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Abstract Endothelial cells (ECs) are critical determinants of vascular homeostasis and

inflammation, but transcriptional mechanisms specifying their identities and functional states

remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of

primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling

inference of transcription factor networks that direct homeostatic and pro-inflammatory programs.

We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to

cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA

transcription factors play key roles in HAEC transcription by co-binding enhancers associated with

EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or

pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and

associate with coordinated binding of CEBPD, IRF1, and NFkB. Collectively, these findings identify

cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and

their specific responses to pro-inflammatory stimuli.

DOI: 10.7554/eLife.22536.001

Introduction
Atherosclerosis is an inflammatory disease of large arteries mediated by the accumulation of plaque

within the vessel wall. Through sequelae such as heart attack, stroke, and peripheral vascular dis-

ease, it is responsible for an immense burden of morbidity and mortality. The pathogenesis of ath-

erosclerosis involves several cell types and environmental risk factors (Lusis, 2000; Glass and

Witztum, 2001). One of the critical cell types is the arterial endothelial cell (EC). The onset of ath-

erosclerosis involves the activation of ECs by pro-inflammatory micro-environmental exposures

including hemodynamic turbulence, oxidized-specific epitopes, and inflammatory

cytokines (Tabas et al., 2015). These inflammatory stimuli result in the expression of adhesion mole-

cules on the luminal EC surface and rolling, attachment, and migration of leukocytes into the vessel

wall. Sustained recruitment and accumulation of immune cells in the vessel wall leads to extracellular

matrix remodeling, smooth muscle cell migration, and the development of necrotic debris. Acute

plaque rupture can result in sudden vascular occlusion, leading to heart attack or stroke.

Genome-wide association studies have identified more than 50 loci that predispose humans to

cardiovascular disease (CVD) (Nikpay et al., 2015), of which the major cause is atherosclerosis. The
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majority of CVD loci reside outside protein-coding regions of the genome, suggesting that the risk

variants alter gene regulatory function (Hindorff et al., 2009; Manolio, 2010). Still, the target

genes, pathways, and cell types of action are largely unknown due to challenges in linking regulatory

variants to function. A major challenge is that mammalian genomes contain upwards of a million

potential regulatory elements called enhancers, yet a given cell type only utilizes on the order of

tens of thousands of active enhancers (ENCODE Project Consortium, 2012; Andersson et al.,

2014). This makes it difficult to accurately predict the functional cell systems and units of regulation

from sequence alone (Shlyueva et al., 2014).

An important insight into enhancer biology is the observation that unique combinations of a few

transcription factors (TFs) together activate cell-type-specific enhancers. Enhancer priming by TFs is

both collaborative, (such that one TF will not bind its DNA motif if the motif for a collaborating TF is

mutated [Heinz et al., 2013]), and hierarchical (the majority of sites bound by newly abundant TFs

occur at enhancers pre-bound by collaborating TFs [Heinz et al., 2015; Romanoski et al., 2015;

Kaikkonen et al., 2013]). This model is perhaps best characterized in the hematopoietic system and

with toll-like receptor 4 signaling (Heinz et al., 2013; Kaikkonen et al., 2013; Heinz et al., 2010).

For example, myeloid-specific enhancer activation and cell differentiation requires the TF PU.1 in

combination with C/EBPb, whereas B cells require PU.1 in combination with EBF and

E2A (Heinz et al., 2010).

In the current study, we take a genome-wide approach using DNA variation, epigenetic, and tran-

scriptomic data to identify the major TF families that coordinate human aortic endothelial cell

(HAEC) gene expression in homeostasis and upon exposure to prototypic inflammatory stimuli char-

acteristic of atherosclerosis. Using a combination of experimental and computational approaches,

we find that members of the ETS and AP1 TF families bind EC enhancers and that removing ETS

member ERG elicits an inflammatory profile. We demonstrate that many enhancers identified in ECs

are cell type-specific and several enhancers overlap with SNPs that have been associated to coronary

artery disease (CAD) and hypertension. In addition, we demonstrate that TFs NRF2, NFkB, CEBD,

and IRF1 are signal-dependent TFs that mediate the EC response to inflammatory stimuli.

Results

Transcription factors in the AP1 and ETS families dominate the
enhancer landscape in HAECs
A total of 16,929 high-confidence enhancer-like elements were mapped in HAECs (Figure 1a) using

chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to identify pro-

moter-distal elements marked by significant levels of histone H3 di-methylation of lysine 4

(H3K4me2) and acetylation of lysine 27 (H3K27ac) that together mark active enhancers

(Heintzman et al., 2007; Creyghton et al., 2010; Rada-Iglesias et al., 2011). Chromatin accessibil-

ity, measured by Assay for Transposase Accessible Chromatin with high-throughput sequencing

(ATAC-seq [Buenrostro et al., 2013]), was used to center the enhancer-like regions. The position

within the element with the maximum signal that reflects greatest accessibility was used for center-

ing. Using public global nuclear run-on sequencing (GRO-seq) data in HAECs (Kaikkonen et al.,

2014), we observed that our set of enhancer-like loci produced bi-directional nascent RNA tran-

scripts, or enhancer RNAs (eRNAs), as evidenced by the red and blue strand-specific RNA signals in

Figure 1a. The potential function of eRNAs is not understood; however, eRNA output is robustly

correlated with enhancer activity (Kaikkonen et al., 2014; Lam et al., 2013; De Santa et al., 2010;

Kim et al., 2010), further supporting our enhancer set as active EC enhancers (Figure 1a).

We hypothesized that the major TFs that select and maintain enhancers in HAECs would be evi-

dent via enrichment of binding motifs in enhancer DNA sequences. Thus, we performed de novo

motif enrichment analysis and discovered that AP1, ETS, SOX and GATA motifs were significantly

enriched (-logPvalues > 7.1e2) in HAEC enhancers compared to random GC-matched genomic back-

ground sequence (Figure 1b, comprehensive list in Figure 1—figure supplement 1). Based on pre-

vious evidence (Heinz et al., 2013), we expected for functional motifs to be enriched near the

maximum signal for chromatin accessibility. Indeed, AP1 and ETS were most frequently observed

near the signal maximum, whereas the relationships for SOX and GATA motifs were less pronounced

Hogan et al. eLife 2017;6:e22536. DOI: 10.7554/eLife.22536 2 of 28

Research article Genes and Chromosomes Human Biology and Medicine

http://dx.doi.org/10.7554/eLife.22536


a.

 family motif -logPval% enh. (%bg)

AP-1

ETS

SOX

31.2 (3.7)

51.9 (22.2)

17.7 (8.1)

12.0 (4.8)

7.4e+3

3.6e+3

8.1e+2

7.1e+2GATA

accessible
chromatin

H3K4me2 H3K27ac eRNA

2 kb 0                      ≥5+ 
-

0                      ≥12.5

b.

c.

d.

 g
e
n
e
 e

xp
re

ss
io

n
 (

lo
g

2
(F

P
K

M
))

AP-1
ETS
SOX
GATA

800 1

-10

0

10

lo
g
2
(F

P
K

M
)

ank

HAEC transcription factor expression, RNA-seq         

| other TFs

e.

1
6
,9

2
9
 g

e
n
o
m

ic
 lo

c i

f.

ERG locus          
chr21:39,625-40,075kb100 kb

250

JUN locus          chr1:59,125-59,345kb

−400 −200 0 200 400

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

distance to enhancer center (bp)

AP1
ETS
SOX
GATA

a
vg

. 
m

o
tif

 f
re

q
u
e
n
cy

0.025

0

avg. tag freq.

tags

+
-

MYSM1 JUN

30

40

100

H3K27ac

H3K4me2

RNA (-strand)

n
o
rm

. 
ta

g
s

35
ATAC

KCNJ15
ERG

30

40
H3K27ac

H3K4me2

RNA (-strand)

n
o
rm

. 
ta

g
s

35
ATAC

100 kb

EC genes (not TFs)*

|

|

||

||

|

|

|

|

|

|

||

| ||

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

||

|

|

|
|

|

|

|

|

|

|
|

|

|||

|
|

||

|

|
|

|

|
|

|
| |

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

| |
|

| |

|

|||

|
|

|
|

|

|

|

| | |

|

||
||

|
|

|
|

|

||
|

||

|

|

|

| |

|
|

|
||

|

|

|
|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|
|

|

|

|
|| |

|

|

|
|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

||

|

|
||

|

|
|

|
|||

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|

||

|

|

|
|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|

|
||

|
|

|
|

|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|

|

|
|

|
|

|
|

|

|
|

||
|

|

|
|

|

|
|

|

|||||

|
|

|
|

| | |
| |

|

|
||

|
|

|

|

| |
|

||
|

|

0

2

4

6

8

10

SOX4
SOX17

SOX12
SOX7

SOX18

GATA2

GATA6

JUN

JUND

JUNB

FOSL1FOSL2

ETS2

ERGFLI1

GATAD2A

GATAD2B

ETS1

SOX13
GATAD1

rank

300 200 100 1

|

|

||

||
|
|

|

|

|

|

||
|||

|

|

|

|

|
|

|

|
|

|
| |

|
|

|

||

|

|
| |

|
|

|

|
|

| ||
|||

|
|

||

|

||

|
|

|
|||

|

|
|

|

|
|

|
||

|

|
|

|

|

|

|

|
|

|

|
|

|

|

||
|

| |

|

|||
|

|

|
|

|
|

|

|||
|

||
||

|
|

||
|

|| |||
|

|
|

||

| |
|

||

|
|

||

|
|

|
|

|
|

|
|

|
|

|

| |
|

|

|

|

||

|

|
|

|

|

|
|| |

|

|

|
||

|

|

||

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

||

|

|
||

|

|
||

|

|
|

|
|||

|

| |

| |
|

|
|

|
|

|
|||
|

||
|

|

|
|

|

|

|

|

|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

|
|

||
|

|
|

|

|

|

|

|
|

|

|
|

|

|
|

|
|

|

|

|
|

|

||

|

|
|

|
|

|| ||
| |

|
|

|
||

|

|

|

|

|

|
|

|

|

|

|
||

|

|

|

|
|

|

|
||

|
| |||

|

|

|

|
|

|
|

|
||

|
|

|
| | |

|

|

|||

|

|

| |

|
|

|

|

|

|
| |

|

|

|

||
|

|

|

|

|
|

||

||

|

|
|

|
|

| |

|

|

| |
|| |

|
||

| |
|

|
|

|

|
|

|
||

|

|
||

|

|
|

||

|

|
|

|

|

|

|
|

|

|

|
|

|
||

|

||

|

|

||
|||

|

|
| |

| |
||

|

|
|

|

|
|

|
| |

|
|

|
|

|
||

|

|

||

|

||

||

|

|

| |

|

|

||
|

|

|
|

|

| | |
|

| |

| |

|

||

|

|

|
| ||

| |
|

|
||

|
|

|

|

|
|

|
|

| ||

|
|

||
|

|

|||
||

|

|
|| |

|

|
|

|

|

|
| |

|||

|
|

|
|

|

|

|

|

|
|

|
|

||
|

|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

||

|

|

|
| |

||
|

|

||

|

|
|

|

|

||

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

||

|
||||
|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

||

||

|

|

|

| |
||

|

||

|

|
|

|

|

|

|

|
||

||
|

||
|
|

|

|

| ||

|

|
|

|

|
|

|

|

|

||

|
|

|
|

|

||
|

|

|

|

|

|

|

|

|

|

|
|

||

||

|||

|

|

||

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

||

|||

|

|

|

|
|

|
|

||
|

|||||
|
|

|

||

*

PECAM1

*
VWF

*

CLDN5

Figure 1. HAECs display a distinct repertoire of enhancers that nominate combinations of the AP1, ETS, SOX and GATA TF families as major

orchestrators of HAEC gene expression. (a) A heatmap of 16,929 enhancer-like regions were selected by: accessible chromatin (ATAC-seq), coincident

with H3K4me2 and H3K27ac deposition (ChIP-seq) in gene-distal positions (�3 kb from promoters). Rows are enhancer loci, repeated for each data

type in columns. Bidirectional transcription of enhancer RNAs (eRNAs) is also evident (GRO-seq). (b) The top four enriched motifs that occur in

enhancers from a are shown. The transcription factor (TF) family, de novo motif matrix, percentage motif occurrence at enhancer loci versus random

loci, and enrichment -logPvalues are indicated. Enrichment was calculated from 200 bp sequence, centered on chromatin accessibility. (c) The positional

enrichment of the enriched motifs are shown relative to the center of the enhancer-like elements from a, where 0 bp is the center of the accessibility

signal. (d) Gene expression measured by RNA-seq and limited to TFs is ranked by FPKM values to nominate the most highly expressed TFs in the AP1,

ETS, SOX, and GATA families. (e, f) RNA expression, histone modifications, and super enhancer (SE) definitions are shown for: (e) ERG and (f) JUN loci.

SE regions are highlighted in yellow and were defined using H3K27ac. More related data in Figure 1—figure supplements 1–3.

Figure 1 continued on next page
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(Figure 1c). These data nominate roles for AP1 and ETS TF members as important mediators of the

HAEC enhancer landscape.

Tens of genes encode proteins of the AP1, ETS, SOX and GATA TF families. Within each family

different members share nearly identical DNA-binding domains and thus bind the same motif. In

addition, AP1 protein members bind AP1 motifs as homo- and hetero-dimers. These sources of

redundancy make it challenging to identify the functional family member(s) without additional infor-

mation. To narrow the search in HAECs, we hypothesized that the operational TFs would be highly

expressed and that their genetic loci would contain super-enhancers (SEs), or unusually dense clus-

ters of highly decorated enhancers (Hnisz et al., 2013). Characterization of enhancer marks across

cell-types has found SEs to be frequently located at loci encoding lineage-defining

TFs (Whyte et al., 2013; Dowen et al., 2014). We queried rank-ordered expression data for TF fam-

ily members and found that multiple members of each group were highly expressed (Figure 1d). For

example, SOX members SOX18, SOX4, and SOX17 were among the top 4% most expressed TFs in

HAECs. AP1 family members JUND, JUN, and JUNB were also in the top 4%. RNA-seq from other

HAEC donors and replicate samples confirmed these findings (Figure 1—figure supplement 1).

Next, we defined SEs using H3K27ac ChIP-seq data and found that, among others, the genetic loci

for ERG (an ETS member) as well as AP1 members JUN, JUND, and JUNB harbored SEs (Figure 1e,

f, Figure 1—figure supplement 2). Taken together, these data suggest that while multiple TFs from

each family probably bind HAEC enhancers, that JUN, JUNB, JUND, and ERG likely serve prominent

roles.

Roughly half of HAEC enhancers are endothelial-specific
To investigate which enhancer-like elements discovered in HAECs were specific to ECs, we analyzed

public H3K27ac ChIP-seq datasets from ENCODE (ENCODE Project Consortium, 2012) and Road-

map Epigenomics consortia (Kundaje et al., 2015). Considering ECs are present in nearly all tissues,

we focused on data collected in single cell types with the exception of ‘aorta’, ‘right ventricle’, ‘left

ventricle’, and ‘right atrium’ that were included to observe their relationship to aortic endothelium.

A total of 61 datasets were analyzed (Supplementary file 1). Human umbilical vein ECs, or HUVECs,

were the only other EC type in the analysis. H3K27ac ChIP-seq tags were counted and normalized in

each experiment at the 16,929 HAEC-defined enhancer loci. Hierarchical clustering resolved three

distinct clusters of enhancers: an endothelial-specific set (n = 7405), a set common across cell types

(1575), and a mixed set where only some cell types exhibited H3K27ac modification (7949) (Fig-

ure 1—figure supplement 3). Motif analysis of these three sets revealed differential frequencies of

AP1, ETS, SOX, and GATA motifs (Figure 1—figure supplement 3). AP1 and ETS motifs were least

frequently observed in the common enhancer set, while the ETS, GATA, and SOX motifs were most

frequently observed in the endothelial-specific enhancer set. These data are consistent with the

model that different combinations of transcription factors maintain cell-specific gene expression

programs.

Aortic endothelial enhancers overlap genome-wide association SNPs
for CAD and hypertension
To investigate whether EC enhancers have utility to prioritize non-coding functional variants for the

cardiovascular diseases CAD and hypertension, we overlapped physical coordinates of the 16,929

enhancers from Figure 1a with GWAS associated variants. SNPs meeting genome-wide significance

Figure 1 continued

DOI: 10.7554/eLife.22536.002

The following figure supplements are available for figure 1:

Figure supplement 1. Analysis of motifs and expression of associated transcription factors.

DOI: 10.7554/eLife.22536.003

Figure supplement 2. Genetic loci for JUN, JUNB, and JUND.

DOI: 10.7554/eLife.22536.004

Figure supplement 3. Hierarchical clustering of enhancers.

DOI: 10.7554/eLife.22536.005
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for CAD or hypertension, which is a major risk factor for atherosclerosis and CAD, were downloaded

from the NHGRI-EBI GWAS Catalog (Welter et al., 2014). To account for linkage disequilibrium (LD,

the correlation of alleles) between closely spaced SNPs on the same chromosome, we used 1000

Genomes data (Auton et al., 2015) to retrieve SNPs in LD with the reported GWAS SNPs when r2

was greater than 0.8 based on European haplotype structure. We identified 16 SNPs that were

within HAEC enhancers (Table 1) and represent 22 lead SNPs from GWAS studies. Fifty percent of

overlapping SNPs were within EC-specific enhancers (as opposed to those common or mixed across

cell types), whereas only 43% of enhancers in HAECs are EC-specific (Figure 1—figure supplement

3). These data provide a focused list of potential functional non-coding variants that affect predispo-

sition to CAD and hypertension through EC gene regulation. Further studies will be required to

establish the regulatory consequence and predisposing mechanisms of these variants. Nonetheless,

our evidence that perturbed endothelial expression contributes to vascular disease underscores the

importance of elucidating endothelial gene regulatory programs in homeostasis and inflammatory

environments.

TF expression dynamics across 97 HAEC donors nominates three major
modules of TFs as coordinating gene expression
We next questioned how AP1, ETS, SOX, and GATA TFs were expressed in artery ECs across the

human population. We postulated that the most prominent actors would be highly expressed with

modest variation between people. By leveraging global transcript levels collected across 97 geneti-

cally distinct HAECs from healthy human donors (Romanoski et al., 2010), we found that JUN and

JUND (AP1) and ERG (ETS) exhibited the greatest median expression values with relatively little vari-

ability across the EC donor population (Figure 2a).

To gain insight into the behavior of the TF members with respect to each other, we measured co-

variation in TF gene expression profiles across the human population. Co-variation, or co-expression,

of TFs could result from one TF (in)directly regulating another, both (in)directly regulating each

other, or from each being regulated by a common third mechanism. By clustering pair-wide correla-

tion coefficients across all TFs of interest, we identified three main groups with similar co-expressed

profiles: group 1 (in orange) with members FOSL1 and ETS1; group 2 (in green) with GATA2 and

GATA6; and group 3 (in yellow) with the remaining factors (Figure 2b, detailed examples in

Figure 2c-f). The degree of correlation between TFs is indicated by red intensity (anti-correlation

with blue; no correlation with white). Notably, TF expression of groups 1 and 2 were mostly anti-cor-

related with group three members. A very similar grouping of these TFs was observed when their

relationship to all expressed genes was used as the clustering parameter (Figure 2—figure supple-

ment 1). The result that FOSL1 and ETS1 are anti-correlated in expression with the remaining family

members, and to HAEC transcripts overall, suggests that they promote opposing gene expression

profiles in HAECs.

Nominated factors, including ERG and JUN, bind HAEC enhancers at
closely spaced motifs
To test whether the nominated TFs indeed bound HAEC enhancers, we performed the first chroma-

tin immunoprecipitation sequencing (ChIP-seq) experiments for JUNB, JUN, and ERG in HAECs and

analyzed GATA2(ENCODE Project Consortium, 2012) and ETS1 (Zhang et al., 2013) binding data

from human umbilical vein endothelial cells (HUVECs). The JUND cistrome would also be informative

in these studies; however, we proceeded with JUN and JUNB because the heterodimeric binding of

AP1 factors makes it likely that JUN and JUNB profiles encompass a major portion of the overall

AP1 landscape. JUN, JUNB, ETS1, and GATA2 were all confirmed to bind active HAEC enhancers in

the open chromatin region (Figure 2—figure supplement 2). As determined by clustering of bind-

ing profiles, JUNB and JUN were similar and ERG and ETS1 were similar, supporting the role of

canonical DNA motifs on factor recruitment. Next, we asked if there was enrichment of other motifs

proximal to the bound motifs as was observed previously for TF pairs known to collaboratively acti-

vate cell-specific enhancers (Heinz et al., 2010; Gosselin et al., 2014). For this analysis, loci for the

bound factor (e.g. ERG) were centered on the respective motif (e.g. ETS motif) and sites lacking the

motif were omitted. Then, frequencies of other motifs were calculated as a function of distance to

the reference motif. We found that AP1 motifs were most frequently oriented within 50 base pairs
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Table 1. Overlap of HAEC enhancers with GWAS loci reported for coronary artery disease (CAD) or hypertension (HT). Associated

SNPs were downloaded from the NHGRI-EBI Catalog of published genome-wide association studies. SNPs in linkage disequilibrium

(LD) to GWAS association traits were calculated when r2 >0.8 according to the European reference population of the 1000 Genomes

Project. HAEC enhancers defined in Figure 1a were overlapped by physical position (hg19 genome build). The GWAS SNP, p-value,

GWAS trait, gene reported, PMID, overlapping HAEC enhancer coordinates and enhancer type are shown.

GWAS SNP HAEC enhancer

SNP in
enhancer

LD to lead SNP from
study

p-Value of
lead Trait

Reported gene of
lead PubMed ID

Position
(chr, start bp, end
bp) Nearest gene Type

rs12091564 Lead 2.0E-07 CAD HFE2 21626137 1, 145395579,
145395699

LOC101928979 common

rs72701850 LD, rs12091564,
r2 = 0.95346

2.0E-07 CAD HFE2 21626137 1, 145396840,
145397006

LOC101928979 common

rs72701850 LD, rs10218795,
r2 = 0.95346

2.0E-07 CAD HFE2 21626137 1, 145396840,
145397006

LOC101928979 common

rs56348932 LD, rs17114036,
r2 = 0.916823

4.0E-19 CAD PLPP3 21378990,
24262325

1, 56988477,
56988661

PLPP3 EC-
specific

rs56348932 LD, rs9970807,
r2 = 0.942868

2.0E-09 CAD PLPP3 26343387 1, 56988477,
56988661

PLPP3 EC-
specific

rs56348932 LD, rs17114046,
r2 = 0.942868

3.0E-07 CAD PLPP3 21846871,
21378988

1, 56988477,
56988661

PLPP3 EC-
specific

rs10047079 LD, rs2229238,
r2 = 0.866848

7.0E-07 CAD ILR6 22319020 1, 154468114,
154468189

SHE EC-
specific

rs55916033 LD, rs10496288, r2 = 1 2.0E-09 HT intergenic 21626137 2, 83278987,
83279062

LOC1720 EC-
specific

rs55916033 LD, rs10496289, r2 = 1 2.0E-09 HT intergenic 21626137 2, 83278987,
83279062

LOC1720 EC-
specific

rs72836880 LD, rs10496288, r2 = 1 2.0E-09 HT intergenic 21626137 2, 83308909,
83309314

LOC1720 EC-
specific

rs72836880 LD, rs10496289, r2 = 1 2.0E-09 HT intergenic 21626137 2, 83308909,
83309314

LOC1720 EC-
specific

rs112798061 LD, rs10496289, r2 = 1 2.0E-09 HT intergenic 21626137 2, 83308909,
83309314

LOC1720 EC-
specific

rs3748861 LD, rs13420028,
r2 = 0.916266

1.0E-10 HT GPR39 21626137 2, 133196310,
133196505

GPR39 mix

rs3748861 LD, rs10188442,
r2 = 0.916266

1.0E-10 HT GPR39 21626137 2, 133196310,
133196505

GPR39 mix

rs144505847 LD, rs6725887, r2 = 1 1.0E-09 CAD WDR12 21378990,
24262325

2, 203672243,
203672412

ICA1L EC-
specific

rs144505847 LD, rs7582720, r2 = 1 3.0E-08 CAD WDR12 24262325 2, 203672243,
203672412

ICA1L EC-
specific

rs56155140 LD, rs17087335,
r2 = 0.979112

5.0E-08 CAD NOA1, REST 26343387 4, 57824385,
57824541

NOA1 mix

rs5869162 LD, rs6452524,
r2 = 0.924698

2.0E-07 HT XRCC4 21626137 5, 82393827,
82393921

XRCC4 EC-
specific

rs5869162 LD, rs6887846,
r2 = 0.924698

2.0E-07 HT XRCC4 21626137 5, 82393827,
82393921

XRCC4 EC-
specific

rs6475604 LD, rs7865618,
r2 = 0.940597

2.0E-27 CAD MTAP 21606135 9, 22052677,
22052823

CDKN2B EC-
specific

rs17293632 LD, rs72743461, r2 = 1 1.0E-07 CAD SMAD3 26343387 15, 67442510,
67442670

SMAD3 common

rs17293632 LD, rs56062135,
r2 = 0.988489

5.0E-09 CAD SMAD3 26343387 15, 67442510,
67442670

SMAD3 common

rs17227883 LD, rs17228212,
r2 = 0.981438

2.0E-07 CAD SMAD3 17634449 15, 67442769,
67443128

SMAD3 common

Table 1 continued on next page
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to ERG-bound ETS motifs and that AP1 motif presence decayed with distance from the ETS motif

(Figure 3a). Reciprocally, ETS motifs were most frequently observed proximal (within 50 base pairs)

to JUN/JUNB co-bound AP1 motifs (Figure 3b). Both AP1 and ETS motifs were frequently observed

near GATA2-bound GATA motifs; however, neither GATA nor SOX motifs were prominent in the

vicinity of ETS or AP1-bound motifs (Figure 3c). These data support that AP1 and ETS factors collab-

orate to determine the active chromatin landscape in HAECs with GATA and SOX serving less active

roles genome-wide. This observation is consistent with GATA and SOX motifs only having enrich-

ment in EC-specific enhancers (Figure 1—figure supplement 3).

Allele-specific binding to chromosomes lacking motif mutations
supports collaborative binding between AP1 and ETS factors
One approach to study collaborative binding between TFs is to knock-down/out a TF of interest and

observe a shift in binding or activity at the regulatory element. To avoid complications in interpret-

ability caused by potential redundancy of TF members, we took an alternative approach. As applied

in inbred mouse strains previously (Heinz et al., 2013; Gosselin et al., 2014), we utilized naturally

occurring genetic variation as a genome-wide source of motif mutations. The hypothesis is if the

motif for a collaborative transcription factor is mutated then it should affect binding of the collabo-

rating transcription factor whose motif remains in tact. To test this, whole-genome sequencing

(WGS) of one HAEC donor was performed at an average of 40X coverage and the identified SNPs

were phased with the appropriate 1000 Genomes (Auton et al., 2015) reference population (see

Materials and methods). To quantify JUN binding to distinct homologous chromosomes at heterozy-

gous loci, JUN ChIP-seq reads were iteratively mapped to human genome builds containing the

appropriate allele. Sequence tags with discrepant mappings were omitted to avoid bias. For all loci

with a JUN peak containing at least one heterozygous SNP, ChIP-seq tags were counted that could

be uniquely assigned to one homologous chromosome. These data were then analyzed with respect

to loci where only one SNP allele mutated either the AP1 or ETS motif.

Results showed that JUN binding was significantly affected by mutations in the AP1 motif

(p = 5.0e-10) such that binding was predominant on the chromosome lacking AP1 motif mutations

and diminished on chromosomes containing the mutation (Figure 3—figure supplement 1). Inter-

estingly, JUN binding was also significantly affected by mutations in the ETS motif that occurred

within 100 base pairs of the JUN peak center (Figure 3d p-value = 2.6e-3). We would expect to

observe the reciprocal relationship, in which AP1 motif mutations alter ERG binding, but the ERG

ChIP-seq experiment in the sequenced HAEC donor yielded less than ten thousand peaks and more

information is necessary for this analysis. Taken together, these data support a collaborative relation-

ship between AP1 and ETS factors at endothelial enhancers.

JUN and ERG co-occupy multiple elements near endothelial-specific
genes
To interrogate the gene targets of JUN and ERG, we began with loci for genes expressed specifi-

cally or predominantly in ECs. All the genes queried, including vascular endothelial cadherin, (CDH5

or VE-cadherin), epidermal growth factor-like protein 7 (EGFL7), von Willebrand Factor (VWF),

Table 1 continued

GWAS SNP HAEC enhancer

SNP in
enhancer

LD to lead SNP from
study

p-Value of
lead Trait

Reported gene of
lead PubMed ID

Position
(chr, start bp, end
bp) Nearest gene Type

rs1563966 LD, rs1231206,
r2 = 0.844151

9.0E-10 CAD intergenic 21378990 17, 2095878,
2096222

LOC101927839 mix

rs1563966 LD, rs216172,
r2 = 0.909315

1.0E-09 CAD SMG6, SRR 21378990,
26343387

17, 2095878,
2096222

LOC101927839 mix

rs7408563 LD, rs7246657,
r2 = 0.900512

7.0E-06 CAD ZNF383 23870195 19, 37808501,
37809067

HKR1 common

DOI: 10.7554/eLife.22536.006
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Figure 2. Coordinate gene expression across 96 genetically distinct HAEC donors identifies three regulatory programs among ETS, AP1, SOX, and

GATA family members. (a) TF gene expression measured by AffyHU133A array is shown across a population of 97 unique HAEC donors. Array probe

set IDs were manually confirmed to cover expressed transcript isoforms of the indicated TFs based on RNA-seq data. Boxplots midlines are medians,

box edges are 1st and 3rd quartiles, and whiskers 95% confidence intervals. (b) A heatmap of clustered pairwise Spearman correlation coefficients

Figure 2 continued on next page
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endothelial nitric oxide synthase (NOS3), and TEK receptor tyrosine kinase (TEK, or TIE2), exhibited

between three and seven ERG/JUN co-bound enhancers across their genetic loci (Figure 3e, Fig-

ure 3—figure supplement 2). By cross-referencing cistromes of ERG and JUN that individually

bound 35,559 and 63,312 genomic loci respectively, we found that 10,919 of the 16,292 (65%) high

confidence enhancers from Figure 1a. were bound by one or both of ERG and JUN (Figure 3f).

Each enhancer was assigned a target gene(s) based on the following criteria. Since nearest genes

are not necessarily the target of enhancer activity, we incorporated expression quantitative trait loci,

or eQTL, that were identified in HAECs (Romanoski et al., 2010). eQTL are SNP-gene pairs that

describe a genetic locus whose alleles are associated with quantitative levels of gene expression val-

ues of the target gene, and thus provide a functional link between DNA sequence and gene regula-

tion. Only 7% of enhancers harbored an eQTL SNP, in which case the associated gene was

considered the target. In the remaining cases, the nearest gene was used. Pathway analysis for the

resulting 4396 target genes for the 4248 ERG and JUN co-bound loci revealed significant enrich-

ment in ‘Cardiovascular system development and function’ (p = 6.1e-37, Figure 3f). Together, these

data support that ERG and JUN are major TFs at EC enhancers, and that their collaborative binding

regulates expression of endothelial-specific genes important in vascular development and function.

ERG knockdown elicits a pro-inflammatory gene expression profile in
HAECs
To test the functional importance of ERG on target gene expression, we knocked-down ERG using

siRNA in HAECs and measured gene expression changes with RNA-seq and RT-qPCR (Figure 4, Fig-

ure 4—figure supplements 1 and 2). ERG RNA was reduced to less than 40% of normal levels in

three independent experiments and resulted in differential expression of up to 1000 transcripts (>4-

fold, FDR < 5%) by RNA-seq. Functional enrichment analysis demonstrated that ERG target genes

are significantly annotated for ‘cell movement’, ‘breast or ovarian cancer’, ‘angiogenesis’, ‘develop-

ment of vasculature’, ‘leukocyte migration’, and other pro-inflammatory functions (p-values from 1e-4

to 1e-17, Figure 4a,b).

Among the most up-regulated genes caused by ERG knockdown were cytokines interleukin one

alpha (IL1a; 16-fold), interleukin one beta (IL1b; 68-fold), leukemia inhibitory factor (LIF; 13-fold),

interleukin 6 (IL6; fourfold), granulocyte colony stimulating factor (CSF3; 41-fold), transforming

growth factor beta 2 (TGFb2; fivefold) and other pro-inflammatory molecules including tissue factor

(F3, 8-fold) (Figure 4b,c, Figure 4—figure supplements 1 and 2). In addition, EC-enriched genes

that had multiple elements bound by ERG, such as CDH5, VWF, PECAM1, EGFL7, NOS3, and TEK

were down-regulated upon ERG knockdown. To ensure that the inflammatory gene profile elicited

by ERG knock-down was not a consequence of transfection itself or off-target effects, the profile

resulting from six individual siERG oligos was measured along with two non-targeting scrambled

siRNA controls and non-transfection controls (Figure 4—figure supplement 2). These data were

reproducible and consistent with ablated ERG expression as the cause of pro-inflammatory expres-

sion profiles. Together, these data suggest that ERG normally functions to maintain EC-specific gene

functions such as development and proliferation while at the same time suppressing inflammatory

gene expression.

Figure 2 continued

across 97 HAEC donors and module designations (colored sidebar) is shown with modules and pairs of interest highlighted by colored outlines. (c–f)

Pairwise Spearman correlations between indicated mRNAs from b where each dot is a genetically distinct HAEC donor. More related data in

Figure 2—figure supplements 1 and 2.

DOI: 10.7554/eLife.22536.007

The following figure supplements are available for figure 2:

Figure supplement 1. The HAEC gene correlation network.

DOI: 10.7554/eLife.22536.008

Figure supplement 2. TF binding at HAEC enhancers.

DOI: 10.7554/eLife.22536.009
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Figure 3. ERG and JUN co-bind EC enhancers and are enriched at EC-specific genes. (a–c) Promoter-distal regions bound by ERG, JUN, and JUNB, or

GATA2 are shown in a, b, and c respectively in a one kilobase window. Each set was centered on the corresponding binding motif, and the frequency

Figure 3 continued on next page
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Oxidized phospholipids and inflammatory cytokines alter HAEC gene
expression through signal-dependent changes to HAEC enhancer
landscapes
To identify regulatory factors that instruct gene expression responses to inflammatory environments

of atherosclerosis, we exposed HAECs to three pro-inflammatory treatments: (i) the oxidized prod-

ucts of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC) that are components of

oxidized low-density lipoproteins (oxLDL) (Lee et al., 2012; Romanoski et al., 2011), (ii) tumor

necrosis factor alpha (TNFa) that is a cytokine secreted largely by macrophages, and (iii) interleukin

one beta (IL1b) that is released by many cell types including macrophages. Between 322 and 1174

genes were regulated by these exposures (>2-fold; 5% false discovery rate) (Table 2), and these

genes were enriched in known response pathways (Figure 5—figure supplement 1). For example, 4

hr exposure to 40 mg/ml oxPAPC treatment resulted in up-regulation of genes belonging to the

‘NRF2-mediated oxidative stress response’ (p-value=2.e-13), and the ‘unfolded protein response’ (p-

value=7.0e-7). Genes regulated by 4 hr exposures to TNFa and IL1b were highly enriched in the

same pathways including, ‘TNF receptor signaling’ (p-values from 1.7e-14 to 1.8e-12), ‘granulocyte

adhesion and diapedesis’ (p-values from 2.2e-9 to 7.1e-13), and ‘macrophage, fibroblast and EC roles

in rheumatoid arthritis’ (p-values from 2.1e-12 to 1.7e-13).

To better understand the program that coordinates HAEC response to oxPAPC, TNFa, and IL1b,

we measured enhancer elements genome-wide. We next defined de novo or latent, enhancer-like

elements that are genomic regions that became accessible and gained H3K27ac modification upon

treatment. De novo enhancers result when signal-dependent transcription factors (SDTFs) play a crit-

ical role in the enhancer activation process and, in this study, were used in this study to identify

SDTFs. We identified between 266 and 3199 de novo enhancers across treatments (Figure 5a,

Table 2). To identity the SDTFs, we performed motif enrichment that revealed differential enrich-

ment of TF motifs across treatments (Figure 5b; comprehensive list in Figure 5—source data 1).

For example, the C/EBP, NFkB, and IRF motifs were preferentially enriched in TNFa and IL1b

enhancers, whereas the anti-oxidant response element, or ARE, was enriched in the oxPAPC

enhancer set. In all sets, we found AP1 and ETS motifs were highly enriched (p<1e-6), consistent with

the model that the predominant AP1 and ETS endothelial factors collaborate with newly activated

SDTFs to activate responsive enhancers and direct dynamic gene expression (Figure 5a,b). Enrich-

ment of kB motifs at TNFa and IL1b enhancers is consistent with previous work demonstrating that

NFkB is a master transcription factor of inflammatory gene programs in s as well as other cell types

(Brown et al., 2014). Likewise, oxPAPC-induced enrichment of the ARE motif, to which the TF

nuclear factor, erythroid 2-like 2, or NFE2L2/NRF2 binds, is consistent with reports of single gene

targets that the transcription factor NRF2 regulates the response to oxidative stress (Ma, 2013;

Jyrkkänen et al., 2008).

To directly test the hypothesis that NRF2 and NFkB were in fact SDTFs responsible for inflamma-

tory gene responses, we measured the NRF2 cistrome upon oxPAPC treatment and the NFkB cis-

trome (using ChIP-seq with kB-component p65) in TNFa and IL1b 4-hr-treated ECs. NRF2 and p65

binding were associated with increases in H3K27ac on adjacent nucleosomes consistent with a role

Figure 3 continued

of other enriched motifs are shown on the y-axis. GATA2 binding was measured in HUVECs. (d) Allele-specific JUN binding (y-axis) as a function of

allele-specific ETS motif mutations (colored lines). Each vertical line represents a single JUN peak identified via ChIP-seq. For a more complete

explaination see the Figure 3—figure supplement 1 legend and methods section. (e) TF binding for JUN and ERG, the histone modifications

H3K4me2 and H3K27ac and RNA abundance are shown at the genetic loci for VWF and NOS3. Promoters are highlighted in pink and JUN/ERG co-

bound enhancers are highlighted in yellow. (f) The HAEC enhancer set from Figure 1a is annotated for JUN and/or ERG binding. Ingenuity Pathway

Analysis results are shown for the genes nearest the 4248 JUN/ERG co-bound enhancers in the right panel. More related data in Figure 3—figure

supplements 1 and 2.

DOI: 10.7554/eLife.22536.010

The following figure supplements are available for figure 3:

Figure supplement 1. Allele-specific JUN binding at loci with mutated motifs.

DOI: 10.7554/eLife.22536.011

Figure supplement 2. JUN and ERG co-occupy loci near EC-specific genes.

DOI: 10.7554/eLife.22536.012
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Figure 4. ERG knockdown elicits a pro-inflammatory gene profile in HAECs. (a) Genes up-regulated by ERG knockdown (�4 fold, 5% FDR) were

enriched in the indicated functional pathways using Ingenuity Pathway Analysis (IPA). Results are from three experiments using cells from different

HAEC donors. ERG levels are shown in c. (b) A network of molecules regulated by ERG knockdown (red = up-regulated; blue = down-regulated) with

membership (lines) to five functional processes. The predicted state of the functional processes is shown by color (activation in red; and inhibited in

Figure 4 continued on next page
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for NRF2 and NFkB as activators of target gene expression (Figure 5—figure supplements 2 and

3). Genome-wide binding of NRF2 with oxPAPC treatment identified 6923 NRF2-bound peaks that

overlapped with 21% of oxPAPC-elicited de novo enhancers. These included gene loci for known

targets including heme oxygenase 1 (HMOX1), thioredoxin reductase 1 (TXNRD1), NAD(P)H quinone

dehydrogenase 1 (NQO1), and glutamate-cysteine ligase modifier subunit (GCLM) (Figure 5—figure

supplement 2). The top four enriched motifs in the NRF2 cistrome were the AP1 motif, an ARE, a

nuclear receptor element (NRE) and the ETS motif. These data suggest that, whereas NRF2 is a sig-

nificant component of the oxPAPC gene response, several additional TFs likely coordinate gene

responses at the chromatin level.

For NFkB, we identified tens of thousands of bound loci after TNFa and IL1b treatment (75,937

and 51,040, respectively). Upon cytokine treatment, 52–63% of the elements that gained p65 were

pre-bound in untreated HAECs by ERG or JUN (Figure 5c), consistent with the working model that

enhancers are selected by lineage-restricted combinations of factors that direct signal-dependent

transcription factor binding profiles (Romanoski et al., 2015). As for de novo enhancers, NFkB had

a major presence and bound to 86% and 55% of those elicited by TNFa and IL1b treatments,

respectively. Motif enrichment of NFkB cistromes in HAECs identified a prominent role of the AP1

motif as well as roles for ETS, IRF, and CEBP factors (Figure 5—figure supplement 3, discussed

below).

In addition, we analyzed allele-specific NFkB binding as a function of motif mutations in the kB

motif itself as well as mutations in the AP1 and ETS motif. Interestingly, we observed that NFkB

binding was diminished at loci where kB, ETS, or AP1 motifs were mutated (Figure 5—figure sup-

plement 4). These data are consistent with collaborative interactions between ETS, AP1, and NFkB

in establishing inflammatory expression profiles in human ECs, and offer a mechanism whereby ECs

may generate cell-specific transcriptional responses to environmental stimuli. Furthermore, these

data demonstrate that allele-specific binding in heterogeneous human cells is a useful means to

reveal collaborative interactions between transcription factors.

Non-random spacing of ETS and kb motifs at co-bound elements
suggest interplay between ERG and NFkB in inflammation
The transcriptional signature resulting from ERG knockdown in aortic ECs (Figure 4) is evidence that

ERG performs an anti-inflammatory role. This has been demonstrated previously, where ERG sup-

pressed IL-8 and NFkB-mediated inflammation in HUVECs (Dryden et al., 2012; Sperone et al.,

Figure 4 continued

blue). Network analysis was performed using IPA and p-values correspond to pathway enrichments. (c) The log2 fold change caused by siERG knock-

down is shown for endothelial-specific genes (blue) and pro-inflammatory genes (pink). Plotted is mean ± SD of fold changes measured in three HAEC

donors. Per donor/gene effects are included in Figure 5—figure supplement 1. Asterisk indicates p-value<0.05 from a paired t-test of siERG to siSCR

values across three donors. More related data in Figure 4—figure supplements 1 and 2.

DOI: 10.7554/eLife.22536.013

The following figure supplements are available for figure 4:

Figure supplement 1. Changes in gene expression with ERG knockdown measured by RNA-seq.

DOI: 10.7554/eLife.22536.014

Figure supplement 2. Changes in gene expression with ERG knockdown measured by RT qPCR.

DOI: 10.7554/eLife.22536.015

Table 2. Molecular trait changes observed upon HAEC exposure to pro-inflammatory stimuli. Differential expression was determined

in DESeq with duplicate RNA-seq experiments.

Stimulus
Regulated genes
(>2 fold, 5%FDR) de novo enhancers increased H3K27ac and accessibility upon stimulation

oxPAPC 4 hr (40 mg/ml) versus control 322 (242 up, 80 down) 839

TNFa 4 hr (2 ng/ml) versus control 840 (611 up, 229 down) 266

IL1b 4 hr (10 ng/ml) versus control 1174 (807 up, 367 down) 3199

DOI: 10.7554/eLife.22536.016
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Figure 5. Inflammatory signals activate enhancer-like elements with distinct motifs and suggest that CEBP and IRF members mediate responsiveness to

TNFa and IL1b. (a) A schematic for de novo enhancer activation by combinations of signal-dependent and collaborative TFs. (b) Enrichments of the

NRF2, NFkB, IRF, C/EBP, AP1, and ETS motifs (y-axis) are shown for de novo enhancer sets activated after 4 hr by either 40 mg/ml oxPAPC (ox), 10 ng/

ml TNFa, or 2 ng/ml IL1b (x-axis). Blue bars show the percent of de novo enhancers containing the motif and red bars indicate the percentage of GC-

matched random genome sequence containing the motif. Motifs were considered within 200 basepair windows of enhancers. (c) ChIP-seq analysis of

Figure 5 continued on next page
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2011; Yuan et al., 2009). One model to explain the relationship between anti-inflammatory effects

of ERG and the pro-inflammatory effects of NFkB at co-bound loci involves the observation that

ERG levels are decreased upon inflammatory stimuli ([Yuan et al., 2009] Figure 6—figure supple-

ment 1a). Depletion of ERG, simultaneous with increased NFkB concentrations, could result in a

functional switch caused by stoichiometric competition between factors. At the pro-inflammatory

target gene ICAM-1, Sperone et. al. demonstrated putative ETS-binding sites within the NFkB motif

at the gene promoter(Sperone et al., 2011). We also observe co-occupancy of ERG and NFkB (p65)

at the ICAM-1 promoter (Figure 6—figure supplement 1b).

To examine the genome-wide relationship between ERG and NFkB occupancy upon inflammatory

signaling, we compared binding profiles. Twenty-nine percent of ERG binding sites in untreated ECs

gained p65 binding upon 4-hr treatment with TNFa, and conversely, 25% of TNFa-elicited p65 bind-

ing occurred at loci pre-bound by ERG (Figure 6—figure supplement 1c). All co-bound loci were

centered on the presumed ETS motif to which ERG binds and the distribution of NFkB motifs within

100 base pairs was calculated. This analysis revealed a distance relationship between ETS and NFkB

motifs that is consistent with ERG and NFkB affecting each other’s binding and activity to promote

pro-inflammatory gene expression (Figure 6—figure supplement 1d). Importantly, however, we do

not observe reduction in ERG binding after TNFa treatment, as would be expected if the factors

were competing for the same element. This is exemplified at the ICAM-1 promoter and in the vari-

ability of TNFa-induced changes to ERG and NFkB binding genome-wide (Figure 6—figure supple-

ment 1e). Together, these data support coordinated regulation of inflammatory pathways by ERG

and NFkB that likely involves multiple mechanisms.

A role for CEBPD and IRF1 in the HAEC response to inflammatory
cytokines
The result that CEBP and IRF motifs were preferentially enriched in TNFa and IL1b-induced

enhancers suggested that TFs in these families direct the EC response to cytokines (Figure 5b). To

identify the likely members, we examined relative expression levels with and without cytokine expo-

sure and found expression of CEBP and IRF factors to be relatively low in untreated HAECs. Upon

TNFa and IL1b exposure, however, CEBPD and IRF1 transcription were highly induced (Figure 5d).

In order for CEBPD and IRF1 to participate in enhancer activation, we reasoned they would need to

be expressed prior to 4 hr when de novo motifs were measured. Indeed, a time-course experiment

confirmed that both CEBPD and IRF1 RNAs were induced after cytokine treatment with a peak

expression at 2 hr (Figure 5e).

Figure 5 continued

p65-binding sites shows regions of the genome that are co-bound by p65 and JUN, p65 and ERG, all three, or solely p65 post treatment by 10 ng/ml

IL1b and 2 ng/ml TNFa treatment. (d) Gene expression, measured by RNA-seq is shown by heatmap for TFs of the C/EBP and IRF families. Expression

values are shown from two HAEC donors and replicate samples. (e) RT-qPCR analysis shows CEBPB, CEBPD, and IRF1 expression from 0 to 24 hr post

treatment by 10 ng/ml IL1b and 2 ng/ml TNFa treatment. Plotted are mean ± S.D., experiment performed with biological triplicates. * represents

p<0.05 by t-test. More related data in Figure 5—figure supplements 1–4.

DOI: 10.7554/eLife.22536.017

The following source data and figure supplements are available for figure 5:

Source data 1. Motif enrichments in 100 bp sequences defined by promoter-distal (�3 kb) loci gaining ATAC-seq and H3K27ac upon 4 hr oxPAPC,

TNFa, and IL1b treatments.

DOI: 10.7554/eLife.22536.018

Figure supplement 1. The transcriptional response to oxPAPC, TNFa, and IL1b.

DOI: 10.7554/eLife.22536.019

Figure supplement 2. Signal-responsive transcription factor NRF2 binds endothelial enhancers.

DOI: 10.7554/eLife.22536.020

Figure supplement 3. Signal-responsive transcription factor NFkB binds endothelial enhancers.

DOI: 10.7554/eLife.22536.021

Figure supplement 4. Binding of p65 at mutated motifs at each allele p65 (NFkB) binding was measured by ChIP-seq in a HAEC donor with whole-

genome sequencing information.

DOI: 10.7554/eLife.22536.022
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Figure 6. CEBPD and IRF1 knockdown effect on gene expression response to TNFa. (a) Binding of p65, CEBPD, and IRF1 was measured by ChIP-seq

and is shown at de novo enhancers elicited by IL1b (e) and TNFa (f). Factor binding was measured by CHIP-seq upon 4-hr cytokine treatment, with

binding of CEBPD measured after IL1b only. (b) Factor binding, H3K27ac, and mRNA expression is shown at the CEBPD locus in control-treated and

TNFa-treated HAECs. CEBPD mRNA is shown in the bottom three tracks as a function of control knockdown (siSCR), CEBPD knockdown, and ERG

Figure 6 continued on next page
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Next, we measured binding of IRF1 and CEBPD genome-wide after cytokine treatment

(Figure 6a). For IRF1, we observed binding to the minority (<10%) of de novo enhancers, and when

we did observe binding it was most frequently co-bound with either NFkB or CEBPD. On the other

hand, CEBPD bound to a significant proportion of IL1b and TNFa de novo enhancers (34% and 28%,

respectively), mostly in conjunction with NFkB. Of all de novo enhancers, 24–26% were co-bound by

NFkB and CEBPD within 200 basepairs of each other, strongly suggesting that these factors

together regulate target gene expression.

Notably, ERG and NFkB bind to elements at the CEBPD locus and ERG knockdown induces

CEBPD expression (Figure 6b). These data are consistent with a model whereby cytokine treatment

causes down-regulation of ERG as well as nuclear entry and binding of NFkB. These two events

induce CEBPD expression and enable CEBPD and NFkB to co-bind enhancers of target genes.

Lastly, we tested whether reducing CEBPD and IRF1 levels with siRNA would dampen the endo-

thelial response to cytokines. As hypothesized, CEBPD knockdown to less than 20% control RNA lev-

els resulted in dampened fold-change ratios for genes up-regulated by TNFa (250 genes up-

regulated in siCEBPD compared to 497 in scrambled control; Figure 6c, bottom triangle). Genes in

this set contained inflammatory molecules including vascular cell adhesion molecule 1 (VCAM1),

E-selectin (SELE), IL1A, IL1b, and F3 (Figure 6d). However, lesser induction was partly due to an

increase in these molecules in the untreated state (Figure 6—source data 1) suggesting that CEBPD

may play an anti-inflammatory role at baseline. In the IRF1 knockdown, the most prominent locus

affected was a stretch of related antiviral proteins called ‘interferon-induced proteins with tetratrico-

peptide repeats’ (IFITs) on chromosome 10q23 (Figure 6e). We found that IRF1 bound six elements

along this locus including at the promoters of IFIT2, IFIT3, IFIT1, and IFIT5. IRF1 knockdown reduced

the basal levels of RNA from these genes and likewise prevented induction upon TNFa treatment,

suggesting that IRF1 plays a critical role in their regulation. Together, these data provide evidence

that CEBPD and IRF1 tune cytokine-induced regulatory function that is dominated by NFkB. How-

ever, further studies will be required to understand the precise role that IRF1 and CEBPD have in

aortic EC gene regulation.

Discussion
In this study, we provide the first detailed characterization of human aortic endothelial enhancers at

baseline and under inflammatory conditions using a combination of genome-wide approaches. We

observe that ETS, AP1, GATA, and SOX motifs are enriched in active EC enhancers, and we provide

evidence that ETS and AP1 factors bind the majority of active enhancers in aortic ECs. Allele-specific

binding paired with allele-specific motif mutations provided further evidence of collaborative bind-

ing between AP1, ETS, and kB factors. Our work demonstrates that knockdown of the ETS factor

ERG results in a pro-inflammatory expression profile and corresponding down-regulation of EC-

enriched genes. Further, we identify several hundred de novo enhancers formed in response to pro-

inflammatory molecules abundant in the atherosclerotic plaque: namely, oxidized phospholipids and

the cytokines TNFa and IL1b. Motif enrichments paired with expression changes prioritized NFkB,

CEBPD, and IRF1 as the responsible coordinators of cytokine response and NRF2 as a coordinator

of response to oxidized phospholipids. Our work provides valuable context to the role of these tran-

scription factors within the regulatory networks controlling the endothelium in physiologic and dis-

ease states.

Figure 6 continued

knockdown. (c) A global view of mRNA responses to TNFa as a function of CEBPD knockdown (y-axis) compared to control (x-axis); mean ± S.D. (d) The

response to TNFa is shown for molecules of interest in control (siSCR) and CEBPD knockdown HAECs. (e) The IFIT locus, highlighting elements co-

bound by IRF1 and NFkB (p65). More related data in Figure 6—figure supplement 1.

DOI: 10.7554/eLife.22536.023

The following source data and figure supplement are available for figure 6:

Source data 1. Transcripts up-regulated by more than twofold by CEBPD knockdown in untreated HAECs compared to scrambled control.

DOI: 10.7554/eLife.22536.024

Figure supplement 1. ERG and p65 co-bind loci with a distinctive ETS/NFkB motif.

DOI: 10.7554/eLife.22536.025
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Our approach was to learn the regulatory lexicon of ECs beginning with H3K4me2-positive,

H3K27ac-positive, accessible DNA sequence. In doing so we identified a set of TF families, each of

which possesses many highly expressed members and inter-correlated expression patterns across

aortic ECs from 97 people (Figure 2). Of note, whereas SOX members (SOX4/17/18) were among

the most abundant of all TFs in aortic ECs, the SOX motif was not as highly enriched at EC

enhancers as AP1 and ETS motifs (Figures 1b, c and 3a). An explanation for this could be that SOX

factors are critical for the selection of key endothelial enhancers in lineage development, and that

only some of these enhancers remain open and available for other factor binding. This would explain

the moderate enrichment of SOX motifs and is consistent with the role of SOX17 and SOX 18 in

angiogenesis and vascular integrity (reviewed by [De Val and Black, 2009]). However, we acknowl-

edge that this theory does not explain why ECs persistently express such high levels of SOX mRNAs.

Another explanation, consistent with the selective enrichment of SOX and GATA motifs only in EC-

specific enhancers (Figure 1—figure supplement 3) is that these factors play localized but impor-

tant roles on target genes.

The finding that the ETS and AP1 factors ERG and JUN together bind the majority of EC

enhancers, and co-bind key EC loci, supports a prominent and collaborative role for these factors in

selecting endothelial specific enhancers. Our analysis of motif mutations further exemplifies a co-

dependence of these factors in enhancer binding. While we focus on ERG and JUN in particular,

other combinatorial interactions between other ETS and AP1 members almost certainly play promi-

nent roles in endothelial regulation. Still, our findings are consistent with previous reports that ERG

is among several ETS transcription factors critical for endothelial lineage development (De Val and

Black, 2009; Nikolova-Krstevski et al., 2009; Shah et al., 2016) and regulation of candidate endo-

thelial genes such as CDH5, VWF, and eNOS (Yuan et al., 2009; Birdsey et al., 2008;

Laumonnier et al., 2000). Knockdown of ERG in aortic ECs revealed two notable effects, namely a

reduction in EC-specific gene expression, and production of a pro-inflammatory transcriptional pro-

file. The first of these effects is in keeping with our results demonstrating that ERG and AP1 co-bind

promoters and enhancer elements at key endothelial gene loci. This supports our model whereby

ERG binds collaboratively with AP1 factors to drive a basal lineage-defining transcriptional network

in ECs.

Functional interactions between ETS and AP1 family members have been previously

described (Bassuk and Leiden, 1995), and cooperative binding of ETS factors and FOS/JUN occurs

at adjacent ETS and AP1 motifs with variable spatial orientation (Kim et al., 2006). In the current

study, we also observe a spike in AP1 motifs near ETS motifs consistent with precise spatial orienta-

tion at some loci (Figure 3a,b), although this motif relationship does not describe the majority of

genome-wide ERG and JUN co-binding we observe.

The transcriptional signature resulting from ERG knockdown in aortic EC also further supports the

anti-inflammatory role for ERG, which has been demonstrated in HUVECs (Dryden et al., 2012;

Sperone et al., 2011; Yuan et al., 2009). Our observation of regularly spaced ETS and kB motifs at

co-bound loci suggests interplay between these two TF families. However, we do not observe coor-

dinated change in genome-wide binding for ERG and NFkB upon TNFa treatment, indicating that

these factors act in ways other than competitors for binding (Figure 6—figure supplement 1). In

addition, we demonstrate ERG to regulate expression of numerous transcription factors

(Supplementary file 2) that likely regulate secondary transcriptional targets. Recent work in murine

EC has also demonstrated a role for ERG in promoting vascular integrity through promotion of

canonical Wnt-signaling, via stabilization of b-catenin (Birdsey et al., 2015). This highlights the

potential that ERG influences endothelial function through multiple mechanisms. Our present work

underscores a role for ERG in promoting endothelial homeostasis and in regulating the inflammatory

response. It also broadens our perspective of its regulatory function and cooperation with other fac-

tors genome-wide.

Our finding that the CEBP motif was enriched at TNFa and IL1b-induced enhancers and that

CEBPD transcript levels were highly induced after treatment supported its role in binding inflamma-

tory enhancers (Figure 5). CEBPD knockdown in aortic ECs in the absence of TNFa or IL1b caused

modest up-regulation of pro-inflammatory molecules including ICAM1, SELE, IL1a, and IL1b (Fig-

ure 6, Figure 6—source data 1), suggesting that CEBPD maintains an anti-inflammatory expression

profile in resting ECs. This is consistent with an anti-inflammatory role of CEBPD in pancreatic beta

cells in the setting of cytokine stimulation (Moore et al., 2012). However, upon TNFa and IL1b
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stimulation in aortic ECs, CEBPD knockdown also dampened this inflammatory response as com-

pared to untreated ECs suggesting that in fact CEBPD is required for full responsiveness to cyto-

kines (Figure 6). This is consistent with previous reports showing CEBPD to be up-regulated in many

inflammatory settings including atherosclerosis (Takata et al., 2002; Ko et al., 2015). Going for-

ward, a key part of elucidating the role of SDTF such as CEBPD will be to quantify their loss-of-func-

tion effect on de novo enhancers that arise upon inflammatory stimuli. Given our hypothesis of

hierarchical transcription factor binding, we would expect to observe loss of some of these

enhancers following SDTF inhibition. Complicating this approach, however, is that inflammatory

stimuli often induce expression of SDTFs. For example, NFkB binds the promoter of CEBPD

(Figure 6b). Therefore, targeted mutagenesis strategies, such as the CRISPR-Cas9 system, will be

required to fully eliminate SDTF function and interpret the data. Overall, these findings motivate fur-

ther experiments to fully understand the regulatory function of CEBPD.

Cell type and context-specific enhancer mapping is a critical approach toward fully understanding

regulatory disease mechanisms, as many disease loci reside in non-coding DNA sequence. Nonethe-

less, enhancers are a challenge to measure in pure human cell types relevant to many diseases. We

provide a list of candidate SNPs with potential EC-specific non-coding regulatory function (Table 1).

This is an important step toward fully understanding the etiology and molecular pathogenesis of

CAD in humans. In conclusion, our study of dynamic endothelial enhancer elements is an advance-

ment toward a systems-levels understanding of vascular inflammatory diseases.

Materials and methods

Cell culture
HAEC were isolated as described (Navab et al., 1988) from aortic trimmings of donor hearts at the

University of California, Los Angeles (UCLA). All HAECs were de-identified and exempt from consid-

eration as human subjects research by institutional regulatory boards at UC San Diego and The Uni-

versity of Arizona. Cells were grown in culture in M-199 (ThermoFisher Scientific, Waltham, MA, MT-

10–060-CV) supplemented with 1.2% sodium pyruvate (ThermoFisher Scientific, Catalog#

11360070), 1% 100X Pen Strep Glutamine (ThermoFisher Scientific Cat# 10378016), 20% fetal bovine

serum (FBS, GE Healthcare, Hyclone, Pittsburgh, PA), 1.6% Endothelial Cell Growth Serum (Corning,

Corning, NY, Product #356006), 1.6% heparin, and 10 mL/50 mL Amphotericin B (ThermoFisher Sci-

entific #15290018). Cells were grown to 90% confluence in either 10-cm or 15-cm plates, and used

primarily at passages 6 to 10. Cells were then treated with M-199 containing 1% FBS (control) or

additionally containing either 40 mg/mL Ox-PAPC, 2 ng/mL human recombinant TNFa, or 10 ng/mL

human recombinant IL1b (cytokines from R&D Systems, Minneapolis, MN).

Small-interfering RNAs and qPCR Primers
Knockdown of ERG, CEBPD, and IRF1 were performed using 1 nM siRNA oligonucleotides in Opti-

MEM (ThermoFisher Scientific) with Lipofectamine 2000 (ThermoFisher Scientific). Transfections were

performed in serum-free media for 4 hr, then cells were grown in full growth media for 48 hr. All

siRNAs and qPCR primers used in this study are listed in Supplementary file 3.

RNA-seq
HAECs were resuspended in RNA Lysis Buffer and RNA was extracted from cells using the Quick-

RNA Micro Prep kit from ZymoResearch (Irvine, CA, #R1051), including optional DNase I treatment.

mRNA was selected through poly-A isolation using Oligo d(T)25 beads (New England

BioLabs, Ipswich, MA, #S1419S). Selected RNA was fragmented, followed by single strand cDNA

synthesis using a SuperScript III First-Strand Synthesis System (ThermoFisher Scientific # 18080051),

followed by second strand synthesis using DNA Polymerase I (Qiagen/Enzymatics, Beverly, MA,

#P7050L). dsDNA ends were repaired with T4 DNA Polymerase (Enzymatics #P7080L). Barcode

adapters (BIOO Scientific NEXTflex, Austin, TX, #514104) were ligated onto the ends of sequences

using T4 DNA Ligase (Enzymatics #L-6030-HC-L) and samples were treated with Uracil DNA Glycosy-

lase (UDG) (Enzymatics #G5010L). Libraries were then amplified by PCR (Phusion Hot Start

II, ThermoFisher Scientific, #F549L) and purified (Zymo #D5205) for high-throughput sequencing.
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Chromatin immunoprecipitation sequencing (ChIP-seq)
ChIP-seq was performed as previously described (Gosselin et al., 2014). Briefly, HAECs were fixed

at room temperature with 1% paraformaldehyde in PBS for 10 min, and then quenched with glycine.

ChIPs for p65, JUN, and JUNB were performed from chromatin cross-linked by 2 nM Disuccinimidyl

Glutarate Crosslinker (DSG) (ProteoChem, Hurricane, UT, #c1104) in PBS for 30 min followed by 1%

paraformaldehyde in PBS for 15 min, and then quenched with glycine. Between 2 and 10 million cells

were used for each ChIP-seq. Cell lysates were sonicated using a BioRuptor Standard or BioRuptor

Pico (Diagenode, Belgium), and then immunoprecipitated using antibodies bound to a 2:1 mixture

of Protein A Dynabeads (Invitrogen #10002D) and Protein G Dynabeads (Invitrogen #10004D). Anti-

bodies used included H3K4me2 (EMD Millipore, Billerica, MA, #07–030), H3K27ac (Active

Motif, Carlsbad, CA , #39135), CEBPD (Santa Cruz Biotechnology, Dallas, TX, #sc-636X), IRF1 (Santa

Cruz #sc-497x), p65 (Santa Cruz #sc-372X), NRF2 (Santa Cruz #sc-1694X), JUN (Santa Cruz #sc-

13032X), ERG (Santa Cruz #sc-354X), and JUNB (Santa Cruz #sc-73). Following immunopreciptation,

crosslinking was reversed and libraries were prepared using the same method described for RNA-

seq beginning with dsDNA end repair and excluding UDG. For each sample condition, an input

library was also created using an aliquot of sonicated cell lysate that had not undergone immunopre-

cipitation. These samples were sequenced as below and used to normalize ChIP-seq results.

Transposase-accessible chromatin using sequencing (ATAC-seq)
ATAC-seq was performed on 50,000 HAEC nuclei according to the original published

protocol (Buenrostro et al., 2013) with the exception of size selection (125–175 base pairs on TBE

gel) prior to sequencing to enrich for enhancer elements.

Sequencing data samples, mapping, and normalization
Libraries were sequenced on an Illumina HiSeq 4000 according to manufacturer’s specifications at

the University California San Diego and at the University of Chicago. Public data was downloaded

from public repositories and processed exactly as new data in this study (see below). Reads from

ChIP-seq and ATAC-seq were mapped to the hg19 build of the human genome with

Bowtie2 (Langmead and Salzberg, 2012) and RNA-seq reads were mapped with

STAR (Dobin et al., 2013). For ATAC-seq, reads mapping to mitochondrial DNA were discarded.

Mapped reads were organized into HOMER’s preferred data structure called Tag Directories using

the ‘makeTagDirectory’ command.

ATAC-seq and RNA-seq experiments that measured accessibility and expression in different

treatment stimuli (control, oxPAPC, IL1b, and TNFa) were all conducted at least twice. ERG knock-

down was performed in three different HAEC donors. CEBPD and IRF knockdowns were performed

in one HAEC donor. The Benjamini-Hochberg false discovery rate (FDR) method was used to correct

for all multiple testing in this study. No explicit power analysis was used to compute sample size.

Instead, genome-wide features such as enhancer elements served as the replicates for motif analysis

and duplicate ChIP-seq experiments confirmed that binding peaks were consistent. With the excep-

tion of CEBPD and JUNB that were performed one time, all ChIP-seq experiments were performed

in biological duplicate, meaning separate cell expansion and collection.

RNA-seq analysis
For quantification, RNA-seq was normalized using Reads Per Kilobase of transcript per Million

mapped reads (RPKM) procedure in HOMER (Heinz et al., 2010). RNA sequencing tags were only

considered when they mapped to the same DNA strand as indicated by RefSeq annotation. Further,

only tags in exons of genes were incorporated as to remove bias created by variable intron sizes.

Together, RNA quantification was achieved using the HOMER command ‘analyzeRepeats rna –

strand + -count exons –rpkm’. In this study, RPKM is synonymous with FPKM (Fragments per kilo-

base mapped). Statistically significant differential expression from RNA-seq experiments was deter-

mined first by unnormalized counts (with analyzeRepeats -noadj) followed by statistical testing in

DESeq (Anders and Huber, 2010) and a restriction to a 5% False Discovery Rate. Pathway enrich-

ment analysis was performed using Ingenuity Pathway Analysis software (Qiagen).
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Peak calling
ChIP-seq and ATAC peaks were identified using un-immunoprecipitated chromain, or ‘input’, as a

negative control. Inputs from the corresponding crosslinking condition were used for each ChIP. No

input was used to call ATAC peaks. Peaks were identified in HOMER with the findPeaks program

according to the data type. Transcription factor peaks were called using the ‘findPeaks -style factor

–size 200’ option and histone peaks called using the ‘findPeaks -style histone’ option. ATAC-seq

peaks were called using findPeaks with ‘-L 8 F 8 -style histone -size 75 -minDist 75 -minTagThreshold

6’ options. Differential peaks between experiments were determined using the ‘getDifferentialPeaks

program with default parameters’ (normalized tag count difference >4 fold and poisson enrichment

p-value<0.0001).

Peak merging was performed in HOMER using the ‘mergePeaks’ program. For enhancers defined

in Figure 1a, the ATAC-seq peak file was merged with peak regions defined in H3K4me2 and

H3K27ac ChIP-seq experiments using the option ‘-d given’ that requires overlap of genomic coordi-

nates between the three peak files. Because the ATAC set was listed first, enhancers were centered

on the center of the accessible region. Distal peaks throughput the study were defined as being at

least three kilobases from the transcriptional start site of a gene (RefSeq hg19 definitions) using

HOMER’s ‘getDistalPeaks.pl’ command.

De novo enhancers and super-enhancers
De novo enhancers were defined as loci that gained ATAC-seq and H3K27ac ChIP-seq in the same

cell simulation. Individual gained peak sets was determined by ‘getDifferentialPeaks’, explained

above, and significant sets were intersected using ‘mergePeaks’ where the ATAC-seq gained peaks

were listed first to maintain centering on accessibility.

Super-enhancers were defined in HOMER from H3K27ac ChIP-seq experiments and correspond-

ing inputs using ‘findPeaks -style super -L 0’. This procedure follows the same logic as the original

definition proposed by the Young laboratory (Whyte et al., 2013). Briefly, the implementation in

HOMER identifies ‘typical’ ChIP-seq peaks, stitches proximal enhancers together, ranks the resulting

enhancers by normalized tag counts over input, and thresholds enhancers above a flex-point

(slope >1) as super-enhancers.

Motif enrichment and distance analysis
Motif enrichment analysis was performed on peak sets using HOMER’s ‘findMotifsGenome.pl’ pro-

gram. As a background control, this program selects a set of sequences from the same genome

build that are matched in size and GC content to the peak set of interest. In Figure 5b, to enable

enrichment comparison for motifs across multiple peak sets, we used HOMER’s ‘findMotifsGenome.

pl –mknown <motifs>’ option iteratively across each de novo enhancer set. For each motif analysis,

the amount of sequence analyzed depended on the data type and is indicated in the text.

Analysis of motif distances in Figure 3a–c was performed in peak regions identified by ChIP-seq

(e.g. ERG-bound in 3a; AP1 bound in 3b; GATA2-bound in 3c). Each peak set was centered on the

highest-scoring TF motif that matched the factor immuno-precipitated, so that 0 bp on the x-axis

was the beginning of the likely bound motif (e.g. the ETS motif for ERG-bound in 3a). Peaks lacking

consensus motifs for the respective factors were excluded from this analysis. Next, the frequency of

the other motifs queried (e.g. AP1, GATA and SOX motifs in 3a) were calculated in HOMER by

‘annotatePeaks.pl –hist –m’ options and the frequency of the additional motifs tested in the vicinity

were plotted to show positional relationships among motifs and surrounding genomic sequence.

Whole-genome sequencing, motif mutation analysis and allele-specific
factor binding
For the HAEC line sequenced for analysis as in Figure 3d, genomic DNA was prepared for paired-

end WGS on Illumina HiSeqX (Illumina, CA) by Novogene (Sacramento, CA) according to manufac-

turer specifications. More than 80 million raw sequencing reads and a raw depth of 41X were

obtained. Data were mapped to the hg19 genome using Burrows-Wheeler Aligner (Li and Durbin,

2009). Single nucleotide variants (SNVs) were identified using GATK (DePristo et al., 2011). SNVs

were then compared to 1000 Genomes reference populations (Auton et al., 2015) and the HAEC

donor clustered with the Mexican American reference (MXL) population by multi-dimensional scaling
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analysis in PLINK (Purcell et al., 2007). SNVs were then phased according to the 1000 Genomes

MXL reference population in BEAGLE (Browning and Browning, 2016; Browning and Browning,

2007).

Allele-specific binding of JUN and NFkB/p65 was quantified using the WASP pipeline (van de

Geijn et al., 2015). To avoid mapping bias caused by alternate alleles, reads that mapped discor-

dantly to reference and alternate alleles at heterozygous SNPs were discarded. Next, sequencing

reads from ChIP experiments were aligned to each haplotype at polymorphic loci and summed

within ChIP-seq peaks for the respective factor.

Allele-specific motif mutations were identified with the same method as reported

previously (Heinz et al., 2013; Gosselin et al., 2014) with slight modifications. In summary, refer-

ence genome sequence (hg19) was extracted at peaks of interest and intersected with SNVs in the

HAEC donor of interest. Phased variant data was pulled for each homologous chromosome and

alleles were inserted in turn to the genome sequence. Motifs were located by alignment to position

weight matrices of ETS, AP1, and kB motifs in HOMER (Heinz et al., 2010). Motif mutations were

defined as instances where motifs were only identified on one of the two homologous

chromosomes.

For visualization, plots as in Figure 3d show the relationship between allele-specific TF binding

and mutations in motifs of interest within the TF peaks containing at least one variant. TF binding

was transformed to the log2 scale and peaks containing 0 reads on one of the two alleles were

scaled to ±7.5 (or else the ratio would be ±Infinity). Boxplots showing the distribution of read ratios

in each category (no mutations, mutation on allele 1, mutation on allele 2) exclude peaks with 0

counts on either chromosomal pair. This is a conservative approach, as many peaks have zero reads

on the mutated chromosome.

Data visualization
Heatmap-syle histograms of sequencing tags (e.g. Figure 1a), were generated using HOMER’s

‘annotatePeaks.pl -ghist’ option and plotted in R using the ‘heatmap.2()’ function of the gplots

library. Cumulative histograms of tag frequencies by position to peak center (e.g. Figure 1c), were

generated using HOMER’s ‘annotatePeaks.pl –hist’ option. Standard heatmaps (e.g. Figure 2b)

were plotted in R using ‘heatmap.2()’ with default clustering parameters (Hierarchical clustering and

Euclidian distance).

Enhancer overlap with GWAS data
Coronary artery disease, hypertension, and related traits were downloaded from the NHGRI-EBI Cat-

alog of published genome-wide association studies (Welter et al., 2014). SNPs in linkage disequilib-

rium (LD) to GWAS association traits were calculated when r2 >0.8 in PLINK (Purcell et al., 2007)

according to the European reference population of the 1000 Genomes Project (Auton et al., 2015).

HAEC enhancers defined in Figure 1a were overlapped by physical position (hg19 genome build).

The studies reporting associations that overlapped EC enhancers are as follows: (Nikpay et al.,

2015; Samani et al., 2007; Coronary Artery Disease (C4D) Genetics Consortium, 2011;

Schunkert et al., 2011; Wild et al., 2011; Slavin et al., 2011; Aouizerat et al., 2011; Mehta, 2011;

Davies et al., 2012; Wojczynski et al., 2013; Dichgans et al., 2014; Kertai et al., 2015).

Public datasets
With the exception of data used to generate Figure 1—figure supplement 3 (see

Supplementary file 1 for list), raw sequencing data was downloaded from Gene Expression Omni-

bus (GEO) as short read archive files and converted to fastq files using ‘fastq-dump’. Fastq files were

mapped to the hg19 genome build in Bowtie2 and processed according to methods outlined for

corresponding data types above. The following publicly available datasets were analyzed: GSE52642

(HAEC GRO-seq), GSE20060 (HAEC microarrays), GSE41166 (ETS-1 HUVEC ChIP-seq), and

GSE31477 (GATA2 HUVEC ChIP-seq).

Data generated in this study is available under GEO accession GSE89970 and WGS via NCBI SRA

Archive, BioProject PRJNA381088.
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Cell lines
The HAECs used in this study were primary isolates of ECs from aortic trimmings collected from

trimmings of donor hearts transplanted through the UCLA heart transplant program as previously

described (Navab et al., 1988). No transformations were performed and they were used at low pas-

sage (p6-p10).
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Jyrkkänen HK, Kansanen E, Inkala M, Kivelä AM, Hurttila H, Heinonen SE, Goldsteins G, Jauhiainen S, Tiainen S,
Makkonen H, Oskolkova O, Afonyushkin T, Koistinaho J, Yamamoto M, Bochkov VN, Ylä-Herttuala S, Levonen
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