ f⊗a // X ⊗ c⊗ X ⊗a.

These kinds of tricks moving around ⊗-balanced endomorphisms using the symmetry have

already been seen in the proof of Lemma 5.2.1 and will be used in the sequel without further

comment. On the other hand, fX ⊗ c⊗Y = X ⊗ c⊗ gY clearly implies that [ fX ] = [gY ] in RΦ

and we conclude that the equivalence relation given by the third condition is precisely the

equivalence relation defining RΦ.

Next we consider the second criterion in the statement of the lemma: the existence of
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objects a,b ∈Φ such that a⊗ fX ' b⊗ gY . According to Notation 5.2.4 this means that there

exists an isomorphism α : a⊗ X ∼−→ b⊗Y such that α ◦ (a⊗ fX ) = (b⊗ gY ) ◦α. First we will

check that this second criterion defines an equivalence relation on
{
(X , f ) : X ∈Φ, f ∈ EX

}
.

Reflexivity is immediate. For symmetry: if α ◦ (a⊗ fX ) = (b⊗ gY ) ◦α then α−1 ◦ (b⊗ gY ) =

(a⊗ fX )◦α−1 so taking the inverse α−1 : b⊗Y ∼−→ a⊗X we have that b⊗ gY ' a⊗ fX . Finally,

for transivity, if β : b⊗Y ∼−→ c⊗Z is an isomorphism such that β◦ (b⊗ gY ) = (c⊗hZ)◦β then

β◦α : a⊗X ∼−→ c⊗Z is an isomorphism with β◦α◦ (a⊗ fX )=β◦ (b⊗ gY )◦α= (c⊗hZ)◦β◦α so

that a⊗ fX ' c⊗hZ . Next we wish to show that this equivalence relation is stronger than the

one defining RΦ. Given fX and a ∈Φ want to show that fX ∼ a⊗ fX . Well, a⊗ fX ' 1⊗a⊗ fX

so taking b = 1⊗a gives what we want. For fX ∼ fX ⊗b we can similarly take a = 1⊗b. On the

other hand, if a⊗ fX ' b⊗gY then by definition there exists an isomorphism α : a⊗X ∼−→ b⊗Y

such that b⊗ gY =α∗(a⊗ fX ). Lemma 5.2.5 then implies that a⊗ fX ⊗b⊗Y = a⊗ X ⊗b⊗ gY

so that [ fX ] = [gY ] in RΦ. We conclude that the equivalence relation given by the second

condition is precisely the equivalence relation defining RΦ.

Proposition 5.2.9. The set RΦ is a commutative ring with addition and multiplication de-

fined by [ fX ]+ [gY ] := [ fX ⊗Y + X ⊗ gY ] and [ fX ] · [gY ] := [( fX ⊗Y ) ◦ (X ⊗ gY )] = [ fX ⊗ gY ].

The zero element is [0X ] for any X ∈Φ and the identity element is [idX ] for any X ∈Φ. More

generally, [ fX ]= 0 iff there exists a ∈Φ such that a⊗ fX = 0. Similarly, [ fX ]= 1 iff there exists

a ∈Φ such that a⊗ fX = ida⊗X . In addition, [ fX ] is a unit iff there exists a ∈Φ such that a⊗ fX

is an isomorphism.

Proof. Armed with Lemma 5.2.8, it is a long but straightforward exercise to establish that

addition and multiplication are well-defined and endow RΦ with a ring structure. Let’s

begin by demonstrating that multiplication is well-defined. If [ fX ] = [ f ′X ′] and [gY ] = [g′
Y ′]
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then by the second criterion of Lemma 5.2.8 there exist isomorphisms

α : a⊗ X ∼−→ a′⊗ X ′ and β : b⊗Y ∼−→ b′⊗Y ′

for some objects a,a′,b,b′ ∈Φ such that α∗(a⊗ f ) = a′⊗ f ′ and β∗(b⊗ g) = b′⊗ g′. Defining

γ : a⊗b⊗ X ⊗Y ∼−→ a′⊗b′⊗ X ′⊗Y ′ to be the composite isomorphism

a⊗b⊗ X ⊗Y 1⊗τ⊗1//a⊗ X ⊗b⊗Y
α⊗β //a′⊗ X ′⊗b′⊗Y ′1⊗τ⊗1//a′⊗b′⊗ X ′⊗Y ′

we claim that γ∗(a⊗b⊗ f ⊗ g)= a′⊗b′⊗ f ′⊗ g′ so that [ f ⊗ g]= [ f ′⊗ g′] in RΦ. Indeed,

γ◦ (a⊗b⊗ f ⊗ g)= (1⊗τ⊗1)◦ (α⊗β)◦ (1⊗τ⊗1)◦ (a⊗b⊗ f ⊗ g)

= (1⊗τ⊗1)◦ (α⊗β)◦ (a⊗ f ⊗b⊗ g)◦ (1⊗τ⊗1)

= (1⊗τ⊗1)◦ (a′⊗ f ′⊗b′⊗ g′)◦ (α⊗β)◦ (1⊗τ⊗1)

= (a′⊗b′⊗ f ′⊗ g′)◦ (1⊗τ⊗1)◦ (α⊗β)◦ (1⊗τ⊗1)

= (a′⊗b′⊗ f ′⊗ g′)◦γ

or, diagramatically,

a⊗b⊗ X ⊗Y

γ

''

1⊗τ⊗1
��

1⊗1⊗ f⊗g // a⊗b⊗ X ⊗Y

1⊗τ⊗1
��

γ

ww

a⊗ X ⊗b⊗Y

α⊗β
��

1⊗ f⊗1⊗g // a⊗ X ⊗b⊗Y

α⊗β
��

a′⊗ X ′⊗b′⊗Y ′

1⊗τ⊗1
��

1⊗ f ′⊗1⊗g′
// a′⊗ X ′⊗b′⊗Y ′

1⊗τ⊗1
��

a′⊗b′⊗ X ′⊗Y ′ 1⊗1⊗ f ′⊗g′
// a′⊗b′⊗ X ′⊗Y ′.
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Similarly, to show that addition is well-defined it suffices to show that

γ◦ (a⊗b⊗ ( fX ⊗Y + X ⊗ gY ))= γ◦ (a⊗b⊗ fX ⊗Y )+γ◦ (a⊗b⊗ X ⊗ gY )

= (1⊗τ⊗1)◦ (α⊗β)◦ (1⊗τ⊗1)◦ (a⊗b⊗ fX ⊗Y )

+ (1⊗τ⊗1)◦ (α⊗β)◦ (1⊗τ⊗1)◦ (a⊗b⊗ X ⊗ gY )

= (1⊗τ⊗1)◦ (α⊗β)◦ (a⊗ fX ⊗b⊗Y )◦ (1⊗τ⊗1)

+ (1⊗τ⊗1)◦ (α⊗β)◦ (a⊗ X ⊗b⊗ gY )◦ (1⊗τ⊗1)

= (1⊗τ⊗1)◦ (a′⊗ f ′X ′ ⊗b′⊗Y ′)◦ (α⊗β)◦ (1⊗τ⊗1)

+ (1⊗τ⊗1)◦ (a′⊗ X ′⊗b′⊗ g′
Y ′)◦ (α⊗β)◦ (1⊗τ⊗1)

= (a′⊗b′⊗ f ′X ′ ⊗Y ′)◦ (1⊗τ⊗1)◦ (α⊗β)◦ (1⊗τ⊗1)

+ (a′⊗b′⊗ X ′⊗ g′
Y ′)◦ (1⊗τ⊗1)◦ (α⊗β)◦ (1⊗τ⊗1)

= (a′⊗b′⊗ f ′X ′ ⊗Y ′)◦γ+ (a′⊗b′⊗ X ′⊗ g′
Y ′)◦γ

= (a′⊗b′⊗ ( f ′X ′ ⊗Y ′+ X ′⊗ g′
Y ′))◦γ.

Having shown that addition and multiplication are well-defined it is straightforward to

check that RΦ satisfies the axioms of a ring. There are several ways to see that this

ring structure is commutative. For example, the fact that fX is ⊗-balanced implies that

f ⊗ g⊗X = X ⊗ g⊗ f and so [ f ] · [g]= [ f ⊗ g]= [ f ⊗ g⊗X ]= [X ⊗ g⊗ f ]= [g⊗ f ]= [g] · [ f ]. The

remaining statements (e.g., that [ f ]= 0 iff a⊗ f = 0 for some a ∈Φ) are easily verified.

Remark 5.2.10. The ring RΦ is the colimit of a diagram of rings consisting of EX for each

X ∈Φ with maps generated by a⊗− : EX → Ea⊗X and −⊗a : EX → EX⊗a. Although the index

category on which this diagram is defined is not technically a filtered category (because there

are parallel arrows that are not coequalized in the category), colimX∈ΦEX is still a filtered

colimit in the more general sense of [Sta, Chapter 4, Section 17] which is sufficient for the

colimit to be created in the category of sets. Rather than define RΦ to be this colimit (which
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would necessitate a longer discussion of these technicalities) we have opted for the concrete

description given above.

The following definition will be important in Theorem 5.2.15 below.

Definition 5.2.11. Define a closed subset ZΦ of the tensor triangular spectrum Spc(K) by

ZΦ := ⋂
a∈Φ

supp(a).

Lemma 5.2.12. The commutative ring RΦ is zero iff Φ contains zero iff Φ contains an object

which is ⊗-nilpotent iff ZΦ =;.

Proof. Fix an X ∈ Φ and note that RΦ = 0 iff [idX ] = [0X ] iff a⊗ X = 0 for some a ∈ Φ iff

Φ contains zero. Since Φ is closed under ⊗-product, it contains zero iff it contains an ob-

ject which is ⊗-nilpotent. To complete the proof we need to recall from Remark 4.1.8 that

supp(X )=; iff X is ⊗-nilpotent. Thus, ZΦ =; ifΦ contains a ⊗-nilpotent object. Conversely,

if ZΦ =⋂
a∈Φ supp(a)=; then the quasi-compactness of Spc(K) implies that

supp(a1)∩·· ·∩supp(an)=;

for some finite set of objects a1, . . . ,an ∈Φ and the object a1⊗·· ·⊗an ∈Φ is ⊗-nilpotent since

supp(a1 ⊗·· ·⊗an)= supp(a1)∩·· ·∩supp(an)=;.

Proposition 5.2.13. Let Φ be a non-empty ⊗-multiplicative set of objects in a tensor trian-

gulated category K. If (0) is a prime in K, for example if K is rigid and local, then RΦ is a

local ring provided that it is non-zero.

Proof. The proof closely mirrors the proof that EX is local (Proposition 5.1.5). Indeed, if

[ fX ]+[gY ] is a unit in RΦ then a⊗( f ⊗Y +X⊗g) is an isomorphism for some a ∈Φ. It follows

that a⊗n ⊗ ( f ⊗Y + X ⊗ g)⊗n ⊗ cone( f )⊗ cone(g) is both zero and an isomorphism for n ≥ 3.

This implies that a⊗n ⊗ (X ⊗Y )⊗n ⊗ cone( f )⊗ cone(g)= 0 for n ≥ 3 and since (0) is prime and

168



X ,Y ,a ∈Φ are non-zero we conclude that f or g is an isomorphism (and hence [ f ] or [g] is a

unit in RΦ).

Proposition 5.2.14. Let F : K→ L be a morphism of tensor triangulated categories. Sup-

pose Φ ⊂ K and Ψ ⊂ L are non-empty ⊗-multiplicative subsets such that F(Φ) ⊂ Ψ. Then

[ f ] 7→ [F( f )] defines a ring homomorphism RK,Φ→ RL,Ψ.

Proof. This is a routine verification using Lemma 5.2.8 and the fact that F : K → L is a

strong ⊗-functor. Indeed, if [ fX ]= [ f ′X ′] then there exists an object c ∈Φ such that f ⊗c⊗X ′ =

X ⊗ c⊗ f ′ and the diagram

F X ⊗Fc⊗F X ′

id

&&
'

F f⊗Fc⊗F X ′
// F X ⊗Fc⊗F X ′

'

id

xx

F(X ⊗ c⊗ X ′)

'

F( f⊗c⊗ f ′) //

F(X⊗c⊗ f ′)
// F(X ⊗ c⊗ X ′)

'

F X ⊗Fc⊗F X ′
F X⊗Fc⊗F f ′

// F X ⊗Fc⊗F X ′

demonstrates that [F f ]= [F f ′] in RL,Ψ.

Theorem 5.2.15. Let K be a tensor triangulated category and letΦ⊂K be a non-empty set of

objects closed under the ⊗-product. Let ZΦ :=⋂
X∈Φ supp(X ). There is an inclusion-reversing,

spectral map

ρΦ :ZΦ→Spec(RΦ)

defined by P 7→ {
[ f ] ∈ RΦ | cone( f ) ∉P}

.

Proof. The first point to make is that for P ∈ ZΦ the condition cone( f ) ∉ P does not depend

on the choice of representative of [ f ] ∈ RΦ. Indeed, if [ fX ] = [gY ] then a⊗ f ' b⊗ g for some

a,b ∈Φ. It follows that cone(a⊗ f )' cone(b⊗g). Indeed, if α : a⊗X ∼−→ b⊗Y is an isomorphism
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such that α∗(a⊗ f )= b⊗ g then we can construct a morphism of exact triangles

a⊗ X

α

��

a⊗ f // a⊗ X

α

��

// cone(a⊗ f )

∃β
��

// Σa⊗ X

Σα
��

b⊗Y
b⊗g // b⊗Y // cone(b⊗ g) // Σb⊗Y

and Lemma 3.1.9 implies that β : cone(a⊗ f )→ cone(b⊗ g) is an isomorphism. Furthermore,

cone(a⊗ f )' a⊗cone( f ) and cone(b⊗ g)' b⊗cone(g) since a⊗− and b⊗− are exact functors.

If P ∈ ZΦ then P ∈ supp(cone( f )) iff P ∈ supp(a)∩ supp(cone( f )) = supp(b)∩ supp(cone(g)) iff

P ∈ supp(cone(g)). The second point to make is that for any prime P ∈ Spc(K) the quotient

functor q :K→K/P induces a ring homomorphism RK,Φ→ RK/P,q(Φ) whose target ring is lo-

cal provided that 0 ∉ q(Φ); in other words, provided that P∩Φ=; which is equivalent to say-

ing that P ∈ZΦ. With these facts in mind the proof is similar to the proof of Theorem 5.1.9.

For an element [ f ] ∈ RK,Φ, [q( f )] is a unit in RK/P,q(Φ) iff there exists a ∈Φ such that q(a⊗ f )

is an isomorphism in K/P iff there exists a ∈Φ such that a⊗cone( f ) ∈P iff cone( f ) ∈P. Thus

ρΦ(P) is the pullback of the collection of non-units in RK/P,q(Φ) and since the non-units in a

local ring form a (two-sided) ideal, this establishes that ρΦ(P) is an ideal. It is prime since

[ fX ]·[gY ] ∈ ρΦ(P) implies that P ∈ supp(cone( f ⊗g))⊂ supp(cone( f ⊗Y ))∪supp(cone(X⊗g))⊂

supp(cone( f ))∪supp(cone(g)). That ρΦ is a spectral map follows from similar modifications

to the argument given in the proof of Theorem 5.1.9.

Example 5.2.16. For any object X ∈ K, taking Φ := {
X⊗n | n ≥ 1

}
provides a comparison

map ρX : supp(X ) → Spec(RX ). These are the “object” comparison maps mentioned in the

introduction.

Example 5.2.17. For any closed set Z ⊂ Spc(K), taking Φ := {
a ∈ K | supp(a) ⊃ Z

}
gives a

comparison map ρZ :Z→ Spec(RZ). These are the “closed set” comparison maps mentioned

in the introduction. Note that ZΦ =Z because
{
supp(a) : a ∈K}

forms a basis of closed sets

for the topology on Spc(K). Also note that if the category K is not small then there is the
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unfortunate detail that Φ might not be a set; however, we do not need to worry about this

technicality because of Remark 5.2.7.

Example 5.2.18. For any Thomason closed set Z⊂ Spc(K), taking Φ := {
a ∈K | supp(a)=Z

}
provides another comparison map defined on Z. However, the ring RΦ is canonically isomor-

phic to the one in Example 5.2.17 and under this identification the two comparison maps

coincide. In other words, when Z is Thomason we can take the target ring of the “closed

set” comparison map ρZ : Z→ Spec(RZ) to be defined using only those objects X for which

supp(X )=Z.

Example 5.2.19. Another candidate to consider would be Φ := {
a ∈ K|supp(a) ⊂ Z

}
but in

this case ZΦ =; and RΦ = 0 as indicated by Lemma 5.2.12.

Remark 5.2.20. There are other examples that could be considered, such as the collection

of ⊗-invertible objects, or the collection of objects that are isomorphic to a direct sum of

suspensions of 1.

Proposition 5.2.21. Let F : (K,Φ)→ (L,Ψ) be a morphism of tensor triangulated categories

K→L such that F(Φ)⊂Ψ. Then there is a commutative diagram

Spc(L)

��

⊃ ZL,Ψ
ρL,Ψ //

��

Spec(RL,Ψ)

��
Spc(K) ⊃ ZK,Φ ρK,Φ

// Spec(RK,Φ)

(5.2.22)

in the category of spectral spaces.

Proof. A ring homomorphism RK,Φ→ RL,Ψ is provided by Proposition 5.2.14 and the rest is

a routine recollection of the relevant definitions. Let φ : Spc(L)→Spc(K) be the map on spec-

tra induced by the tensor triangulated functor F. Recall that for any X ∈K, suppL(F X ) =

φ−1(suppK(X )). Since F(Φ)⊂Ψ we then have

ZL,Ψ = ⋂
Y∈Ψ

suppL(Y )⊂ ⋂
X∈Φ

suppL(F X )=φ−1(
⋂

X∈Φ
suppK(X ))=φ−1(ZK,Φ)
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and so φ restricted to ZL,Ψ lands in ZK,Φ. Note that this restriction is a spectral map by

Proposition 2.4.9. Consider Q ∈ZL,Ψ. Then the top-right edge sends it to

{
[ f ] ∈ RK,Φ | cone(F f ) ∉Q}= {

[ f ] ∈ RK,Φ | F(cone( f )) ∉Q}
.

On the other hand, φ(Q)= F−1(Q) so Q is sent along the bottom-right to

{
[ f ] ∈ RK,Φ | cone( f ) ∉ F−1(Q)

}= {
[ f ] ∈ RK,Φ | F(cone( f )) ∉Q}

and we conclude that the diagram commutes.

Example 5.2.23. If Z1 ⊂ Z2 is an inclusion of closed subsets then there is a ring homomor-

phism RZ2 → RZ1 and a commutative diagram

Z2
ρZ2 // Spec(RZ2)

Z1

⊂

ρZ1 // Spec(RZ1).

OO

Example 5.2.24. If Z is a Thomason closed subset then for any object X with supp(X ) = Z

there is a ring homomorphism RX → RZ and a commutative diagram

Z
ρZ //

ρX
$$

Spec(RZ)

��
Spec(RX ).

It is worth explicitly stating the naturality in the case of the object and closed set com-

parison maps:

Proposition 5.2.25. If F :K→L is a morphism of tensor triangulated categories and X ∈K

then there is a commutative diagram

Spc(L)

��

⊃ suppL(F X )
ρL,F X //

��

Spec(RL,F X )

��
Spc(K) ⊃ suppK(X ) ρK,X

// Spec(RK,X )

in the category of spectral spaces, where the left square is cartesian.
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Proposition 5.2.26. If F :K→L is a morphism of small tensor triangulated categories and

Z⊂Spc(K) is a closed subset then there is a commutative diagram

Spc(L)

φ

��

⊃ φ−1(Z)
ρ
L,φ−1(Z) //

��

Spec(RL,φ−1(Z))

��
Spc(K) ⊃ Z ρK,Z

// Spec(RK,Z)

in the category of spectral spaces, where the left square is cartesian.

Remark 5.2.27. Considering suppK(X ) and Spec(RK,X ) as contravariant functors from the

category of essentially small tensor triangulated categories with chosen object to the cate-

gory of spectral spaces, the object comparison maps ρK,X can be regarded as a natural trans-

formation suppK(X ) → Spec(RK,X ). Similarly, there is a contravariant “forgetful” functor

(K,Z) 7→Z from the category of small tensor triangulated categories with chosen closed sub-

set of their spectrum to the category of spectral spaces, and the closed set comparison maps

ρK,Z form a natural transformation from this functor to the functor (K,Z) 7→Spec(RK,Z). Fi-

nally, the general comparison map ρK,Φ can be regarded as a natural transformation from

(K,Φ) 7→ZΦ to (K,Φ) 7→Spec(RK,Φ).

Remark 5.2.28. It is straightforward to develop the graded version of these constructions.

One checks that the graded analogue of Corollary 5.2.2 holds and then defines R•
Φ to be the

colimit of the diagram of graded rings generated by the maps E•
X → E•

X⊗Y and E•
Y → E•

X⊗Y .

One checks that this is a filtered colimit (in the weak sense—see Remark 5.2.10) and it is

easily determined how filtered colimits of graded rings are constructed. To be clear, the

abelian group R i
Φ is the filtered colimit of abelian groups colimX∈ΦE i

X and thus consists of

equivalence classes [ f ] where f ∈ E i
X for some X ∈Φ. The product on R•

Φ is given by

colimX∈ΦE i
X ×colimY∈ΦE j

Y
// colimZ∈ΦE i+ j

Z

([ fX ], [gY ]) � // [( fX ⊗Y ) · (X ⊗ gY )]
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where ( fX⊗Y )·(X⊗gY ) is the graded product in E•
X⊗Y . Note that R0

Φ is exactly the ungraded

ring RΦ from Definition 5.2.3. It is straightforward to show that R•
Φ is graded-commutative

although one needs to be clear about our abuses of notation concerning the suspension iso-

morphisms. Ultimately the graded-commutativity comes from the anti-commutativity of

diagram (3.3.6) in the axioms of a tensor triangulated category.

The proof of the following theorem is very similar to the proof of Theorem 5.1.16 just

with the kind of modifications we saw in the proof of Theorem 5.2.15.

Theorem 5.2.29. Let K be a tensor triangulated category and let Φ⊂K be a non-empty set

of objects closed under the ⊗-product. There is a graded-commutative graded ring R•
Φ and

an inclusion-reversing, spectral map

ρ•Φ :ZΦ→Spech(R•
Φ)

defined by ρ•Φ(P) := {
[ f ] ∈ R i

Φ | cone( f ) ∉P}
i∈Z. The ring RΦ is precisely R0

Φ and p• 7→ p•∩R0
Φ

defines a surjective spectral map Spech(R•
Φ) → Spec(RΦ) such that the following diagram

commutes

ZΦ

ρΦ $$

ρ•Φ // Spech(R•
Φ)

(−)0
��

Spec(RΦ).

(5.2.30)

Remark 5.2.31. The graded comparison maps have the same kind of naturality properties

as the ungraded comparison maps (cf. Remark 5.2.27).

5.3 Object comparison maps

In this section we will establish some of the basic features of the natural “object” com-

parison maps ρX : supp(X ) → Spec(RX ) defined in Example 5.2.16. More specifically, our

primary goal is to establish that ρX is invariant under some natural operations that can be
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performed on the object X such as taking duals, or suspensions, or ⊗-powers, etc. Before we

begin proving such results, let us remark that for X = 1 the canonical map [1,1] = E1 → R1

is an isomorphism and under this identification ρ1 : Spc(K)→Spec(R1) is the original unit

comparison map from [Bal10a]; similarly for the graded version.

Proposition 5.3.1. There is a canonical isomorphism of rings

RX ∼= colim(EX
X⊗− //EX⊗2

X⊗− //EX⊗3
X⊗− //EX⊗4

X⊗− // · · · ) (5.3.2)

induced by the canonical maps EX⊗n → RX .

Proof. Let n ≥ 1. It is straightforward to check that the canonical map EX⊗n → RX is a ring

homomorphism. Indeed, [ f ]+[g]= [ f ⊗X⊗n+X⊗n⊗g]= [X⊗n⊗ f +X⊗n⊗g]= [X⊗n⊗( f +g)]=

[ f + g] and [ f ] · [g] = [( f ⊗ X⊗n)◦ (X⊗n ⊗ g)] = [(X⊗n ⊗ f )◦ (X⊗n ⊗ g)] = [X⊗n ⊗ ( f ◦ g)] = [ f ◦ g]

for f , g ∈ EX⊗n . Now, it follows from Corollary 5.2.2 that we have a filtered diagram

EX
X⊗− //EX⊗2

X⊗− //EX⊗3
X⊗− //EX⊗4

X⊗− // · · ·

and since [ fX⊗n] = [X ⊗ fX⊗n] in RX , the maps EX⊗n → RX induce a ring homomorphism

colimn≥1 EX⊗n → RX . This homomorphism is evidently surjective. On the other hand, if

[ fX⊗n] = 0 in RX then by Proposition 5.2.9 there exists m ≥ 1 such that X⊗m ⊗ f = 0 so that

f = 0 in colimn≥1 EX⊗n .

In the rest of this section we will often tacitly make the identification RX = colimn≥1 EX⊗n .

Lemma 5.3.3. If f ∈ EX then thick⊗〈cone( f )〉 ⊂ {
a ∈K | a⊗ f ⊗n = 0 for some n ≥ 1

}
.

Proof. We check that the right-hand side is a thick ⊗-ideal. That it is closed under Σ, Σ−1,

⊕-sums, and ⊕-summands is clear from Σa⊗ f ⊗n 'Σ(a⊗ f ⊗n) and (a⊕ b)⊗ f ⊗n ' (a⊗ f ⊗n)⊕

(b⊗ f ⊗n). On the other hand, suppose a → b → c → Σa is an exact triangle and that a and
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b are contained in the right-hand side. Then there exists n ≥ 1 such that a⊗ f ⊗n = 0 and

b⊗ f ⊗n = 0. We then have an endomorphism of exact triangles

a⊗ X⊗n //

a⊗ f ⊗n

��

b⊗ X⊗n //

b⊗ f ⊗n

��

c⊗ X⊗n

c⊗ f ⊗n

��

// Σ(a⊗ X⊗n)

Σ(a⊗ f ⊗n)
��

a⊗ X⊗n // b⊗ X⊗n // c⊗ X⊗n // Σ(a⊗ X⊗n)

where three of the vertical morphisms are zero. By the proof of Lemma 3.1.8, it follows that

the remaining vertical arrow squares to zero: (c⊗ f ⊗n)2 = 0. Since

c⊗ f ⊗2n = (c⊗ f ⊗n ⊗ X⊗n)◦ (c⊗ X⊗n ⊗ f ⊗n)

= (c⊗ f ⊗n ⊗ X⊗n)◦ (c⊗ f ⊗n ⊗ X⊗n)

= (c⊗ f ⊗n)2 ⊗ X⊗n

= 0

we conclude that c is also in the right-hand side. This establishes that it is closed under

cofibers and it is evidently also a ⊗-ideal. In summary, the right-hand side is a thick ⊗-ideal.

It contains cone( f ) by Lemma 5.1.3 and the inclusion in the statement follows.

Proposition 5.3.4. An isomorphism α : X ∼−→Y in K induces an isomorphism of rings

α∗ : RX
∼−→ RY

and under this identification ρX coincides with ρY .

Proof. This is routine from the definitions. One readily verifies that the induced isomor-

phisms (α⊗n)∗ : EX⊗n → EY⊗n given by Lemma 5.2.5 commute with the X⊗− and Y ⊗− maps,

and hence induce an isomorphism colimn≥1 EX⊗n → colimn≥1 EY⊗n . Verifying that ρX = ρY

under this identification amounts to checking the definitions and noting that if f is an endo-

morphism of an object X and α : X ∼−→Y is an isomorphism then cone( f )' cone(α◦ f ◦α−1).
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Proposition 5.3.5. Tensoring on the right by an object Y induces a ring homomorphism

RX → RX⊗Y and a commutative diagram

supp(X )
ρX // Spec(RX )

supp(X )∩supp(Y )
?�

OO

ρX⊗Y // Spec(RX⊗Y ).

OO
(5.3.6)

If supp(X ) ⊂ supp(Y ) then the kernel of the map RX → RX⊗Y consists entirely of nilpotents.

There is a similar result for tensoring on the left.

Proof. Note that there is a canonical isomorphism X⊗n⊗Y⊗n ∼−→ (X⊗Y )⊗n obtained from the

symmetry that preserves the order of the X ’s and the order of the Y ’s. One can then define

a ring homomorphism EX⊗n → E(X⊗Y )⊗n as the composition of −⊗Y⊗n : EX⊗n → EX⊗n⊗Y⊗n

and the isomorphism EX⊗n⊗Y⊗n
∼−→ E(X⊗Y )⊗n and one readily verifies that these maps in-

duce a homomorphism RX → RX⊗Y . That (5.3.6) commutes follows from the definitions,

observing that if P ∈ supp(Y ) then a ∈ P iff a⊗Y ∈ P. Finally, if [ f ] ∈ RX is mapped to

zero in RX⊗Y then X⊗i ⊗Y⊗ j ⊗ f = 0 for some i, j ≥ 1. It follows from Corollary 3.1.15 and

the condition supp(X ) ⊂ supp(Y ) that supp(X )∩ supp(cone( f )) = supp(X ) and hence that

supp(X ) ⊂ supp(cone( f )). It then follows from Lemma 4.2.6 that X⊗k ∈ thick⊗〈cone( f )〉 for

some k ≥ 1. Lemma 5.3.3 then implies that X⊗k ⊗ f ⊗n = 0 for some n ≥ 1 and we conclude

that [ f ] is a nilpotent element of RX .

Example 5.3.7. For every object X we have a map [1,1]→ RX whose kernel consists of nilpo-

tent elements and a commutative diagram:

Spc(K) // Spec([1,1])

supp(X )
?�

OO

// Spec(RX ).

OO

177



Proposition 5.3.8. For every pair of objects X and Y and every integer k ≥ 1, tensoring on

the left by X⊗(k−1) induces an isomorphism RX⊗Y
∼−→ RX⊗k⊗Y . Under this identification the

maps ρX⊗Y and ρX⊗k⊗Y coincide.

Proof. Since the homomorphisms RX⊗Y ,→ RX⊗2⊗Y ,→ RX⊗3⊗Y ,→ ··· induced by X ⊗− are

evidently injective, the problem reduces to showing that RX⊗Y → RX⊗2⊗Y is surjective. In

other words, we need to show that every f ∈ E(X⊗2⊗Y )⊗n is equivalent in RX⊗2⊗Y to an element

coming from RX⊗Y . We’ll give the proof under the assumption that n = 1. The proof for

arbitrary n ≥ 1 is similar.

Consider the element g ∈ E(X⊗Y )⊗3 corresponding to X ⊗ f ⊗Y⊗2 ∈ EX⊗3⊗Y⊗3 . Under the

map RX⊗Y → RX⊗2⊗Y , [g] is sent to the image in RX⊗2⊗Y of the element in E(X⊗2⊗Y )⊗3 cor-

responding to X⊗4 ⊗ f ⊗Y⊗2 ∈ EX⊗6⊗Y⊗3 . We claim that this element in E(X⊗3⊗Y )⊗3 equals

(X⊗2⊗Y )⊗2⊗ f so that the image of [g] in RX⊗2⊗Y equals [ f ]. This is not completely obvious

and involves an unilluminating trick. In order to describe this trick, let’s write a := X⊗2 and

b :=Y for simplicity of notation; so f ∈ Ea⊗b. We will use subscripts to indicate position and

we’ll drop the tensors from the notation. Consider the diagram

a1b1a2b2a3b3

∼
��

ababf //

abf ab
// a1b1a2b2a3b3

∼
��

a1a2b2a3b1b3
af ab2

//

a2bf b
//

∼
��

a1a2b2a3b1b3

∼
��

a1a2a3b1b2b3
a2 f b2

// a1a2a3b1b2b3

where the vertical maps are the indicated permutations of the factors induced by the sym-

metry. Note that the composition of the two vertical permutations is the unique permutation

from the source to the target that preserves the order of the a’s and the order of the b’s. The

top arrow is (X2 ⊗Y )⊗2 ⊗ f and the bottom arrow is the morphism that it corresponds to

in EX⊗6⊗Y⊗3 . The commutativity of the diagram verifies that this equals X⊗4 ⊗ f ⊗Y⊗2 as
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claimed.

Proposition 5.3.9. If K is a rigid tensor triangulated category then for every object X in K

there is a canonical isomorphism RX ' RDX under which the map ρX coincides with ρDX .

Proof. The duality functor D :Kop →K gives a ring isomorphism [X , X ] ∼−→ [DX ,DX ]op and

an easy application of the fact that D is a strong ⊗-functor shows that the isomorphism

restricts to an isomorphism EX
∼−→ Eop

DX . It is straightforward but tedious to verify that

these isomorphisms induce an isomorphism RX
∼−→ Rop

DX = RDX . Showing that ρX and ρDX

correspond amounts to showing that supp(cone(D f )) = supp(D(cone( f ))). Here we use the

fact that D is an exact functor of triangulated categories and the fact that supp(DX ) =

supp(X ) in any rigid category (cf. [Bal07, Proposition 2.7]).

Our next goal is to establish that ρX = ρX⊕X . Note that under the usual identification

of (X ⊕ X )⊗n with a ⊕-sum of 2n copies of X⊗n an endomorphism (X ⊕ X )⊗n → (X ⊕ X )⊗n

can be regarded as a 2n ×2n matrix ( f i j) with entries f i j : X⊗n → X⊗n. We will make such

identifications without further comment.

Lemma 5.3.10. An endomorphism f = ( f i j) : a1 ⊕ ·· · ⊕ an → a1 ⊕ ·· · ⊕ an is contained in

Ea1⊕···⊕an if and only if

1. ai ⊗ f j j = f ii ⊗a j for all i, j, and

2. f i j ⊗ (a1 ⊕·· ·⊕an)= 0 for i 6= j.

Proof. Observe that f ⊗ (a1 ⊕·· ·⊕an), viewed as an n2 ×n2 matrix, consists of n×n blocks,

each of which is diagonal, while (a1 ⊕ ·· · ⊕ an)⊗ f consists of n× n blocks, arranged along

the diagonal. Equating the off-diagonal blocks gives the condition that f i j ⊗ ak = 0 for all

k if i 6= j, which is equivalent to condition (2). Similarly, equating the off-diagonals of the
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diagonal blocks gives the equivalent condition that ak⊗ f i j = 0 for all k if i 6= j. On the other

hand, the diagonal of the ith diagonal block gives the condition that f ii ⊗ a j = ai ⊗ f j j for

all j.

Corollary 5.3.11. If f ∈ E(X⊕X )⊗n then there exists some α ∈ EX⊗n such that (X ⊕ X )⊗n ⊗ f

(regarded as a matrix of endomorphisms of X⊗2n) is diagonal with copies of X⊗n ⊗α along

the diagonal.

Proof. This follows from Lemma 5.3.10. We can take α := f11 for example.

Proposition 5.3.12. Let K be a tensor triangulated category and let X be an object in K.

There is a canonical isomorphism RX ' RX⊕X under which ρX coincides with ρX⊕X .

Proof. Invoking Lemma 5.3.10, we see that there is a ring homomorphism ∆ : EX⊗n ,→

E(X⊕X )⊗n for each n ≥ 1 which sends f ∈ EX⊗n to the diagonal matrix consisting of copies

of f on the diagonal. One checks that these maps commute with X ⊗− and (X ⊕ X )⊗−

and therefore induce an injection RX ,→ RX⊕X . Surjectivity of this map follows from Corol-

lary 5.3.11. That ρX and ρX⊕X correspond boils down to the definitions and the fact that

cone( f ⊕·· ·⊕ f )' cone( f )⊕·· ·⊕cone( f ).

A similar argument shows that ρX = ρX⊕ΣX after a canonical identification RX ' RX⊕ΣX .

More generally:

Proposition 5.3.13. Let K be a tensor triangulated category and let X be an object of K. If

Y is a ⊕-sum of suspensions of X then ρX = ρY after a canonical identification RX ' RY .

Proof. The proof is a more advanced version of the proof of Proposition 5.3.12. Observe that

(Σi1 X⊕·· ·⊕Σik X )⊗n may be identified with a ⊕-sum of suspensions of X⊗n. One may define a

“diagonal” map EX⊗n ,→ E(Σi1 X⊕···⊕Σik X )⊗n which sends f to a diagonal matrix whose diagonal
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entries are copies of f suspended the appropriate numbers of times. One checks that these

maps induce a map RX ,→ R(Σi1 X⊕···⊕Σik X ) and a similar argument shows that this map is in

fact surjective.

Remark 5.3.14. There are graded versions of all of the above results, establishing that ρ•X is

invariant under suspension, tensor powers, and so on. The only result for which we should

be careful is taking duals. The duality induces an isomorphism R•
X ' R•,op

DX but we can’t

remove the op because R•
DX is only graded-commutative. In any case, there is a canonical

homeomorphism Spech(R•,op
DX ) ' Spech(R•

DX ) and under these identifications ρ•X coincides

with ρ•DX .

Example 5.3.15. For any object X ∈K there is a homomorphism [1,1]• → E•
X which sends

α to α⊗ X = X ⊗α. These induce a homomorphism R•
1
→ R•

Φ for any ⊗-multiplicative set

Φ ⊂ K whose kernel consists of nilpotents (cf. Proposition 5.3.5). If Φ is taken to be the

collection of objects that are isomorphic to direct sums of suspensions of 1 then this map is

an isomorphism (cf. Proposition 5.3.13). For example, if K=Dperf(k) for a field k then every

object is a direct sum of suspensions of 1 and the “only” comparison map is the original unit

comparison map ρ•
1

: Spc(K) → Spech([1,1]•) which, moreover, coincides with the ungraded

unit comparison map ρ1 : Spc(K) → Spec([1,1]). More generally, it would be interesting to

know whether R•
1
→ R•

Φ is an isomorphism (under suitable generation hypotheses) when Φ

is the collection of solid objects—those objects X with supp(X ) = Spc(K). In other words, it

would be interesting to know whether the closed set comparison map ρ•Spc(K) associated with

the whole spectrum reduces to ρ•
1

under suitable hypotheses.

Remark 5.3.16. Recall from the proof of Theorem 5.1.9 that under the unnatural comparison

map ρX ,A : supp(X ) → Spec(A) the preimage of a Thomason closed subset V (a1, . . . ,an) ⊂

Spec(A) is exactly the support of the “Koszul” object cone(α(a1))⊗·· ·⊗ cone(α(an)). On the

other hand, for our natural comparison map ρX : supp(X ) → Spec(RX ) the elements of RX
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are equivalence classes of endomorphisms, but one still finds that

ρ−1
X (V ([ f1], . . . , [ fn]))= supp(cone( f1)⊗·· ·⊗cone( fn))

independent of the choice of representatives f i. Nevertheless, a different set of represen-

tatives [ f ′1], . . . , [ f ′n] gives a different Koszul object cone( f ′1)⊗ ·· · ⊗ cone( f ′n) and there is no

reason a priori for the comparison maps of these two Koszul objects to coincide. However,

X⊗i ⊗ cone( f1)⊗ ·· ·⊗ cone( fn) ' X⊗ j ⊗ cone( f ′1)⊗ ·· ·⊗ cone( f ′n) for some i, j ≥ 1 and it follows

from Proposition 5.3.8 that the comparison map for X ⊗ cone( f1)⊗·· ·⊗ cone( fn) does not de-

pend on the choice of representatives f i. Thus when one decides to examine a closed set

supp(X0) more closely by choosing generators of a Thomason closed subset V ([ f1], . . . , [ fn])⊂

Spec(RX0), it is advisable to take the generator of the preimage ρ−1
X0

(V ([ f1], . . . , [ fn])) to be

X1 := X0⊗cone( f1)⊗·· ·⊗cone( fn). A serendipitous consequence of including X0 as a ⊗-factor

is that we then have a ring homomorphism RX0 → RX1 and a commutative diagram

supp(X0)
ρX0 // Spec(RX0)

V ([ f1], . . . , [ fn])
?�

OO

supp(X1)
ρX1 //

?�

OO

Spec(RX1).

OO

On the other hand, this procedure still apparently depends on the choice of generators for

the Thomason closed subset V ([ f1], . . . , [ fn]).

5.4 Universal property

For any commutative ring A and ring homomorphism A → RΦ one obtains an inclusion-

reversing, spectral map ZΦ → Spec(A) by composing ρΦ with the induced map Spec(RΦ) →

Spec(A). For example, the comparison maps ρX ,A : supp(X )→Spec(A) defined in Section 5.1

are recovered from ρX : supp(X ) → Spec(RX ) by composing A → EX with the canonical map
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EX → RX . In fact, the ring RΦ can be regarded as a colimit of all the commutative rings A

mapping into the rings EX for X ∈ Φ. The purpose of this section is to make this precise.

To this end, consider triples (A,α, X ) where A is a commutative ring, α : A → EX is a ring

homomorphism, and X is an object of Φ. Define a morphism (A,α, X ) → (A′,α′, X ′) to be a

morphism u : A → A′ such that

A

u
��

α // EX
))
EX⊗a⊗X ′

A′ α′
// EX ′

55

commutes for some object a ∈Φ. (If the object a were not included then one would run into

difficulties composing such morphisms.) Note that there is a functor (A,α, X ) 7→ A from the

category of triples to the category of rings and we can consider the ring colim(A,α,X ) A. The

following proposition establishes that this is a filtered colimit.

Proposition 5.4.1. The category of triples (A,α, X ) is a filtered category.

Proof. Given two triples (A,α, X ) and (A′,α′, X ′), consider the diagram

A α // EX −⊗X ′
))
EX⊗X ′ .

A′
α′
// EX ′ X⊗−

55

The image of A in EX⊗X ′ is a commutative subring consisting of endomorphisms of the form

f ⊗X ′ while the image of A′ in EX⊗X ′ is a commutative subring consisting of endomorphisms

of the form X ⊗ g. Since such endomorphisms commute, the subring B generated by the

images of A and A′ in EX⊗X ′ is commutative. It provides a triple (B, i, X ⊗X ′) which admits

morphisms (A,α, X )→ (B, i, X ⊗ X ′) and (A,α, X )→ (B, i, X ⊗ X ′). Next consider two parallel

morphisms u,v : (A,α, X ) → (B,β,Y ) in the category of triples. Then we can construct a
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commutative diagram

A
u
��

α // EX
**
EX⊗a⊗Y

++
B

β
// EY

44

**
EX⊗a⊗Y⊗b⊗X .

EY⊗b⊗X

33

A

v

OO

α
// EX

44

Let ω : B → EX⊗a⊗Y⊗b⊗X denote the composite from EY to EX⊗a⊗Y⊗b⊗X displayed in the

diagram. Then (imω, i, X ⊗ a⊗Y ⊗ b⊗ X ) is a triple with an obvious morphism (B,β,Y ) →

(imω, i, X ⊗a⊗Y ⊗b⊗ X ) and one readily checks that ω◦u =ω◦v.

Proposition 5.4.2. The ring homomorphisms A α−→ EX → RΦ induce an isomorphism of

rings colim(A,α,X ) A → RΦ.

Proof. That the maps A α−→ EX → RΦ induce a map colim(A,α,X ) A → RΦ is made clear by the

commutativity of

A

u

��

// EX

&& ++EX⊗a⊗X ′ // RΦ.

A′ // EX ′

88 33

We claim that the induced ring homomorphism colim(A,α,X ) A → RΦ is an isomorphism. For

surjectivity, one observes that if [ fX ] ∈ RΦ then the subring Z[ fX ] ⊂ EX generated by fX is

commutative and provides a triple (Z[ fX ], i, X ). By definition, the diagram

colim(A,α,X ) A // RΦ

Z[ fX ]

OO

i // EX

OO

commutes, which shows that [ fX ] is in the image of the map colim(A,α,X ) A → RΦ. To show

that the map is injective we will use the fact that the category of triples is filtered. It follows

that every element [x] ∈ colim(A,α,X ) A is the image of an element x ∈ A under the canonical
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map A → colim(A,α,X ) A associated with a triple (A,α, X ). If the element [x] ∈ colim(A,α,X ) A

goes to zero in RΦ then [α(x)] = 0 in RΦ and so there is some a ∈Φ such that a⊗α(x) = 0.

Then let β denote the composite A α−→ EX
a⊗−−−−→ Ea⊗X and consider the following diagram

colim(A,α,X ) A // RΦ

A α //

gg

id
��

EX

77

a⊗−
��

A
β //

``

π

��

Ea⊗X

id
��

??

A/ker(β)

ZZ

β // Ea⊗X .

DD

The induced map β : A/kerβ→ Ea⊗X provides a triple (A/kerβ,β,a⊗ X ) while the quotient

map π : A → A/kerβ defines a map of triples (A,α, X )→ (A/kerβ,β,a⊗X ). Since the canoni-

cal map A → colim(A,α,X ) for the triple (A,α, X ) factors through the above map of triples, we

conclude that the image of x in colim(A,α,X ) A is zero. That is [x]= [π(x)]= 0.

Remark 5.4.3. From this perspective, the maps defined in Section 5.1 are obtained from ρΦ

by pulling back via the canonical map A → colim(A,α,X ) A ' RΦ associated to a triple (A,α, X ).

5.5 Idempotent completion

Recall from Section 4.4 that every tensor triangulated category K may be embedded into an

idempotent complete tensor triangulated category K\ and that the embedding i : K ,→K\

induces a homeomorphism of spectra (cf. Proposition 4.4.3). There is a precise sense in

which K and K\ admit “the same” theory of higher comparison maps. We begin with the

following unsurprising result.

Proposition 5.5.1. For any non-empty ⊗-multiplicative subset Φ ⊂K, there is a canonical

identification RK,Φ ' RK\,i(Φ) while ZK,Φ 'ZK\,i(Φ) under the homeomorphism i∗ : Spc(K\) ∼−→
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Spc(K). Under these identifications, ρK,Φ = ρK\,i(Φ).

Proof. Recall that objects of K\ are pairs (X , e) where X is an object of X and e : X → X

is an idempotent, while the morphisms (X , e) → (Y , f ) are the morphisms α : X → Y in K

such that f ◦α = α = α ◦ e. The functor i sends an object X to (X , idX ), while the tensor is

defined by (X , e)⊗ (Y , f ) = (X ⊗Y , e⊗ f ). It is then clear that [X , X ] = [iX , iX ], that EX =

E iX and more generally that RΦ = Ri(Φ) (note that i is a strict ⊗-functor). From the fact

that suppK\(iX ) = (i∗)−1 suppK(X ) it is clear that (i∗)−1(ZK,Φ) = ZK\,i(Φ) while the fact that

supp(cone(i(α))) = supp(i(cone(α))) = (i∗)−1(supp(cone(α))) for any [α] ∈ RΦ makes it clear

that ρΦ = ρ i(Φ).

In particular, this tells us that the object comparison maps for objects in K are unaffected

when we pass to K\. But it still could be possible that in passing to K\ we get new object

comparison maps coming from the new objects in K\. However, this is not the case:

Proposition 5.5.2. For any object X ∈K\, the object X ⊕ΣX is contained in K⊂K\. There

is a canonical isomorphism RK\,X ' RK,X⊕ΣX and after this identification ρK\,X = ρK,X⊕ΣX .

Proof. That X ⊕ΣX is contained in K is a well-known fact; see the proof of [Bal05, Propo-

sition 3.13] for example. Our result then follows from Proposition 5.5.1 together with the

result of Proposition 5.3.13 which told us that ρX = ρX⊕ΣX .

Next we can ask about the closed set comparison maps.

Proposition 5.5.3. Let Z be a closed subset of Spc(K) and let Z′ = (i∗)−1(Z) be the corre-

sponding closed subset of Spc(K\). There is a canonical isomorphism RK,Z ' RK\,Z′ such that

with the identification Z'Z′ the comparison map ρK,Z coincides with ρK\,Z′ .
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Proof. Let Φ = {
x ∈K | suppK(x) ⊃ Z

}
and let Φ′ = {

a ∈K\ | suppK\(a) ⊃ Z′}. Then i(Φ) ⊂Φ′

and we have an induced ring homomorphism Ri(Φ) → RΦ′ . If a ∈K\ then a⊕Σa ∈ i(K) as

before and it follows that if a ∈ Φ′ then a⊕Σa ∈ i(Φ). We claim that for any a ∈ Φ′, the

diagram

Ri(Φ) // RΦ′

Ra⊕Σa

;;OO

Ra
∼oo

OO

commutes, where the bottom row is the isomorphism obtained in Proposition 5.3.13; it will

follow that the map Ri(Φ) → RΦ′ is surjective. The commutativity of the top triangle is

immediate. On the other hand, consider some [ f ] ∈ Ra, say with f ∈ Ea⊗n . Suppose for

starters that n = 1. Then [ f ] maps to [ f ⊕Σ f ] in Ra⊕Σa and so the question (in this case) is

whether [ f ⊕Σ f ]= [ f ] in RΦ′ . This is readily verified:

[ f ⊕Σ f ]= [( f ⊕Σ f )⊗a]= [( f ⊗a)⊕ (Σ f ⊗a)]= [(a⊗ f )⊕ (Σa⊗ f )]= [(a⊕Σa)⊗ f ]= [ f ].

For general n ≥ 1, regarding (a⊕Σa)⊗n as a ⊕-sum of suspensions of a⊗ a, an element

f ∈ Ea⊗n is sent to a ⊕-sum of suspensions of f and it comes down to showing that [ f ] =

[Σi1 f ⊕Σi2 f ⊕·· ·⊕Σik f ] in RΦ′ (which can be verified in a similar manner).

On the other hand, if [ f ] ∈ Ri(Φ) is an element that is sent to zero in RΦ′ then a⊗ f = 0 for

some a ∈Φ′ and (a⊕Σa)⊗ f ' (a⊗ f )⊕Σ(a⊗ f )= 0 shows that [ f ]= 0 in Ri(Φ). Therefore the

map Ri(Φ) → RΦ′ is also injective. It is clear that under this isomorphism ρ i(Φ) = ρΦ′ while

Proposition 5.5.1 implies that ρΦ = ρ i(Φ) after identifying Z'Z′.

In other words, we have established that K and K\ give precisely the same object com-

parison maps and precisely the same closed set comparison maps.
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5.6 Topological results

Throughout this section let K be a tensor triangulated category and let Φ ⊂ K be a non-

empty set of objects closed under the ⊗-product.

Proposition 5.6.1. If ZΦ is connected then Spec(RΦ) is connected.

Proof. By Proposition 5.5.1, it suffices to prove the result under the additional hypothe-

sis that K is idempotent-complete. If Spec(RΦ) is disconnected then there is a non-trivial

idempotent [eX ] in the ring RΦ. By Lemma 5.2.8, [eX ] = [eX ]2 = [e2
X ] implies that there

is an a ∈ Φ such that eX ⊗ a⊗ X = X ⊗ a⊗ e2
X = (X ⊗ a⊗ eX )2 while eX ⊗ a⊗ X = X ⊗ a⊗ eX

since eX is ⊗-balanced. Moreover, [eX ] 6= 0 implies X ⊗ a ⊗ eX 6= 0 and [eX ] 6= 1 implies

X⊗a⊗eX 6= idX⊗a⊗X , so f := X⊗a⊗eX is a non-trivial idempotent endomorphism of X⊗a⊗X .

Since K is idempotent-complete, there is an associated decomposition X ⊗a⊗X ' a1⊕a2

for two non-zero objects a1 and a2 such that f becomes the matrix
(1 0

0 0
)
. In particular,

cone( f )'Σa2⊕a2 and cone(idX⊗a⊗X − f )'Σa1⊕a1 (cf. Lemma 3.1.13 and Corollary 3.1.15).

It follows that

ZΦ∩supp(a1)∩supp(a2)=;

because otherwise there would be a P ∈ZΦ with cone( f ) ∉P and cone(idX⊗a⊗X − f ) ∉P, which

would imply that both [ f ] and 1− [ f ] are contained in the prime ρΦ(P). From the definition,

ZΦ ⊂ supp(X ⊗a⊗ X ), and we conclude that

ZΦ = ZΦ∩supp(X ⊗a⊗ X )

= ZΦ∩supp(a1 ⊕a2)

= ZΦ∩ (supp(a1)∪supp(a2))

= (ZΦ∩supp(a1))t (ZΦ∩supp(a2))

is a disjoint union of closed sets. It remains to show that ZΦ∩supp(ai) 6= ; for i = 1,2.
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If ZΦ ∩ supp(a1) were empty then the quasi-compactness of Spc(K) would imply that

there are c1, . . . , cn ∈Φ such that supp(c1)∩·· ·∩supp(cn)∩supp(a1)=;. Taking c := c1⊗·· ·⊗cn

we obtain an object c ∈Φ such that supp(c⊗a1)=; and hence that c⊗a1 is ⊗-nilpotent. But

observe that under the identification X ⊗a⊗ X ' a1 ⊕a2, the endomorphism f ⊗n becomes a

matrix with all zero entries except for ida⊗n
1

at one position along the diagonal. From this it

is clear that c⊗n ⊗ f ⊗n = 0 for some n ≥ 1 since c⊗ a1 is ⊗-nilpotent. But then [eX ] = [ f ] =

[ f n]= [ f ⊗n]= [c⊗n⊗ f ⊗n]= 0 in the ring RΦ, which contradicts the fact that [eX ] is nontrivial.

A similar argument shows that if ZΦ∩supp(a2) were empty then [eX ]= 1.

For the converse of the above result, we need to add additional assumptions.

Proposition 5.6.2. Suppose K is rigid and ZΦ is Thomason. If Spec(RΦ) is connected then

ZΦ is connected.

Proof. By passing to the idempotent completion it suffices to prove the result under the

additional hypothesis that K is idempotent-complete (cf. Proposition 5.5.1 and note that

K rigid implies that K\ is also rigid [Bal07, Proposition 2.15(i)]). Suppose ZΦ = Y1 tY2

is a disjoint union of non-empty closed sets. Each Yi is quasi-compact (being closed) and

it follows from the fact that they are disjoint and that ZΦ is Thomason that each Yi is

Thomason. For example, Spc(K)\Y1 = (Y c
1 ∩ZΦ)t (Y c

1 ∩ (Spc(K)\ZΦ))=Y2t (Spc(K)\ZΦ) is

the union of two quasi-compact sets, and hence is quasi-compact.

It also follows from the definition ZΦ := ⋂
X∈Φ supp(X ) and the fact that Spc(K) \ZΦ

is quasi-compact that ZΦ = supp(a) for some a ∈ Φ. Since K is rigid and idempotent-

complete, the generalized Carlson theorem [Bal07, Remark 2.12] implies that there ex-

ist a1,a2 ∈ K such that a ' a1 ⊕ a2 and supp(ai) = Yi for i = 1,2. Since K is rigid and

supp(a1)∩supp(a2)=; it follows [Bal07, Corollary 2.8] that [ai,a j] = 0 for i 6= j. This

implies that the idempotent f := (1 0
0 0

)
is ⊗-balanced ( f ⊗ a = a ⊗ f ) and hence provides
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an idempotent element [ f ] of the ring RΦ. If [ f ] was a trivial idempotent it would fol-

low that b ⊗ a1 = 0 or b ⊗ a2 = 0 for some b ∈ Φ. But Yi = supp(ai) = supp(b ⊗ ai) since

supp(ai) ⊂ ZΦ ⊂ supp(b) and so b ⊗ ai = 0 contradicts the fact that Yi is non-empty. We

conclude that [ f ] is a nontrivial idempotent of the commutative ring RΦ and hence that

Spec(RΦ) is disconnected.

Remark 5.6.3. Example 5.6.13 below will provide some (non-rigid) examples of tensor trian-

gulated categories for which the conclusion of Proposition 5.6.2 does not hold.

Remark 5.6.4. For any (graded-)commutative graded ring R•, the space Spech(R•) is con-

nected if and only if Spec(R0) is connected (cf. Lemma 2.3.8), so the graded version of the

statements of Proposition 5.6.1 and Proposition 5.6.2 also hold.

Lemma 5.6.5. If c is an object in K with ZΦ ⊂ supp(c) then there is some a ∈ Φ such that

supp(a)⊂ supp(c).

Proof. Since Spc(K) \ supp(c) is quasi-compact (recall Lemma 4.1.10), it follows from the

definition ZΦ := ⋂
X∈Φ supp(X ) that there is a finite collection of objects X1, . . . , Xn ∈Φ such

that supp(X1)∩·· ·∩supp(Xn)⊂ supp(c) and we can take a := X1 ⊗·· ·⊗ Xn ∈Φ.

Proposition 5.6.6. Consider the map ρ•Φ : ZΦ → Spech(R•
Φ) and let W⊂Spech(R•

Φ) be any

closed set. If (ρ•Φ)−1(W) =ZΦ then W= Spech(R•
Φ). In other words, the preimage of a proper

closed set remains proper.

Proof. Let W = V (I•) for some homogeneous ideal I ⊂ R•
Φ and let [ f ] be an arbitrary ho-

mogeneous element of I•. It follows from our hypothesis that [ f ] ∈ ρ•Φ(P) for every P ∈ ZΦ

and hence that ZΦ ⊂ supp(cone( f )). Lemma 5.6.5 then implies that there is some a ∈ Φ

such that supp(a) ⊂ supp(cone( f )). It follows (cf. Lemma 4.2.6) that a⊗i ∈ thick⊗〈cone( f )〉

for some i ≥ 1 and hence that a⊗i ⊗ f ⊗ j = 0 for some i, j ≥ 1 by Lemma 5.3.3. But then

190



[ f ] j = [ f ⊗ j] = [a⊗i ⊗ f ⊗ j] = 0 so that [ f ] is a nilpotent element of RΦ. Since every homoge-

neous element of I is nilpotent, W=V (I•)=Spech(R•
Φ).

Remark 5.6.7. One easily verifies that the ungraded maps ρΦ also have the property that

preimages of proper closed subsets remain proper, either by carrying out an ungraded ver-

sion of the above proof, or as a corollary of the above proposition by observing that the

surjective map (−)0 : Spech(R•
Φ)→Spec(RΦ) has this property and using diagram (5.2.30).

Corollary 5.6.8. The maps ρ•Φ :ZΦ→ Spech(R•
Φ) and ρΦ :Z→ Spec(RΦ) have dense images.

Consequently, if ZΦ is irreducible then Spech(R•
Φ) and Spec(RΦ) are also irreducible.

Lemma 5.6.9. If K is rigid and [ f ] is a homogeneous non-unit in the ring R•
Φ then there is

some P ∈ZΦ such that [ f ] ∈ ρ•Φ(P).

Proof. If there were no such P then ZΦ ∩ supp(cone( f )) = ; which implies by the quasi-

compactness of Spc(K) that supp(a)∩supp(cone( f ))=; for some a ∈Φ. But

supp(a⊗cone( f ))=;

implies by the rigidity of K that a⊗ cone( f ) = 0. Thus a⊗ f is invertible and hence [ f ] is a

unit in R•
Φ.

Proposition 5.6.10. Suppose K is rigid. If the map ρΦ : ZΦ → Spec(RΦ) is a constant map

then Spec(RΦ) is a point. Similarly, if the map ρ•Φ : ZΦ → Spech(R•
Φ) is a constant map then

Spech(R•
Φ) is a point.

Proof. Suppose p is a prime in RΦ such that ρΦ(P) = p for all P ∈ ZΦ. Lemma 5.6.9 then

implies that p contains every non-unit of RΦ. It follows that RΦ is local with p its unique

maximal ideal. On the other hand, Corollary 5.6.8 implies that {p} is dense, and so {p}= {p}=

Spec(RΦ). An identical argument works in the graded case.
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Remark 5.6.11. The theorems proved in this section are new even in the case of Balmer’s

original map ρ1. For example, Corollary 5.6.8 implies that ρ1 always has dense image with-

out any assumptions on the category K. This result is particularly interesting in light of the

surjectivity criteria for ρ1 established in [Bal10a].

Remark 5.6.12. One strategy for studying the spectrum is to iteratively build a filtration of

closed subsets by pulling back filtrations via our closed set comparison maps. More precisely,

we begin with the trivial filtration
{
Spc(K)

}
and at each iterative step we consider every

closed set Z in the filtration (or only those that were newly added at the last step) and refine

the filtration below Z by pulling back the filtration of closed subsets of Spech(R•
Z

) via the

map ρ•
Z

: Z→ Spech(R•
Z

). A key result for this idea is Proposition 5.6.6 which asserts that

proper closed subsets of Spech(R•
Z

) pull back to proper subsets of Z. This implies that the

process continues to refine the spectrum for as long as the spaces Spech(R•
Z

) are non-trivial.

However, an obstacle is the possibility that Spech(R•
Z

) might be trivial for some non-trivial

closed set Z, in which case the internal structure of Z would remain hidden. In fact, there

are examples of tensor triangulated categories for which it seems the process may hit the

wall at the very first step (cf. Example 5.6.13 below). Nevertheless, these examples are

non-rigid and there is some hope (cf. Proposition 5.6.10) that under suitable hypotheses this

obstacle might disappear.

Example 5.6.13. Let P be a finite poset, k a field, and let K := Db(repk(P)) be the derived

category of finite-dimensional k-linear representations of P. The abelian category repk(P)

has an exact vertex-wise ⊗-structure and K inherits the structure of a tensor triangulated

category. Recognizing that representations of P are the same thing as quiver representa-

tions of the associated Hasse diagram with full commutativity relations, one sees that the

work of [LS13] completely describes the spectrum Spc(K). It turns out to be rather triv-

ial: a discrete space with points corresponding to the elements of P. For a representation
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V regarded as a complex concentrated in degree 0, supp(V ) = {x ∈ P | Vx 6= 0}. If P has a

least element then 1 is projective (so [1,1]i = 0 for i 6= 0) and [1,1] ' k by inspection. There

are thus many examples where Spech(R•
1
) is trivial (in particular, connected) but Spc(K) is

disconnected. This doesn’t contradict Proposition 5.6.2 because these examples of derived

quiver representations are not rigid. For example, consider the simplest non-trivial exam-

ple: P = (1 → 2). Let S1 = (k → 0) and S2 = (0 → k) be the two simple representations.

There is an obvious exact triangle S2 → 1→ S1 → ΣS2. If K were rigid then the fact that

supp(S1)∩ supp(ΣS2) = supp(S1)∩ supp(S2) = ; implies that [S1,ΣS2] = 0, and hence that

the exact triangle splits: 1' S1 ⊕S2 which is evidently not the case.

Remark 5.6.14. A topological criterion was given in [DS14, Proposition 3.11] for the injec-

tivity of the comparison maps introduced in that paper. Their proof gives a similar criterion

for our comparison maps. Recall that
{
supp(a) | a ∈K}

is a basis of closed sets for Spc(K).

Proposition 5.6.15. Let Φ be a non-empty ⊗-multiplicative set of objects in a tensor trian-

gulated category K. If the collection of subsets

B= {
ZΦ∩supp(cone( f )) | [ f ] ∈ RΦ

}
is a basis of closed sets for ZΦ then the comparison map ρΦ is injective, and furthermore a

homeomorphism onto its image.

Proof. Note that ZΦ∩ supp(cone( f )) doesn’t depend on the choice of representative for [ f ].

Let P,Q ∈ZΦ and suppose ρΦ(P)= ρΦ(Q). To show that P=Q it suffices to show that {P}= {Q}

since Spc(K) is T0. Note that ρΦ(P)= ρΦ(Q) says that P ∈ supp(cone( f )) iff Q ∈ supp(cone( f ))

for any [ f ] ∈ RΦ. Using the fact that B is a basis we then have that

{P}= ⋂
[ f ]∈RΦ

P∈supp(cone( f ))

supp(cone( f ))= ⋂
f ∈RΦ

Q∈supp(cone( f ))

supp(cone( f ))= {Q}.
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Now for [ f ] ∈ RΦ one easily checks that

ρΦ(ZΦ\ (ZΦ∩supp(cone( f ))))= ρΦ(ZΦ\ρ−1
Φ (V ([ f ])))= ρΦ(ZΦ∩D([ f ]))

where D([ f ]) := {p ∈ Spec(RX ) | [ f ] ∉ p} is the usual distinguished open in Spec(RΦ). Since

the sets ZΦ \ (ZΦ∩ supp(cone( f ))) form an open basis for ZΦ it follows that ρΦ is a homeo-

morphism onto its image.

5.7 Algebraic localization

An important feature of the original unit comparison maps developed in [Bal10a] is that it

is possible to localize the category K with respect to primes in the ring [1,1], which enables

one to reduce questions about the unit comparison maps to the case where the target ring

is local. Fortunately, one may establish such a localization technique for our more general

comparison maps.

Theorem 5.7.1. Let K be a tensor triangulated category, Φ ⊂K a non-empty set of objects

closed under the ⊗-product, S ⊂ R•
K,Φ a multiplicative set of even (hence central) homoge-

neous elements, and q : K→K/J the Verdier quotient of K with respect to the thick ⊗-ideal

J := thick⊗〈cone(s) | [s] ∈ S〉. Then R•
K/J,Φ is isomorphic to the ring-theoretic localization

S−1(R•
K,Φ) and we have a diagram

ZK/J,Φ

ρ•
K/J,Φ
��

� � // ZK,Φ

ρ•
K,Φ
��

Spech(R•
K/J,Φ) = Spech(S−1R•

K,Φ) �
� // Spech(R•

K,Φ).

(5.7.2)

that is commutative and cartesian: ZK/J,Φ
∼= {P ∈ZK,Φ | ρ•

K,Φ(P)∩S =;}.

Remark 5.7.3. If S ⊂ R0 then (S−1R•)0 = S−1R0 and one readily verifies that applying (−)0

194



to the bottom row of (5.7.2) yields a commutative, cartesian diagram

ZK/J,Φ

ρK/J,Φ

��

� � // ZK,Φ

ρK,Φ

��
Spec(RK/J,Φ) = Spec(S−1RK,Φ) �

� // Spec(RK,Φ).

(5.7.4)

This gives the ungraded version of our localization result.

The remainder of this section is devoted to proving the theorem. For purposes of clarity

we will prove the ungraded version—the graded result stated in Theorem 5.7.1 is proved in

the same way but the notation gets more cumbersome. Thus, for the rest of the section we

fix a multiplicative set S ⊂ RK,Φ. For an element [s] ∈ S, we’ll use the notation Xs to indicate

that the representative s is an endomorphism of Xs. For morphisms in K/J we’ll use the left

fractions discussed in Section 3.6. It is immediate from the definition of J that the canonical

map RK,Φ→ RK/J,q(Φ) factors as

RK,Φ
ε //S−1(RK,Φ) i //RK/J,q(Φ)

where ε is the canonical localization map. In order to show that i is an isomorphism we will

need the following three lemmas:

Lemma 5.7.5. If a ∈ J then there is a representative s of an element [s] ∈ S with the property

that a⊗ s = 0.

Proof. One verifies using standard techniques that the collection of objects a ∈K for which

there is a representative s of an element [s] ∈ S such that a⊗ s⊗n = 0 for some n ≥ 1 forms a

thick ⊗-ideal of K. It contains each cone(s) by Lemma 5.1.3 and hence it contains J. Since

S is multiplicative, [s⊗n]= [s]n ∈ S.

Lemma 5.7.6. If f : a → b and g : c → d are morphisms such that cone( f )⊗ g = 0 then there

exists a morphism u : b⊗ c → a⊗d such that a⊗ g = u◦( f ⊗ c) and a morphism v : b⊗c → a⊗d

such that b⊗ g = ( f ⊗d)◦v.
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Proof. The morphisms u and v are obtained from the morphism of exact triangles

a⊗ c
f⊗c //

a⊗g
��

b⊗ c
u

ww v
ww

b⊗g
��

// cone( f )⊗ c

cone( f )⊗g=0
��

// Σ(a⊗ c)

Σ(a⊗g)
��

a⊗d
f⊗d

// b⊗d // cone( f )⊗d // Σ(a⊗d)

by the weak kernel and cokernel properties of exact triangles.

Lemma 5.7.7. Let f : a → a be an endomorphism in a tensor triangulated category. If

there exists a ⊗-balanced automorphism σ : a → a such that f ◦σ is ⊗-balanced then f is

⊗-balanced.

Proof. This is easily verified from the definitions recalling that Ea is an inverse closed sub-

ring of [a,a].

Proposition 5.7.8. The map i : S−1(RK,Φ)→ RK/J,q(Φ) is injective.

Proof. Consider an element [ f ]/[s] ∈ S−1(RK,Φ). If i([ f ]/[s])= 0 then

[( X f ⊗ Xs
f⊗1 //X f ⊗ Xs X f ⊗ Xs

1⊗soo )]= 0

in RK/J,q(Φ) which implies that there is an a ∈Φ such that

(a⊗ X f ⊗ Xs
1⊗ f⊗1 //a⊗ X f ⊗ Xs a⊗ X f ⊗ Xs

1⊗s⊗1oo )= 0

as a morphism in K/J. It follows that there is a morphisms k : a⊗ X f ⊗ Xs → b in K with

cone(k) ∈ J such that k ◦ (a⊗ f ⊗ Xs) = 0. By Lemma 5.7.5 there is some [t] ∈ S such that

cone(k)⊗ t = 0 and hence by Lemma 5.7.6 there is a morphism u : b⊗ X t → a⊗ X f ⊗ Xs ⊗ X t

such that u ◦ (k⊗ X t)= a⊗ X f ⊗ Xs ⊗ t. In the ring RK,Φ we then have

[t] · [ f ]= [(a⊗ X f ⊗ Xs ⊗ t)◦ (a⊗ f ⊗ Xs ⊗ X t)]= 0

and we conclude that [ f ]/[s]= ([t] · [ f ])/([t] · [s])= 0 in S−1(RK,Φ).
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Proposition 5.7.9. The map i : S−1(RK,Φ)→ RK/J,Φ is surjective.

Proof. Consider an element [(a
f //b aσoo )] ∈ RK/J,q(Φ). By Lemma 5.7.5 there is some

[s] ∈ S such that cone(σ)⊗ s = 0. It then follows from Lemma 5.7.6 that there exists a

morphism u : b⊗ Xs → a⊗ Xs such that u ◦ (σ⊗ Xs) = a⊗ s. We thus have an equality of

left fractions

(a⊗ Xs
f⊗1 //b⊗ Xs a⊗ Xs

σ⊗1oo )= (a⊗ Xs
u◦( f⊗1) //a⊗ Xs a⊗ Xs

1⊗soo ).

The left-hand side is an element of EK/J,a⊗Xs and so it follows from Lemma 5.7.7 that

(a⊗ Xs
u◦( f⊗1) //a⊗ Xs a⊗ Xs

idoo )

is an element of EK/J,X⊗Xs . The claim then follows from Lemma 5.7.10 below.

Lemma 5.7.10. If f : a → a is an endomorphism of an object a ∈Φ such that q( f ) is tensor-

balanced as an endomorphism in K/J then [q( f )] ∈ RK,q(Φ) is contained in the image of

i : S−1(RK,Φ)→ RK/J,Φ.

Proof. It follows from the equality of fractions

(a⊗a
a⊗ f //a⊗a a⊗aidoo )= (a⊗a

f⊗a //a⊗a a⊗aidoo )

that there is a morphism τ : a⊗a → b in K such that cone(τ) ∈ J and τ◦ (a⊗ f ) = τ◦ ( f ⊗a).

By Lemma 5.7.5 and Lemma 5.7.6 there is a [t] ∈ S such that cone(τ)⊗ t = 0 and a morphism

u : b⊗ X t → a⊗a⊗ X t such that u ◦ (τ⊗ X t) = a⊗a⊗ t. It follows that a⊗ f ⊗ t = f ⊗a⊗ t and

we conclude using Lemma 5.2.1 that f ⊗ t is an element of Ea⊗X t . Thus

[(a
f //a aidoo )] · [( X t

t //X t X t
idoo )]= [(a⊗ X t

f⊗t //a⊗ X t a⊗ X t
idoo )]

is contained in the image of i.
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In summary, we have established that the canonical map RK,Φ→ RK/J,q(Φ) factors as

RK,Φ
ε //S−1(RK,Φ)∼= RK/J,q(Φ)

where ε is the canonical localization map. The commutativity of (5.7.4) then follows from

Proposition 5.2.21. Moreover, one readily checks from the definitions that the image of

ZK/J,Φ in Spc(K) is precisely V (J)∩ZK,Φ. If P ∈ ZK,Φ is a prime such that ρK,Φ(P)∩S = ;

then cone(s) ∈P for all [s] ∈ S so that J⊂P. Hence P ∈V (J)∩ZK,Φ
∼=ZK/J,Φ. This establishes

that diagram (5.7.4) is cartesian and the proof is complete.
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CHAPTER 6

Stable homotopy theory

The purpose of this chapter is to apply the theory of higher comparison maps to the stable

homotopy category of finite spectra. This will be carried out in Section 6.6. In the preceding

sections we will set the stage by recalling some relevant notions from chromatic homotopy

theory. Much of this is very well-known to the homotopy theorist but we have included some

elementary material for the benefit of those less familiar with the subject.

Ultimately, our ability to apply the theory of higher comparison maps in this example

rests on the seminal work of Devinatz, Hopkins and Smith on the Ravenel conjectures and,

in particular, on the Nilpotence and Periodicity Theorems. Although we will discuss some

aspects of this work, we will only scratch the surface and we refer the reader to [Rav92] and

[Rav86] for further information about this beautiful subject. In particular, we say almost

nothing about formal group laws and very little about the motivation for Ravenel’s conjec-

tures stemming from periodic phenomena in the stable homotopy groups of spheres and the

Adams-Novikov spectral sequence.

Throughout this chapter, SH will denote the stable homotopy category of spectra and

SHfin will denote its full subcategory of finite spectra. We refer the reader to Margolis’ book

[Mar83] for a discussion of these categories that takes a fairly categorical (less topological)

point of view—also see [HPS97]. From these references recall that SH is a tensor trian-

gulated category with arbitrary coproducts whose unit, the sphere spectrum, is a compact,
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graded weak generator and that SHfin is exactly the subcategory of compact objects in SH.

Also recall that SHfin is the thick subcategory generated by the unit and that SH is the

localizing subcategory generated by the unit: SHfin = thick〈1〉, SH = loc〈1〉. It follows (recall

Lemma 3.9.1) that every thick subcategory of SHfin and every localizing subcategory of SH

is automatically a ⊗-ideal. As usual we denote the suspension spectrum of a finite based

CW-complex X by Σ∞X and the smash product of spectra by ∧. We’ll occasionally use the

term “selfmap” to refer to a graded endomorphism Σd X → X as this terminology is common

in the homotopy theory literature. Finally, for any integer n ∈ Z and spectrum X , we’ll use

n : X → X to denote the endomorphism n.idX .

6.1 Stable homotopy groups

Recall that the stable homological functor π•(−) = [Σ•1,−] : SH → AbZ associated to the

sphere spectrum 1 = Σ∞(S0) gives the stable homotopy groups. In other words, π•(Σ∞X ) =

πs•(X ) for a based finite CW-complex X (cf. the discussion in Section 3.8). In particular, the

stable homotopy groups of spheres π•(1) = πs•(S0) form a graded-commutative graded ring.

In this section, we’ll recall some classical facts about these stable homotopy groups. For

further discussion and references to the classical literature see [Rav86, §1.1].

Theorem 6.1.1 (Hurewicz). π0(1)∼=Z and πi(1)= 0 for i < 0.

Theorem 6.1.2 (Nishida). Every element of positive degree in π•(1) is nilpotent.

Remark 6.1.3. These theorems imply that—despite their complexity—the groups πi(1) are

very simple up to multiplicative nilpotent phenomena. In particular, the map

(−)0 : Spech(π•(1))
∼−→Spec(π0(1))

is a homeomorphism and the graded comparison map ρ• : Spc(SHfin)→Spech(π•(1)) gives us
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nothing more than the ungraded comparison map ρ : Spc(SHfin) → Spec(π0(1)). Moreover,

since Spec(π0(1))=Spec(Z), the map ρ is very far from injective and tells us very little about

Spc(SHfin). We need techniques for studying the fibers of this map.

Remark 6.1.4. Under the isomorphism π0(1)'Z, the integer n ∈Z corresponds to n.id1. It is

not hard to see that the stable map n.id1 is represented by the degree n map from the sphere

to the sphere. For example, recall that two endomorphisms of the 1-sphere f , g : S1 → S1 are

added in the group of homotopy classes of maps S1 → S1 by pinching the sphere and letting

f and g act on the resulting two spheres separately:

• •pinch //

f
,,

g

22
•

•

•

• •

One then readily observes (for example) that the sum id1+ id1 is (homotopic) to the degree 2

map. More generally, the sum of a degree n map and a degree m map is readily seen to be a

degree n+m map for any n,m ∈Z.

Theorem 6.1.5 (Serre). For any integer i > 0, πi(1) is a finite abelian group.

Corollary 6.1.6. For any finite spectrum X , πi(X ) is a finitely generated abelian group for

all i ∈Z.

Proof. Note that finitely generated modules over a noetherian ring (like Z) satisfy the two-

out-of-three property for short exact sequences. It follows that the collection of spectra X

with the property that πi(X ) is a finitely generated abelian group for all i ∈Z forms a thick

subcategory of SH. It contains 1 and hence contains SHfin = thick〈1〉.
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Remark 6.1.7. If X and Y are any two finite spectra then the abelian groups [X ,Y ]i are also

finitely generated because [X ,Y ]i =πi(DX ∧Y ).

Remark 6.1.8. The fact that 1 generates SH implies that π•(−) : SH→AbZ is a conservative

functor. In other words, it is faithful on objects. By Lemma 3.1.41, this is equivalent to

saying that π•(−) reflects isomorphisms.

Notation 6.1.9. For any abelian group A, we write HA for the Eilenberg-MacLane spec-

trum representing ordinary cohomology H•(−; A) with coefficients in A. If R is a (commuta-

tive) ring then the Eilenberg-MacLane spectrum HR has the structure of a (commutative)

ring spectrum.

Definition 6.1.10 (Hurewicz map). For any ring spectrum E and spectrum X we can define

a map

X ' 1∧ X
η∧1−−→ E∧ X .

By applying π•(−) we obtain a map

π•(X )→π•(E∧ X )= E•(X )

called the Hurewicz map associated to the ring spectrum E.

Theorem 6.1.11 (Serre). The Hurewicz map

π•(1)→ HZ•(1)

is a rational isomorphism.

Corollary 6.1.12. For any spectrum X , there is an isomorphism

π•(X )⊗Q' H•(X ;Q)

between the rational stable homotopy and the rational homology.
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Proof. The Hurewicz map αX : π•(X ) → H•(X ;Z) gives a stable natural transformation

(cf. Definition 3.1.34) between two stable homological functors. Since −⊗Q is an exact func-

tor we thereby obtain a stable natural transformation αX ⊗Q : π•(X )⊗Q→ H•(X ;Z)⊗Q '

H•(X ;Q). Since the two homological functors preserve coproducts, Lemma 3.1.39 implies

that the collection of spectra X such that αX⊗Q is an isomorphism forms a localizing subcat-

egory of SH. It contains 1 by Serre’s result and hence contains the whole of SH= loc〈1〉.

Remark 6.1.13. By Corollary 6.1.6, the stable homotopy groups πi(X ) of a finite spectrum X

are finitely generated abelian groups. Moreover, by Corollary 6.1.12, their ranks are given

simply by rational homology. The complexity of stable homotopy groups lies in their torsion.

In fact, McGibbon and Neisendorfer [MN84] showed using Miller’s solution of the Sullivan

conjecture [Mil84] that if X is a simply-connected finite CW-complex with H̃(X ;Z/p) 6= 0 then

πs
i (X ) contains p-torsion for infinitely many i. This was conjectured by Serre [Ser53] at least

for p = 2. For example, there is an infinite amount of p-torsion in the stable homotopy groups

of spheres for any prime p. These results are pretty convincing indicators of the complexity

of stable homotopy groups.1 In any case, it is typical in the subject to fix a prime p and focus

on the p-torsion, which leads naturally to the topic of p-localization.

6.2 Rationalization and p-localization

First let us recall some basic notions.

Definition 6.2.1. An abelian group A is said to be p-local if the map n : A → A is an isomor-

phism for every integer n such that p - n. Equivalently, q : A → A is an isomorphism for all

primes q 6= p. Equivalently, A admits the (unique) structure of a Z(p)-module. Equivalently,

1The McGibbon-Neisendorfer result is actually a theorem about unstable homotopy groups, but it implies
the stable result that we have mentioned. A different way to obtain stable results of this nature is to use
Ravenel’s results on harmonic and dissonant spectra in [Rav84].
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the map A ' A⊗Z→ A⊗Z(p) is an isomorphism.

Example 6.2.2. The ring Z(p) is p-local; so is Z/pt for t ≥ 1. On the other hand, if p - n then

Z/n⊗Z(p) = 0.

Remark 6.2.3. A finitely generated abelian group is p-local iff it is torsion and all its torsion

is p-torsion. The functor −⊗Z(p) turns an abelian group into a p-local abelian group and

can be viewed as a process which kills all the q-torsion for primes q 6= p.

Definition 6.2.4. For a fixed prime number p, the p-localization of spectra refers to Bous-

field localization (cf. Section 3.7) with respect to the homological functor π•(−)⊗Z(p). This

is a homological functor since Z(p) is torsion-free. The p-local spectra—i.e., the local ob-

jects for this Bousfield localization—are those spectra whose homotopy groups are p-local

abelian groups (see Lemma 6.2.5 below). As usual, define the stable homotopy category

of p-local spectra SH(p) to be the full subcategory of SH consisting of the p-local spectra,

and define SHfin
(p) to be the full subcategory of all spectra isomorphic to the p-localization of

a finite spectrum. Note that SHfin
(p) 6⊂ SHfin. For example, the p-local sphere spectrum 1(p)

has 0th homotopy group equal to Z(p) which is not a finitely generated abelian group—so

the p-localization of a finite spectrum is not a finite spectrum in general. Finally, we’ll use

the notation (−)(p) : SH → SH(p) to denote the p-localization functor. Good references for

p-localization include [Mar83, Chapter 8] and [Bou79, Section 2].

Lemma 6.2.5. For any spectrum X , the following are equivalent:

(1) X is a p-local spectrum.

(2) πi(X ) is a p-local abelian group for all i ∈Z.

(3) The map q : X → X is an isomorphism for all primes q 6= p.
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Proof. Note that (3) immediately implies (2) since applying the additive functor πi(−) to

q : X → X produces q :πi(X )→πi(X ). To see (2)⇒ (3), consider the exact triangle

X
q−→ X → X /q →ΣX

and the associated long exact sequence

πi(X )
q.−→πi(X )→πi(X /q)→ pi i−1(X )

q.−→πi−1(X ).

If each πi(X ) is p-local then the maps q :πi(X )→πi(X ) are isomorphisms; hence πi(X /q)= 0

for all i. Since π•(−) is conservative, it follows that X /q = 0 and hence that q : X → X is

an isomorphism. On the other hand, note that for any spectrum A, the map q : A → A is

a p-local equivalence. Consequently, the induced map [A, X ]
−◦q−−→ [A, X ] is an isomorphism

for any p-local spectrum X . Taking A = Σi1 and noting that [Σi1, X ]
−◦q−−→ [Σi1, X ] is just

q : πi(X ) → πi(X ), we see that q : πi(X ) → πi(X ) is an isomorphism when X is p-local. This

proves (1)⇒ (2). Finally, to prove (2)⇒ (1) consider the p-localization exact triangle

W //X
η //X(p) //ΣW .

Applying π•(−)⊗Z(p) and using the fact that W is p-acyclic we obtain from the long exact

sequence that

πi(X )⊗Z(p)
πi(η)⊗Z(p) //πi(X(p))⊗Z(p)

is an isomorphism for all i. If πi(X ) is p-local then we have

πi(X )⊗Z(p)

∼
��

πi(η)⊗Z(p) // πi(X(p))⊗Z(p)

∼
��

πi(X )
πi(η) // πi(X(p))

and hence πi(η) is an isomorphism for all i. Since π• reflects isomorphisms, we conclude

that η : X → X(p) is an isomorphism; hence X is p-local.
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Lemma 6.2.6. For any spectrum X , πi(X(p))'πi(X )⊗Z(p).

Proof. Applying πi(−)⊗Z(p) to the exact triangle

W //X
η //X(p) //ΣW

we obtain an isomorphism πi(X )⊗Z(p)
∼−→ πi(X(p))⊗Z(p) and since πi(X(p)) is p-local (by

Lemma 6.2.5) we have an isomorphism πi(X(p))⊗Z(p) 'πi(X(p)).

Definition 6.2.7. For any integer n ∈ Z, the Moore spectrum M(n) is defined by the exact

triangle

1
n.−→ 1→ M(n)→Σ1

in the stable homotopy category. Note that π0(M(n))'Z/n and πi(M(n))= 0 for i < 0.

Proposition 6.2.8. For any prime p, p-localization is a finite localization in the sense of

Definition 3.7.12. In other words, the localizing subcategory of p-acyclics is generated (as a

localizing subcategory) by the finite p-acyclics.

Proof. Note that if p - n then the Moore spectrum M(n) is p-acyclic. Hence loc〈M(n) : p - n〉 is

contained in the localizing subcategory of p-acyclic spectra. To see that these subcategories

coincide we use the fact that the fiber of the localization map 1→ 1(p) is the homotopy colimit

hocolimΣ−1M(n) over the diagram of natural numbers coprime to p with divisibility defining

the maps. In other words, we have an exact triangle

hocolimΣ−1M(n) //1 //1(p) //ΣhocolimΣ−1M(n).

It is easy to see that p-localization is a smashing localization (since the subcategory of

p-local spectra is evidently closed under coproducts) and thus if X is a p-acyclic spec-

trum then we have an isomorphism X ∧hocolimΣ−1M(n) ' X . Hence X is contained in

loc〈M(n) : p - n〉.
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Remark 6.2.9. We have defined the p-local stable homotopy category SH(p) in the usual

way—as a subcategory of SH—but for some purposes it is convenient to regard it as the

Verdier quotient SH/(p-acyclic spectra) instead (cf. Remark 3.7.5). For example, the p-local

stable homotopy category inherits its structure as a tensor triangulated category via the

equivalence SH/(p-acyclic spectra) ∼= SH(p) (cf. Remark 3.7.6). From this point of view, we

would like to also realize the stable homotopy category of finite p-local spectra SHfin
(p) as a

Verdier quotient of the stable homotopy category of finite spectra SHfin:

Proposition 6.2.10. The stable homotopy category of finite p-local spectra SHfin
(p) is the sub-

category of compact objects in SH(p). Moreover, there is an equivalence of tensor triangulated

categories

SHfin
(p)

∼=SHfin/(finite p-acyclic spectra)

under which the p-localization functor SHfin → SHfin
(p) becomes the Verdier quotient functor

SHfin →SHfin/(finite p-acyclic spectra).

Proof. Because p-localization is a finite localization (cf. Proposition 6.2.8) we can use the

techniques of Neeman-Thomason (i.e. Theorem 3.7.16). It follows from the fact that the

quotient functor q : SH → SH(p) preserves compactness that SH(p) is compactly generated

by 1(p) and that we have the following commutative diagram of exact functors:

(finite p-acyclics) �
� //

� _

��

SHfin //� _

��

SHfin/(finite p-acyclics)

J
��

SHc
(p)� _

��
(p-acyclics) �

� // SH // SH(p).

Theorem 3.7.16 implies that J is fully faithful. It induces an equivalence between SHfin
(p),

which is the essential image of J essentially by definition, and SHfin/(finite p-acyclics).

Moreover, Theorem 3.7.16 states that every object in SHc
(p) is a direct summand of an object
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in SHfin
(p). In other words, SHfin

(p) is a dense triangulated subcategory of SHc
(p). One way to

see that SHfin
(p) =SHc

(p) is to use Thomason’s correspondence between the dense triangulated

subcategories of an (essentially small) triangulated category T and the subgroups of the

Grothendieck group K0(T). Indeed, under the correspondence (see [Tho97, Theorem 2.1]) a

dense triangulated subcategory i : S ,→T corresponds to the subgroup

im(i : K0(S)→ K0(T))≤ K0(T)

and so in particular S = T iff the map i : K0(S) → K0(T) is surjective. In our example, to

establish the surjectivity of K0(SHfin
(p)) → K0(SHc

(p)) it suffices to establish the surjectivity

of the composite K0(SHfin) → K0(SHfin
(p)) → K0(SHc

(p)). Using the fact that SHfin = SHc =

thick〈1〉 and SHc
(p) = thick〈1(p)〉, one can show (see for instance [Che06, Section 3]) that

the Euler characteristic X 7→ ∑
i∈ZdimHQi(X ) provides isomorphisms K0(SHfin) ∼−→ Z and

K0(SHc
(p))

∼−→ Z. The abelian group homomorphism Z ' K0(SHfin) → K0(SHc
(p)) ' Z is then

surjective as it sends 1= [1] to 1= [1(p)].

Definition 6.2.11. Rationalization of spectra refers to Bousfield localization with respect

to the homological functor π•(−)⊗Q which by Corollary 6.1.12 is the same thing as rational

homology H•(−;Q). The acyclic objects form a localizing subcategory SHtor ⊂ SH of torsion

spectra, as well as a thick subcategory SHfin
tor ⊂ SHfin of finite torsion spectra. A finite spec-

trum is a torsion spectrum iff the abelian group πi(X ) is torsion for all i ∈Z.

The last goal for this section is to establish that our notion of algebraic localization (cf. Sec-

tion 5.7) in the example K = SHfin is just the same thing as p-localization and rationaliza-

tion.

Proposition 6.2.12. Algebraic localization of SHfin at the prime (p)⊂Z∼=EndSHfin(1) is

p-localization. Algebraic localization of SHfin at the prime (0) is rationalization.
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Proof. In light of Proposition 6.2.10, proving the first statement amounts to showing that

the thick ⊗-ideal thick⊗〈cone(d : 1→ 1) | p - d〉 is precisely the set of finite p-acyclic spectra.

One inclusion is easily obtained by applying π•(−)⊗Z(p) to an exact triangle for d : 1→ 1. In

fact, we’ve used a similar argument in the proof that p-localization is a finite localization

(cf. Proposition 6.2.8). Note that cone(d : 1→ 1) is the Moore spectrum M(d) and that every

thick subcategory is a thick ⊗-ideal in SHfin. On the other hand, if X is a finite p-acyclic

spectrum then πi(X ) is finite with no p-torsion for all i ∈Z. For any finite spectrum X it is

straightforward to check that

IX := {
Y ∈SHfin | [Y , X ]i is finite with no p-torsion for all i ∈Z}

is a thick subcategory of SHfin. If X is finite p-acyclic then IX contains 1 and hence contains

the whole of SHfin. In particular IX contains X itself and we conclude that idX has finite

order d prime to p. Then ΣX ⊕ X ' cone(d.idX ) ' X ⊗ cone(d.id1) establishes that X is

contained in thick⊗〈cone(d : 1→ 1) | p - d〉. A similar approach can be used to prove that SHfin
tor

is equal to thick⊗〈cone(d : 1→ 1) | d 6= 0〉 and just as in Proposition 6.2.10, rationalization of

finite spectra can be regarded as the Verdier quotient SHfin →SHfin/SHfin
tor.

6.3 Complex cobordism and Morava K-theory

The three most fundamental cohomology theories in algebraic topology are indisputable:

ordinary cohomology, topological K-theory, and complex cobordism. The importance of com-

plex cobordism MU•(−) can be appreciated from several points of view, not least of which

is the fact that it is the universal complex-oriented cohomology theory and is thereby the

breeding ground for a host of cohomology theories intimately related to the theory of formal

group laws. It is represented in the stable homotopy category by the Thom spectrum MU

and an indication of its strength is provided by the Nilpotence Theorem (cf. Theorem 6.4.1
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below) which implies that MU•(−) detects nilpotent maps between finite spectra. Its coeffi-

cient ring π•(MU) classifies the cobordism classes of almost complex manifolds (see [Sto68,

Chapter VII]) and was shown by Milnor and Novikov to be a polynomial ring

π•(MU)=Z[x1, x2, . . .]

in an infinite number of variables with |xi| = 2i. Brown and Peterson [BP66] were the first

to observe that the p-localization of MU splits as a direct sum of shifted copies of a “smaller”

p-local ring spectrum BP:

Theorem 6.3.1 (Brown-Peterson; Quillen). Fix a prime p. There exists a unique p-local ring

spectrum BP which is a direct summand of MU(p) such that the map MU(p) → BP is a ring

homomorphism. The coefficient ring is a polynomial ring

BP• =π•(BP)=Z(p)[ν1,ν2, . . .]

with |νn| = 2(pn −1). In fact, MU(p) splits as a direct sum of shifted copies of BP.

Remark 6.3.2. Two references for understanding this construction are [Ada74, §II.15] and

[Wil82]. Although the spectrum BP was first constructed by Brown and Peterson, it was

clarified by Quillen [Qui69]. He showed that BP can be defined as the image of a multiplica-

tive idempotent MU(p)
e−→ MU(p) now called the “Quillen idempotent.” By general nonsense

(cf. Lemma 3.1.21), the idempotent splits

MU(p)
e //

##

MU(p)

BP

;;

and BP is a direct-summand of MU(p). Moreover, since MU(p) splits as a direct sum of

shifted copies of BP, results for MU(p) can generally be expressed in terms of BP—and

vice versa. Indeed there is some convenience when working p-locally to use the “smaller”

spectrum BP rather than MU(p).
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Remark 6.3.3. The Brown-Peterson spectrum BP gives rise to a whole collection of different

cohomology theories. The basic idea is to attempt to realize algebraic operations that one can

perform on the coefficient ring BP• =Z(p)[v1,v2, . . .] in the category of spectra. For example,

given a homogeneous ideal I ⊂ BP• we can ask whether there exists a spectrum BP/I with

π•(BP/I) = π•(BP)/I. Similarly, given a homogeneous element ν ∈ BP• we can ask whether

there exists a spectrum ν−1BP such that π•(ν−1BP) = BP•[ν−1]. Historically, such spectra

were constructed using the Baas-Sullivan theory of manifolds with singularities together

with the Landweber exact functor theorem. We’ll follow the historical approach (as it is the

method used in the fundamental papers on the Ravenel conjectures) but in Remark 6.3.18

we will mention more recent developments. The basic idea of the Baas-Sullivan theory

is that by choosing the types of singularities allowed in our manifolds we can construct

cobordism theories with prescribed properties—e.g., which realize a certain formal group

law, or which have a certain coefficient ring, etc. The interested reader can look at [Baa73]

for an original source and [Rud98, Chapter IX] for a more recent exposition. On the other

hand, the Landweber exact functor theorem [Lan76] is far more algebraic in nature. It has

versions both for MU and BP but we’ll just describe the BP version. To this end, define

homogeneous ideals In := (p,v1, . . . ,vn−1)⊂ BP• for each n ≥ 1.

Theorem 6.3.4 (Landweber exact functor theorem). Let M be a (graded) BP•-module. The

functor BP•(−)⊗BP• M is a stable homological functor iff for all n ≥ 1, multiplication by vn

on M⊗BP• BP•/In is a monomorphism. In particular, for such an M there exists a BP-module

spectrum E with π•(E)' M.

Remark 6.3.5. Recall from Remark 3.5.5 that every stable homological functor on the stable

homotopy category is represented by a spectrum—i.e. SH is a Brown category in the termi-

nology of [HPS97]. This explains why the second statement in the theorem follows from the

first.
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Remark 6.3.6. A BP•-module is said to be Landweber exact if it satisfies the conditions of the

theorem. Note that if E is any BP-module spectrum then we can construct a natural map of

spectra BP∧E∧X
ρ∧1−−→ E∧X where ρ : BP∧E → E is the module structure map. Applying π•

and using Lemma 3.5.7 we obtain a stable natural transformation BP•(X )⊗BP• E• → E•(X )

given by

π•(BP ∧ X )⊗BP• π•(E)→π•(BP ∧ X ∧E)'π•(BP ∧E∧ X )→π•(E∧ X ).

If the coefficient module E• is Landweber exact then this is a stable natural transformation

between stable homological functors which preserve coproducts. It is an isomorphism when

X = 1 and hence by Lemma 3.1.39 it is a natural isomorphism for all X . This explains that

although Landweber exactness is just a condition on the coefficient module E• it implies

that the homology theory E•(X )' BP•(X )⊗BP• E• is just Brown-Peterson homology tensored

with E•.

Example 6.3.7. The BP•-modules BP•[v−1
n ] and Z(p)[v1, . . . ,vn,v−1

n ] are both Landweber ex-

act. Indeed, in both cases M/In+1 = 0 so the condition for vi is automatically satisfied for

i ≥ n+1. Moreover, it evidently holds for i = 1, . . . ,n. Thus, there exist BP-module spectra

v−1
n BP and E(n) such that π•(v−1

n BP) = BP•[v−1
n ] and π•(E(n)) = Z(p)[v1, . . . ,vn,v−1

n ]. On the

other hand, other interesting examples of BP•-modules such as

• BP•/In

• Z(p)[v1, . . . ,vn]

• v−1
n BP•/In

• Fp[vn,v−1
n ]

are not Landweber exact. Although there do exist BP-module spectra which realize these
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BP•-modules, they cannot be obtained from the Landweber exact functor theorem and their

associated homology theories do not take the form BP•(−)⊗BP• E•.

Theorem 6.3.8 (Johnson-Wilson; Würgler). Fix a prime number p. For each n ≥ 1 there is

a BP-module spectrum P(n) such that π•(P(n)) = BP•/In. If p is odd then P(n) admits a

unique structure of a commutative ring spectrum compatible with the BP-module structure.

If p = 2 then P(n) admits two noncommutative multiplications µ1 and µ2 which are opposite

to each other: µ1 =µ2 ◦τ.

Proof. These spectra were first constructed by Johnson and Wilson [JW75] using the Baas-

Sullivan theory. Würgler studied their multiplicative structures: for odd p in [Wur77] and

for p = 2 in [Wur86].

Remark 6.3.9. Yagita [Yag76] observed that an analogue of the Landweber exact functor

theorem holds for the spectra P(n):

Theorem 6.3.10 (Yagita). Let M be a (graded) P(n)•-module. The functor P(n)•(−)⊗P(n)• M

is a stable homological functor iff for each m > n, multiplication by vm on M⊗P(n)• BP•/Im is

a monomorphism.

Example 6.3.11. This condition is satisfied, for example, by the P(n)•-modules Fp[vn,v−1
n ]

and v−1
n BP•/In. The first example provides the celebrated Morava K-theories:

Theorem 6.3.12. Fix a prime p. For each n ≥ 1 there is a p-local ring spectrum K(n), called

the nth Morava K-theory spectrum (for the prime p), whose coefficient ring is the graded-field

K(n)• = Fp[vn,v−1
n ] with |vn| = 2(pn −1). For p > 2 the ring structure on K(n) is unique and

commutative. For p = 2 there are two noncommutative multiplications µ1 and µ2 which are

opposite to each other: m1 = m2 ◦τ.
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Proof. Jack Morava was the first to construct and exploit these theories, although he never

published his results. His work was heavily infused with algebraic geometry and [JW75]

provided a construction of the Morava K-theories using more standard algebraic topology

techniques. See [Wur91] for an old survey on the subject.

Remark 6.3.13. The Morava K-theories are called K-theories because they have periodic

phenomena analogous to Bott periodicity. Indeed, vn ∈ K(n)• is an invertible homogeneous

element and hence multiplication by vn provides an isomorphism of graded modules

vn : K(n)•(X ) ∼−→ K(n)•+|vn|(X )

for any spectrum X . Thus, the functor K(n)•(−) is periodic with period 2(pn −1). Similarly,

the coefficient ring for complex K-theory is the Laurent polynomial ring Z[t, t−1] with |t| = 2

and multiplication by t amounts to Bott periodicity.

Definition 6.3.14. The collection of Morava K-theories K(n) is completed by defining

K(0) := HQ and K(∞) := HFp.

Note that these are also p-local ring spectra since Q and Fp are p-local abelian groups. The

following lemma justifies the definition of K(∞):

Lemma 6.3.15. Let X and Y be finite p-local spectra. For m À 0, K(m)•X ' K(m)•⊗HFp•X ,

K(m)•Y ' K(m)•⊗HFp•Y , and K(m)• f ' K(m)•⊗HFp• f for any map f : X →Y .

Remark 6.3.16. The Morava K-theories have a number of special properties. For example,

they satisfy a Künneth formula:

Lemma 6.3.17. For any two spectra X and Y , the natural transformation

K(n)•X ⊗K(n)• K(n)•Y → K(n)•(X ∧Y )
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is a natural isomorphism. In other words, the stable homological functor

K(n)• : SH→ K(n)•-grMod

is a strong ⊗-functor.

Proof. The natural transformation is the one defined in Lemma 3.5.7. The key point is that

K(n)•X is a flat (in fact free) K(n)•-module since K(n)• is a graded-field. Thus

K(n)•X ⊗K(n)• K(n)•(−)→ K(n)•(X ∧−)

is a stable natural transformation of stable homological functors. It is an isomorphism on 1

and hence is an isomorphism for all Y .

Remark 6.3.18. The method we have outlined for constructing the Morava K-theories using

the Landweber exact functor theorem and the Baas-Sullivan theory of manifolds with sin-

gularities is the classical approach used in the literature from the 1970s and 1980s. How-

ever, the new foundations for stable homotopy theory invented in the 1990s provide for a

newer approach. For example, [HS99, §1.1] discusses how to construct the Morava K-theory

spectrum K(n) using the S-modules of [EKM97]. The basic idea is that if E is a commu-

tative S-algebra then there is a well-behaved category of E-module spectra in which one

can perform module-theoretic constructions that mirror the constructions we desire on the

coefficient ring. However, for these more recent techniques, one must use MU(p) instead of

BP because the Brown-Peterson spectrum is not known to have an E∞-structure and thus

cannot be regarded as a commutative S-algebra. In contrast, the Thom spectrum MU has a

canonical E∞-structure—indeed, it is one of the prototypical examples of an E∞-ring spec-

trum [May77]—and MU(p) inherits such a structure. In fact, according to [JN10] there is a

fundamental incompatibility between BP and the E∞-structure on MU : even if BP had the
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structure of an E∞-ring spectrum, the canonical map MU → BP would not be E∞. In any

case, at present BP is only known to be E4; see [BM13].

6.4 The nilpotence theorem

In the influential paper [Rav84], Doug Ravenel studied Bousfield localization with respect to

the various BP-module spectra mentioned in the last section and formulated seven conjec-

tures concerning the structure of the stable homotopy category (cf. the preface of [Rav92]).

The conjecture which turned out to be the most important was the so-called “nilpotence con-

jecture” which stated that complex bordism detects nilpotent maps between finite spectra.

The proof of this conjecture by Devinatz, Hopkins and Smith [DHS88] led to the solution

of all but one of Ravenel’s conjectures in the follow-up work by Hopkins and Smith [HS98].

The nilpotence theorem which lies at the heart of these results actually has three forms

depending on what one means by nilpotent:

Theorem 6.4.1 (Devinatz-Hopkins-Smith). The following three “nilpotence” theorems hold:

(1) Let R be a ring spectrum. The kernel of the MU Hurewicz map

π•R → MU•R (6.4.2)

consists of nilpotent elements.

(2) Let f : X → Y be a map from a finite spectrum X to an arbitrary spectrum Y . If

MU ∧ f = 0 then f is smash-nilpotent: there exists n ≥ 1 such that f ∧n = 0.

(3) Let f :Σk X → X be a selfmap of a finite spectrum X . If MU•( f )= 0 then f is nilpotent:

there exists n ≥ 1 such that f n = 0.

Proof. This is a hard topological result and the paper [DHS88] is devoted to proving it. Let
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us merely indicate how (2) implies (1) and how (1) implies (3). Suppose α ∈ πiR is in the

kernel of the MU Hurewicz map (6.4.2). In other words, the composite

Σi1
α //R ' 1∧R

η⊗1 //MU ∧R

is equal to zero. One readily checks that this composite is equal to

Σi1' 1∧Σi1
η∧1 //MU ∧Σi1

MU∧α //MU ∧R

but smashing this map with MU and using the fact that MU is a ring spectrum we observe

MU ∧Σi1
∼ //

id
,,

MU ∧ 1∧Σi1
MU∧η∧1 // MU ∧MU ∧Σi1

µ∧1
��

MU∧MU∧α // MU ∧MU ∧R

MU ∧Σi1

MU∧α

44

and conclude that MU ∧α = 0. Hence (2) implies that that α∧n = 0 for some n ≥ 1. But

according to the definition of multiplication in the ring π•(R), the product αn is the composite

Σin1' (Σi1)∧n α∧n
−−→ R∧n µ−→ R

so indeed αn = 0. This proves that (2) implies (1). Now for (1) implies (3). If π•(MU ∧ f ) = 0

then

0= colim
(
π•(MU ∧ X )

(MU∧ f )•−−−−−−→π•(MU ∧Σ−k X )
(MU∧ f )•−−−−−−→ ·· ·)

=π•
(
hocolim(MU ∧ X

MU∧ f−−−−−→ MU ∧Σ−k X
MU∧ f−−−−−→ ·· · ))

which implies that hocolim(MU ∧ X
MU∧ f−−−−−→ MU ∧Σ−k X

MU∧ f−−−−−→ ·· · ) = 0. Since X is finite

(a.k.a compact) it follows that

X
η⊗1−−→ MU ⊗ X

MU∧ f−−−−−→ MU ∧Σ−k X
MU∧ f−−−−−→ ·· · MU∧ f−−−−−→ MU ∧Σ−knX

is zero for n large enough, which is the same map as

ΣknX
f n

−→ X
η∧1−−→ MU ∧ X .
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Replacing f by f n we can assume without loss of generality that n = 1. Now X is dualizable,

so we can consider the ring spectrum X ∧DX . We have an isomorphism of rings [X , X ]• '

π•(X ∧DX ) and the following diagram commutes

[X , X ]•
∼ //

(η∧1)◦−
��

[1, X ∧DX ]•
(η∧1∧1)◦−
��

[X , MU ∧ X ]•
∼ // [1, MU ∧ X ∧DX ]•

where the right-hand vertical map is the Hurewicz map for the ring spectrum X ∧ DX .

Thus the map f̃ ∈ π•(X ∧DX ) corresponding to f ∈ [X , X ]• is in the kernel of the Hurewicz

map—hence is nilpotent by (1)—and we conclude that f is nilpotent in [X , X ]•.

Remark 6.4.3. The nilpotence theorem holds p-locally and in fact MU can be replaced by BP.

Furthermore, as shown in [HS98], all three forms of the nilpotence theorem can be expressed

in terms of the Morava K-theories:

Theorem 6.4.4. The following three “nilpotence” theorems hold:

(1) Let R be a p-local ring spectrum. An element α ∈ π•(R) is nilpotent iff K(n)•(α) is

nilpotent for all 0≤ n ≤∞.

(2) A map f : X → Y from a finite p-local spectrum to an arbitrary p-local spectrum is

smash-nilpotent iff K(n)• f = 0 for all 0≤ n ≤∞.

(3) A graded endomorphism f :Σd X → X of a finite p-local spectrum is nilpotent iff K(n)• f

is nilpotent for all 0≤ n <∞.

Remark 6.4.5. For a graded endomorphism f :Σd X → X of a finite p-local spectrum, K(∞)• f

is nilpotent iff K(n)• f is nilpotent for all n À 0. See [HS98, Corollary 2.2]. This explains

that in statement (3) the n =∞ case could be included as well.
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Remark 6.4.6. The strongest form of the theorem is the “smash-nilpotence” result (2); cf. the

proof of Theorem 6.4.1. As we shall discuss in the next section, this form of the nilpotence

theorem provided [HS98] with a classification of the thick subcategories in the category of

finite p-local spectra SHfin
(p). Recall from Section 3.9 that Thomason’s classification of the

thick ⊗-ideals in Dperf(X ) depended on an analogous “tensor-nilpotence” theorem in that

setting.

6.5 Classification of thick subcategories

Fix a prime p. For each 0 ≤ n ≤ ∞, the nth Morava K-theory spectrum K(n) provides a

stable homological functor

K(n)•(−) : SHfin
(p) → K(n)•-grMod

which is in fact a strong ⊗-functor. It follows, using the fact that K(n)• is a graded-field,

that the kernel of this functor is more than a thick subcategory—it is a prime ⊗-ideal; i.e. a

point of Spc(SHfin
(p)). Conforming to the notation of [HS98] we define C∞ := ker(K(∞)•(−)),

Cn := ker(K(n−1)•(−)) for n ≥ 1, and C0 :=SHfin
(p).

Theorem 6.5.1. These categories fit into a filtration

0=C∞ ( · · ·(Cn+1 (Cn ( · · ·(C1 (C0 =SHfin
(p).

Proof. The inclusions Cn+1 ⊂ Cn follow from a theorem of Ravenel [Rav84, Theorem 2.11]

and Mitchell [Mit85] proved that they are strict. Moreover, it follows from Lemma 6.3.15

that C∞ =⋂
n≥1Cn and it is elementary that HFp•X = 0 implies that X = 0 for a finite p-local

spectrum.

Theorem 6.5.2 (Hopkins-Smith). If C⊂ SHfin
(p) is a thick subcategory of the stable homotopy

category of finite p-local spectra then C=Cn for some 0≤ n ≤∞.
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Proof. This is [HS98, Theorem 7]. It is an consequence of the Nilpotence Theorem.

Remark 6.5.3. It follows that every thick subcategory in SHfin
(p) is not only a ⊗-ideal—it is in

fact prime. Note also that since (0) is a prime, the tensor triangulated category SHfin
(p) is a

local tensor triangulated category (cf. Section 4.3).

Remark 6.5.4. From a different point of view, these results show that Spc(SHfin
(p)) consists of

a sequence of points

C1 →C2 →C3 →···→Cn →Cn+1 →···→C∞ = (0)

where → indicates specialization: {Cn}= {Ci | i ≥ n}.

Remark 6.5.5. A classification of the thick subcategories in the finite stable homotopy cat-

egory SHfin can be deduced from the classification of thick subcategories in the p-local cat-

egories SHfin
(p). A particularly nice exposition is given in [Bal10a, Section 9]. We’ll just

summarize the result and let the reader refer to [Bal10a] for proofs. Be warned, however,

that Balmer writes Cn for what we write Cn+1. (Our notation follows [HS98].)

Corollary 6.5.6. For each prime p, consider the localization functor

qp : SHfin →SHfin
(p)

and define Cp,n := q−1
p (Cn) for 1 ≤ n ≤∞. They are points in Spc(SHfin). Note that q−1

p (C1) =

SHfin
tor is the subcategory of finite torsion spectra—it is independent of p. The space Spc(SHfin)

is displayed in the diagram on the following page. The unit comparison map

ρ1 : Spc(SHfin)→Spec(Z)

sends SHfin
tor to (0) and sends Cp,n to (p) for 2 ≤ n ≤ ∞. The space Spc(SHfin) is irreducible

with unique generic point SHfin
tor and with one closed point Cp,∞ for each prime number p. In
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general, the closure of Cp,n is Cp,n = {Cp,m | n ≤ m ≤∞}.

C2,∞ C3,∞ · · · Cp,∞ · · ·

Spc(SHfin)=

ρ1

��

...
...

...

C2,n+1 C3,n+1 · · · Cp,n+1 · · ·

C2,n C3,n · · · Cp,n · · ·
...

...
...

C2,2 C3,2 · · · Cp,2 · · ·

SHfin
tor

Spec(Z)= 2Z 3Z · · · pZ · · ·

(0)

The fiber above (0) consists of the single point SHfin
tor while the fiber above each (p) is an

infinite tower of points corresponding to the Morava K-theories at p.

6.6 Higher comparison maps

The purpose of this section is to illustrate the iterative method for examining fibers of com-

parison maps in the example of the stable homotopy category of finite spectra SHfin. This

will depend on a description of the graded centers of endomorphism rings of finite p-local

spectra provided by [HS98] which affords a description of the ring

A•
X :=Center([X , X ]•)∩E•

X (6.6.1)

for every finite p-local spectrum X , but not of the non-commutative ring E•
X , nor the ring

R•
X = colimn≥1 E•

X⊗n . For this reason, we’ll have to settle for the unnatural comparison maps

of Section 5.1.
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The main results from [HS98] which allow for a description of our higher comparison

maps arise from their study of non-nilpotent (graded) endomorphisms of finite p-local spec-

tra. Recall that one statement of the Nilpotence Theorem (cf. Theorem 6.4.4) is that an

endomorphism f :Σd X → X of a finite p-local spectrum is nilpotent iff K(n)•( f ) is nilpotent

for all 0 ≤ n < ∞. This motivates the following definition which aims to pin down those

non-nilpotent endomorphisms that are as simple as possible.

Definition 6.6.2. [HS98, Definition 8] Let n ≥ 1 and let X be a finite p-local spectrum. An

endomorphism f : Σd X → X is a vn-selfmap if K(n)•( f ) is an isomorphism, and K(i)•( f ) is

nilpotent for i 6= n.

Remark 6.6.3. It follows from the definitions (and the Nilpotence Theorem) that if X is

contained in Cn+1 then vn-selfmaps are the same thing as nilpotent selfmaps but that if

X ∉ Cn+1 then vn-selfmaps are never nilpotent. It is also easily shown that X ∈ Cn is a

necessary condition for the existence of a vn-selfmap. Thus, the notion is mostly of interest

for X ∈Cn \Cn+1. The first result of substance is that vn-selfmaps exist:

Theorem 6.6.4 (Hopkins-Smith). A finite p-local spectrum X admits a vn-selfmap if and

only if X ∈Cn.

Proof. This is [HS98, Theorem 9].

Remark 6.6.5. The most important properties about vn-selfmaps, other than the fact that

they exist, are that they are asymptotically unique and asymptotically central:

Proposition 6.6.6 (Hopkins-Smith). If f and g are two vn-selfmaps of X then f i = g j for

some i, j ≥ 1.

Proof. This is [HS98, Corollary 3.7].
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Proposition 6.6.7 (Hopkins-Smith). If f is a vn-selfmap of X then some power of f is con-

tained in the center of [X , X ]•.

Proof. This can be derived from [HS98, Corollary 3.8] but let us give a direct proof. If

f : Σk X → X is a vn-selfmap then it follows from the fact that the Morava K-theories are

strong ⊗-functors that ΣkD f ∧ X and DX ∧ f are two vn-selfmaps of DX ∧ X . Invoking

Proposition 6.6.6, there is an i ≥ 1 such that (ΣkD f ∧ X )i coincides with (DX ∧ f )i as an

element of [DX ∧ X ,DX ∧ X ]ik. Noting that (ΣkD f ∧ X )i = ΣkiD( f i)∧ X and (DX ∧ f )i =

DX ∧ f i, we are reduced to the following claim: if a map f : Σk X → X satisfies ΣkD f ∧ X =

DX ∧ f then f is in the graded center of [X , X ]•. Given another endomorphism g :Σl X → X ,

the equality f · g = (−1)kl g · f can be checked in the ring π•(DX ∧ X ) ' [X , X ]•. Under this

isomorphism, the map f · g = f ◦Σk g corresponds to

Σk+l1
Ση−−→Σk+l(DX ∧ X )' DX ∧Σk+l X

DX∧Σk g−−−−−−→ DX ∧Σk X
DX∧ f−−−−→ DX ∧ X

while the map g · f = g ◦Σl f corresponds to

Σk+l1
Ση−−→Σk+l(DX ∧ X )' DX ∧Σk+l X

DX∧Σl f−−−−−−→ DX ∧Σl X
DX∧g−−−−→ DX ∧ X .

It thus follows from

DX ∧Σk+l X

1∧Σl f

��

∼ //

id

))
Σl(DX ∧Σk X ) ∼ //

∼
��

Σl (1∧ f )

""

DX ∧Σk+l X

∼
��

1∧Σk g // DX ∧Σk X

∼
��

1∧ f

{{

Σk+l(DX ∧ X )

∼
��

∼ //

(−1)kl

Σk(DX ∧Σl X )

∼
��

Σk(1∧g)// Σk(DX ∧ X )

∼
��

Σl(ΣkDX ∧ X )

Σl (ΣkD f∧1)
��

∼ // ΣkDX ∧Σl X
1∧g //

ΣkD f∧1
��

ΣkDX ∧ X

ΣkD f∧1
��

DX ∧Σl X ∼ //

id

66Σl(DX ∧ X ) ∼ // DX ∧Σl X
1∧g

// DX ∧ X

that indeed f · g = (−1)kl g · f in πk+l(DX ∧ X ).
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For our purposes, we need to include the following result:

Lemma 6.6.8. If f is a vn-selfmap of X then some power of f is ⊗-balanced.

Proof. This is straightforward in light of Proposition 6.6.6 by recognizing that f ⊗ X and

X ⊗ f are two vn-selfmaps of X ⊗ X . More precisely, if f :Σk X → X is a vn-selfmap then

Σk(X ∧ X )'Σk X ∧ X
f∧X−−−→ X ∧ X

and

Σk(X ∧ X )' X ∧Σk X
X∧ f−−−→ X ∧ X

are two vn-selfmaps of X ⊗ X . One easily checks that their ith powers are the maps

Σik(X ∧ X )'Σik X ∧ X
f i∧X−−−−→ X ∧ X

and

Σik(X ∧ X )' X ∧Σik X
X∧ f i

−−−−→ X ∧ X

and the equality of these two maps is what it means for the graded endomorphism f i to be

⊗-balanced (cf. diagram (5.1.12) on p. 155).

The notion of a vn-selfmap leads to a very complete description of the centers of graded

endomorphism rings of finite p-local spectra—up to nilpotents.

Theorem 6.6.9 (Hopkins-Smith). Let X be a finite p-local spectrum and let f be a graded

endomorphism of X which is in the center of [X , X ]•. If f is degree 0 then some power of f is

a multiple of the identity; otherwise, f is nilpotent or a vn-selfmap.

Proof. This is established in [HS98, Corollary 5.5, Proposition 5.6].

Recall that the commutative graded ring A•
X was defined by A•

X :=Center([X , X ]•)∩E•
X .

The above theorem enables us to completely describe the space Spech(A•
X ):
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Corollary 6.6.10. Let n ≥ 1 and X ∈ Cn \Cn+1. The space Spech(A•
X ) consists of two points:

a generic point consisting of the homogeneous nilpotents and a closed point consisting of the

homogeneous non-units. The closed point is of the form
√

( f ) for any ⊗-balanced vn-selfmap

f :Σd X → X .

Proof. If f ∈ A0
X then f k = m.idX for some k ≥ 1 and m ∈ Z. If p | m then it follows from

the Nilpotence Theorem and the fact that X ∈ C1 that f is nilpotent, while if p - m then

m.idX is an isomorphism. Thus, every element of degree zero in A•
X is either nilpotent

or a unit. On the other hand, every element of non-zero degree is either nilpotent or a

vn-selfmap; moreover, vn-selfmaps are not nilpotent since X ∉ Cn+1, nor are they units. It

follows that the homogeneous non-units form an ideal m which is necessarily the unique

maximal homogeneous ideal of A•
X . On the other hand, the ideal of homogeneous nilpotents

n is readily seen to be prime just using the fact that the product of two vn-selfmaps is again

a vn-selfmap and the product of a unit and a vn-selfmap is again a vn-selfmap. Since a

vn-selfmap exists in A•
X (by Lemma 6.6.8 and Theorem 6.6.4), n ( m. Moreover, if p is a

homogeneous prime ideal then n ( p implies that there is a vn-selfmap f contained in p.

By the asymptotic uniqueness of vn-selfmaps, it follows that every vn-selfmap is contained

in p, so that p = m. We conclude that the only homogeneous primes of A•
X are n and m.

Finally note that the asymptotic uniqueness of vn-selfmaps implies that m = √
( f ) for any

⊗-balanced vn-selfmap f :Σd X → X .

Lemma 6.6.11. Let n ≥ 1 and X ∈ Cn \Cn+1. If f :Σd X → X is a vn-selfmap then cone( f ) is

contained in Cn+1 \Cn+2.

Proof. This follows from the long exact sequence obtained by applying Morava K-theory to

an exact triangle for f :Σd X → X . In more detail, the fact that K(n)•( f ) is an isomorphism

implies that K(n)•(cone( f )) = 0 so that cone( f ) ∈ Cn+1. On the other hand, if cone( f ) ∈ Cn+2
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then K(n+1)•(cone( f )) = 0 which implies that K(n+1)•( f ) is an isomorphism. But since

K(n+1)•( f ) is also nilpotent, it follows that K(n+1)•(X ) = 0. Hence X ∈ Cn+2 ⊂ Cn+1 which

would contradict our assumption that X ∉Cn+1.

We are now in a position to examine the structure of SHfin via higher comparison maps.

The starting point is the comparison map for the unit object: the sphere spectrum. It is well-

known that the endomorphism ring of the sphere spectrum is EndSHfin(1) ∼=Z. On the other

hand, πi(1)= 0 for i < 0 and all the graded endomorphisms of positive degree are nilpotent by

Nishida’s theorem. It follows that Spech(End•
SHfin(1))'Spec(EndSHfin(1)) and that the graded

and ungraded comparison maps coincide. Moreover, algebraic localization with respect to

p• ⊂ End•
SHfin(1) is the same as algebraic localization with respect to p0 ⊂ EndSHfin(1). Then

consider the map ρ1 : Spc(SHfin)→Spec(Z). Algebraic localization with respect to the generic

point (0) ∈Spec(Z) gives a map

Spc(SHfin/SHfin
tor)→Spec(Q)

and we conclude that the fiber over (0) is V (SHfin
tor) ⊂ SHfin. In fact, one can show that

SHfin/SHfin
tor ' Db(Q) (see [Mar83, page 113]) and hence the spectrum of SHfin/SHfin

tor is a

single point. Moreover, SHfin
tor itself is prime and so we conclude that the fiber over (0) is the

single point {SHfin
tor}.

Next consider the fiber over a closed point (p) ∈ Spec(Z). Algebraic localization provides

a map Spc(SHfin
(p)) → Spec(Z(p)) and the fiber over the unique closed point (p) ∈ Spec(Z(p)) is

supp(cone(p.id1)) = {C2}. In other words, the fiber includes everything with the exception of

a single point: C1. The next step is to define X1 := cone(p.id1) and consider

ρ•X1,A•
X1

: {C2}= supp(X1)→Spech(A•
X1

).

By Corollary 6.6.10 the unique closed point of Spech(A•
X1

) is of the form
√

( f ) for any tensor-

balanced v2-selfmap f of X1 and by Lemma 6.6.11 the fiber over this point is supp(cone( f ))=
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{C3}. Again the fiber consists of everything except for one point and the process continues.

At the nth step we have an object Xn and a map

ρ•Xn,A•
Xn

: {Cn+1}= supp(Xn)→Spech(A•
Xn

).

The unique closed point is generated as a radical ideal by any ⊗-balanced vn+1-selfmap fn

and the fiber over this point is supp(cone( fn)) = {Cn+2}. Altogether this gives a filtration of

the fiber

ρ−1
SHfin

(p),1
((p))= {C2}⊃ {C3}⊃ {C4}⊃ ·· · (6.6.12)

where exactly one point is removed at each step. All of this may be better appreciated by

considering the picture of Spc(SHfin) displayed on page 221. Algebraic localization at p

focuses on a single branch and then each successive comparison map chops off the root

heading towards Cp,∞. Note that we obtain every irreducible closed subset of the fiber

(6.6.12) except for the closed point {C∞} = {C∞}. The fact that this point is missed shouldn’t

be alarming since it corresponds to an irreducible closed subset which is not Thomason. If

all the rings involved are noetherian then we can only expect to obtain Thomason closed

subsets since our comparison maps are spectral—when using these strategies we should

take arbitrary intersections of all of the closed subsets that we obtain. Keep in mind that

the Thomason closed subsets are a basis of closed sets, so if we can obtain all the Thomason

closed subsets of the spectrum then we have obtained the entire spectrum.
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