
UC Irvine
ICTS Publications

Title
TGF-β mediated DNA methylation in prostate cancer.

Permalink
https://escholarship.org/uc/item/47n3q1wd

Journal
Translational andrology and urology, 1(2)

ISSN
2223-4691

Authors
Lee, Chung
Zhang, Qiang
Zi, Xaolin
et al.

Publication Date
2012-06-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47n3q1wd
https://escholarship.org/uc/item/47n3q1wd#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Transl Androl Urol 2012;1(2):78-88www.amepc.org/tau© Translational Andrology and Urology. All rights reserved.

Introduction

The underlying mechanism promoting tumor progression 
has been elusive. Almost all tumors harbor a defective 
negative feedback loop of signaling by transforming growth 
factor-β (TGF-β). TGF-β signaling consists of Smad and 
non-Smad pathways (1). In advanced cancer cells, the 
non-Smad pathways predominate and progress leading to 
deregulated signaling cascades (2). This deregulation creates 
a unique TGF-β mediated tumor microenvironment that 
sets off a vicious cycle and promotes many of the hallmarks 
of tumor progression, including sustained angiogenesis, 
immune system evasion, proliferation, loss of the apoptotic 
response, epithelial-to-mesenchymal transition (EMT) and 
metastasis. These combined effects lead to uncontrolled 

tumor growth and spread, for which we coin the term 
“TGF-β mediated vicious cycle in tumor progression”. 
Recent evidence demonstrated that TGF-β mediates 
aggressive cancer including auto-induction of TGF-β1 and 
increased expression of DNA methyltransferases (DNMTs) 
(2,3). This latter observation suggests that the expression 
of these methylated genes may be an important event in 
TGF-β mediated tumor progression.   

DNA methylation in cancer

Epigenetic changes are characteristic of nearly all 
malignancies and include changes in DNA methylation, 
histone modification and altered expression of microRNAs. 
DNA methylation plays a critical role in cancer development 
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and progression. Alteration of DNA methylation patterns 
leads to deregulation of gene expression, in the absence of 
mutation. In the past few years, there has been an explosion 
in the number of publications in DNA methylation in all 
types of cancers (900 papers as of March 2012), including 
representative publications in prostate cancer (4-7), bladder 
cancer (8), renal cell carcinoma (9), breast cancer (10), lung 
cancer (11), ovarian cancer (12), oral cancer (13), pancreatic 
cancer (14), and other cancers. All tumors that have been 
examined show changes in DNA methylation, suggesting 
that this may represent a basic element of cancer biology, 
which has a significant impact on tumor pathology. Readers 
are referred to many excellent reviews on the biology of 
DNA methylation (15-17). This increased interest in the 
study of DNA methylation has created an opportunity for 
us to query the relationship between TGF-β signaling and 
DNA methylation in cancer, which has not been appreciated 
to date. 

Biology of TGF-β signaling

TGF-β is a potent pleiotropic cytokine that regulates 
mammalian development, differentiation, and homeostasis 
in essentially all cell types and tissues. Its signaling is 
mediated through Smad and non-Smad pathways to regulate 
transcription, translation, microRNA biogenesis, protein 
synthesis and post-translational modifications (1,18,19). 
TGF-β binds to the type II TGF-β receptor (TβRII) which 
recruits and transphosphorylates the type I TGF-β receptor 
(TβRI) (20). The activated TβRI then phosphorylates Smad2 
and Smad3 at the c-terminus. Activated Smad2/3 forms 
heterooligomers with Smad4 and migrates to the nucleus 
to regulate transcription. The Smad complexes interact with 
a myriad of transcriptional co-regulators and other factors to 
mediate target gene expression or repression (21,22). Smad2/3 
also interacts with and regulates microRNA processing. 
TGF-β also signals through a number of non-Samd pathways, 
including m-TOR, RhoA, Ras, MAPK, PI3K/AKT, PP2A/
p70s6K, and JNK (1,23,24). Finally, a direct action of the 
activated TβRI can interact with eEF1A1 to block protein 
synthesis (19). Dysregulation of both Smad and non-Smad 
pathways is implicated in aberrant TGF-β signaling and its 
pro-tumorigenic events in advanced cancer (3).  

TGF-β signaling and DNA methylation

TGF-β is a key regulator for DNA methylation through an 
increase in DNMTs expression, especially in cancer (3,12). 

There exists a differential effect of TGF-β mediated DNMT 
activities between benign and malignant cells. In benign cells, 
TGF-β inhibits DNMT expression (25,26). In cancer cells, 
TGF-β stimulates DNMT expression (3,12). It should be 
noted that, in light of the importance of both TGF-β signaling 
and DNA methylation in tumor progression, the majority 
of the methylated genes in cancer are relevant to TGF-β 
signaling (12). This is consistent with our observation that 
over-expression of TGF-β and/or DNMTs is associated with 
aggressiveness and poor prognosis in prostate cancer (3,27).  

Review of literature

In this review, we will focus our discussion in prostate cancer 
as an example, because the pattern of DNA methylation is 
organ specific. We surveyed the recent literature to identify 
the existing methylated genes in prostate cancer and attempt 
to determine which ones are mediated by TGF-β signaling. 
We have identified over 80 genes in which promoters are 
methylated in prostate cancer. This is a significant increase 
from 2006, when only 30 genes had been identified (28). 
Interestingly, the non-Smad pathways of known relevance 
to TGF-β are more often associated with de novo gene 
methylation (3,29). In contrast, the Smad-mediated 
pathways often lead to promoter de-methylation of genes 
(see below). In Table 1, we summarize the known TGF-β 

relevant genes in which the promoter becomes methylated 
in prostate cancer. We also identified those which have been 
known to be induced by TGF-β. Since, in advanced cancer 
cells, TGF-β induces the activation of Erk, JNK, AKT, 
and NF-κB (1,3), the above methylated gene have been 
documented in the literature to be related with one of the 
above transcription factors, thus are considered as TGF-β 
relevant.

In addition, there are a few genes that are de-methylated 
and are mediated through Smad2/3 activation, such as α2 
[1] collagen (113), CD133 (26), and maspin (or SFN, 14-
3-3 sigma) (41,59,67,114,115). However, a reversal of the 
methylation status in these genes can be observed in cancer 
cells when the TGF-β signaling events switched from the 
Smad pathways to the non-Smad pathways in cancer cells as in 
the case for maspin (116) and CD133 (117).

Table 2 lists genes that are not currently documented in 
the literature as TGF-β relevant. However, TGF-β mediates 
an over-expression of DNMTs in cancer cells, which is 
responsible for promoter methylation of these genes and. in 
non-cancer cells, TGF-β down-regulates the expression of 
DNMTs (25,26).
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Table 1 Genes with known association with TGF-β that have DNA hypermethylation in prostate cancer

Name Function Reference

1. TBRI TGF-β receptor type I (30,31)

2. TBRIITGF-β TGF-β receptor type II (31,32)

3. cdh13herin Adhesion molecule, tumor suppressor (33,34)

4. TTP (tristetrapolin) Loss of TTP stabilizes c-Myc mRNA (35)

5. TGFBI (Betaig-h3) TGF-β induced gene (36-38)

6. IGFBP3 IGF binding protein 3 (39,40)

7. beta 4-integrin Promotes focal adhesion (34)

8. MAL Promotes cell differentiation (41,42)

9. SLIT2 Negative regulation of migration (36,41,43)

10. Bcl2 Involved in apoptosis (40,41)

11. Caspase 8 Pro-apoptotic gene (44)

12. EPHA7 Tumor suppressor in prostate cancer (45-47)

13. BTG3 Tumor suppressor (48,49)

14. PTGS2 Pro-inflammatory enzyme (50-52)

15. HIN1 (or SCGB3A1) Tumor suppressor (41,53)

16. RASSF1A Tumor suppressor gene (54-56)

17. CHD13 Adhesion molecule (41,57,58)

18. p15, p16, p21, p27, p57 Cell cycle regulators (57,59-61)

19. RASSF1A Pro-apoptotic, negative Ras effector (41,62)

20. TWIST1 Suppressor of E-cadherin (41)

21. FHIT Induces apoptosis though Bak (63,64)

22. SOCS3 Negative regulator of cytokine (65,66)

23. TIMP-2, TIMP-3 Inhibitors of metalloproteinase (67-69)

24. PITX2 Activator of cyclin D2 (41,70-72)

25. DcR1, DcR2 Fail to induced apoptosis through TRAIL (73,74)

26. GLIPR1 (or RTVP-1) p53 target gene (75,76)

27. MGMT DNA repair gene (77-81)

28. DKK3 (SFRP1) Wnt antagonist (82,83)

29. RUNX3 Tumor suppressor (84-86)

30. CAV-1 Tumor suppressor (87,88)

31. Clusterin Apoptotic protein (89-91)

32. TFPI2 (PP5, MSPI) A potent inhibitor of matrix-metalloproteinases (92,93)

33. SOX7 Suppressor of β-catenin (94,95)

34. SLC5A8 Tumor suppressor (96,97)

35. SLC18A2 (or VMAT2) Affects apoptosis and migration (98,99)

36. LPL Tumor suppressor gene (100,101)

37. HRK (or ATF-2) Proapoptosis (102,103)

38. INHBB Inhibin betaB (104,105)

39. ID4 Inhibitor of DNA binding (41,106-108)

40. FYN Promotes proliferation and motility (109,110)

41. HPP1 (TMEFF2) TGF-β signal pathway (73,84)

42. RRAD Ras-related GTPases (111,112)

43. DRM/Gremlin Down-regulated in Mos-transformed cells (73,84)
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DNA methylation associated with tumor 
initiation and progression

A characteristic of DNA methylation in cancer is its 
heterogeneity. Despite of this variation, some trends can 

be discerned. We rationalize that genes that are wildly 

methylated are likely involved during early stages of tumor 
development, such as GSTP-1 (4), which may be used for 
the early detection of prostate cancer. Many investigators 

Table 2 Methylated genes in prostate cancer whose regulation by TGF-β is not yet known

Name Function Reference

1. HLAa HLA class-I antigen (41)

2. ERβ Estrogen receptor (67)

3. ERα Estrogen reeptor (67)

4. AR Androgen receptor (67)

5. RARβ Tumor suppressor (67)

6. DAPK1 Regulate cell death (118)

7. MDR1 Multi-drug resistant gene (41,119)

8. APC Antagonist of Wnt (41,119-121)

9. CD44 Cell migration and adhesion (52,57)

10. MCAM (MUC18, CD146) In advanced PCa (41,122)

11. TIG1 Retinoic acid receptor responder (41,123)

12. THRB Thyroid hormone receptor B (41)

13. Laminin-5 Role in adhesion and motility (124)

14. WIF1 Wnt inhibitory factor (125-127)

15. TSLC1 Tumor suppressor (128)

16. RIZ1 Rb-interacting zinc finger gene 1 (73,129)

17. Cyclin D2 (or CCND2) Regulate cell cycle (54,67,130)

18. GSTP1 Cell detoxification (4,7,121,131)

19. PDLIM4 Actin binding protein, tumor suppressor (41,132)

20. Sprouty1 negative regulators of MAPK/PI3K (133)

21. ZNF331 Tumor suppressor (134)

22. TMS1(ASC, PYCARD) Induces apoptosis by caspase (57,73,135)

23. GPX3 Anti-oxidant (82,119)

24. NKX2.5 Repress calreticulin expression (41)

25. NKX3.1 Promotes normal differentiation (136)

26. DPYS Sensitivity to 5-FU (41,137)

27. ENDRB Endothelin receptor type B (5,41)

28. CADM2 Cell adhesion molecule (138)

29. XAF1 Interference with caspase inhibition of XIAP (139-141)

30. CRBP1 Cellular retinol binding protein, promotes apoptosis (73,142)

31. FAS (TNFRSF6, APT1, CD95/Apo-1) Induces apoptosis (143)

32. RPRM Inhibits Cdc2-cyclin b1 activity (73,123)

33. GSTM1 Detoxification (82)

34. EPB41L3 Erythrocyte membrane protein band 4.1-like 3 (28)

35. SCTR Gene encoding the secretin receptor (105)

36. SOCS1 Negative regulator of cytokine (73,84)

37. HIC Tumor suppressor (79,81)
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have used specific methylation pattern for prediction 
of cancer progression. However, during progression 
of prostate cancer, the tumor becomes increasingly 
heterogeneous, it will be difficult to pinpoint which genes 
are methylated that can be used as a prognostic marker 
and such efforts have been met with mixed results (144). 
It is reasonable to assume that as tumors progress, there 
will be more genes that undergo promoter methylation 
and demethylation. Therefore, the development of a rapid 
analysis of DNA methylation profile make it possible to 
follow the methylation patterns which may be used as an 
indication of disease progression.  

Conclusions and future directions

Based on the present review, it is apparent that TGF-β 
signaling and DNA methylation are two important events 
in prostate cancer development and progression. In tumor 
progression, the deregulated TGF-β signaling mediates 
an increase in the number of genes undergoing DNA 
hypermethylation. These genes are generally associated 
with prevention of apoptosis, promotion of proliferation, 
facilitation of cell migration and evasion of the immune 
surveillance, resulting in tumor progression. In the era 
of personalized medicine, it becomes more important 
that we clearly define which genes are affected by TGF-β 
signaling and which genes are promoter hypermethylated 
during prostate cancer progression. Recent reports point 
out that some dietary and lifestyle interventions in cancer 
patients are mainly mediated through a reduction in DNA 
methylation (125,145,146), while others may lead to both 
gains and losses (147). It is possible that these dietary and 
lifestyle factors may be mediated at least partly through a 
normalization of the vicious cycle of TGF-β signaling in 
cancer microenvironment (148). 
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