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Hua Zhou,
Department of Biostatistics, University of California, Los Angeles, CA 90095-1772, USA

Kenneth Lange
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Angeles, CA 90095-1766, USA

Abstract

Proximal distance algorithms combine the classical penalty method of constrained minimization 

with distance majorization. If f(x) is the loss function, and C is the constraint set in a constrained 

minimization problem, then the proximal distance principle mandates minimizing the penalized 

loss f (x) + ρ
2 dist x, C 2 and following the solution xρ to its limit as ρ tends to ∞. At each iteration 

the squared Euclidean distance dist(x,C)2 is majorized by the spherical quadratic ‖x− PC(xk)‖2, 

where PC(xk) denotes the projection of the current iterate xk onto C. The minimum of the 

surrogate function f (x) + ρ
2 ‖x − PC xk ‖2 is given by the proximal map proxρ−1f[PC(xk)]. The next 

iterate xk+1 automatically decreases the original penalized loss for fixed ρ. Since many explicit 

projections and proximal maps are known, it is straightforward to derive and implement novel 

optimization algorithms in this setting. These algorithms can take hundreds if not thousands of 

iterations to converge, but the simple nature of each iteration makes proximal distance algorithms 

competitive with traditional algorithms. For convex problems, proximal distance algorithms reduce 

to proximal gradient algorithms and therefore enjoy well understood convergence properties. For 

nonconvex problems, one can attack convergence by invoking Zangwill’s theorem. Our numerical 

examples demonstrate the utility of proximal distance algorithms in various high-dimensional 

settings, including a) linear programming, b) constrained least squares, c) projection to the closest 

kinship matrix, d) projection onto a second-order cone constraint, e) calculation of Horn’s 

copositive matrix index, f) linear complementarity programming, and g) sparse principal 

components analysis. The proximal distance algorithm in each case is competitive or superior in 

speed to traditional methods such as the interior point method and the alternating direction method 

of multipliers (ADMM). Source code for the numerical examples can be found at https://

github.com/klkeys/proxdist.
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1. Introduction

The solution of constrained optimization problems is part science and part art. As 

mathematical scientists explore the largely uncharted territory of high-dimensional 

nonconvex problems, it is imperative to consider new methods. The current paper studies a 

class of optimization algorithms that combine Courant’s penalty method of optimization 

(Beltrami, 1970; Courant, 1943) with the notion of a proximal operator (Bauschke and 

Combettes, 2011; Moreau, 1962; Parikh and Boyd, 2013). The classical penalty method 

turns constrained minimization of a function f(x) over a closed set C into unconstrained 

minimization. The general idea is to seek the minimum point of a penalized version f(x)

+ρq(x) of f(x), where the penalty q(x) is nonnegative and vanishes precisely on C. If one 

follows the solution vector xρ as ρ tends to ∞, then in the limit one recovers the constrained 

solution. The penalties of choice in the current paper are squared Euclidean distances 

dist(x,C)2 = infy∈C ‖x−y‖2.

The formula

prox f y = argminx f x + 1
2‖x − y‖2

(1)

defines the proximal map of a function f(x). Here ‖ · ‖ is again the standard Euclidean norm, 

and f(x) is typically assumed to be closed and convex. Projection onto a closed convex set C 
is realized by choosing f(x) to be the 0/∞ indicator δC(x) of C. It is possible to drop the 

convexity assumption if f(x) is nonnegative or coercive. In so doing, proxf(y) may become 

multi-valued. For example, the minimum distance from a nonconvex set to an exterior point 

may be attained at multiple boundary points. The point x in the definition (1) can be 

restricted to a subset S of Euclidean space by replacing f(x) by f(x) + δS(x), where δS(x) is 

the indicator of S.

One of the virtues of exploiting proximal operators is that they have been thoroughly 

investigated. For a large number of functions f(x), the map proxcf(y) for c > 0 is either given 

by an exact formula or calculable by an efficient algorithm. The known formulas tend to be 

highly accurate. This is a plus because the classical penalty method suffers from ill 

conditioning for large values of the penalty constant. Although the penalty method seldom 

delivers exquisitely accurate solutions, moderate accuracy suffices for many problems.

There are ample precedents in the optimization literature for the proximal distance principle. 

Proximal gradient algorithms have been employed for many years in many contexts, 
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including projected Landweber, alternating projection onto the intersection of two or more 

closed convex sets, the alternating-direction method of multipliers (ADMM), and fast 

iterative shrinkage thresholding algorithms (FISTA) (Beck and Teboulle, 2009; Combettes 

and Pesquet, 2011; Landweber, 1951). Applications of distance majorization are more recent 

(Chi et al., 2014; Lange and Keys, 2014; Xu et al., 2017). The overall strategy consists of 

replacing the distance penalty dist(x,C)2 by the spherical quadratic ‖x − yk‖2, where yk is the 

projection of the kth iterate xk onto C. To form the next iterate, one then sets

xk + 1 = prox
ρ−1 f

yk      with     yk = PC xk .

The MM (majorization-minimization) principle guarantees that xk+1 decreases the penalized 

loss. We call the combination of Courant’s penalty method with distance majorization the 

proximal distance principle. Algorithms constructed according to the principle are proximal 
distance algorithms.

The current paper extends and deepens our previous preliminary treatments of the proximal 

distance principle. Details of implementation such as Nesterov acceleration matter in 

performance. We have found that squared distance penalties tend to work better than exact 

penalties. In the presence of convexity, it is now clear that every proximal distance algorithm 

reduces to a proximal gradient algorithm. Hence, convergence analysis can appeal to a 

venerable body of convex theory. This does not imply that the proximal distance algorithm is 

limited to convex problems. In fact, its most important applications may well be to 

nonconvex problems. A major focus of this paper is on practical exploration of the proximal 

distance algorithm.

In addition to reviewing the literature, the current paper presents some fresh ideas. Among 

the innovations are: a) recasting proximal distance algorithms with convex losses as 

concave-convex programs, b) providing new perspectives on convergence for both convex 

and nonconvex proximal distance algorithms, c) demonstrating the virtue of folding 

constraints into the domain of the loss, and d) treating in detail seven interesting examples. It 

is noteworthy that some our new convergence theory is pertinent to more general MM 

algorithms.

It is our sincere hope to enlist other mathematical scientists in expanding and clarifying this 

promising line of research. The reviewers of the current paper have correctly pointed out that 

we do not rigorously justify our choices of the penalty constant sequence ρk. The recent 

paper by Li et al. (2017) may be a logical place to start in filling this theoretical gap. They 

deal with the problem of minimizing f(x) subject to Ax = b through the quadratic penalized 

objective f (x) + ρ
2 ‖Ax − b‖2. For the right choices of the penalty sequence ρk, their proximal 

gradient algorithm achieves a O(k−1) rate of convergence for f(x) strongly convex. As a 

substitute, we explore the classical problem of determining how accurately the solution yρ of 

the problem minx f (x) + ρ
2 q x 2 approximates the solution y of the constrained problem 

minx∈C f(x). Polyak (1971) demonstrates that f(y)−f(yρ) = O(ρ−1) for a penalty function q(x) 
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that vanishes precisely on C. Polyak’s proof relies on strong differentiability assumptions. 

Our proof for the case q(x) = dist(x,C) relies on convexity and is much simpler.

As a preview, let us outline the remainder of our paper. Section 2 briefly sketches the 

underlying MM principle. We then show how to construct proximal distance algorithms 

from the MM principle and distance majorization. The section concludes with the derivation 

of a few broad categories proximal distance algorithms. Section 3 covers convergence theory 

for convex problems, while Section 4 provides a more general treatment of convergence for 

nonconvex problems. To avoid breaking the flow of our exposition, all proofs are relegated 

to the Appendix. Section 5 discusses our numerical experiments on various convex and 

nonconvex problems. Section 6 closes by indicating some future research directions.

2. Derivation

The derivation of our proximal distance algorithms exploits the majorization-minimization 

(MM) principle (Hunter and Lange, 2004; Lange, 2010). In minimizing a function f(x), the 

MM principle exploits a surrogate function g(x | xk) that majorizes f(x) around the current 

iterate xk. Majorization mandates both domination g(x | xk) ≥ f(x) for all feasible x and 

tangency g(xk | xk) = f(xk) at the anchor xk. If xk+1 minimizes g(x | xk), then the descent 

property f(xk+1) ≤ f(xk) follows from the string of inequalities and equalities

f xk + 1 ≤ g xk + 1| xk ≤ g xk | xk = f xk .

Clever selection of the surrogate g(x | xk+1) can lead to a simple algorithm with an explicit 

update that requires little computation per iterate. The number of iterations until 

convergence of an MM algorithm depends on how tightly g(x | xk) hugs f(x). Constraint 

satisfaction is built into any MM algorithm. If maximization of f(x) is desired, then the 

objective f(x) should dominate the surrogate g(x | xk) subject to the tangency condition. The 

next iterate xk+1 is then chosen to maximize g(x | xk). The minorization-maximization 

version of the MM principle guarantees the ascent property.

The constraint set C over which the loss f(x) is minimized can usually be expressed as an 

intersection ∩i = 1
m Ci of closed sets. It is natural to define the penalty

q x = 1
2 ∑

i = 1

m
αidist x, Ci

2

using a convex combination of the squared distances. The neutral choice αi = 1
m  is one we 

prefer in practice. Distance majorization gives the surrogate function
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gρ x | xk = f x + ρ
2 ∑

i = 1

m
αi‖x − PCi

xk ‖2

= f x + ρ
2 x − ∑

i = 1

m
αiPCi

xk

2
+ ck

for an irrelevant constant ck. If we put yk = ∑i = 1
m αiPCi

xk , then by definition the minimum 

of the surrogate gρ(x | xk) occurs at the proximal point

xk + 1 = prox
ρ−1 f

yk .

(2)

We call this MM algorithm the proximal distance algorithm. The penalty q(x) is generally 

smooth because

∇ 1
2dist x, C 2 = x − PC x

at any point x where the projection PC(x) is single valued (Borwein and Lewis, 2006; Lange, 

2016). This is always true for convex sets and almost always true for nonconvex sets. For the 

moment, we will ignore the possibility that PC(x) is multi-valued.

For the special case of projection of an external point z onto the intersection C of the closed 

sets Ci, one should take f (x) = 1
2‖z − x‖2. The proximal distance iterates then obey the 

explicit formula

xk + 1 = 1
1 + ρ z + ρyk .

Linear programming with arbitrary convex constraints is another example. Here the loss is 

f(x) = vtx, and the update reduces to

xk + 1 = yk − 1
ρv .

If the proximal map is impossible to calculate, but f(x) is L-smooth (∇f(x) is Lipschitz with 

constant L), then one can substitute the standard majorization

f x ≤ f xk + ∇ f xk
t x − xk + L

2 ‖x − xk‖2
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for f(x). Minimizing the sum of the loss majorization plus the penalty majorization leads to 

the MM update

xk + 1 = 1
L + ρ − ∇ f xk + Lxk + ρyk

= xk − 1
L + ρ ∇ f xk + ρ∇q xk .

(3)

This is a gradient descent algorithm without an intervening proximal map.

In moderate-dimensional problems, local quadratic approximation of f(x) can lead to a 

viable algorithm. For instance, in generalized linear statistical models, Xu et al. (2017) 

suggest replacing the observed information matrix by the expected information matrix. The 

latter matrix has the advantage of being positive semidefinite. In our notation, if Ak ≈ 
d2f(xk), then an approximate quadratic surrogate is

f xk + ∇ f xk
t x − xk + 1

2 x − xk
tAk x − xk + ρ

2 ‖x − yk‖2 .

The natural impulse is to update x by the Newton step

xk + 1 = xk − Ak + ρI −1 ∇ f xk − ρyk .

(4)

This choice does not necessarily decrease f(x). Step halving or another form of backtracking 

restores the descent property.

A more valid concern is the effort expended in matrix inversion. If Ak is dense and constant, 

then extracting the spectral decomposition VDVt of A reduces formula (4) to

xk + 1 = xk − V(D + ρI)−1Vt ∇ f xk − ρyk ,

which can be implemented as a sequence of matrix-vector multiplications. Alternatively, one 

can take just a few terms of the series

Ak + ρI −1 = ρ−1 ∑
j = 0

∞
−ρ−1Ak

j
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when ρ is sufficiently large. For a generalized linear model, parameter updating involves 

solving the linear system

ZtWkZ + ρI x = ZtWk
1/2vk + ρyk

(5)

for Wk a diagonal matrix with positive diagonal entries. This task is equivalent to 

minimizing the least squares criterion

Wk
1/2Z

ρI
x −

vk

ρyk

2
.

(6)

In the unweighted case, extracting the singular value decomposition Z = USVT facilitates 

solving the system of equations (5). The svd decomposition is especially cheap if there is a 

substantial mismatch between the number rows and columns of Z. For sparse Z, the 

conjugate gradient algorithm adapted to least squares (Paige and Saunders, 1982b) is subject 

to much less ill conditioning than the standard conjugate gradient algorithm. Indeed, the 

algorithm LSQR and its sparse version LSMR (Fong and Saunders, 2011) perform well even 

when the matrix ZtWk
1/2, ρI

t
 is ill conditioned.

The proximal distance principle also applies to unconstrained problems. For example, 

consider the problem of minimizing a penalized loss ℓ(x)+p(Ax). The presence of the linear 

transformation Ax in the penalty complicates optimization. The strategy of parameter 

splitting introduces a new variable y and minimizes ℓ(x) + p(y) subject to the constraint y = 

Ax. If PM(z) denotes projection onto the manifold

M = z = x, y : Ax = y ,

then the constrained problem can be solved approximately by minimizing the function

𝓁 x + p y + ρ
2 dist z, M 2

for large ρ. If PM(zk) consists of two subvectors uk and vk corresponding to xk and yk, then 

the proximal distance updates are

xk + 1 = prox
ρ−1𝓁

uk     and    yk + 1 = prox
ρ−1p

vk .
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Given the matrix A is n × p, one can attack the projection by minimizing the function

q x = 1
2‖x − u‖2 + 1

2‖Ax − v‖2 .

This leads to the solution

x = Ip + AtA
−1

Atv + u     and    y = Ax .

If n < p, then the Woodbury formula

Ip + AtA
−1 = Ip − At In + AAt −1

A

reduces the expense of matrix inversion.

Traditionally, convex constraints have been posed as inequalities C = {x : a(x) ≤ t}. Parikh 

and Boyd (2013) point out how to project onto such sets. The relevant Lagrangian for 

projecting an external point y amounts to

ℒ x, λ = 1
2‖y − x‖2 + λ a x − t

with λ ≥ 0. The corresponding stationarity condition

0 = x − y + λ∇a x ,

(7)

can be interpreted as a[proxλa(y)] = t. One can solve this one-dimensional equation for λ by 

bisection. Once λ is available, x = proxλa(y) is available as well. Parikh and Boyd (2013) 

note that the value a[proxλa(y)] is decreasing in λ. One can verify their claim by implicit 

differentiation of equation (7). This gives

d
dλ x = − I + λd2a x

−1∇a x

and consequently the chain rule inequality

d
dλa proxλa y = − da x I + λd2a x

−1∇a x ≤ 0.
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3. Convergence: Convex Case

In the presence of convexity, the proximal distance algorithm reduces to a proximal gradient 

algorithm. This follows from the representation

y = ∑
i = 1

m
αiPCi

x = x − ∑
i = 1

m
αi x − PCi

x = x − ∇q x

involving the penalty q(x). Thus, the proximal distance algorithm can be expressed as

xk + 1 = prox
ρ−1 f

xk − ∇q xk .

In this regard, there is the implicit assumption that q(x) is 1-smooth. This is indeed the case. 

According to the Moreau decomposition (Bauschke and Combettes, 2011), for a single 

closed convex set C

∇q x = x − PC x = prox
δC
⋆ x ,

where δC
⋆(x) is the Fenchel conjugate of the indicator function

δC x = 0 x ∈ C
∞ x ∉ C .

Because proximal operators of closed convex functions are nonexpansive (Bauschke and 

Combettes, 2011), the result follows for a single set. For the general penalty q(x) with m 
sets, the Lipschitz constants are scaled by the convex coefficients αi and added to produce 

an overall Lipschitz constant of 1.

It is enlightening to view the proximal distance algorithm through the lens of concaveconvex 

programming. Recall that the function

s x = sup
y ∈ C

ytx − 1
2‖y‖2 = 1

2‖x‖2 − 1
2dist x, C 2

(8)

is closed and convex for any nonempty closed set C. Danskin’s theorem (Lange, 2016) 

justifies the directional derivative expression

dvs x = sup
y ∈ PC x

ytv = sup
y ∈ convPC x

ytv .
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This equality allows us to identify the subdifferential ∂s(x) as the convex hull convPC(x). For 

any y ∈ ∂s(xk), the supporting hyperplane inequality entails

1
2dist x, C 2 = 1

2‖x‖2 − s(x)

≤ 1
2‖x‖2 − s xk − yt x − xk

= 1
2‖x − y‖2 + d,

where d is a constant not depending on x. The same majorization can be generated by 

rearranging the majorization

1
2dist x, C 2 ≤ 1

2 ∑
i

βi‖x − pi‖
2

when y is the convex combination ∑i βi pi of vectors pi from PC(xk). These facts demonstrate 

that the proximal distance algorithm minimizing

f x + ρ
2 dist x, C 2 = f x + ρ

2 ‖x‖2 − ρs x

is a special case of concave-convex programming when f(x) is convex. It is worth 

emphasizing that f (x) + ρ
2 ‖x‖2 is often strongly convex regardless of whether f(x) itself is 

convex. If we replace the penalty dist(x,C)2 by the penalty dist(Dx,C)2 for a matrix D, then 

the function s(Dx) is still closed and convex, and minimization of f (x) + ρ
2 dist(Dx, C)2 can 

also be viewed as an exercise in concave-convex programming.

In the presence of convexity, the proximal distance algorithm is guaranteed to converge. Our 

exposition relies on well-known operator results (Bauschke and Combettes, 2011). Proximal 

operators in general and projection operators in particular are nonexpansive and averaged. 

By definition an averaged operator

M x = αx + (1 − α)N x

is a convex combination of a nonexpansive operator N(x) and the identity operator I. The 

averaged operators on ℝp with α ∈ (0,1) form a convex set closed under functional 

composition. Furthermore, M(x) and the base operator N(x) share their fixed points. The 

celebrated theorem of Krasnosel’skii (1955) and Mann (1953) says that if an averaged 

operator M(x) = αx + (1 − α)N(x) possesses one or more fixed points, then the iteration 

scheme xk+1 = M(xk) converges to a fixed point.

These results immediately apply to minimization of the penalized loss
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hρ x = f x + ρ
2 ∑

i = 1

m
αidist x, Ci

2 .

(9)

Given the choice yk = ∑i = 1
m αiPCi

xk , the algorithm map xk+1 = proxρ−1f(yk) is an averaged 

operator, being the composition of two averaged operators. Hence, the Krasnosel’skiiMann 

theorem guarantees convergence to a fixed point if one or more exist. Now z is a fixed point 

if and only if

hρ z ≤ f x + ρ
2 ∑

i = 1

m
αi‖x − PCi

z ‖2

for all x. In the presence of convexity, this is equivalent to the directional derivative 

inequality

0 ≤ dv f z + ρ ∑
i = 1

m
αi z − PCi

z
t
v = dvhρ z

for all v, which is in turn equivalent to z minimizing hρ(x). Hence, if hρ(x) attains its 

minimum value, then the proximal distance iterates converge to a minimum point.

Convergence of the overall proximal distance algorithm is tied to the convergence of the 

classical penalty method (Beltrami, 1970). In our setting, the loss is f(x), and the penalty is 

q(x) = 1
2 ∑i = 1

m αidist x, Ci
2. Assuming the objective f(x) + ρq(x) is coercive for all ρ ≥ 0, the 

theory mandates that the solution path xρ is bounded and any limit point of the path attains 

the minimum value of f(x) subject to the constraints. Furthermore, if f(x) is coercive and 

possesses a unique minimum point in the constraint set C, then the path xρ converges to that 

point.

Proximal distance algorithms often converge at a painfully slow rate. Following Mairal 

(2013), one can readily exhibit a precise bound.

Proposition 1 Suppose C is closed and convex and f(x) is convex. If the point z minimizes 

hρ(x) = f (x) + ρ
2 dist x, C 2, then the proximal distance iterates satisfy

0 ≤ hρ xk + 1 − hρ z ≤ ρ
2(k + 1)‖z − x0‖2 .

The O(ρk−1) convergence rate of the proximal distance algorithm suggests that one should 

slowly send ρ to ∞ and refuse to wait until convergence occurs for any given ρ. It also 
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suggests that Nesterov acceleration may vastly improve the chances for convergence. 

Nesterov acceleration for the general proximal gradient algorithm with loss ℓ(x) and penalty 

p(x) takes the form

zk = xk + k − 1
k + d − 1 xk − xk − 1

xk + 1 = prox
L−1𝓁

zk − L−1∇ p zk ,

(10)

where L is the Lipschitz constant for ∇p(x) and d is typically chosen to be 3. Nesterov 

acceleration achieves an O(k−2) convergence rate (Su et al., 2014), which is vastly superior 

to the O(k−1) rate achieved by proximal gradient descent. The Nesterov update possesses the 

further desirable property of preserving affine constraints. In other words, if Axk−1 = b and 

Axk = b, then Azk = b as well. In subsequent examples, we will accelerate our proximal 

distance algorithms by applying the algorithm map M(x) given by equation (2) to the shifted 

point zk of equation (10), yielding the accelerated update xk+1 = M(zk). Algorithm 1 

provides a schematic of a proximal distance algorithm with Nesterov acceleration. The 

recent paper of Ghadimi and Lan (2015) extends Nestorov acceleration to nonconvex 

settings.

In ideal circumstances, one can prove linear convergence of function values in the 

framework of Karimi et al. (2016).

Proposition 2 Suppose C is closed and convex and f(x) is L-smooth and μ-strongly convex. 

Then hρ(x) = f (x) + ρ
2 dist x, C 2 possesses a unique minimum point y, and the proximal 

distance iterates xk satisfy

hρ xk − hρ y ≤ 1 − μ2

2(L + ρ)2

k
hρ x0 − hρ y .

We now turn to convergence of the penalty function iterates as the penalty constants ρk tends 

to ∞. To simplify notation, we restrict attention to a single closed constraint set S. Let us 

start with a proposition requiring no convexity assumptions.

Proposition 3 If f(x) is continuous and coercive and S is compact, then the proximal 
distance iterates xk are bounded and the distance to the constraint set satisfies

dist xk, S 2 ≤ c
ρk
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for some constant c. If in addition f(x) is continuously differentiable, then

dist xk, S 2 ≤ d

ρk
2

for some further constant d. Similar claims hold for the solutions yk of the penalty problem 

minx f (x) +
ρk
2 dist x, S 2 except that the assumption that S is compact can be dropped.

As a corollary, if the penalty sequence ρk tends to ∞, then all limit points of xk must obey 

the constraint. Proposition 3 puts us into position to prove the next important result.

Proposition 4 If f(x) is continuously differentiable and coercive and S is convex, then the 

penalty function iterates defined by yk ∈ argminx f (x) +
ρk
2 dist(x, S)2  satisfy

0 ≤ f y − f yk ≤ d + 2 d‖∇ f y ‖
2ρk

,

where y attains the constrained minimum and d is the constant identified in Proposition 3.

4. Convergence: General Case

Our strategy for addressing convergence in nonconvex problems fixes ρ and relies on 

Zangwill’s global convergence theorem (Luenberger and Ye, 1984). This result depends in 

turn on the notion of a closed multi-valued map N(x). If xk converges to x∞ and yk ∈ N(xk) 

converges to y∞, then for N(x) to be closed, we must have y∞ ∈ N(x∞). The next 

proposition furnishes a prominent example.

Proposition 5 If S is a closed nonempty set in ℝp, then the projection operator PS(x) is 

closed. Furthermore, if the sequence xk is bounded, then the set ∪kPS(xk) is bounded as well.
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Zangwill’s global convergence theorem is phrased in terms of an algorithm map M(x) and a 

real-valued objective h(x). The theorem requires a critical set Γ outside which M(x) is 

closed. Furthermore, all iterates xk+1 ∈ M(xk) must fall within a compact set. Finally, the 

descent condition h(y) ≤ h(x) should hold for all y ∈ M(x), with strict inequality when x ∉ Γ. 

If these conditions are valid, then every convergent subsequence of xk tends to a point in Γ. 

In the proximal distance context, we define the complement of Γ to consist of the points x 
with

f y + ρ
2 dist y, S 2 < f x + ρ

2 dist x, S 2

for all y ∈ M(x). This definition plus the monotonic nature of the proximal distance 

algorithm

xk + 1 ∈ M xk = ∪
zk ∈ PS xk

argminx f x + ρ
2 ‖x − zk‖2

force the satisfaction of Zangwill’s final requirement. Note that if f(x) is differentiable, then 

a point x belongs to Γ whenever 0 ∈ ∇f(x) + ρx − ρPS(x).

In general, the algorithm map M(x) is multi-valued in two senses. First, for a given zk ∈ 
PS(xk), the minimum may be achieved at multiple points. This contingency is ruled out if the 

proximal map of f(x) is unique. Second, because S may be nonconvex, the projection may be 

multi-valued. This sounds distressing, but the points xk where this occurs are exceptionally 
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rare. Accordingly, it makes no practical difference that we restrict the anchor points zk to lie 

in PS(xk) rather than in convPS(xk).

Proposition 6 If S is a closed nonempty set in ℝp, then the projection operator PS(x) is 
single valued except on a set of Lebesgue measure 0.

In view of the preceding results, one can easily verify the next proposition.

Proposition 7 The algorithm map M(x) is everywhere closed.

To apply Zangwill’s global convergence theory, we must in addition prove that the iterates 

xk+1 = M(xk) remain within a compact set. This is true whenever the objective is coercive 

since the algorithm is a descent algorithm. As noted earlier, the coercivity of f(x) is a 

sufficient condition. One can readily concoct other sufficient conditions. For example, if f(x) 

is bounded below, say nonnegative, and S is compact, then the objective is also coercive. 

Indeed, if S is contained in the ball of radius r about the origin, then

‖x‖ ≤ ‖x − PS x ‖ + ‖PS x ‖ ≤ dist x, S + r,

which proves that dist(x,S) is coercive. The next proposition summarizes these findings.

Proposition 8 If S is closed and nonempty, the objective f (x) + 1
2dist x, S 2 is coercive, and 

the proximal operator proxρ−1f(x) is everywhere nonempty, then all limit points of the 
iterates xk+1 ∈ M(xk) of the proximal distance algorithm occur in the critical set Γ.

This result is slightly disappointing. A limit point x could potentially exist with 

improvement in the objective for some but not all y ∈ convPS(x). This fault is mitigated by 

the fact that PS(x) is almost always single valued. In common with other algorithms in 

nonconvex optimization, we also cannot rule out convergence to a local minimum or a 

saddlepoint. One can improve on Proposition 8 by assuming that the surrogates gρ(x | xk) are 

all μ-strongly convex. This is a small concession to make because ρ is typically large. If f(x) 

is convex, then gρ(x | xk) is ρ-strongly convex by definition. It is also worth noting that any 

convex MM surrogate g(x | xk) can be made μ-strongly convex by adding the viscosity 

penalty μ
2 ‖x − xk‖2 majorizing 0. The addition of a viscosity penalty seldom complicates 

finding the next iterate xn+1 and has little impact on the rate of convergence when μ > 0 is 

small.

Proposition 9 Under the μ-strongly convexity assumption on the surrogates gρ(x | xk), the 
proximal distance iterates satisfy limk→∞‖xk+1 −xk‖ = 0. As a consequence, the set of limit 
points is connected as well as closed. Furthermore, if each limit point is isolated, then the 
iterates converge to a critical point.

Further progress requires even more structure. Fortunately, what we now pursue applies to 

generic MM algorithms. We start with the concept of a Fréchet subdifferential (Kruger, 
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2003). If h(x) is a function mapping ℝp into ℝ ∪ +∞ , then its Fréchet subdifferential at x ∈ 
dom f is the set

∂Fh x = v: liminf
y x

h y − h x − vt y − x
‖y − x‖ ≥ 0 .

The set ∂Fh(x) is closed, convex, and possibly empty. If h(x) is convex, then ∂Fh(x) reduces 

to its convex subdifferential. If h(x) is differentiable, then ∂Fh(x) reduces to its ordinary 

differential. At a local minimum x, Fermat’s rule 0 ∈ ∂Fh(x) holds.

Proposition 10 In an MM algorithm, suppose that h(x) is coercive, that the surrogates g(x | 

xk) are differentiable, and that the algorithm map M(x) is closed. Then every limit point z of 
the MM sequence xk is critical in the sense that 0 ∈ ∂F (−h)(z).

We will also need to invoke Łojasiewicz’s inequality. This deep result depends on some 

rather arcane algebraic geometry (Bierstone and Milman, 1988; Bochnak et al., 2013). It 

applies to semialgebraic functions and their more inclusive cousins semianalytic functions 

and subanalytic functions. For simplicity we focus on semialgebraic functions. The class of 

semialgebraic subsets of ℝp is the smallest class that:

a. contains all sets of the form {x : q(x) > 0} for a polynomial q(x) in p variables,

b. is closed under the formation of finite unions, finite intersections, and set 

complementation.

A function a : ℝp ℝr is said to be semialgebraic if its graph is a semialgebraic set of 

ℝp + r. The class of real-valued semialgebraic functions contains all polynomials p(x) and all 

0/1 indicators of algebraic sets. It is closed under the formation of sums, products, absolute 

values, reciprocals when a(x) 6≠ 0, nth roots when a(x) ≥ 0, and maxima max{a(x), b(x)} 

and minima min{a(x), b(x)}. For our purposes, it is important to note that dist(x,S) is a 

semialgebraic function whenever S is a semialgebraic set.

Łojasiewicz’s inequality in its modern form (Bolte et al., 2007) requires a function h(x) to be 

closed (lower semicontinuous) and subanalytic with a closed domain. If z is a critical point 

of h(x), then

|h x − h z |θ ≤ c‖v‖

for all x ∈ Br(z)∩dom∂Fh satisfying h(x) > h(z) and all v in ∂Fh(x). Here the exponent θ ∈ 
[0,1), the radius r, and the constant c depend on z. This inequality is valid for semialgebraic 

functions since they are automatically subanalytic. We will apply Łojasiewicz’s inequality to 

the limit points of an MM algorithm. The next proposition is an elaboration and expansion 

of known results (Attouch et al., 2010; Bolte et al., 2007; Cui et al., 2018; Kang et al., 2015; 

Le Thi et al., 2009).
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Proposition 11 In an MM algorithm suppose the objective h(x) is coercive, continuous, and 
subanalytic and all surrogates g(x | xk) are continuous, μ-strongly convex, and satisfy the L-
smoothness condition

‖∇g a | xk − ∇g b | xk ‖ ≤ L‖a − b‖

on the compact set {x : h(x) ≤ h(x0)}. Then the MM iterates xk+1 = argminxg(x | xk) 

converge to a critical point.

The last proposition applies to proximal distance algorithms. The loss f(x) must be 

subanalytic and differentiable with a locally Lipschitz gradient. Furthermore, all surrogates 

g x | xk = f (x) + ρ
2 ‖x − yk‖2 should be coercive and μ-strongly convex. Finally, the 

constraints sets Si should be subanalytic. Semialgebraic sets and functions will do. Under 

these conditions and regardless of how the projected points PSi(x) are chosen, the MM 

iterates are guaranteed to converge to a critical point.

5. Examples

The following examples highlight the versatility of proximal distance algorithms in a variety 

of convex and nonconvex settings. Programming details matter in solving these problems. 

Individual programs are not necessarily long, but care must be exercised in projecting onto 

constraints, choosing tuning schedules, folding constraints into the domain of the loss, 

implementing acceleration, and declaring convergence. All of our examples are coded in the 

Julia programming language. Whenever possible, competing software was run in the Julia 

environment via the Julia module MathProgBase (Dunning et al., 2017; Lubin and Dunning, 

2015). The sparse PCA problem relies on the software of Witten et al. (Witten et al., 2009), 

which is coded in R. Convergence is tested at iteration k by the two criteria

| f xk − f xk − 1 | ≤ ϵ1 | f xk − 1 | + 1      and     dist xk, C ≤ ϵ2,

where ϵ1=10−6 and ϵ2=10−4 are typical values. The number of iterations until convergence is 

about 1000 in most examples. This handicap is offset by the simplicity of each stereotyped 

update. Our code is available as supplementary material to this paper. Readers are 

encouraged to try the code and adapt it to their own examples.

5.1 Linear Programming

Two different tactics suggest themselves for constructing a proximal distance algorithm. The 

first tactic rolls the standard affine constraints Ax = b into the domain of the loss function 

vtx. The standard nonnegativity requirement x ≥ 0 is achieved by penalization. Let xk be the 

current iterate and yk = (xk)+ be its projection onto ℝ+
n . Derivation of the proximal distance 

algorithm relies on the Lagrangian

vtx + ρ
2 ‖x − yk‖2 + λt Ax − b .
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One can multiply the corresponding stationarity equation

0 = v + ρ x − yk + Atλ

by A and solve for the Lagrange multiplier λ in the form

λ = AAt −1 ρAyk − ρb − Av

(11)

assuming A has full row rank. Inserting this value into the stationarity equation gives the 

MM update

xk + 1 = yk − 1
ρv − A− Ayk − b − 1

ρ Av ,

(12)

where A− = At(AAt)−1 is the pseudo-inverse of A.

The second tactic folds the nonnegativity constraints into the domain of the loss. Let pk 

denote the projection of xk onto the affine constraint set Ax = b. Fortunately, the surrogate 

function vtx + ρ
2 ‖x − pk‖2 splits the parameters. Minimizing one component at a time gives 

the update xk+1 with components

xk + 1, j = max pk j −
v j
ρ , 0 .

(13)

The projection pk can be computed via

pk = xk − A− Axk − b ,

(14)

where A− is again the pseudo-inverse of A.
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Table 1 compares the accelerated versions of these two proximal distance algorithms to two 

efficient solvers. The first is the open-source Splitting Cone Solver (SCS) (O’Donoghue et 

al., 2016), which relies on a fast implementation of ADMM. The second is the commercial 

Gurobi solver, which ships with implementations of both the simplex method and a barrier 

(interior point) method; in this example, we use its barrier algorithm. The first seven rows of 

the table summarize linear programs with dense data A, b, and v. The bottom six rows rely 

on random sparse matrices A with sparsity level 0.01. For dense problems, the proximal 

distance algorithms start the penalty constant ρ at 1 and double it every 100 iterations. 

Because we precompute and cache the pseudoinverse A− of A, the updates (12) and (13) 

reduce to vector additions and matrix-vector multiplications.

For sparse problems the proximal distance algorithms update ρ by a factor of 1.5 every 50 

iterations. To avoid computing large pseudoinverses, we appeal to the LSQR variant of the 

conjugate gradient method (Paige and Saunders, 1982b,a) to solve the linear systems (11) 

and (14). The optima of all four methods agree to about 4 digits of accuracy. It is hard to 

declare an absolute winner in these comparisons. Gurobi and SCS clearly perform better on 

low-dimensional problems, but the proximal distance algorithms are competitive as 

dimensions increase. PD1, the proximal distance algorithm over an affine domain, tends to 

be more accurate than PD2. If high accuracy is not a concern, then the proximal distance 

algorithms are easily accelerated with a more aggressive update schedule for ρ.

5.2. Constrained Least Squares

Constrained least squares programming subsumes constrained quadratic programming. A 

typical quadratic program involves minimizing the quadratic 1
2 xtQx − ptx subject to x ∈ C 

for a positive definite matrix Q. Quadratic programming can be reformulated as least squares 

by taking the Cholesky decomposition Q = LLt of Q and noting that

1
2 xtQx − ptx = 1

2‖L−1p − Ltx‖2 − 1
2‖L−1p‖2 .

The constraint x ∈ C applies in both settings. It is particularly advantageous to reframe a 

quadratic program as a least squares problem when Q is already presented in factored form 

or when it is nearly singular (Bemporad, 2018). To simplify subsequent notation, we replace 

Lt by the rectangular matrix A and L−1p by y. The key to solving constrained least squares is 

to express the proximal distance surrogate as

1
2‖y − Ax‖2 + ρ

2 ‖x − PC xk ‖2 = 1
2

y

ρPC xk
−

A
ρI

x
2

as in equation (6). As noted earlier, in sparse problems the update xk+1 can be found by a 

fast stable conjugate gradient solver.

Table 2 compares the performance of the proximal distance algorithm for least squares 

estimation with probability-simplex constraints to the open source nonlinear interior point 

solver Ipopt (Wächter and Biegler, 2005, 2006) and the interior point method of Gurobi. 
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Simplex constrained problems arise in hyperspectral imaging (Heylen et al., 2011; Keshava, 

2003), portfolio optimization (Markowitz, 1952), and density estimation (Bunea et al., 

2010). Test problems were generated by filling an n×p matrix A and an n-vector y with 

standard normal deviates. For sparse problems we set the sparsity level of A to be 10/p. Our 

setup ensures that A has full rank and that the quadratic program has a solution. For the 

proximal distance algorithm, we start ρ at 1 and multiply it by 1.5 every 200 iterations. Table 

2 suggests that the proximal distance algorithm and the interior point solvers perform 

equally well on small dense problems. However, in high-dimensional and low-accuracy 

environments, the proximal distance algorithm provides much better scalability.

5.3. Closest Kinship Matrix

In genetics studies, kinship is measured by the fraction of genes two individuals share 

identical by descent. For a given pedigree, the kinship coefficients for all pairs of individuals 

appear as entries in a symmetric kinship matrix Y. This matrix possesses three crucial 

properties: a) it is positive semidefinite, b) its entries are nonnegative, and c) its diagonal 

entries are 1
2  unless some pedigree members are inbred. Inbreeding is the exception rather 

than the rule. Kinship matrices can be estimated empirically from single nucleotide 

polymorphism (SNP) data, but there is no guarantee that the three highlighted properties are 

satisfied. Hence, it helpful to project Y to the nearest qualifying matrix.

This projection problem is best solved by folding the positive semidefinite constraint into the 

domain of the Frobenius loss function 1
2‖X − Y‖F

2 . As we shall see, the alternative of 

imposing two penalties rather than one is slower and less accurate. Projection onto the 

constraints implied by conditions b) and c) is trivial. All diagonal entries xii of X are reset to 
1
2 , and all off-diagonal entries xij are reset to max{xij,0}. If P(Xk) denotes the current 

projection, then the proximal distance algorithm minimizes the surrogate

g X | Xk = 1
2‖X − Y‖F

2 + ρ
2 ‖X − P Xk ‖

F
2

= 1 + ρ
2 X − 1

1 + ρY − ρ
1 + ρP Xk F

2
+ ck,

where ck is an irrelevant constant. The minimum is found by extracting the spectral 

decomposition UDUt of 1
1 + ρY + ρ

1 + ρP Xk  and truncating the negative eigenvalues. This 

gives the update Xk+1 = UD+Ut in obvious notation. This proximal distance algorithm and its 

Nesterov acceleration are simple to implement in a numerically oriented language such as 

Julia. The most onerous part of the calculation is clearly the repeated eigen-decompositions.

Table 3 compares three versions of the proximal distance algorithm to Dykstra’s algorithm 

(Boyle and Dykstra, 1986). Higham proposed Dykstra’s algorithm for the related problem of 

finding the closest correlation matrix Higham (2002). In Table 3 algorithm PD1 is the 

unadorned proximal distance algorithm, PD2 is the accelerated proximal distance, and PD3 

is the accelerated proximal distance algorithm with the positive semidefinite constraints 

folded into the domain of the loss. On this demanding problem, these algorithms are 
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comparable to Dykstra’s algorithm in speed but slightly less accurate. Acceleration of the 

proximal distance algorithm is effective in reducing both execution time and error. Folding 

the positive semidefinite constraint into the domain of the loss function leads to further 

improvements. The data matrices M in these trials were populated by standard normal 

deviates and then symmetrized by averaging opposing off-diagonal entries. In algorithm 

PD1 we set ρk = max{1.2k,222}. In the accelerated versions PD2 and PD3 we started ρ at 1 

and multiplied it by 5 every 100 iterations. At the expense of longer compute times, better 

accuracy can be achieved by all three proximal distance algorithms with a less aggressive 

update schedule.

5.4. Projection onto a Second-Order Cone Constraint

Second-order cone programming is one of the unifying themes of convex analysis (Alizadeh 

and Goldfarb, 2003; Lobo et al., 1998). It revolves around conic constraints of the form {u : 

‖Au + b‖ ≤ ctu + d}. Projection of a vector x onto such a constraint is facilitated by 

parameter splitting. In this setting parameter splitting introduces a vector w, a scalar r, and 

the two affine constraints w = Au + b and r = ctu + d. The conic constraint then reduces to 

the Lorentz cone constraint ‖w‖ ≤ r, for which projection is straightforward (Boyd and 

Vandenberghe, 2009). If we concatenate the parameters into the single vector

y =
u
w
r

and define L = {y : ‖w‖ ≤ r} and M = {y : w = Au + b and r = ctu + d}, then we can rephrase 

the problem as minimizing 1
2‖x − u‖2 subject to y ∈ L ∩ M. This is a fairly typical set 

projection problem except that the w and r components of y are missing in the loss function.

Taking a cue from Example 5.1, we incorporate the affine constraints in the domain of the 

objective function. If we represent projection onto L by

P
wk
rk

=
wk
rk

,

then the Lagrangian generated by the proximal distance algorithm amounts to

ℒ = 1
2‖x − u‖2 + ρ

2
w − wk
r − rk

2
+ λt(Au + b − w) + θ ctu + d − r .

This gives rise to a system of three stationarity equations
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0 = u − x + Atλ + θc

(15)

0 = ρ w − wk − λ

(16)

0 = ρ r − rk − θ .

(17)

Solving for the multipliers λ and θ in equations (16) and (17) and substituting their values in 

equation (15) yield

0 = u − x + ρAt w − wk + ρ r − rk c

= u − x + ρAt Au + b − wk + ρ ctu + d − rk c .

This leads to the MM update

uk + 1 = ρ−1I + AtA + cct −1 ρ−1x + At wk − b + rk − d c .

(18)

The updates wk+1 = Auk+1 + b and rk+1 = ctuk+1 + d follow from the constraints.

Table 4 compares the proximal distance algorithm to SCS and Gurobi. Echoing previous 

examples, we tailor the update schedule for ρ differently for dense and sparse problems. 

Dense problems converge quickly and accurately when we set ρ0 = 1 and double ρ every 100 

iterations. Sparse problems require a greater range and faster updates of ρ, so we set ρ0 = 

0.01 and then multiply ρ by 2.5 every 10 iterations. For dense problems, it is clearly 

advantageous to cache the spectral decomposition of AtA + cct as suggested in Example 5.2. 

In this regime, the proximal distance algorithm is as accurate as Gurobi and nearly as fast. 

SCS is comparable to Gurobi in speed but notably less accurate.
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With a large sparse constraint matrix A, extraction of its spectral decomposition becomes 

prohibitive. If we let E = (ρ−1/2I At c), then we must solve a linear system of equations 

defined by the Gramian matrix G = EEt. There are three reasonable options for solving this 

system. The first relies on computing and caching a sparse Cholesky decomposition of G. 

The second computes the QR decomposition of the sparse matrix E. The R part of the QR 

decomposition coincides with the Cholesky factor. Unfortunately, every time ρ changes, the 

Cholesky or QR decomposition must be redone. The third option is the conjugate gradient 

algorithm. In our experience the QR decomposition offers superior stability and accuracy. 

When E is very sparse, the QR decomposition is often much faster than the Cholesky 

decomposition because it avoids forming the dense matrix AtA. Even when only 5% of the 

entries of A are nonzero, 90% of the entries of AtA can be nonzero. If exquisite accuracy is 

not a concern, then the conjugate gradient method provides the fastest update. Table 4 

reflects this choice.

5.5. Copositive Matrices

A symmetric matrix M is copositive if its associated quadratic form xtMx is nonnegative for 

all x ≥ 0. Copositive matrices find applications in numerous branches of the mathematical 

sciences (Berman and Plemmons, 1994). All positive semidefinite matrices and all matrices 

with nonnegative entries are copositive. The variational index

μ M = min
‖x‖ = 1, x ≥ 0

xtMx

is one key to understanding copositive matrices (Hiriart-Urruty and Seeger, 2010). The 

constraint set S is the intersection of the unit sphere and the nonnegative cone ℝ+
n . Projection 

of an external point y onto S splits into three cases. When all components of y are negative, 

then PS(y) = ei, where yi is the least negative component of y, and ei is the standard unit 

vector along coordinate direction i. The origin 0 is equidistant from all points of S. If any 

component of y is positive, then the projection is constructed by setting the negative 

components of y equal to 0, and standardizing the truncated version of y to have Euclidean 

norm 1.

As a test case for the proximal distance algorithm, consider the Horn matrix (Hall and 

Newman, 1963)

M =

1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

.

The value μ(M) = 0 is attained for the vectors 1
2 1, 1, 0, 0, 0 t, 1

6 1, 2, 1, 0, 0 t, and equivalent 

vectors with their entries permuted. Matrices in higher dimensions with the same Horn 

pattern of 1’s and −1’s are copositive as well (Johnson and Reams, 2008). A Horn matrix of 
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odd dimension cannot be written as a positive semidefinite matrix, a nonnegative matrix, or 

a sum of two such matrices.

The proximal distance algorithm minimizes the criterion

g x | xk = 1
2 xtMx + ρ

2 ‖x − PS xk ‖2

and generates the updates

xk + 1 = M + ρI −1ρPS xk .

It takes a gentle tuning schedule to get decent results. The choice ρk = 1.2k converges in 600 

to 700 iterations from random starting points and reliably yields objective values below 10−5 

for Horn matrices. The computational burden per iteration is significantly eased by 

exploiting the cached spectral decomposition of M. Table 5 compares the performance of the 

proximal distance algorithm to the Mosek solver on a range of Horn matrices. Mosek uses 

semidefinite programming to decide whether M can be decomposed into a sum of a positive 

semidefinite matrix and a nonnegative matrix. If not, Mosek declares the problem infeasible. 

Nesterov acceleration improves the final loss for the proximal distance algorithm, but it does 

not decrease overall computing time.

Testing for copositivity is challenging because neither the loss function nor the constraint set 

is convex. The proximal distance algorithm offers a fast screening device for checking 

whether a matrix is copositive. On random 1000×1000 symmetric matrices M, the method 

invariably returns a negative index in less than two seconds of computing time. Because the 

vast majority of symmetric matrices are not copositive, accurate estimation of the minimum 

is not required. Table 6 summarizes a few random trials with lower-dimensional symmetric 

matrices. In higher dimensions, Mosek becomes non-competitive, and Nesterov acceleration 

is of dubious value.

5.6. Linear Complementarity Problem

The linear complementarity problem (Murty and Yu, 1988) consists of finding vectors x and 

y with nonnegative components such that xty = 0 and y = Ax + b for a given square matrix A 

and vector b. The natural loss function is 1
2‖y − Ax − b‖2. To project a vector pair (u,v) onto 

the nonconvex constraint set, one considers each component pair (ui, vi) in turn. If ui ≥ 

max{vi,0}, then the nearest pair (x,y) has components (xi, yi) = (ui,0). If vi ≥ max{ui,0}, then 

the nearest pair has components (xi, yi) = (0, vi). Otherwise, (xi, yi) = (0,0). At each iteration 

the proximal distance algorithm minimizes the criterion

1
2‖y − Ax − b‖2 + ρ

2 ‖x − xk‖2 + ρ
2 ‖y − yk‖2,

where (xk, yk) is the projection of (xk, yk) onto the constraint set. The stationarity equations 

become
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0 = − At y − Ax − b + ρ x − xk

0 = y − Ax − b + ρ y − yk .

Substituting the value of y from the second equation into the first equation leads to the 

updates

xk + 1 = (1 + ρ)I + AtA −1 At yk − b + (1 + ρ)xk

(19)

yk + 1 = 1
1 + ρ Axk + 1 + b + ρ

1 + ρ yk .

The linear system (19) can be solved in low to moderate dimensions by computing and 

caching the spectral decomposition of AtA and in high dimensions by the conjugate gradient 

method. Table 7 compares the performance of the proximal gradient algorithm to the Gurobi 

solver on some randomly generated problems.

5.7. Sparse Principal Components Analysis

Let X be an n × p data matrix gathered on n cases and p predictors. Assume the columns of 

X are centered to have mean 0. Principal component analysis (PCA) (Hotelling, 1933; 

Pearson, 1901) operates on the sample covariance matrix S = 1
n XtX. Here we formulate a 

proximal distance algorithm for sparse PCA (SPCA), which has attracted substantial interest 

in the machine learning community (Berthet and Rigollet, 2013b,a; D’Aspremont et al., 

2007; Johnstone and Lu, 2009; Journée et al., 2010; Witten et al., 2009; Zou et al., 2006). 

According to a result of Ky Fan (Fan, 1949), the first q principal components (PCs) u1,…,uq 

can be extracted by maximizing the function tr(UtSU) subject to the matrix constraint UtU = 

Iq, where ui is the ith column of the p×q matrix U. This constraint set is called a Stiefel 

manifold. One can impose sparsity by insisting that any given column ui have at most r 
nonzero entries. Alternatively, one can require the entire matrix U to have at most r nonzero 

entries. The latter choice permits sparsity to be distributed non-uniformly across columns.

Extraction of sparse PCs is difficult for three reasons. First, the Stiefel manifold Mq and both 

sparsity sets are nonconvex. Second, the objective function is concave rather than convex. 

Third, there is no simple formula or algorithm for projecting onto the intersection of the two 

constraint sets. Fortunately, it is straightforward to project onto each separately. Let PMq
(U)

denote the projection of U onto the Stiefel manifold. It is well known that PMq
(U) can be 
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calculated by extracting a partial singular value decomposition U = VΣWt of U and setting 

PMq(U) = VWt (Golub and Van Loan, 2012). Here V and W are orthogonal matrices of 

dimension p×q and q×q, respectively, and Σ is a diagonal matrix of dimension q × q. Let 

PSr
(U) denote the projection of U onto the sparsity set

Sr = V :vi j ≠ 0 for at most r entries of each column vi .

Because PSr
(U) operates column by column, it suffices to project each column vector ui to 

sparsity. This entails nothing more than sorting the entries of ui by magnitude, saving the r 
largest, and sending the remaining p−r entries to 0. If the entire matrix U must have at most r 
nonzero entries, then U can be treated as a concatenated vector during projection.

The key to a good algorithm is to incorporate the Stiefel constraints into the domain of the 

objective function (Kiers, 1990; Kiers and ten Berge, 1992) and the sparsity constraints into 

the distance penalty. Thus, we propose decreasing the criterion

f U = − 1
2tr UtSU + ρ

2 dist U, Sr
2 .

at each iteration subject to the Stiefel constraints. The loss can be majorized via

− 1
2tr UtSU = − 1

2tr U − Uk
tS U − Uk − tr UtSUk + 1

2tr Uk
t SUk

≤ − tr UtSUk + 1
2tr Uk

t SUk

because S is positive semidefinite. The penalty is majorized by

ρ
2 dist U, Sr

2 ≤ − ρtr UtPSr
Uk + ck

up to an irrelevant constant ck since the squared Frobenius norm satisfies the relation 

‖UtU‖F
2 = q on the Stiefel manifold. It now follows that f(U) is majorized by

1
2‖U − SUk − ρPSr

Uk ‖
F

2

up to an irrelevant constant. Accordingly, the Stiefel projection

Uk + 1 = PMq
SUk + ρPSr

Uk

provides the next MM iterate.
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Figures 1 and 2 compare the proximal distance algorithm to the SPC function from the R 

package PMA (Witten et al., 2009). The breast cancer data from PMA provide the data 

matrix X. The data consist of p = 19,672 RNA measurements on n = 89 patients. The two 

figures show computation times and the proportion of variance explained (PVE) by the p × q 

loading matrix U. For sparse PCA, PVE is defined as tr Xq
t Xq /tr XtX , where Xq = XU(UtU)

−1Ut (Shen and Huang, 2008). When the loading vectors of U are orthogonal, this criterion 

reduces to the familiar definition tr(UtXtXU)/tr(XtX) of PVE for ordinary PCA. The 

proximal distance algorithm enforces either matrix-wise or column-wise sparsity. In 

contrast, SPC enforces only column-wise sparsity via the constraint ‖ui‖1 ≤ c for each 

column ui of U. We take c = 8. The number of nonzeroes per loading vector output by SPC 

dictates the sparsity level for the column-wise version of the proximal distance algorithm. 

Summing these counts across all columns dictates the sparsity level for the matrix version of 

the proximal distance algorithm.

Figures 1 and 2 demonstrate the superior PVE and computational speed of both proximal 

distance algorithms versus SPC. The type of projection does not appear to affect the 

computational performance of the proximal distance algorithm, as both versions scale 

equally well with q. However, the matrix projection, which permits the algorithm to more 

freely assign nonzeroes to the loadings, attains better PVE than the more restrictive column-

wise projection. For both variants of the proximal distance algorithm, Nesterov acceleration 

improves both fitting accuracy and computational speed, especially as the number of PCs q 
increases.

6. Discussion

The proximal distance algorithm applies to a host of problems. In addition to the linear and 

quadratic programming examples considered here, our previous paper (Lange and Keys, 

2014) derives and tests algorithms for binary piecewise-linear programming, ℓ0 regression, 

matrix completion (Cai et al., 2010; Candès and Tao, 2010; Chen et al., 2012; Mazumder et 

al., 2010), and sparse precision matrix estimation (Friedman et al., 2008). Other potential 

applications immediately come to mind. An integer linear program in standard form can be 

expressed as minimizing ctx subject to Ax + s = b, s ≥ 0, and x ∈ ℤp. The latter two 

constraints can be combined in a single constraint for which projection is trivial. The affine 

constraints should be folded into the domain of the objective. Integer programming is NP 

hard, so that the proximal distance algorithm just sketched is merely heuristic. Integer linear 

programming includes traditional NP hard problems such as the traveling salesman problem, 

the vertex cover problem, set packing, and Boolean satisfiability. It will be interesting to see 

if the proximal distance principle is competitive in meeting these challenges. Our experience 

with the closest lattice point problem (Agrell et al., 2002) and the eight queens problem 

suggests that the proximal distance algorithm can be too greedy for hard combinatorial 

problems. The nonconvex problems solved in this paper are in some vague sense easy 

combinatorial problems.

The behavior of a proximal distance algorithm depends critically on a sensible tuning 

schedule for increasing ρ. Starting ρ too high puts too much stress on satisfying the 
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constraints. Incrementing ρ too quickly causes the algorithm to veer off the solution path 

guaranteed by the penalty method. Given the chance of roundoff error even with double 

precision arithmetic, it is unwise to take ρ all the way to ∞. Trial and error can help in 

deciding whether a given class of problems will benefit from an aggressive update schedule 

and strict or loose convergence criteria. In problems with little curvature such as linear 

programming, more conservative updates are probably prudent. The linear programming, 

closest kinship matrix, and SPCA problems document the value of folding constraints into 

the domain of the loss. In the same spirit it is wise to minimize the number of constraints. A 

single penalty for projecting onto the intersection of two constraint sets is almost always 

preferable to the sum of two penalties for their separate projections. Exceptions to this rule 

obviously occur when projection onto the intersection is intractable. The integer linear 

programming problem mentioned previously illustrates these ideas.

Our earlier proximal distance algorithms ignored acceleration. In many cases the solutions 

produced had very low accuracy. The realization that convex proximal distance algorithms 

can be phrased as proximal gradient algorithms convinced us to try Nesterov acceleration. 

We now do this routinely on the subproblems with ρ fixed. This typically forces tighter path 

following and a reduction in overall computing times. Our examples generally bear out the 

contention that Nesterov acceleration is useful in nonconvex problems (Ghadimi and Lan, 

2015). It is noteworthy that the value of acceleration often lies in improving the quality of a 

solution as much as it does in increasing the rate of convergence. Of course, acceleration 

cannot prevent convergence to an inferior local minimum.

On both convex and nonconvex problems, proximal distance algorithms enjoy global 

convergence guarantees. On nonconvex problems, one must confine attention to subanalytic 

sets and subanalytic functions. This minor restriction is not a handicap in practice. 

Determining local convergence rates is a more vexing issue. For convex problems, we 

review existing theory for a fixed penalty constant ρ. The classical results buttress an O(ρk
−1) sublinear rate for general convex problems. Better results require restrictive smoothness 

assumptions on both the objective function and the constraint sets. For instance, when f(x) is 

L-smooth and strongly convex, linear convergence can be demonstrated. When f(x) equals a 

difference of convex functions, proximal distance algorithms reduce to concave-convex 

programming. Le Thi et al. (2009) attack convergence in this setting.

We hope readers will sense the potential of the proximal distance principle. This simple idea 

offers insight into many existing algorithms and a straightforward path in devising new ones. 

Effective proximal and projection operators usually spell the difference between success and 

failure. The number and variety of such operators is expanding quickly as the field of 

optimization relinquishes it fixation on convexity. The current paper research leaves many 

open questions about tuning schedules, rates of convergence, and acceleration in the face of 

nonconvexity. We welcome the contributions of other mathematical scientists in unraveling 

these mysteries and in inventing new proximal distance algorithms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: Proofs of the Stated Propositions

A.1. Proposition 1

We first observe that the surrogate function gρ(x | xk) is ρ-strongly convex. Consequently, 

the stationarity condition 0 ∈ ∂gρ xk + 1 | xk  implies

gρ x | xk ≥ gρ xk + 1 | xk + ρ
2 ‖x − xk + 1‖2

(20)

for all x. In the notation (9), the difference

dρ x | xk = gρ x | xk − hρ x = ρ
2 ‖x − yk‖2 − ρ

2 ∑
i = 1

m
αidist x, Ci

2

is ρ-smooth because

∇dρ x | xk = ρ x − yk − ρ ∑
i = 1

m
αi x − PCi

x = ρ ∑
i = 1

m
αiPCi

x − ρyk .

The tangency conditions dρ(xk | xk) = 0 and ∇dρ(xk | xk) = 0 therefore yield

dρ x | xk ≤ dρ xk | xk + ∇dρ xk
t x − xk + ρ

2 ‖x − xk‖2 = ρ
2 ‖x − xk‖2

(21)

for all x. Combining inequalities (20) and (21) gives
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hρ xk + 1 + ρ
2 ‖x − xk + 1‖2 ≤ gρ xk + 1| xk + ρ

2 ‖x − xk + 1‖2

≤ gρ x | xk

= hρ(x) + dρ x | xk

≤ hρ(x) + ρ
2 ‖x − xk‖2 .

Adding the result

hρ xk + 1 − hρ(x) ≤ ρ
2 ‖x − xk‖2 − ‖x − xk + 1‖2

over k and invoking the descent property hρ(xk+1) ≤ hρ(xk) produce the error bound

hρ xk + 1 − hρ(x) ≤ ρ
2(k + 1) ‖x − x0‖2 − ‖x − xk + 1‖2 ≤ ρ

2(k + 1)‖x − x0‖2 .

Setting x equal to a minimal point z gives the stated result. ■

A.2. Proposition 2

The existence and uniqueness of y are obvious. The remainder of the proof hinges on the 

assumptions that hρ(x) is μ-strongly convex and the surrogate gρ(x | xk) is L + ρ smooth. The 

latter assumption yields

hρ x − hρ y ≤ gρ x | y − gρ y | y

≤ ∇gρ y | y t x − y + L + ρ
2 ‖x − y‖2

= L + ρ
2 ‖x − y‖2 .

(22)

The strong convexity condition hρ(y) − hρ(x) ≥ ∇hρ x t y − x + μ
2 ‖y − x‖2 implies

‖∇hρ(x)‖ ⋅ ‖y − x‖     ≥ − ∇hρ(x)t(y − x) ≥ μ
2 ‖y − x‖2 .

It follows that ‖∇hρ(x)‖ ≥ μ
2 ‖x − y‖. This last inequality and inequality (22) produce the 

Polyak-Łojasiewicz bound

1
2‖∇hρ(x)‖2 ≥ μ2

2(L + ρ) hρ(x) − hρ(y) .
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Taking x = xk − 1
L + ρ ∇gρ xk | xk = xk − 1

L + ρ ∇hρ xk , the Polyak-Łojasiewicz bound gives

hρ xk + 1 − hρ xk ≤ gρ xk + 1| xk − gρ xk | xk

≤ gρ x | xk − gρ xk | xk

≤ − 1
L + ρ ∇gρ xk | xk

t ∇hρ xk + 1
2(L + ρ)‖∇hρ xk ‖2

= − 1
2(L + ρ)‖∇hρ xk ‖2

≤ − μ2

2(L + ρ)2
hρ xk − hρ(y) .

Rearranging this inequality yields

hρ xk + 1 − hρ(y) ≤ 1 − μ2

2(L + ρ)2
hρ xk − hρ(y) ,

which can be iterated to give the stated bound. ■

A.3. Proposition 3

Consider first the proximal distance iterates. The inequality

f xk +
ρk
2 dist xk, S 2 ≤ f xk +

ρk
2 ‖xk − PS xk − 1 ‖2 ≤ f PS xk − 1 ≤ sup

x ∈ S
f (x)

plus the coerciveness of f(x) imply that xk is a bounded sequence. The claimed bound now 

holds for c equal to the finite supremum of the sequence 2[supx∈S f(x) − f(xk)]. If in 

addition, f(x) is continuously differentiable, then the stationarity equation

0 = ∇ f xk + ρk xk − PS xk − 1

and the Cauchy-Schwarz inequality give

ρk‖xk − PS xk − 1 ‖2 = − ∇ f xk
t xk − PS xk − 1 ≤ ‖∇ f xk ‖ ⋅ ‖xk − PS xk − 1 ‖ .

Dividing this by ‖xk − PS(xk−1) ‖ and squaring further yield

ρk
2dist xk, S 2 ≤ ρk

2‖xk − PS xk − 1 ‖2 ≤ ‖∇ f xk ‖2 .

Taking d = supk ‖∇f(xk) ‖2 over the bounded sequence xk completes the proof. For the 

penalty method iterates, the bound

Keys et al. Page 31

J Mach Learn Res. Author manuscript; available in PMC 2019 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f yk +
ρk
2 dist yk, S 2 ≤ f (y)

is valid by definition, where y attains the constrained minimum. Thus, coerciveness implies 

that the sequence yk is bounded. When f(x) is continuously differentiable, the proof of the 

second claim also applies if we substitute yk for xk and PS(yk) for PS(xk−1). ■

A.4. Proposition 4

Because the function f (x) +
ρk
2 dist x, S 2 is convex and has the value f(y) and gradient ∇f(y) 

at a constrained minimum y, the supporting hyperplane principle says

f yk +
ρk
2 dist yk, S 2 ≥ f (y) + ∇ f (y)t yk − y

= f (y) + ∇ f (y)t PS yk − y + ∇ f (y)t yk − PS yk .

The first-order optimality condition ∇f(y)t[PS(yk) − y] ≥ 0 holds given y is a constrained 

minimum. Hence, the Cauchy-Schwarz inequality and Proposition 3 imply

f (y) − f yk ≤
ρk
2 dist yk, S 2 − ∇ f (y)t yk − PS yk

≤
ρk
2 dist yk, S 2 + ‖∇ f (y)‖ ⋅ dist yk, S

≤ d + 2 d‖∇ f (y)‖
2ρk

.

■

A.5. Proposition 5

Let xk converge to x∞ and yk ∈ PS(xk) converge to y∞. For an arbitrary y ∈ S, taking limits 

in the inequality ‖xk −yk‖ ≤ ‖xk–y‖ yields ‖x∞ −y∞‖ ≤ ‖x∞ −y‖; consequently, y∞ ∈ 
PS(x∞). To prove the second assertion, take yk∈ PS(xk) and observe that

‖yk‖ ≤ ‖xk − yk‖ + ‖xk‖
≤ ‖xk − y1‖ + ‖xk‖
≤ ‖xk − x1‖ + ‖x1 − y1‖ + ‖xk‖
≤ ‖xk‖ + ‖x1‖ + dist x1, S + ‖xk‖,

which is bounded above by the constant dist(x1,S) + 3sup
m≥1 ‖xm‖. ■
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A.6. Proposition 6

In fact, a much stronger result holds. Since the function s(x) of equation (8) is convex and 

finite, Alexandrov’s theorem (Niculescu and Persson, 2006) implies that it is almost 

everywhere twice differentiable. In view of the identities 1
2dist x, S 2 = 1

2‖x‖2 − s(x) and 

x − PS(x) = ∇ 1
2dist x, S 2 where PS(x) is single valued, it follows that PS(x) = ∇s(x) is almost 

everywhere differentiable. ■

A.7. Proposition 8

See the discussion just prior to the statement of the proposition. ■

A.8. Proposition 9

The strong-convexity inequality

gρ xk | xk ≥ gρ xk + 1| xk + μ
2 ‖xk − xk + 1‖2

and the tangency and domination properties of the algorithm imply

hρ xk − hρ xk + 1 ≥ μ
2 ‖xk − xk + 1‖2 .

(23)

Since the difference in function values tends to 0, this validates the stated limit. The 

remaining assertions follow from Propositions 7.3.3 and 7.3.5 of (Lange, 2016). ■

A.9. Proposition 10

Let the subsequence xkm
 of the MM sequence xk+1 ∈ M(xk) converge to z. By passing to a 

subsubsequence if necessary, we may suppose that xkm+1 converges to y. Owing to our 

closedness assumption, y ∈ M(z). Given that h(y) = h(z), it is obvious that z also minimizes 

g(x | z) and that 0 = ∇g(z | z). Since the difference Δ(x | z) = g(x | z) − h(x) achieves its 

minimum at x = z, the Fréchet subdifferential ∂F Δ(x | z) satisfies

0 ∈ ∂FΔ z | z = ∇g z | z + ∂F( − h)(z) .

It follows that 0 ∈ ∂F (−h)(z). ■
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A.10. Proposition 11

Because Δ(x | y) = g(x | y) − h(x) achieves its minimum at x = y, the Fréchet subdifferential 

∂F Δ(x | y) satisfies

0 ∈ ∂FΔ y | y = ∇g y | y + ∂F( − h)(y) .

It follows that −∇g(y | y) ∈ ∂F (−h)(y). Furthermore, by assumption

‖∇g a | xk − ∇g b | xk ‖ ≤ L‖a − b‖

for all relevant a and b and xk. In particular, because ∇g(xk+1 | xk) = 0, we have

‖∇g xk | xk ‖ ≤ L‖xk + 1 − xk‖ .

(24)

Let W denote the set of limit points. The objective h(x) is constant on W with value 

h = limk ∞h xk . According to the Łojasiewicz inequality applied for the subanalytic 

function h − h(x), for each z ∈ W there exists an open ball Br(z)(z) of radius r(z) around z and 

an exponent θ(z) ∈ [0,1) such that

|h(u) − h(z)|θ(z) = |h − h(u) − h + h|θ(z) ≤ c(z)‖v‖

for all u ∈ Br(z)(z) and all v ∈ ∂F(h − h)(u) = ∂F( − h)(u). We will apply this inequality to u = 

xk and v = −∇g(xk | xk). In so doing, we would like to assume that the exponent θ(z) and 

constant c(z) do not depend on z. With this end in mind, cover the compact set W by a finite 

number of balls Br(zi)(zi) and take θ = maxi θ(zi) < 1 and c = maxi c(zi). For a sufficiently 

large K, every xk with k ≥ K falls within one of these balls and satisfies |h − h xk | < 1. 

Without loss of generality assume K = 0. The Łojasiewicz inequality reads

|h − h xk |θ ≤ c‖∇g xk | xk ‖ .

(25)

In combination with the concavity of the function t1−θ on [0,∞), inequalities (23), (24), and 

(25) imply
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h xk − h 1 − θ − h xk + 1 − h 1 − θ ≥ 1 − θ

h xk − h θ h xk − h xk + 1

≥ 1 − θ
c‖∇g xk | xk ‖

μ
2 ‖xk + 1 − xk‖2

≥ (1 − θ)μ
2cL ‖xk + 1 − xk‖ .

Rearranging this inequality and summing over k yield

∑
n = 0

∞
‖xk + 1 − xk‖ ≤ 2cL

(1 − θ)μ h x0 − h 1 − θ

Thus, the sequence xk is a fast Cauchy sequence and converges to a unique limit in W. ■
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Figure 1: 
Proportion of variance explained by q PCs for each algorithm. Here PD1 is the accelerated 

proximal distance algorithm enforcing matrix sparsity, PD2 is the accelerated proximal 

distance algorithm enforcing column-wise sparsity, and SPC is the orthogonal sparse PCA 

method from PMA.
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Figure 2: 
Computation times for q PCs for each algorithm. Here PD1 is the accelerated proximal 

distance algorithm enforcing matrix sparsity, PD2 is the accelerated proximal distance 

algorithm enforcing column-wise sparsity, and SPC is the orthogonal sparse PCA method 

from PMA.
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Table 1:

CPU times and optima for linear programming. Here m is the number of constraints, n is the number of 

variables, PD1 is the proximal distance algorithm over an affine domain, PD2 is the proximal distance 

algorithm over a nonnegative domain, SCS is the Splitting Cone Solver, and Gurobi is the Gurobi solver. After 

m = 512 the constraint matrix A is initialized to be sparse with sparsity level s = 0.01.

Dimensions Optima CPU Times (secs)

m n PD1 PD2 SCS Gurobi PD1 PD2 SCS Gurobi

2 4 0.2629 0.2629 0.2629 0.2629 0.0142 0.0010 0.0034 0.0038

4 8 1.0455 1.0457 1.0456 1.0455 0.0212 0.0021 0.0009 0.0011

8 16 2.4513 2.4515 2.4514 2.4513 0.0361 0.0048 0.0018 0.0029

16 32 3.4226 3.4231 3.4225 3.4223 0.0847 0.0104 0.0090 0.0036

32 64 6.2398 6.2407 6.2397 6.2398 0.1428 0.0151 0.0140 0.0055

64 128 14.671 14.674 14.671 14.671 0.2117 0.0282 0.0587 0.0088

128 256 27.116 27.125 27.116 27.116 0.3993 0.0728 0.8436 0.0335

256 512 58.501 58.512 58.494 58.494 0.7426 0.1538 2.5409 0.1954

512 1024 135.35 135.37 135.34 135.34 1.6413 0.5799 5.0648 1.7179

1024 2048 254.50 254.55 254.47 254.48 2.9541 3.2127 3.9433 0.6787

2048 4096 533.29 533.35 533.23 533.23 7.3669 17.318 25.614 5.2475

4096 8192 991.78 991.88 991.67 991.67 30.799 95.974 98.347 46.957

8192 16384 2058.8 2059.1 2058.5 2058.5 316.44 623.42 454.23 400.59
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Table 2:

CPU times and optima for simplex-constrained least squares. Here A ∈ ℝn × p, PD is the proximal distance 

algorithm, IPOPT is the Ipopt solver, and Gurobi is the Gurobi solver. After n = 1024, the predictor matrix A 
is sparse.

Dimensions Optima CPU Times

n p PD IPOPT Gurobi PD IPOPT Gurobi

16 8 4.1515 4.1515 4.1515 0.0038 0.0044 0.0010

32 16 10.8225 10.8225 10.8225 0.0036 0.0039 0.0010

64 32 29.6218 29.6218 29.6218 0.0079 0.0079 0.0019

128 64 43.2626 43.2626 43.2626 0.0101 0.0078 0.0033

256 128 111.7642 111.7642 111.7642 0.0872 0.0151 0.0136

512 256 231.6455 231.6454 231.6454 0.1119 0.0710 0.0619

1024 512 502.1276 502.1276 502.1276 0.2278 0.4013 0.2415

2048 1024 994.2447 994.2447 994.2447 1.2575 2.3346 1.1682

4096 2048 2056.8381 2056.8381 2056.8381 1.3253 15.2214 7.4971

8192 4096 4103.4611 4103.4611 4103.4611 3.0289 146.1604 49.7411

16384 8192 8295.2136 8295.2136 8295.2136 6.8739 732.1039 412.3612
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Table 3:

CPU times and optima for the closest kinship matrix problem. Here the kinship matrix is n × n, PD1 is the 

proximal distance algorithm, PD2 is the accelerated proximal distance, PD3 is the accelerated proximal 

distance algorithm with the positive semidefinite constraints folded into the domain of the loss, and Dykstra is 

Dykstra’s adaptation of alternating projections. All times are in seconds.

Size PD1 PD2 PD3 Dykstra

n Loss Time Loss Time Loss Time Loss Time

2 1.64 0.36 1.64 0.01 1.64 0.01 1.64 0.00

4 2.86 0.10 2.86 0.01 2.86 0.01 2.86 0.00

8 18.77 0.21 18.78 0.03 18.78 0.03 18.78 0.00

16 45.10 0.84 45.12 0.18 45.12 0.12 45.12 0.02

32 169.58 4.36 169.70 0.61 169.70 0.52 169.70 0.37

64 837.85 16.77 838.44 2.90 838.43 2.63 838.42 4.32

128 3276.41 91.94 3279.44 18.00 3279.25 14.83 3279.23 19.73

256 14029.07 403.59 14045.30 89.58 14043.59 64.89 14043.46 72.79
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Table 4:

CPU times and optima for the second-order cone projection. Here m is the number of constraints, n is the 

number of variables, PD is the accelerated proximal distance algorithm, SCS is the Splitting Cone Solver, and 

Gurobi is the Gurobi solver. After m = 512 the constraint matrix A is initialized with sparsity level 0.01.

Dimensions Optima CPU Seconds

m n PD SCS Gurobi PD SCS Gurobi

2 4 0.10598 0.10607 0.10598 0.0043 0.0103 0.0026

4 8 0.00000 0.00000 0.00000 0.0003 0.0009 0.0022

8 16 0.88988 0.88991 0.88988 0.0557 0.0011 0.0027

16 32 2.16514 2.16520 2.16514 0.0725 0.0012 0.0040

32 64 3.03855 3.03864 3.03853 0.0952 0.0019 0.0094

64 128 4.86894 4.86962 4.86895 0.1225 0.0065 0.0403

128 256 10.5863 10.5843 10.5863 0.1975 0.0810 0.0868

256 512 31.1039 31.0965 31.1039 0.5463 0.3995 0.3405

512 1024 27.0483 27.0475 27.0483 3.7667 1.6692 2.0189

1024 2048 1.45578 1.45569 1.45569 0.5352 0.3691 1.5489

2048 4096 2.22936 2.22930 2.22921 1.0845 2.4531 5.5521

4096 8192 1.72306 1.72202 1.72209 3.1404 17.272 15.204

8192 16384 5.36191 5.36116 5.36144 13.979 133.25 88.024
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Table 5:

CPU times (seconds) and optima for approximating the Horn variational index of a Horn matrix. Here n is the 

size of Horn matrix, PD is the proximal distance algorithm, aPD is the accelerated proximal distance 

algorithm, and Mosek is the Mosek solver.

Dimension Optima CPU Seconds

n PD aPD Mosek PD aPD Mosek

4 0.000000 0.000000 feasible 0.5555 0.0124 2.7744

5 0.000000 0.000000 infeasible 0.0039 0.0086 0.0276

8 0.000021 0.000000 feasible 0.0059 0.0083 0.0050

9 0.000045 0.000000 infeasible 0.0055 0.0072 0.0082

16 0.000377 0.000001 feasible 0.0204 0.0237 0.0185

17 0.000441 0.000001 infeasible 0.0204 0.0378 0.0175

32 0.001610 0.000007 feasible 0.0288 0.0288 0.1211

33 0.002357 0.000009 infeasible 0.0242 0.0346 0.1294

64 0.054195 0.000026 feasible 0.0415 0.0494 3.6284

65 0.006985 0.000026 infeasible 0.0431 0.0551 2.7862
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Table 6:

CPU times and optima for testing the copositivity of random symmetric matrices. Here n is the size of matrix, 

PD is the proximal distance algorithm, aPD is the accelerated proximal distance algorithm, and Mosek is the 

Mosek solver.

Dimension Optima CPU Seconds

n PD aPD Mosek PD aPD Mosek

4 −0.391552 −0.391561 infeasible 0.0029 0.0031 0.0024

8 −0.911140 −2.050316 infeasible 0.0037 0.0044 0.0045

16 −1.680697 −1.680930 infeasible 0.0199 0.0272 0.0062

32 −2.334520 −2.510781 infeasible 0.0261 0.0242 0.0441

64 −3.821927 −3.628060 infeasible 0.0393 0.0437 0.6559

128 −5.473609 −5.475879 infeasible 0.0792 0.0798 38.3919

256 −7.956365 −7.551814 infeasible 0.1632 0.1797 456.1500
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Table 7:

CPU times (seconds) and optima for the linear complementarity problem with randomly generated data. Here 

n is the size of matrix, PD is the accelerated proximal distance algorithm, and Gurobi is the Gurobi solver.

Dimension Optima CPU Seconds

n PD Mosek PD Mosek

4 0.000000 0.000000 0.0230 0.0266

8 0.000000 0.000000 0.0062 0.0079

16 0.000000 0.000000 0.0269 0.0052

32 0.000000 0.000000 0.0996 0.4303

64 0.000074 0.000000 2.6846 360.5183
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