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Abstract

This paper describes a new embedded networked sen-
sor platform architecture that combines hardware and soft-
ware tools providing detailed, fine-grained real-time en-
ergy usage information. We introduce the LEAP2 plat-
form, a qualitative step forward over the previously devel-
oped LEAP [13] and other similar platforms. LEAP2 is
based on a new low power ASIC system and generally appli-
cable supporting architecture that provides unprecedented
capabilities for directly observing energy usage of multi-
ple subsystems in real-time. Real-time observation with
microsecond-scale time resolution now enables direct ac-
counting of energy dissipation for each computing task as
well as for each hardware subsystem. This new hardware
architecture is exploited with our new software tools,etop
andendoscope. A series of experimental investigations pro-
vide high-resolution power information in networking, stor-
age, memory and processing for primary embedded net-
worked sensing applications. Using these results obtained
in real-time we show that for a large class of wireless sen-
sor network nodes, there exist several interdependencies in
energy consumption between different subsystems. Through
the use of our measurement tools we demonstrate that by
carefully selecting the system operating points, energy sav-
ings of over60% can be achieved while retaining system
performance.

1 Introduction

Low energy operation continues as a fundamental limit-
ing challenge for Wireless Sensor Network (WSN) systems.
Most recently, the critical demand for high energy efficiency
operation has increased yet further with the introduction of
the new class of 32-bit processor-based WSN nodes that
meet new application requirements for support of high per-

formance sensors and complex algorithms [13, 7, 1, 11, 10].
While these platforms present high peak operating power
demand, prior work has shown that design objectives focus-
ing on high energy efficiency along with proper scheduling
of platform components yield low average energy opera-
tion [13]. However, as will be shown here, high efficiency
may be achieved only if platform energy usage is measured
at runtime, thereby revealing the effects of not only un-
predictable application demands, but also of contention be-
tween platform components and computing tasks.

This paper describes a new hardware and software archi-
tecture that forms an Energy Endoscope with the first (to our
knowledge) integrated, low-power, real-time energy moni-
toring for WSN and other embedded systems. In contrast
to prior systems that measure energy only at low temporal
sample rates and determine the average over all platform
components [16, 5, 2, 8], this new architecture resolves en-
ergy usage at real time and for each hardware subsystem.
The Energy Endoscope relies on a unique hardware and
software architecture solution that includes a new Energy
Management and Accounting (EMAP2) ASIC combined
with operating system kernel features that nearly eliminate
the prohibitively large energy and computing overhead that
high rate energy accounting would levy on conventional
platforms. Experimental results will demonstrate that en-
ergy optimization requires this capability and that it must
be integrated with the platform in order to reveal the large
amplitude energy excursions that can only be observed with
high rate sampling at runtime. Further, as experimental re-
sults will show, only with this data can a system balance the
conflicting demands of interdependent subsystems to avoid
unnecessary energy usage. It is very important to note that
the first applications of the Energy Endoscope have immedi-
ately shown benefits for large energy optimization without
loss in WSN node performance.

The Energy Endoscope enables energy optimizations
that are adaptive to the many characteristics of applications



which can only be known during runtime field operation.
Applications now being developed with this new platform
include seismic sensor networks, structural health monitor-
ing networks, marine sensor systems, and biomedical mon-
itoring. These important applications share increasingly
common WSN requirements for support of high perfor-
mance sensor systems, on-demand use of either long range
or broadband wireless communication, and complex signal
processing, sensor fusion, and networking algorithms.

The primary contribution of this paper is the introduc-
tion of a new platform architecture and a new set of hard-
ware and software energy measurement tools. We utilize the
unique capabilities of our hardware and software tools to
provide unprecedented energy consumption visibility. We
have used our tools for real-time profiling of several im-
portant subsystems such as CPU, memory, storage and net-
working. We show that there exist drastic differences in
power dissipation over time depending on the choice of stor-
age device and also reveal the significant effect of CPU
power dissipation on storage and networking operations.
We also profile a network file transfer operation between
two LEAP2 nodes and discover the optimal CPU speeds for
both the sender and the receiver, resulting in overall energy
savings above60%.

This paper is organized as follows: Section 2 describes
the LEAP2 platform and the EMAP2 while Section 3 de-
scribes our software tools. Section 4 presents experimen-
tal discoveries when profiling power dissipation of a single
node, with a focus on CPU-intensive and storage-intensive
workloads. In Section 5 we profile a networking application
that exercises several important subsystems over two nodes
and also experimentally derive the optimal CPU speeds that
minimize energy consumption. We present related work in
Section 6 and conclude in Section 7.

2 The LEAP2 Architecture

In this section we provide an overview of current tech-
niques for energy accounting and also describe the LEAP2
hardware architecture.

Traditional energy accounting techniques in WSNs as
well as in mobile computing rely on external device
support—such as oscilloscope sampling or data acquisition
systems [16, 5]—or on internal device support such as “fuel
gauge” circuits [2], or peripheral circuit modules [8]. De-
vices such as an oscilloscope provide high sampling rates
and as such can acquire and display power dissipation data
in real-time. However, they are external devices and may
not probeall internal subsystem paths. Thus, they are im-
practical for use in deployed systems that need compact,
low-power, real-time energy consumption information. A
fuel gauge [2] or an integrated peripheral solution [8] is
sufficiently low-power to be included in actual field appli-

Figure 1. The LEAP2 hardware architecture.

cations; however, those devices cannot meet real-time con-
straints as they are limited either by their internal sampling
rate or by the speed of the communications bus.

Power dissipation in previously developed systems is
typically measured at the power supply or between the
power supply connector and the node itself [16, 5, 2, 8].
This enablessystem-widepower dissipation and energy
consumption information. However, for the purposes of
energy optimization, it is important to know the contribu-
tion of each subsystem—e.g CPU, memory or storage—to
the total system energy consumption. With only single-
channel, combined energy information, resolving energy
contributions associated with each subsystem may not be
feasible in general due to uncertainties resulting from sub-
system interdependence and resource contention. A typical
approach [16] is to use microbenchmarks that exercise in-
dividual subsystems. By carefully reconstructing the event
timeline, the system energy consumption can be attributed
to the subsystem under investigation. This approach is
therefore not real-time as post-facto processing is required.
In addition component power dissipation is assumed to be
constantthroughout the duration of an operation [9]. This
approximation may be adequate for very low-power com-
ponents or very simple architectures. However, for high-
performance WSN nodes where embedded processors may
support dynamic voltage and frequency scaling, power draw
depends on several factors such as CPU utilization, operat-
ing system support for on-demand frequency scaling, I/O
intensity and others; therefore constant power dissipation
cannot be safely assumed. Finally, we note that even though
per-subsystem resolution could be achieved with an oscillo-
scope and a peripheral probe, in reality this solution would
not be practical, in terms of scalability, ease of deployment
and energy consumption for actual field deployments where
energy dissipation measurements are most important.

2.1 LEAP2 Platform Overview

The second generation Low power, Energy Aware Pro-
cessing (LEAP2) platform architecture overcomes these



limitations and enables Energy Endoscope capability, pro-
viding an integrated, real-time detailed energy monitor-
ing, capable of resolving energy usage at the level of
each processing task and platform hardware component.
This LEAP2 platform, shown in Figure 1 bears a simi-
larity to LEAP and other previous energy aware architec-
tures [13, 10, 15] in that a high performance host processor
and low power preprocessor are present. However, LEAP2
includes both a new Energy Management and Accounting
Processor (EMAP2) ASIC device and new energy aware op-
erating system kernel components. In contrast to previous
platforms including LEAP, LEAP2 with the EMAP2 ASIC
provides a qualitative and unprecedented advance in high
accuracy, low overhead energy measurement of platform
computing, storage, sensing, and communications devices
at granularity levels previously unachievable.

At the foundation of the LEAP2 platform lies its
energy management and accounting capabilities. On
LEAP2 this feature is integrated into a dedicated ASIC,
implemented in a micro-power antifuse-based field pro-
grammable gate array (FPGA). The FPGA has very low qui-
escent current—compared to SRAM-based FPGAs—of ap-
proximately250uA. The EMAP2 ASIC, shown in Figure 2
performs continuous real-time energy monitoring, sophis-
ticated power scheduling, and device resource multiplex-
ing across the entire LEAP2 platform while requiring less
than6mW . Through the EMAP2 ASIC, LEAP2 peripher-
als may be scheduled for use only when needed and detailed
energy information is gathered during their operation.

Energy usage information for individual platform sub-
systems including computational resources such as the
PXA270 microprocessor, memory subsystems such as the
SDRAM and SRAM, storage subsystems such as NOR
flash and NAND flash, peripheral subsystems such as the
Ethernet, 802.11, USB, Imaging, Compact Flash, and exter-
nal sensors modules is available at millisecond accuracies.
In addition, the EMAP2 ASIC energy data and scheduling
controls are available to the host processor through a high
bandwidth memory bus interface thereby minimizing mea-
surement overhead issues. This enables the host processor
to obtain energy usage information across a wide range of
devices at millisecond intervals and with a minimal over-
head. These features provide LEAP2 with a unique plat-
form monitoring and control capability that can enable sig-
nificant energy consumption optimizations. The following
section provides details on the EMAP2 ASICs three critical
functions on the LEAP2 platform: resource multiplexing,
power scheduling, and energy accounting.

2.2 The EMAP2 ASIC

LEAP2 is an advance over previous architectures [13,
15, 11, 10] through inclusion of a Resource Multiplexor that
enables an expanded set of peripheral and sensor interfaces

Figure 2. The EMAP2 ASIC.

and dynamic scheduling and energy measurement of power
domains that may be added to or removed from the platform
through an expandable energy management bus integrated
into the LEAP2 stacking connectors.

Due to the large number of peripheral devices integrated
into the LEAP2 platform and also expandable on the inter-
board stacking connector, a Resource Multiplexor was nec-
essary. For point-to-point and point-to-multipoint buses
such as UARTs, SPI ports and for traditional parallel mem-
ory buses this resource sharing feature is critical since the
host processor is often insufficiently equipped with enough
hardware resources to allow dedicated one-to-one connec-
tions. In the EMAP2 ASIC, serial bus multiplexor ports are
implemented as a partially connected, switched network.
Device ports are redundantly assigned to a subset of the host
processor’s available ports. This increases the probability of
successfully mapping all active device ports to the host pro-
cessor. A fully connected network was implemented, but
found to require a substantial additional hardware invest-
ment over the partially connected implementation. In ad-
dition to the resource multiplexor, the EMAP2 ASIC pro-
vides a dynamic power scheduler capability (clocked by a
configurable input signal driven from a micro-power silicon
oscillator requiring only70uA at 3.3V ), providing config-
urable scheduler resolution from1us to 10ms based upon
the configured input clock rate.

The EMAP2 ASIC design addresses the challenges aris-
ing from the competing requirements for microsecond-
resolution sampling and large data acquisition storage rate,
low energy operation, and low processor computing over-
head. The EMAP2 energy accounting module consists of a
charge accumulation finite state machine (FSM), two ADC
data acquisition FSMs, and a large RAM block containing
the charge accumulation data. The EMAP2 may address
up to six Texas Instruments TLV2548 8-channel ADCs pro-
viding a total of48 charge accumulation channels. Eight
channels are allocated to the EMAP2 module’s peripherals
such as Ethernet, USB, quick capture camera, and compact
flash. Eight additional channels are allocated for the host
processor module (HPM) PXA270 core, SDRAM, NAND



and NOR flash, and SRAM. The EMAP2 and HPM accu-
mulation channels are provided by the first of the two data
acquisition modules and interface the ADCs over SPI port1.
The remaining 32 channels are controlled via the second
data acquisition module which can interface up to four ad-
ditional ADCs over SPI port2. The parallel SPI acquisition
channels reduce acquisition latency and required SPI bus
clock frequency. The host processor interfaces with the en-
ergy accounting module through a set of configuration reg-
isters and the charge accumulation data is read directly from
the RAM block. Host reads from the charge accumulation
RAM is arbitrated by the energy accounting module with
priority given to the host processor reads. Write from the
ADC data acquisition FSMs may be delayed by the mem-
ory arbiter during host processor access. The current sen-
sor sample period is configurable through a 24-bit config-
uration register providing ADC sample rates from25 KHz
to less than0.25 Hz. All SPI bus data samples transfers
are pipelined such that commands for sequential channels
conversions are interleaved with the readback of the current
channel data to minimize latency. Readback from the last
active channel on a given ADC causes the ADC powerdown
command to be issued, reducing ADC idle power.

The EMAP2 architecture is also designed to reduce pro-
cessor overhead associated with energy accounting. The
host processor reads charge accumulation and accumulation
count information directly from the accumulation RAM
block in 32-bit read cycles. Since the EMAP2 is able to pro-
vide accumulation RAM block access in typically less than
40ns, data readback is extremely low overhead. The charge
accumulation data is aliased to two separate host processor
memory address windows providing a rapid, incremental
charge reading capability necessary for low overhead en-
ergy accounting. When all of the48 EMAP2 channels are
enabled and accumulating, host processor readback of ac-
cumulation data and count will require only192 bus cy-
cles (taking less than8us) assuming no bus arbitration loss.
Even when using1ms readback periods, the host processors
memory access overhead is then less than0.8%.

3 Energy Measurement Software Tools

Using the capabilities of the EMAP2 ASIC, we devel-
oped two energy measurement software tools:Etop, a user-
space energy consumption observation tool andendoscope,
a low-overhead kernel-space energy measurement tool.

3.1 Etop

Etop is a user-space tool that enables rapid observation
of energy consumption, when running an arbitrary set of
processes. Usingetop, an application developer can quickly
ascertain the energy consumption of a particular operation

Figure 3. Etop screenshot displaying per-subsystem
power and energy information as well as per-process energy
consumption.

(e.g. file copy, network transfer or sensor acquisition) on all
the subsystems observable by the EMAP2 ASIC.

Etop is based on the well-known UNIX programtop.
Etop adds two additional capabilities: per-subsystem cur-
rent, power and energy information and per-process energy
accounting. Figure 3 presents a screenshot ofetop, with
the top part displaying per-subsystem information and the
bottom part displaying per-process energy consumption.

Etop’s per-subsystem information is directly linked to
the output of the EMAP2. On every refresh cycle (a user-
controlled parameter thattop provides, with a default of 3
sec),etoppresents current, power and energy consumption
information of individual subsystems. It also provides volt-
age information for the four voltage-only channels. Current
and power values are by default averaged over the refresh
period; maximum values can also be displayed.

To provideetopwith per-process energy accounting, we
introduced a modification to the Linux OS scheduler so as to
record energy consumption information, in a manner sim-
ilar to ECOsystem [17]. Specifically, we augmented the
taskstructstructure (that contains information about a spe-
cific process) with two energy containers: one for user-level
information and one for kernel-level information. On every
scheduler tick, Linux determines whether the current pro-
cess time slice executed in user or kernel mode and charges
an appropriate container accordingly. This information is
used by Linux (andtop) to determine the fraction of CPU
time spent in kernel (system) mode and in user mode. We
read the EMAP2 charge values from all channels on every
scheduler tick and charge the corresponding user- or kernel-



level process energy container. As a result, we can disam-
biguate between energy consumption that occurred when a
process was performing work in support of a user mode task
and when the system was performing work during the pro-
cess time slice in support of kernel mode tasks. Both these
values are exported using the/proc interface, in a manner
similar to /proc/<pid>/stat. Etop then reads those values
and displays them in standardtop-like column format.

This development ofetopprovides both an immediately
valuable and also new profiling capability. However, it is
important to note that additional opportunities for exten-
sions lie ahead. Specifically,etop attributes energy con-
sumption in asynchronousmanner. In the future, asyn-
chronous operations, i.e. operations that do not necessar-
ily occur when the process that caused them is running may
be included. Typical examples of those operations include
networking and disk I/O. On the other hand, one can as-
sume that when a process is running, it effectively has con-
trol of the CPU and memory. As a result, when calculat-
ing the energy consumption of a process, we only factor in
the PXA (CPU) channel and the SDRAM (memory) chan-
nel. An important extension ofetopaddressing the problem
of accounting for asynchronous operations will be to asso-
ciate the initiating process identifier with a particular opera-
tion (i.e. disk I/O or networking I/O) and then retroactively
charge the appropriate process. We thus plan to develop this
extended per-process energy accounting in the future.

3.2 Endoscope

Sinceetopdisplays system energy performance in real-
time it is not optimized for in-depth detailed measurements.
Etop is a userspace process with non-trivial memory and
CPU usage (especially at refresh rates higher than 1 Hz) and
as such can interfere with the measurements themselves.

To provide high-rate sampling in software with a very
low energy overhead, we implemented theendoscopeker-
nel module. Endoscopecan read the EMAP2 registers at
frequencies as high as the default Linux scheduler tick reso-
lution (100 Hz in our system) and with very low CPU over-
head, as no expensive user-kernel boundary crossings are
required. The results are then stored in a circular buffer
in kernel memory—a very fast and low-overhead opera-
tion. We utilize a standard/proc interface for userspace data
display and control purposes. To avoid frequent periodic
polling of the /proc interface from userspace, the circular
buffer has sufficient memory to store several minutes’ worth
of real-timedata—up to 2 minutes of continuous sampling
of 16 channels at 100Hz, or 200 minutes at 1Hz. To avoid
buffer overrun, an application running in userspace only
needs to read from the/proc interface at an interval that is
slightly smaller than the buffer’s capacity at a specific sam-
pling rate.

We usedendoscopeextensively to collect our experimen-

Etop Endoscope
Execution space User Kernel

Kernel modifications Scheduler for Kernel Module
per-process data

Data display interface top-like /proc
CPU usage 1 − 25% Negligible

Sample storage No Yes
Real-time data collection Yes Yes
Real-time data display Yes No

Per-subsystem resolution Yes Yes
Per-process resolution Yes No

Table 1. Qualitative comparison ofEtopandEndoscope

tal dataset.Endoscope, unlike etop, measures energy con-
sumption of entire subsystems rather than that associated
with individual processes. As a result, when conducting our
experiments, care is taken to ensure thatendoscopemea-
sures energy solely attributed to a single application. For
this development ofendoscope, this procedure is effective
for WSN systems that typically support one dominant appli-
cation, or a set of applications that can be considered domi-
nant. At the same time, as foretop, extensions toendoscope
will enable increasingly complex WSN computing applica-
tion support. Table 1 summarizes the capabilities and dif-
ferences of our software tools.

4 Single-node Energy Profiling

In this section we focus on profiling the energy consump-
tion of a single LEAP2 node. In particular, our experiments
aim to showcase the energy consumption of critical subsys-
tems, such as CPU, memory, storage and networking. We
also outline potential optimizations that can yield betteren-
ergy efficiency.

Throughout our experiments, we utilized three metrics:
instantaneous power dissipation over time, total energy con-
sumption and the energy-latency product.Instantaneous
power dissipation over timecaptures variations in power
dissipation and is especially important in cases where power
dissipation is not uniformly distributed in time. We cal-
culate power dissipation by converting charge values from
the EMAP2 into instantaneous current dissipation and then
multiplying with the corresponding voltage channel mea-
surement. Theenergymetric is useful when optimizing en-
ergy consumption for the entire system or for a specific set
of subsystems. We calculate energy consumption by in-
tegrating instantaneous power values over a specific time
period. Theenergy-latency product[6] is useful when op-
timizing for energy consumption as well aslatency. Sev-
eral WSN applications tend to be latency-tolerant; therefore
trading off increased latency for lower energy consumption
is acceptable and in that case the energy consumption met-
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Figure 4. Power dissipation over time for all active sub-
systems: a) CPU, SDRAM, Ethernet and CompactFlash
Wireless and b) USB, SRAM, NOR flash and NAND flash,
with the CPU operating at 520 MHz.

ric is more useful. However in cases where specific latency
bounds need to be met, or when optimizing for both energy
consumption and performance the energy-latency product is
the more appropriate metric. Ideally, the desired operating
point of a system or application is the one that minimizes
bothenergy consumption and the energy-latency product.

Our experimental data was collected in real-time, by
using endoscopewith a sampling rate of 10Hz. Each
experiment was repeated 5 times. We report averages
when presenting energy (Joules) and energy-latency prod-
uct (Joules*sec) values and use instantaneous values from a
single experiment when presenting power values.

4.1 System-wide Energy Profile

We initially focus on the energy consumption of the en-
tire system, in order to establish a baseline for the energy
usage of each subsystem, for different CPU speeds. There-
fore, in this set of experiments our LEAP2 node only runs
the Linux OS, without any additional applications (aside
from the standard Linux daemons, and sshd), or any net-
work traffic. As a result, we consider this to be our “idle”
case for all individual subsystems. We ran 5 experiments
lasting 60 seconds each at every CPU speed. We used

theuserspaceLinux CPU governor to manually change the
CPU speed before each experiment.

Figure 4 shows the power dissipation over time for eight
subsystems with the CPU operating at 520 MHz. The
network interfaces dominate the system power dissipation,
with each interface requiring approximately400mW of
power. More importantly, both interfaces areidle, i.e. they
are not transmitting or receiving any substantial amount of
data (apart from MAC- and routing-level control packets).
The current version of LEAP2 only supports CompactFlash
(CF) wireless cards. The CF interface itself draws about
half of this power (200mW ), even when the wireless card
is not turned on. Future versions of LEAP2 will include
a miniPCI which is expected to provide significant savings
in power dissipation, in addition to being able to support
801.11g speeds. Furthermore, reductions in power dissi-
pation could be achieved by taking advantage of the low-
power modes that miniPCI Linux drivers support.

The computational and memory subsystems (CPU,
SDRAM, SRAM) use considerably less power when idling
compared to the networking subsystems. Nevertheless, the
power dissipation of the CPU is considerable, especially
considering the fact that the CPU is not performing any
actual work. Running the CPU at 104 MHz results in a
significantly reduced power dissipation of25mW , slightly
higher than that of SDRAM. At 520 MHz CPU power dissi-
pation raises to180mW , more than an order of magnitude
higher than SDRAM and comparable to the network inter-
faces. Comparing dynamic RAM power dissipation with
static RAM power dissipation, we notice that SRAM re-
quires an order-of-magnitude less power to operate—less
than1.5mW of power when idling. This very low power
dissipation is a well-documented property of static RAM
which we were able to experimentally verify usingendo-
scope. Finally, there is a very considerable difference in
power dissipation between the storage subsystems and the
computation and networking subsystems. This is in con-
trast to mote-class devices, where the power dissipations of
the storage subsystem and the MCU are comparable [12].
Section 4.3 further explores the storage subsystems.

Table 2 shows the percentage of the total energy con-
sumption attributed to each subsystem, for the six different
CPU speeds supported by the PXA270. Even though the
networking subsystems dominate the energy consumption
under any CPU speed, the power dissipation of the CPU
itself becomes considerable in higher speeds.

Figure 4 and Table 2 indicate that considerable energy
savings of up to80% can be achieved by turning off the
networking subsystems. In a deployed system, the Ether-
net interface that is only used for debugging can be safely
assumed to be shut down. The wireless interface however
is required for node communication; therefore one needs
to apply more sophisticated energy savings techniques such



Subsystem 104 208 312 416 520 624
Energy (%) MHz MHz MHz MHz MHz MHz

Ethernet 45.43 42.04 41.25 40.03 38.62 37.21
CF Wireless 47.83 44.26 43.42 42.16 40.68 39.20

PXA 4.10 11.24 12.95 15.51 18.48 21.44
SDRAM 2.28 2.12 2.05 1.98 1.91 1.85
SRAM 0.15 0.14 0.13 0.13 0.12 0.12
USB 0.07 0.06 0.06 0.06 0.05 0.05
NOR 0.07 0.07 0.07 0.06 0.06 0.06

NAND 0.04 0.04 0.04 0.03 0.03 0.03

Table 2. Percentage of subsystem energy consumption for
six CPU speeds, when the system is idling.

as duty-cycling, scheduling or dual-radio networking. Fur-
ther energy savings can be obtained by running the CPU at
its lowest speed setting. In later sections (4.3, 5) we inves-
tigate whether this property also applies when the CPU is
operating under load and together with other subsystems.

4.2 CPU Subsystem Energy Profile

The CPU is arguably the most important component of
a platform, as every other subsystem depends on it, either
directly or indirectly. It also is often the largest power con-
sumer; therefore it needs to be energy efficient. We there-
fore focus our attention on investigating the power dissi-
pation and energy consumption of the PXA270 CPU used
in the LEAP2 node. Prior work [13, 2, 9] has demonstrated
that a more capable CPU (such as the PXA255 or PXA270),
while incurring significantly higher peak power dissipation
than an MCU (e.g. MSP430) is in fact more energy effi-
cientwhile under load, due to its architectural advantages—
higher clock speed, L1 caches, hardware MMU, multi-stage
pipeline etc. Therefore, our goal for this set of experiments
was to verify whether a CPU running at a higher speed is
still more energy efficient thanthe sameCPU running at a
lower speed.

Since we wanted to measure only the CPU power dissi-
pation, we required a test application that would not con-
siderably utilize any other system resources, such as stor-
age or even RAM. We therefore used a simple test program
calleddcachetest, that computes the sum of an array of in-
tegers. The array’s total memory size is 4Kbytes so that
it fits into the processor’s data cache. The computation is
continuously repeated, up to a given number of consecu-
tive runs. Therefore, the CPU utilization during our test
program’s execution is very close to100%, while all other
subsystems including SDRAM are not utilized.

We utilized theondemandLinux CPU governor to dy-
namically change the CPU speed. This particular CPU gov-
ernor automatically adjusts the CPU speed based on the ob-
served CPU utilization. Under default settings, this gover-
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nor increases the CPU speed to the maximum allowed value
when the idle time is less than20%. It then tries to find the
lowest allowed CPU speed that can sustain the load while
keeping the idle time over30%. For each set of experi-
ments, we gradually increased the maximum allowed CPU
speed, from 104 MHz all the way to 624 MHz.

Figure 5 presents the CPU power dissipation over time
when runningdcachetest, for the six different PXA CPU
speeds. To indicate the difference in power dissipation be-
tween the idle CPU state and the loaded CPU state, we
started our test program five seconds afterendoscope. As
can be seen in Figure 5, the CPU power dissipation raises
considerably att = 5sec. Moreover, there is almost an
order-of-magnitude difference between the power dissipa-
tion of the lowest CPU speed setting (80mW ) and the
highest one (970mW ). This difference is even more ap-
parent when comparing the idle CPU power dissipation at
104 MHz with the loaded CPU power dissipation at 624
MHz. Figure 5 also indicates that there is anon-linear
increase in the CPU power dissipation as the CPU speed
increases. This is due to dynamic voltage and frequency
scaling (DVFS) where changes in CPU frequency are ac-
companied with changes in core voltage. Since power is
the product of current and voltage, the increase in power
dissipation for different frequencies is expected to be non-
linear. Asendoscopeand EMAP2 can sample both the CPU
current draw and the Vcore voltage at the same time, CPU
power dissipation can be accurately estimated for each sam-
ple, thus capturing the non-linear DVFS effect.

Even though a lower CPU speed results in a consider-
able increase in completion time, the actual CPUenergy
consumption is lower, as Figure 6 shows. The increase in
completion time at lower speeds is not significant enough to
offset the drastic decrease in peak power draw, We therefore
conclude that unlike the case where a faster 32-bit CPU is
more energy efficient than an MCU despite the higher peak
power dissipation [13], when comparing different speeds of



 0

 1

 2

 3

 4

 5

 6

 7

 104  208  312  416  520  624
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
 E

ne
rg

y 
(J

ou
le

s)

E
ne

rg
y-

la
te

nc
y 

pr
od

uc
t (

Jo
ul

es
*s

ec
)

CPU speed (MHz)

CPU energy consumption
Energy-latency product

Figure 6. CPU energy (left) and energy-latency product
(right) when runningdcachetest, for six CPU speeds.

the same DVFS-enabled CPU, the lowest CPU speed re-
quires the least amount of energy for the same workload.
The above result however does not considerlatency: even
though the lowest CPU speed draws the least amount of en-
ergy, it requires the most amount of time to complete. If
instead we use the energy-latency product, the highest CPU
speed becomes the most energy-latency efficient operating
point.

Our results above contain information about asingle sub-
system; the CPU. A valid question then is whether results
still hold when taking into accountall subsystems that have
a considerable energy consumption, such as network inter-
faces and SDRAM. We can assume that for applications that
perform computation without need for communication (e.g.
signal processing), networking subsystems can be in a pow-
erdown state. Therefore, a longer execution time would not
affect the energy consumption of those subsystems. On the
other hand, even though SDRAM may or may not be used
in a CPU-intensive application, it cannot be turned off at
runtime, without significantly modifying the operating sys-
tem itself. SDRAM peak power draw is at least an order of
magnitude lower than that of the CPU; consequently, even
when taking SDRAM into account, the lowest CPU speed
would still be the most energy efficient, even though the
difference between it and the highest CPU speed would be
slightly smaller. However, as will be shown in following
sections, in applications that utilize several subsystemsthe
lowest CPU speed is no longer the most energy efficient.

4.3 Storage Subsystem Energy Profile

Our next set of experiments focuses on the storage
subsystem—an important component for both WSN nodes
and embedded systems in general. Our goal for this set of
experiments is two-fold. First, we want to investigate the
differences in power dissipation between the two types of
non-volatile storage included on LEAP2: NOR flash and
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Figure 7. CPU, SDRAM, NAND and NOR power draw
over time when copying a 7Mb file from NAND to NOR.

NAND flash. Those two flash types differ considerably in
their operational characteristics, so we expect significant
differences in their power profiles as well. Second, we
want to investigate the interdependencies between the stor-
age subsystem and the computation subsystem (CPU and
SDRAM). Our experimental setup consisted of copying a
7MB file from one storage subsystem to the other (i.e. from
NAND to NOR or from NOR to NAND), with the CPU op-
erating at a constant speed of 520 MHz. After each exper-
iment we manually flushed the Linux VM file caches so as
to avoid consecutive experiments completing faster due to
caching. The subsystems measured withendoscopefor this
set of experiments were CPU, SDRAM, NAND and NOR.

Figure 7 shows the power dissipation of the four sub-
systems over time for a file copy from NAND to NOR,
while Figure 8 depicts the results for the file copy from
NOR to NAND. These figures indicate very significant dif-
ferences between the two flashes. First, copying to NOR
takes approximately 140 seconds, while copying to NAND
only takes approximately 6 seconds. Second, NOR peak
power when writing and erasing is more than twice that
of the equivalent NAND peak power. On the other hand,
NAND reads are more expensive, power-wise than NOR
reads: in fact, NOR reads don’t cause any discernable dif-
ference above NOR’s idle power dissipation. These re-
sults are in accordance with the characteristics of NOR and
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Figure 8. CPU, SDRAM, NAND and NOR power draw
over time when copying a 7Mb file from NOR to NAND.

NAND flashes. NAND flashes are optimized for sequential
block access and have much faster write and erase speeds
than NOR flashes, therefore the write operations on NAND
execute much faster and with considerably less power than
on NOR. Conversely, NOR flashes support random-access
reads (unlike NAND flashes), therefore read operations on
NORs execute faster and require significantly less power.

NOR energy profile: The most important difference how-
ever exists in the power variations over time for NOR ver-
sus NAND. For NOR, CPU power dissipation over time has
a pulse-like shape, while for NAND, CPU power dissipa-
tion is almost constant. The differences are due to the way
that each flash type (and its associated drivers) handles write
and erase operations. The NOR driver (Memory Technol-
ogy Device—MTD) and filesystem (Journaling Flash File
System—JFFS2) implementerase suspend on write. There-
fore, write and erase operations in NOR flash areserialized:
during a write operation, an erase operation cannot proceed,
and vice-versa. This behavior explains the pulse-like shape
of Figure 7. Write operations to NOR happen when CPU
power peaks: this is corroborated by the fact that peaks
in the SDRAM and NAND subsystems are correlated with
peaks in the CPU subsystem, indicating sequences of reads
and writes. When CPU power drops—indicating that the
CPU is idling—so does NAND and SDRAM power dissipa-
tion: however, NOR power dissipation remains high, since

Figure 9. LTT screenshot highlighting the end of a write
and the beginning of an erase operation in NOR flash.

Figure 10. LTT screenshot highlighting a sequence of
block erases in NAND.

during that time, the NOR flash is erasing blocks that will
be needed for the next write operation. This sequence of
events was verified using the Linux Trace Toolkit [3] kernel
tracer. Figure 9 shows a sequence ofread() (from NAND)
and write() (to NOR) system calls. The lastwrite() sys-
tem call does not complete however; instead, a sequence of
poll() system calls on the write file descriptor follows, indi-
cating that the/bin/cpprocess is blocked on awrite().

NAND energy profile: When writing from NOR to
NAND, we observe that during the first1.3 seconds of the
file copy, NAND power is at its peak. At the same time,
CPU and SDRAM have not reached their peak power val-
ues; this is more evident in SDRAM. After this initial time
period, CPU and SDRAM power dissipation reach peak val-
ues while NAND power dissipation decreases.

Using LTT (Figure 10) we observed that during this ini-
tial time period, the YAFFS2 filesystem (used for NAND)
executes a series oferaseoperations. However, those erase
operations do not continue throughout the entire file copy
duration. During a file copy to NAND, YAFFS2 determines
how many blocks (if any) need to be erased and proceeds to
erase those blocksin parallel with normal write operations.
Since the file size is considerably smaller than the total
NAND capacity, and considering that YAFFS2 implements
wear-leveling in software, the erase blocks are significantly
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Figure 11. Average CPU, SDRAM, NOR and NAND en-
ergy (left) and energy-latency product (right) when copying
a 7MB file from NOR to NAND, for six CPU speeds.

fewer than the total blocks that need to be written. Never-
theless, NAND power dissipation peaks as NAND blocks
are being erased and written in very short succession. After
the erase operations cease, writes can proceed at full speed,
therefore the CPU and SDRAM subsystems are more heav-
ily utilized and their power dissipation peaks.

SDRAM contribution: Regardless of whether we write
to NOR or NAND, we notice that SDRAM power dissipa-
tion raises above idle during write operations. Even though
both YAFFS2 and JFFS2 keep several data structures in
SDRAM, their memory footprint is not large enough to ex-
plain the significant rise in SDRAM power dissipation. In-
stead, SDRAM is being used extensively because the Linux
Virtual File System (VFS) implementsmemory cachingin
order to improve read and write access to files. Files are
first written to SDRAM—or more accurately to the page
cache—before they are committed to storage.

Effects of CPU speed: Caching is the first reason why
CPU power dissipation is high during writes, as the CPU is
also involved in this operation. The second one issoftware
error correction. Neither the NOR or NAND modules in
LEAP2 include hardware-supported error correction checks
(ECC); therefore the filesystem needs to implement ECC in
software. ECC is critical to the correct operation of NAND
flashes, as those flashes always contain bad blocks.1

The aforementioned reasons indicate a significant depen-
dency between CPU speed and write performance. Fig-
ure 11 shows a per-component energy cost as well as
the energy-latency product for the file copy from NOR to
NAND, for six CPU speeds. Again, the lowest CPU speed
results in the minimal energy consumption. The energy-
latency product however is minimized when the CPU is op-
erating at 312 MHz, with 208 MHz also being very close to
the minimum. In Section 4.2, the test application was exclu-

1Manufacturers ship NAND flashes with some bad blocks to keep their
yield high and the cost low.

sively CPU-bound. Operating at the highest CPU speed re-
sulted in a factor of five reduction in completion time, while
energy consumption was increased by less than a factor of
three; hence the energy-latency product was minimized at
the highest CPU speed. The file-copy operation however is
not exclusively CPU-bound as it involves I/O. As a result, in
higher speeds, the CPU is not fully utilized. The peak power
draw of the CPU operating at 520 MHz under100% load is
around735mW (Figure 5), while the peak power dissipa-
tion in Figure 8 is around600mW—hence the CPU load
is not at100%. Therefore, lower CPU speeds yield simi-
lar performance benefits while requiring less energy due to
lower idle and peak power dissipation. Deviating from the
minimum energy-latency product thus leads to “diminish-
ing returns”, in terms of energy at speeds lower than the
optimal and in latency in speeds higher than the optimal.

One final observation regarding the effect of CPU speed
is its contribution to energy consumption versus that of the
storage device. Figure 11 indicates that the CPU contribu-
tion ranges from65% to 93% while the NAND contribution
ranges from3.3% to 1%. This result is in sharp contrast
with mote-class systems, where the CPU energy consump-
tion and the storage (NAND or NOR) energy consumption
are within the same order of magnitude [12, 4].

5 Multi-Node Energy Profiling: Node-to-
Node File Transfer

In Section 4, we focused on profiling the energy con-
sumption of various subsystems on a single LEAP2 node.
In this section we aim to profile the energy consumption of
an application that exercises multiple subsystems in multi-
ple nodes. Anetwork file transferapplication satisfies our
requirements, as it involves multiple nodes by definition and
it also exercises some of the most important subsystems on
a node—CPU, SDRAM, networking and storage.

Our experimental setup consisted of two LEAP2
nodes—one sender and one receiver—with their wireless
interfaces set to ad-hoc mode. In each experiment, the re-
ceiver would initiate a 20 MB file transfer, using TCP. The
location of the file in the sender as well as the file’s destina-
tion on the receiver was the NAND flash.Endoscopewas
used on both the sender and the receiver to collect exper-
imental data. In order to synchronize the timelines of the
sender and the receiver for the purposes of data processing,
both nodes were running NTP.

From Section 4.3 we saw that the CPU speed has a sig-
nificant impact in energy consumption when writing to sta-
ble storage. Therefore, we expect the receiver’s energy con-
sumption to depend on the CPU speed. Furthermore, on
the sender side, a lower CPU speed can potentially result in
increased latency, as the CPU might not be able to fill the
network card’s transmit buffers fast enough. Results from



Energy Consumption (Joules)
Min Max

Value CPU SpeedValue CPU Speed
(Snd/Rcv) (Snd/Rcv)

Sender 26.12 208 524 58.87 104 624
Receiver 30.67 208 208 64.21 104 624

Combined 57.35 208 208 95.95 104 624

Table 3. Minimum and maximum sender, receiver and
combined energy consumption and sender - receiver CPU
speed during a 20 MB file transfer over 802.11b.

Section 4.2 indicated that a lower CPU speed can be more
energy efficient, even though latency is increased. However,
in the network file transfer case, the considerable energy
consumption of the wireless interface needs to be taken into
account.. A reduction in latency could result in further en-
ergy savings as the networking subsystem could be placed
into a low-power state (or even powered down) after the file
has been transferred. In order to verify our expectations we
therefore conducted experiments with various CPU speeds,
for both the sender and the receiver.

During the course of our experiments, all available fre-
quency values were explored other than at 416 MHz. It was
discovered that the pcmcia driver for the wireless interface
would not function correctly at this frequency.

5.1 Energy consumption

Table 3 shows the minimum and maximum energy con-
sumption for the sender, the receiver and their combination.
As expected, the energy consumption of the sender is al-
ways less than that of the receiver, since the receiver needs
to write the file in NAND. The sender’s minimum energy
consumption occurs at different speed combinations (sender
at 208 MHz, receiver at 520 MHz) than that of the receiver
(sender at 208 MHz, receiver at 208 MHz). The minimum
combined energy consumption however occurs when both
the sender and the receiver operate at 208 MHz; the same
speed combination that results in the minimum receiver en-
ergy consumption. In that operating point, the sender en-
ergy consumption increases by2.1%. However, if the net-
work were to operate at the sender’s optimal point, the re-
ceiver’s energy consumption would rise by45.7% and the
combined energy consumption would increase by23.4%.

When the sender operates at 104 MHz and the receiver
operates at 624 MHz, the combined energy consumption
is 67.3% higher than the minimum. When the sender op-
erates at its lowest CPU speed, it cannot fill its transmit
buffers fast enough, therefore the network bandwidth is not
fully utilized, leading to an increase in latency. As a result,
the wireless interface on both the sender and the receiver
needs to stay on for longer, therefore increasing the total

Min E.L.P (kJ*sec)
Value CPU Speed

(Snd/Rcv)
Sender 1.15 208 624

Receiver 1.43 208 208
Combined 2.68 208 208

Table 4. Minimum sender, receiver and combined energy
- latency product and sender - receiver CPU speed for a 20
MB file transfer over 802.11b.

energy consumption. At the same time, the receiver oper-
ates at its highest speed but, since the sender cannot trans-
mit data fast enough, the receiver’s CPU is idling (with a
high idle power dissipation) for a considerable amount of
time. When the sender is operating at 624 MHz and there-
fore able to fully utilize the available network bandwidth,
the combined energy consumption is60.8% higher than the
minimum. Similar to the results of Section 4.3, since the
network transfer operation is not CPU-bound for all but the
lowest sender/receiver CPU speeds, the CPU is not fully uti-
lized past a certain point, leading to increased energy con-
sumption. Therefore, selecting appropriate CPU speeds for
both the sender and the receiver can drastically affect the
energy consumption of a network transfer.

Table 4 shows the minimum energy-latency product for
the sender, receiver and their combination. The combined
minimum energy-latency product occurs at the same CPU
speed combination as the minimum combined energy con-
sumption, unlike Sections 4.2 and 4.3. This is a highly de-
sirable result, as it indicates that when both the sender and
the receiver operate at 208 MHz, the energy consumption is
not only minimized but is also optimally utilized to produce
the best energy-latency tradeoff.

5.2 Profiling Network Communication
with Endoscope

The introduction of the new LEAP2 and EMAP2 archi-
tecture and its Energy Endoscope is intended to enable a
WSN system designer to accurately profile energy dissipa-
tion not previously visible. A direct demonstration of thisis
described below, for the fundamental example of data trans-
port between two nodes, where large energy reduction is
obtained in the optimized system without performance loss.

Figure 12 shows the power dissipation over time of the
wireless, CPU, SDRAM and NAND subsystems, for the
sender and the receiver, with both nodes’ CPUs at their
optimal energy consumption operating point of 208 MHz.
The wireless interface draws the largest amount of power
in both the sender and the receiver. Moreover, the differ-
ence in power dissipation of the two interfaces is negligi-
ble, as it is around1mW . More importantly, however, the



wireless power dissipation over time isconstant, regardless
of whether the interface is transmitting, receiving or idle.
This is a well-studied property of 801.11b and in sharp con-
trast with lower-power radios such as 802.15.4. In terms of
energy-efficient system design, this result implies that sig-
nificant energy gains can be achieved by keeping the wire-
less interface in powerdown state most of the time and only
activate it when necessary [13, 2, 14].

In terms of CPU power dissipation, there are some ob-
servable differences between the sender and the receiver.
First, the receiver’s CPU power dissipation is higher than
the sender’s and close to the maximum power dissipation
(279mW ) for the 208 MHz frequency, indicating a higher
CPU utilization on the receiver. As previously noted, this
is due to the fact that the receiver has to store the file in
NAND flash which requires a significant amount of CPU
time as well as SDRAM usage (Section 4.3).

In the first 7 seconds of the file transfer, the receiver’s
CPU power reaches its maximum value, while the sender’s
CPU is at its minimum value (excluding the time when the
CPU is idle). At the same time, SDRAM power draw on the
receiver is low and NAND power draw is high. This indi-
cates that the YAFFS2 filesystem is executing block erases
on NAND during that time, as shown in Section 4.3. During
that time, writes cannot proceed at full speed, so the net-
work bandwidth is not fully utilized; therefore the sender’s
CPU power dissipation is kept fairly low. After the erase op-
erations complete on the receiver, the writes can proceed at
full speed, the network can be fully utilized and the sender’s
CPU and SDRAM power dissipation rises.

SDRAM is used at the receiver for network buffer stor-
age but more importantly, forwrite caching. The combina-
tion of those two operations results in considerable SDRAM
power dissipation at the receiver—up to50mW . NAND
power dissipation over time at the receiver is similar to that
of Figure 8. At the sender, NAND power draw is negligible.

6 Related Work

This section focuses on prior work most closely related
to the energy endoscope in terms of hardware and software.

PASTA [15] was one of the first WSN platforms that
targeted modularity and utilized high performance compo-
nents. It included power monitoring capability and device-
level power management. MPlatform [10] emphasizes a
modular design and includes a custom inter-module bus
protocol designed for high efficiency data transfers. The
previous LEAP [13] platform utilized a microcontroller
architecture for power management functionality. With
LEAP2, we augmented the measurement fidelity for de-
tailed per-component energy usage data and lowered mea-
surement overhead allowing for higher sampling rates over
the previous LEAP design.
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Figure 12. CPU, SDRAM, NAND and wireless power
draw over time during a 20 MB file transfer over 802.11b,
with the sender and the receiver operating at 208 MHz.

PowerTOSSIM [16] is a power-aware extension to the
TOSSIM simulator. It uses an empirically-generated model
of hardware behavior to simulate power dissipation on
mote-class devices. The model is obtained by instrument-
ing and profiling a single node during actual operations. An
oscilloscope was used to measure power dissipation of the
entire mote. Since the oscilloscope does not provide per-
subsystem resolution as EMAP2 does, the authors used a set
of microbenchmarks that exercised each subsystem inde-
pendently. Even though subsystem independence can apply
to a highly integrated, low-power system such as the mote,
our experiments indicate that in a complex 32-bit node such
as LEAP2, subsystem independence cannot be assumed.

Jung et al. [9] introduce a model-based design tool that
can identify the dominant energy-intensive hardware com-
ponents over a set of operating patterns. The authors pro-
pose several operating states where the system components
are operating in different power modes. Measured power
values can be used to populate the model parameters. The
proposed models assume that power dissipation of subsys-
tems is constant among operations. However, our experi-
mental data suggests that this is not always the case, espe-
cially when a DVFS-enabled CPU is present.

SPOT [8] is an integrated add-on board that enables en-
ergy accounting on mote platforms. Charge accumulation is



performed via a voltage to frequency converter circuit, sim-
ilar to a sigma-delta ADC architecture, achieving high res-
olution output and large dynamic range. The SPOT module
also includes a dedicated counter value to provide charge
accumulation timing information. Similar to the first gener-
ation LEAP, SPOT utilizes the I2C serial bus for the read-
back channel. We found the I2C bandwidth limitation to
hinder low overhead measurement at high sample rates and
thus utilized a higher performance memory bus in LEAP2.
Additionally, SPOT is a single-channel design, monitoring
only the mote platform’s input current and cannot easily
support per-subsystem power information.

Triage [2] is a tiered hardware and software architec-
ture for microservers. Similar to LEAP2, Triage uses a
high-power platform with ample resources and a resource-
constrained low-power platform. The low-power platform
schedules tasks to optimize the use of the high-power plat-
form. Scheduling is based on hardware-assisted profiling of
execution time and energy usage. The energy profiler uses
information about the remaining battery energy as well as
energy consumption during a particular operation. How-
ever, the energy profiler does not provide per-subsystem in-
formation or power-tracing capabilities; instead, an external
data acquisition board must be used.

Powerscope [5] combines hardware instrumentation and
kernel software support to provide per-process energy usage
information. Unlikeetop, powerscope uses an external digi-
tal multimeter and a second computer for data collection; in
addition, data processing does not happen in real-time. Fur-
thermore, the power-measuring system itself requires sig-
nificant energy and physical resources to operate, thereby
limiting its application in large-scale systems.

ECOsystem [17] incorporates energy as a “first-class re-
source” in OS scheduling, through thecurrentcyabstrac-
tion. Per-process energy information is critical in ECOsys-
tem as processes need to be charged appropriately, to enable
energy-based scheduling. ECOsystem uses a combination
of battery lifetime sampling (a system-wide energy mea-
surement) and system modelling. Our work is complimen-
tary to ECOsystem since we focus on accurate and detailed
real-time energy measurements as opposed to energy-aware
operating system abstractions and modifications.

7 Conclusion

In this paper we presented the Energy Endoscope, a
new hardware and software architecture that provides un-
precedented visibility into the energy consumption of 32-bit
Wireless Sensor Nodes. We introduced the LEAP2 platform
and its EMAP2 ASIC-based energy accounting unit that al-
lows for low-power, integrated, real-time energy observa-
tion of individual platform components. In addition to the
introduction of a new hardware platform, an associated soft-

ware architecture has been developed, producing two soft-
ware tools,etop and endoscopefor real-time profiling of
several important subsystems such as CPU, memory, stor-
age and networking. The development of the new LEAP2
and EMAP2 ASIC and associated Energy Endoscope soft-
ware systems have successfully met the challenge of pro-
viding real-time, high rate sampling at the hardware subsys-
tem level and with very low overhead in terms of operating
power, processor and memory utilization.

The Energy Endoscope system is now generally appli-
cable to many WSN platforms. Experiments reported here
demonstrate that the Endoscope can reveal the magnitude,
temporal dependence and origin of energy dissipation in
complex systems, where multiple forms of resource con-
tention are present. As an example, our experiments re-
vealed significant differences in temporal dependence of
power dissipation that exist between two different storage
technologies, as well as the considerable effect of CPU
power dissipation on storage and networking operations.
Using Energy Endoscope to profile multiple nodes, this new
knowledge and measurement capability was exploited to
optimize energy efficiency without reduction in communi-
cation performance. By profiling subsystem energy during
a network file transfer, we discovered the optimal CPU op-
erating points for both the sender and receiver that can in-
duce more than60% energy savings. These results have
demonstrated that a wide range of important research op-
portunities appear ahead for optimization of WSN systems.
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