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IL NUOVO CIMENTO VOL. 2A, N. 2 21 Marzo 1971 

Multiperipheral Dynamics and Inclusive Experiments (*). 

D. SILVEr,AN and C.-I TA~ 

Joseph Henry Laboratories, Princeton University - Princeton, )7. J .  

(riceveto il 4 Agosto 1970) 

S u m m a r y . -  The relationship between multiperipheral dynamics and 
inclusive experiments at high energy is developed. The general features 
of the single-particle distribution spectrum are exhibited for multi- 
peripheral models with exponential damping in the momentum transfers. 
By working with a specific multi-Regge model we further demonstrate 
the phenomena of pionization and of scaling in longitudinal momentum 
for small momentum transfers. Examples of distribution spectra are 
given for specific and physically important values of Regge parameters. 
The predictions can serve as a test for a realistic model for the integral- 
equation approach to multiperipheral dynamics, and can provide a 
sensible form for parametrizing experimental data. 

1.  - I n t r o d u c t i o n .  

The progress of the Regge model of high-energy scattering has been fruitfully 

st imulated by  close interactions with experiments.  The current  theoretical 

development in multiperipherM dynamics (1) and multi-Regge bootstrap mo- 

(') Research Sponsored by the Air Force Office of Scientific Research under Con- 
tract AF 49 (638)-1545. 
(1) L. B]~RTOCCm, S. FU]~INI and M. TONIN: Nuovo Cimento, 25, 626 (1962); D. A•ATI, 
A. STA:NGHELLINI and S. FUBI~I: Nuovo Cimento, 26, 896 (1962) (hereafter ABFST), 
and references therein. Recently CHEW et al. (Lawrence Radiation Laboratory preprint 
UCRL-19457) have argued forcefully that the ABFST model, with a properly guessed 
off-shell == elastic cross-section, has a firmer physical basis than the multi-Regge 
bootstrap models. Nevertheless, they further no~ed that if one forgoes the requirement 
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490 D. SILVERMAN a n d  C,-I  TAN 

dels (2.3) m a y  also benefi t  f rom considerat ion of the  uniquely  re la ted  inclusive 

exper iments ,  e.g. the  single-particle product ion  spec t rum (4.6). We concern 
ourselves  in this pape r  wi th  developing this relation. We show how the  sin- 

gle-part icle spec t rum is given in a general  mul t iper iphera l  model .  Then, using 

a simplified mul t i -Regge boo t s t r ap  model  of an in te rna l  Regge coupling which 

is exponent ia l ly  damped  in m o m e n t u m  t rans fe r  (4), we derive explicit  expres-  

sions for the  single-particle m o m e n t u m  dis t r ibut ion a t  high energy. We  
discuss in detai l  the  p h e n o m e n a  of pionizat ion (1), l a rge - t r ansver se -momentum 
damping,  and  sma l l -momen tum- t r ans fe r  par t ic le  product ion,  all of which 

emerge  f rom the mul t ipe r iphera l  model  in a na tu ra l  way.  The predict ions can 
be compared  with  exper imen t s  (~.6), and  serve as tes ts  of a realist ic model  for 

the  in tegral -equat ion approach  to mul t ipe r iphera l  product ion.  They  also pro- 
vide unders tand ing  of the  general  s t ruc tu re  of h igh-energy product ion  processes,  
and provide  a sensible fo rm for pa ramet r i z ing  exper imen ta l  data .  

The ma in  fea ture  of mul t ipe r iphera l  dynamics  is the  incorporat ion of direct- 

channel  un i t a r i t y  wi th  the  factorizable mul t iper iphera l  approx imat ion  to pro- 
duct ion ampl i tudes .  The mul t iper iphera l  in tegral  equat ion has  been  developed 

to compute  the  contr ibut ion of all mul t ipar t ic le  in te rmedia te  s ta tes  to the  

elastic absorp t ive  pa r t .  This same me thod  can be used for any  inclusive pro- 
duct ion expe r imen t ,  in which a specific set  of final par t ic les  is measured ,  and  

the  cross-section summed  over  all o ther  par t ic les  which m a y  be produced  (5). 
The s imples t  examples  of an inclusive e x p e r i m e n t  are the  to ta l  cross-section 
and  the  single-particle d is t r ibut ion spect rum,  where only one final part icle  is 
measured .  The  product ion  of the  unde tec ted  part icles  can be summed  over  
by  the  in tegral -equat ion approach,  and  the  spec t rum of an inclusive experi-  

of a (( direct ~ bootstrap cycle, multi-Regge models can be so interpreted as to include 
the ABFST model as a special case. Since our treatment does not require detailed 
knowledge of bootstrap mechanisms, and we are not restricting ourselves only to pion 
production, these different interpretations of multiperipheralism do not concern us here. 
(2) G. F. CHEW, M. L. GOLDBERGER and F. Low: Phys. Rev. Lett., 22, 208 (1969) 
(hereafter referred to as CGL); G.F.  CHEW and C. DE TAR: Phys. t~ev., 180, 1577 (1969); 
M. CIAFALONI, C. De. TAR and M. N. MISHELOFF: Phys. Rev., 188, 2522 (1969); L. CA- 
NEscm and A. PmNOTTI: Phys. Rev., 180, 1525 (1969); 184, 1915 (1969); G. F. CHEW 
and W. R. FI~AZE~: Phys. l~ev., 181, 1914 (1969); J. S. BALL and G. MA~CI~ESINI: 
Phys. Rev., 188, 2209, 2508 (1969); A. H. MUELLER and I. J. MuzINICK: Ann. o/Phys., 
(to be published); Brookhaven Report No. BNL-13836 (unpublished); I. G. HALLIDAY 
and L. M. SAUNDERS: NUOVO Cimento, 60A, 177 (1969); M. L. GOLDB]~RGER: Erice 
Summer School, 1969 (unpublished). 
(a) M.L.  GOLDBEnGER, C.-I TA~ and J. M. WANG: Phys. Rev., 184, 1920 (1969); 
D. SILVERMAN and C.-I TAN: Phys. Rev. D, 1, 3479 (1970); S. PINSKY and W. 
I. WEISBERG]~I~: Princeton report (to be published). 
(4) L. CANESCnI and A. PmNOTTI: Phys. Rev. TJett., 22, 1219 (1969). 
(5) R . P .  FEY~MAN: Phys. Rev. Lett., 23, 1415 (1969). 
(e) D. SILVEnMAN and C.-I Tax:  Phys. Rev. D, 2, 233 (1970). 
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ment  can be expressed in terms of the solution of the  integral  equat ion asso- 
ciated with the elastic absorpt ive par t .  Thus the  analysis of inclusive experi- 
ments  can be used as a tes t  of the methods of the integral-equation approach. 
On the other  hand, this application of the mul t iper ipheral  integral  equat ion will 
help us to unders tand  the  behaviour  of inclusive exper iments  and provide a 
paramet r ic  representa t ion  which may  be used to fit the  data.  

In  this paper  we analyse the single-particle spectrum to achieve a more 
detai led analysis of the features of the multi-Regge integral  equat ion than  can 
be obta ined from s tudying the total  cross-section or the mult ipl ici ty of produced 
particles. We concentrate  on the process where the observed particle arises 
f rom a central  position on a mult iper ipheral  chain, which accounts for most  
of the  single-particle spectrum. The process of emission from the  end of the 
chain, which was covered in a previous paper  (s), accounts for only the v e ry  
forward or backward product ion,  bu t  it  is also impor tan t  since it  can be more 
direct ly  expressed in te rms of the solution of the multi-Regge integral  equation. 
We examine what  is basically the same model tha t  was applied by  CANESCItY 

and PIGNOTTI (4) to calculate numerical ly fits to single-particle distr ibution 
data.  In  view of the close relat ion of the single-particle dis tr ibut ion to the 
multi-l~egge boots t rap  model,  we realize the impor tance  of calculating the 

results  of the model in analyt ic  form in order to unders tand  the characterist ic  
features of the spect rum and the  explicit  dependence on the parameters .  By  
t rea t ing  the phase-space Jacobian exactly,  we obtain a different formulat ion 
of the  single-particle distr ibution spectrum from tha t  of CA~ESCm and 
PIGNOTTI (4). 

The calculation of the single-particle spec t rum for the  central  emission 
f rom a mul t ipheral  chain begins by  wri t ing the multi-Regge product ion ampli- 
tude  for a chain with a cluster of part icles on each side of the observed particle.  
The single-particle cross-section is computed  by  squaring the  ampli tude,  integ- 
ra t ing over the  phase space of all bu t  the observed particle,  and then  summing 
over  the  number  of part icles in each cluster f rom one to infinity. In  this pro- 
cedure we ignore all crossed graphs for conventional  reasons. The sum over 

the  number  of part ic les  in a cluster  is the  same process used in deriving the 
integral  equat ion for the  elastic absorpt ive par t ,  and the contr ibut ion of this 
sum may  be expressed in te rms of the  solution of the  multi-Regge integral 
equation.  To get the  single-particle spec t rum as a function of the momentum 
components  of the observed particle,  we must  t hen  integrate  the  resulting 
form over the momentum transfers  connecting the clusters to the observed 
part icle t,, t~, and over the total  energies of the clusters s'~, s~. 

We then  proceed to calculate the  single-particle spect rum with a concrete 

model which has Regge behaviour  in the cluster energies and exponential  damp- 
ing in the mul t iper ipheral  momen tum transfers.  The integrals over the mo- 

m en tu m  transfers  are then  done exactly.  We can then  establish general 
featm'es of the single-particle spectrum and do the integrals over the sub- 
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energies for the special but important cases where the intercepts of the ex- 
changed trajectories are 0 or ½. These results are then simplified in certain 
kinematic regions to give some illustrations of the form of the single-particle 
spectrum. 

The results of our investigation can be grouped into those of a general nature 
and those tha t  follow from the specific multi-Regge assumptions. The general 
multiperipheral assumption of exponential damping in momentum transfer of 
the internal Regge coupling is shown to lead to exponential damping of the cross- 
section in ' q±, and to a natural classification of regions of single-particle phase 
space. The general assumption also leads to the existence of regions where the 
majority of physical events take place, i.e. the pionization region where mo- 
mentum Iq[ is small in the c.m. frame, and the forward- and backward-pro- 
duction regions. The more specific assumptions of the damped multi-Regge 
model and its bootstrap results allow us to obtain definite results for the distri- 
bution spectrum. Assuming the intercept of the bootstrapped Pomeranchuk 
trajectory to be unity, the spectrum is shown to possess the property of pioniz- 
ation (1) in the region of small momentum in the c.m. frame, and the scaling 
property in longitudinal momentum (7) in the forward- and backward-production 
regions. I t  also indicates the dominance of the end diagrams in the small M 2 
areas of the forward- and backward-production regions. For illustrative pur- 
poses, we exhibit simplified spectra for special values of the Regge parameters 
in a way which allows the parametrization of the experiments in the various 
kinematic regions. 

In  Sect. 2 we review various integral-equation approaches to the multi- 
Regge bootstrap model, and then relate these approaches to the single-particle 
distribution spectrum. Using the results of the exponentially damped multi- 
Regge model, we proceed in Sect. 3 to express the central-diagram contribu- 
tion to the spectrum as a double integral over the total energies of the clusters. 
We do this integration analytically for special values of the Regge-trajeetory 
intercepts. In Sect. 4, we discuss the general features of the spectrum as well 
as the specific consequences of the multi-Regge model. A summary of our 
investigation is presented in Sect. $. 

2. - Multi-Regge bootstrap model and single.particle distribution spectrum. 

We first briefly review the integral-equation formulation of the multi- 
Regge bootstrap model. We shall discuss both the formulation of CHEw, 
GOLDBERGER and Low (a), and the simplified Reggeon-particle absorptive-am- 

(7) S. I)R~LL: Proceedings o] Madison Con]erence on High-Energy Physics (1970); 
I-I. PIOTROWSKA: Phys. JLett., 32 B, 71 (1970). 
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pl i tude approach (3). We then  relate  these integral  equations to the  single- 
part icle dis t r ibut ion spectrum. 

2"1. Review o] multi-Regge bootstrap model. - The multi-l~egge boots t rap 
model  employs un i ta r i ty  to calculate the  n-particle in termedia te-s ta te  contri- 
but ion  A~ to the  forward elastic absorpt ive par t  A in t e rms  of the  n-particle 
product ion  ampli tude T, :  

¢o 

B y  using a factorizable multi-l~egge exchange approximat ion  to  T .  in which 
the  contr ibut ion of each final part icle is factorizable,  we ma y  write a recursion 
relat ion and integral  equat ion for an ampli tude related to A. 

For  simplicity we shall consider a multi-Regge model for a spinless scalar 
particle.  This product ion ampli tude T~ for a 2 to n process is approximated  
in the  multi-l~egge region by  the product  form 

(2.2)  T= = G,H, ,_ , f l , ,_ ,H, ,_=f l , ,_= ... f l2Ha G, , 

( ' )2 
and  is a funct ion of the invar iants  I t  -- (qt+l + qJ)~, tt ---- k - -  ~ q~ , and the 

i~1 

Toller angles (or (see Fig. 1). G~(t,~_,) and G~(tl) are single Regge couplings and 
{fl~(tt, tot, tt-~)} are double Regge couplings. The Regge factor  Ht(tj, I t )  is 
given by  }(tj).(!t/tt~) ~ ') ,  where a(tt) is the Regge t r a jec to ry  and }(tt) contains 
the  signature factor and physical poles, and is normalized to have unit  residue 
~t t t  : tt 2. 

I% Iq2T q' t_~ ~ t/  ° " _ t 

p 2 2 k2 2 k 
P ~tT?[ =/~2 

Fig. 1. - Kinematics of the multi-Regge chain. 

One can also express the  ampli tude T~ in te rms of {t~}, {(o~}, and invar iant  

energies s~ --= q~ , k = 1, ..., n. In  the multi-Regge region of large st and Z';, 

{$) F. ZACHARIASEN and G. ZWEIG: Phys. Rev., 160, 1322 (1967). 
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strong ordering (3), i.e. 8i+ 1 ~ si, results in the following kinematic relation: 

(2.3) 

where 

(2.4) 

with 

Z = sJ+-~/(t¢, o~, t~-~), 
8i 

](t¢, coj, t¢-1) = 
A(t~, #2, t~-l) 

#~ - t¢ --  tj-~ + 2 ~/t~tj-~ cos o~ 

A(x, y, z) = x 2 + y2 + z 2 _  2xy - -  2yz - -  2zx . 

We can thus  replace the Regge factor Hj(tj, Zj) by 

in eq. (2.2). This replacement can be thought  of as a different, though equally 
plausible, multiperipheral approximation from tha t  of eq. (2.2). They are 
equivalent to each other in the multi-Regge region, and the validi ty of their  
extrapolations to the low-energy region are equally speculative. For  simplic- 
i ty,  we will use the  lat ter  mult iperipheral  approximation. 

:In this formulation, the physical two-body forward absorptive amplitude 
A(p, k) can be expressed in terms of a Reggeon-particle absorptive amplitude 
d ( p ' ,  k), which satisfies a linear integral equation (3). The relation between 
A(p, k) and d ( p ' ,  k) is 

f ddP' 5 + ( ( p _ p , ) 2 _  #~)]G~(t,)i~l~(t,)l~(~7)2~"'~d(p., k), (2.5) A(p, k) ---- AI(p, ]~) + 

where Al(p, k)=~]G,(#~)]25+(s--tt2 ) is the single-particle contribution. The 
integral equation for d computes the sum of all n-particle intermediate-state 
multi-Regge ladder diagrams, as shown in Fig. 2. (One can also show tha t  on 

p. k p k p pr k p k p P. P~ k 

p k p k p pr k p k p p,~ p~ k 

Fig. 2. - The integral equation for the Reggeon-particle absorptive part as the sum 
of all multi-Regge ladder diagrams. 

the mass shell A(p, k) = d ( p ,  k), p~ = #3, thus justifying our naming ~'(p' ,  k) 
the Reggeon-particle absorptive amplitude.) This simplified integral equation has 
been studied extensively (3). At  large s ' =  (p' + k) 2, ~'(p' ,  k) has been shown 
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to possess Regge behavior  

(2.6) ~/(p' ,  k) --  d ( p ' 2 ;  ( p ' +  k) 2) ~ \ ~ , 

where ao.t(0) is the in te rcept  of the dynamical  ou tput  Regge pole of the model. 
The CGL approach requires the  int roduct ion of an auxil iary function 

B ( p , p ' ;  k), which satisfies the  CGL integral  equat ion (2), and is re la ted to 

ACaL(p, k) by  

I" d~p ' 
(2.7) ACa~(p, k) = Aa(p, k) + [  ,~:~_,~ 6+((p --p')~--lt~)lG~(t')l 2 B(p, p';  k ) .  j (~xe)- 

In  the  l imit  of strong ordering, these two formulations become equivalent,  
and B is t hen  re la ted  to ~ by  

(2.8) B(p, p'; k) ((P + = d ( p ,  k ) .  

2'2. Relation o] single-particle distribution spectrum to multi-Regge bootstrap 
model. - The single-particle dis tr ibut ion spectrum is the  differential cross- 

section measured by  a scattering exper iment  at  a fixed energy which only 
detects one part icle in the final s tate  to have four -momentum q" and the reby  
sums over all o ther  part icles which are produced.  In  the multi-l~egge picture 
outlined above, the  detected part icle may  arise f rom e i ther  an end or a more 
central  position on a mult iper iphcral  chain, as shown in the diagrams in Fig. 3. 

Fig. 3. - The left-end, central and right-end contributions to the single-particle dis- 
tribution spectrum. 

To obtain the  single-particle distr ibution cross-section dcr/d3q we add the multi- 
Regge ampli tude T,~ for the  diagrams of n produced particles, eq. (2.2), square, 

and integrate  over phase space, and then  sum over n. Using the conventional  
method  of dropping cross-terms, we end up with a sum of ladder diagrams 
(see Fig. 7) which may  be re la ted to the sum forming the  mu]ti-Regge integral 
equat ion for 5]  (Fig. 2). The details of this procedure are carried out in Ap- 
pendix A. The result ing single-particle distr ibution spectrum is then  given 
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in terms of the solution to the integral equation for B or d by (see Fig. 4) 

(2.9) 
d~ 1 f 

IG~((p--q)2) B (p ,p - -q ;  k) + 
d4q ~+(q2 _#2) (2z)3~½(s, m~, m~) 

+ 2 ~d4p,d4k , (~4(p,+ k '+ q) B(-- k', p'; p)[fl(p'~, w, k'2)[2 B(--p' ,  k'; k) + 

+ G~((k--q) 2) B(k, k - -q ;  p)~. 
J 

p p - q  k p p '  k '  k p k q k 

p p - q  k I~ p'  k '  k p k - q  k 

Fig. 4. - Relation of the single-particle distribution to the integral-equation amplitude. 

The first and last terms are the contributions of the end diagrams in Fig. 3 
and are derived and discussed in an earlier paper (~). The middle term is the 
contribution of the central diagram, the study of which in a simple model is 
the primary concern of this paper. 

3.  - Single-particle spectrum from a simple muhi -Regge  model.  

To proceed to understand the single-particle distribution spectrum from 
the multi-l~egge bootstrap model we calculate the spectrum using a simple 
model for the l~egge residue and the related solution of the integral equation 
for d .  

3"1. The exponentially damped multi-Regge model. - The basis of the model 
is tha t  strong-interaction amplitudes decrease rapidly when any momentum 
transfer becomes large. Experiments indicate that  this decrease in momentum 
transfer is approximately exponential, and our simple model for the internal 
i~egge vertex is 

(3.1) fl(tj, ~oj, tj-1)' e(t~)e(tj-1) G(t) ---- gexp[~(t--#2)]  
g 

For rapid damping in momentum transfer, the main contribution to the cross- 
section will come from small momentum transfer where the approximate co-angle 
independence of the coupling has been indicated by TA~ and WAnG (9). Under 
this approximation of rapid damping, the integral equation for d ( t ;  s) in this 

(9) C.-I TAN and J. M. WANG: Phys. Rev., 185, 1988 (1969). 
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model has a separable kernel,  and the  solution has Regge behavior  and ex- 
ponent ia l  damping in (massp of the  Reggeon 

(3.2) 
G(tp 

zC(t; s) ~ g -  s ~(°) . 

The results of this model for the contributions of the  end diagrams have been 
discussed in a previous paper  (6). We now apply  this model to the contr ibut ion 
f rom the  centra l  diagram. 

The kinematical  nota t ion for the  centra l  diagram is given in Fig. 5. Using 
the  relat ions eqs. (2.8) and (3.2) and considering the overall  magni tude to 

S,' 5' 

2 ] ~ =  2 q2 /~2. Fig. 5. - The central diagram, p~= m~, m~, = 

be an adjustable pa rame te r  we have from eq. (2.9) the  central-diagram contri- 
but ion of this model: 

(3.3) 
d~ 

d~q (~+(q2 __ #2) s j j  
k' + q)(sD~ (o) \ s i !  

[ .Q ~ 2 ~ r ( t v )  

\ ¢ !  , ° ~ ,  . 

The absorptive par ts  are assumed to be Pomeranchuk  dominated,  and ~t(t~) 
and ~r(t~) are the  trajectories  carrying the momentum transfers  t~ and t r in 
Fig. 5. We assume these t ra jector ies  to be linear: 

(3.4) 
! ! 

~z(t~) = ~ + a z t  ~ , ~r( tr)  = ~r ~-  ~ ,  t~ . 

The model  is the  same as t ha t  used by  CANESCIII and PIGNOTTI (4)• The essential 

differences in our t r e a tmen t  will be to do the integrals analytical ly ra ther  than  
numerically, and to exhibi t  general  features and simple specific results of the 
model• 

3"2. Mul t iper iphera l  phase-space integration over m o m e n t u m  trans]ers. - In  
order to per form the  integrat ion in eq. (3.3), we conver t  to invar iant  variable 

3 2  - I I  Nuovo Cimento A.  
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integrat ions.  The single detec ted  f inal-state p~rt icle has two independen t  
m o m e n t u m  components  in the  c.m. sys tem,  the longitudinal  component  q, and  

the  magni tude  of the  perpendicular  componen t  q~. Of the  th ree  invar ian ts  

fo rmed  f rom the  part icle m o m e n t u m  q, 

(3.5) i 2  --  (p + k - - q )  ~ , u~ --  ( p - - q p  , u~ --  ( k - - q p  , 

we m a y  consider any  pair  to be independen t  var iables  since t hey  are re la ted  b y  

(3.6) s = M ~ - -  uz - -  u~ -[- m~ + m~ + / ~ 2 .  

The physical  var iables  we are in te res ted  in in tegra t ing  over  are the  cluster  
energies s~, s~, and  the  m o m e n t u m  t ransfers  t~, t~. The remain ing  var iables  

st, s~ are now dependent  var iables :  

(3.7) s~ = s z - -  u~ - -  t~ + t~ + m 1 + , s~ = s~ - -  u~ - -  t~ + t~ + m~ + . 

The Jacob ian  for this  change of var iables  is 

: ds'~ds~. - -  O(--A~) 
16V~A~A4 

where 

(3.9) A4 = 

P~ P~'Pr P~'P p~ 'k  

p , 'p~ p~ p~ 'p  p , ' k  

P 'Pz  P'P~ P~ p ' k  

k ' p z  k 'p~ k ' p  k ~ 

The physical  region for the  product ion  process is given by  

A 4 4 0 .  

I n  t e rms  of the  invar ian t  var iables  

! 1 2 I ! f s~ ~(M --Sz--s~) ~(-- t~+s~ +m~) ½(M2--u~ +tT--s'~) 

~ ' ' ' ~ . ~  + s'~) 2 (M --s~ --s'~) s, ½(M~--u~+ t~--s~) ( - - ¢ +  

1 (__ tt + 85! + m~) ½ (M~--ur + t~--s[) m12 ½ ( M 2 _ u _ _ u r  +/t2) 

½(M2__ul_k t __~') 1 2 2 ~(--tr + m2 + S'r) ~-(M2--ut--Ur + ~ 2) m 2 
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I n  o rder  to do t i le  t~, t~ i n t eg ra t i ons  in ~ s imple  f o r m  we t a k e  a d v a n t a g e  
of t he  s t r ong  d a m p i n g  in tt, tr tO neglec t  t h e  con t r i bu t ions  of tt, t~ to  st, s~ 
(eqs. (3.7)), and  a p p r o x i m a t e  

! ! 
(3.10) 8z ~ sz - -  Uz , Sr ~ S~- -% , 

in t h e  d y n a m i c a l  Regge  fo rms  (sz/sl) 2~*(t') a n d  " " ,,2~,,,) ts~/s~ , b u t  no t  in t he  Jaco -  
b ian .  The  s ingle-par t ic le  d i s t r i bu t ion  s p e c t r u m  is t h e n  a s u m  ove r  all  con t r ib -  
u t i ng  t r a j ec to r i e s  w i th  t he  f o r m  

d~ 

0¢l,0¢r 

1 ~ / "  ! 1o! ~ \2~(0) /o r 
16SJJ  as,is,), ~ s; ) [ s; ) (s;)~"° 'I(s; 's:) '  

! ! 
where  I(s~, s~) r e p r e s e n t s  t h e  in t eg ra l  ove r  dt~, dt~: 

(3.12) f f dtldt~ 1(8~, 8r ~) = ~ 0( - -Z]a)exp  [~Qztz+ ~rtr] 

and  

(3.13) 

= ~ +  2 ~ l n  

, , / s ' - - u ~ X  

A n  in t eg ra l  of t he  s ame  f o r m  as I(s'z, s'~) has  been  p e r f o r m e d  b y  CI~A.X et al. (lo), 
in t he  A p p e n d i x  to  t h e i r  p a p e r .  I f  we c o m p a r e  our  w o r k  wi th  the i r  f o r m u l a  

(A.2) we find the  m a t h e m a t i c a l  p r o b l e m  to  be  t h e  s a m e  u n d e r  t he  fol lowing 
m a p p i n g  of t he i r  v a r i a b l e s  to  our  va r i ab l e s  (~1): 

(3.14) 

C H A N  6t aI.~s notation 

2 
m2~ m3~ m4~ 

(s~ s34~ s4~ t13, t2~) 

Our notation 

(8'~, ' 2 m~2) 8r ~ m x  ~ f12  

(M ~, ~t~ u~, t~, tr) • 

(tO) CHAN HONC.-Mo, K .  K A J A N T I E  2~Ild G .  ]~,ANFT: .~UOVO Cimento, 4 9  A, 1 5 7  (1967). 
(11) One cannot directly use the results of CIIAN et al., because their physical situation 

,! ! holds for s z, st, sz, Sr fixed, whereas the single-particle distribution has u s and u~ fixed 
with the other variables constrained only by eqs. (3.7). 
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The result  of their  eqs. (A.4), (A.5) and (37) gives us 

I 2 (3.15) I(s~, s~) = 4~ exp[ - -  b] exp[at(s'~/M 2) + a~(sJM )]- 

.{sinh leA½(1, 

where 

(3.16) 

D. SILVI~RMAN and C.-I TAN 

si/M~,g/M:)]}, 

b = - Q t ( M  2 - -  u~ - -  m~) + ~ ( M  2 - -  u~ - -  m ~ ) ,  

a t  = Q t ( M  ~ + u~ - -  m~) + Q ~ ( M  2 - -  u t  + m~) , 

ar = Q t ( i  2 - -  ur + m~)  + Q , ( M  2 + u t  - -  m ~ ) ,  

c = {~A(M~,  ~ ,  ~ )  + ~2,A(M~, ~t, ~nD + 
~ 2 2 2 ½ + 2 Q ~  ~ [ M 2 ( M  ~ - -  u t  - -  u ,  - -  m~ - -  m 2 + 2/~ ) - -  (u t  - -  m ~ ) ( u ,  - -  m l ) ] }  . 

Since we have t rea ted  the Jacobian  exactly,  our result  for the momentum 
transfer  integrations differs from tha t  of ref. (4). 

3"3. Integration over duster energies. - In  order to perform the integrals over 
l I 

st, s, in a t ractable form, we restr ict  ourselves to the  cases where the intercepts 
of the  exchanged trajectories at, ar are equal to 0 or ½. They would correspond 
to physical exchange of the pion or rho trajectory,  or trajectories degenerate 
with these.  I f  one wishes to fit data  using at, an as parameters ,  one may  nu- 
merically per form the s't, s', integrations in eq. (3.11). We also make the approxi- 
mation of neglecting the terms with s I and s', dependence in f2t and f2,, eq. (3.13), 
since at  present  accelerator energies it is experimental ly known tha t  diffraction 
peaks are mainly  due to exponential  damping of the  residues, or /2' t >> 2al, 
/2~ >> 2a',. We note tha t  now the coefficients e, b, at, ar depend only on the 
invariants fixed b y  the single-particle momentum,  and not  on s't, s',. 

In  the  integral eq. (3.11), using the  result  eq. (3.15), we make the simplifying 
change of variables 

? ! 
8t 8r 

(3.17) M - ~ = z ( 1 - - x ) ,  M--- 2 = x ( 1 - - z ) .  

The boundary  of the  integration region is given by  

( ) st sr = l - - x - - z = 0 ,  (3.18) A~ 1, M-- ~, 2~ 

and the Jacobian is 

ds ids~ = (M2)2(1 - -  x - -  z) dxdz .  
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We then split the  integral into two te rms  by  writing 

(3.19) sinh cA½ 1, = ~ [ e x p [ c ( 1 - - x - - z ) ] - - e x p [ - - c ( 1 - - x - - z ) ] ] .  

B y  making the  subst i tut ion in the second term z = 1 - -  x ~ and x = 1 - -  # ,  its 
integrand becomes identical to the  first term, and joining them gives the 
result  

1 1 

(3.20) ~b~,~-- ~ sc p [ - - b ]  d dz(1- -x=z) .  
o 0 

• exp Jazz(i--x) ÷ a,x(1--z)÷ c(1--x--z)] ~¢~,~(x, z) , 

where the  l~egge power te rms give 

(3.21) J~,~,(x, z) = 

= (M~)~[z(1-- x) + ~3~' [z(1- x)F~-~ Ix(1--z) + ~]~'[x(1--z)] ~ - ~ "  , 

and 

~l Ur 
(3.22) Tz ~ - -  ~ / ~ :  , "/'~. --~ M 2  • 

For the  res t r ic ted case of at, ar equal to 0 or ½ we have, with a~=  1, 

(3.23) J ~ , ( x ,  z) = (M2)~[z(1- x) ÷ z~ 8~.½] I x ( 1 -  z) ÷ T~ 5~r.½ ] . 

These polynomial terms may  be removed from the integrand by  formal dif- 
ferentiat ion of the exponent  with respect  to at, at, or e. The result of the 
integration for these restr icted cases, at and a, equal to 0 or ½, is then finally 

(3.24) ~b~,~,--g sc d~az ÷ ~zd~*'½ d~a~ ÷ ~(~¢''½ dec" 

- -  exp [-- b ÷ a~] exp [(o 

[exp[  (c 

az + a~ \ at ÷ a, / ] j  

÷ar)(c--ar) .El ((o -~_ at) (c - -  ar)./]] 
at + ar at ÷ a, / ] j  ÷ 

- -  exp [--  b ÷ at] 

÷ e x p [ - - b  ÷ c ]  [ [ a,+a,  a ,+a,  / j j j  

where El(X) is the exponential  function. 
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The regions of importance of the  separate terms,  and their  expressions 
in certain simple kinematic  limits will be discussed in the next  Section. The 
form above could also be used for computer  evaluation. 

4.  - General  and specif ic  results  o f  the  mode l .  

We begin by  pointing out general  features of the mult iperipheral  single- 
part icle spect rum which should apply  to more general  models and are i l lustrated 
by  eq. (3.24). These general  features  are results of the  mult iperipheral  as- 
sumption tha t  the  product ion ampli tudes are strongly damped in the  mo- 
men tum transfers,  and they  are re la t ively independent  of the power-law be- 
havior in the subcnergies, such as Reggc behavior.  In the la t te r  pa r t  of 
this Section we present  specific results of the exponent ia l ly  damped multi- 
l~egge model in various kinemat ic  regions. 

4"1. General ]eatures o/ multiperipheral single-particle spectra. - The kine- 
matic  region of the detec ted  part icle  in the c.m. momenta  q,, q± is shown in 

0 Fig. 6, where for s large the boundary  is a semi-circle of radius q~,~ ~ q~= _ V~/2. 

"i I., / 

Fig, 6. - Single-particle phase space in the e.m, frame, 

q,I 
), 

(Our convent ion is Pr[ = - - k , > 0 . )  For  the purposes of this Subsection, we 
approximate  the kinematics for large s and drop masses where feasible. The 

invar iants  become 

- -  uz ~ V/s(q0--  q , ) ,  

- u ,  ~_ V~(qo + ~,,) , 

(4.1) M 2 _~ s(1 - -  qo/q°~=), 

~ z U r 

s ~ # ~ +  q2, , 

where 

qo = ~/ql  + q~, + ~ .  
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The main feature  of eq. (3.24) is the exponent ia l  decrease of the te rms as 
given by  the exponents  

- - b  + a ~ _ 2 5 2 ~ u ~ ,  

- -  b -~ a~ ~ 252~u~ , 

- -  b ~- c ~ - -  tO~(M ~ - -  ur) - -  52~(M 2 - -  us) ~- (4.2) 

and 

- - b - - c < - b + e .  

This exponent ia l  behavior  is a consequence of the assumed mult iperipheral  
exponential  behavior  in momen tum transfers  and is independent  of the power 
behavior  of the subenergies as genera ted  by  the derivatives in eq. (3.24). We 
may  include the end diagrams in this discussion by  noting tha t  ut and ur are 
the momen tum transfers  for the left- and r ight-end diagrams, respectively. In  
the exponent ia l ly  damped model of eqs. (3.1) and (3.2), the cross-sections 
f rom the end diagrams are found to have exponent ia l  residues with exponents  

left  end:  2f2sut,  r ight  end: 2£2ru,. 

The exponential  damping generally occurs in the  variable q~_: examinat ion of 
eqs. (4.1) and (4.2) for q~ >> ~/#~-~ q~ and with g)s = 52~= D/2 gives for the 
least damped terms 

- - b  ÷ as ~ - -  [2 qma~ (q l  ÷ #2) , 

- -  b ÷ c ~__ 1 - -  q , /2qm~ (q~' ÷ # 5 ) .  

In  analysing the general  features we have found tha t  the single-particle phase 
space has a natural  division into four kinematic  regions, which are indicated 
in Fig. 6. The cross-sections in the various regions receive contributions from 
different ranges of the subenergies s~ and s:. These ma y  be found by  examining 
the  coefficients in the exponent  in eq. (3.20) and the relat ion of the x ,  z variables 
to s I and s: ,  eqs. (3.17). The definitions of the four regions and the propert ies  
of the cross-section in each region are given below. 

1) L a r g e - t r a n s v e r s e - m o m e n t u m  reg ion :  q± = 0(V's); us, u~ = O(s) .  The cross- 
section is exponent ia l ly  damped with exponent  of order ( - -s) .  The contrib- 

! ! 
uting subenergies are st, s~ = 0((mass)~). The dominant  exponent ia l  t e rm in 
eq. (3.24) is 

r - - b - ~  e --sY2 1 - - ~ q  G - -  j ,  

where for simplicity we have set t)  t = tgr = Y2/2. 
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2) .Pionization region: q = O(mass), q, = O(mass); u~, u, = O(~/s). The 
cross-section is independent of q, and s. The contributing subenergies are s'z, 
s:<~O(v/s). The dominant exponential term is 

2t2, t2~ 
- - b - q - e - -  .Q, + / 2  q~_. 

3a) Forward-production region: q±---- O(mass), q, =- O(~/s) and positive; 
uz---- 0((mass)2), ur = O(s). The dominant exponential terms are --b Jr c, 
- -b ~-at, and the left-end diagram, all of which are of order ~(mass) 2. The 
contributing subenergies are s~' = 0((mass)~), s,' ~< M S = O(s). 

3b) Backward-production region: q± = 0(mass), q,---- 0(~/s) and negative; 
u, = O((mass)~), u~ = O(s). The dominant exponentiM terms are --b ~- e, 
- -b A- at, and the right-end diagram, all of which are of order ~(mass) ~. The 
contributing subenergies are s', ---- 0((mass)~), s',~< i 2 ---- O(s). 

From the above analysis we find that  the end diagrams ~re only important 
in the forward- or backward-production regions. We also observe that  in the 
large-momentum-transfer region the cross-section is severely damped by expo- 
nents of order s, whereas the cross-section is not greatly damped in the regions 
with small qz. In regard to the form used for the behavior in the subenergies, 
we find that  the pionization region is most sensitive to the assumptions at 
high subenergies, the large-momentum-transfer region to the form at low 
subenergies, and the forward- and backward-production regions are dependent 
on both. 

4"2. Some simple results el the exponentially damped multi-Regge model. - We 
shM1 now concentrate on specific features of the single-particle spectrum of 
the exponentially damped multi-Regge model. We discuss the phenomena of 
pionization, scMing in longitudinal momentum, and damping at large q2. We 
also exhibit, for illustration, the functional forms of the spectrum in the four 
generM regions of phase space, under simplified assumptions. These predic- 
tions can easily be used to compare with and parametrize experimental data. 

1) Zarge-transverse-momentum region. This region is characterized by 
]q±! ---- O(v/s). In this limit, only the term associated with the factor exp [-- b ~- c] 
in eq. (3.24) contributes substantially, and all relevant combinations of para- 
meters, i.e. c - - a t ,  e - - a t ,  az~- a, and b--c,  are of order s (eq. (3.16)). Instead 
of actually carrying out the formal differentiation in eq. (3.24), we find that  in 
this region ~b.~, can be obtained for general values of ar and az by working with 
eq. (3.20) directly. Writing the exponential term in the integrand as 

(4.3) exp [-- ( c - - a ~ ) x - -  ( e - - a t ) z - -  (as + ar)xz + c], 
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we observe tha t  the  only region in the x-z plane where the  integrand will 
contr ibute  significantly is res t r ic ted to 0 <x,  z<O(]/s) .  We can thus drop the 
t e rm  - - (a ,  + a~)xz, keep only the  zeroth-order  t e rm  in the  rest  of the integ- 
rand,  and ex tend  the integrat ion limits to c~. The remaining double integral  
can easily be done and yields 

(4.4) 
[~,(a,- e)]",[~.(.,-c)]'+. 

s c  (b - -  c) ~ 

i 2 ~ )  F ( 2  - -  2~r) / exp [--  (b - -  e)]. F(2 
] 

These various combinations of ar~ at, b and c in this l imit can be obtained from 
eq. (3.16), and, in the simple case ~Qt= ~Q,= f2/2 and for [qJ_[/[q.l~< 4, 
t h ey  become 

(4.5) 

a ~ = ~ s ( 1 - -  qo + ~ 
q ~  2qm~/ 

a~= ~ s ( 1  qo q l l ~  

qmax 

2) Pionization region. This region is character ized by  I q P =  O((mass) 2) 
in the  c.m., or uz, u, = O(~/s), M 2 =  s. We shall first work with eq. (3.20) 
to demonst ra te  the  general  phenomenon  of pionization (12), i.e. the single- 
part icle distr ibution spectrum is independent  of s and q, in this region. We 
shall nex t  res t r ic t  ourselves to the cases ~,, ~z = 0 or ½, and obtain explicit  
funct ional  forms for the spectrum. 

The coefficients of x, z and xz in eq. (4.3) are given in this region by  

(4.6) i ( C i a r )  ,~ 2~rU ~ ~ __2Qr~S(qo__qli) , 

- -  (a~ + a,)  _~ - -  2(~9,  + ~%)s .  

Since the dominant  contr ibut ion conies f rom the  region 0 <x ,  z<.O(1/~/s), we 

can again keep only the zeroth-order  t e rm in the  res t  of the integrand, and 

(12) The term <~ pionization ~ is used here, for pedagogical reasons, to describe this 
special phenomenon, and applies to the production of all hadrons. It is not restricted 
only to pions. 
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ex t end  the  in tegra t ion l imits  to c~. Tha t  is, we can approx ima te  the  Regge 
~erm as 

where  ~ will be set to un i ty  and  T~ ~ - - u ~ / s ,  ~, ~_--u,/s. 
x , z  b y  x ' = ( - - u ~ ) x ,  z ' = ( - - u , ) z  and use the  proper t ies  
U~Ur ~-- s(# 2 + q±), ~ c ~ S(Y2L + Q,), and 

I f  we now scale 

in this region, 

2Y2~, 
(4.7) - -  b + e ~_ ~z + zO, q~ ' 

we obtain  

--~ S~_ 1 ~r , ~)ccto~ r o~c¢ r 

where ~b' is a funct ion of q~, only. Set t ing  ~ = 1, we find t ha t  the re- 

sul t ing cross-section, eq. (3.11), is independen t  of s and  q~, in this region. 
This p r o p e r t y  of pionizat ion has been  noted  by  ABFST (a.13) in the i r  s tudy  

of the  original mul t iper ipher~l  model.  We have  here an explicit  demonst ra t ion  
of this  p r o p e r t y  in the  context  of the mult i -Regge model.  

For  the  uctual  funct ional  fo rm of fi5 , we consider eq. (3.24), where ~ ,  ~, 

a re  res t r ic ted  to be 0 or ½. The dominan t  t e r m  is again t ha t  associated with 

the  factor  exp [ - -b  + el. Carrying out the  formal  differentiation, we obtain 
in this  region 

1 C . . . .  (~') exp q~_ 

where  

~nd 

(4.8) 

¢o.o = (1 + 3 )  e ' E l ( v ) - - ] ,  

"O" (1 - -  Te • EI(~))  Coa = e~ EI(~) + ~ 

~t  (1 - -  ~e ~ Ea(~:)) G.0 = e" EI(~) + ~ 

( ~  + ~,)~ 
C½.½--~ (1 + v) e ' E l ( v ) - - 1  -F 

,(2~ O ,  

T ~  
(a~ - - c ) (a , - c )  

a t  Jr- ar  
~- ~ + ~ ,  (q~, + [~) . 

(13) Results of ABFST have also been summarized and discussed by D. Tow: Some 
:predictions o] the ABFST multiperipheral models, to be published in Phys. Rev. 



MULTI1)ERIPHERAL DYNAMICS AND INCLUSIVE E X P E R I M E N T S  5 0 7  

Since (e~l( 'g)--l)-~l/~ has a smooth dependence on q2,,  the  factor 
exp [--b ÷ el, which in this l imit behaves as 

2~Q~Q, ] 
exp f2~ + zO~ q~ ' 

provides a sharp fall off in q~ to the cross-section. Fur the rmore ,  since the 
t e rm  controlling the pionization region in eq. (3.24) is the  same one tha t  con- 
trols the large- t ransverse-momentum region, this te rms exhibits  the  continui ty 
of the  q~ dependence through both  of the regions. 

3) F o r w a r d -  and  backward-produc t ion  region. We will work in the  for- 
ward-product ion region character ized by  Iq~l ~ = 0((mass)2), q~ _~ q0 = 0(v/~) 
and posit ive,  so tha t  ut = 0((mass°-)). The results fcr  the  backward region 
are direct ly  obta ined by  the  interchange uz ~--~ Ur, ~(2~ ~ ~2~, m~ "-* m~, and 
the  change of the  sign of q, to negative.  We shall first demons t ra te  tha t  the 
single-particle dis tr ibut ion cross-section scales in the  longitudinal momentum,  
tha t  is, it depends on q~ and s only in the form ( q , / q m J ,  where q ~ =  ~/s~.  

This behavior  of the  exper imenta l  da ta  has been pointed  out  by  DRELL (7). 
Fur the r ,  it  has the  approximate  behavior  in q~ of A_ 

d4q (}+(q2 __ fie) ~ ' 

will depend on ( q , / q , ~ )  smoothly.  We shall next  exhibit  the functional form 
2 ~ L~stly, we discuss of ~ b  for the  special case at  q~ = 0, and /~2 = m~ = m~. 

the behavior  of q}~,~ as (M2/s)--> O, and examine the relative importance of 
end diagrams vs.  central  diagrams for the ex t reme forward limit as well as 
for the  general l imit of Iql ~ q ~ .  

The dependence on ( q ~ / q ~ )  is expressed in the variable 

M2 qtl 
fl ~ - -  ~__ 1 - -  qo/qm~ ~-- 1 - -  . 

S qm~ 

The coefficients of x, z and xz  in the exponent ia l  t e rm of eq. (4.3) are given 
in this region by  

- - ( c - - a t )  _~ 2P.~u~ = - -2X2~s (~ - -  f l) ,  

Y2 ~ + fi Y2r 
- -  (az + ar) = - -  2(f-2~M e + f2rM e) ---- --2(~2z + Q~)f ls ,  

where 

(4.9) u~ _~ m~/? fl#2 + q~ 
1 - - f l  
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We immediately note tha t  the only region of importance in the z integration is 
O<z<O(1/s).  We can thus keep only the zeroth-order approximation in z 
in the  rest  of the integrand, und then  relax the integration region to (0, c~), 
i.e. approximate 

where 

-c ,~  M 2 _  fls -tim , 

u, 1 - -  fl 

I f  we scale z by  z'=--(v--az)z-= 2r2,s(1--fl)z, we then  obtain 

C 

/ /  

where ¢~,,.,,,,. is a function of fl and q2 only. Since we have % ~ 1 ,  e 

_~ s(/2~ + fl~2~), and 

(4.1o) 

we immediate ly  obtain this impor tan t  (( scaling ~) property:  da/d ~ q(~(q2 _ if2) is 
a function of only q~ and q,/q~x, in theregion  q~ = O((mass)~). Fur thermore,  
the dominant  q~ dependence of ~5 . . . .  will come from the exponential factor 

2t91~, ] 
exp [-- b + c] ac exp tg~ ÷ fl~, q~' " 

The functional form of Y 2  (q~, fl) (eq. (3.24)), in the case a,, a~--~ 0 or ½, is unfor- 
tuna te ly  not  simple in the  forward region. For  the purpose of illustration, we shall 

_ ,u ~ = 2 and consider the case m 1 -- m R q±----0, so tha t  ~ m ~  << 1 and therefore 

] v -  a,. I = 2 , a ~ , m g  [ 1  - -  (/~2/(1 - -  f l)) ( , 0 r / 9 , ) ( 1  ÷ ,0,./,.0,)] 
~ +/~{~%/r2,) << 1. 

Under this condition, the te rm e x p [ - - ( c - -a , ) x ]  in eq. (4.3)can be approxi- 
mated  by  uni ty ,  and for ~ = O, g,----O, 

(4.11) 
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where 

1 

F(,) =fdx xe(1  - -  x)  
1 - -  7 x  

o 

and 

We now discuss the  region where the end diagram ma y  be important .  The 
behavior  of the  end diagram in fl is simply oc (siMS) 2~.(M~)~(°~ oc fll-2~, and 
it  is immediate ly  apparen t  f rom the rapid increase in the  forward-product ion 
data  with fl t ha t  the  end diagram is not  impor tan t  in most  of this region. On 
the  other  hand, one can see tha t  the  central  diagram, as in the  example ¢oo, 
is a rapidly increasing funct ion of ft. The end diagram could only be of im- 

por tance  then  for fl ~ 0. 
In  general, one can show tha t  ~ , ~ ,  behaves a s  ~4--2~¢r--2~, a S  ~ ~-~ 0. Con- 

sequently,  the end diagram with a fl dependence fl~-2~ will dominate in most  
cases over the  central  diagram in the limit f l-+ 0, in agreement  with our 
earlier assertion (G). Then, as fi increases, the  centrM-diagram contr ibut ion 
will quickly take over, and increase ve ry  rapidly. Eventual ly ,  as f l-~ 1, we 
approach the  pionization region and the  dis t r ibut ion becomes independent  
of ft. This indicates tha t  in any  product ion exper iment ,  a l though the ex- 
t r eme ly  energetic particles produced in the  e.m. f rame are most ly  f rom the 
end diagrams, the greater  por t ion of secondary particles arises from the central  
diagram. 

5 .  - S u m m a r y .  

In  this paper  we have examined  the connection of the  multi-I~egge boot- 
s trap model  to the single-particle dis t r ibut ion spectrum (4-8.14). We have con- 

cen t ra ted  on the contr ibut ion f rom the central  diagram since the more direct 
bu t  l imited end diagrams have been covered in a previous paper  (G). The de- 
tailed calculation of the central  diagram involved the integrat ion of a simplified 
dynamical  model  over the  momen tum transfers  to the clusters and over the 
subenergies of the clusters. Simplified forms of this resul t  in part icular  kine- 
matic  limits have been given for il lustration. 

(14) Various averaged quantities related to momentum spectra have also been discussed 
by S. PINS~:Y and W. WEISBERGER: Final  state-spectra in a multiperipheral model, 
Weizrn~nn Institute preprint (to be published). 
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The general multiperipheral assumption of rapid damping in momentum 
transfer was shown to lead to characteristic properties of the single-particle 
distribution, which allow a classification of regions of single-particle phase 
space. The more specific assumption of the damped multi-l~egge amplitude 
and its bootstrap results were used to obtain specific results for the distri- 
bution spectrum. Assuming the intercept of the Pomeranehuk trajectory to be 
unity, the spectrum was shown to possess the properties of pionization for 
small momentum in the c.m. and of scaling in longitudinal momentum in the 
forward- and backward-production regions. The illustrative results for various 
kinematic regions contain the damping and Regge-trajeetory parameters of 
the multi-Regge amplitude in a way which would easily allow their determi- 
nation and the parametrization of experiments. 

We emphasize that  while the single-particle distribution is one of the sim- 
plest inclusive experiments, its phenomenologieal analysis provides ~ fertile 
ground for parametrizing, testing and improving multiperipheral bootstrap 
models. Of special importance is the unified analysis of data in all of the kine- 
matic regions. In addition, this general framework could be used to discover 
systematic differences between experiments involving different particles and 
trajectories. 

I t  is a pleasure to thank M. L. GOLDBERGER for discussions. 

APPENDIX 

Central-diagram contribution to the slngle-particle distribution spectrum. 

For the sake of generality, we shall express the contribution to the single- 
particle distribution spectrum coming from the central diagram in terms of 
the CGL auxiliary function B. This contribution can then be readily written 
in terms of the forward Reggeon-partiele absorptive amplitude d through 
the use of eq. (2.8). 

Consider a particular multiperipheral chain with iV final particles. Let the 
detected particle in the central region of this chain have momentum q, and let 
us specify the multi-Regge amplitude T~ by a set of four-momentum transfers 

Fig. 7. - Central-diagram contribution to the single-particle cross-section. 
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to the left {p[}, 1<i<~n, and to the right {kj}, 1<j<~m, where n q-m q-1----N, 
as indicated in Fig. 7. The contr ibut ion to the  to ta l  cross-section due to  
this N-p~rticle in te rmedia te  s ta te  is 

(A.1) f (~(p, k) = 2 ~ ( s ,  m~, m~) 1T~l~d¢~' 

where the phase spuce d~b :~ is (po----p, ko = k) 

(h.2) d~27(~, k; {Pi}, {kill : (~)4 {i=lh d4pi~÷((P~-- ~l:i~ ~ 1)2--~2)/"j  

(~+((pn-~ kin)2 - - /~  2 ) m (~+((ki __ ]~i_1) __ ~2)} . 

The contr ibut ion to the single-particle cross-section is 

2/--2 f (A.3) d ~ ( p ,  k; q) = d4q ½ 2 - ~  ~_~ I/'~]~d~b~.d4(q Jr p,~ -~ k,,). 
2A (s, ml, m2) = 

m=2~--n--1 

The summat ion  over n is due to the freedom of the location of the detected 
particle within the chain. The single-particle cross-section is then obtained 
by  summing over N:  

(A.4) da(p, k; q) = ~ da~(p, k; q).  
_hr=3 

The summation over n and N can be converted to a sum over n and m 
and performed because of the factorizuble nature  of Tz~ and d~b~. Each sum 
over n and m leads to the presence of the CGL B-function.  The N-part icle 
phase space can be fuctored into a product  of an n-particle and an m-particle 
phase space, with initial  four-vectors (p,p~) and (k, k,~) respectively:  

(A.5) dC~=~'÷-'+'(p, k; {p~}, {k~}) = d C q p ,  p.~; {p~}) • 

d4p,, (~+((pn ~ kin)2 _ # 2 )  d4km 

(2z) ~ 
d¢~  (~, k~,, {k~}~. 

Similarly the product ion ampl i tude  can be factored into 

(A.6) T~=.~+,.I(p, k; {pi}, {kj}) = 

T~,÷I(p,--~m; {Pill Tm+dk,--p, , ;  {k~}) 

where G is the single Regge coupling and fl is the double Regge coupling. 
Subst i tut ing (A.5) and (A.6) into (A.2) and summing over n and m, one obtains 
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(replacing p , ,  km b y  p ' ,  k'), 

(A.7) 
d4q6+(q2_#2)  2 

A (8, ml ,  m2) (27~) 7 ,=i 

d e  ~ d e "  _ , , 
2 2 d4k d4p ($4(q + p ,  + k ' ) .  

l~ecalling t h a t  when  B is i n t e g r a t e d  over  i t  gives t he  abso rp t ive  p a r t  (A - -A1)  
2 m2)ato~:~, we find f rom eq. ( A . 1 ) t h a t  (eq. (2.6)), and  t h a t  A - - A ~  = A+(s, m~, 

(A.s) 

and  

B ( - - k ' , p ' ;  p) = 1 T . + g p , - - k ' ;  {p~}) 
G(k,~) d¢~(P ,  p ' ;  { p ~ ) ,  

(A.9) B ( - - p ' ,  k'; k) = 1 ~ Tm+l(k, - - p ' ;  {kj}) dO~(k,  1¢'; (kj}).  
,~:1, G(P '~) 

Using  (A.8) and  (A.9) in (A.7), we t h e n  ob t a in  the  s ingle-part ic le  s p e c t r u m  
in t e rms  of t he  solut ion of t h e  m u l t i -Re gge  in tegra l  equat ions ,  eq. (2.9). 

Note added in proo]s. The derivations in this paper for the pionization region 
are valid not only for q~l ~ O(1) but for any q[, growing with s such that  q , /~ / s~O 
a S  8 -~- o o .  

Furthermore, considering the property of sealing, i.e. 

da/d'q ~+(q2_ tt2) = q~( 2q,~/V-s, q±) , 

and the work of this paper showing q~ to be regular at qH/v~-s->O, we may expand O 
in a Taylor series about q n / V s =  O. For sufficiently small 2Iqlll/v/s<e, the first 
term in the series is dominant, giving q)( 2qn/~/ s, q±) ~_ qS(O, q±). Therefore the region 
of pionization extends up to the production regions of 2qll/X/-s fixed. 

• R I A S S U N T O  (*) 

Si sviluppa la relazione fra la dinamica multiperiferiea e i relativi esperimenti ad 
alta energia. Si riportano le caratteristiche generali della distribuzione di singole parti- 
cello per i modelli multiperiferici con smorzamento esponenziale dell'impulso trasferito. 
Lavorando con un specifico modello di Regge multiplo si dimostrano inoltre i fenomeni 
di pionizzazione e di scala delI'impulso longitudinale per piccoli impulsi trasferiti. Si 
danno esempi degli spettri di distribuzione per valori specifici c fisieamente importanti  
dei parametri  di Regge. Le predizioni possono servire come verifica per un modello 
realisitico per l'approccio con l'equazione integrale alla dinamiea multiperiferica, e 
possono fornirc una formula attendibile per paramctrizzare i dati sperimentali. 

(*) Traduzione a cura della Redazione. 
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MHoFO-lleptltbepilqeeKa~l ~IHltaMHKa H BKJlloqaloIHtle 3KCllepHMeHTbl. 

Pe3mMe (*). - -  BI~IBO)IHT¢~I COOTHOIIIeHHe Me)K~ly Muoro-neprlqbepi4qecKo~ RI4HaMHKO~I H 

BKJ]roqa~oulrIMI4 3I tcnepHMenTaMn n p a  BbICOrHX 3HeprHflX. BbIflBJ]fl~OTC~ o6t [ Ine  OCO- 

6eHHOCTH cneKTpa  pacnpe~eneHI4~ OT)~eJIbHOH qaCTHIIbI ~DI  M a o r o - n e p r I ~ e p H q e c K n x  MO- 

]IeJ]eH c 3KCIIOHeHIII, IaJIbHbIM 3aTyxaHHeM OTHOCHTeJ]bHO nepe)xaBaeMoro  nMnyo]bca.  Pa- 
6OTafl CO cHeIlI4aJlbHo~ MHO)KeCTBeHHOH MO~eJIbIO Pe]DKe, MbI, KpoMe TOFO, OTMeqaeM 

flBJ]eHI4fl HI4OHH3aHHH H IIO~O~I4$t OTHOCHTe3]bHO n p o ] l o ~ b H o r o  r iMriynbca R ~  ManblX 

nepeaaBaeMbiX HMnynbcos. lqpnBORaTCa npHMepbI crIeKTpOB pacnpe/Ienenn~ Rn~ cne- 
IIHaflbHbIX H ~14311qeCK14 Ba)KHbIX 3HaqeHI4ffl n a p a M e T p o B  Pe~l~e.  ~ r n  n p e ~ c K a 3 a ~ n a  M o r y v  

c~y~KnTb ra~ npoBepKa peanncTnaecKo~ M o ~ e a n  ~ n u  n o ~ x o ~ I a  n a  ocnoBe naTerpaa~n~ix 
ypaBHen~ r MHoro-nep~qbepr~qec~o~ ~IrInaM~Ke, n MOryT o6ecI /e~nBaTl ,  p a 3 y M n y m  ~ o p M y  

R ~  ~ a p a M e T p ~ 3 a t ~ a  3 ~ c n e p ~ M e a T a n b a ~ i x  RaHHb~X. 

(*) IIepeee3euo pec)aKque~. 
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