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IL NUOVO CIMENTO Vor. 2A, N. 2 21 Marzo 1971

Multiperipheral Dynamics and Inclusive Experiments (*).

D. SILVERMAN and C.-I TAN

Joseph Henry Laboratories, Princeton University - Princeton, N..J.

(riceveto il 4 Agosto 1970)

Summary. — The relationship between multiperipheral dynamics and
inclusive experiments at high energy is developed. The general features
of the single-particle distribution spectrum are exhibited for multi-
peripheral models with exponential damping in the momentum transfers.
By working with a specific multi-Regge model we further demonstrate
the phenomena of pionization and of scaling in longitudinal momentum
for small momentum transfers. Examples of distribution spectra are
given for specific and physically important values of Regge parameters.
The predictions can serve as a test for a realistic model for the integral-
equation approach to multiperipheral dynamics, and can provide a
sensible form for parametrizing experimental data.

1. - Introduction.

The progress of the Regge model of high-energy scattering has been fruitfully
stimulated by close interactions with experiments. The current theoretical
development in multiperipheral dynamics () and multi-Regge bootstrap mo-

(*) Research Sponsored by the Air Foree Office of Scientific Research under Con-
tract AF 49 (638)-1545.

(Y L. BerroccHl, S. Fueint and M. ToNIN: Nuove Cimento, 25, 626 (1962); D. AMATI,
A. STaNGHELLINT and 8. FuBiNI: Nuovo Cimento, 26, 896 (1962) (hereafter ABFST),
and references therein. Recently CHEW ef al. (Lawrence Radiation Laboratory preprint
UCRL-19457) have argued forcefully that the ABFST model, with a properly guessed
off-shell mn elastic cross-section, has a firmer physical basis than the multi-Regge
bootstrap models. Nevertheless, they further noted that if one forgoes the requirement
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490 D. SILVERMAN and C,-I TAN

dels (>®) may also benefit from consideration of the uniquely related inclusive
experiments, e.g. the single-particle production spectrum (*%). We concern
ourselves in this paper with developing this relation. We show how the sin-
gle-particle spectrum is given in a general multiperipheral model. Then, using
a simplified multi-Regge bootstrap model of an internal Regge coupling which
is exponentially damped in momentum transfer (4), we derive explicit expres-
sions for the single-particle momentum distribution at high energy. We
discuss in detail the phenomena of pionization ('), large-transverse-momentum
damping, and small-momentum-transfer particle production, all of which
emerge from the multiperipheral model in a natural way. The predictions can
be compared with experiments (+¢), and serve as tests of a realistic model for
the integral-equation approach to multiperipheral production. They also pro-
vide understanding of the general structure of high-energy production processes,
and provide a sensible form for parametrizing experimental data.

The main feature of multiperipheral dynamics is the incorporation of direct-
channel unitarity with the factorizable multiperipheral approximation to pro-
duction amplitudes. The multiperipheral integral equation has been developed
to compute the contribution of all multiparticle intermediate states to the
elastic absorptive part. This same method can be used for any inclusive pro-
duction experiment, in which a specific set of final particles is measured, and
the cross-section summed over all other particles which may be produced (3).
The simplest examples of an inclusive experiment are the total cross-section
and the single-particle distribution spectrum, where only one final particle is
measured. The production of the undetected particles can be summed over
by the integral-equation approach, and the spectrum of an inclusive experi-

of a «direct » bootstrap cycle, multi-Regge models can be so interpreted as to include
the ABFST model as a special case. Since our treatment does not require detailed
knowledge of bootstrap mechanisms, and we are not restricting ourselves only to pion
production, these different interpretations of multiperipheralism do not concern us here.
(3 G. F. Cuew, M. L. GoLpBERGER and F. Low: Phys. Rev. Leii., 22, 208 (1969)
(hereafter referred to as CGL); G. F.CHEW and C. DE TAR: Phys. Rev., 180, 1577 (1969);
M. Crararoni, C. DE Tar and M. N. MisHELOFF: Phys. Rev., 188, 2522 (1969); L. Ca-
NEscHI and A. PigNoTTI: Phys. Rev., 180, 1525 (1969); 184, 1915 (1969); G. F. CHEW
and W. R. Frazer: Phys. Rev., 181, 1914 (1969); J. S. BarL and G. MARCHESINI:
Phys. Rev., 188, 2209, 2508 (1969); A. H. MurLLER and I. J. MuziNicH: Ann. of Phys.,
(to be published); Brookhaven Report No. BNL-13836 (unpublished); I. G. HALLIDAY
and L. M. SAUNDERS: Nuovo Cimenio, 60 A, 177 (1969); M. L. GOLDBERGER: Hrice
Summer School, 1969 (unpublished).

(®) M. L. GOLDBERGER, C.-I Tan and J. M. WaNG: Phys. Rev., 184, 1920 (1969);
D. SieverMaN and C.-I TaN: Phys. Rev. D, 1, 3479 (1970); 8. PiNsky and W.
I. WEISBERGER: Princeton report (to be published).

(9 L. Cawvescui and A. PieNorri: Phys. Rev. Letl., 22, 1219 (1969).

(®) R. P. FEYNMAN: Phys. Rev. Lett., 23, 1415 (1969).

(¢) D. SivermaN and C.-I Tax: Phys. Rev. D, 2, 233 (1970).
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ment can be expressed in terms of the solution of the integral equation asso-
ciated with the elastic absorptive part. Thus the analysis of inclusive experi-
ments can be used as a test of the methods of the integral-equation approach.
On the other hand, this application of the multiperipheral integral equation will
help us to understand the behaviour of inclusive experiments and provide a
parametric representation which may be used to fit the data.

In this paper we analyse the single-particle spectrum to achieve a more
detailed analysis of the features of the multi-Regge integral equation than can
be obtained from studying the total cross-section or the multiplicity of produced
particles. We concentrate on the process where the observed particle arises
from a central position on a multiperipheral chain, which accounts for most
of the single-particle spectrum. The process of emission from the end of the
chain, which was covered in a previous paper (%), accounts for only the very
forward or backward production, but it is also important sinee it can be more
directly expressed in terms of the solution of the multi-Regge integral equation.
We examine what is basically the same model that was applied by CANESCHI
and PieNoTTI (*) to calculate numerically fits to single-particle distribution
data. In view of the close relation of the single-particle distribution to the
multi-Regge bootstrap model, we realize the importance of caleulating the
results of the model in analytic form in order to understand the characteristic
features of the spectrum and the explicit dependence on the parameters. By
treating the phase-space Jacobian exactly, we obtain a different formulation
of the single-particle distribution spectrum from that of CANEscHI and
PreNoTTI (4).

The calculation of the single-particle spectrum for the central emission
from a multipheral chain begins by writing the multi-Regge production ampli-
tude for a chain with a cluster of particles on each side of the observed particle.
The single-particle cross-section is eomputed by squaring the amplitude, integ-
rating over the phase space of all but the observed particle, and then summing
over the number of particles in each cluster from one to infinity. In this pro-
cedure we ignore all crossed graphs for conventional reasons. The sum over
the number of particles in a cluster is the same process used in deriving the
integral equation for the elastic absorptive part, and the contribution of this
sum may be expressed in terms of the solution of the multi-Regge integral
equation. To get the single-particle spectrum as a funetion of the momentum
components of the observed particle, we must then integrate the resulting
form over the momentum transfers connecting the clusters to the observed
particle ¢, t,, and over the total energies of the clusters s,, 5.

We then proceed to caleulate the single-particle spectrum with a conerete
model which has Regge behaviour in the cluster energies and exponential damp-
ing in the multiperipheral momentum transfers. The integrals over the mo-
mentum transfers are then done exactly. We can then establish general
features of the single-particle spectrum and do the integrals over the sub-
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energies for the special but important cases where the intercepts of the ex-
changed trajectories are 0 or 1. These results are then simplified in certain
kinematic regions to give some illustrations of the form of the single-particle
spectrum.

The results of our investigation can be grouped into those of a general nature
and those that follow from the specific multi-Regge assumptions. The general
multiperipheral assumption of exponential damping in momentum transfer of
the internal Regge coupling is shown to lead to exponential damping of the cross-
section in ¢, and to a natural classification of regions of single-particle phase
space. The general assumption also leads to the existence of regions where the
majority of physical events take place, i.e. the pionization region where mo-
mentum |qg| is small in the ¢.m. frame, and the forward- and backward-pro-
duction regions. The more specific assumptions of the damped multi-Regge
model and its bootstrap results allow us to obtain definite results for the distri-
bution spectrum. Assuming the intercept of the bootstrapped Pomeranchuk
trajectory to be unity, the speetrum is shown to possess the property of pioniz-
ation (1) in the region of small momentum in the e.m. frame, and the scaling
property in longitudinal momentum (*) in the forward- and backward-production
regions. It also indicates the dominance of the end diagrams in the small M?
areas of the forward- and backward-production regions. For illustrative pur-
poses, we exhibit simplified spectra for special values of the Regge parameters
in a way which allows the parametrization of the experiments in the various
kinematic regions.

In Sect. 2 we review various integral-equation approaches to the multi-
Regge bootstrap model, and then relate these approaches to the single-particle
distribution spectrum. Using the results of the exponentially damped multi-
Regge model, we proceed in Sect. 3 to express the central-diagram contribu-
tion to the spectrum as a double integral over the total energies of the clusters.
We do this integration analytically for special values of the Regge-trajectory
intercepts. In Sect. 4, we discuss the general features of the spectrum as well
as the specific consequences of the multi-Regge model. A summary of our
investigation is presented in Sect. 5.

2. — Multi-Regge bootstrap model and single-particle distribution spectrum.

We first briefly review the integral-equation formulation of the multi-
Regge bootstrap model. We shall discuss both the formulation of CHEW,
GOLDBERGER and Low (%), and the simplified Reggeon-particle absorptive-am-

(") S. DrELL: Proceedings of Madison COonference on High-Energy Physics (1970);
H. ProtrowskA: Phys. Lett., 32 B, 71 (1970).
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plitude approach (3). We then relate these integral equations to the single-
particle distribution spectrum.

2'1. Review of multi-Regge bootstrap model. — The multi-Regge bootstrap
model employs unitarity to calculate the n-particle intermediate-state contri-
bution 4, to the forward elastic absorptive part A in terms of the n-particle
production amplitude T,:

NMs

@.1) A=34,= %zjddﬁmiﬁ .

n=1

4I

By using a factorizable multi-Regge exchange approximation to T, in which
the contribution of each final particle is factorizable, we may write a recursion
relation and integral equation for an amplitude related to A.

For simplicity we shall consider a multi-Regge model for a spinless scalar
particle. This production amplitude T, for a 2 to » process is approximated
in the multi-Regge region by the product form

2.2) To= GHyfosHosfus .. o H: Gy,

i
and is a function of the invariants X, = (g;1, + ¢,)3 &= (k—Eqi)z, and the
i=1
Toller angles w; (see Fig. 1). Gy(t,—,) and G.(;) are single Regge couplings and
{Bi(t;, w;, t;-1)} are double Regge couplings. The Regge factor H,(t,, X,) is
given by £(¢;)- (2;/u?)**, where a(t;) is the Regge trajectory and &(¢;) contains
the signature factor and physical poles, and is normalized to have unit residue
at tj == ‘LL2.

Fig. 1. — Kinematics of the multi-Regge chain.

One can also express the amplitude 7, in terms of {1.}, {w,;}, and invariant

k
energies s, = (z qi)z, k=1, ..., n. In the multi-Regge region of large s, and X,

4e=1

(®) F. ZacHARIASEN and G. Zweie: Phys. Rev., 160, 1322 (1967).
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strong ordering (%), 4.e. $;4 > 8;, results in the following kinematic relation:

(2.3) 2=, 04, 4),

J
where

A(t;y p* 1)
#2 - tj — t}'—‘l + 2 \/tjt5—1 COS )

(2.4) f{tsy w4, ) =

with
A(m, y, 2) = @ + y? + 2 — 2wy — 2yz — 22 .

We can thus replace the Regge factor H,(t;, X;) by

E(t,) [&,'ﬁu?—t;f—l)]"(tﬂ (Sﬂ)a(tﬁ
U s;

in eq. (2.2). This replacement can be thought of as a different, though equally
plausible, multiperipheral approximation from that of eq. (2.2). They are
equivalent to each other in the multi-Regge region, and the validity of their
extrapolations to the low-energy region are equally speculative. For simplic-
ity, we will use the latter muitiperipheral approximation.

In this formnulation, the physical two-body forward absorptive amplitude
A(p, k) can be expressed in terms of a Reggeon-particle absorptive amplitude
/(p', k), which satisfies a linear integral equation (3). The relation between
A(p, k) and Z(p’, k) is

2 (")
3 OH(p— ') —p G2 15(3')|2(i) A(p'y k),

8

d4
(2.5) A(p, k) = Ay(p, ) + f =

(
where A,(p, k) = |G, (u?)|20*(s — pu?) is the single-particle contribution. The

integral equation for ./ computes the sum of all n-particle intermediate-state
multi-Regge ladder diagrams, as shown in Fig. 2. (One can also show that on

p. k Pk o p K Pk p P h ok
AN o =~
AT 7 ——

p k Pk p p K P kK P A Bk

Fig. 2. — The integral equation for the Reggeon-particle absorptive part as the sum
of all multi-Regge ladder diagrams.

the mass shell A(p, k) = A(p, k), p*>= p?, thus justifying our naming «/(p’, k)
the Reggeon-particle absorptive amplitude.) This simplified integral equation has
been studied extensively (3). At large s’ = (p' + k)?, «/(p’, k) has been shown
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to possess Regge behavior

(2.6) A(p', k)= (p? (p'+)*) o ((pl;k)z)%w),

where «,,(0) is the intercept of the dynamical output Regge pole of the model.
The CGL approach requires the introduction of an auxiliary function

B(p, p’; k), which satisfies the CGL integral equation (?), and is related to

A% (p, k) by

dp’

(2m)®

(2.7)  A°SL(p, k) = Ay(p, k) +f 0*((p —p')*—p2)|G:(")* B(p, p'; k) -

In the limit of strong ordering, these two formulations become equivalent,
and B is then related to .« by

2\ 2x(¢")

(2.8) B(p,p'; k) = (g—ig) Ap k).
2'2. Relation of single-particle distribution spectrum to multi-Regge bootstrap
model. — The single-particle distribution spectrum is the differential cross-
section measured by a scattering experiment at a fixed energy which only
detects one particle in the final state to have fonr-momentum ¢* and thereby
sumg over all other particles which are produced. In the multi-Regge picture
outlined above, the detected particle may arise from either an end or a more
central position on a multiperipheral chain, as shown in the diagrams in Fig. 3.

p k p k

Fig. 3. — The left-end, central and right-end contributions to the single-particle dis-
tribution spectrum.

To obtain the single-particle distribution cross-section do/d’q we add the multi-
Regge amplitude 7', for the diagrams of » produced particles, eq. (2.2}, square,
and integrate over phase space, and then sum over #. Using the conventional
method of dropping cross-terms, we end up with a sum of ladder diagrams
(see Fig. 7) which may be related to the sum forming the multi-Regge integral
equation for o7 (Fig. 2). The details of this procedure are carried out in Ap-
pendix A. The resulting single-particle distribution spectrum is then given
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in terms of the solution to the integral equation for B or 7 by (see Fig. 4)

do 1
2.9 = 5 1G((p—q)?*) B(p,p—q; k
( ) d4q6+(q2___‘u2) (27‘6)311%(8, mi, mz){ l((p 9) ) (p p q )+
s |4 S+ B ) B R, B 0 B K B +

+ G3((k—q)*) Bk, k —q; :n)} .

P bpq K p o' k' k p k—q  k
——y >
——t

p pPq K P oK k p k-q Kk

Fig. 4. — Relation of the single-particle distribution to the integral-equation amplitude.

The first and last terms are the contributions of the end diagrams in Fig. 3
and are derived and discussed in an earlier paper (¢). The middle term is the
contribution of the central diagram, the study of which in a simple model is
the primary concern of this paper.

3. — Single-particle specirum from a simple multi-Regge model.

To proceed to understand the single-particle distribution spectrum from
the multi-Regge bootstrap model we calculate the spectrum using a simple
model for the Regge residue and the related solution of the integral equation
for of.

3'1. The exponentially damped multi- Regge model. — The basis of the model
ig that strong-interaction amplitudes decrease rapidly when any momentum
transfer becomes large. Experiments indicate that this decrease in momentum
transfer is approximately exponential, and our simple model for the internal
Regge vertex is

G(t;) G(t;-1)

(3.1) Blt;y wsy ti—1) =~ —g— ’ G{t) = gexp[L2(t—u?)].

For rapid damping in momentum transfer, the main contribution to the cross-
section will come from small momentum transfer where the approximate w-angle
independence of the coupling has been indicated by TAN and WaNG (°). Under
this approximation of rapid damping, the integral equation for /(¢; s) in this

(®) C.-I Tan and J. M. WaNG: Phys. Rev., 185, 1988 (1969).
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model has a separable kernel, and the solution has Regge behavior and ex-
ponential damping in (mass)? of the Reggeon
Gy

L ex(0)
2 S .

(3.2) A (t; 8) ~

The results of this model for the contributions of the end diagrams have been
discussed in a previous paper (¢). We now apply this model to the contribution
from the central diagram.

The kinematical notation for the central diagram is given in Fig. 5. Using
the relations eqs. (2.8) and (3.2) and considering the overall magnitude to

P \\%S 7/// k

Fig. 5. — The central diagram, p*=m}], k2=m2, ¢2= u%

be an adjustable parameter we have from eq. (2.9) the central-diagram contri-
bution of this model:

do

A $\2i
i - 1y dal’ 4 ’ Nap) | 22 1 -
(3.3) Tigor g — ) Sffdp A*k' ONp' + k' + q)(s1)%© (8;) (exp[2:1,])

Sy 2o p(iy) ,
-(exp[£2/1,]) (g) (8,)%#4®,
The absorptive parts are assumed to be Pomeranchuk dominated, and o(t,)
and « (¢,) are the trajectories carrying the momentum transfers ¢, and ¢, in
Fig. 5. We assume these trajectories to be linear:

(3.4) at) =0+ ayt,,  oal(t) = + ot .

The model is the same as that used by CANEscHT and PIGNOTTI (4). The essential
differences in our treatment will be to do the integrals analytically rather than
numerically, and to exhibit general features and simple specific results of the
model.

3'2. Multiperipheral phase-space integration over momentum transfers. — In

order to perform the integration in eq. (3.3), we convert to invariant variable

32 — Il Nuovo Cimenio A.
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integrations. The single detected final-state particle has two independent
momentum components in the c.m. system, the longitudinal component ¢, and
the magnitude of the perpendicular component ¢,. Of the three invariants
formed from the particle momentum g,

(3.5) M=(p+k—q?, h=(p—q)°, u, = (k—q)*,
we may consider any pair to be independent variables since they are related by
(3.6) s = M*—u,—u, +mi 4 mj 4 u®.

The physical variables we are interested in integrating over are the cluster
energies s,, s;, and the momentum transfers ¢,,¢,. The remaining variables
$;, S, are now dependent variables:

(8.7 s,=s8—u,—t,+t +mt+pu2, sy=8,—u,—1,+t,+m}+p*.

The Jacobian for this change of variables is

(3.8) f fd4p'd4k'64(p'+ K+ q) = f f as ds! f Al o 4y,

16V —A4,
where
?; PP PP Dok
Pepr PR PP Pk
(3.9) Ac=| " .
PP Py P Pk
k.pg k.})r k.p k2

The physical region for the production process is given by
4,<0.

In terms of the invariant variables

8 3 (ME—s; —s;) Yt +s+ml)  3AIM—u, +t,—s,)
p B(M2—s) —s,) 5y F(MP—w,+ t—s;)  F(—t+mg+sp)
4"_—‘.
b+ s+ mi)  HAM—u,+t—s)) my (M2 —uy—u, + u?)

YM—u,+ t,—6)  E(—t,+myts)  FMP—u—u,+ i) my
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In order to do the ¢, ¢, integrations in a simple form we take advantage
of the strong damping in ¢, %, to neglect the contributions of ¢,, 4, to s,, s,
(egs. (3.7)), and approximate

! !
(3.10) 8,728, — Uy, 8~ 8. —U,,

in the dynamical Regge forms (s,/s,)*™ and (s,/s.)2

", ), but not in the Jaco-
bian. The single-particle distribution spectrum is then a sum over all contrib-

uting trajectories with the form

d(r
s % 206(0) 8;—;@ 24,(0) . .
(3.11) Q""’":m ffde ds (sl"‘p(‘”( o ) ( o ) (81729 I (87, 8,)

where I(s 8 ) represents the integral over di,, di,:

dl dt
(3.12) I(s;,s;) —A,) exp[ Q2,1+ 2,1,]
and
, 0, =0+ 2a{1n(81;,ul),
(3.13) l

‘ 0, — Q;Jrza;ln(s’;“).

7

An integral of the same form as I(s,, s.) has been performed by CHAXN et al. (**),
in the Appendix to their paper. If we compare our work with their formula
(A.2) we find the mathematical problem to be the same under the following
mapping of their variables to our variables (*1):

CHAN et al.’s notation Our notation
(3 14) (mi’ m;? mz? m:? mg) ? (8 8 m]_’ ll’t m )
(8y Szay Sasy bz tas) (M2 w0y, u,, 80 8,) .

(**) Cuman Howng-Mo, K. Karantie and G. Ranrr: Nuovo Cimenio, 49 A, 157 (1967).
(1) Ome cannot directly use the results of CHAN ef al., because their physical situation
holds for s, s,, s;, s, fixed, whereas the single-particle distribution has u, and u, fixed
with the other variables constrained only by eqs. (3.7).
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The result of their egs. (A.4), (A.5) and (37) gives us

(3.18)  I(si, sy) = 4w exp[—b] exp[au(si/M?) + a.(s,/ M?)]-

.{sinh [e A, s;/ M2, SLJMZ)]}
e )

where

= Q(M* —u, —m3) + Q(M*—u, —mg)
ay= (M + u, —m3) + Q (M —u, +m) ,
(3.16) ) a = QM —u, + m}) + QM+ w—m3)

¢ = {QA(M2, w,, m3) + QA(M?, u,, ml) +
+ 280, Q,[ M2 (M2 — w, — v, — m? — m2+24%) — (w, — mE)(u, — m2)]}F .

Since we have treated the Jacobian exactly, our result for the momentum
transfer integrations differs from that of ref. (4).

3°3. Integration over cluster energies. ~ In order to perform the integrals over
s;, s; in a tractable form, we restrict ourselves to the cases where the intercepts
of the exchanged trajectories «;, o, are equal to 0 or 1. They would correspond
to physical exchange of the pion or rho trajectory, or trajectories degenerate
with these. If one wishes to fit data using «,, o, as parameters, one may nu-
merically perform the s;, s; integrations in eq. (3.11). We also make the approxi-
mation of neglecting the terms with s; and s; dependence in 2, and £2,, eq. (3.13),
since at present accelerator energies it is experimentally known that diffraction
peaks are mainly due to exponential damping of the residues, or Q; > ro; ,
Q> 2«. We note that now the coefficients ¢, b, a,, @, depend only on the

!

invariants fixed by the single-particle momentum, and not on s,, s:.

In the integral eq. (3.11), using the result eq. (3.15), we make the simplifying
change of variables

(3.17) ;I—’ —l—), o —a(l—z).

The boundary of the integration region is given by

(3.18) A*(l,%,%)»——l—w—ZZO,
and the Jacobkian is

ds;ds, = (M?)*(1 —x —2)dwdz .
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We then split the integral into {wo terms by writing
. b $; s) 1
(3.19) sinh|eA¥|1, e )| T —[exp[e(l—az—2)] —exp[—c(1—z—=2)]]

By making the substitution in the second term 2 =1—a" and 2 =1—2', its
integrand becomes identical to the first term, and joining them gives the

result

1
(3.20) gba,a,z%’f;c—)exp[ b]fdmfdz —r—z)-

l‘xr

exp [a,2(1—2) + a,2(1—2)+ c(1—ax—2)] 4,

where the Regge power terms give

(3.21) S (2,2) =
= (M2p*[e(1 —») + 7,]* [#(1 — @) [w(1 —2) + 7,1 [2(1
and
(3.22) TZE—;‘[JE, T,E_]“”’z.

For the restricted case of «;, «, equal to 0 or 3

(M2)[2(1 —2) + 7.0, 3] [#(1 —2) + 7,0, 4]

(3.23) (B B) =

ke

1 we have, with o, =1,

These polynomial terms may be removed from the integrand by formal dif-
ferentiation of the exponent with respect to a,, a,, or ¢. The result of the
1 s

integration for these restricted cases, «; and «, equal to 0 or §, is then finally

T S Z BNV AWAE Y
(3.24) ¢a10‘r =3 s ( + 7 (sot;.‘}) (dd, + 7 5ar.‘}) (dc) (al + ar)
(c—{—az (0+ar))

1

l_.—l

. {exp [—b—e¢] [exp [(0 —}—aag—ﬁca—Q— “) g

a,+a

(e 4 a) O—az) ¢ -+ a)(c— ay) |
_eXp [_b+ al] [exp[ al+ar ( al+ar )]_ N
. - (0 + a ¢+ a/r ar) |
expl—b+a] [eXp[ a; + a El( a; + a )] +
—eilo—e g (lo—eilo—e)
a; + a,

+exp[—b+¢] [QXP[( T

where F,(x) is the exponential function

)

|

If
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The regions of importance of the separate terms, and their expressions
in certain simple kinematic limits will be discussed in the next Section. The
form above could also be used for computer evaluation.

4. — General and specific results of the model.

We begin by pointing out general features of the multiperipheral single-
particle spectrum which should apply to more general models and are illustrated
by eq. (3.24). These general features are results of the multiperipheral as-
sumption that the production amplitudes are strongly damped in the mo-
mentum transfers, and they are relatively independent of the power-law be-
havior in the subenergies, such as Regge behavior. In the latter part of
this Section we present specific results of the exponentially damped multi-
Regge model in various kinematic regions.

4’1. General features of multiperipheral single-particle spectra. — The kine-
matic region of the detected particle in the c.m. momenta ¢;, ¢, is shown in
Fig. 6, where for s large the boundary is a semi-circle of radius ¢, ~ ¢, ~ V/s/2.

a.

Qs
Ms q_=Vsf2
Fig. 6. — Single-particle phase space in the c.m. frame.
(Our convention is p, = —1¥%,>0.) For the purposes of this Subsection, we

approximate the kinematics for large s and drop masses where feasible. The
invariants become

— U = 4/85(qo—¢q,) »
—u,:’\/§(q0—}— Qu)?

(4.1) M2~ 5(1— qofgoax) »
Uy Uy
T~ M2 + Qi ’
8
where

Go=VE+ ¢+ p2.
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The main feature of eq. (3.24) is the exponential decrease of the terms as
given by the exponents
—bta,~20,u,,
—b+a,~20.u,,
—bte = =M —u,)— Q(M*—w) +

(4.2) ,
+V[Q(M—u,) + Q(M?—u,)]?—42,0,u,u, ,

and

—b—o<—b+o.

This exponential behavior is a consequence of the assumed multiperipheral
exponential behavior in momentum transfers and is independent of the power
behavior of the subenergies as generated by the derivatives in eq. (3.24). We
may include the end diagrams in this discussion by noting that «, and «, are
the momentum transfers for the left- and right-end diagrams, respectively. In
the exponentially damped model of eqs. (3.1) and (3.2), the cross-sections
from the end diagrams are found to have exponential residues with exponents

left end: 202,u,, right end: 20Q,u,.

The exponential damping generally occurs in the variable ¢}: examination of
eqs. (4.1) and (4.2) for ¢, > Vu?+ ¢° and with 2,= Q,= Q/2 gives for the
least damped terms

—b+aL§_Q(%M(Qi+H2)5
1

2 .
—b+ 0:_1;;?:/2.%:(9l+”2) .

In analysing the general features we have found that the single-particle phase
space has a natural division into four kinematic regions, which are indicated
in Fig. 6. The cross-sections in the various regions receive contributions from
different ranges of the subenergies s, and s,. These may be found by examining
the coefficients in the exponent in eq. (3.20) and the relation of the =, 2z variables
to sl' and s,', eqs. (3.17). The definitions of the four regions and the properties
of the cross-section in each region are given below.

1) Large-transverse-momentum region: ¢, = O(v/s); u,, w, = O(s). The cross-
section is exponentially damped with exponent of order (—s). The contrib-
uting subenergies are s,, s; = O((mass)?). The dominant exponential term in
eq. (3.24) is

o I YR 1/ P R e U
o b + ‘= SQ {(1 2Qmax) V(l 2Qma.x) 4Q12na.x ’

where for simplicity we have set 2, = 2, == (/2.
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2) Pionization region: q = O(mass), ¢, = O(mass); u;, ¥, = O(v/s). The
cross-section is independent of ¢, and s. The contributing subenergies are s,,
s.<0(+/s). The dominant exponential term is

20,0, ,

=gt

3a) Forward-production region: q, — O(mass), ¢, = O(V/s) and positive;
#; = O((mass)?), #,= O(s). The dominant exponential terms are —b -+ ¢,
—b + a,, and the left-end diagram, all of which are of order Q(mass)?. The
contributing subenergies are s; = O((mass)?), s:<M2 = O(s).

3b) Backward-production region: q, = O(mass), ¢, = O(v/s) and negative;
#, = O((mass)?), u,= 0(s). The dominant exponential terms are —b + ¢,
—b + a,, and the right-end diagram, all of which are of order £(mass)2.. The
contributing subenergies are s: = O((mass)?), s;<M z2=(0(s) .

From the above analysis we find that the end diagrams are only important
in the forward- or backward-production regions. We also observe that in the
large-momentum-transfer region the cross-section is severely damped by expo-
nents of order s, whereas the cross-section is not greatly damped in the regions
with small ¢,. In regard to the form used for the behavior in the subenergies,
we find that the pionization region is most sensitive to the assumptions at
high subenergies, the large-momentum-transfer region to the form at low
subenergies, and the forward- and backward-production regions are dependent
on both.

4'2. Some simple results of the exponentially damped multi-Regge model. — We
shall now concentrate on specific features of the single-particle spectrum of
the exponentially damped multi-Regge model. We discuss the phenomena of
pionization, scaling in longitudinal momentum, and damping at large ¢%. We
also exhibit, for illustration, the functional forms of the spectrum in the four
general regions of phase space, under simplified assumptions. These predic-
tions can easily be used to compare with and parametrize experimental data.

1) Large-transverse-momenium region. This region is characterized by
lg.]=O(+/s). In thislimit, only the term associated with the factor exp[—b + ¢]
in eq. (3.24) contributes substantially, and all relevant combinations of para-
meters, 7.6. ¢ —a,, ¢ —a,, &, + a, and b—¢, are of order s (eq. (3.16)). Instead
of actually carrying out the formal differentiation in eq. (3.24), we find that in
thisregion @, , can be obtained for general values of «, and «, by working with
eq. (3.20) directly. Writing the exponential term in the integrand as

(4.3) exp[—(¢c—a)z—(c—a,)z— (&, + & )2z 4 ],
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we observe that the only region in the -z plane where the integrand will
contribute significantly is restricted to 0 <, 2<0(1/s). We can thus drop the
term — (a, + a,)xz, keep only the zeroth-order term in the rest of the integ-
rand, and extend the integration limits to oo. The remaining double integral
can easily be done and yields

~ Zz (M2)2 [tl(al_"G)JZQI[TT(QT_C)]ZW’_
44)  Po, = [32 (Q,+ 2,) se(b— ¢)?

(2 —20) I'2 — 2«,)] exp[— (b—e¢)].
These various combinations of a,, a,, b and ¢ in this limit can be obtained from

eq. (3.16), and, in the simple case £,=Q,=0Q/2 and for |¢,|/|g.]...<1,
they become

“» V¥ ¢
= Q _ —_— .
¢ 5 V(l 2qu) 4¢% .

2) Pionization region. This region is characterized by |g[* = O((mass)?)
in the c.am., or u,;, u, = O(v's), M*=s. We shall first work with eq. (3.20)
to demonstrate the general phenomenon of pionization (*2), i.e. the single-
particle distribution spectrum is independent of s and ¢, in this region. We
shall next restrict ourselves to the cases a,,x,=0 or {, and obtain explicit
funetional forms for the spectrum.
The coefficients of a, z and az in eq. (4.3) are given in this region by

—(c—ay) :2Ql“r:_2gl\/§(QO+%)’
(4.6) —(c—a,) =20,u,~ “‘2~Qr\/§(% — )
_(al"l— ar) :_Q(Ql_l_ 'Qr)s .

Since the dominant contribution comes from the region 0 <z, 2<O(1/Vs), we
can again keep only the zeroth-order term in the rest of the integrand, and

(12) The term « pionization » is used here, for pedagogical reasons, to describe this
special phenomenon, and applies to the production of all hadrons. It is not restricted
only to pions.
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extend the integration limits to co. That i3, we can approximate the Regge
term as

Iy = 8 - T[] [ 7 2]
where «, will be set to unity and 7, ~—u,/s, v, = —u,/s. If we now scale
@, 2 by o' ={(—u,)x, ¢’ =(—u,)2 and use the properties in this region,
Uty =~ $(u? + 1), ¢ =~ 8(2,+ L,), and

20,0
4.7 — ~ o _2TETEr 2
( ) b + ¢ .Ql + Qr q.l. ’
we obtain
(DWT ~ g7t (I{;,{x, ,

where Qi;lar is a function of ¢} only. Setting o, =1, we find that the re-
sulting cross-section, eq. (3.11), is independent of s and ¢, in this region.

This property of pionization has been noted by ABFST (1.1%) in their study
of the original multiperipheral model. We have here an explicit demonstration
of this property in the context of the multi-Regge model.

For the actual functional form of @, , , we consider eq. (3.24), where «;, o,
are restricted to be 0 or L. The dominant term is again that associated with
the factor exp[—b + ¢]. Carrying out the formal differentiation, we obtain

in this region

_r_1 20,0,
Q)“z“r— 39 Ql -+ Qr Cma,(T) exp ["— QL n QT q.l.],
where
Coo=(01+1)e" Ei(x)—1,
Q,
Cog =" Bu(1) + 5 (1—7e" Biy(0)) ,
l
9,
Cyo = e Bi(7) + 0 (1—1e" Ey(7)),
— . (£, + 2,)°
Caa= (1+7) By (1) —1+ 0,0,
and
_(al—c)(ar_c) ~ 291-99' 9
{4.8) T = Py ~ 010 (2 + p?) .

() Results of ABFST have also been summarized and discussed by D. Tow: Some
predictions of the ABFST multiperipheral models, to be published in Phys. Rev.
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Since (¢ Ey(r)—1)~1/r has a smooth dependence on ¢%, the factor
exp [— b + ¢], which in this limit behaves as

o [ 220,
p -Qz“"-QTQJ. ’

provides a sharp fall off in ¢% to the cross-section. Furthermore, since the
term controlling the pionization region in eq. (3.24) is the same one that con-
trols the large-transverse-momentum region, this terms exhibits the continuity
of the ¢° dependence through both of the regions.

3) Forward- and backward-production region. We will work in the for-
ward-production region characterized by lg,|* = O((mass)?), ¢, =~ q,= O(\/s)
and positive, so that », = O((mass®)). The results fcr the backward region
are directly obtained by the interchange w,«>u,, 2,<>&,, m?—m], and
the change of the sign of ¢, to negative. We shall first demonstrate that the
single-particle distribution cross-section scales in the longitudinal momentum,
that is, it depends on ¢, and s only in the form (g,/q,..), where ¢ . =+/s/2.
This behavior of the experimental data has been pointed out by DRELL (7).
Further, it has the approximate behavior in ¢% of

do . 2 4 3.

drqorigr—p — P 1jgh]]‘(qm; "

v will depend on (g,/q,,.) smoothly. We ghall next exhibit the functional form

of @, for the special case at ¢} = 0, and u*=mi=mki. Lastly, we discuss

the behavior of @, , as (M?*/s) >0, and examine the relative importance of

end diagrams vs. central diagrams for the extreme forward limit as well as
for the general limit of |q| —q,,..

The dependence on (g,/g,,.) is expressed in the variable

M q
= 21— o/ mex = 1 — o

Qmax
The coefficients of x,z and xz in the exponential term of eq. (4.3) are given
in this region by

—(e—a;) =22u,=—22,5(1—p§),

(L2, + _Q,)mi -+ Qr(‘Ql + ) u, _ngrﬂz]
Ql+ﬁgr ’
—(a+a)=—2(2, M+ 2, M?) =—2(02,+ 2,)ps,

—(c—ar):—Qﬂ[Q

where

{4.9) n, ~ mif wﬁil—qul .
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We immediately note that the only region of importance in the z integration is
0<2<0(1/s). We can thus keep only the zeroth-order approximation in 2
in the rest of the integrand, and then relax the integration region to (0, co),
i.e. approximate

%ba, — 82“”‘32“"[2(1 . x) —I_ 11]20" [2(1 o x)]ap—za, [$ + TT]Za, [w]txp—zoc,- ,
where

R Tl e ]

u,Nl-—ﬂ
M~ g -

T, =—

If we scale z by 2/ = (¢ —a;)2 = 202,3(1 — )z, we then obtain

s*vexp[—b + ¢]
e

”
d)cx,.a, = ¢o¢;.<x' ’

where @, _ is a function of B and ¢2 only. Since we have o, =1, ¢ =
&y
~ (2, + p2,), and

ZQZ.QT 2
Ql+ ﬂgf q1

N g ]
(4.10) —b+0_2(1——ﬂ)Q,[m1+Qr}_ﬁgrﬂz _

we immediately obtain this important «scaling » property: do/d*qd(g? — u?) is
a function of only ¢* and ¢,/q,,,, in theregion ¢® = O((mass)?). Furthermore,
the dominant ¢% dependence of @, . will come from the exponential factor
22,02, ,

exp[—b—[—c]ocexp[——m gL]

The functional form of 2, ., (¢}, #) (eq. (3.24)), in the case a;, o,= 0 or 3, is unfor-
tunately not simple in the forward region. For the purpose of illustration, we shail
consider the case m? = u2=m?: and ¢% =0, so that 2,m} <« 1 and therefore

00| — 2pma L IO B)(22)1 + 2,2)]

T+ A(2,]2) <t

Under this condition, the term exp [~ (¢—a,)#] in eq. (4.3) can be approxi-
mated by unity, and for ¢, =0, a; =0,

Iy _ T ik
iy ol 1) = sarmnr a i ) )
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where

and
_ (2 + 0208
YT 28

We now discuss the region where the end diagram may be important. The
behavior of the end diagram in f is simply oc (s/M2)**- (M2)**© oc f1-2% and
it is immediately apparent from the rapid increase in the forward-production
data with g that the end diagram is not important in most of this region. On
the other hand, one can see that the central diagram, as in the example @,
is a rapidly increasing function of f. The end diagram could only be of im-
portance then for § ~ 0.

In general, one can show that @, behaves as f*2*2* as f# 0. Con-
sequently, the end diagram with a § dependence '~2%, will dominate in most
cases over the central diagram in the limit f — 0, in agreement with our
earlier assertion (°). Then, as f increases, the central-diagram contribution
will quickly take over, and increase very rapidly. Eventually, as f->1, we
approach the pionization region and the distribution becomes independent
of f. This indicates that in any production experiment, although the ex-
tremely energetic particles produced in the c.m. frame are mostly from the
end diagrams, the greater portion of secondary particles arises from the central
diagram.

5. — Summary.

In this paper we have examined the connection of the multi-Regge boot-
strap model to the single-particle distribution spectrum (*%.1¢). We have con-
centrated on the contribution from the central diagram since the more direct
but limited end diagrams have been covered in a previous paper (¢). The de-
tailed calculation of the central diagram involved the integration of a simplified
dynamical model over the momentum transfers to the clusters and over the
subenergies of the clusters. Simplified forms of this result in particular kine-
matic limits have been given for illustration.

(**) Various averaged quantities related to momentum spectra have also been discussed
by 8. Pinsxky and W. WEISBERGER: Final state-spectra in a multiperipheral model,
Weizmann Institute preprint (to be published).
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The general multiperipheral assumption of rapid damping in momentum
transfer was shown to lead to characteristic properties of the single-particle
distribution, which allow a classification of regions of single-particle phase
space. The more specific agsumption of the damped multi-Regge amplitude
and its bootstrap results were used to obtain specific results for the distri-
bution spectrum. Assuming the intercept of the Pomeranchuk trajectory to be
unity, the spectrum was shown to possess the properties of pionization for
small momentum in the c.m. and of scaling in longitudinal momentum in the
forward- and backward-production regions. The illustrative results for various
kinematic regions contain the damping and Regge-trajectory parameters of
the multi-Regge amplitude in a way which would easily allow their determi-
nation and the parametrization of experiments.

We emphasize that while the single-particle distribution is one of the sim-
plest inclusive experiments, its phenomenological analysis provides a fertile
ground for parametrizing, testing and improving multiperipheral bootstrap
models. Of special importance is the unified analysis of data in all of the kine-
matic regions. In addition, this general framework could be used to discover
systematic differences between experiments invelving different particles and
trajectories.

E I

It is a pleasure to thank M. L. GOoLDBERGER for discussions.

APPENDIX

Central-diagram contribution to the single-particle distribution spectrum.

For the sake of generality, we shall express the contribution to the single-
particle distribution spectrum coming from the central diagram in terms of
the CGL anxiliary function B. This contribution can then be readily written
in terms of the forward Reggeon-particle absorptive amplitude ./ through
the use of eq. (2.8).

Consider a particular multiperipheral chain with N final particles. Let the
detected particle in the central region of this chain have momentum ¢* and let
us specify the multi-Regge amplitude Ty by a set of four-momentum transfers

Fig. 7. — Central-diagram contribution to the single-particle cross-section.
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to the left {p,}, 1<i<n, and to the right {k,}, 1<j<m, where n +m 41=N,
as indicated in Fig. 7. The contribution to the total cross-section due to
this N-particle intermediate state is

1
(A.1) a¥(p, k) )fszvizd@”a

~ 24%(s, m3, m}

where the phase space d®¥ is (po=1p, ko= k)

n o q4 Z_(S+ ;— ’:712_ 2
(A.2) d@N(p,k;{pi},{ki}):(gn)‘;{ﬂ 0 (.= pis) M)}_

i1 (2m)?
et ) 0t ) =)
(@) @y '

The contribution to the single-particle cross-section is

N—2
- Ty? 7. 9t n m/ v
)

m=N—n—1

(A.3) do®(p, k5 ) = d4¢1'2A'%

The summation over #» is due to the freedom of the location of the detected
particle within the chain. The single-particle cross-section is then obtained
by summing over N:

(A.4) do(p, k: q) = 3 do™(p, k3 q) .

N=3

The summation over # and N can be converted to a sum over » and m
and performed because of the factorizable nature of T and d®?¥. Rach sum
over n and m leads to the presence of the CGL B-function. The N-particle
phase space can be factored into a product of an n-particle and an m-particle
phase space, with initial four-vectors (p, p,) and (k, k,) respectively:

(A.5)  d@¥=mmri(p ks {p}, {k;}) = dD(p, pa; {.}) -

.d4pn5+((pn + km)zﬁluz) ds
(2m)”

km
do™ (k, k., {ky}) -

Similarly the production amplitude can be factored into

(AB)  Tyewrmnaps k5 {ps}, (k) =

o %L(p, — ki {p4)) 2 2y Dwra(ky —pos {k})
- Gy PP @ k) G

where G is the single Regge coupling and f is the double Regge coupling.
Substituting (A.5) and (A.6) into (A.2) and summing over » and m, one obtains
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(replacing p., k. by p'; k'),

dtgdt(g*—p?) 2 i m
Ai('g, mi, mz) (2m)" 25 1

ao- dﬂ”
2

m+1

(A7) da(p, k; q) = lﬂl

A%k’ dap' 0%(g + p'+ k') .

Recalling that when B is integrated over it gives the absorptive part (4 — 4,)
(eq. (2.6)), and that 4 — A4, = A¥(s, m], m3) O, We find from eq. (A.1) that

:*H-l 39; —k; {p })
G(g‘;l2)

(A.8) B(—F,p'; p) —22 ad(p, p'; {p:s}) »

and

7 m k i

(A9)  Blgp, kB =33 ﬂ n(k —_ {kih) ’d(DM(k, ¥ (k).
m=1

Using (A.8) and (A.9) in (A.7), we then obtain the single-particle spectrum

in terms of the solution of the multi-Regge integral equations, eq. (2.9).

Note added in proofs. The derivations in this paper for the pionization region
are valid not only for ¢, ~ O(1) but for any ¢, growing with s such that ¢,/4/s—0
as §— oo,

Furthermore, considering the property of sealing, i.e.

do/d*q oH(¢g*— p*) = D(24,/V's, 4.) »

and the work of this paper showing @ to be regular at ¢,/v/s— 0, we may expand @
in a Taylor series about ¢,/4/s=0. For sufficiently small 2|¢,|/v/s<e, the first
term in the series is dominant, giving ®(2¢,/v's, ¢,)~ @0, ¢,). Therefore the region
of pionization extends up to the production regions of 2q,/4/s fixed.

® RIASSUNTO (%

8i sviluppa la relazione fra la dinamica multiperiferica e i relativi esperimenti ad
alta energia. Si riportano le caratteristiche generali della distribuzione di singole parti-
celle per i modelli multiperiferici con smorzamento esponenziale dell'impulso trasferito.
Lavorando con un specifico modello di Regge multiplo si dimostrano inoltre i fenomeni
di pionizzazione e di scala dell'impulso longitudinale per piecoli impulsi trasferiti. Si
danno esempi degli spettri di distribuzione per valori specifici e fisicamente importanti
dei parametri di Regge. Le predizioni possono servire come verifica per un modello
realisitico per Iapproccio con l’equazione integrale alla dinamica multiperiferica, e
possono fornire una formula attendibile per parametrizzare i dati sperimentali.

() Traduzione a cura della Redazione.
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Muoro-nepudiepudeckas AMHAMHKA M BKJFOYAIONHE JKCHEPHMEHTHI.

Pestome (*). — BBIBOOUTCS COOTHOIICHME MEXAY MHOTO-iepudepuyeckodl TUHAMHKOH H
BKIIFOYATOIIMMM SKCIEPUMEHTAMHE IPH BBICOKHX JSHEPIHsX. BRIABIAIOTCH oOIIHEe O0CO-
GeHHOCTH CTIEKTPa pachpeneNieHus OTOETbHON 9acTHIBl IS MHOTO-IEPHMEPAICCKAX MO-
JeNeil ¢ AXCIOHEHIAANILHEIM 3aTYXaHueM OTHOCHTEIBHO TEpeaaBacMoOro UMIylbca. Pa-
GoTasn CO CHeuMaATLHOM MHOXKECTBEHHOM Mojennio Pemxe, MbI, KpOME TOrO, OTMEYaeM
ABJICHUA MHOHM3AIMH H OAO00MS OTHOCHTEIBHO NPOHOJIBHOrO HMMIYAbCA IS ManbIX
mepenaBacMbIX MMIYabcOB. [IpHBOIATCS NMPUMEPHI CIIEKTPOB pachpelnciieHus AJiA Cre-
UAANILHBIX ¥ (U3HYECKH BAXXKHBIX 3HAYESHHI mapaMeTpoB Pemxe. DT ImpeACKa3aHUSI MOIYT
CIIYXKUTh KakK IIPpOBEpKa peaIIPICTH‘ICCKOﬁ MOICITA IJIg IoAXona Ha OCHOBE HWHTETPAJIbHBIX
YpaBHEHUI K MHOTO-TIepHEePHUIECKOil AMHAMUKE, U MOTYT O0€CIIeunBaTh pa3yMHyr0 dopmMy
JITs IapaMeTpUu3aliy SKCIePUMEHTAIBHBIX JTAHHBIX.

() Hepegedeno pedaryueii.

33 ~ Il Nuovo Cimenfo A.





