
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Bulk properties and flow structures in turbulent flows

Permalink
https://escholarship.org/uc/item/47k237g4

Author
Kumar, Anuj

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47k237g4
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

BULK PROPERTIES AND FLOW STRUCTURES IN
TURBULENT FLOWS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

APPLIED MATHEMATICS

by

Anuj Kumar

June 2023

The Dissertation of Anuj Kumar
is approved:

Professor Pascale Garaud, Chair

Professor Daniele Venturi

Professor David Goluskin

Professor Maria Colombo

Peter Biehl
Vice Provost and Dean of Graduate Studies



Copyright © by

Anuj Kumar

2023



Table of Contents

List of Figures vii

List of Tables xvii

Abstract xviii

Dedication xxii

Acknowledgments xxiii

1 Introduction 1
1.1 Turbulent flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The onset of turbulence . . . . . . . . . . . . . . . . . . . 1
1.1.2 Turbulent flows in nature and engineering . . . . . . . . . 2
1.1.3 Questions of primary importance . . . . . . . . . . . . . . 3

1.2 Flow modeling and various approaches in turbulent flow . . . . . 4
1.3 Content of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Organization and summary of different chapters . . . . . . . . . . 9

2 The background method 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Understanding the background method through a simple example 17
2.3 Applications of the background method . . . . . . . . . . . . . . . 25

2.3.1 Surface-velocity driven flows . . . . . . . . . . . . . . . . . 25
2.3.2 Pressure driven flow in a conduit . . . . . . . . . . . . . . 27
2.3.3 External flows . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 Rayleigh–Bénard convection . . . . . . . . . . . . . . . . . 28
2.3.5 Internally heated convection . . . . . . . . . . . . . . . . . 34

3 Bound on the drag coefficient for a flat plate in a uniform flow 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Flow configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



3.2.1 Drag coefficient . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 The relationship between drag coefficient and non-

dimensional dissipation . . . . . . . . . . . . . . . . . . . . 43
3.3 Background method formulation . . . . . . . . . . . . . . . . . . . 46
3.4 Upper bound on drag coefficient . . . . . . . . . . . . . . . . . . . 48

3.4.1 Background flow construction . . . . . . . . . . . . . . . . 49
3.4.2 Bounds in subdomain R1 . . . . . . . . . . . . . . . . . . . 52
3.4.3 Bounds in subdomain R2 . . . . . . . . . . . . . . . . . . . 54
3.4.4 Bound on drag coefficient . . . . . . . . . . . . . . . . . . 55
3.4.5 Comparison with observations . . . . . . . . . . . . . . . . 58

3.5 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . 61
Appendix 3.A Proof of Lemma 3.4.1 and 3.4.2 . . . . . . . . . . . . . 66
Appendix 3.B Sketch of the construction of the background flow (3.35) 70
Appendix 3.C Optimal condition for the bound (3.55) . . . . . . . . . 73

4 Pressure-driven flows in helical pipes: bounds on flow rate and
friction factor 76
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Flow configuration . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Coordinate system . . . . . . . . . . . . . . . . . . . . . . 81
4.2.3 Choice of forcing . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.4 Quantities of interest . . . . . . . . . . . . . . . . . . . . . 86

4.3 The background method formulation . . . . . . . . . . . . . . . . 87
4.4 Bounds on flow rate and friction factor . . . . . . . . . . . . . . . 91

4.4.1 Choice of background flow . . . . . . . . . . . . . . . . . . 91
4.4.2 The spectral constraint . . . . . . . . . . . . . . . . . . . . 94
4.4.3 Bound on mean quantities . . . . . . . . . . . . . . . . . . 100

4.5 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . 104
Appendix 4.A The (s, r, φ) coordinate system . . . . . . . . . . . . . . 111
Appendix 4.B A few useful inequalities . . . . . . . . . . . . . . . . . 113
Appendix 4.C Some useful calculations . . . . . . . . . . . . . . . . . 115

4.C.1 Calculation of ∇U . . . . . . . . . . . . . . . . . . . . . . 115
4.C.2 Reason behind choice 4.55 . . . . . . . . . . . . . . . . . . 117

5 Geometrical dependence of optimal bounds in Taylor–Couette
flow 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Energy stability analysis . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 An analytical bound . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5 Optimal bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

iv



5.5.1 Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . 142
5.5.2 Optimal bound results . . . . . . . . . . . . . . . . . . . . 145
5.5.3 Wavenumber spectrum of perturbation . . . . . . . . . . . 151

5.6 A note on the applicability of the background method . . . . . . . 157
5.7 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . 163

5.7.1 Summary and implications . . . . . . . . . . . . . . . . . . 163
5.7.2 Comparison with the DNS . . . . . . . . . . . . . . . . . . 168
5.7.3 Further generalizations . . . . . . . . . . . . . . . . . . . . 169

Appendix 5.A The background method . . . . . . . . . . . . . . . . . 172
Appendix 5.B A useful lemma . . . . . . . . . . . . . . . . . . . . . . 178
Appendix 5.C Analytical solution of the Euler–Lagrange equations in

case 1 at high Reynolds number . . . . . . . . . . . . . . . . . . . 181

6 Analytical bounds on the heat transport in internally heated con-
vection 185
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.3 The auxiliary functional method . . . . . . . . . . . . . . . . . . . 192
6.4 Bound on heat flux in IH1 configuration . . . . . . . . . . . . . . 200
6.5 Bound on heat flux in IH3 . . . . . . . . . . . . . . . . . . . . . . 207
6.6 Discussion and concluding remarks . . . . . . . . . . . . . . . . . 212
Appendix 6.A Proof of Hardy and Rellich inequalities . . . . . . . . . 216

6.A.1 Proof of the Hardy inequality in Lemma 6.3.1 . . . . . . . 216
6.A.2 Proof of the Rellich inequality in Lemma 6.3.2 . . . . . . . 217

7 Three dimensional branching pipe flows for optimal scalar trans-
port between walls 219
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.1.2 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.1.3 Previous work and the present results . . . . . . . . . . . . 226
7.1.4 Overview and philosophy of the proof . . . . . . . . . . . . 229
7.1.5 Organization of the paper . . . . . . . . . . . . . . . . . . 239

7.2 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . 240
7.3 Step III of the construction: Proof of Theorem 7.1.4 . . . . . . . . 242
7.4 Construction of three-dimensional branching pipe flow: Step I and

Step II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.4.1 An overivew of the construction . . . . . . . . . . . . . . . 247
7.4.2 Step I: Construction of the parent copies . . . . . . . . . . 250
7.4.3 Main copies uN and ξN : Proof of Proposition 7.3.1 . . . . 268

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.5.1 Anomalous dissipation in a passive scalar . . . . . . . . . . 277

v



7.5.2 Rayleigh–Bénard convection . . . . . . . . . . . . . . . . . 279
Appendix 7.A A useful estimate for the solution of the Poisson’s equa-

tion: Proof of Proposition 7.3.2 . . . . . . . . . . . . . . . . . . . 281
7.A.1 Proof of Proposition 7.A.2 . . . . . . . . . . . . . . . . . . 287

Appendix 7.B Derivation of the variational principle for heat transfer
(7.11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Appendix 7.C Bounds on a few integrals . . . . . . . . . . . . . . . . 299
Appendix 7.D A few basic lemmas . . . . . . . . . . . . . . . . . . . . 301

8 Nonuniqueness of trajectories on a set of full measure for Sobolev
vector fields 304
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
8.1.2 Organization of the paper . . . . . . . . . . . . . . . . . . 308

8.2 Cantor set construction . . . . . . . . . . . . . . . . . . . . . . . . 308
8.3 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . 317
8.4 Proof of Theorem 8.1.1 and the design of vector field v . . . . . . 321

8.4.1 Modifications required to prove Theorem 8.1.2 . . . . . . . 327
8.5 Blob flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

8.5.1 A stationary blob flow . . . . . . . . . . . . . . . . . . . . 328
8.5.2 A moving blob . . . . . . . . . . . . . . . . . . . . . . . . 330
8.5.3 Assembly of moving blobs: A proof of Proposition 8.4.2 . . 334

8.6 Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . 337

9 Conclusion 339
9.1 Rigorous bounds on bulk quantities . . . . . . . . . . . . . . . . . 340

9.1.1 Summary of the thesis results . . . . . . . . . . . . . . . . 340
9.1.2 Open problems and future prospects . . . . . . . . . . . . 342

9.2 The design of incompressible flows in fluid problems . . . . . . . . 347
9.2.1 Open problems and future prospects . . . . . . . . . . . . 348

vi



List of Figures

2.1 A schematic of Couette flow. . . . . . . . . . . . . . . . . . . . . . 18

2.2 shows the one-dimensional background flow profile as defined in

(2.20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 depicts convection between two differentially heated walls driven

by buoyancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 The solid line in the middle represents the plate. Γ is the domain

enclosed between the plate and the thick dashed rectangular en-

velope (the spanwise direction is not visible in this figure). Also

shown is the division of Γ into the eight subdomains R1 through R8. 50

3.2 a) Streamwise velocity profile at different positions x1. b) Stream-

lines of the background flow field given by (3.35). In both panels,

the dashed line marks the boundary of Γ. . . . . . . . . . . . . . . 52

vii



3.3 The solid black line is the leading order term in the bound (3.58)

on the drag coefficient. For the range of Reynolds number consid-

ered in this figure, a bound obtained by solving (3.55) and (3.56)

would differ only by 0.3% from this leading term at most. The blue

line shows the analytical expression for the drag coefficient in the

laminar regime given by (3.59). The red line shows the empirical

formula for the drag coefficient in the turbulent regime for a smooth

plate given by (3.60). In both of these cases a solid line denotes the

region of validity of the formulae. For 5·105 . Re . 107 the experi-

mental data seems to fall in between these two lines (see Schlichting

and Gersten, 2016, p. 10). The green dashed lines show the drag

coefficient variation for two rough plates with different roughnesses

(see Schlichting and Gersten, 2016, p. 584). . . . . . . . . . . . . 59

3.4 An elementary choice of the background flow (U ): (a) case of flow

past a cylinder and (b) case of flow past a flat plate with nonzero

angle of attack. In both cases the streamlines have to squezee

around the body because of the incompressiblity of the background

flow. As a result, |∇U | = O(δ−2) as opposed to the present case

where |∇U | = O(δ−1) inside the boundary layer. . . . . . . . . . 62

3.5 This figure shows a few flow configurations where the present anal-

ysis can be generalized. The arrow shows the direction of the uni-

form flow, and in all the above configurations, the objects are kept

at zero incidence and are of zero thickness. These configurations

are: (a) a yawed flat plate (top view), (b) a flat plate with irregular

leading edge (top view), and (c) a group of flat plates (side view). 64

3.6 The thick line in the middle is the plate. Γ is the domain enclosed

between the plate and the dashed rectangle (the spanwise direction

is not visible in this figure). The shaded triangular region is RT as

defined in (3.70). Here, p1, p2, and p3 are the points (x1, x2, x3),

(0, x2, x3), and (x2, 0, x3). The point p1 belongs to R1. . . . . . . . 69

viii



3.7 (a) Illustration of the piecewise linear choice of background flow on

top of the plate. Here, Up, the maximum value of the streamwise

component of U and δp denotes the height from the plate where

this value is achieved. (b) Illustration of the region R1, where the

streamfunction Ψ of the background flow U remains to be deter-

mined once the Ψ is constructed on top of the plate. . . . . . . . . 72

4.1 (a) Schematic diagram of a helical pipe with radius Rp, radius of

the centerline helix Rh, and pitch of the centerline helix 2πl. The

dashed line is the axis of rotation of the helical pipe. (b) Illustration

of the coordinate system (s, r, φ) used in this paper. . . . . . . . . 82

4.2 Variation of the streamwise component Us of the background flow

(4.36) across a cross-section of the pipe. In this example, the pipe’s

curvature is κ = 0.5 and torsion is τ = 0.25. The solid black

curve shows the edge of the boundary layer with variable thickness

δg(s, φ). The point O denotes the outer edge of the pipe, i.e., the

point on the cross-section, which is farthest from the axis of rotation

of the helical pipe. The background flow in this figure corresponds

to Λ = 1, and the boundary layer shape g(s, φ) is given by (4.56),

which is the shape obtained in the process of optimizing the bound. 92

4.3 Ratio of the bound on the friction factor for a helical pipe as com-

pared to a straight pipe (λb/λb,st), as a function of curvature κ and

torsion τ . Here, λb is given by (4.74) and λb,st = 27/8. . . . . . . . 103

4.4 Ratio of the bound on the friction factor for a helical pipe as

compared to a straight pipe (λb/λb,st), as a function of the non-

dimensional geometric parameters a and b as defined earlier. . . . 105

ix



4.5 (a) Data from Cioncolini and Santini (2006), showing the friction

factor (λexp) as a function of Reynolds number for four different

helical pipes: (i) κ = 0.028, τ = 0.49×10−3 (▽), (ii) κ = 0.042, τ =

1.87 × 10−3(�), (iii) κ = 0.059, τ = 2.97 × 10−3 (∗), and (iv) κ =

0.143, τ = 11.4×10−3 (×). (b) Scaled friction factor (λexp/I(κ, τ))

as a function of Reynolds number for the same four helical pipes. 107

4.6 Pressure driven flow (a) through a helical pipe with a square cross-

section, (b) through a toroidal pipe with a square cross-section,

(c) through an axially twisted pipe with an elliptical cross-section,

(d) between grooved walls where the grooves are aligned in the

direction of the pressure gradient, (e) through a helical pipe with

varying pitch, and (f) between rough walls (two-dimensional view).

Arrows indicate the direction of the mean flow. . . . . . . . . . . 109

5.1 Panel (a) shows the critical Taylor number Tancc (green line), Ta3D
c

(blue line) and Ta2D
c (red line) as a function of the radius ratio η

and (b) shows a close-up view of the same plot for small η. The

dashed blue line corresponds to the marginally stable axisymmetric

Taylor vortices, while Ta3D
c is continued to be shown with the solid

blue line. Panels (c) and (d) shows the critical Taylor number Ta3D
c

and Ta2D
c normalized by Tancc as a function of η. . . . . . . . . . 131

5.2 Variation of the critical axial wavenumber 2π/Lc and critical az-

imuthal wavenumber mc with radius ratio η for (a) case 2 and (b)

case 3. In panel (a), the critical azimuthal wavenumber changes

from mc = 0 above η = ηs = 0.0556 to mc = 1 below ηs, as

discussed in the main text. . . . . . . . . . . . . . . . . . . . . . 133

x



5.3 Panel (a) shows selected streamlines of the marginally stable 3D

flow and panel (b) shows selected streamlines of the marginally

stable axisymmetric Taylor vortices, in both cases at a radius ratio

(ηs = 0.0556). The corresponding critical Taylor numbers in both

cases are equal. The streamlines are colored according to the mag-

nitude of the velocity. In both the cases the velocity field has been

scaled such that the maximum magnitude is 1. A typical vortex is

shown using relatively thicker lines in both cases. Note that only

half the vortex is shown in the axial direction. . . . . . . . . . . 135

5.4 The optimal background flow Uθ(r) at parameter values Ta = 106

and η = 0.6. The orange color is used for case 1, brown color for

case 2 and blue color for case 3. Also, shown as a black thick line is

the background flow (5.33) used to construct the analytical bound

in §5.4, with the values of Λ, δi and δo given by (5.43) in definition

(5.33). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 The left column shows the optimal bound Nub compensated with

Ta
1
2 in case 1, case 2 and case 3 (top to bottom) as a function

of the Taylor number for a wide range of radius ratios. The right

column shows the same plots but further scaled with the analytical

geometrical scaling χ(η) given by (5.47). The collapse of the curves

at high Taylor numbers suggests that the bound on Nusselt number

Nub asymptotes to cχ(η)Ta
1
2 in all three cases where the unknown

constant c is given in (5.53a-c) . . . . . . . . . . . . . . . . . . . . 147

xi



5.6 The left column shows the wavenumbers of the critical modes in the

optimal perturbation as a function of Ta at η = 0.2, 0.4, 0.6 and 0.8

(top to bottom). The color indicates if the critical mode is active

near the inner cylinder (blue), outer cylinder (red), both cylinders

(green) and in the bulk (black), according to the classification given

in the main text. The blue and red solid lines are the theoretical

predictions for the critical mode with the largest wavenumber ac-

tive near the inner and the outer cylinder, (see equation (5.57)),

respectively. The right column shows the corresponding azimuthal
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7.1 Panel (a) illustrates good and bad strategies to maximize term I

defined in (7.12a-c). In the good scenario, ξ is positive (indicated by
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7.3 Illustration of the branching pipe flow. Panel (a): the parent con-
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7.4 shows a 2D cartoon of the main copy uN . The pipeline P up is
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Abstract

Bulk properties and flow structures in turbulent flows

by

Anuj Kumar

Turbulence is ever-present: from flows in engineering, such as a wake behind a

submarine, the boundary layer over an aircraft wing, and the swirl in an internal

combustion engine, to flows in nature, such as convection in lakes, riffles on rivers

and ocean currents. Turbulence can be found in flows at relatively small scales,

such as blood flow in arteries and while mixing cream in a morning coffee, to flows

at astrophysical scales, for instance, in accretion disks around stars or black holes.

Because of their ubiquitous nature, progress in science and technology often hinges

on progress in research on turbulent flows. In many situations described above,

two lines of inquiry are of most interest. In the first direction, we are interested

in quantities that are the “net” outcome of a fluid system, i.e., bulk quantities

or global mean quantities such as drag force, rate of energy dissipation, mass,

momentum and heat transport and mixing rate, which are usually long-time and

volume averages and therefore depend only on the system’s input parameters such

as viscosity and diffusivity of the fluid, characteristics velocity scale, domain shape.

The second direction, which is complementary to the first one, is the study of

different structures in turbulent flows, for example, quantifying the range of scales

and the energy distribution through this range in turbulent flows. In this thesis,

we study a few problems that are related to and inspired by these two directions of

questioning. While working on a problem, we always try to incorporate different

perspectives: engineering, physics and mathematics. It is our intention to work

at the interface of physical and mathematical fluid dynamics, as there appears to
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be great potential for an exchange of ideas that can eventually benefit both fields.

On the one hand, having knowledge of various phenomenological theories from the

physics literature gives one the advantage in tackling the various pressing problems

considered in the mathematical community. On the other hand, putting various

theoretical predictions on a rigorous mathematical footing can allow us to gain

a deeper understanding of the physical mechanism/phenomenon. In accordance

with this theme, below we describe the problems considered in this thesis, which

is divided into two parts.

In the first part of the thesis, we are interested in quantifying bulk properties of

turbulent flows, such as energy dissipation, drag force, heat and mass transfer. We

obtain rigorous bounds on these quantities using a well-known technique known as

the background method. We consider four problems in the first part: (1) uniform

flow past a flat plate, (2) pressure-driven flow in a helical pipe, (3) Taylor–

Couette flow (flow between two independently rotating concentric cylinders), and

(4) internally heated convection. In the flat plate study, we show that the energy

dissipation rate for uniform flow past a flat plate remains bounded. This is the first

and only example so far of an external flow problem (flow past a body) where such

a bound has been established. In the second and third problems, we derive bound

on mean quantities such as friction factor, volume flow rate, energy dissipation,

torque on the cylinder and angular momentum transport not just as a function

of the principal flow parameter, the Reynolds number, but more importantly, as

a function of the geometry of the domain (i.e., curvature and torsion in the case

of helical pipe flow and the ratio of the radii of two cylinders in Taylor–Couette

flow). These studies are motivated by several engineering applications where the

geometry of the domain plays an important role. In the fourth study, we consider

the problem of convection between two solid boundaries driven by a source of
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internal heating and derive a bound on the mean vertical heat flux, an inquiry

that is motivated, for example, by convection in the earth’s mantle and the sun’s

radiative zone.

In the second part of the thesis, we are concerned with designing incompress-

ible flows that possess some specific desired properties. The first problem in this

direction is related to the optimal heat transport from a hot to a cold wall using a

flow whose enstrophy is bounded by a given constant. The bound on the enstro-

phy can also be thought of as a bound on the power supply needed to generate

this flow (using a body-force in the momentum equation) Navier–Stokes system.

An upper bound on the heat transfer that scales as 1/3-power of the power supply

had formally been derived previously, but whether a flow exists that transports

heat at that rate remained an outstanding question. For this problem, we design

three-dimensional branching flows to prove that the corresponding heat transfer

saturates this known upper bound, which then establishes the exact asymptotic

behavior of the optimal heat transport between two plates. Beyond the math-

ematical proof, our method also reveals why three-dimensional branching flows

are so efficient in transferring heat. Finally, in the second part, we study a prob-

lem related to the nonuniqueness of flow maps in an ODE system for the class

of velocity fields that are divergence-free and belong to Sobolev space W 1,p. We

reprove and improve the known result that had been previously established using

the method of convex integration. Our goal for this problem is simple: provide ex-

plicit constructions and use them to gain insights into the exact mechanism of the

nonuniqueness of solutions of the ODE and the PDEs, transport and continuity

equation with the same vector field. Beyond proving the nonuniqueness results,

we anticipate that such explicit constructions will be helpful for designing veloc-

ity fields in the convection-diffusion equation or the body-forced Navier–Stokes
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equation to demonstrate the phenomenon of anomalous dissipation, an intrinsic

characteristic of turbulent flows.
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Chapter 1

Introduction

1.1 Turbulent flows

1.1.1 The onset of turbulence

Turbulence is usually described as the chaotic motion of a fluid characterized

by the presence of a wide range of flow scales, increased mixing of a scalar field,

high rate of momentum transport and large energy dissipation rates. The proper-

ties described above can only be obtained when the flow is sufficiently energetic.

Indeed, at low flow speeds, the fluid does not possess enough inertia to overcome

the damping effect of viscosity. As a result, the flow stays “organized,” which we

call laminar flow. The momentum transport in laminar flows is primarily through

viscous diffusion and is slower than in turbulent flows. As the flow speed becomes

sufficiently large, the damping effect of viscosity is no longer adequate to keep the

fluid’s inertia in check, leading to the disorganized motion of the fluid, which we

call turbulent flow. The transition from laminar to turbulent flows at intermediate

speeds is often complex and can happen in several ways depending on the forces
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applied to generate the flow and geometry of the domain. In some cases, the flow

slowly becomes more intricate with increasing flow speed, undergoing a series of

bifurcations that are each associated with a particular instability, and eventually

becoming turbulent. Examples include the flow between two concentric cylinders

(Taylor–Couette flow) with the inner cylinder rotating (Coles, 1965; DiPrima and

Swinney, 1981). In other cases, such as pipe flow, the transition from laminar

flow to turbulence is more sudden and happens at a certain flow speed threshold

(Barkley, 2016).

1.1.2 Turbulent flows in nature and engineering

Turbulence is ever-present: from flows in engineering, such as a wake behind a

submarine, the boundary layer over an aircraft wing, and the swirl in an internal

combustion engine, to flows in nature, such as convection in lakes, riffles on rivers

and ocean currents. Turbulence can be found in flows at relatively small scales,

such as blood flow in arteries and while mixing cream in a morning coffee, to flows

at astrophysical scales as, for instance, in accretion disks around stars or black

holes. Because of their ubiquitous nature, progress in science and technology often

hinges on progress in research on turbulent flows.

For example, the answer to one of the leading questions in astrophysics, which

is about the formation of a star, rests on determining the transport of angu-

lar momentum rate in turbulent accretion disks (Shakura and Sunyaev, 1973; Ji

et al., 2006; Avila, 2012; Balbus, 2017) and is currently an active area of research.

Understanding energy and mass transfer by thermal convection is critical to un-

derstanding stellar evolution (Spruit et al., 1990). In the oceans, turbulent mixing

is required to maintain the meridional overturning circulation, which in turn, is
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responsible for the state of the climate (Munk and Wunsch, 1998; Wunsch and

Ferrari, 2004). Turbulence also plays a crucial role in increased mixing and brings

nutrients from the bottom to the surface in the oceans, an essential component

for plankton growth (Caldwell and Mourn, 1995). From the engineering side, the

design of airfoils, ship hulls, and rockets requires the calculation of the turbu-

lent aerodynamic drag (Milgram, 1998; Pena and Huang, 2021). The design of

heat exchangers and steam generators often involves the analysis of friction fac-

tors and heat transfer coefficients for turbulent flow in a helical coil (Naphon and

Wongwises, 2006; Vashisth et al., 2008).

1.1.3 Questions of primary importance

In many situations concerning turbulent flows, such as the ones described

above, we are often interested in quantities that are the “net” outcome of a fluid

system, i.e., bulk quantities or global mean quantities such as drag force, rate of

energy dissipation, mass, momentum and heat transport and mixing rate, which

are usually long-time and volume averages and therefore depend only on the sys-

tem’s input parameters such as viscosity and diffusivity of the fluid, characteristic

velocity scale and domain shape. The fundamental question in turbulence research

is to quantify how these bulk quantities depend on these system parameters. The

practical importance of answering this question can hardly be overstated, and

there is rarely a study on turbulent flow that does not try to answer this ques-

tion in one way or another. Complementary to this question, another significant

research direction is the qualitative and quantitative study of turbulent flow struc-

tures. For example, given a fluid system, one is often interested in characterizing

the range of scales of different flow structures and how the energy is distributed
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across the scales. The study of bulk properties and flow structure in turbulent

flows are, in fact, closely related to one another. Having the knowledge of flow

structures, one can predict the bulk properties associated with the flow (Pope,

2000). Similarly, knowing the bulk properties, one can try to infer the flow struc-

ture by simply asking the question: what essential features must the flow possess

to match the required values of bulk properties (Lumley, 1992; Vassilicos, 2015)?

To cast some of these important questions on a more quantitative level, we now

turn to the mathematical description of turbulent flows.

1.2 Flow modeling and various approaches in

turbulent flow

The model of fluid motion that is extensively used in many scenarios inspired

by previously described natural and engineering situations are the incompressible

Navier–Stokes equations:

∇ · u = 0, (1.1a)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∆u. (1.1b)

In these equations, u is the velocity field, and p is the potential (commonly re-

ferred to as pressure but is different from thermodynamic pressure) responsible

for maintaining the velocity field divergence-free. The quantities ρ (density) and

ν (viscosity) are the fluid properties. Equation 1.1a is the mass conservation, and

1.1b is Newton’s second law of motion written down for a small fluid volume.

After appropriately scaling the variables, only one (nondimensional) parameter
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that governs the flow dynamics emerges,

Re =
[U ][L]

ν
,

known as the Reynolds number. Here [L] is a typical length scale, and [U ] is

a characteristic velocity scale of the flow. The Reynolds number is the ratio

of the diffusive time scale to the convective time scale and can be seen as a

competition between the fluid’s inertia to the damping effect of the viscosity.

At small Reynolds numbers, the flow is laminar, and it becomes turbulent at

sufficiently large Reynolds numbers.

Given an initial condition of the velocity field, the Navier–Stokes equations

supposedly describe the evolution of the flow. However, knowing the exact form

of these equations does not necessarily allow us to answer the questions raised in

section 1.1.3 about bulk properties and flow structure exactly. Indeed, the main

difficulty is that the solutions of the Navier–Stokes equation are usually chaotic at

high Reynolds numbers (consistent with the appearance of turbulence) and there-

fore lack analytical solutions in that regime. In such situations, one can make

progress using one or a combination of the following approaches: field observa-

tions, performing experiments or direct numerical simulations (DNS), developing

phenomenological theories and, finally, proving precise mathematical statements.

In some instances, experimental or numerical observations are sufficient to pre-

dict the behavior of bulk properties as a function of system parameters. For ex-

ample, in large-scale body-forced flows or flows past a blunt object, there is plenty

of evidence that the rate of energy dissipation becomes independent of viscosity

at large Reynolds number (Roshko, 1961; Sreenivasan, 1984; Sreenivasan and An-

tonia, 1997; Kaneda et al., 2003), a phenomenon known as anomalous dissipation

5



(sometimes also dubbed as “zeroth law of turbulence” because of its fundamental

nature). Using this observation as an assumption, along with the assumptions of

homogeneity, isotropy and self-similarity, Kolmogorov further predicted the struc-

ture of the flow in his 1941 theory of isotropic turbulence (Kolmogorov, 1941a,b,

1991).

However, there are many instances where experiments or numerical simula-

tions are insufficient to predict bulk properties or the flow structure. For exam-

ple, in the design of many engineering applications, one crucial question is how

bulk properties vary as a function of the shape of the domain in a fully turbulent

regime (Duvigneau et al., 2003; Kim and Choi, 2005; Mohammadi and Pironneau,

2009; Mooneghi and Kargarmoakhar, 2016). Answering this question, especially

for complex geometries, is very challenging and costly for both experiments and

numerical computations as it requires building a new apparatus or starting a new

simulation every time for a different geometry. Likewise, modeling the conditions

relevant to astrophysical and geophysical flows in a laboratory setting or direct

numerical simulations is generally very difficult or impossible. The first reason is

that canonical problems associated with astrophysical and geophysical flows typ-

ically involve many different physical processes that are characterized by several

input parameters. In nondimensional form, it could be the Reynolds number,

the Péclet number, one or several diffusivity ratios, the Rossby number, the mag-

netic Reynolds number, etc. In addition, the values of these parameters relevant

to astrophysical or geophysical flows are usually extreme, making it difficult for

experiments or numerical simulations to achieve them in practice.

With sparse experimental and numerical data, phenomenological theories and

empirical relations are often proposed as a less-than-ideal but necessary way for-

ward. For example, the mixing length theory in stellar convection (Vitense, 1953;
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Böhm-Vitense, 1958; Gough, 1977), α-viscosity model in accretion disks (Shakura

and Sunyaev, 1973; Pringle, 1981), ocean diffusivity models and k − ε model for

turbulence in engineering (Mohammadi and Pironneau, 1993). These theories and

relations are frequently based on unwarranted assumptions that may not always

be verifiable through observations.

The content of this thesis is inspired and guided by an overarching aim of

revisiting and grounding these theories and empirical relations into a mathemat-

ically rigorous framework to a feasible extent. While pursuing this course, we are

interested in better understanding and articulating the physical mechanism of a

process or phenomenon with the goal of using this new knowledge in real-world

applications.

1.3 Content of the thesis

In this thesis, we attempt to bring together ideas from a broad range of

disciplines, engineering, physics, analysis and numerical computations to make

progress on the matter. Our work can be roughly divided into two broad cate-

gories. The first aspect of the work looks at obtaining rigorous bounds on turbu-

lent bulk quantities, such as energy dissipation, drag force, heat and mass transfer,

as a function of system parameters such as viscosity, thermal diffusivity and do-

main shape. As mentioned before, in a turbulent regime, obtaining a mathematical

expression of the solution to the Navier–Stokes equation is not possible. However,

in the absence of a solution, it is still possible to formally bound a resultant bulk

quantity, either from above (upper bound) or from below (lower bound). These

bounds are obtained as a function of the parameter(s) involved in the problem

directly from the governing equations without making any assumption. The main
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advantage of obtaining such bounds is that they are valid in extreme parameter

regimes often of interest to engineering and naturally occurring flows.

On this important topic of bounding theory, we present four studies. One of

these studies is on uniform flow past a flat plate at a large Reynolds number, where

we obtain an upper bound on the energy dissipation rate (equivalently a bound

on the drag coefficient), which is constant in the Reynolds number. This study

was partially motivated by engineering considerations such as flow past an airfoil.

The two subsequent studies are on pressure-driven helical pipe flow and Taylor–

Couette flow (flow between two concentric cylinders), where we bound energy

dissipation, volume flow rate, friction factor or angular momentum transport as a

function of the geometrical parameters at high Reynolds numbers. These studies

were motivated by several fluid-related engineering applications, where domain

shapes play an essential role in the design. The final study from the first aspect

of our work concerns bounds on heat transport in internally heated convection, a

study inspired by convection in the Earth’s mantle, radiative planet atmospheres

and exothermic chemical reactions in various engineering flows. We use the well-

known background method to obtain bounds in all four studies and present it in

detail in Chapter 2.

The second aspect of our work looks at flow design problems, that is, the

construction of incompressible fluid flows that satisfy a constraint (which can be

thought of as a cost to generate these flows) and have given desired properties. We

have been interested in two different yet related problems along those lines. The

first one is related to optimal scalar transport, a problem in the community some-

times also known as wall-to-wall optimal transport (Hassanzadeh et al., 2014). In

this work, we design an incompressible flow field, with a constraint on the mean

enstrophy, that maximizes the advective transport of heat between differentially
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heated parallel plates. This problem can equivalently be seen as the design of

forcing in the Navier–Stokes equation, such that the resultant flow maximizes the

transport of a passive temperature between two differentially heated walls for a

given power supply budget. We demonstrate that the optimal flows take the form

of self-similar “branching flows”, and explain the physical reason why this should

be the case.

In the second part, we use some of the ideas of flow design inspired by optimal

heat transport flows to prove a theorem on the nonuniqueness of flow maps in a

system of ODEs for “rough” vector fields. The problem is related to the modern

theory of ordinary differential equations (DiPerna and Lions (1989) theory).

1.4 Organization and summary of different

chapters

Even though there is a variety in the choice of flow problems considered in this

thesis, there is one common theme that runs through every chapter and unites the

whole thesis. It is creation: the construction of incompressible flows, whether it is

the background flow to obtain bounds or flow design for optimal heat transport or

to prove the nonuniqueness of flow map in an ODE system. The novel results we

have obtained that have been published, submitted, or are about to be submitted

for publication, are contained in the following chapters:

Chapter 3: Bound on the drag coefficient for a flat plate in a uniform flow

Based on: A. Kumar and P. Garaud [2020]

In Chapter 3, we look at the classical problem of uniform flow past a flat plate

of finite length at zero angle of incidence and use the background method to obtain
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a bound on the drag coefficient. The background method has been a successful

tool in obtaining strict bounds on global mean quantities for several prototypical

fluid problems. However, all applications of this method until now have focused

on flows confined between solid boundaries. An important class of problems that,

by contrast, has received no attention is the class of external flows, i.e., flow

past a body. In this context, obtaining the dependence of the drag coefficient on

the Reynolds number is of crucial relevance for many engineering applications.

Assuming a statistically steady state and appropriate far-field decay rates for

the flow variables, in this chapter, we show that at large Reynolds numbers, the

drag coefficient is bounded by a constant. The bound obtained thus is within

a logarithmic factor of what phenomenological theories, based on experimental

data, predict.

Chapter 4: Pressure-driven flows in helical pipes: bounds on flow rate and

friction factor

Based on: A. Kumar [2020]

Chapter 4 investigates pressure-driven flow in a helical pipe from a bounding

perspective. We use the background method to obtain a rigorous lower bound

on the volume flow rate through a helical pipe in the limit of a large Reynolds

number. As a consequence, we also obtain an equivalent upper bound on the

friction factor. These bounds are also valid for toroidal and straight pipes as

limiting cases. Using a two-dimensional background flow with varying boundary

layer thickness along the circumference of the pipe, we obtain these bounds as

a function of the curvature and torsion of the pipe and therefore capture the

geometrical aspects of the problem. In this chapter, we also present a sufficient

criterion for determining the class of pressure-driven flow and surface-velocity-
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driven flow problems that can be tackled using the background method.

Chapter 5: Geometrical dependence of optimal bounds in Taylor–Couette flow

Based on: A. Kumar [2022]

This chapter is concerned with the optimal upper bound on mean quantities

(torque, dissipation and the Nusselt number) obtained in the framework of the

background method for the Taylor–Couette flow with a stationary outer cylinder.

In this chapter, we also study the energy stability analysis of the laminar flow. We

demonstrate that below radius ratio 0.0556, the marginally stable perturbations

are not the axisymmetric Taylor vortices but rather a fully three-dimensional flow.

The main result of the chapter is an analytical expression of the optimal bound

as a function of the radius ratio. To obtain this bound, we begin by deriving a

suboptimal analytical bound using analysis techniques. We use a definition of the

background flow with two boundary layers, whose relative thicknesses are opti-

mized to obtain the bound. In the limit of high Reynolds number, the dependence

of this suboptimal bound on the radius ratio (the geometrical scaling) turns out

to be the same as that of numerically computed optimal bounds in three different

cases: (1) the perturbed flow only satisfies the homogeneous boundary conditions

but need not be incompressible; (2) the perturbed flow is three-dimensional and in-

compressible; (3) the perturbed flow is two-dimensional and incompressible. We

compare the geometrical scaling with the observations from the turbulent Tay-

lor–Couette flow, and find that the analytical result indeed agrees well with the

available direct numerical simulations data. In this chapter, we also dismiss the

applicability of the background method to certain flow problems and therefore

establish the limitation of this method.
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Chapter 6: Analytical bounds on the heat transport in internally heated

convection

Based on: A. Kumar, A. Arslan, G. Fantuzzi, J. Craske and A. Wynn [2022]

In this chapter, we obtain an analytical bound on the mean vertical convective

heat flux 〈wT 〉 between two parallel boundaries driven by uniform internal heat-

ing. We consider two configurations, one with both boundaries held at the same

constant temperature, and the other one with a top boundary held at constant

temperature and a perfectly insulating bottom boundary. For the first configura-

tion, Arslan et al. (J. Fluid Mech. 919:A15, 2021) recently provided numerical

evidence that Rayleigh-number-dependent corrections to the only known rigor-

ous bound 〈wT 〉 ≤ 1/2 may be provable if the classical background method is

augmented with a minimum principle stating that the fluid’s temperature is no

smaller than that of the top boundary. Here, we confirm this fact rigorously

for both configurations by proving bounds on 〈wT 〉 that approach 1/2 exponen-

tially from below as the Rayleigh number is increased. The key to obtaining

these bounds are inner boundary layers in the background fields with a particular

inverse-power scaling, which can be controlled in the spectral constraint using

Hardy and Rellich inequalities. These allow for qualitative improvements in the

analysis not available to standard constructions.

Chapter 7: Three dimensional branching pipe flows for optimal scalar

transport between walls

Based on: A. Kumar [2022] arxiv: 2205.03367 , in preparation)

In this chapter, we look at the problem of “wall-to-wall optimal transport” in which

we attempt to maximize the transport of a passive temperature field between hot

12

https://doi.org/10.1017/jfm.2021.360


and cold plates using divergence-free velocity fields in the advection-diffusion equa-

tion subject to an enstrophy constraint. We are interested in the design of forcing

in the Navier–Stokes equation such that the resultant flow maximizes the heat

transfer between two differentially heated walls for a given power supply budget.

Previous work established that heat transport cannot scale faster than 1/3-power

of the power supply. Recently, Tobasco & Doering (Phys. Rev. Lett. vol.118,

2017, p.264502) and Doering & Tobasco (Comm. Pure Appl. Math. vol.72, 2019,

p.2385–2448) constructed self-similar two-dimensional steady branching flows sat-

urating this bound up to a logarithmic correction. This logarithmic correction ap-

pears to arise due to a topological obstruction inherent to two-dimensional steady

branching flows. We present a construction of three-dimensional “branching pipe

flows” that eliminates the possibility of this logarithmic correction and therefore

identifies the optimal scaling as a clean 1/3-power law. Our flows resemble pre-

vious numerical studies of the three-dimensional wall-to-wall problem by Motoki,

Kawahara & Shimizu (J. Fluid Mech. vol.851, 2018, p.R4). We also discuss

the implications of our result to the heat transfer problem in Rayleigh–Bénard

convection and the problem of anomalous dissipation in a passive scalar.

Chapter 8: Nonuniqueness of trajectories on a set of full measure for Sobolev

vector fields

Based on: A. Kumar [2023] (arxiv: 2301.05185, in preparation)

In the theory of DiPerna–Lions for Sobolev vector fields W 1,p, an important ques-

tion was whether the uniqueness of regular Lagrangian flow could be implied by

proving almost everywhere uniqueness of trajectories. In this work, we construct

an explicit example of divergence-free vector fields in W 1,p with p < d such that

the set of initial conditions for which trajectories are not unique is a set of full
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measure. To prove this, we build a vector field u and a corresponding flow map

Xu such that after finite time T > 0, the flow map takes the whole domain T
d to

a Cantor set CΦ, i.e., Xu(T,Td) = CΦ and the Hausdorff dimension of this Cantor

set is strictly less than d. The flow map Xu constructed as such is not a regular

Lagrangian flow. The nonuniqueness of trajectories on a full measure set is then

deduced from the existence of the regular Lagrangian flow in the DiPerna–Lions

theory.
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Chapter 2

The background method

2.1 Introduction

The background method is an important tool in fluid dynamics that enables

us to obtain bounds on the global mean quantities such as drag force, energy

dissipation, heat and mass transfer in turbulent flows. Doering and Constantin

first developed it in a series of four papers (Doering and Constantin, 1992, 1994;

Constantin and Doering, 1995; Doering and Constantin, 1996). Their first two

papers considered the Couette flow system (flow between two parallel boundaries

subject to surface-velocity differential), where they showed that the rate of energy

dissipation stays bounded in the limit of vanishing viscosity, or in other words,

the upper bound is independent of viscosity. While this statement is relatively

intuitive given the vast range of experiments confirming it in various flow setups

(Dryden, 1943; Cadot et al., 1997; Sreenivasan, 1984, 1998; Pearson et al., 2002;

Kaneda et al., 2003), proving was non-trivial, and in fact, such proofs are generally

quite rare even today. For example, there is presently no equivalent proof that

the energy dissipation rate stays bounded (by a quantity that is independent
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of viscosity) for uniform flow past a sphere or cylinder. In their second paper,

Constantin and Doering looked at pressure-driven flow in a channel and obtained

a lower bound on the volume flow rate that is proportional to the square root of the

pressure differential and independent of viscosity. Their final paper investigated

Rayleigh–Bénard convection (the motion of fluid between two differentially heated

walls driven by buoyancy), where they derived an upper bound on the Nusselt

number (the non-dimensional heat transfer), which is proportional to the square

root of Rayleigh number (a parameter governing the intensity of convection).

Doering and Constantin were not the first to obtain bounds on global mean

quantities in fluid mechanics: this concept goes back to Howard (Howard, 1963,

1972). In his 1963 paper, Howard obtained an upper bound on the Nusselt num-

ber for the Rayleigh–Bénard problem under a statistical stationarity assumption.

His bound is similar to that of Doering and Constantin but with a different pref-

actor. (Busse, 1969, 1970) further extended Howard’s approach to Couette flow

and pressure-driven flows. (Kerswell, 1997, 1998) showed that the best bounds ob-

tained using the Howard–Busse technique and the Doering–Constantin technique

are one and the same for turbulent shear flows. However, the Doering–Constantin

approach is much more flexible than the Howard–Busse approach and does not

require any assumption about the statistical stationarity of the flow. As a result,

the Doering–Constantin background method has become more popular and has

been used in several canonical flow configurations, some of which we discuss below.
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2.2 Understanding the background method

through a simple example

To understand the background method, we consider the example of the plane

Couette flow, which is the flow of fluid between two parallel plates, where the

top plate moves with the velocity U0 and the bottom plate is stationary. Figure

2.1, shows the configuration. We study the problem using the incompressible

Navier–Stokes equations

∇ · u = 0, (2.1a)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∆u, (2.1b)

where u = (ux, uy, uz) is the velocity field, p denotes the pressure, ν is the

viscosity of the fluid and ρ is the density. We assume that the flow satisfies

periodic boundary conditions in the horizontal directions. The solid boundaries

are situated at z = −H/2 and z = H/2. Therefore the domain of interest is

Ω := TLx × TLy × (−H/2, H/2). The flow field satisfies the following boundary

condition:

u = (0, 0, 0) at z = −H/2, u = (U0, 0, 0) at z = H/2. (2.2)

The quantity that we are interested in is the rate of energy dissipation given by

εν := ν〈|∇u|2〉, (2.3)
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Figure 2.1: A schematic of Couette flow.

where the angle brackets denote the long-time volume average:

〈[ · ]〉 := −
∫

Ω
[ · ] dx :=

1

|Ω|
∫

Ω
[ · ] dx, where [ · ] := lim sup

T→∞

1

T

∫ t=T

t=0
[ · ] dt.

(2.4)

For the Couette flow system, it is easy to show by considering the long-time

average kinetic energy equation that the rate of energy dissipation is linked to the

rate of momentum transport as follows:

εν =
U0

HLxLy

∫ Lx

0

∫ Ly

0

[
uxuz − ν

∂ux
∂z

]

z=z0

dxdy

︸ ︷︷ ︸
Momentum Transport

, (2.5)

and therefore can also be related to the average force applied at the top wall to

maintain a constant speed U0:

εν =
U0

HLxLy
F, (2.6)

where

F = −ν
∫ Lx

0

∫ Ly

0

∂ux
∂z

∣∣∣∣∣
z=H/2

dxdy. (2.7)
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We now give a presentation of the background method to obtain an upper

bound on the rate of energy dissipation. Using the relations (2.5) and (2.6),

we will then also be able to obtain equivalent upper bounds on the momentum

transport from one wall to the other, and on the force required to maintain the

top plate at constant speed U0. Our presentation here is an adaptation of the one

given in ((Doering and Constantin, 1994)).

We start by writing the total flow u as a sum of two divergence-free flow fields:

(1) v, which we call the perturbed flow and (2) U , which we call the background

flow. The background flow U satisfies the same boundary conditions as the total

flow u:

U = (0, 0, 0) at z = −H/2, U = (U0, 0, 0) at z = H/2. (2.8)

As a result, the perturbed flow satisfies the homogeneous version of the boundary

conditions:

v = (0, 0, 0) at z = −H/2, H/2. (2.9)

We choose the background flow U to be independent of time. Using the decom-

position u = U + v in the governing equations (2.1) leads to

∇ · v = 0, (2.10a)

∂v

∂t
+ U · ∇U + U · ∇v + v · ∇U + v · ∇v = −1

ρ
∇p+ ν∆v + ν∆U . (2.10b)

Next, we obtain the equation for the evolution of the kinetic energy of the per-

turbed flow. We first take the dot product of equation (2.10b) with v and using
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the divergence-free condition (2.10a), we obtain:

1

2

∂|v|2
∂t

+ (U · ∇U) · v +
1

2
∇ · (|v|2U ) + (v · ∇U ) · v +

1

2
· ∇(|v|2v)

= −1

ρ
∇ · (pv) +

ν

2
∆|v|2 − ν|∇v|2 + ν∇ · (v · ∇UT ) − ν∇U : ∇v. (2.11)

In the index notation,

(v · ∇UT )i = vj∂iUj and ∇U : ∇v = ∂ivj∂iUj. (2.12)

Next, we use the identity

|∇u|2 = |∇U |2 + 2∇U : ∇v + |∇v|2, (2.13)

in (2.11), to obtain

1

2

∂|v|2
∂t

+ (U · ∇U ) · v +
1

2
∇ · (|v|2U) + (v · ∇U) · v +

1

2
· ∇(|v|2v) +

ν

2
|∇u|2

= −1

ρ
∇ · (pv) +

ν

2
∆|v|2 − ν

2
|∇v|2 + ν∇ · (v · ∇UT ) +

ν

2
|∇U |2. (2.14)

We then perform the volume average and a finite time average (from t = 0 to T )

of (2.14), which leads to

1

2T

[
1

|Ω|
∫

Ω
|v|2 dx

]

t=T

+
ν

2
〈|∇u|2〉T =

1

2T

[
1

|Ω|
∫

Ω
|v|2 dx

]

t=0

+

ν

2

1

|Ω|
∫

Ω
|∇U |2 dx −

〈
ν

2
|∇v|2 + (U · ∇U) · v + (v · ∇U ) · v

〉

T
. (2.15)

Here, 〈 · 〉T denotes the finite-time volume average. Taking the limit T → ∞
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yields

ν

2
〈|∇u|2〉 ≤ ν

2

1

|Ω|
∫

Ω
|∇U |2 dx −

〈
ν

2
|∇v|2 + (U · ∇U ) · v + (v · ∇U ) · v

〉
.

(2.16)

Finally, taking v to be any divergence-free vector field that satisfies homogeneous

boundary conditions and taking the supremum of the right-hand side leads to

εν ≤

sup
v(x)

∇·v=0,
v|∂Ω=0

(
ν−
∫

Ω
|∇U |2 dx − ν−

∫

Ω
|∇v|2 dx − 2−

∫

Ω
(U · ∇U ) · v dx

−2−
∫

Ω
(v · ∇U ) · v dx

)

= ν−
∫

Ω
|∇U |2 dx − inf

v(x)
∇·v=0,
v|∂Ω=0

HU (v), (2.17)

where HU is given by

HU := ν−
∫

Ω
|∇v|2 dx

︸ ︷︷ ︸
I

+ 2−
∫

Ω
(U · ∇U ) · v dx

︸ ︷︷ ︸
II

+ 2−
∫

Ω
(v · ∇U) · v dx

︸ ︷︷ ︸
III

. (2.18)

The goal at this point is to choose a background flow U such that the functional

HU is positive semi definite (i.e., HU (v) ≥ 0 for any divergence-free v that satisfies

homogeneous boundary conditions), which would then imply a bound on the rate

of energy dissipation:

εν ≤ ν−
∫

Ω
|∇U |2 dx. (2.19)

A simple, traditional choice is to select a background flow that is unidirectional:
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Figure 2.2: shows the one-dimensional background flow profile as defined in
(2.20)

.

U = (Ux(z), 0, 0). Furthermore, we choose Ux(z) so that the background flow gra-

dient is non-zero only in thin boundary layers of thickness δ next to the boundaries.

The reason for choosing such a background flow is that it allows us to bound sign

indefinite terms II and III in (2.18) by the only positive term, I. In particular,

we choose

Ux(z) =





U0H
4δ

(
1 + 2z

H

)
if − H

2
< z ≤ −H

2
+ δ,

U0

2
if − H

2
+ δ < z < H

2
− δ,

U0 − U0H
4δ

(
1 − 2z

H

)
if H

2
− δ ≤ z < H

2
,

(2.20)

where the boundary layer thickness δ is a free parameter at this point. Figure

2.2 shows the selected background profile. For this choice of background flow, the

functional HU simplifies to

HU =

1

HLxLy

∫ Lx

0

∫ Ly

0

[
ν
∫ H

2

− H
2

|∇v|2dz +
U0

δ

∫ − H
2

+δ

− H
2

vxvz dz +
U0

δ

∫ H
2

H
2

−δ
vxvz dz

]
dxdy.

(2.21)
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Next, using a simple application of the Cauchy–Schwarz and Young’s inequality,

we see that

∣∣∣∣∣

∫ − H
2

+δ

− H
2

vxvz dz

∣∣∣∣∣ ≤
(∫ − H

2
+δ

− H
2

v2
x dz

) 1
2
(∫ − H

2
+δ

− H
2

v2
z dz

) 1
2

,

≤ 1

2

∫ − H
2

+δ

− H
2

v2
x dz +

1

2

∫ − H
2

+δ

− H
2

v2
z dz. (2.22)

We then use the fundamental theorem of Calculus to write

vx =
∫ z

− H
2

∂vx
∂z

dz′, (2.23)

which implies, for any z ∈ (−H
2
,−H

2
+ δ], that

|vx| ≤
∫ z

− H
2

∣∣∣∣∣
∂vx
∂z

∣∣∣∣∣ dz
′

≤


∫ z

− H
2

∣∣∣∣∣
∂vx
∂z

∣∣∣∣∣

2

dz′




1
2 (∫ z

− H
2

1dz′
) 1

2

≤
√

z +
H

2



∫ − H

2
+δ

− H
2

∣∣∣∣∣
∂vx
∂z

∣∣∣∣∣

2

dz′




1
2

. (2.24)

Squaring both sides, and integrating in z leads to

∫ − H
2

+δ

− H
2

v2
x dz ≤ δ2

2

∫ − H
2

+δ

− H
2

∣∣∣∣∣
∂vx
∂z

∣∣∣∣∣

2

dz′. (2.25)

In a similar way, we can also find that

∫ − H
2

+δ

− H
2

v2
z dz ≤ δ2

2

∫ − H
2

+δ

− H
2

∣∣∣∣∣
∂vz
∂z

∣∣∣∣∣

2

dz′. (2.26)
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Using (2.25) and (2.26) in (2.22), we obtain

∣∣∣∣∣

∫ − H
2

+δ

− H
2

vxvz dz

∣∣∣∣∣ ≤ δ2

4

∫ − H
2

+δ

− H
2



∣∣∣∣∣
∂vx
∂z

∣∣∣∣∣

2

+

∣∣∣∣∣
∂vz
∂z

∣∣∣∣∣

2

 dz′ ≤ δ2

4

∫ − H
2

+δ

− H
2

|∇v|2dz′.

(2.27)

In a similar way, one can show

∣∣∣∣∣

∫ H
2

H
2

−δ
vxvz dz

∣∣∣∣∣ ≤ δ2

4

∫ H
2

H
2

−δ
|∇v|2dz′. (2.28)

Finally, using (2.27) and (2.28) in (2.21) gives

HU ≥
(
ν − δ

4
U0

)
−
∫

Ω
|∇v|2 dx. (2.29)

This expression immediately shows that as long as we choose

δ ≤ 4ν

U0

, (2.30)

then the functional HU is positive semi definite. At the same time, the bound on

the rate of energy dissipation can be calculated to be

εν ≤ νU2
0

2δH
. (2.31)

Therefore, we choose δ = 4ν/U0 to lower this bound as much as possible, which

gives

εν ≤ 1

8

U3
0

H
. (2.32)
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The bound obtained by (Doering and Constantin, 1994)

εν ≤ 1

8
√

2

U3
0

H
, (2.33)

is slightly better than the one derived here. In obtaining their bound, Doering

and Constantin made partial use of the incompressibility condition satisfied by the

perturbed flow, which we did not do here. An even smaller prefactor, correspond-

ing to the best possible bound in the framework of the background method, can

be obtained numerically by setting up an optimization problem and solving the

corresponding Euler–Lagrange equations numerically. This was done by (Plasting

and Kerswell, 2003) (see also (Kumar, 2022a)), who showed that

εν ≤ 0.008553
U3

0

H
. (2.34)

2.3 Applications of the background method

Since its initial introduction, there have been several studies carried out using

the background method. In this section, we discuss many important examples

of fluid systems where the background method has found application. We also

note that an excellent review concerning the background method was recently

published by (Fantuzzi et al., 2022).

2.3.1 Surface-velocity driven flows

As the name suggests, a surface-velocity-driven flow is a fluid flow in a domain

with impermeable boundaries with prescribed tangential velocity conditions. The

Couette flow example given above falls under this category.
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Another example of a surface-velocity-driven system is the Taylor–Couette

flow, which is the flow of fluid between two independently rotating cylinders.

(Constantin, 1994) first looked at this problem and obtained a bound on the

energy dissipation and the mean torque on the inner cylinder. More recently,

(Ding and Marensi, 2019) and (Kumar, 2022a) studied Taylor–Couette flow (where

only the inner cylinder rotates) from the perspective of optimal bounds. Using a

combination of numerical and analytical computations, we derived an expression

that captures how the optimal bound on the energy dissipation rate depends on the

radius-ratio η (a parameter that governs the geometry of the domain), (Kumar,

2022a, see). The optimal bound from this paper is

ε ≤ 0.0677
η

(1 + η)(1 + η2)2
. (2.35)

Conveniently, this bound approaches the best bound obtained by (Plasting and

Kerswell, 2003) in the limit η → 1 (the Couette flow limit).

(Wang, 1997) has previously obtained a bound on the energy dissipation rate

for a surface-driven flow in an arbitrary domain with smooth boundaries. However,

he did not study this problem from the point-of-view of optimal bounds, as his

goal was just to show that the rate of energy dissipation remains bounded in the

limit viscosity going to zero.

Recently, (Fan et al., 2021) studied yet another interesting flow setup. They

studied the plane Couette flow setup described above but used a mean tangential

velocity with added stochastic noise at the top boundary. By modeling the noise

using an Ornstein–Uhlenbeck process, (Fan et al., 2021) obtained a bound on the

first two moments of the energy dissipation rate as a function of the mean velocity

and the variance.
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2.3.2 Pressure driven flow in a conduit

There are three studies of pressure-driven conduit flows that derive bounds on

the turbulent friction factor, or equivalently on the volume flow rate, using the

background method. The first study is due to (Constantin and Doering, 1995),

who derived a bound on the friction factor for pressure-driven flow in a plane

channel (Poiseuille flow). The friction factor is defined as

Cf :=
∆P

∆L

h

U
2 , (2.36)

where ∆P/∆L is the applied pressure gradient, U is the mean velocity field

through the conduit and h is a characteristic length, in this case, the chan-

nel width. (Constantin and Doering, 1995) showed that the friction factor is

bounded from above by a constant. Later, (Plasting and Kerswell, 2005) stud-

ied pressure-driven flow in a straight pipe with a circular cross-section. They

examined this problem from the point-of-view of optimal bounds by solving the

Euler–Lagrange equation arising in the background method framework numeri-

cally. They showed that the coefficient of friction for pipe flow is bounded above

by a constant, Cf ≤ 0.27, in this case as well.

In (Kumar, 2020), we investigated pressure-driven flow in toroidal and helical

pipes. We obtained bounds on the friction factor as a function of the pipe geom-

etry: its curvature κ and torsion τ . This study is presented in Chapter 4 of this

thesis. Similar to (Constantin and Doering, 1995) and (Plasting and Kerswell,

2005), we obtained a bound on the friction factor that is independent of the ap-

plied pressure gradient but has a nontrivial geometric dependence. The expression

derived is potentially useful in engineering applications and provides the behav-

ior of friction factor in extreme limits of curvature and torsion, which otherwise
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would be difficult to obtain. In (Kumar, 2020), we also provided a simple criterion

for identifying flow systems (surface-velocity-driven or pressure-driven) where the

background method can be successfully applied. This finding demonstrates that

it ought to be relatively easy to further study pressure-driven flows, for example,

in axially twisted pipes or straight pipes with elliptical cross-sections.

2.3.3 External flows

An important class of problems in fluid mechanics concerns external flows, i.e.,

flow past an object. This class is directly relevant to many engineering applica-

tions, such as flow past an aircraft or a ship. Canonical configurations include:

flow past a flat plate, cylinder, sphere or airfoil. Ideally, we would like to apply

the background method to these problems and show that the coefficient of friction

remains bounded in the limit of high Reynolds numbers. Unfortunately, for most

of these flow configurations, no bounds have ever been derived using the back-

ground method (or any other rigorous mathematical technique) in the limit of a

high Reynolds number. However, there is one external flow problem where the

background method can be successfully applied. It is the classical problem of flow

past a finite length flat plate kept at zero incidence. For uniform flow past a flat

plated, we showed (Kumar and Garaud, 2020, see chapter 3) that the coefficient

of friction, CD ≤ 295.49.

2.3.4 Rayleigh–Bénard convection

Rayleigh–Bénard convection describes the buoyancy-driven motion of fluid be-

tween two horizontal differentially heated parallel plates, where the bottom plate

is hot and the top plate is cold. Rayleigh–Bénard convection is arguably the

28



T

H g

0

T ∆T+ 0

Figure 2.3: depicts convection between two differentially heated walls driven by
buoyancy.

most studied fluid configuration using the background method. In the nondi-

mensional form, the governing equations (incompressible Navier–Stokes equation

under Boussinesq approximation coupled with an advection-diffusion equation)

are given by

∇ · u = 0, (2.37a)

∂u

∂t
+ u · ∇u = −∇p+ Pr∆u +RaPrTez, (2.37b)

∂T

∂t
+ u · ∇T = ∆T. (2.37c)

The two nondimensional parameters are the Prandtl number

Pr =
ν

κ
,

which is the ratio of viscosity ν to thermal diffusivity κ, and the Rayleigh number

Ra =
gα∆TH3

νκ
,

which is the ratio of the buoyancy force to the viscous damping force, and thus

governs the intensity of the convection. Here, g is the acceleration of gravity, α is
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the coefficient of linear thermal expansion, ∆T = Tbottom−Ttop is the temperature

difference of the bottom and top boundary and H is the distance between the

plates. Figure 2.37 shows a schematic of the Rayleigh–Bénard setup. The quantity

of interest in Rayleigh–Bénard convection is the nondimensional heat transfer

known as the Nusselt number, given by

Nu = 1 + 〈uzT 〉, (2.38)

where the angle brackets denote the long-time volume average and uz is the vertical

component of the velocity field.

The standard Rayleigh–Bénard convection setup

In the standard Rayleigh–Bénard convection setup, the governing equations

(2.37) are supplemented with no-slip boundary conditions on the top and the

bottom walls:

u = 0 at z = 0, 1,

and the temperature boundary conditions:

T = 1 at z = 0, and T = 0 at z = 1.

(Doering and Constantin, 1996) derived an upper bound on the Nusselt number

as a function of the Rayleigh number and the Prandtl number in that configura-

tion. They showed that the Nusselt number is bounded by the square root of the

Rayleigh number, a bound that is uniform in the Prandtl number. In particular,
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they obtained

Nu− 1 ≤ 1

6
Ra

1
2 . (2.39)

The optimal prefactor, in the framework of the background method, was found

by (Plasting and Kerswell, 2003) to be

Nu− 1 ≤ 0.02634Ra
1
2 . (2.40)

Rayleigh–Bénard convection at high Prandtl number

In the limit of high Prandtl number, Pr → ∞, the viscous forces dominate

over the inertial forces. In this limit, the momentum equation (2.37b) can be

approximated by the simplified linear equation:

0 = −∇p+ Pr∆u +RaPrTez. (2.41)

Furthermore, in two dimensions, using the incompressibility condition, (2.41) can

be recast as a fourth-order elliptic equation:

∆2uz = −Ra∆‖T, (2.42)

where ∆‖ = ∂2
x + ∂2

y . The boundary conditions accompanying (2.42) are

uz = 0, ∂zuz = 0 at z = 0, 1. (2.43)

Using a typical background temperature profile (with a vertical varying temper-

ature profile that is flat in the bulk and has steep gradients in boundary layers
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of thickness δ) along with a few improved estimates on the vertical component of

the velocity field uz, (Doering and Constantin, 2001) proved the following bound

on the Nusselt number:

Nu ≤ 0.2545Ra
2
5 .

Later, using a logarithmic background profile, (Doering et al., 2006) improved this

bound to

Nu ≤ 0.64366Ra
1
3 (logRa)

1
3 ,

which was subsequently improved further to

Nu . Ra
1
3 (logRa)

1
15

by (Otto and Seis, 2011) using a few finer estimates. Using a slightly approach

method (by combining a maximum principle for the temperature field with the

background method) (Otto and Seis, 2011) further brought this bound closer to

a Ra
1
3 scaling, showing that

Nu . Ra
1
3 (log logRa)

1
3 .

Two dimensional Rayleigh–Bénard convection between stress free

boundaries

For finite Pr, it is also possible to improve the bound on the Nusselt number in

two dimensions over the one given in (2.39) when the no-slip boundary condition
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on the velocity field is replaced with stress-free boundary conditions:

∂zux = 0, uz = 0 at z = 0, 1. (2.44)

The improvement in the bound comes from taking advantage of an integral con-

straint extracted from the vorticity equation. Numerical investigations of (Otero

et al., 2002) provided earlier evidence that the upper bound on the Nusselt num-

ber, in this case, scales as Ra
5

12 rather than Ra
1
2 . Later, (Whitehead and Doering,

2011b) rigorously showed that

Nu ≤ 0.2891Ra
5

12 .

For convection in a box with an aspect ratio (horizontal to vertical) 2
√

2, (Wen

et al., 2015) calculated the optimal prefactor and obtained the bound

Nu ≤ 0.106Ra
5

12 .

In Rayleigh–Bénard convection, the ultimate scaling theory (Nu ∼ Ra
1
2 ) is based

on the idea that the primary mode of heat transfer is convection. Furthermore,

this theory does not distinguish between different boundary conditions or spatial

dimensions. The fact that the formal Nu . Ra
5

12 bound obtained in the case

of 2D, stress-free boundaries, therefore indicates that molecular transport can-

not generally be neglected, contrary to the predictions of the ultimate scaling,

(Whitehead and Doering, 2011b, see).

More recently, (Drivas et al., 2022b) considered Rayleigh–Bénard convection

in two dimensions with a Naiver-slip boundary condition. They obtained a bound

on the Nusselt number as a function of the Rayleigh number and the Navier–
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slip. Their bound tends to Ra
1
2 in the no-slip case and Ra

5
12 in the infinite-slip

(stress-free) case, and therefore, connects the two limits.

Rayleigh–Bénard convection between rough boundaries

A bound on heat transfer for Rayleigh–Bénard convection has been obtained

in the case of rough boundaries as well. (Goluskin and Doering, 2016) considered

a model setup in which the hot and cold boundaries, hB(x, y) and hT (x, y) are

taken to be graphs of continuous function such that the gradients of these graphs

are square integrable, i.e.,
∥∥∥∇hB

∥∥∥
2
,
∥∥∥∇hT

∥∥∥
2
< ∞. They derived a bound that is

Nu ≤ (0.242 + ‖∇h‖2
2)Ra

1
2 , (2.45)

valid at high Rayleigh number. The scaling in Ra is therefore the same as in the

case of smooth boundaries. However, the importance of this bound comes from

the fact that the scaling Nu ∼ Ra
1
2 is indeed observed in numerical simulations

of the Rayleigh–Bénard convection with rough boundaries (Toppaladoddi et al.,

2017; Zhu et al., 2017) (Toppaladoddi et al., 2021), which establishes the sharpness

of the result in that case.

2.3.5 Internally heated convection

Internally heated convection is similar to the Rayleigh–Bénard convection,

except that the convection is driven by volumetric heating instead of a temperature

differential imposed at between two boundaries. Therefore, the equation (2.37c)

is replaced with

∂T

∂t
+ u · ∇T = ∆T + 1, (2.46)
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and the definition of the Rayleigh number becomes

Ra =
gαH5Q∗

ρcpκν2
, (2.47)

where Q∗ is a constant volumetric heating rate and cp is the specific heat capacity

of the fluid. The velocity field satisfies a no-slip condition on the boundaries.

Depending on the boundary condition for the temperature field, there are three

configuration that are typically studied, defined as IH1, IH2 and IH3 in (Goluskin,

2016):

T (x, y, 0, t) = T (x, y, 1, t) = 0 for IH1,

∂zT (x, y, 0, t) = 0, ∂zT (x, y, 1, t) = −1 for IH2,

∂zT (x, y, 0, t) = T (x, y, 1, t) = 0 for IH3.

An important nondimensional quantity that is often looked at in internally heated

convection is the mean vertical heat flux 〈uzT 〉. In the IH1 configuration, the

mean vertical heat flux quantifies the asymmetry of the heat fluxes through top

and bottom boundary. In these two cases, the mean vertical heat flux is related

to the difference of the horizontally-averaged temperature between the top and

the bottom wall. In IH2 and IH3 configuration, the mean vertical heat flux is also

linked to the Nusselt number as

Nu =
1

1 − 2〈uzT 〉 . (2.48)

For the IH1 case, using a minimum principle for the temperature field, (Arslan

et al., 2021b) provided the initial numerical indication that the vertical heat flux
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〈uzT 〉 is smaller than 1/2 and the difference 1/2 − 〈uzT 〉 appears to decrease

faster than any power law in Rayleigh number. We later rigorously established a

rigorous bound

〈uzT 〉 ≤ 1

2
− c1Ra

1
5 exp

(
−c2Ra

3
5

)
, (2.49)

where c1 and c2 are positive constants (Kumar et al., 2022). For the IH2 case, the

best known bound is

〈uzT 〉 ≤ 1

2

(
1

2
+

1√
3

)
− 1.6552Ra− 1

3 , (2.50)

which was obtained by (Arslan et al., 2021a). For the IH3 configuration, a bound

on the vertical heat flux was obtained by (Kumar et al., 2022):

〈uzT 〉 ≤ 1

2
− c3

Ra
1
5

exp
(
−c4Ra

3
5

)
, (2.51)

which also gives an upper bound on the Nusselt number as

Nu ≤ 1

2c3

Ra
1
5 exp

(
−c4Ra

3
5

)
. (2.52)

More recently, (Arslan et al., 2023) also studied internally heated convection in

the high Prandtl number limit and obtained bounds on the vertical heat flux in

that case as well.
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Chapter 3

Bound on the drag coefficient for

a flat plate in a uniform flow

This chapter is based on the paper Kumar and Garaud (2020) published in

the Journal of Fluid Mechanics, Volume 900, 10 October 2020, A6.

3.1 Introduction

The idea of obtaining bounds on mean quantities using analysis techniques

goes back to Howard (1963), who was interested in deriving an upper bound on

the heat transfer in Rayleigh–Bénard convection, and inspired by Malkus’ maxi-

mal transport hypothesis (Malkus, 1954). With the help of variational techniques,

Howard (1963) obtained a formal bound on the heat transfer for solutions satis-

fying two integral constraints derived from the governing equations. Busse (1969,

1970) subsequently improved and extended Howard’s technique to obtain bounds

on the rate of energy dissipation in plane Couette flow and Poiseuille flow. Later,

in a series of papers (Doering and Constantin, 1992, 1994; Constantin and Doering,
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1995; Doering and Constantin, 1996), Doering and Constantin laid the foundation

of a new bounding method called ‘the background method’. This method also re-

quires certain integral constraints to be satisfied with the help of trial functions to

obtain a bound on the desired quantity. The freedom of choice of trial functions

makes the Doering–Constantin technique relatively easier to implement than the

Howard–Busse technique. Kerswell (1997, 1998) showed that the best bounds ob-

tained using the Howard–Busse technique and the Doering–Constantin technique

are the same for turbulent shear flows, thereby establishing the link between the

two approaches.

Until now, all the applications of the background method have focused on

flows confined between solid boundaries. Examples include bounds on the rate of

energy dissipation in surface-velocity-driven flows (Doering and Constantin, 1992,

1994; Marchioro, 1994; Nicodemus et al., 1997; Wang, 1997; Hoffmann and Vi-

tanov, 1999; Plasting and Kerswell, 2003), pressure-driven flows (Constantin and

Doering, 1995), and surface-stress-driven flows (Tang et al., 2004; Hagstrom and

Doering, 2014); bounds on the heat transfer in Rayleigh–Bénard convection in var-

ious settings (Doering and Constantin, 1996, 2001; Otero et al., 2002; Plasting and

Ierley, 2005; Wittenberg, 2010; Whitehead and Doering, 2011b; Whitehead and

Wittenberg, 2014; Goluskin, 2015; Goluskin and Doering, 2016; Fantuzzi, 2018)

and Bénard–Marangoni convection (Hagstrom and Doering, 2010; Fantuzzi et al.,

2018, 2020); bounds on buoyancy flux in stably stratified shear flows (Caulfield

and Kerswell, 2001; Caulfield, 2005).

Despite the tremendous success of the background method to confined flows,

however, there has been no application to external flows, such as flows past a

streamlined or bluff body. Studying external flow problems is crucial because of

the numerous potential applications in aerospace and naval engineering, including
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the design of airfoils, turbine blades, ship hulls, and submarines, to name a few.

An important question of investigation in all these cases is that of the dependence

of the drag coefficient on the Reynolds number. In general, this dependence can be

quite complex. For example, in a uniform flow past a cylinder, the flow dynamics

undergo several transitions, which leads to a complex dependence of the drag

coefficient on the Reynolds number (see Williamson, 1996). Ideally, one would like

to construct a theory to explain and quantify this complex dependence; however,

this task is too ambitious. As pointed out by Roshko (1993), there is no theory to

predict the drag coefficient associated with the flow past a cylinder at moderate

or large Reynolds numbers, a statement that still holds today. As such, obtaining

instead a strict upper bound on the drag coefficient that has the same scaling

with Reynolds number as the observations would be a significant and useful first

step in the right direction. Howard (1972) and Doering and Constantin (1994)

have also previously raised the question of the extensibility of bounding techniques

to external flows, specifically for a flow past a sphere. However, this extension

has remained elusive due to various mathematical difficulties. Proving bounds on

the drag coefficient for flow past an object therefore remains an open problem.

As we shall demonstrate in this work, the case of flow past a flat plate avoids

these difficulties, enabling us to apply the background method to an external flow

problem for the first time.

The flow past a flat plate is a classical fluid problem that has served as a

benchmark for aerodynamicists for over a century. The first breakthrough to-

wards obtaining an analytical result was due to Prandtl (1904). He postulated

that the effect of viscosity would only be significant in a thin layer close to the

surface of the body. This approximation led to a reduction of the equations that

were subsequently solved by Blasius (1908) for a semi-infinite plate in the lami-
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nar regime using the similarity technique. The problem considered in this paper,

which is more relevant to engineering applications, is the problem of a finite length

plate. Based on Blasius’s solution, the drag coefficient for a finite length plate in

the laminar regime decreases as O(Re− 1
2 ) (see Schlichting and Gersten, 2016, p.

160), where Re = U∞L/ν is the Reynolds number based on the free stream veloc-

ity U∞, the length of the plate L, and the kinematic viscosity ν. Wake formation

behind the plate leads to a higher-order correction to the Blasius solution, which

is quite complicated to obtain (see Stewartson, 1969; Messiter, 1970; Jobe and

Burggraf, 1974). In the turbulent regime no exact analytical solutions exist, and

one must rely on empirical formulae for the drag coefficient obtained from exper-

imental measurements. One of the standard empirical formulae (see Schlichting

and Gersten, 2016, p. 583) suggests that the drag coefficient for the flat plate

decreases as O((lnRe)−2) at high Reynolds number, when the flow is turbulent.

As we shall demonstrate in this manuscript, it is possible to obtain a bound on

the drag coefficient for a flat plate. This bound is independent of the Reynolds

number, and therefore only a logarithmic factor away from the experimental mea-

surements at high Reynolds number.

The rest of the paper is arranged as follows. In §3.2, we describe the flow

configuration and define the drag coefficient. In §3.3, we describe the background

method in the context of a flat plate. In §3.4, we divide our domain into subdo-

mains for the purpose of defining the background flow. We then obtain bounds

on quantities in different subdomains and combine them to obtain a bound on the

drag coefficient. Finally, we conclude in §3.5.
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3.2 Flow configuration

Consider a plate of zero thickness and length L kept at zero incidence in a

uniform flow of an incompressible Newtonian fluid with flow speed U∞ and far-

field pressure p∞. The extent of the plate is infinite in the spanwise direction.

Let ρ and ν, respectively, be the density and kinematic viscosity of the fluid. The

equations governing the flow are the incompressible Navier–Stokes equations and

in the non-dimensional form are given by

∇ · u = 0,

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (3.1)

where we have used the following non-dimensionalization:

u =
u∗

U∞
, p =

p∗ − p∞
ρU2

∞
, t =

U∞t∗

L
, x =

x∗

L
. (3.2)

Here, u, p, t, and x are the non-dimensional velocity field, pressure field, time and

spatial coordinates, respectively, and Re = U∞L/ν is the Reynolds number for

the flow. The quantities with a star in superscript are the dimensional quantities.

The flow configuration can be best described in a Cartesian coordinate system

x = (x1, x2, x3). We fix the origin of the coordinate system at the leading edge

of the plate, with x1 pointing in the downstream direction, x2 pointing upward,

normal to the plate, and x3 being the spanwise direction. The boundary condition

on the surface of the plate is no-slip, i.e.,

u = 0 if x2 = 0 and 0 ≤ x1 ≤ 1. (3.3)
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Far away from the plate, the flow is uniform, and the pressure is constant. This

condition in non-dimensional variables can be written as

u → ex1 , p → 0 as x1, x2 → ±∞, (3.4)

where, ex1 denotes the unit vector in the streamwise direction. Finally, we also

assume that the flow is periodic in the spanwise direction (x3), with a non-

dimensional period Ls. The domain of interest therefore is

Ω = {(x1, x2, x3)|x3 ∈ [0, Ls]} \ {(x1, 0, x3)|x1 ∈ [0, 1], x3 ∈ [0, Ls]}. (3.5)

3.2.1 Drag coefficient

Let F ∗ denote the long-time-averaged dimensional drag force on a section of

the plate with dimensional length L∗
s in the spanwise direction, where L∗

s = LLs.

For a flat plate in a uniform flow at zero incidence, the drag force is entirely due

to skin friction, so we can obtain F ∗ in terms of the shear-stress integrated over

the top and bottom surface of the plate. We define the drag coefficient to be the

non-dimensional force per unit area:

CD =
F ∗

(2LL∗
s)

/
1

2
ρU2

∞. (3.6)

In terms of non-dimensional variables, the drag coefficient is given by

CD =
F

ReLs
, (3.7)
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where F = F ∗/ρνU∞L is the non-dimensional force that can be written as

F =
F ∗

ρνU∞L
=
∫ Ls

0

∫ 1

0
τt dx1dx3 +

∫ Ls

0

∫ 1

0
τb dx1dx3, (3.8)

where τt and τb are the non-dimensional shear-stresses on the top and bottom

surfaces of the plate at point (x1, 0, x3):

τt =
∂u1

∂x2

∣∣∣∣∣
x2→0+

τb = − ∂u1

∂x2

∣∣∣∣∣
x2→0−

, (3.9)

and the overbar denotes the long-time average given as

[ · ] = lim
T→∞

〈[ · ]〉T , where 〈[ · ]〉T =
1

T

∫ T

0
[ · ] dt. (3.10)

3.2.2 The relationship between drag coefficient and non-

dimensional dissipation

Let ũ denote the perturbation from the uniform flow, mathematically ex-

pressed as

ũ = u − ex1 . (3.11)

The governing equations for ũ are given by

∇ · ũ = 0, (3.12)

∂ũ

∂t
+ (ex1 + ũ) · ∇ũ = −∇p+

1

Re
∇2ũ, (3.13)
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along with the boundary and the far-field conditions:

ũ = −ex1 if x2 = 0 and 0 ≤ x1 ≤ 1. (3.14)

ũ → 0, p → 0 as x1, x2 → ±∞. (3.15)

The energy equation for ũ can be obtained by taking the dot product of equation

(3.13) with ũ and using the divergence-free condition (3.12), and is given by

1

2

∂|ũ|2
∂t

+
1

2
∇ ·

[
(ex1 + ũ)|ũ|2

]
= −∇ · (ũ p) +

1

2Re
∇2|ũ|2 − 1

Re
|∇ũ|2.

(3.16)

We define a domain ΩR as

ΩR = {(x1, x2, x3)|x3 ∈ [0, Ls], x
2
1 + x2

2 ≤ R2} ∩ Ω, (3.17)

and we integrate equation (3.16) over ΩR with R > 1. After using the divergence

theorem (see Folland, 2003, pp. 240) and the boundary condition on the surface

of the plate, this results in

1

2

d

dt

∫

ΩR

|ũ|2 dx +
1

2

∫

SR

|ũ|2 (ex1 + ũ) · n ds =

−
∫

SR

p ũ · n ds +
1

2Re

∫

SR

∇|ũ|2 · n ds − 1

Re

∫

ΩR

|∇ũ|2dx

+
1

2Re

∫ Ls

0

∫ 1

0

[
(∇|ũ|2)|x2→0− − (∇|ũ|2)|x2→0+

]
· ex1 dx1dx3, (3.18)

where SR is the outer boundary of ΩR, and n denotes the unit normal vector on

the boundary. At this point, we make two assumptions. We consider only those

solutions for which the decay rate of the flow variables ũ and p far from the plate
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is sufficient to conclude that in equation (3.18) terms with an integral over SR

vanish, while terms with a volume integral over ΩR converge as R → ∞ uniformly

in time t ∈ [0, T ] for any T . We also assume that the flow achieves a statistically

steady-state. Next, we perform the following sequence of steps on equation (3.18):

(i) We take the time average of the equation from t = 0 to t = T .

(ii) We take the limit R → ∞.

(iii) We take the limit T → ∞.

We obtain the following result:

CD =
1

ReLs
||∇ũ||22. (3.19)

where || · ||2 denotes the L2-norm defined as

|| · ||2 =
(∫

Ω
| · |2dx

) 1
2

. (3.20)

Now u = ũ + ex1 , which implies ∇u = ∇ũ. Therefore, in terms of the total

velocity field, the drag coefficient is

CD =
1

ReLs
||∇u||22. (3.21)

This type of relation is commonly used in calculations of the drag force on bubbles

and drops (Moore, 1963; Harper and Moore, 1968; Leal, 2007, pp. 747-748) where

it is possible to calculate the dissipation in the flow field with higher order of

accuracy than the stresses on the surface.
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3.3 Background method formulation

The background method formulation used here is the same as given in Doering

and Constantin (1994). The background method proceeds by decomposing the

total flow (u) into a divergence-free background flow (U) and a perturbed flow

(v), i.e., u = U + v with the condition that ∇ · U = 0 and ∇ · v = 0. We

require that the background flow U satisfies the no-slip boundary condition at

the surface of the plate, and that far away from the surface, U approaches ex1

sufficiently quickly so that the far-field decay rate of perturbations v = u − U is

comparable to that of ũ in the previous section. After some of the usual algebraic

manipulations, we obtain the energy equation of the perturbed flow as

1

2

∂|v|2
∂t

+
1

2
∇ · (v|v|2) +

1

2
∇ · (U |v|2) + (v · ∇U ) · v + (U · ∇U ) · v

= −∇ · (pv) +
1

Re
∇ · (v · ∇UT ) − 1

Re
∇U : ∇v

+
1

2Re
∇2|v|2 − 1

Re
|∇v|2, (3.22)

where, in index notation,

(v · ∇UT )i = vj∂iUj, and ∇U : ∇v = ∂ivj∂iUj. (3.23)

Using the following identity

∇u : ∇u = ∇U : ∇U + ∇v : ∇v + 2∇U : ∇v (3.24)
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in (3.22), we obtain

1

2

∂|v|2
∂t

+
1

2
∇ · (v|v|2) +

1

2
∇ · (U |v|2) + (v · ∇U ) · v + (U · ∇U ) · v

+
1

2Re
|∇u|2 = −∇ · (pv) +

1

Re
∇ · (v · ∇UT ) +

1

2Re
∇2|v|2

+
1

2Re
|∇U |2 − 1

2Re
|∇v|2. (3.25)

Next, we perform the following sequence of steps on equation (3.25):

(i) We integrate it over ΩR for R > 1.

(ii) We take the time average of the equation from t = 0 to t = T .

(iii) We take the limit R → ∞.

(iv) We take the limit T → ∞.

and obtain the following result:

1

2Re
||∇u||22 =

1

2Re
||∇U ||22

− lim
T→∞

〈
1

2Re
||∇v||22 +

∫

Ω
(v · ∇U ) · v dx +

∫

Ω
(U · ∇U ) · v dx

〉

T
.

(3.26)

In obtaining the above equation, we have used the assumption of a statistically

steady-state and appropriate far-field decay rates for the flow variables, as in

§3.2.2. Next, we define the functional H(v) as follows:

H(v) =
∫

Ω
(v · ∇U ) · v dx

︸ ︷︷ ︸
I

+
∫

Ω
(U · ∇U ) · v dx

︸ ︷︷ ︸
II

+
1

2Re
||∇v||22

︸ ︷︷ ︸
III

. (3.27)

The key to the background method is to find a constant γ and an incompressible

background flow U , with U → ex1 as |x| → ∞ and satisfying the no-slip boundary

condition at the surface of the plate, such that H(v) + γ is nonnegative for all
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time-independent incompressible vector fields v that decay to zero at infinity. This

ensures that H(v) + γ ≥ 0 also for time-dependent velocity fields v satisfying the

flow’s equations of motion. If we can find such U and γ, then (3.26) yields a

bound

||∇u||22 ≤ ||∇U ||22 + 2Reγ. (3.28)

Combining this with (3.21) gives an upper bound on the drag coefficient,

CD ≤ 1

Re Ls
||∇U ||22 +

2

Ls
γ. (3.29)

3.4 Upper bound on drag coefficient

Obtaining the best upper bound on the drag coefficient using the background

method requires finding the optimal background flow that would minimize the

right-hand side of (3.29). However, it is not possible to find this optimal back-

ground flow analytically for our problem, and even with the help of numerical

methods this task is quite challenging (Plasting and Kerswell, 2003; Wen et al.,

2013, 2015; Fantuzzi and Wynn, 2015, 2016; Fantuzzi, 2018; Tilgner, 2017, 2019)

and is a study in its own right. Therefore, in this paper, we restrict the analysis

to a simple family of background flow fields, involving a single free parameter, for

which the algebra remains tractable. In the next subsections, we will therefore

have the following tasks at hand: (1) to define the background flow, (2) to obtain

bounds on terms I and II in (3.27), and (3) using these results, to obtain a bound

on the drag coefficient.
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3.4.1 Background flow construction

In section §3.3, the calculations merely required that U goes sufficiently quickly

to ex1 as |x| → ∞. However, to simplify the algebra, in this paper we choose a

U that is actually equal to ex1 outside a rectangular box Γ centered around the

plate (see figures 3.1 and 3.2). This ensures that ∇U is zero outside of Γ, so that

any nonzero contribution to terms I and II in (3.27) can only come from within

the domain Γ. As a result, we only have to estimate terms I and II inside Γ,

which makes the forthcoming analysis easier to perform. The rectangular box Γ

is formally given by

Γ = {(x1, x2, x3)| − δ ≤ x1 ≤ 1 + δ, −δ ≤ x2 ≤ δ, 0 ≤ x3 ≤ Ls} ∩ Ω. (3.30)

The width of Γ in the spanwise direction is Ls which is the same as the periodicity

of the flow in that direction. Γ encloses the plate on all sides with a margin of

length δ (see figure 3.1), which we call the boundary layer thickness. For now, δ >

0 is an unknown quantity, which will be adjusted later to make H(v) + γ positive

semi-definite for some constant γ. For the purpose of defining the background

flow, we then partition Γ into eight subdomains, also shown in figure 3.1. These
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Figure 3.1: The solid line in the middle represents the plate. Γ is the domain
enclosed between the plate and the thick dashed rectangular envelope (the span-
wise direction is not visible in this figure). Also shown is the division of Γ into
the eight subdomains R1 through R8.

can be mathematically written as

R1 = {(x1, x2, x3) | − δ ≤ x1 < 0, 0 ≤ x2 ≤ δ, 0 ≤ x3 ≤ Ls},

R2 = {(x1, x2, x3) | 0 ≤ x1 ≤ 1/2, 0 < x2 ≤ δ, 0 ≤ x3 ≤ Ls},

R3 = {(x1, x2, x3) | 1/2 ≤ x1 ≤ 1, 0 < x2 ≤ δ, 0 ≤ x3 ≤ Ls},

R4 = {(x1, x2, x3) | 1 < x1 ≤ 1 + δ, 0 ≤ x2 ≤ δ, 0 ≤ x3 ≤ Ls},

R5 = {(x1, x2, x3) | 1 < x1 ≤ 1 + δ, −δ ≤ x2 ≤ 0, 0 ≤ x3 ≤ Ls},

R6 = {(x1, x2, x3) | 1/2 ≤ x1 ≤ 1, −δ ≤ x2 < 0, 0 ≤ x3 ≤ Ls},

R7 = {(x1, x2, x3) | 0 ≤ x1 ≤ 1/2, −δ ≤ x2 < 0, 0 ≤ x3 ≤ Ls},

R8 = {(x1, x2, x3) | − δ ≤ x1 < 0, −δ ≤ x2 ≤ 0, 0 ≤ x3 ≤ Ls}. (3.31)

For convenience, we choose the background flow U to be spanwise invariant. We

note that this choice may not be possible in general. For example, for a flat plate

with an irregular leading edge (see figure 3.5b), we may have to use a background

flow which is three-dimensional. We define two functions, f : [0, δ] → R and

50



g : [−δ, 0] → R as follows:

f(x) =





(
1+

√
2

2δ

)
x2 0 ≤ x ≤ δ√

2

(
√

2 + 2)x− 1+
√

2
2δ

(x2 + δ2) δ√
2
< x ≤ δ,

(3.32)

g(x) =
(

1 +
x

δ

)2 (
1 − 2x

δ

)
− δ ≤ x ≤ 0. (3.33)

With these definitions, we are equipped to construct the streamfunction, Ψ : Ω →

R, for our background flow:

Ψ(x1, x2, x3) =





(f(x2) − x2)g(x1) + x2 (x1, x2, x3) ∈ R1

f(x2) (x1, x2, x3) ∈ R2 ∪R3

(f(x2) − x2)g(1 − x1) + x2 (x1, x2, x3) ∈ R4

(−f(−x2) − x2)g(1 − x1) + x2 (x1, x2, x3) ∈ R5

−f(−x2) (x1, x2, x3) ∈ R6 ∪R7

(−f(−x2) − x2)g(x1) + x2 (x1, x2, x3) ∈ R8

x2 (x1, x2, x3) ∈ Ω \
8⋃
i=1

Ri

.(3.34)

The background velocity field is defined based on the streamfunction (3.34) as

U = (U1, U2, U3) =

(
∂Ψ

∂x2

,− ∂Ψ

∂x1

, 0

)
. (3.35)

See Appendix 3.B for a sketch of the construction this background flow. It can

be shown that this flow is piecewise differentiable in Ω. Figure 3.2 shows the

streamwise component of U as a function of x2 at different positions x1 as well as

lines of constant Ψ which are streamlines of U . Outside Γ, the background flow is
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(a) (b)

Figure 3.2: a) Streamwise velocity profile at different positions x1. b) Stream-
lines of the background flow field given by (3.35). In both panels, the dashed line
marks the boundary of Γ.

uniform. It then enters from the left side of Γ, rearranges itself to satisfy the no-

slip boundary condition on the surface of the plate, and leaves Γ in the exact same

manner as it entered. The imposed divergence free condition on the background

flow explains the observed bulge in the streamwise velocity profile. Note that

this background flow is a purely mathematical construct and is different from the

mean flow that would be obtained in the standard Reynolds decomposition.

3.4.2 Bounds in subdomain R1

In what follows, we will be making frequent use of two inequalities, which are

stated as lemmas below. Their proof can be found in Appendix 3.A.

Lemma 3.4.1. If w : R2 → R is a square integrable scalar function with

w(x1, 0, x3) = 0 for 0 ≤ x1 ≤ 1/2 and 0 ≤ x3 ≤ Ls then

∫

R2

w2 dx ≤ δ2

2

∫

R2

|∇w|2 dx. (3.36)

Lemma 3.4.2. Let w : R1 ∪ R2 → R be a square integrable scalar function such
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that w(x1, 0, x3) = 0 for x1 ∈ [0, δ] and x3 ∈ [0, Ls]. If δ ≤ 1/2 then the following

inequality holds:

∫

R1

w2dx ≤ 4δ2
∫

R1∪R2

|∇w|2dx. (3.37)

For the chosen background flow, the integrands of I and II in (3.27) are non-

zero only inside Γ. Also, the fore-aft and top-bottom symmetry of the background

flow ensures that bounds on I and II restricted to R1, R4, R5, and R8 are identical.

We first obtain a bound on I restricted to R1 and denote it by IR1 .

|IR1| =
∣∣∣∣
∫

R1

(v · ∇U ) · v dx
∣∣∣∣ =

∣∣∣∣∣

∫

R1

[
v2

1

∂U1

∂x1

+ v1v2

(
∂U1

∂x2

+
∂U2

∂x1

)
+ v2

2

∂U2

∂x2

]
dx

∣∣∣∣∣

≤ K1

δ

∫

R1

v2
1 dx +

K2

δ

∫

R1

|v1||v2| dx +
K3

δ

∫

R1

v2
2 dx

≤ 1

δ
(K1 +K2c1)

∫

R1

v2
1 dx

+
1

δ

(
K3 +

1

4c1

K2

) ∫

R1

v2
2 dx

≤ 4δ(K1 +K2c1)
∫

R1∪R2

|∇v1|2 dx

+ 4δ
(
K3 +

1

4c1

K2

) ∫

R1∪R2

|∇v2|2 dx (3.38)

where

K1 = ess sup
(x1,x2,x3)∈R1

δ

∣∣∣∣∣
∂U1

∂x1

∣∣∣∣∣ =
3

2
achieved as x1 → −δ

2
, x2 → 0,

K2 = ess sup
(x1,x2,x3)∈R1

δ

∣∣∣∣∣
∂U1

∂x2

+
∂U2

∂x1

∣∣∣∣∣ =
5√
2

− 1

2
achieved as x1 → 0, x2 → δ√

2
,

K3 = ess sup
(x1,x2,x3)∈R1

δ

∣∣∣∣∣
∂U2

∂x2

∣∣∣∣∣ =
3

2
achieved as x1 → −δ

2
, x2 → 0, (3.39)
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and c1 is some positive constant. In (3.39) “ess sup" denotes the essential supre-

mum. We have used Young’s inequality to obtain line three in (3.38). We then

used Lemma 3.4.2 to get the last inequality in (3.38).

A bound on II restricted to subdomain R1 is given by

|IIR1| =
∣∣∣∣
∫

R1

(U · ∇U ) · v dx
∣∣∣∣ ≤

∫

R1

K4

δ
|v| dx

≤
∫

R1

δ− 1
2 |v|2 dx +

K2
4δ

1
2Ls

4

≤ 4δ
3
2

∫

R1∪R2

|∇v|2 dx +
K2

4δ
1
2Ls

4
,

(3.40)

where

K4 = ess sup
(x1,x2,x3)∈R1

δ|U | |∇U | =
1 +

√
2

2
√

2

√
39 − 10

√
2 ≈ 4.2556,

which is achieved as x1 → −δ

2
, x2 → 0. (3.41)

As before, we have used Young’s inequality to obtain line two and then Lemma

3.4.2 to obtain line three in (3.40). Later, we will see that the contribution of II

is of higher order in δ compared with that of I, and therefore will not participate

in the leading term of the final bound.

3.4.3 Bounds in subdomain R2

We first note that bounds on I and II restricted to subdomains R2, R3, R6,

and R7 will be identical. A bound on I restricted to subdomain R2 can be obtained

as follows:
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|IR2| =
∣∣∣∣
∫

R2

(v · ∇U ) · v dx
∣∣∣∣ =

∣∣∣∣∣

∫

R2

v1
dU1

dx2

v2 dx

∣∣∣∣∣

≤ K5

δ

∫

R2

|v1||v2| dx

≤ K5c2

δ

∫

R2

v2
1 dx +

K5

4c2δ

∫

R2

v2
2 dx

≤ K5c2

2
δ
∫

R2

|∇v1|2 dx +
K5

8c2

δ
∫

R2

|∇v2|2 dx,

(3.42)

where

K5 = ess sup
(x1,x2,x3)∈R2

δ

∣∣∣∣∣
dU1

dx2

∣∣∣∣∣ = 1 +
√

2

which is achieved when x2 ∈
(

0,
δ√
2

)
∪
(
δ√
2
, δ

)
, (3.43)

and c2 is some positive constant. We have used Young’s inequality to obtain line

three in (3.42). To obtain line four, we used Lemma 3.4.1.

Finally, since U is unidirectional in R2, we have

|IIR2| =
∣∣∣∣
∫

R2

(U · ∇U ) · v dx

∣∣∣∣ = 0. (3.44)

3.4.4 Bound on drag coefficient

In this subsection, we combine the bounds obtained from §3.4.2 and §3.4.3 to

obtain a bound on the sum of the absolute value of I and II. We then optimize

the size of the boundary layer (δ) to ensure that H(v)+γ is positive semi-definite

for some constant γ and simultaneously obtain a best possible bound on the drag

coefficient compatible with our estimates. From the bounds obtained in R1 and
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R2, we first note that

2∑

i=1

∣∣∣∣
∫

Ri

(v · ∇U ) · v dx
∣∣∣∣ ≤ δ

(
4K1 + 4K2c1 +

K5c2

2

) ∫

R1∪R2

|∇v1|2dx

+δ
(

4K3 +
K2

c1

+
K5

8c2

) ∫

R1∪R2

|∇v2|2dx. (3.45)

A similar type of calculation can be performed for terms

4∑

i=3

∣∣∣∣
∫

Ri

(v · ∇U ) · v dx
∣∣∣∣ ,

6∑

i=5

∣∣∣∣
∫

Ri

(v · ∇U) · v dx
∣∣∣∣ , and

8∑

i=7

∣∣∣∣
∫

Ri

(v · ∇U ) · v dx
∣∣∣∣ .

Combining these estimates yields a bound on I as

|I| =
∣∣∣∣
∫

Ω
(v · ∇U) · v dx

∣∣∣∣ ≤
8∑

i=1

∣∣∣∣
∫

Ri

(v · ∇U ) · v dx

∣∣∣∣

≤ δ
(

4K1 + 4K2c1 +
K5c2

2

) ∫
8⋃

i=1

Ri

|∇v1|2dx

+δ
(

4K3 +
K2

c1

+
K5

8c2

) ∫
8⋃

i=1

Ri

|∇v2|2dx

≤ δM
∫

Ω
|∇v|2dx, (3.46)

where

M = inf
c1,c2>0

max
{

4K1 + 4K2c1 +
K5c2

2
, 4K3 +

K2

c1

+
K5

8c2

}

=
21

4
(1 +

√
2) ≈ 12.6746. (3.47)

Note that the infimum is achieved when

c1 = c2 =
1

2
. (3.48)
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Using the results from §3.4.2 and §3.4.3, a bound on II is given by

|II| =
∣∣∣∣
∫

Ω
(U · ∇U) · v dx

∣∣∣∣ ≤ 4δ
3
2

∫

Ω
|∇v|2 dx +K2

4δ
1
2Ls. (3.49)

From section §3.3, we note that our goal is to make H(v) + γ nonnegative for

some constant γ. Using the estimates obtained on I in (3.46) and II in (3.49)

along with the triangle inequality, we get a bound on H(v) as

H(v) ≥
(

1

2Re
− δM − 4δ

3
2

)
||∇v||22 −K2

4δ
1
2Ls. (3.50)

If we define γ = K2
4δ

1
2Ls, then choosing δ such that

δ(M + 4δ
1
2 ) ≤ 1

2Re
(3.51)

ensures that H(v) + γ is positive semi-definite. Another constraint on δ comes

from the applicability of Lemma 3.4.2, which requires

δ ≤ 1

2
. (3.52)

Once γ is fixed, we can obtain the desired bound on the drag coefficient by sub-

stituting the background flow (3.35) in (3.29). This yields

CD =
1

Re Ls
||∇u||22 ≤ 4B1

ReLs
+

4B2

ReLs
+ 2K2

4δ
1
2 , (3.53)

where

B1 =
∫

R1

|∇U |2 dx ≈ 2.96Ls and B2 =
∫

R2

|∇U |2 dx =
(1 +

√
2)2

2

Ls
δ
.(3.54)
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The value of B1 is calculated numerically. Inserting (3.54), along with the value

of K4 from (3.41) into (3.53), leads to

CD ≤ 2(1 +
√

2)2

Reδ
+
(

12
√

2 +
77

4

)
δ

1
2 +

11.84

Re
, (3.55)

where δ satisfies the constraints (3.51) and (3.52). For Re > 0.0645, the optimal

bound is obtained when δ satisfies

δ(M + 4δ
1
2 ) =

1

2Re
, (3.56)

(see Appendix 3.C for more detail). In the limit of high Reynolds number, we can

solve (3.56) for δ to get

δ =
1

2 M Re
+O(Re− 3

2 ). (3.57)

Combining (3.47) and (3.57) with (3.55) yields a bound on the drag coefficient for

sufficiently high Re as

CD ≤ 21 × (1 +
√

2)3 +O(Re− 1
2 ) ≈ 295.49 +O(Re− 1

2 ). (3.58)

3.4.5 Comparison with observations

We now compare our findings with existing theoretical and experimental re-

sults on the drag coefficient for flow past a flat plate. The drag coefficient for

a laminar flow past a flat plate was obtained using the triple-deck theory (see
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Figure 3.3: The solid black line is the leading order term in the bound (3.58) on
the drag coefficient. For the range of Reynolds number considered in this figure,
a bound obtained by solving (3.55) and (3.56) would differ only by 0.3% from this
leading term at most. The blue line shows the analytical expression for the drag
coefficient in the laminar regime given by (3.59). The red line shows the empirical
formula for the drag coefficient in the turbulent regime for a smooth plate given
by (3.60). In both of these cases a solid line denotes the region of validity of the
formulae. For 5 · 105 . Re . 107 the experimental data seems to fall in between
these two lines (see Schlichting and Gersten, 2016, p. 10). The green dashed lines
show the drag coefficient variation for two rough plates with different roughnesses
(see Schlichting and Gersten, 2016, p. 584).
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Stewartson, 1969; Messiter, 1970; Jobe and Burggraf, 1974), and is given by

CD =
1.328√
Re

+
2.67

Re7/8
+O(Re−1) for 100 . Re . 5 · 105. (3.59)

In the turbulent regime, an empirical formula for the drag coefficient based on the

law of the wall for a smooth plate (see Schlichting and Gersten, 2016, p. 583) is

given by

CD = 2
[

κ

lnRe
G(Λ;D)

]2

for Re & 107, (3.60)

where κ = 0.41 is the von Kármán constant,

Λ = lnRe, D = 2 ln κ+ 2κ, (3.61)

and G is the solution of the following equation:

Λ

G
+ 2 ln

Λ

G
−D = Λ. (3.62)

This function has the property that

lim
Λ→∞

G(Λ;D) = 1, (3.63)

which implies that at very high Reynolds number

CD ∼ 0.34

ln2 Re
. (3.64)

In terms of scaling, our upper bound therefore overestimates the drag coefficient

by the square of the logarithm of the Reynolds number for sufficiently large Re.
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Figure 3.3 compares the bound (3.58) with the analytical result (3.59) in the lam-

inar regime and with empirical formula (3.60) in the turbulent regime. Although

our theory only applies to a smooth flat plate, we also show for comparison em-

pirical results on the drag coefficients for a flow past rough plates (see Schlichting

and Gersten, 2016, p. 584). It is interesting to note that the drag coefficient does

tend to a constant at high Reynolds number in these cases, which is the same

scaling as our bound. We also note that in many scenarios, it has been possible

to produce simple power-law bounds with logarithms (Doering et al., 2006; Otto

and Seis, 2011; Whitehead and Doering, 2011a; Whitehead and Wittenberg, 2014;

Fantuzzi et al., 2020). Whether there exists a more careful construction of the

background flow for the flat plate, which may produce the logarithmic correction

needed to match empirical observations, remains to be seen.

3.5 Discussion and Concluding Remarks

In this paper, we presented the first application of the background method to

an external flow problem. Using this method, we were able to obtain an upper

bound on the drag coefficient for a flat plate in a uniform flow kept at zero inci-

dence. In particular, we showed that the drag coefficient is bounded by a constant

at high Reynolds number (see 3.58).

In obtaining this bound, we considered a fairly simple family of background

flows that involves only one free parameter δ, and used relatively crude estimates

derived from standard inequalities. We acknowledge that a better bound can

most likely be obtained using more refined analysis techniques, and with a bet-

ter background flow. For example, by choosing a family of background flows

which involves additional free parameters, we can in principle improve the bound.
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(a) (b)

Figure 3.4: An elementary choice of the background flow (U ): (a) case of flow
past a cylinder and (b) case of flow past a flat plate with nonzero angle of attack.
In both cases the streamlines have to squezee around the body because of the
incompressiblity of the background flow. As a result, |∇U | = O(δ−2) as opposed
to the present case where |∇U | = O(δ−1) inside the boundary layer.

However, such considerations will almost certainly come at the expense of compli-

cated algebraic manipulations. It is worth noting that in other studies involving

the background method, such as those concerned with plane Couette flow (Do-

ering and Constantin, 1992, 1994), it is possible to obtain a constant bound on

the drag coefficient that is relatively close to the empirically determined values

even with crude estimates. The reason behind this disparity between our study

and that of plane Couette flow lies in the fact that in the case of a flat plate, the

no-slip boundaries have lower-dimensional boundaries of their own, namely, the

plate’s leading and trailing edges. This fact makes it challenging to obtain good

analytical bounds in the regions R1, R4, R5, and R8 which are not immediately

adjacent to no-slip boundaries (see Appendix 3.A, Lemma 3.4.2). Regardless of

this difficulty, we did not do any worse in terms of scalings of the bound: as in

the case of Couette flow, we obtain a bound which is within a logarithmic factor

of the observations.

As noted early on (Doering and Constantin, 1994; Plasting and Kerswell,

2003), the background flow is different from the mean flow that one would ob-
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tain from the Reynolds decomposition. However, it is worth mentioning that for

plane Couette flow, the optimal background profile does bear some resemblance

to the mean flow. In particular, Plasting and Kerswell (2003) found that it has

steep gradients near the wall, and is flat in the bulk, even though this optimal

background flow does not capture the logarithmic layer. For the case of a flat

plate, experiments at high Reynolds numbers show the development of a lami-

nar boundary layer near the leading edge, followed by a transition to relatively

thicker turbulent boundary layer further downstream. Behind the plate, a wake

forms which gradually dissipates far away from the plate. Since the family of

background flows that we consider here does not have these features, it would be

interesting to determine whether the optimal background flow for the flat plate

problem bears any similarity with the mean flow, and whether the corresponding

optimal bound would improve on the scaling with Re that we have obtained. To

answer these questions would require finding the optimal background flow, using

techniques similar to the study of Plasting and Kerswell (2003); Wen et al. (2013,

2015); Fantuzzi and Wynn (2015, 2016); Fantuzzi (2018); Tilgner (2017, 2019).

However, this will be substantially more complicated in the case of the flat plate

owing to the fully two-dimensional nature of the background flow.

In this paper, we chose to obtain a bound on the drag coefficient for a flat plate

because of the fundamental nature of the problem. Unfortunately, this analysis

cannot be directly extended to the problem of a flow past a bluff body, or flow

past a flat plate at a non-zero angle of attack (see figure 3.4). Indeed, while in

the present case |∇U | = O(δ−1) in the boundary layer, for these problems an

elementary choice of the background flow U , where ∇U is nonzero only in a thin

boundary layer of thickness δ near the body, would have |∇U | = O(δ−2) because

of the divergence-free condition on U . As a result, the equivalent bound on I,
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U∞

(a)

U∞

(b)

U∞

(c)

Figure 3.5: This figure shows a few flow configurations where the present analysis
can be generalized. The arrow shows the direction of the uniform flow, and in all
the above configurations, the objects are kept at zero incidence and are of zero
thickness. These configurations are: (a) a yawed flat plate (top view), (b) a flat
plate with irregular leading edge (top view), and (c) a group of flat plates (side
view).
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obtained from arguments similar to the ones given in §3.4, would be

|I| ≤ C
∫

Ω
|∇v|2dx = 2C ·Re · III, (3.65)

where C is some positive constant independent of δ. Because the factor multiply-

ing III in (3.65) is independent of δ, it is not possible to choose δ to ensure that

H(v)+γ be positive semi-definite. Hence, with the naive choice of background flow

considered in figure 3.4, it is impossible to obtain a bound on the drag coefficient.

It remains to be determined whether there exists a smarter choice of background

flow for these cases, that would allow the analysis to proceed, or whether it is

impossible to obtain a bound without invoking additional dynamical constraints.

Nevertheless the procedure developed in this paper can be generalized to other

interesting scenarios with applications in engineering. For example, we can obtain

a similar type of bound for a yawed flat pate, a flat plate with irregular leading

edge, or a group of flat plates, see figure 3.5. Interestingly, some of these scenarios

can be quite challenging to simulate numerically at high Reynolds numbers. It

would be interesting to find out if, in reality, the drag coefficient tends to a constant

at high enough Reynolds number for these problems.
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Appendix 3.A Proof of Lemma 3.4.1 and 3.4.2

In this appendix, we first state the two lemmas used in the main text in their

full form and then prove them.

Lemma 1. Let w : [0, δ] → R be a square integrable function such that w(0) = 0

for x = 0, then the following inequality holds:

∫ δ

0
w2dx ≤ δ2

2

∫ δ

0

(
dw

dx

)2

dx. (3.66)

As a result, if w : R2 → R is a square integrable function with w(x1, 0, x3) = 0 for

0 ≤ x1 ≤ 1/2 and 0 ≤ x3 ≤ Ls then

∫

R2

w2 dx ≤ δ2

2

∫

R2

(
∂w

∂x2

)2

dx ≤ δ2

2

∫

R2

|∇w|2 dx. (3.67)

Proof. For y ∈ [0, δ], using the fundamental theorem of Calculus and the Cauchy–

Schwarz inequality, we can prove the following estimate:

w2(y) =

∣∣∣∣∣

∫ y

0

dw

dx
dx

∣∣∣∣∣

2

≤
(∫ y

0
12dy

)

∫ δ

0

(
dw

dx

)2

dx


 = y

∫ δ

0

(
dw

dx

)2

dx. (3.68)

Integrating in y from 0 to δ gives the desired result (3.66). The inequality such as in

this Lemma has been frequently used in previous studies involving the background

method going back to Doering and Constantin (1992). �

Lemma 2. Let w : R1 ∪ RT → R be a square integrable function such that
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w(x1, 0, x3) = 0 for x1 ∈ [0, δ] and x3 ∈ [0, Ls], then the following inequality

holds:

∫

R1

w2dx ≤ 4δ2
∫

RT



(
∂w

∂x1

)2

+

(
∂w

∂x2

)2

 dx + δ2

∫

R1

(
∂w

∂x1

)2

dx, (3.69)

where

RT = {(x1, x2, x3)|x1 ≥ 0, x2 > 0, x1 + x2 ≤ δ, 0 ≤ x3 ≤ Ls}. (3.70)

Note that if δ ≤ 1/2 then RT ⊆ R2 and therefore we also have

∫

R1

w2dx ≤ 4δ2
∫

R2



(
∂w

∂x1

)2

+

(
∂w

∂x2

)2

 dx + δ2

∫

R1

(
∂w

∂x1

)2

dx

≤ 4δ2
∫

R1∪R2

|∇w|2dx. (3.71)

Proof. The proof of this inequality roughly works as follows. We first control the

value of w at point p2 (see figure 3.6) using the gradient of w along the line p2p3,

similar to the proof of Lemma 3.4.1. We then control the value of w at point p1

using the gradient of w along the line p1p2, again similar to the proof of Lemma

3.4.1. For (0, y2, y3) ∈ R1 ∩ RT , using the fundamental theorem of Calculus and

the Cauchy–Schwarz inequality, we can prove the following estimate:

|w(0, y2, y3)| =

∣∣∣∣∣

∫ y2

−y2

∂

∂η
w
(
y2 − η

2
,
y2 + η

2
, y3

)
dη

∣∣∣∣∣

≤
(∫ y2

−y2

12 dη
)1/2



∫ y2

−y2

[
∂

∂η
w
(
y2 − η

2
,
y2 + η

2
, y3

)]2

dη




1/2

≤ (2δ)1/2



∫ y2

−y2

[
∂

∂η
w
(
y2 − η

2
,
y2 + η

2
, y3

)]2

dη




1/2

. (3.72)
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This implies,

∫ Ls

0

∫ δ

0
w2(0, y2, y3)dy2dy3 ≤

2δ
∫ Ls

0

∫ δ

0

∫ y2

−y2

[
∂

∂η
w
(
y2 − η

2
,
y2 + η

2
, y3

)]2

dηdy2dy3. (3.73)

We use the following change of variables on the right-hand side of (3.73)

(η, y2, y3) 7→ (x2 − x1, x1 + x2, x3). (3.74)

The region of integration for the integral on the right-hand side of (3.73) in the

old coordinates is

{(η, y2, y3)| − y2 ≤ η ≤ y2, 0 ≤ y2 ≤ δ, 0 ≤ y3 ≤ Ls}. (3.75)

In the new coordinates, it is easy to show that this corresponds to

{(x1, x2, x3)|0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ δ, 0 ≤ x3 ≤ Ls}. (3.76)

The Jacobian for the coordinate transformation (3.74) is given by

∣∣∣∣∣
∂(η, y2, y3)

∂(x1, x2, x3)

∣∣∣∣∣ = 2, (3.77)

and the partial derivative of a quantity with η in the new coordinates is

∂[ · ]

∂η
=

1

2

∂[ · ]

∂x2

− 1

2

∂[ · ]

∂x1

. (3.78)

Using these pieces of information, we rewrite (3.73) in the new coordinates
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Figure 3.6: The thick line in the middle is the plate. Γ is the domain enclosed
between the plate and the dashed rectangle (the spanwise direction is not visible
in this figure). The shaded triangular region is RT as defined in (3.70). Here,
p1, p2, and p3 are the points (x1, x2, x3), (0, x2, x3), and (x2, 0, x3). The point p1

belongs to R1.

(x1, x2, x3) as

∫ Ls

0

∫ δ

0
w2(0, y2, y3)dy2dy3 ≤

δ
∫ Ls

0

∫ δ

0

∫ δ−x2

0

[
∂

∂x2

w(x1, x2, x3) − ∂

∂x1

w(x1, x2, x3)

]2

dx1dx2dx3,

=⇒
∫ Ls

0

∫ δ

0
w2(0, y2, y3)dy2dy3 ≤

2δ
∫ Ls

0

∫ δ

0

∫ δ−x2

0

[
∂

∂x1

w(x1, x2, x3)

]2

+

[
∂

∂x2

w(x1, x2, x3)

]2

dx1dx2dx3.

(3.79)

We also have, for any (y1, y2, y3) ∈ R1,

w(y1, y2, y3) = w(0, y2, y3) +
∫ y1

0

∂

∂η
w(η, y2, y3) dη,

=⇒ w2(y1, y2, y3) ≤ 2w2(0, y2, y3) + 2

(∫ y1

0

∂

∂η
w(η, y2, y3) dη

)2

≤ 2w2(0, y2, y3) + 2(−y1)
∫ 0

y1

[
∂

∂η
w(η, y2, y3)

]2

dη.

(3.80)

Note that we have obtained the second line using the Young’s inequality and last
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line using the Cauchy–Schwarz inequality.

=⇒
∫ Ls

0

∫ δ

0

∫ 0

−δ
w2(y1, y2, y3)dy1dy2dy3 ≤ 2δ

∫ Ls

0

∫ δ

0
w2(0, y2, y3)dy2dy3

+δ2
∫ Ls

0

∫ δ

0

∫ 0

−δ

[
∂

∂η
w(η, y2, y3)

]2

dηdy2dy3. (3.81)

Renaming the variables in the second integral of the above inequality from

(η, y2, y3) to (x1, x2, x3) and using (3.79) gives

∫ Ls

0

∫ δ

0

∫ 0

−δ
w2(y1, y2, y3)dy1dy2dy3 ≤

4δ2
∫ Ls

0

∫ δ

0

∫ δ−x2

0

[
∂

∂x2

w(x1, x2, x3)

]2

+

[
∂

∂x1

w(x1, x2, x3)

]2

dx1dx2dx3

+δ2
∫ Ls

0

∫ δ

0

∫ 0

−δ

[
∂

∂x1

w(x1, x2, x3)

]2

dx1dx2dx3, (3.82)

which is the desired result. �

Appendix 3.B Sketch of the construction of the

background flow (3.35)

The choice of a background flow, which leads to a constant bound on the drag

coefficient, is not unique. Beyond the fact that the background flow (U ) should

be divergence-free and should satisfy the inhomogenous boundary conditions, the

principle that guides our choice of background flow is the simplification of the

algebra. We start by restricting U to be spanwise invariant. Next, we choose

this U to be ex1 outside a bounded domain Γ enclosing the plate. Therefore

∇U = 0 outside Γ, which makes the terms I and II in (3.27) vanish outside

Γ. Undoubtedly, the most straightforward choice of Γ is a rectangular box. We

70



choose this box to be centered around the plate with a margin of δ (see figure

3.1). At this stage, the goal is to construct a divergence-free background flow U

satisfying the no-slip boundary condition on the plate surface, which is equal to

ex1 outside this rectangular box. Within Γ, we select for simplicity a flow that

is symmetric about the plane x2 = 0, which leaves the problem of defining the

background flow U to regions R1, R2, R3 and R4 in figure 3.1. In regions R2 and

R3, we choose U to be unidirectional (so the streamwise component is non-zero)

which drops to zero on the surface. Its value should reach ex1 at a height δ from

the surface, i.e., at the edge of Γ. The most straightforward choice of U would

be a velocity profile which linearly varies from 0 to ex1 , a choice which is usually

made in the study of confined flows between planar boundaries (see for instance,

Doering and Constantin, 1992; Hagstrom and Doering, 2014). However, in the

present case, this choice would not preserve the mass flux that enters from the

left side of the box. The next simplest choice of U is a piecewise linear function

with two pieces, as shown in figure 3.7a and given as follows

U |R2∪R3(x) =





Up
x2

δp
ex1 0 ≤ x2 ≤ δp

(
Up

δ−x2

δ−δp
+ x2−δp

δ−δp

)
ex1 δp < x2 ≤ δ,

(3.83)

where Up denotes the maximum value of the streamwise component of U , and δp

is the height at which this maximum value is achieved. Along with balancing the

mass flux, we choose (again for simplicity) the quantities Up and δp such that the

magnitude of the gradient of U is equal above and below the height x2 = δp. In
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U = Upex1
δ δp

(a)

Ψ =?Ψ = x2

Ψ = x2

Ψ = f(x2)

(b)

Figure 3.7: (a) Illustration of the piecewise linear choice of background flow
on top of the plate. Here, Up, the maximum value of the streamwise component
of U and δp denotes the height from the plate where this value is achieved. (b)
Illustration of the region R1, where the streamfunction Ψ of the background flow
U remains to be determined once the Ψ is constructed on top of the plate.

total, we require the following two conditions to be satisfied:

∫ Ls

x3=0

∫ δ

x2=0
U |R2∪R3 dx2dx3 =

∫ Ls

x3=0

∫ δ

x2=0
ex1 dx2dx3,

∣∣∣∣∣
Up
δp

∣∣∣∣∣ =

∣∣∣∣∣
1 − Up
δ − δp

∣∣∣∣∣

=⇒ Up = 1 +
1√
2
, δp =

1√
2
. (3.84)

Once U is fully constructed on the top and bottom of the plate, we focus on the

region R1, which is not immediately adjacent to the plate. This is the region where

the streamlines shift upward, which implies that the vertical component of U is

also non-zero. In order to satisfy the divergence-free condition, it is convenient to

work with the streamfunction Ψ to construct U . First, note that the expression

for the streamfunction Ψ corresponding to the velocity field on top of the plate is

Ψ|R2∪R3(x) = f(x2) =





(
1+

√
2

2δ

)
x2

2 0 ≤ x2 ≤ δ√
2

(
√

2 + 2)x2 − 1+
√

2
2δ

(x2
2 + δ2) δ√

2
< x2 ≤ δ,

(3.85)

where f is the same as defined in (3.32). Inside the region R1, the streamfunction

Ψ must smoothly change from Ψ(x) = x2 on the left side of R1 (at x1 = −δ)

to Ψ(x) = f(x2) on the right side of R1 (at x1 = 0), as shown in figure 3.7b.
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Imposing the condition of mirror symmetry about x2 = 0 also requires the vertical

component of U to be zero at x2 = 0, which implies that ∂Ψ/∂x1 = 0 at x2 =

0. One way of defining the streamfunction in the region R1, which obeys these

conditions, is as follows

Ψ|R1(x) = (f(x2) − x2)g(x1) + x2, (3.86)

where we require the function g to satisfy the boundary conditions g(−δ) = 0 and

g(0) = 1. Now to ensure the continuity of U the function g should be smooth

enough and a choice of g that suffices for our purpose is

g(x1) =
(

1 +
x1

δ

)2 (
1 − 2x1

δ

)
− δ ≤ x1 ≤ 0. (3.87)

This function g is the same as defined in (3.33). Finally, we define the stream-

function Ψ in region R4 so that the resultant flow goes back to being uniform on

the right edge of R4, in a manner which is the inversion of flow in the region R1

and, therefore, can be obtained after appropriate translation and reflection of Ψ

defined in R1 (see (3.34)).

Appendix 3.C Optimal condition for the bound

(3.55)

Recall from (3.51) and (3.52) that the two constraints on δ are

δ(M + 4δ
1
2 ) ≤ 1

2Re
and δ ≤ 1

2
. (3.88)
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The left-hand side of the first constraint is a monotonically increasing function of

δ, therefore it possible to combine these two constraints as follows

δ ≤ min
{
δ∗,

1

2

}
where δ∗ satisfies δ∗(M + 4δ

1
2∗ ) =

1

2Re
. (3.89)

Given the bound (3.55) on the drag coefficient,

CD ≤ 2(1 +
√

2)2

Reδ
+
(

12
√

2 +
77

4

)
δ

1
2 +

11.84

Re
, (3.90)

our goal is to minimize the right-hand side under the constraint (3.89). This

right-hand side is a convex function of δ, whose minimum is achieved when

δ = δc =

(
16(1 +

√
2)2

(48
√

2 + 77)Re

)2/3

. (3.91)

This critical value δc, however, does not satisfy the constraint (3.89). As the

right-hand side of (3.90) is a convex function of δ, to minimize the bound under

the given constraints, we simply choose a value of δ that satisfies (3.89) and is as

close as possible to the critical value δc. The bound is therefore optimized when

we choose

δ = min
{
δ∗,

1

2

}
. (3.92)

Using the equation of δ∗ from (3.89), we see that

δ∗ <
1

2
when Re >

4
√

2

58 + 21
√

2
≈ 0.0645. (3.93)
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Therefore, the optimal strategy is to choose

δ = δ∗ when Re > 0.0645. (3.94)
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Chapter 4

Pressure-driven flows in helical

pipes: bounds on flow rate and

friction factor

This chapter is based on the paper Kumar (2020) published in the Journal of

Fluid Mechanics, Volume 904 , 10 December 2020 , A5.

4.1 Introduction

Curved pipes have a wide range of applications in the industry because of their

enhanced mixing properties, high heat transfer coefficient, and compact structure.

Examples of application include, but are not limited to, heat exchangers, air-

conditioning systems, chemical reactors, and steam generators (see the review by

Vashisth et al., 2008; Naphon and Wongwises, 2006). One of the crucial questions

in the study of turbulent flows in curved pipes is the accurate determination of the

dependence of the flow rate and friction factor on the applied pressure difference
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between the two ends of the pipe, and its dependence on geometrical parameters

such as the pipe’s curvature and torsion. The extensive usage of curved pipes

in the industry has motivated many studies to characterize this dependence (see

Itō, 1959; Liu and Masliyah, 1993; Yamamoto et al., 1994, 1995; Cioncolini and

Santini, 2006). However, only a few of these studies consider the high Reynolds

number limit, which is the objective of this paper.

The flow structure inside a curved pipe can vary substantially with Reynolds

number and pipe geometry, which leads to a number of different regimes, each

with its own distinct functional dependence of the flow rate and friction factor

on these parameters. As such, quantifying this dependence becomes difficult even

for the laminar flow, unlike the case of a straight pipe. Indeed, at low Reynolds

number, an imbalance between centrifugal force and cross-stream pressure leads to

the onset of secondary counter-rotating vortices known as Dean’s vortices, which

were first experimentally observed by Eustice (1910, 1911). Dean (1927, 1928)

confirmed this observation analytically in the low curvature limit by computing the

flow velocity as a perturbation of the well-known laminar Poiseuille flow solution.

Dean (1928) showed that the effect of curvature is to decrease the flow rate and

that this effect is of second-order, i.e. quadratic in curvature. Several other

studies were performed in the limit of small curvature to obtain a steady-state flow

solution in a toroidal pipe, see for example, McConalogue and Srivastava (1968);

Van Dyke (1978); Dennis (1980). For a comprehensive review of the topic, the

reader is referred to Berger et al. (1983). Germano (1982) further extended Dean’s

result to a helical pipe with small torsion and Tuttle (1990) showed that small

torsion leads to a second-order decrease in the flow rate. However, no analytical

result exists for the steady flow in a pipe with a finite radius of curvature or torsion.

Therefore, even in the laminar regime, one has to rely on empirical formulae to

77



quantify the flow rate.

The transition to turbulence in curved pipes also differs substantially from the

case of a straight pipe. Taylor (1929) and White (1929) found that flow in a curved

pipe is more stable than in a straight pipe. Notably, they saw that the critical

Reynolds number for the transition is twice as large as in the straight pipe case.

Inspired by this observation, Sreenivasan and Strykowski (1983) conducted experi-

ments in a straight tube followed by a helical tube with curvature κ = 0.058. They

noticed an oscillating behavior near the inner wall of the helical tube at a moder-

ate Reynolds number, which Webster and Humphrey (1993, 1997) attributed to

the presence of traveling wave perturbations to the Dean’s vortices. Recent years

have witnessed a resurgence in carefully conducted studies to quantify the effect

of curvature on the stability of flow in a torus. Kühnen et al. (2015) studied this

problem using a novel experimental setup where a magnetically controlled steel

sphere drives the flow in a torus. They conjectured that the transition switches

from subcritical to supercritical for a critical torus curvature κ ≃ 0.028. Soon

after that, Canton et al. (2016) performed an in-depth linear stability analysis,

covering the entire curvature range, and obtained the critical Reynolds number as

a function of the curvature. More recently, Canton et al. (2020) have shed light on

the complexity of transition for flow in a torus, demonstrating in particular that

for κ ≃ 0.025, two branches of solution can coexist at the same Reynolds number:

one with subcritically-excited sustained turbulence, and the other consisting of a

low-amplitude travelling wave originating from a supercritical Hopf bifurcation.

The incredible complexity of curved pipe flows makes it impossible to obtain

the precise dependence of mean quantities such as flow rate or friction factor on

model parameters. This is especially true at high Reynolds number, where both

laboratory experiments and numerical computations are extremely challenging
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and must be repeated for different pipe geometries. As noted by Vester et al.

(2016), the determination of the friction factor (or equivalently the flow rate)

for turbulent flows in curved pipes has generally been neglected, with only a

few exceptions (Itō, 1959; Cioncolini and Santini, 2006). However, as we shall

demonstrate in this paper, it is possible to obtain bounds on these mean quantities

as explicit functions of flow and geometric variables, in the high Reynolds number

limit.

Obtaining bounds on mean quantities in fluid mechanics goes back to the clas-

sical technique of Howard (1963), which was further developed by Busse (1969,

1970). In the 1990s, Doering and Constantin (Doering and Constantin, 1992, 1994;

Constantin and Doering, 1995; Doering and Constantin, 1996), based on the ideas

from Hopf (1955), developed a new technique known as the background method to

bound mean quantities. This method requires a careful choice of a trial function

(the background field) to satisfy a spectral constraint in order to obtain a bound

on the desired quantity. Since the work of Doering and Constantin, this method

has been applied to a wide variety of problems in fluid dynamics. Examples

include upper bounds on the rate of energy dissipation in surface-velocity-driven

flows (Doering and Constantin, 1992, 1994; Marchioro, 1994; Wang, 1997; Plasting

and Kerswell, 2003), pressure-driven flows (Constantin and Doering, 1995), and

surface-stress-driven flows (Tang et al., 2004; Hagstrom and Doering, 2014); upper

bounds on the heat transfer in different configurations of Rayleigh–Bénard convec-

tion (Doering and Constantin, 1996, 2001; Otero et al., 2002; Plasting and Ierley,

2005; Wittenberg, 2010; Whitehead and Doering, 2011b; Whitehead and Wit-

tenberg, 2014; Goluskin, 2015; Goluskin and Doering, 2016; Fantuzzi, 2018) and

Bénard–Marangoni convection (Hagstrom and Doering, 2010; Fantuzzi et al., 2018,

2020); upper bounds on buoyancy flux in stably stratified shear flows (Caulfield
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and Kerswell, 2001; Caulfield, 2005).

In this paper, we use this background method to obtain a lower bound on

the flow rate and an equivalent upper bound on friction factor for flows in helical

pipes. The novelty in this paper is the use of a two-dimensional background flow

in contrast with most previous applications of the background method, where the

geometry was simple enough to use a one-dimensional background flow to suffice

the desired purpose. We start by setting up the problem in §4.2, where we describe

the flow configuration and the coordinate system used to solve the problem. In

§4.3, we formulate the background method in the context of pressure-driven flows

in helical pipes. In §4.4, we choose the background flow and obtain bounds on

the flow rate and friction factor. Finally, in §4.5, we compare our findings with

available experimental data and make a few remarks about the applicability of

the background method to other interesting problems in engineering.

4.2 Problem Setup

4.2.1 Flow configuration

We consider the flow of an incompressible fluid with density ρ and kinematic

viscosity ν in a helical pipe. The radius of the pipe is denoted as Rp, the radius

of the centerline helix Rh, and the pitch of the centerline helix is 2πl (see figure

4.1a). Here, the centerline helix refers to the locus of the center of the pipe. The

flow is driven by a body force f ∗, which has dimensional amplitude F . The choice

of forcing is described in §4.2.3. We non-dimensionalize the variables as follows

f =
f ∗

F
, u =

(
ρ

FRp

) 1
2

u∗, p =
p∗ − pa
FRp

, x =
x∗

Rp

, t =

(
F

ρRp

) 1
2

t∗. (4.1)
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Here, pa is the ambient pressure, whereas f , u, p, x, and t denote the non-

dimensional forcing, velocity, pressure, position, and time, respectively. Quantities

with a star in superscript are dimensional. The equations governing the flow in

non-dimensional form are as follows

∇ · u = 0,

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + f , (4.2)

where

Re =
Rp

ν

(
FRp

ρ

) 1
2

is the Reynolds number. The boundary conditions at the surface of the pipe are

no-slip and impermeable.

4.2.2 Coordinate system

In this subsection, we construct an orthogonal coordinate system that is well-

suited for our problem. This coordinate system was first introduced by Germano

(1982), who was interested in the effect of small torsion on Dean’s solution. The

coordinate system has been extensively used since then in both analytical and

computational studies of flows in helical pipes (Kao, 1987; Germano, 1989; Tut-

tle, 1990; Liu and Masliyah, 1993; Yamamoto et al., 1994; Hüttl and Friedrich,

2001; Gammack and Hydon, 2001). For clarity and self-consistency, we repeat its

construction below.

Let a and 2πb be the non-dimensional centerline helix radius and pitch, where

a = Rh/Rp and b = l/Rp. The equation of this helix parameterized with arc
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(a) (b)

Figure 4.1: (a) Schematic diagram of a helical pipe with radius Rp, radius of
the centerline helix Rh, and pitch of the centerline helix 2πl. The dashed line is
the axis of rotation of the helical pipe. (b) Illustration of the coordinate system
(s, r, φ) used in this paper.
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length s in a Cartesian coordinate system (x, y, z) is given by

(x(s), y(s), z(s)) =

(
a cos

(
s√

a2 + b2

)
, a sin

(
s√

a2 + b2

)
,

bs√
a2 + b2

)
. (4.3)

Let R(s) = (x(s), y(s), z(s)) be the position vector and let T (s), N (s), and B(s)

be the tangent, normal, and binormal to the centerline helix, which are given by

T =
dR

ds
, N =

1

κ

dT

ds
, B = T × N . (4.4)

The relations among the tangent, normal, and binormal are given by the Frenet–

Serret formulae, which are

dN

ds
= τB − κT ,

dB

ds
= −τN , (4.5)

where

κ =
a

a2 + b2
, and τ =

b

a2 + b2
(4.6)

are the non-dimensional curvature and torsion of the helix. The curvature is

considered smaller than one (κ < 1) in this paper. We now construct a coordinate

system (s, r, η) such that any Cartesian position vector x can be expressed as

x = R + r cos ηN + r sin ηB. (4.7)

With the use of (4.4) and (4.5),

dx · dx =
[
(1 − rκ cos η)2 + τ 2r2

]
ds2 + dr2 + r2dη2 + 2τr2dsdη. (4.8)
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Therefore, the resulting coordinate system is non-orthogonal. However, using the

transformation η = φ− τs in (4.8), we obtain

dx · dx = (1 − rκ cos(φ− τs))2ds2 + dr2 + r2dφ2. (4.9)

The coordinate system (s, r, φ) is orthogonal, and will be used to perform calcu-

lations in the rest of the paper. The scale factors for this coordinate system are

defined as

hs = (1 − rκ cos(φ− τs)), hr = 1, hφ = r. (4.10)

The impermeability and no-slip condition at the surface of the pipe in the

(s, r, φ) coordinate system translate to

u = (us, ur, uφ) = 0 at r = 1. (4.11)

In this paper, we assume that the flow is periodic in the streamwise direction s

with period sp. Hence, the domain of interest in the (s, r, φ) coordinate system is

Ω = [0, sp] × [0, 1] × [0, 2π]. (4.12)

4.2.3 Choice of forcing

We choose to drive the flow with a dimensional forcing

f ∗ = − 1

1 − r∗κ∗ cos(φ∗ − τ ∗s∗)
× dP

ds∗ es for 0 ≤ r∗ ≤ Rp. (4.13)
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Here, −dP/ds∗ is a constant and can be thought of as the applied pressure gra-

dient. Note how this streamwise directed forcing varies across the cross-section.

The reason for this choice of forcing over a conventional forcing, which would be

constant across the cross-section, is that the line integral along the streamwise

direction for this forcing is independent of the position on the pipe cross-section

and depends only on the difference of streamwise coordinates, i.e.

∫ s∗
2

s∗=s∗
1

f ∗
· es dl =

∫ s∗
2

s∗=s∗
1

−dP

ds∗ ds
∗ = −dP

ds∗ (s∗
2 − s∗

1), (4.14)

where dl = h∗
sds

∗ is the line element with h∗
s = 1−r∗κ∗ cos(φ∗−τ ∗s∗). By contrast,

for the conventional forcing, the value of this line integral would also depend on

the position on the cross-section. Hence, we believe that our choice of forcing is

good for modeling a flow driven by constant pressure boundary conditions. More

detail on this choice of forcing in the context of flow in a torus can be found in

Canton et al. (2016, 2017); Rinaldi et al. (2019). Note that in the limit of vanishing

curvature (κ → 0), our choice does reduce to constant forcing in the streamwise

direction and therefore is consistent with the usual modeling of pressure-driven

flow in a straight pipe. Based on (4.13), we define the forcing scale as

F = −dP

ds∗ .

This implies that the non-dimensional forcing is given by

f =
1

1 − rκ cos(φ− τs)
es for 0 ≤ r ≤ 1. (4.15)
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4.2.4 Quantities of interest

We are interested in obtaining a lower bound on the average non-dimensional

flow rate Q, which we simply call flow rate, and an equivalent upper bound on

the friction factor λ in the limit of high Reynolds number. As we are concerned

with the high Reynolds number limit, so we use an inertial scaling to define the

non-dimensional flow rate Q as

Q =
1

R2
p

(
ρ

FRp

) 1
2

Q∗ =
〈∫ 2π

φ=0

∫ 1

r=0
usrdrdφ

〉
, (4.16)

where Q∗ is the long-time average of the dimensional flow rate, us is the streamwise

component of the non-dimensional velocity field u and

〈[ · ]〉 = lim
T→∞

1

T

∫ T

t=0
[ · ] dt (4.17)

denotes the long-time average of a quantity. The Darcy–Weisbach friction factor

λ, which is four times the Fanning friction factor, is defined as

λ = −dP

ds∗
4Rp

ρu∗2
m

, (4.18)

where u∗
m is the dimensional streamwise mean velocity given by

u∗
m =

Q∗

πR2
p

. (4.19)

When expressed in non-dimensional variables, the friction factor is

λ =
4π2

Q2
. (4.20)
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From (4.20), we notice that a lower bound on the flow rate Q will provide an

upper bound on the friction factor λ.

4.3 The background method formulation

In this section, we describe the general approach of the background method

applied to our problem. The formulation that we develop here is for any general

background flow field and is similar to the one given in Constantin and Doering

(1995) for pressure-driven channel flow.

The background method, in essence, works as follows. We first derive time-

averaged integral identities from the governing equations (4.2) (using the fact

that the long-time averages of certain time derivatives vanish) in order to rewrite

the quantity of interest Q given by (4.16) as an equivalent long-time averaged

expression that is easier to bound using analysis techniques. To that end, we

begin by establishing a time-averaged total energy equation, by taking the dot

product of equation (4.2) with u and then by performing a volume integration on

the resulting equation. The result is

1

2

d||u||22
dt

= − 1

Re
||∇u||22 +

∫

Ω
f · u dx, (4.21)

where || · ||2 denotes the L2-norm, which is given by

|| · ||2 =
(∫

Ω
| · |2 dx

) 1
2

, (4.22)
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and where the volume integral in (s, r, φ) coordinates is written as

∫

Ω
[ · ] dx =

∫ sp

s=0

∫ 2π

φ=0

∫ 1

r=0
[ · ] hshrhφdrdφds. (4.23)

The quantity ||u||22(t) can be shown to be uniformly bounded in time within

the framework of the background method (see Doering and Constantin, 1992;

Constantin and Doering, 1995, for example). Therefore, the long-time average of

the time derivative of ||u||22(t) vanishes. As a result, taking the long-time average

of equation (4.21) leads to

〈∫

Ω
f · u dx

〉
=

1

Re
〈||∇u||22〉. (4.24)

The second step of the method is to perform the background decomposition. We

start by writing the total velocity u as the sum of two divergence-free velocity

fields u = U + v, where ∇ · U = 0 and ∇ · v = 0. We call U the background

flow, which is steady and satisfies the same boundary conditions as the full flow

u, while the perturbation v satisfies the homogeneous version of the boundary

conditions. The equation governing the evolution of v is given by

∂v

∂t
+ U · ∇U + U · ∇v + v · ∇U + v · ∇v

= −∇p+
1

Re
∇2U +

1

Re
∇2v + f . (4.25)

Taking the dot product of the above equation with v and performing a volume

integration, followed by taking the long-time average, results in

〈∫

Ω
f · v dx

〉
=

1

2Re

〈
||∇u||22

〉
− 1

2Re
||∇U ||22 + 〈H(v)〉 , (4.26)
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where

H(v) =
∫

Ω
(v · ∇U sym) · v dx

︸ ︷︷ ︸
I

+
∫

Ω
(U · ∇U ) · v dx

︸ ︷︷ ︸
II

+
1

2Re
||∇v||22

︸ ︷︷ ︸
III

, (4.27)

and ∇U sym is the symmetric part of ∇U , i.e.

∇U sym =
∇U + ∇U ⊺

2
. (4.28)

We have used the following identity in deriving the equation (4.26)

|∇u|2 = |∇U |2 + |∇v|2 + 2∇U : ∇v, (4.29)

where, in index notation,

∇U : ∇v = ∂ivj∂iUj. (4.30)

Multiplying (4.26) by two and subtracting (4.24) yields

2
〈∫

Ω
f · v dx

〉
−
〈∫

Ω
f · u dx

〉
= − 1

Re
||∇U ||22 + 2 〈H(v)〉 . (4.31)

The left-hand side of (4.31) can be simplified as follows

2
〈∫

Ω
f · v dx

〉
−
〈∫

Ω
f · u dx

〉
=
〈∫

Ω
f · u dx

〉
− 2

〈∫

Ω
f · U dx

〉

=
〈∫ sp

s=0

[∫ 2π

φ=0

∫ 1

r=0
usrdrdφ

]
ds
〉

− 2
∫ sp

s=0

[∫ 2π

φ=0

∫ 1

r=0
Usrdrdφ

]
ds

= sp

〈∫ 2π

φ=0

∫ 1

r=0
usrdrdφ

〉
− 2sp

∫ 2π

φ=0

∫ 1

r=0
Usrdrdφ. (4.32)

Note that we used v = u − U in the first line, then substituted the expression
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for f from (4.15) and used the time independence of U to obtain the second line.

The terms in the square brackets in the second line represent the flow of u and U

through a cross-section of pipe and therefore are independent of the streamwise

direction s because of the incompressibility of u and U . Hence, we can easily

integrate these expressions with respect to s, which leads to the third line. Using

(4.32) in (4.31) and dividing by sp on both sides gives

Q =
〈∫ 2π

φ=0

∫ 1

r=0
usrdrdφ

〉
= 2

∫ 2π

φ=0

∫ 1

r=0
Usrdrdφ− 1

spRe
||∇U ||22 +

2

sp
〈H(v)〉 .

(4.33)

If one can prove that

H(v) + γ ≥ 0 ∀ v (4.34)

for a background flow U and some constant γ, then we have the following bound

on the flow rate

Q ≥ 2
∫ 2π

φ=0

∫ 1

r=0
Usr drdφ− 1

spRe
||∇U ||22 − 2γ

sp
. (4.35)

Following the convention (Doering and Constantin, 1994; Constantin and Doering,

1995), we call (4.34) the spectral constraint.

Note that the background method formulation given in Constantin and Do-

ering (1995) for pressure-driven channel flows assumes that the background flow

U is unidirectional and planar (a choice that is only suitable for planar geome-

tries). As a result, the term II in (4.27) is zero and therefore the functional H(v)

is homogenous in their work. Here, we have given the background method for-

mulation for a general background flow U . Also, as we shall see, the choice of
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the background flow which works in the present case, is two-dimensional which

leads to a nonzero term II in (4.27) and therefore the resultant functional H(v)

is inhomogenous.

4.4 Bounds on flow rate and friction factor

In this section, we obtain a lower bound on the flow rate and an equivalent

upper bound on the friction factor. We choose a family of background flows with

varying boundary layer thickness along the circumference of the pipe. This varia-

tion of the boundary layer thickness will be carefully selected so that the spectral

constraint (4.34) is satisfied while optimizing the bound (4.35) simultaneously for

different values of curvature κ and torsion τ , thereby obtaining a geometrical de-

pendence on these parameters. Note that in this paper, the boundary layer refers

to the term boundary layer used in the context of the background method (see

for instance, Doering and Constantin, 1994; Goluskin and Doering, 2016) and is

not the conventional viscous boundary layer.

4.4.1 Choice of background flow

We make the following choice of background flow

U (s, r, φ) =





(Λ(1 − rκ cos(φ− τs)), 0, Λτr)

if 0 ≤ r < 1 − δg(s, φ)

(
Λ(1 − rκ cos(φ− τs))

(
1−r

δg(s,φ)

)
, 0, Λτr

(
1−r

δg(s,φ)

))

if 1 − δg(s, φ) ≤ r ≤ 1.

(4.36)
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Figure 4.2: Variation of the streamwise component Us of the background flow
(4.36) across a cross-section of the pipe. In this example, the pipe’s curvature
is κ = 0.5 and torsion is τ = 0.25. The solid black curve shows the edge of the
boundary layer with variable thickness δg(s, φ). The point O denotes the outer
edge of the pipe, i.e., the point on the cross-section, which is farthest from the
axis of rotation of the helical pipe. The background flow in this figure corresponds
to Λ = 1, and the boundary layer shape g(s, φ) is given by (4.56), which is the
shape obtained in the process of optimizing the bound.

Here, Λ is a constant that will be adjusted later to optimize the bound,

δ =
1

Re
, (4.37)

and g(s, φ) is a non-zero bounded differentiable function of s and φ, that satisfies

0 < gl ≤ g(s, φ) ≤ gu and

∣∣∣∣∣
∂g

∂s

∣∣∣∣∣ ,
∣∣∣∣∣
∂g

∂φ

∣∣∣∣∣ ≤ g′
u ∀ s ∈ [0, sp], φ ∈ [0, 2π], (4.38)

where gl, gu, and g′
u are constants independent of Re. The region 1 − δg(s, φ) ≤

r ≤ 1 is the boundary layer denoted as

Ωδ = {(s, r, φ)|s ∈ [0, sp], φ ∈ [0, 2π], 1 − δg(s, φ) ≤ r ≤ 1}, (4.39)

and the function g(s, φ) represents the shape of the boundary layer which will

be determined later as part of the analysis to optimize the bound. Physically,
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(4.38) means that the thickness of the boundary layer is everywhere non-zero and

finite, and it varies smoothly. Figure (4.2) shows a color map of the stream-

wise component Us of the background flow (4.36). It can be easily verified that

the background flow field (4.36) satisfies the no-slip and impermeable boundary

conditions on the pipe surface. Meanwhile, the divergence-free condition on the

background flow enforces

g(s, φ) = g(φ− τs), (4.40)

which constrains the choice of g. See Appendix 4.A for the calculation of diver-

gence of a vector in the (s, r, φ) coordinate system. Also, note that for this choice

of U , in the bulk region (0 ≤ r ≤ 1 − δg(s, φ)), we have

∇U sym = 0 (4.41)

(see Appendix 4.C) the reason being is that in this region U is really a rigid body

flow as viewed from some inertial frame of reference (see §4.5 Discussion and

Concluding Remarks). Although we can obtain a bound on the flow rate with

a constant boundary layer thickness, this choice does not provide the optimal

bound as a function of the pipe’s curvature κ and torsion τ . Unlike the case

of planar geometries, the choice of the background flow (4.36) is not uniform in

the bulk region. As can be seen in figure (4.2), the magnitude of the streamwise

component Us of the background flow in the bulk region varies and is higher

towards the outer edge O of the pipe than the inner edge. As such, a constant

boundary layer thickness is not necessarily the optimal choice for every κ and

τ . Therefore, it is natural to choose a variable boundary layer thickness (which
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is more general than the choice of constant boundary layer thickness) since our

goal is to optimize bounds simultaneously for different curvature and torsion.

Furthermore, in the process of obtaining bounds, we complement this choice of

variable boundary layer thickness with inequalities suitably constructed (from

standard analysis inequalities) to achieve this goal. In the forthcoming analysis,

we will be interested in obtaining a bound in the limit of high Reynolds number

and therefore will be frequently making use of the fact that Re ≫ 1 or δ ≪ 1 to

retain only the leading order terms.

4.4.2 The spectral constraint

In this subsection, we use analysis techniques to obtain a condition under

which the spectral constraint (4.34) is satisfied. In what follows, we shall make

use of a crucial inequality, whose proof is given in Appendix 4.B.

Lemma 1. Let w : Ωδ → R be a square integrable function such that w(s, 1, φ) = 0

for all 0 ≤ s ≤ sp and 0 ≤ θ ≤ 2π, then the following statement is true

∫

Ωδ

σw2 dx ≤ δ2

2

∫

Ωδ

σ(s, 1, φ)g2(s, φ)

(
∂w

∂r

)2

dx +O(δ3) ||∇w||22. (4.42)

Here, σ : Ωδ → R is a positive bounded O(1) function that satisfies

|σ(s, r, φ) − σ(s, 1, φ)| = O(δ) for (s, r, φ) ∈ Ωδ. (4.43)

For convenience, we make use of the big O notation O(·). Let m and n be two

functions, then in this notation, writing m(δ) = O(n(δ)) means that there exists

two positive constants C > 0 and δ0 > 0 such that |m(δ)| ≤ C|n(δ)| whenever

0 ≤ δ < δ0.
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We start by obtaining a bound on I as defined in (4.27). Making use of (4.41)

leads to

I =
∫

Ω
(v · ∇U sym) · v dx =

∫

Ωδ

(v · ∇U sym) · v dx. (4.44)

The following inequality is obtained by substituting ∇U sym (use (4.89) from Ap-

pendix 4.C for the calculation of ∇U sym) into (4.44)

|I| ≤
∫

Ωδ

ξ1(s, r, φ)|vs||vr| dx +
∫

Ωδ

ξ2(s, r, φ)|vφ||vr| dx

+
∫

Ωδ

ξ3v
2
sdx +

∫

Ωδ

ξ4v
2
φ dx +

∫

Ωδ

ξ5|vs||vφ| dx, (4.45)

where

ξ1(s, r, φ) =
Λ(1 − rκ cos(φ− τs))

δg
, ξ2(s, r, φ) =

Λτr

δg
,

ξ3 = max
(s,r,φ)∈Ωδ

Λ(1 − r)

δg2

∣∣∣∣∣
∂g

∂s

∣∣∣∣∣ , ξ4 = max
(s,r,φ)∈Ωδ

Λτ(1 − r)

δg2

∣∣∣∣∣
∂g

∂φ

∣∣∣∣∣ ,

ξ5 = max
(s,r,φ)∈Ωδ

Λ(1 − r)

δg2

[
τr

(1 − rκ cos(φ− τs))

∣∣∣∣∣
∂g

∂s

∣∣∣∣∣

+
(1 − rκ cos(φ− τs))

r

∣∣∣∣∣
∂g

∂φ

∣∣∣∣∣

]
.

(4.46)

Given that 1−r is O(δ) in the boundary layer, and using the constraints on g and

its derivatives from (4.38), implies that ξ3, ξ4, and ξ5 are O(1) constants. Using

Young’s inequality |vs||vφ| ≤ (|vs|2 + |vφ|2)/2, the last three integrals in (4.45) can

be replaced by

∫

Ωδ

(
ξ3 +

ξ5

2

)
v2
sdx +

∫

Ωδ

(
ξ4 +

ξ5

2

)
v2
φ dx. (4.47)
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An application of Inequality 1 to these two integrals with w = vs in the first

integral, w = vφ in the second integral and taking σ to be an O(1) constant in

both cases results a bound on I as

|I| ≤
∫

Ωδ

ξ1(s, r, φ)|vs||vr| dx +
∫

Ωδ

ξ2(s, r, φ)|vφ||vr| dx +O(δ2)||∇v||22.

(4.48)

In a similar manner, we obtain bounds on the remaining two integrals in (4.48).

These bounds contribute to the leading order term of the bound on |I|; therefore,

this time we perform the computation wisely with the intent of optimizing the

bound on |I| simultaneously in κ and τ . Using the following inequalities (based

on Young’s inequality) in (4.48)

|vs||vr| ≤ c1(s, φ)|vs|2
2

+
|vr|2

2c1(s, φ)
, |vφ||vr| ≤ c2(s, φ)|vφ|2

2
+

|vr|2
2c2(s, φ)

, (4.49)

where

0 < c1(s, φ) and 0 < c2(s, φ), (4.50)

results in

|I| ≤
∫

Ωδ

[
c1(s, φ)ξ1(s, r, φ)

2

]
|vs|2 dx +

∫

Ωδ

[
ξ1(s, r, φ)

2c1(s, φ)
+
ξ2(s, r, φ)

2c2(s, φ)

]
|vr|2 dx

+
∫

Ωδ

[
c2(s, φ)ξ2(s, r, φ)

2

]
|vφ|2 dx +O(δ2)||∇v||22.

(4.51)

We apply the Inequality 1 to the three integrals in (4.51) with w = vs, vr, and vφ
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and taking σ to be the corresponding terms in the square brackets times δ, which

results in

|I| ≤ Λδ

4



∫

Ωδ

p1

(
∂vs
∂r

)2

dx +
∫

Ωδ

p2

(
∂vr
∂r

)2

dx +
∫

Ωδ

p3

(
∂vφ
∂r

)2

dx




+O(δ2)||∇v||22, (4.52)

where

p1 = (1 − κ cos(φ− τs))g(s, φ)c1(s, φ),

p2 =
(1 − κ cos(φ− τs))g(s, φ)

c1(s, φ)
+
τg(s, φ)

c2(s, φ)
,

p3 = τg(s, φ)c2(s, φ). (4.53)

We now choose the functions g(s, φ), c1(s, φ), and c2(s, φ) so that p1, p2, and p3

are constants. For this choice, the bound on I can be written as

|I| ≤ Λδ

4
max{p1, p2, p3} ||∇v||22 +O(δ2)||∇v||22. (4.54)

To optimize the bound, we need

p1 = p2 = p3, (4.55)

as shown in Appendix 4.C. Combining this condition with the requirement that
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p1, p2, and p3 should be constants leads to

g(s, φ) =
gc√

(1 − κ cos(φ− τs))2 + τ 2

c1(s, φ) =

√√√√1 +
τ 2

(1 − κ cos(φ− τs))2
, c2(s, φ) =

√

1 +
(1 − κ cos(φ− τs))2

τ 2

(4.56)

with gc being an O(1) positive constant. Note that the function g(s, φ) satisfies

the constraints (4.38) and (4.40), where the constants gl, gu, g′
u in (4.38) can be

chosen as

gl =
gc√

(1 + κ)2 + τ 2
, gu =

gc√
(1 − κ)2 + τ 2

, and g′
u =

2gc

[(1 − κ)2 + τ 2]3/2
.

(4.57)

Combining (4.53), (4.54), and (4.56) gives a bound on I as

|I| ≤
∣∣∣∣
∫

Ω
v · ∇U · v dx

∣∣∣∣ ≤
(

Λgcδ

4
+O(δ2)

)
||∇v||22. (4.58)

Next, we show that the contribution of term II, as defined in (4.27), is of higher

order in δ compared to term I. First note that for any scalar function Ψ

II =
∫

Ω
U · ∇U · v dx =

∫

Ω
(U · ∇U − ∇Ψ) · v dx (4.59)

using the incompressibility of v, together with the fact that v satisfies the ho-

mogenous boundary conditions. Then, if we choose Ψ such that U · ∇U = ∇Ψ
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in Ω \ Ωδ, namely,

Ψ(s, r, φ) = Λ2κ cos(φ− τs)

(
r − r2

2
κ cos(φ− τs)

)
− Λ2τ 2r2

2
, (4.60)

then one can readily check that

|(U · ∇U − ∇Ψ)|(x) =





0 if x ∈ Ω \ Ωδ

O(1) if x ∈ Ωδ

. (4.61)

See Appendix 4.C for the calculation of ∇U . Using (4.61), we can finally obtain

a bound on II as

|II| =
∣∣∣∣
∫

Ω
U · ∇U · v dx

∣∣∣∣ =
∣∣∣∣
∫

Ω
(U · ∇U − ∇Ψ) · v dx

∣∣∣∣

=⇒ |II| ≤ O(1)
∫

Ωδ

|v| dx

≤ O(1)
∫

Ωδ

|v|2 dx +O(1)
∫

Ωδ

1 dx

≤ O(δ2)||∇v||22 + spO(δ). (4.62)

We have used Young’s inequality to obtain the third line and Inequality 1 to

obtain the last line. Finally,we obtain a bound on H(v) defined in (4.27) using

the triangle inequality and the bounds derived on I and II as

H(v) ≥ 1

2Re
||∇v||22 −

(
Λgcδ

4
+O(δ2)

)
||∇v||22 − spO(δ), (4.63)

which implies

H(v) + γ ≥ 0 (4.64)
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as long as

gc ≤ 2

Λ
+O(δ) and γ = spO(δ). (4.65)

4.4.3 Bound on mean quantities

We are now ready to compute the bound on the flow rate. We begin by

evaluating the first term on the right-hand-side of (4.35) as

∫ 2π

φ=0

∫ 1

r=0
Usrdrdφ =

∫ 2π

φ=0

∫ 1−δg(s,φ)

r=0
Λ(1 − rκ cos(φ− τs))rdrdφ

+
∫ 2π

φ=0

∫ 1

1−δg(s,φ)
Λ(1 − rκ cos(φ− τs))

(1 − r)

δg
rdrdφ

=
∫ 2π

φ=0

∫ 1

r=0
Λ(1 − rκ cos(φ− τs))rdrdφ+O(δ)

= πΛ +O(δ). (4.66)

Similarly, the second term on the right-hand-side of (4.35) is as follows

||∇U ||22 =
∫

Ωδ

|∇U |2 dx +
∫

Ω\Ωδ

|∇U |2 dx

=
∫ sp

s=0

∫ 2π

φ=0

∫ 1

1−δg(s,φ)
|∇U |2 hshrhφdrdφds+ spO(1)

=
2πΛ2sp
δ gc

I(κ, τ) + spO(1), (4.67)

where

I(κ, τ) =
1

2π

∫ 2π

0

(
(1 − κ cosα)2 + τ 2

)3/2
(1 − κ cosα) dα. (4.68)

The integrand in the second line of (4.67) is explicitly calculated in (4.91), see

Appendix 4.C. Using (4.66) and (4.67) in (4.35), we obtain a bound on the flow
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rate Q as

Q ≥ 2πΛ − 2πΛ2

gc
I(κ, τ) +O(δ). (4.69)

We see that choosing a small value of gc will make the bound on Q worse. There-

fore, to obtain the best possible bound, we choose the largest possible value of gc

which satisfies the constraint (4.65), i.e.,

gc =
2

Λ
+O(δ). (4.70)

The bound on Q then reads

Q ≥ 2πΛ − πΛ3I(κ, τ) +O(δ). (4.71)

All that remains is to choose Λ to maximize this lower bound. The optimal value

of Λ is given by

Λ =

√
2

3I(κ, τ)
. (4.72)

Substituting (4.72) into (4.71) and using δ = 1/Re as defined earlier in (4.37),

gives a bound on the flow rate as

Q ≥
√√√√ 32π2

27I(κ, τ)
+O(Re−1). (4.73)

Using this lower bound, together with the definition (4.20) of the friction factor
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Table 4.1: The first column shows the pipe type, the second column shows the
lower bound on the flow rate Q (4.73) and the third column shows the upper
bound on the friction factor λ (4.74) in different limits of curvature κ and torsion
τ . In the table C = (32π2/27)

1
2 and D = 27/8.

102



Figure 4.3: Ratio of the bound on the friction factor for a helical pipe as com-
pared to a straight pipe (λb/λb,st), as a function of curvature κ and torsion τ .
Here, λb is given by (4.74) and λb,st = 27/8.

λ in terms of Q, we finally obtain an upper bound on the friction factor as

λ ≤ λb =
27

8
I(κ, τ) +O(Re−1). (4.74)

These bounds on the flow rate (4.73) and friction factor (4.74) are also valid for

a toroidal (κ 6= 0, τ = 0) or a straight (κ = 0, τ = 0) pipe. In general, the integral

I(κ, τ) cannot be obtained analytically except when τ is zero or small. Table 4.1

summarizes the bounds derived on the flow rate and friction factor in different

limits of curvature and torsion. For a toroidal pipe, a small radius of curvature has

a second-order effect on the bounds (see table 4.1), which is also the case in the

exact solution for the flow at low Reynolds number (see Dean, 1928). Similarly, for

a helical pipe, the effect of a small torsion is of second-order on our bounds, and

as before, this is the case for the steady-state solution at low Reynolds number

(see Tuttle, 1990). More generally, the effect of increasing curvature and torsion

is always to decrease the lower bound on the volume flow rate and to increase
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the upper bound on the friction factor. For a straight pipe, the bound on the

friction factor reduces to λb,st = 27/8 which is 12.5 times larger than the bound

0.27 (Plasting and Kerswell, 2005) obtained by solving the variational problem

numerically. Figures 4.3 and 4.4 show a color map of the ratio of the bound on

the friction factor for a helical pipe λb to the bound on the friction factor λb,st for

a straight pipe, as a function of κ, τ (figure 4.3) and a, b (figure 4.4). To avoid

a self-intersecting geometry, we restrict to 1 < a < ∞ and 0 ≤ b < ∞, which

corresponds to a semicircular region in κ, τ space (see figure 4.3). The maximum

increase in the bound on the friction factor is when the pipe approaches a horn

torus (κ = 1, τ = 0), which is a factor 35/8 = 4.375 larger than for the straight

pipe. From figure 4.4, we see that with the increase of the non-dimensional helix

radius a or pitch 2πb, the bound on the friction factor approaches that of a straight

pipe, as expected.

4.5 Discussion and Concluding Remarks

In this paper, we used the background method to obtain bounds on the flow

rate and friction factor in helical pipe flows. The bounds that we obtained are also

valid for toroidal and straight pipes as limiting cases. By choosing a boundary

layer whose thickness varies along the circumference of the pipe, we were able to

obtain these bounds as a function of pipe geometry. In particular, we found that

the bound on the friction factor varies with curvature κ and torsion τ according

to the integral I(κ, τ), defined in (4.68), whose value is one for the straight pipe,

i.e. I(0, 0) = 1.

The bound that we obtained on the friction factor is independent of the

Reynolds number. However, it is a known property of wall-bounded flows in
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Figure 4.4: Ratio of the bound on the friction factor for a helical pipe as com-
pared to a straight pipe (λb/λb,st), as a function of the non-dimensional geometric
parameters a and b as defined earlier.

105



smooth geometries that the friction factor decreases as (logRe)2, as predicted

using the logarithmic friction law (Tennekes and Lumley, 1972). Therefore, it

appears that our bound, in terms of Reynolds number scaling is off by factor of

(logRe)2, a situation similar to previous applications of the background method

to shear and pressure-driven flows (Doering and Constantin, 1992, 1994; Con-

stantin and Doering, 1995; Plasting and Kerswell, 2003). Despite being unable to

capture the correct scaling in terms of Reynolds number, one may ask whether

the geometrical scaling I(κ, τ) in the bound on the friction factor (4.74) correctly

captures the variation of λ on the pipe geometry, as observed in the experiments.

Assuming that is the case, then one would expect that the experimental data

for the friction factor (λexp), when scaled with the integral I(κ, τ), should only

be a function of the Reynolds number. Here, we test this hypothesis on data

from carefully conducted experiments by Cioncolini and Santini (2006) for flows

in helical pipes with negligible torsion. The results are shown in figure 4.5. In

reporting these results, we have used the Reynolds number based on the pipe

diameter (ReD = 2Re), to be consistent with the literature. From figure 4.5, we

see that our scaling, being second-order in the curvature κ, has a negligible effect

on the pipes with small curvature ratios κ = 0.028, 0.042, 0.059. As such, the

rescaled data λexp/I(κ, τ) looks almost identical to the original data, and does

not collapse on a universal curve, contrary to our expectation. It thus appears

that, for the range of Reynolds number considered in figure 4.5, the curvature has

a first-order effect on the friction factor in the experiments, as opposed to the

second-order effect predicted by our bound (see table 4.1). On a more positive

note, the effect becomes qualitatively noticeable for κ = 0.143, and the rescaled

data is more compact than the original data, suggesting that the dependence on

the curvature κ given by the scaling I(κ, τ) at least has the right sign.
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Figure 4.5: (a) Data from Cioncolini and Santini (2006), showing the friction
factor (λexp) as a function of Reynolds number for four different helical pipes:
(i) κ = 0.028, τ = 0.49 × 10−3 (▽), (ii) κ = 0.042, τ = 1.87 × 10−3(�), (iii)
κ = 0.059, τ = 2.97 × 10−3 (∗), and (iv) κ = 0.143, τ = 11.4 × 10−3 (×). (b)
Scaled friction factor (λexp/I(κ, τ)) as a function of Reynolds number for the same
four helical pipes.

There could be several possible reasons for the discrepancy between the data

and the theoretical bound. First, there is further improvement possible in our

analysis to capture the geometrical dependence of the friction factor better. One

way to find that out would be to compute numerically the optimal bound on, e.g.

the friction factor, similar to other studies of the background method (Plasting and

Kerswell, 2003; Wen et al., 2013, 2015; Fantuzzi and Wynn, 2015, 2016; Fantuzzi,

2018; Tilgner, 2017, 2019) and then see if this optimal bound better accounts for

the experimental data. The second possible reason for the discrepancy is that

the Reynolds numbers achieved in the experiments are not high enough for our

scalings to apply yet. Indeed, the critical Reynolds number for instability for a

torus with curvature ratio κ ≈ 0.1 is ReD,c ≈ 3500 (Canton et al., 2016), which

is higher than that of a straight pipe ReD,c ≈ 2040 (Avila et al., 2011). Also, the

transition for κ ' 0.028 is supercritical (Kühnen et al., 2015), suggesting that the
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flow structure slowly becomes more complex with increasing Reynolds number,

only becoming fully developed turbulence at much higher Reynolds number. As

a result, we believe that the maximum Reynolds number achieved by Cioncolini

and Santini (2006) (ReD ≈ 6 × 104), may not be high enough for our scalings to

apply.

Beyond the fact that the bounds and the data do not agree as well as we could

have hoped for, the technique used in this paper to derive formal bounds for such

complex geometry deserves to be discussed. The feasibility of the background

method relies on the existence of a divergence-free background flow field U , which

satisfies the same boundary conditions as the full flow u and for which H(v) +

γ is positive semi-definite, i.e. the spectral constraint (4.34) is satisfied. The

situation becomes particularly difficult at high Reynolds number when the only

undoubtedly positive term in H(v) (see term III in equation 4.27) becomes small.

However, for an O(1) background flow U for which ∇U sym is zero in bulk and

is of O(δ−1) in a O(δ) thick boundary layer near the surface, it is possible to

show that H(v) + γ is positive semi-definite, as done in the present study and in

several other studies of the background method (Doering and Constantin, 1994;

Marchioro, 1994; Constantin and Doering, 1995; Wang, 1997). One may therefore

generally ask under which circumstances can such a background flow U exist. We

start by making two observations. First, that an O(1) change in the velocity field

in a boundary layer of thickness δ leads to |∇U sym| = O(δ−1) in the boundary

layer. Second, that a divergence-free flow field V for which ∇V sym = 0 is given

by

V (x) = Ax + V 0, (4.75)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Pressure driven flow (a) through a helical pipe with a square cross-
section, (b) through a toroidal pipe with a square cross-section, (c) through an
axially twisted pipe with an elliptical cross-section, (d) between grooved walls
where the grooves are aligned in the direction of the pressure gradient, (e) through
a helical pipe with varying pitch, and (f) between rough walls (two-dimensional
view). Arrows indicate the direction of the mean flow.
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where A is a constant skew-symmetric tensor and V 0 is a constant velocity field.

The flows given by (4.75) include uniform flow, and rigid body flow. These two

observations tell us that for a problem with prescribed tangential-velocity bound-

ary conditions at impermeable boundaries where the boundaries have the shape

of streamtubes of the flow field given by (4.75), it is always possible to find a

background flow U for which ∇U sym = 0 in the bulk and is O(δ−1) in a O(δ)

thick boundary layer near the surface. Indeed, this is done by choosing U = V

in the bulk and by adjusting the tangential component of U by an O(1) in the

O(δ) boundary layer to satisfy the prescribed tangential-velocity boundary condi-

tions. Note that these arguments apply to both pressure-driven flow and surface-

velocity-driven flow problems, as they both involve the same spectral constraint

(4.27). Wang (1997) considered the general problem of bounding the energy dis-

sipation for a flow driven by an imposed tangential velocity at the boundaries in

an arbitrary bounded domain when A = 0 and V 0 = 0. Considering the more

general cases where A and V 0 are non-zero enables us to extend the class of

problems, as demonstrated in this paper.

Figure 4.6 shows some examples of pressure-driven flows where the criterion

mentioned in the last paragraph can or cannot be applied. Although we considered

the cross-section of the pipe to be circular in this paper, in general, a bound

can be obtained on the friction factor for a helical, toroidal, or a straight pipe

of any cross-section. Figure 4.6a and figure 4.6b, for example, show a helical

pipe and a toroidal pipe with a square cross-section. These two cases fall under

the case when A 6= 0,V 0 6= 0 and A 6= 0,V 0 = 0, respectively. Figure 4.6c

shows a pressure-driven flow through an axially twisted pipe with an elliptical

cross-section. According to the criterion mentioned in the last paragraph, the

background method can be applied to this example with A 6= 0,V 0 6= 0. Further,
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we can use the background method with A = 0,V 0 6= 0 in case of pressure-driven

flow between grooved walls (figure 4.6d) as long as the grooves are aligned in the

direction of the pressure gradient. However, for pressure-driven flow through a

helical pipe with varying pitch (figure 4.6e) or pressure-driven flow between rough

walls (figure 4.6f), there is no choice of A and V 0 which works.

The criterion we have mentioned is, so far, a sufficient criterion for the appli-

cability of the background method. Whether this criterion is also a necessary one

remains to be determined. The answer to that question is fundamental since it

would provide definite guidance about which problems can and cannot be tackled

using the background method.
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Appendix 4.A The (s, r, φ) coordinate system

An infinitesimal displacement dx in the (s, r, φ) coordinate system can be

written as

dx = hsds es + hrdr er + hφdφ eφ, (4.76)
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where the scale factors are

hs = (1 − rκ cos(φ− τs)), hr = 1, hφ = r. (4.77)

The gradient of a scalar field Ψ in the (s, r, φ) coordinate system is given by

∇Ψ =
1

hs

∂Ψ

∂s
es +

1

hr

∂Ψ

∂r
er +

1

hφ

∂Ψ

∂φ
eφ. (4.78)

The divergence of a vector field q = (qs, qr, qφ) in the (s, r, φ) coordinate system

is

∇ · q =
1

hshrhφ

[
∂hrhφqs
∂s

+
∂hφhsqr
∂r

+
∂hshrqφ
∂φ

]
. (4.79)

Finally, the gradient of a vector q = (qs, qr, qφ) in the (s, r, φ) coordinate system

is written as

∇q =

(
1

hs

∂qs
∂s

+
qr
hshr

∂hs
∂r

+
qφ
hshφ

∂hs
∂φ

)
eses +

(
1

hs

∂qr
∂s

− qs
hshr

∂hs
∂r

)
eser

+

(
1

hs

∂qφ
∂s

− qs
hshφ

∂hs
∂φ

)
eseφ +

(
1

hr

∂qs
∂r

− qr
hrhs

∂hr
∂s

)
eres

+

(
1

hr

∂qr
∂r

+
qs
hrhs

∂hr
∂s

+
qφ
hrhφ

∂hr
∂φ

)
erer +

(
1

hr

∂qφ
∂r

− qr
hrhφ

∂hr
∂φ

)
ereφ

+

(
1

hφ

∂qs
∂φ

− qφ
hφhs

∂hφ
∂s

)
eφes +

(
1

hφ

∂qr
∂φ

− qφ
hφhr

∂hφ
∂r

)
eφer

+

(
1

hφ

∂qφ
∂φ

+
qr
hφhr

∂hφ
∂r

+
qs
hφhs

∂hφ
∂s

)
eφeφ. (4.80)
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Appendix 4.B A few useful inequalities

Lemma 0. Let w : [1 − δg(s, φ), 1] → R be a square integrable function such that

w(1) = 0, then the following inequality holds

w2(r) ≤
(

1 − r

1 − κ cos(φ− τs)
+O(δ2)

)
×

∫ 1

1−δg(s,φ)

(
∂w

∂r′

)2

(1 − r′κ cos(φ− τs))r′dr′ (4.81)

for given s, and φ. Here, r ∈ [1 − δg(s, φ), 1].

Proof. For r ∈ [1 − δg(s, φ), 1], using the fundamental theorem of calculus and

the Cauchy–Schwarz inequality, the following inequality holds

w2(r) =

∣∣∣∣∣

∫ r

1

dw

dr′ dr
′
∣∣∣∣∣

2

≤
(∫ 1

r

1

(1 − r′κ cos(φ− τs))r′dr
′
)

×


∫ 1

1−δg(s,φ)

(
dw

dr′

)2

(1 − r′κ cos(φ− τs))r′dr′


 . (4.82)

As mentioned earlier, the curvature satisfies κ < 1 and since r′ ≤ 1 in the above

expression, we have (1 − r′κ cos(φ − τs)) < 1. Therefore, the integrands in both

integrals are positive. Finally, using the fact that

∣∣∣∣∣
1

(1 − r′κ cos(φ− τs))r′ − 1

1 − κ cos(φ− τs)

∣∣∣∣∣ = O(δ)

when r′ ∈ [1 − δg(s, φ), 1] completes the proof. �

Lemma 1. Let w : Ωδ → R be a square integrable function such that w(s, 1, φ) = 0
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for all 0 ≤ s ≤ sp and 0 ≤ θ ≤ 2π, then the following statement is true

∫

Ωδ

σw2 dx ≤ δ2

2

∫

Ωδ

σ(s, 1, φ)g2(s, φ)

(
∂w

∂r

)2

dx +O(δ3) ||∇w||22. (4.83)

Here, σ : Ωδ → R is a positive bounded O(1) function that satisfies

|σ(s, r, φ) − σ(s, 1, φ)| = O(δ) for (s, r, φ) ∈ Ωδ. (4.84)

Proof. The calculation is as follows:

∫

Ωδ

σw2 dx =
∫ sp

s=0

∫ 2π

φ=0

∫ 1

r=1−δg(s,φ)
σw2 hshrhφ drdφds

≤
∫ sp

s=0

∫ 2π

φ=0

∫ 1

r=1−δg(s,φ)
σ

[(
1 − r

1 − κ cos(φ− τs)
+O(δ2)

)

×
∫ 1

1−δg(s,φ)

(
∂w

∂r′

)2

(1 − r′κ cos(φ− τs))r′dr′


hshrhφ drdφds.

(4.85)

Note that Inequality 0 was used in the second line. For (s, r, φ) ∈ Ωδ, with an

application of the triangle inequality we have

|σhshrhφ − (1 − κ cos(φ− τs))σ(s, 1, φ)|

≤ |σ(s, r, φ) − σ(s, 1, φ)| max
(s,r,φ)∈Ωδ

(hshrhφ)

+|hshrhφ − (1 − κ cos(φ− τs))|σ(s, 1, φ). (4.86)

Noting that

|σ(s, r, φ) − σ(s, 1, φ)| = O(δ) and |hshrhφ − (1 − κ cos(φ− τs))| = O(δ),
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when (s, r, φ) ∈ Ωδ, and

max
(s,r,φ)∈Ωδ

(hshrhφ) = O(1) and σ(s, 1, φ) = O(1),

leads to

|σhshrhφ − (1 − κ cos(φ− τs))σ(s, 1, φ)| = O(δ) for (s, r, φ) ∈ Ωδ. (4.87)

Using (4.87) in (4.85) and performing the integration in r leads to the desired

result. �

Appendix 4.C Some useful calculations

4.C.1 Calculation of ∇U

For the background flow given by (4.36), for x ∈ Ω \ Ωδ, we have

∇U = Λκ cos(φ− τs)eser − Λκ sin(φ− τs)eseφ − Λκ cos(φ− τs)eres

+Λτereφ + Λκ sin(φ− τs)eφes − Λτeφer. (4.88)
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It is clear that ∇U sym = 0 in Ω \ Ωδ. For, x ∈ Ωδ, we have

∇U = −Λ(1 − r)

δg2

∂g

∂s
eses +

Λκ(1 − r) cos(φ− τs)

δg
eser

−
[

Λτr(1 − r)

δ(1 − rκ cos(φ− τs))g2

∂g

∂s
+

Λκ sin(φ− τs)(1 − r)

δg

]
eseφ

−
[

Λ(1 − rκ cos(φ− τs))

δg
+

Λκ cos(φ− τs)(1 − r)

δg

]
eres

+

[
Λτ(1 − r)

δg
− Λτr

δg

]
ereφ − Λτ(1 − r)

δg
eφer − Λτ(1 − r)

δg2

∂g

∂φ
eφeφ

+

[
Λκ sin(φ− τs)(1 − r)

δg
− Λ(1 − rκ cos(φ− τs))(1 − r)

δrg2

∂g

∂φ

]
eφes. (4.89)

Given that 1−r is O(δ) in the boundary layer, calculation of |∇U |2 up to leading

order terms is

|∇U |2 =
Λ2(1 − κ cos(φ− τs))2

δ2g2
+

Λ2τ 2

δ2g2
+O(δ−1), (4.90)

and

|∇U |2hshrhφ =
Λ2(1 − κ cos(φ− τs))

δ2g2

[
(1 − κ cos(φ− τs))2 + τ 2

]
+O(δ−1).

(4.91)

We use this result in (4.67) for the calculation of ||∇U ||2. With the use of (4.38),

we see that the only two terms that are O(δ−1) in (4.89) are the terms involving

eres and ereφ. However, these terms do not contribute to the calculation of

U · ∇U , as they are multiplied with Ur (the r component of U ) which is zero.

Therefore, U · ∇U is O(1) in Ωδ. This result is useful in showing (4.61).

116



4.C.2 Reason behind choice 4.55

In the analysis done in the main text, if we had just assumed that p1, p2,

and p3 are constant functions but not necessarily equal, then a similar calculation

would have led to

g(s, φ) =

√
p1p2p3

p3(1 − κ cos(φ− τs))2 + p1τ 2

c1(s, φ) =

√√√√p1

p2

+
p2

1τ
2

p2p3(1 − κ cos(φ− τs))2
,

c2(s, φ) =

√√√√p3

p2

+
p2

3(1 − κ cos(φ− τs))2

p1p2τ 2
. (4.92)

With this choice, we could have obtained the same bounds on the flow rate and

the friction factor, namely

Q ≥
√√√√ 32π2

27I(κ, τ)
+O(Re−1) λ ≤ λb =

27

8
I(κ, τ) +O(Re−1). (4.93)

However, this time

I(κ, τ) =

1

2π

∫ 2π

0
(1 − κ cosα)

(
(1 − κ cosα)2 + τ 2

)
√√√√M2(1 − κ cosα)2

p′
1

+
M2τ 2

p′
3

dα,

(4.94)

where

M = max{p′
1, 1, p

′
3}, p′

1 =
p1

p2

, p′
3 =

p3

p2

. (4.95)
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To optimize the bound, we need to minimize I(κ, τ) and that clearly happens

when

p′
1 = p′

3 = 1 =⇒ p1 = p2 = p3. (4.96)
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Chapter 5

Geometrical dependence of

optimal bounds in

Taylor–Couette flow

This chapter is based on the paper Kumar (2022a) published in the Journal

of Fluid Mechanics, Volume 948, 10 October 2022, A11.

5.1 Introduction

An important problem in the study of turbulent flows is to estimate the func-

tional dependence of global properties (such as energy dissipation, drag force, heat

and mass transport, and mixing efficiency) on input parameters. The lack of ana-

lytical solutions of the Navier–Stokes equations in the fully turbulent regime has

forced the scientific community to adopt a multi-faceted approach to this prob-

lem, in which simple physical theories and reduced models are proposed, and then

corroborated by direct numerical simulations (DNS) and/or results from labora-
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tory experiments. However, the inability to perform simulations and experiments

in the extreme parameter regimes that often concern atmospheric, oceanic and

astrophysical flows and engineering applications leaves these theories unsubstan-

tiated.

In these extreme parameter regimes, an alternative approach that can provide

meaningful information is to obtain rigorous bounds on the aforementioned global

properties. The first method to obtain bounds was developed by Howard (1963)

and Busse (1969), but it was not until the 1990s that bounding techniques gained

general popularity, with the introduction of the so-called “Background Method"

by Doering and Constantin (Doering and Constantin, 1992, 1994; Constantin and

Doering, 1995; Doering and Constantin, 1996). The background method is based

on ideas from Hopf to produce a priori estimates for the solutions of the Navier–

Stokes equations with inhomogeneous boundary conditions (Hopf, 1955). It has

so far been applied to many different fluid mechanics problems (Doering and

Constantin, 1992; Constantin and Doering, 1995; Doering and Constantin, 1996;

Caulfield and Kerswell, 2001; Tang et al., 2004; Whitehead and Doering, 2011b;

Goluskin and Doering, 2016; Fantuzzi et al., 2018; Fantuzzi, 2018; Kumar and

Garaud, 2020; Arslan et al., 2021b; Fan et al., 2021; Arslan et al., 2021a; Kumar

et al., 2022). See Fantuzzi et al. (2022) for a recent review.

In the background method, we write the total flow field as a sum of two flow

fields: the background flow and the perturbed flow. To obtain a bound on the

desired bulk quantity requires choosing a background field that satisfies a certain

integral constraint (extracted from the governing equations of the perturbed flow).

Generally, one takes one of the two following routes. The first route is to specify

a functional form of the background flow and then use standard inequalities.

This route leads to an analytical but suboptimal bound on the bulk quantity as a
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function of system parameters. The second route is to find the best possible bound

(optimal bound) through a variational formulation of the background method in

which one solves the corresponding Euler–Lagrange equations usually numerically.

Numerous studies pertaining to the background flow have concentrated on the

scaling of optimal bounds as a function of the principal flow parameter, such as

the Reynolds number and the Rayleigh number. However, only a handful of them

studied the variation of these bounds with the shape of the domain. One such

study is by Wen et al. (2013), where the authors were interested in determining

the dependence on aspect ratio of the optimal bound on heat transfer in porous

medium convection.

In this paper, we are concerned with the question of whether it is possible to

obtain the analytical expression for the dependence of optimal bounds on the geo-

metrical parameters of the system. Indeed, while the numerically obtained optimal

bounds usually follow an easily-identifiable simple power-law in the principal flow

parameter, the variation of the optimal bounds with geometrical parameters, how-

ever, is not so readily apparent. Furthermore, we also aim to determine whether

this analytical form bears any resemblance to the actual dependence of the corre-

sponding bulk quantity on system geometry in fully turbulent flows. This question

is motivated by engineering applications where the geometry plays an important

role.

In a recent study, we attempted to provide bounds on the friction factor in

the context of pressure driven helical pipe flows (Kumar, 2020). We focussed in

particular on the dependence of this bound on the geometrical parameters: the

curvature and torsion of the pipe. We took the first route described above, and

used standard functional inequalities to find a suboptimal bound on the friction

factor. In order to account for the geometry, we constructed a background flow
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in which we allowed for a boundary layer thickness that varies along the circum-

ference of the pipe, and optimized the shape of that boundary layer to find the

best possible bound for any curvature and torsion. Without giving any further

evidence, we hypothesized that the suboptimal bound thus produced might have

the same geometrical dependence as the optimal bound.

This paper demonstrates that this hypothesis holds true for Taylor–Couette

flow; i.e., the analytical geometrical dependence of the suboptimal bound obtained

using traditional functional inequalities (but with a definition of the background

flow with optimized boundary layer thickness) is the same as for the optimal

bounds obtained using the variational approach.

There are several reasons why we choose to work with the Taylor–Couette

flow to test this hypothesis. The Taylor–Couette flow is one of the most exten-

sively investigated problems in fluid mechanics, going back to the seminal paper

of Taylor (Taylor, 1923) and laboratory experiments of Wendt (Wendt, 1933),

which are one of the early major contributions to the field. It is known that the

Taylor–Couette system exhibits rich flow structures and complex fluid dynamical

phenomena and has served as a testing ground for the theories of turbulent flows.

The simplicity of the Taylor–Couette setup makes it amenable to conduct direct

numerical simulations and experiments with high precision at high Reynolds num-

bers. As a result, starting with the work of Lathrop et al. (1992a,b), the last two

decades have seen a tremendous activity in the study of high Reynolds number

Taylor–Couette flow from the computational and experimental point of view (see

a review by Grossmann et al. (2016)).

Concurrently, progress has also been made on obtaining rigorous bounds in

Taylor–Couette flow. Nickerson (1969) was the first to derive an upper bound

on the torque in Taylor–Couette flow using the technique developed by Howard
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(1963) and Busse (1969). Constantin (1994) later revisited the problem using the

background method of Doering and Constantin, and also derived an analytical

upper bound on the torque. More recently, Ding and Marensi (2019) computed

the corresponding optimal bounds numerically for systems where the ratio of the

inner to outer cylinder radii, called the radius ratio hereafter, is 0.5, 0.714 and

0.909. Note that these three studies concentrated on the dependence of the bounds

on the Reynolds number.

The primary goal of this paper is to obtain the correct functional dependence

of the optimal bounds on the torque with respect to the radius ratio. To do so,

we shall begin by obtaining an analytical bound using standard inequalities, with

the aim of optimizing this bound simultaneously for all values of the radius ratio.

Subsequently, we obtain numerical optimal bounds for several values of the radius

ratio considering three different scenarios for the perturbations, which are the

following:

case 1: The perturbations that satisfy the homogeneous boundary conditions but

are not necessarily incompressible;

case 2: Additionally, the perturbations are three-dimensional and incompressible;

case 3: The perturbations, along with satisfying the boundary conditions and being

incompressible, are only two-dimensional (invariant in the axial direction).

We note that while formulating the background method, we do use the incompress-

ibility condition on the perturbed flow. These three separate cases are considered

once the background method has been formulated. These scenarios impose in-

creasingly stringent constraints on the type of admissible perturbations and allow

us to systematically test the hypothesis described above. We shall demonstrate
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that the optimal bounds computed in each case not only have the same depen-

dence in the radius ratio in all scenarios as the Reynolds number tends to infinity,

but also that this dependence is the same as the one obtained from the suboptimal

analytical bound.

The arrangement of the paper is as follows. We begin by describing the prob-

lem configuration, the definitions of the relevant mean quantities and the relations

between those quantities in §5.2. In §5.3, we perform the energy stability analysis

of the laminar flow. In §5.4, we obtain analytical bounds on the mean quanti-

ties. §5.5 presents optimal bounds obtained in the three cases listed above and

compares the results with the analytical bounds from §5.4. In §5.6, we show that

the background method cannot be applied to certain flow problems past certain

Reynolds numbers. Finally, §5.7 presents a discussion, comparison with DNS

results, the broad applicability of the present study and open problems.

5.2 Problem setup

Consider the flow of an incompressible Newtonian fluid of density ρ and kine-

matic viscosity ν between two coaxial circular cylinders, where the inner cylinder

rotates with a constant angular velocity Ω and the outer cylinder is stationary.

The radius of the inner cylinder is Ri and the radius of the outer cylinder is

Ro. The quantity η = Ri/Ro is referred to as the radius ratio hereafter, and

d = Ro −Ri is the gap width. We non-dimensionalize the variables as follows:

x =
x∗

d
, u =

u∗

ΩRi

, t =
t∗

d/(ΩRi)
, p =

p∗ − p0

ρΩ2R2
i

, (5.1)
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where p0 is the reference pressure and x, u, t and p denote the non-dimensional

position, velocity, time and pressure, respectively. The starred variables are the

corresponding dimensional quantities. In non-dimensional form, the governing

equations are

∇ · u = 0, (5.2)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (5.3)

where

Re =
ΩRid

ν
(5.4)

is the Reynolds numbers which, along with the radius ratio η, fully characterizes

the flow field. Note that instead of the Reynolds number, one can also use the

Taylor number

Ta =
(1 + η)4

64η2

d2(Ri +Ro)
2Ω2

ν2
=

(1 + η)6

64η4
Re2, (5.5)

to characterize the flow field. We use a cylindrical coordinate system (r, θ, z). The

boundary conditions are

(ur, uθ, uz) = (0, 1, 0) at r = ri, (5.6)

(ur, uθ, uz) = (0, 0, 0) at r = ro, (5.7)

where ri and ro are the non-dimensional inner and outer cylinder radii. In this

paper, we will assume that the flow is periodic in the spanwise direction z with

non-dimensional length L. The domain of interest, denoted by V , is therefore
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given by

V = {(r, θ, z)|ri ≤ r ≤ ro, 0 ≤ θ < 2π, 0 ≤ z < L}. (5.8)

At sufficiently small Reynolds numbers, or equivalently, at small Taylor num-

bers, the flow is laminar and can be expressed as

ulam =
1

1 − η2

(
ri
r

− rri
r2
o

)
eθ. (5.9)

Before proceeding further, it is useful to introduce a few convenient notations.

We use angle brackets for the volume integration and overbar for the long-time

average of a quantity:

〈[ · ]〉 =
∫

V
[ · ] dx, [ · ] = lim

T→∞
1

T

∫ T

t=0
[ · ] dt. (5.10)

The L2-norm of a quantity is henceforth denoted as

‖[ · ]‖2 =
〈
[ · ]2

〉 1
2 . (5.11)

In what follows, the three quantities that we are interested in bounding are

the energy dissipation rate, the torque and the equivalent of a Nusselt number

(defined based on the transverse current of azimuthal velocity). These quantities

are not independent, as we now demonstrate. We start by writing the dimensional

expression of the time-averaged torque required to rotate the inner cylinder:

G∗ = −Ri ×
∫ L∗

0

∫ 2π

0
τ ∗
rθ

∣∣∣
r∗=Ri

Ridθ
∗dz∗, (5.12)
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where τ ∗
rθ denotes the shear-stress. In non-dimensional form the torque is given

by

G =
G∗

ρν2L∗ = −Rer2
i

L

∫ L

0

∫ 2π

0

[
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

]

r=ri

dθdz. (5.13)

In a statistically stationary state, the work done by the torque to rotate the inner

cylinder eventually dissipates in the fluid, i.e.,

G∗Ω = ε∗, (5.14)

where ε∗ is the time-averaged total dissipation given by

ε∗ = 2ρν
∫

V ∗
∇

∗u∗ : ∇
∗u∗

sym dx∗, (5.15)

where

∇
∗u∗

sym =
∇

∗u∗ + ∇
∗u∗T

2
. (5.16)

The total kinetic energy of the fluid can be shown to be uniformly bounded in

time within the framework of the background method (see Doering and Con-

stantin, 1992, for example). The identity (5.14) can therefore be obtained by

taking the long-time average of the evolution equation of the total kinetic energy.

The dissipation per unit mass non-dimensionalized by Ω3R3
i /d is given by

ε =
ε∗

Ω3R3
i /d

=
2

(πr2
o − πr2

i )L Re
〈∇u : ∇usym〉. (5.17)

From the divergence-free condition (5.2), the boundary conditions (5.6) and (5.7)
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along with the use of the divergence theorem, one finds that

〈
∇u : ∇uT

〉
= 〈∇ · ∇ · (u ⊗ u)〉 = 2πL. (5.18)

As a result, the non-dimensional dissipation can also be written as

ε =
1

(πr2
o − πr2

i )Re

[
1

L
‖∇u‖2

2 + 2π
]
. (5.19)

Using (5.13), (5.14) and (5.17), we finally obtain a relation between the non-

dimensional torque and the non-dimensional dissipation as

G = π(ri + ro)riRe
2ε. (5.20)

which is the non-dimensional version of (5.14).

Another quantity of interest is the transverse current of azimuthal velocity as

defined in Eckhardt et al. (2007) and is given by

Jω∗ =
1

2πL∗

∫ L∗

0

∫ 2π

0
r∗3 [u∗

rω
∗ − ν∂r∗ω∗] r∗dθ∗dz∗, (5.21)

where ω∗ = u∗
θ/r

∗ is the local angular velocity. As shown by Eckhardt et al. (2007),

Jω∗ is independent of the radial direction. In an analogy with Rayleigh–Bénard

convection, one defines the Nusselt number as the ratio of the transverse current

of azimuthal velocity to its corresponding value in the laminar regime, i.e.

Nu =
Jω∗

Jω∗
lam

. (5.22)

Substituting r∗ = Ri in the right-hand-side of (5.21), one obtains the following
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relation between the torque and the transverse current of azimuthal velocity:

Jω∗ =
G∗

2πL∗ρ
, (5.23)

implying that the Nusselt number can also be written as

Nu =
G

Glam

=
ε

εlam
, (5.24)

where Glam and εlam are the values of the non-dimensional torque and dissipation

in the laminar regime, respectively.

5.3 Energy stability analysis

We begin by discussing the energy stability of the laminar flow ulam. The

importance of energy stability analysis in the context of bounding theories comes

from the fact that bounds on mean quantities introduced in the last section are

by definition saturated by the laminar state below the energy stability threshold.

The energy stability of the laminar Taylor–Couette flow has been studied before

both theoretically and numerically, by e.g. Serrin (1959) and Joseph (1976). In

these studies, the general conclusion was that at the energy stability threshold, the

least stable perturbations are axisymmetric Taylor vortices. However, as we shall

demonstrate in this section, this commonly accepted result does not hold below a

certain radius ratio (η < 0.0556). Instead, we find that the least stable perturba-

tions at the energy stability threshold in that case are fully three-dimensional.

We begin by defining the functional

H(ṽ) =
[

1

2Re
‖∇ṽ‖2

2 +
∫

V
ṽ · (∇ulam)sym · ṽ dx

]
, (5.25)
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where ṽ is a perturbation over the laminar flow which satisfies the homogeneous

boundary conditions at the inner and outer cylinders . From the governing equa-

tions, one can show that the laminar flow ulam is energy stable when H(ṽ) is

nonnegative (see, for example, Serrin, 1959; Ding and Marensi, 2019). We shall

consider three types of constraints on the perturbations ṽ: no constraints, other

than the homogeneous boundary conditions (case 1), 3D incompressible pertur-

bations (case 2) and 2D (z-invariant) incompressible perturbations (case 3). We

perform an energy stability analysis for each of these cases, and present the results

as a function of the radius ratio. We note that recently Ding and Marensi (2019)

also studied the energy stability of the laminar state in Taylor–Couette flow but

only for the axisymmetric perturbations.

The critical Taylor number Tac defining the energy stability threshold is the

largest Taylor number for which the functional H(ṽ) is nonnegative. For clarity,

we add superscripts and use the notation Tancc , Ta3D
c and Ta2D

c when referring

to case 1, case 2 and case 3, respectively. The statement of the nonnegativity of

the functional H(ṽ) can be posed as a convex optimization problem, where we

require that the minimum value of H to be nonnegative. Then , it can be shown

using the corresponding Euler–Lagrange equations that the nonnegativity of the

functional H(ṽ) is equivalent to the nonnegativity of the smallest eigenvalue in

the eigenvalue problem

∇ · ṽ = 0, (5.26a)

2λṽ =
1

Re
∇2ṽ − 2ṽ · ∇(ulam)sym − ∇p̃. (5.26b)

Note that for case 1, the eigenvalue problem corresponds just to equation (5.26b)

without the pressure term. The eigenvalue problem (5.26) is standard in the
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Figure 5.1: Panel (a) shows the critical Taylor number Tancc (green line), Ta3D
c

(blue line) and Ta2D
c (red line) as a function of the radius ratio η and (b) shows

a close-up view of the same plot for small η. The dashed blue line corresponds
to the marginally stable axisymmetric Taylor vortices, while Ta3D

c is continued to
be shown with the solid blue line. Panels (c) and (d) shows the critical Taylor
number Ta3D

c and Ta2D
c normalized by Tancc as a function of η.

energy stability analysis (see, for example, Serrin, 1959; Ding and Marensi, 2019).

We can actually obtain the critical Taylor number analytically for case 1.

Indeed, in this case, we first simplify the eigenvalue problem using two pieces

of information. From lemma 5.B.1 (see appendix 5.B), we note that the least

stable perturbed flow (which optimizes H) is a function of the radial direction

only. Furthermore, the laminar flow ulam satisfies the required condition in lemma

5.B.1, therefore, the least stable perturbation also satisfies ṽr = ṽθ. Using these

two facts, we find that the marginally stable solution of (5.26b) which satisfies the
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homogeneous boundary condition at r = ri is given by

ṽr = ṽθ = c sin
(
ξ log

r

ri

)
, ξ =

√
η

(1 + η)(1 − η)2
Re+ 1. (5.27)

The critical Reynolds number for energy stability is the smallest value of Re for

which this solution also satisfies the homogeneous boundary condition at r = ro.

We then obtain the critical Taylor number using (5.5), which leads to

Tancc =
(1 + η)8(1 − η)4

64η6

(
1 +

π2

log2 η

)2

. (5.28)

In case 2 (3D incompressible ṽ) and case 3 (2D (z-invariant) incompressible ṽ),

we must turn to numerical computations to calculate the critical Taylor number.

To find the eigenvalues of the equations (5.26), we first transform the equations

into a generalized eigenvalue problem using the spatial discretization described in

§5.5 and then use the DGGEV routine by Lapack for the computation. Let’s call

the critical wavenumbers of the least stable perturbation at the energy stability

threshold 2π/Lc (where Lc would then be known as the critical aspect ratio) in

the z-direction and mc in the θ-direction. We use the bisection algorithm in the

Taylor number and the ternary search algorithm in aspect ratio or azimuthal

wavenumber (depending on the case at hand) to accurately determine Tac, Lc

and mc.

The dependence of the critical Taylor number for energy stability on the radius-

ratio η is shown in figure 5.1 for all 3 cases. The critical axial wavenumber (2π/Lc)

and the critical azimuthal wavenumber (mc) of the corresponding perturbations

in case 2 and case 3 are shown in figure 5.2. From figure 5.1a, we see that the

critical Taylor number increases as we go from case 1 (green line) to case 3 (red
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Figure 5.2: Variation of the critical axial wavenumber 2π/Lc and critical az-
imuthal wavenumber mc with radius ratio η for (a) case 2 and (b) case 3.
In panel (a), the critical azimuthal wavenumber changes from mc = 0 above
η = ηs = 0.0556 to mc = 1 below ηs, as discussed in the main text.

line), which is not surprising since we correspondingly increase the number of

constraints on the perturbations. In all three cases, the critical Taylor number

monotonically increases with decreasing η and tends to infinity as η → 0. By

contrast, the critical Taylor number tends to a constant in the small gap width

limit (η → 1): in case 1 Tancc → 4π4 ≈ 389.6364, whereas, in case 2 and case 3,

Ta3D
c → 6831 and Ta2D

c → 31641, which are, respectively, 17.5 and 81.2 times

larger than in case 1. In this limit, the marginally stable perturbation in case 2

recovers the well-known axisymmetric Taylor vortices (Serrin, 1959; Joseph, 1976).

In case 3, the marginally stable perturbation is composed of vortices whose axis

is parallel to the cylinder axis (Harrison, 1921).

Figure 5.1b shows a zoomed-in version of figure 5.1a for small values of η. We

also show, for case 2 (blue line), a separate curve that assumes that perturbations

are axially symmetric (dashed blue line). For large radius ratio, the two are

identical, confirming that the axisymmetric Taylor vortices are indeed the least
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stable perturbations. However, we note that below radius ratio ηs = 0.0556, the

marginally stable perturbation switches from the axisymmetric Taylor vortices to

being fully three-dimensional.

Figure 5.3 shows the marginally stable 3D flow and Taylor vortices at η = ηs. A

distinctive feature of the marginally stable 3D flow, compared to marginally stable

axisymmetric Taylor vortices, is that one end of a typical vortex lies near the outer

cylinder but the other end lies at one of the two lines that are offset from the inner

cylinder. Also, the critical aspect ratio corresponding to marginally stable 3D flow

is larger than the one corresponding to the Taylor vortices. In fact, with further

decrease in the radius-ratio, the axisymmetric critical aspect-ratio corresponding

to the marginally stable 3D flow grows, whereas the one corresponding to Taylor

vortices shrinks, as can been seen from figure 5.2a. The decrease of the aspect

ratio of the critical perturbations implies that the term ‖∇ṽ‖2
2 increases rapidly

as η → 0, which causes the corresponding critical Taylor number for axisymmetric

flows to do the same. This explains why the axisymmetric perturbations are no

longer preferred for very low η. At η = 0.0188, the critical Taylor number for the

marginally stable Taylor vortices becomes even larger than the one corresponding

to the two-dimensional flow (Ta2D
c ).

Given that we were able to compute the critical Taylor number in case 1

analytically as a function of η, it is worth investigating whether the dependence

of Tac on η in cases 2 and 3 is similar to that of case 1. To do so, we look

at the figures 5.1c and 5.1d, which show the ratios Ta3D
c /Tancc and Ta2D

c /Tancc

respectively. One striking observation is that Ta3D
c /Tancc remains within 3.6% of

16.92 for a fairly large range of radius ratio 0.0556 ≤ η ≤ 1. So, for this range of
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(a) (b)

Figure 5.3: Panel (a) shows selected streamlines of the marginally stable 3D flow
and panel (b) shows selected streamlines of the marginally stable axisymmetric
Taylor vortices, in both cases at a radius ratio (ηs = 0.0556). The corresponding
critical Taylor numbers in both cases are equal. The streamlines are colored
according to the magnitude of the velocity. In both the cases the velocity field
has been scaled such that the maximum magnitude is 1. A typical vortex is shown
using relatively thicker lines in both cases. Note that only half the vortex is shown
in the axial direction.

η

Ta3D
c ≈ 16.92(1 + η)8(1 − η)4

64η6

(
1 +

π2

log2 η

)2

. (5.29)

However, the same is not valid for case 3, where Ta2D
c /Tancc varies substantially

with η. The spikes in figure 5.1d, which are not visible in figure 5.1a, correspond

to the discrete change in critical azimuthal wavenumber when η varies, shown in

figure 5.2b.

For small radius ratio it is possible to predict the asymptotic behavior of Ta3D
c

and Ta2D
c . We find that both Ta3D

c /Tancc and Ta2D
c /Tancc decrease as η → 0 as

can be seen in 5.1c and 5.1d. By construction, the asymptotic value of the ratios

have to be larger than 1. Therefore, in the small radius ratio limit, we can obtain
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the asymptotic behavior of Ta3D
c and Ta2D

c as

Ta3D
c = C3D

0 lim
η→0

Tancc =
C3D

0 π4

η6 log4 η
, Ta2D

c = C2D
0 lim

η→0
Tancc =

C2D
0 π4

η6 log4 η
as η → 0,

(5.30)

where 1 ≤ C3D
0 , C2D

0 < ∞ are two constants.

5.4 An analytical bound

In this section, we obtain a simple, suboptimal, analytical bound on the torque,

the rate of energy dissipation and the Nusselt number defined in §5.2. We use the

well-known background method (Doering and Constantin, 1992, 1994) whose exact

formulation in the context of the present problem is given in appendix 5.A. As

usual, we define U to be the background flow and v to be the perturbed flow such

that the total flow is u = U + v. The background flow U is divergence-free and

satisfies the same boundary conditions as u, so the perturbed flow v satisfies the

homogeneous version of the boundary conditions. For mathematical convenience

(see appendix 5.A) we further define the so-called “shifted perturbation” ṽ = v−φ

(see equation 5.98) and we simply refer to ṽ as the perturbation from here onward.

As shown in appendix 5.A, a bound on the rate of energy dissipation,

ε ≤ 1

(πr2
o − πr2

i )ReL

[
1

a(2 − a)
‖∇U‖2

2 − (1 − a)2

a(2 − a)
‖∇ulam‖2

2 + 2πL

]
, (5.31)

can be obtained for any choice of the background flow for which the functional

H(ṽ) =
2 − a

2Re
‖∇ṽ‖2

2 +
∫

V
ṽ · ∇U sym · ṽ dx

︸ ︷︷ ︸
II

, (5.32)
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(see 5.103) is positive semi-definite. In (5.31), the constant a is a balance pa-

rameter that takes values between 0 and 2. This bound is identical to the one

obtained by Ding and Marensi (2019), after noting that they used a different non-

dimensionalization. While showing H(ṽ) is nonnegative, we do not impose the

incompressibility constraint on the perturbations ṽ and only assume ṽ satisfies

the homogeneous boundary conditions. We make a choice of the background flow

U for which

∇U sym =
∇U + ∇UT

2

is non-zero only in boundary layers, which are assumed to have thicknesses δi and

δo near the inner and the outer cylinder, respectively. In particular, the selected

background flow U is then

U (r, θ, z) = U(r)eθ =





Λ(ri+δi)(r−ri)−(r−ri−δi)
δi

eθ if ri ≤ r ≤ ri + δi,

Λreθ if ri + δi < r ≤ ro − δo,

Λ(ro−δo)(ro−r)
δo

eθ if ro − δo < r ≤ ro,

(5.33)

where Λ is an O(1) constant, i.e., independent of Re. The decision to allow for

different boundary layer thicknesses is inspired from the work of Kumar (2020),

who speculated in the context of helical pipe flows that by doing so, it is possible

to capture important geometrical aspects of problem that would otherwise not

appear. As we are primarily interested in deriving bounds at asymptotically high

Reynolds numbers, for convenience, we define rescaled boundary layer thicknesses

as

hi =
δi
δ

and ho =
δo
δ

where δ =
1

Re
, (5.34)
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where, by construction, hi, ho > 0 and are O(1). Our goal in this section is to

adjust the relative size of the boundary layers (hi/ho) to optimize the bound (5.31)

simultaneously for different values of η in the limit of high Reynolds number.

We start by obtaining a simple estimate for the quantity

∫ ri+δi

ri

|ṽr| |ṽθ|dr =
∫ ri+δi

ri

∣∣∣∣∣

∫ r

ri

∂ṽr
∂r′ dr

′
∣∣∣∣∣

∣∣∣∣∣

∫ r

ri

∂ṽθ
∂r′ dr

′
∣∣∣∣∣ dr

≤
∫ ri+δi

ri

(r − ri)



∫ ri+δi

ri

(
∂ṽr
∂r′

)2

dr′




1
2


∫ ri+δi

ri

(
∂ṽθ
∂r′

)2

dr′




1
2

dr

=
δ2
i

2



∫ ri+δi

ri

(
∂ṽr
∂r′

)2

dr′




1/2 

∫ ri+δi

ri

(
∂ṽθ
∂r′

)2

dr′




1/2

≤ δ2
i

4

∫ ri+δi

ri

(
∂ṽr
∂r′

)2

dr′ +
δ2
i

4

∫ ri+δi

ri

(
∂ṽθ
∂r′

)2

dr′. (5.35)

In deriving the result, we have used the fundamental theorem of calculus in the

first line, Hölder’s inequality in the second line followed by an integration in r to

obtain the third line. Finally, we used Young’s inequality to obtain the last line.

In a similar manner, one can also show that

∫ ro

ro−δo

|ṽr| |ṽθ|dr ≤ δ2
o

4

∫ ro

ro−δo

(
∂ṽr
∂r′

)2

dr′ +
δ2
o

4

∫ ro

ro−δo

(
∂ṽθ
∂r′

)2

dr′. (5.36)

Next, we note that

∣∣∣∣∣

∫ ri+δi

r=ri

ṽrṽθ

(
dU

dr
− U

r

)
rdr

∣∣∣∣∣ ≤ max
ri<r<ri+δi

∣∣∣∣∣
dU

dr
− U

r

∣∣∣∣∣(ri + δi)
∫ ri+δi

r=ri

|ṽr||ṽθ|dr,(5.37)

and

∣∣∣∣∣

∫ ro

r=ro−δo

ṽrṽθ

(
dU

dr
− U

r

)
rdr

∣∣∣∣∣ ≤ max
ro−δo<r<ro

∣∣∣∣∣
dU

dr
− U

r

∣∣∣∣∣ ro
∫ ro

r=ro−δo

|ṽr| |ṽθ|dr.(5.38)
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Using estimates (5.35)-(5.38) along with the expression of the background flow

(5.33), we finally obtain a simple bound on term II in (5.32) as

|II| ≤ M

Re
‖∇ṽ‖2

2, (5.39)

where

M = max

{
hi
4

|1 − Λri|,
ho
4

|Λ|ro
}

+O(δ). (5.40)

This shows that the functional H is positive semi-definite as long as

M ≤ 1 − a

2
. (5.41)

Using (5.9) and (5.33) in (5.31), we then obtain an upper bound on the dissipation

as follows

ε ≤ εab =
2

a(2 − a)(r2
o − r2

i )

(
(1 − Λri)

2ri
hi

+
Λ2r3

o

ho

)
+O(δ). (5.42)

The upper bound obtained is called εab , and we use ‘b’ in the subscript to signify

that it is a bound and use ‘a’ in the superscript to signify that it is obtained

analytically. In final step of the procedure, we adjust the values of the unknown

parameters hi, ho, Λ and a to optimize the bound (5.42) while satisfying the

constraint (5.41). The optimal values of the parameters, in the limit of high

Reynolds number are,

Λ =
ri

r2
i + r2

o

, a =
2

3
, ho =

8

3Λro
and

hi
ho

= η. (5.43)
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Using (5.34) and (5.5), we can now write the optimal choice of boundary layer

thicknesses δi and δo in the limit of Re → ∞ (or equivalently Ta → ∞) as

δi =
8(1 + η2)

3Re
=

(1 + η2)(1 + η)3

3 η2 Ta
1
2

, δo =
8(1 + η2)

3 η Re
=

(1 + η2)(1 + η)3

3 η3 Ta
1
2

.(5.44)

The corresponding bound on the dissipation in the limit of Re → ∞ is then

given by

εab,∞ =
27

32

η

(1 + η)(1 + η2)2
. (5.45)

Here, we added ‘∞’ in the subscript to indicate that it is the main term of the

bound in the limit Re → ∞. Using the relationship (5.24), we obtain an equivalent

upper bound on the Nusselt number in the high Reynolds number limit as

Nuab,∞ =
27

16

η3

(1 + η)2(1 + η2)2
Ta1/2. (5.46)

This expression contains a dependence on both the Taylor number (the princi-

pal flow parameter) as well as the radius ratio (the geometrical parameter). To

separate out the geometrical dependence in (5.46), we define

χ(η) =
16η3

(1 + η)2(1 + η2)2
, (5.47)

and call it the geometrical scaling of the bound on Nu. This geometrical scaling

is defined in such a way that χ(1) = 1 (the relevance of η = 1 being that it

corresponds to the plane Couette flow case).

Finally, by combining (5.45) with the relation (5.20), we obtain an upper bound
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on the torque as a function of the Reynolds number

Ga
b,∞ =

27π

32

η2(1 + η)2

(1 − η4)2
Re2. (5.48)

Constantin (1994) had previously obtained a bound on the torque in Taylor–

Couette flows by considering a background flow with a single boundary layer.

The bound obtained by Constantin is also proportional to Re2, as in (5.48). But,

the coefficient in front has a different dependence on the radius ratio η. The reason

for this difference is that we chose a background flow with two boundary layers

and adjusted their relative thicknesses to optimize the bound. We shall see later

that this optimization procedure enables us to capture the actual dependence of

optimal bounds on the radius ratio.

5.5 Optimal bounds

In this section, we now proceed to obtain optimal bounds on the bulk quan-

tities, i.e., the best possible bounds within the framework of the background

method. As described in §5.1, we consider three scenarios, ‘case 1’, ‘case 2’ and

‘case 3’, in which we incrementally impose constraints on the perturbed flow field

and numerically obtain the optimal bounds in each case, which allow us to sys-

tematically examine the hypothesis stated in the introduction.

The general development of the background method for Taylor–Couette flow

is presented in appendix 5.A. In what follows, we first describe our numerical

algorithm, then proceed to present the results.

141



5.5.1 Numerical Algorithm

Here, we first describe the general numerical framework used to compute the

optimal bounds, and then provide further details of the algorithm in each of

the specific cases. Finding the optimal bound begins with the same background

method applied to the Taylor–Couette flow as in §5.4, which is described in ap-

pendix 5.A. However, instead of using functional inequalities, we now follow the

standard route toward optimal bounds, and derive a set of Euler–Lagrange equa-

tions that optimal solutions satisfy, given specific constraints in each case. The

derivation is presented in appendix 5.A, and the equations are given in (5.109a-d).

In general, the Euler–Lagrange equations can have multiple solutions. However,

we are interested in finding the unique solution that also satisfies the spectral

constraint (5.104). To find this particular solution, we use the two-step algorithm

first introduced by Wen et al. (2013) in the context of porous medium convection.

A remarkable property of this algorithm is that it eliminates the requirement of

numerical continuation (Plasting and Kerswell, 2003). As the two-step algorithm

can be implemented at any value of the flow parameter, this flexibility has led to

wider usage in several other studies of the background method to obtain the opti-

mal bound numerically (Wen et al., 2015; Wen and Chini, 2018; Lee et al., 2019;

Ding and Marensi, 2019; Souza et al., 2020). The first step of the algorithm uses

a pseudo-time stepping scheme in which the Euler–Lagrange equations (5.109a-d)

are converted into a time-dependent system of partial differential equations(PDEs)

as follows

∂ṽi

∂t
=

a

2(2 − a)

δL
δṽi

,
∂Uθ
∂t

= −a(2 − a)

4πL

1

r

δL
δUθ

,
∂a

∂t
= −δL

δa
, ∇ · ṽ = 0,(5.49)
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where the index i ranges over the r, θ and z components of ṽ. Steady-state solu-

tions of (5.49) are equivalently solutions of the Euler–Lagrange equations (5.109a-

d). Note that we multiply the Frechet derivatives with certain coefficients before

introducing the time derivatives on the left-hand side. This makes the coefficient

of the linear term (the Laplacian) a constant in the resultant time-dependent

PDEs. Also, note that the coefficient in front of the Frechet derivative with re-

spect to ṽ is positive, while the coefficients in front of the Frechet derivatives with

respect to Uθ and a are negative. The reason is that we are maximizing the bound

with respect to ṽ while minimizing it with respect to Uθ and a.

Ding and Marensi (2019) proved that if the pseudo-time stepping scheme leads

to a steady-state solution then that solution must be the globally optimal solution

of the Euler–Lagrange equations (5.109a-d), i.e., the one that leads to optimal

bounds. Conveniently, the same proof extends to the case where the perturbed

flow only satisfies the homogeneous boundary conditions and to the case where

the perturbed flow is two-dimensional and incompressible. The proof of Ding

and Marensi (2019) does not guarantee the existence of a steady-state solution to

(5.49). But in all the cases that we investigated, the pseudo-time stepping scheme

did relax to a steady-state solution.

The second step of the two-step algorithm is a Newton iteration (see Wen

et al., 2015) which has a faster convergence rate than the pseudo-time stepping

scheme but requires a good initial guess. Naturally, we use the solutions obtained

at the end of the pseudo-time stepping scheme as the initial guess.

Solving the Euler–Lagrange equations in case 1 comes with two major sim-

plifications. First, the pressure gradient term in (5.109a) disappears, as we do

not impose the incompressibility constraint on the perturbation. Second, it can

be shown that the optimal perturbation depends only on the radial direction
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(see appendix 5.B). With these simplifications, the convergence of the pseudo-

time stepping scheme is so rapid that the subsequent Newton iteration is not

needed. Therefore, we only use the first step of the two-step algorithm described

above. Furthermore, we found that it is also possible to solve the simplified

Euler–Lagrange equations analytically in the limit Re → ∞ using the method of

matched asymptotics (solutions are presented in appendix 5.B).

In case 2 it is also possible to make a simplification. Indeed, Ding and Marensi

(2019) presented numerical evidence that the optimal solution does not depend

on θ when the aspect ratio L(i.e. the height of the cylinder) is large enough.

Therefore, we choose L = 20, which is sufficiently large to guarantee that the

optimal flow is axisymmetric. To solve the system of time-dependent PDEs (5.49),

we consider the following Fourier decomposition in the z direction

ṽ =
N∑

n=1




ṽr,n(r, t) cos(knz)

ṽθ,n(r, t) cos(knz)

ṽz,n(r, t) sin(knz)



, p̃ =

N∑

n=1

p̃n(r, t) cos(knz) where kn =
2πn

L
.

(5.50)

The radial direction is further discretized using the Chebyshev collocation method.

We use a semi-implicit Crank–Nicolson scheme for the time integration where

we treat the linear terms implicitly and use the second-order Adams–Bashforth

extrapolation for the nonlinear terms. We use an influence matrix method to

solve for the pressure at each time step (see Peyret, 2013, p. 236). The code is

parallelized using MPI. Note that the pressure p̃ in (5.50), as compared to the

one in appendix 5.A, has been multiplied with an appropriate factor such that

it is precisely the gradient of p̃ that appears in the time-evolving PDEs (5.49).
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Depending on the radius ratio and Taylor number considered, we vary the number

modes in the z direction from N = 200 to N = 6000 and the number collocation

points in the r direction from 120 to 320.

The numerical strategy for solving the Euler–Lagrange equations in case 3

is similar to case 2 described above. The only difference is that for the 2D in-

compressible perturbations, the flow quantities depend on the θ direction but are

independent of z. Therefore, we consider the following decomposition instead

ṽ =
M∑

m=−M
m6=0



ṽr,m(r, t)eimθ

ṽθ,m(r, t)eimθ


 , p̃ =

M∑

m=−M
m6=0

p̃m(r, t)eimθ. (5.51)

In this case, depending on the radius ratio and Taylor number considered, we vary

the number modes in the θ direction from M = 40 to M = 3000 and the number

collocation points in the r direction from 120 to 320.

5.5.2 Optimal bound results

In this subsection, we present the optimal bounds obtained using the numerical

schemes described above for each of the three different sets of constraints on the

perturbations. We begin by showing a typical optimal background flow profiles

at η = 0.6 and Ta = 106 in each case in figure 5.4. For comparison, we have also

included the background flow profile constructed in (5.33) to derive the original

analytical bound. As can be seen in figure 5.4, all four background flow profiles

vary as cr, for some constant c, in the bulk region. This is intuitively expected as

this type of background profile makes the sign-indefinite term (which is, in a loose

sense, the hardest to control in the bulk region) in the spectral constraint (5.104)

zero. Near the cylinders, the background flows consist of two thin boundary
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Figure 5.4: The optimal background flow Uθ(r) at parameter values Ta = 106

and η = 0.6. The orange color is used for case 1, brown color for case 2 and blue
color for case 3. Also, shown as a black thick line is the background flow (5.33)
used to construct the analytical bound in §5.4, with the values of Λ, δi and δo
given by (5.43) in definition (5.33).

layers. In order to meet the prescribed boundary conditions, the gradients in these

thin layers are large, which makes the sign-indefinite term nonzero. However, as

the perturbation has to satisfy the homogeneous boundary conditions, the net

contribution from this term will still be smaller than the positive term in (5.104)

as long as the boundary layer thickness is small enough. In the optimal state, the

boundary layers are of just the right size so that the positive term and the sign-

indefinite term balance each other out and the spectral constraint is marginally

satisfied. When moving from case 1 to case 3, the restrictions on the perturbations

increase, and this decreases the possibilities in which the sign-indefinite term can

be negative. Therefore, the boundary layers become thicker, protruding more into

the bulk region.

Figure 5.5 shows the optimal bounds on the Nusselt number, Nub, as a function
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Figure 5.5: The left column shows the optimal bound Nub compensated with
Ta

1
2 in case 1, case 2 and case 3 (top to bottom) as a function of the Taylor

number for a wide range of radius ratios. The right column shows the same plots
but further scaled with the analytical geometrical scaling χ(η) given by (5.47).
The collapse of the curves at high Taylor numbers suggests that the bound on
Nusselt number Nub asymptotes to cχ(η)Ta

1
2 in all three cases where the unknown

constant c is given in (5.53a-c)
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η Anc(η)/χ(η) A3D(η)/χ(η) A2D(η)/χ(η)

0.1 0.0694315 0.00832565 0.00376439

0.2 0.0700607 0.00830294 0.00377039

0.3 0.0702631 0.00840836 0.0038083

0.4 0.0699845 0.00843543 0.0038438

0.5 0.0698495 0.00846619 0.00381451

0.6 0.0697773 0.00847018 0.0038186

0.7 0.0697175 0.00847478 0.00381908

0.8 0.069738 0.00846118 0.00381454

0.9 0.0697065 0.00846983 0.00380973

0.99 0.0697082 0.0084623 –

Table 5.1: Variation of the ratio A(η)/χ(η), where A(η) is from the relation
(5.52) and χ(η) is given in (5.47), in case 1, case 2 and case 3 where we have
respectively added ‘nc’, ‘3D’ and ‘2D’ in the superscript to signify the case. Notice
that A(η) when scaled with χ(η) becomes almost invariant in η.

of the Taylor number Ta. We denote the bounds as Nuncb for case 1, Nu3D
b for

case 2, and Nu2D
b for case 3, and these are shown in the top, middle and bottom

rows, respectively. We cover a wide range of parameters both in radius ratio

(from η = 0.1 to η = 0.99) and in Taylor number. In figures 5.5a, 5.5c and

5.5e the bound Nub has been scaled with its expected asymptotic dependence

on Ta, namely Ta
1
2 . The color and shape of the symbols each correspond to

a different radius ratio, as shown in the legend. The symbols in the plots in

figure 5.5 correspond to data points computed using the numerical algorithm

from the previous subsection, whereas the solid lines connecting the data points

are calculated using interpolation, providing a guide to the eye. For every radius

ratio value, the solid line is extended up to the highest Taylor number for which

the computation is performed. Beyond this point, we extrapolate using a best fit
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of the form

f(η) = A(η) +
B(η)

Taα(η)
(5.52)

applied to the data of Nub/Ta
1
2 computed from the last two decades in Ta. For

each value of η, we thus define A(η) as the asymptotic limit of Nub/Ta
1
2 as

Ta → ∞. Table 5.1 summarizes the values of A(η) obtained from this fitting

procedure for different radius ratios. We have added appropriate abbreviations

in the superscript of A(η) to signify the case at hand. We remark that these

extrapolations were necessary, especially for the small radius ratios, where the

bound on the Nusselt number Nub converges slowly to its asymptotic scaling in

the Taylor number Ta.

In figures 5.5b, 5.5d and 5.5f the bound Nub has been scaled by Ta
1
2 as well

as the geometrical scaling χ(η) obtained in (5.47). Note the striking collapse

of the different radius ratio curves at high Taylor numbers in all three cases.

Correspondingly, we also see from table 5.1 that the ratio A(η)/χ(η) is nearly

independent of η with less than 1.1% variation in the average between the largest

and smallest values. This suggests that the geometrical dependence of the bound

on the Nusselt number at high Taylor number is χ(η) irrespective of the case

considered. In case 1, the value of Anc(η)/χ(η) is close to 9/128 which is the

exact asymptotic result we obtained from the method of matched asymptotics in

appendix 5.C. We also observe from table 5.1 that the value of A/χ(η) in case

2 and case 3 is very close to a constant for η > 0.5, but varies a little more for

η < 0.5. This is likely due to the fact that the extrapolation is less accurate

at small radius ratio because the computed data is further from being in the

asymptotic regime compared with the case when the radius ratio is not small.
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For this reason, we assume that the average of A(η) calculated for η ≥ 0.5 is the

correct asymptotic limit of Nub/Ta
1
2 as Ta → ∞ and obtain

Nuncb,∞ =
9

8

η3

(1 + η)2(1 + η2)2
Ta

1
2 , (5.53a)

Nu3D
b,∞ =

0.1354 η3

(1 + η)2(1 + η2)2
Ta

1
2 , (5.53b)

Nu2D
b,∞ =

0.0610 η3

(1 + η)2(1 + η2)2
Ta

1
2 . (5.53c)

Here, we have added ‘∞’ in the subscript to point out that these are the main

terms of the optimal bounds in the limit Ta → ∞.

In summary, we have shown that for case 1, case 2 and case 3, the optimal

bounds are respectively a factor of 1.5, 12.46 and 27.66 better than the suboptimal

bound (5.46) in the high Taylor number limit. Crucially, this improvement is

uniform in the radius ratio η. We had obtained the analytical expression for

the geometrical scaling χ(η) from a fairly simple suboptimal analytical bound

calculated using a choice of background flow with two boundary layers whose

thicknesses were adjusted to optimize the bound. During this procedure, we had

not applied any constraint on the perturbed flow ṽ (other than the homogeneous

boundary conditions) and further used standard calculus inequalities which are

known to overestimate the bound onNub. Consequently, it is not at all self-evident

why the optimal bounds should have the same geometrical scaling. The fact that

the optimal bounds (5.53a-c), which are up to an order of magnitude better than

the suboptimal bound (5.46), preserve the same geometrical dependence on radius

ratio is therefore a simple yet remarkable result.
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5.5.3 Wavenumber spectrum of perturbation

In this subsection, we investigate the wavenumber spectrum of the perturbed

flow ṽ with a particular focus on the small scale structures present in ṽ. In the

optimal state, ṽ contains only a finite number of modes, called the critical modes,

either in the z or θ direction, depending on the case considered, i.e.,

ṽ =
∑

n∈K2




ṽr,n(r) cos(knz)

ṽθ,n(r) cos(knz)

ṽz,n(r) sin(knz)




in case 2 ṽ =
∑

m∈K3



ṽr,m(r)eimθ

ṽθ,m(r)eimθ


 in case 3 (5.54)

where K2 ⊂ N and K3 ⊂ Z \ {0} are finite sets. Moreover, as we shall demon-

strate below, the smallest scales in the perturbation are present only near the

boundaries. It is thus reasonable to hypothesize that the smallest length scale in

the perturbation ṽ is similar to the boundary layer thickness of the background

flow U . To further pursue this idea, we divide the critical modes present in the

perturbation into four different categories. If, for a given critical mode, more than

90% of the contribution to its L1(dr) norm comes from the region

Sin :=
{
r | ri ≤ r ≤ ri +

ro − ri
3

}

then we say that mode is active only near the inner cylinder. Similarly, if it comes

from the region

Sout :=
{
r | ro − ro − ri

3
≤ r ≤ ro

}

then we say it is active only near the outer cylinder. Finally, if more than 90% of

the contribution comes from region Sin and Sout together then we say the mode

is active near both the cylinders, otherwise we say the mode is active in the bulk.
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Figure 5.6: The left column shows the wavenumbers of the critical modes in
the optimal perturbation as a function of Ta at η = 0.2, 0.4, 0.6 and 0.8 (top
to bottom). The color indicates if the critical mode is active near the inner
cylinder (blue), outer cylinder (red), both cylinders (green) and in the bulk (black),
according to the classification given in the main text. The blue and red solid lines
are the theoretical predictions for the critical mode with the largest wavenumber
active near the inner and the outer cylinder, (see equation (5.57)), respectively.
The right column shows the corresponding azimuthal component ṽθ,nc(r) of critical
modes at the same radius ratios, at Ta = 108.
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This way of categorizing the modes may seem somewhat arbitrary at first, but

looking at the shape of different critical modes, it becomes readily apparent that

any other appropriate definition would have led to the same conclusion. We use

the following color scheme to differentiate modes according to our classification:

blue for the modes that are active near the inner cylinder, red for the modes that

are active near the outer cylinder, green for the modes that are active near both

the cylinders and black for the modes that are active in bulk. The right column in

figure 5.6 shows the plots of ṽθ,nc(r) for critical modes at Ta = 108 and for radius

ratios η = 0.2, 0.4, 0.6 and 0.8. We now see that the plots of ṽθ,nc(r) provide an

unambiguous visual justification of our earlier classification of critical modes into

four categories, and therefore, our classification is robust.

We first apply this categorization to the optimal perturbations found in case

2 and denote the wavenumber of the critical mode with smallest length scale

that is active near the inner cylinder as ksin and the one that is active near the

outer cylinder as ksout. Assuming that our hypothesis about the similarity of the

boundary layer thickness in the background flow and the smallest length scale in

the perturbation made above is correct, then we may expect

ksin ∝ 1

δi
, ksout ∝ 1

δo
, (5.55)

where δi and δo are given by (5.44). Substituting their expressions in above relation

leads to

ksin ∝ η2

(1 + η2)(1 + η)3
Ta

1
2 , ksout ∝ η3

(1 + η2)(1 + η)3
Ta

1
2 . (5.56)

From these relations, we not only obtain the dependence of ksin and ksout on Ta,

153



but also on the radius ratio η. In particular, we predict that the smallest length

scales in the perturbation should become larger as η → 0. Furthermore, at a given

η, the small scale structures near the outer cylinder are predicted to be 1/η times

larger than the ones near the inner cylinder.

The left column in figure 5.6 shows the wavenumbers of the critical modes in

the optimal perturbations as a function of the Taylor number for four different

radius ratio values η = 0.2, 0.4, 0.6 and 0.8 (top to bottom row). By fitting these

plots, we find that the constant of proportionality in (5.56) that best fists the data

at high Taylor numbers is C = 0.244, therefore we expect

ksin = 0.244
η2

(1 + η2)(1 + η)3
Ta

1
2 , ksout = 0.244

η3

(1 + η2)(1 + η)3
Ta

1
2 . (5.57)

These two relations are plotted in figures 5.6a, 5.6c, 5.6e and 5.6g with solid

blue and red lines, respectively. We see that smallest length scales in the critical

perturbation near the inner and outer boundaries, respectively, indeed follow the

relations (5.57). Furthermore, these smallest scales achieve their asymptotic scal-

ing in Taylor number quicker than the corresponding optimal bounds on Nusselt

number shown in figure 5.5, without any need for extrapolation of the data. We

therefore argue that (5.57) and figure 5.6 together provide a strong validation of

the analytical predictions from §5.4.

We can use similar ideas to predict the scaling of the smallest length scales in

optimal perturbations in case 3. Using (5.43), one would anticipate ms
i ∝ ri/δi

and ms
o ∝ ro/δo, where ms

i is the largest wavenumber of a critical mode active near

the inner cylinder and ms
o is the largest wavenumber of a critical mode active near

the outer cylinder. The plots on the left-hand side column in figure 5.7 shows the

wavenumbers of critical modes in the 2D optimal perturbations as a function of
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Figure 5.7: The plots in the left column shows the wavenumber mc of the
critical modes that constitutes the two dimensional optimal perturbation as a
function of the Taylor number for radius ratios η = 0.2, 0.4, 0.6 and 0.8 (top to
bottom). We use the same color scheme as in figure 5.6 to distinguish different
critical modes. The solid green line is the relation (5.58) which predicts the largest
critical wavenumber. The right column shows the plots of ṽcθ,mc

, the coefficient of
cosmcθ in the azimuthal component of the velocity, at Ta = 108 and the same
radius ratios as the left-hand side plots.
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the Taylor number at radius ratios 0.2, 0.4, 0.6 and 0.8. We apply the same mode

identification method, and use the same color scheme to differentiate the critical

modes as before. From these plots, we can fit the data at high Taylor numbers, to

measure the constant of proportionality in the expressions for ms
i and ms

o, leading

to

ms
i = ms

o =
0.126η3

(1 − η4)(1 + η)2
Ta

1
2 . (5.58)

We see that the wavenumber of the critical mode with smallest length scale that

is active near the inner cylinder and outer cylinder are equal. The relation (5.58),

shown as a solid green line on the left-hand side of figure 5.7, does seem to predict

the largest wavenumbers at high Taylor numbers correctly.

As in figure 5.6, the right-hand side column of figure 5.7 shows the function

vcθ,mc
(r), defined as the coefficient of cosmcθ in the expression

ṽθ,mc(r)e
imcθ + ṽθ,−mc(r)e

−imcθ,

where mc refers to a critical mode. The main difference between the shape of

modes ṽθ,nc(r) in figure 5.6 compared with vcθ,mc
(r) in figure 5.7, is that the mean

of ṽcθ,mc
(r) is zero, i.e.,

∫ ro

ri

ṽcθ,mc
(r)dr = 0. (5.59)

This condition comes from incompressibility, which leads to (5.59) in 2D, but does

not in 3D because the z-component, ṽz, is nonzero. As a result, in 2D, modes

which are active solely near the cylinders oscillates in the boundary layer to ensure

that (5.59) is satisfied.
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5.6 A note on the applicability of the back-

ground method

In one of our previous studies (Kumar, 2020), we presented a sufficient crite-

rion to determine when the background method can be applied, for a given flow

geometry and boundary conditions. We demonstrated that it can be used with

any flow problem (tangential-velocity-driven or pressure-driven) with imperme-

able boundaries, provided the boundaries have the shape of streamtubes of the

following flow

V = Ax + V 0. (5.60)

Here, A is a constant skew-symmetric tensor, V 0 is a constant vector and x is

the position vector. For these types of problems, one can further show that the

upper bound on the dissipation becomes independent of viscosity at high Reynolds

numbers. In this section, we explore the complementary question of whether there

exist flow configurations for which the background method cannot be applied.

Indeed, the applicability of the background method depends on the existence

of an incompressible background flow (which also satisfies the inhomogeneous

boundary conditions) such that the following functional is positive semi-definite

H(v) =
[

1

2Re
‖∇ṽ‖2

2 +
∫

V
ṽ · ∇U sym · ṽ dx +

∫

V
U · ∇U · ṽ dx

]
, (5.61)

for any perturbations ṽ that satisfies the homogeneous boundary conditions. Con-

sequently, proving that the background method cannot be applied reduces to the

problem of finding a perturbation or a family of perturbations such that there is
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no background flow U for which H is positive semi-definite.

We start by giving a few examples where the applicability of the background

flow can be rigorously dismissed. We first consider the case of Taylor–Couette flow

with suction at the inner cylinder. The energy stability analysis of this problem

was considered by Gallet et al. (2010). The boundary conditions for this problem

are:

u = −er + ωirieθ at r = ri, u = − ri
ro

er + ωoroeθ at r = ro, (5.62)

where the Reynolds number Re is defined such that u · er = −1 at the inner

cylinder. The non-dimensional angular velocities of the inner and outer cylinder

are ωi and ωo, respectively. In this problem, the flow is constricted to a narrow

area as it moves from the outer cylinder (inlet) to the inner cylinder (outlet). We

restrict ourselves to two dimensions but the arguments given below are valid in

three dimensions as well. The domain of interest is V = [ri, ro] × [0, 2π].

We consider a perturbation ṽ of the form

ṽ = (ṽr, ṽθ) = (0, v0r(r − ri)(r − ro)) , (5.63)

whose amplitude is v0. Note that ṽ satisfies the homogeneous boundary conditions

and is incompressible. We now demonstrate that for this perturbation, the spectral

constraint can never be satisfied above a certain Reynolds number regardless of

the choice of background flow U .

To show that the spectral constraint (5.61) is not satisfied, we have to show

that the second term is negative and that its absolute value is larger than the first

term. Being linear in ṽ, the last term can be made arbitrarily small compared
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with the first two terms by choosing v0 in (5.63) to be large enough for any given

background flow U . As such, it does not play any role in the following argument.

The calculation of the first term is straightforward:

1

2Re
‖∇ṽ‖2

2 =
π

60Re
(ri + ro)(5r

2
i + 5r2

o + 2)v2
0. (5.64)

In the calculation of the second term, we take advantage of the fact that the

chosen perturbation (5.63) is independent of θ, so

∫

V
ṽ · ∇U · ṽ dx =

∫ ro

ri

ṽ2
θ

[∫ 2π

0

(
1

r

∂Uθ
∂θ

+
Ur
r

)
dθ

]
rdr. (5.65)

Now, using periodicity as well as the incompressibility condition satisfied by the

background flow U , the following holds

∫ 2π

0

∂Uθ
∂θ

dθ = 0,
∫ 2π

0
Urdθ = −2πri

r
. (5.66)

Using (5.63) and (5.66) in (5.65) gives

∫

V
ṽ · ∇U · ṽ dx = − π

30
(r2
i + riro)v

2
0. (5.67)

From (5.64) and (5.67), we deduce that the spectral constraint (5.61) will not be

satisfied if

Re >
5r2

i + 5r2
o + 2

2ri
, (5.68)

a condition that is, remarkably, independent of the choice of U . Note that in the

limit of ri/ro → 1, the Reynolds number beyond which the method fails goes to
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Figure 5.8: A cartoon of the streamlines of the flow field given by (5.72).

infinity. This limit recovers the case of a plane Couette flow with suction and

injection at the walls (Doering et al., 2000), where the background method can

indeed be applied, so (5.68) is consistent with these results.

A similar type of condition on the Reynolds number can be derived in the

problem of the Taylor–Couette flow with injection at the inner cylinder, i.e.,

u = er + ωirieθ at r = ri, u =
ri
ro

er + ωoroeθ at r = ro. (5.69)

In this problem, the flow overall expands into a larger area as it moves from the

inner cylinder (inlet) to the outer cylinder (outlet). For this case, we can use

similar arguments but with the new perturbed flow

ṽ = (ṽr, ṽθ) = (v0r(r − ri)(r − ro), 0) . (5.70)

The perturbation this time is not incompressible but can be shown to yield a neg-

ative H(ṽ) regardless of the background flow U , for sufficiently large Reynolds

number. However, noting that the perturbation (5.70) is radial, one may then ex-

pect that an incompressible perturbation, which is composed of vortices stretched
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in the radial direction will also yield a negative H(ṽ). This observation led us to

consider the following streamfunction:

ψv = v0r
2(r − ri)

2(r − ro)
2 sinmθ where m ∈ N. (5.71)

We define the corresponding velocity field ṽ = (ṽr, ṽθ) as

ṽr =
1

r

∂ψv
∂θ

, ṽθ = −∂ψv
∂r

. (5.72)

This velocity field is divergence free and satisfies the homogeneous boundary con-

ditions at the surface of the cylinders. The streamlines of ṽ are depicted in figure

5.8. Next define a family of rotation operators Qϕ : Dσ(V ) → Dσ(V ), indexed

with ϕ, on the space of divergence-free vector fields that satisfies the homogeneous

boundary conditions at ∂V as

Qϕ(ṽ)(r, θ) = ṽ(r, θ + ϕ) ∀(r, θ) ∈ V. (5.73)

A tedious calculation, first involving an integration in ϕ and then using the argu-

ments similar to the suction problem above, shows

∫ 2π

0
H(Qϕ(ṽ))dϕ =

π(ri + ro)

1260

[
246r4

i + 138r4
o + 108r3

o + 120r2
i r

2
o + 108r2

i ro + 8m2(r3
o − r3

i ) +m4

2Re

−ri(m2 − 6(r2
i + r2

o))

]
. (5.74)
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This calculation implies that if

m >
⌈√

6r2
i + 6r2

o

⌉
, (5.75)

where ⌈ · ⌉ is the ceiling function, then for

Re >
246r4

i + 138r4
o + 108r3

o + 120r2
i r

2
o + 108r2

i ro + 8m2(r3
o − r3

i ) +m4

2ri (m2 − 6r2
i − 6r2

o)
(5.76)

the integral (5.74) is negative, which implies there is at least one ϕ ∈ [0, 2π] such

that H(Qϕ(ṽ)) < 0. More generally, there exist a set S ⊂ [0, 2π], depending on

the background flow U , of positive measure (µ(S) > 0) such that H(Qϕ(ṽ)) < 0

for any ϕ ∈ S, i.e., the spectral constraint is not satisfied. Note that the condition

(5.75) is basically saying that the vortices in the incompressible perturbed flow

field (5.72) should be stretched in the radial direction, which we expected from

the example of the compressible perturbed flow (5.70).

The key message from these two problems is that if there is a converging flow,

then one can rule out the applicability of the background method by creating a

perturbation whose streamlines are perpendicular to the direction of the mean

flow, while in the case of a diverging flow, one can use a perturbation whose

streamlines are parallel to the direction of the mean flow instead. Of course, in

both the cases, we need to make sure that the perturbation satisfies the homoge-

neous boundary conditions.

Combining these ideas suggests that one cannot apply the background method

to flows in a converging-diverging nozzle, either because one can choose the per-

turbation to be composed of vortices that stretch in the perpendicular direction to

the flow in the converging section or parallel to the flow in the diverging section.
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Using the same arguments, one would then also conjecture that the background

method can in general not be applied to flows between rough walls. Indeed, in

this case, one can always find vertical sections where the flow expands or com-

presses and then one could use the same strategy to choose perturbations for

which H(ṽ) < 0. However, note that, in this case, the compression or expansion

is small, i.e., the gap width on averages decreases only by a factor of (1 − ǫ)

in the converging part or increases by a factor of (1 + ǫ) in the diverging part,

where ǫ is the non-dimensional roughness scale. This problem is analogous to

the converging-diverging nozzle if the Reynolds number is based on the surface

roughness ǫ. Therefore, for the Reynolds number based on the average gap width,

we expect that the spectral constraint (5.61) will not be satisfied if Re & ǫ−1.

This still leaves the problem open for the flow systems which do not have

a converging or diverging section, for example, flow in tortuous channels. We

believe that even for these problems the spectral constraint will fail to hold past a

certain Reynolds number for any background flow. Therefore, we conjecture that

the sufficient condition for the applicability of the background method mentioned

in the beginning of this section is also a necessary condition.

5.7 Discussion and conclusion

5.7.1 Summary and implications

In this paper, we computed optimal bounds on mean quantities in the Taylor–

Couette flow problem with a stationary outer cylinder, with particular focus on the

dependence of these bounds on the system geometry. Along the way, we studied

the energy stability of the laminar flow in §5.3. The main finding of this section

163



was that for a value of radius ratio ri/ro below 0.0556, the marginally stable flow

at the energy stability threshold is not composed of the well-known axisymmetric

Taylor vortices but is instead a fully three-dimensional flow field.

To uncover the functional dependence of the optimal bounds on the radius

ratio at large Taylor number, we began by deriving a suboptimal but analytical

bound with the use of standard inequalities and a choice of background flow with

two boundary layers (one near the inner cylinder and one near the outer cylinder)

whose thicknesses were then adjusted to optimize the bound. We then argued

that the dependence on the radius ratio captured by this analytical bound should

also be the same for the optimal bounds at large Taylor numbers. We system-

atically verified this statement by obtaining distinct optimal bounds under three

circumstances. In the first case, we imposed no constraints on the perturbation

other than the homogeneous boundary conditions (case 1). Next, we allowed for

three-dimensional incompressible perturbations (case 2), and finally, we consid-

ered two-dimensional incompressible perturbations (case 3). In the high Taylor

number limit, we see an improvement of 1.5, 12.46 and 27.66, respectively, over

the analytical bound as we move from case 1 to case 3, and that improvement

is the same for all radius ratios. This result is striking and non-trivial because

there is no known transformation of variables which makes the Euler–Lagrange

equations (5.109a-d) of the optimal bounds independent of the radius ratio.

In §5.6, we rigorously dismissed the applicability of the background method

for two flow problems. The limitation of the background method is previously

known in the context of Rayleigh–Bénard convection at infinite Prandtl number

(Nobili and Otto, 2017), where it was shown that using a different method a

tighter bound can be obtained as compared to the background method. Here,

we have shown that past a certain Reynolds number, no bound can be obtained
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using the background method applied to Taylor–Couette flow with suction or in-

jection at the inner cylinder, i.e., there is no background flow that satisfies the

spectral constraint even when the incompressibility condition on the perturbation

is imposed. Generalizing these results then suggests that the spectral condition

may not be satisfied for flow problems that contain converging or diverging sec-

tions, such as flow in a converging-diverging nozzle or flow between the rough

walls. The auxiliary functional method (Chernyshenko et al., 2014) could pos-

sibly be a way forward to obtain bounds for such problems. The current best-

known implementation of this auxiliary functional method to obtain a bound on

energy dissipation in flow problems uses only quadratic functionals, in which case

it has been shown to be equivalent to the background method (Chernyshenko,

2022). However, Chernyshenko (2022) also proposed potential ways to imple-

ment nonquadratic functionals, which might be able to produce a finite bound on

the energy dissipation in the problems stated above. Another possible approach,

this time numerical, is to consider finite-dimensional truncated models of the ac-

tual flow problem, where there is a systematic way to use higher-than-quadratic

auxiliary polynomials with the help of the sum-of-squares method (Goulart and

Chernyshenko, 2012; Huang et al., 2015; Fantuzzi et al., 2016; Goluskin, 2018;

Kumar, 2019; Olson et al., 2021).

Our study brings into light the significance (or lack of significance, to be more

precise) of the incompressibility constraint on the perturbation while calculating

optimal bounds, especially in the limit of high Reynolds number, which is gener-

ally of interest in turbulent flows. As we showed in the present study, dropping

the incompressibility constraint on the perturbations altogether (case 1) still re-

covers the correct dependence of the bounds on both the principal flow parameter

(Ta, or equivalently Re) and on the domain geometry (through the radius ra-
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tio). One cannot help but wonder whether the same holds true for other flow

problems, including for instance the case of convection. It is a fundamental ques-

tion of concern, as not imposing the incompressibility constraint tremendously

decreases the computational cost of the optimal bound calculation. In the partic-

ular example studied here, in fact, not imposing the incompressibility condition

allowed us to solve the Euler–Lagrange equations analytically using the method

of matched asymptotic. This could also be potentially helpful in other studies

involving the background method where it is relatively difficult to establish the

scaling of the optimal bound even numerically, perhaps because the bounds in-

volve logarithms (Fantuzzi et al., 2018, 2020) or a scaling other than a simple

power-law (Kumar et al., 2022). In such situations, from an analysis point of

view, it is usually challenging to decide what combination of the background field

and calculus inequalities might be required to obtain the correct asymptotic scal-

ing of the optimal bound. When the bound is obtained numerically instead, it

can be difficult to establish its actual functional dependence of the principal flow

parameter. Therefore, in these situations, considering case 1 can be very useful as

one can try solving the Euler–Lagrange equations analytically using the method

of matched asymptotics. These ideas can also be of relevance to other variational

approaches such as the wall-to-wall transport problem (Hassanzadeh et al., 2014;

Tobasco and Doering, 2017; Motoki et al., 2018b,a; Doering and Tobasco, 2019;

Souza et al., 2020; Tobasco, 2022; Kumar, 2022b) which asks the question of what

is the maximum heat transfer for a fixed energy or enstrophy budget.

Finally, assuming that the conclusions of this study apply more broadly, case 3

is also relevant to flow problems which are frequently investigated not just in three

dimensions but in two dimensions as well, such as Rayleigh–Bénard convection or

internally heated convection. For example, it could be interesting to determine
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Figure 5.9: (a) The Nusselt number (Nu) from DNS as a function of the Taylor
number (Ta). (b) The Nusselt number (Nu) scaled with the geometrical scaling
X(η) given by (5.47) as a function of Taylor number (Ta). In these figures the
DNS results are taken from (Ostilla-Mónico et al., 2014) for η = 0.5, 0.714 and
0.909 and from (Froitzheim et al., 2019) for η = 0.357.

how the optimal bounds depends on the shape of the roughness of the wall in

two dimensional Rayleigh–Bénard convection with rough boundaries, a problem

previously investigated by Goluskin and Doering (2016) using the background

method.

Before proceeding further, we note that one can also use the direct method of

Seis (2015) to derive an upper bound on the Nusselt number with the same Taylor

number dependence as in this paper. However, a question of interest could be if

a bound with the same geometrical scaling can also be derived. We would expect

that if one makes estimates near both the cylinders in Seis’s approach and uses

an analogous optimization procedure (similar to this paper), one may be able to

derive a suboptimal bound with the same geometrical scaling as in this paper.
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5.7.2 Comparison with the DNS

We now briefly analyze our results from a more practical point of view and ask

the question of whether the dependence of the Nusselt number on the radius ratio

obtained in this paper bears any relationship with that of the actual turbulent

flow. Note that the asymptotic dependence of the optimal bound on the Taylor

number is known to overestimate the actual Nusselt number in turbulent Taylor

Couette flows by a logarithmic factor in Ta (Grossmann et al., 2016). As such,

we cannot directly compare our results to the data, but instead merely ask the

question of whether the geometric prefactor g(η) in the expression Nu(η, Ta) =

g(η)f(Ta) measured in turbulent Taylor–Couette flows bears any resemblance

with the prefactor χ(η) obtained in our optimal bound calculation, see equation

(5.47).

We first test this idea on the direct numerical simulations (DNS) data from

Ostilla-Mónico et al. (2014) and Froitzheim et al. (2019). On the left-hand panel

in figure 5.9, we have plotted Nu vs Ta from these DNS, and on the right-hand

panel, we show the same data divided by χ(η). We see that the rescaled data does

become more compact and appears to fall on a single curve. This observation gives

us confidence that the geometrical dependence of the bound χ(η) obtained in this

paper is a good approximation to that of the actual Nusselt number Nu measured

in turbulent Taylor Couette flows. However, we note that the data has not yet

reached the asymptotic scaling corresponding to the high Ta regime, so the com-

parison at this point remains tentative. We also note that a different prediction for

Nu(η, Ta) has recently been obtained by Berghout et al. (2020) using the idea of

Monin–Obukhov theory for thermally stratified turbulent boundary layers. Their
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scaling the asymptotic limit of high Ta number is given as

Nu ∼ 4κ2 η3

(1 + η)2

Ta
1
2

log2 Ta
= 0.6084

η3

(1 + η)2

Ta
1
2

log2 Ta
, (5.77)

where κ = 0.39 is the von Kármán constant. The geometrical dependence in

(5.77) differs from χ(η) by a factor of (1 + η2)2. However, it is reassuring to see

that both expressions are proportional to η3 in the limit of small radius ratio. A

definitive answer to the question of whether the geometrical scaling χ(η) given by

our bound is exact or just an approximation would require a precise comparison

with the turbulent data at very high Taylor numbers collected for a range of radius

ratios spanning the entire interval (0, 1), which is at present a challenge for the

numerical computations.

5.7.3 Further generalizations

We end this paper by discussing a few important consequences and generaliza-

tions of our study as well as future outlooks. The first one of these consequences

concerns the bound on dissipation. The optimal bound on the Nusselt number

for case 2 (3D incompressible perturbations) combined with the relations (5.24)

and (5.5) gives us the optimal bound on the dissipation

ε3D
b,∞ = 0.0677

η

(1 + η)(1 + η2)2
. (5.78)

This bound tends to 0.00846 in the limit η → 1, which is within 1% of the

optimal bound obtained by Plasting and Kerswell (2003) for the plane Couette

flow, namely 0.008553. The consistency between the two results shows that our

work can, in retrospect, be viewed as a generalization of the result of Plasting and
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Kerswell (2003) to Taylor–Couette flow for an arbitrary radius ratio.

The second item is related to our previous work (Kumar, 2020) on the de-

pendence of the bound on the friction factor λ on the radius of curvature κ and

torsion τ for a pressure-driven flow in a helical pipe. We were able to employ a

similar boundary layer optimization technique together with standard inequalities

as we did here to obtain the following analytical bound on the friction factor in

high Re limit

λab,∞ =
27

8
I(κ, τ), (5.79)

where

I(κ, τ) =
1

2π

∫ 2π

0
((1 − κ cosα)2 + τ 2)3/2(1 − κ cosα) dα. (5.80)

However, the complexity of the helical pipe geometry makes it impossible in prac-

tice to compute the corresponding optimal bound. Nevertheless, in the light of

results from the present study, and assuming that we captured the geometrical

dependence correctly, one can in principle compute the prefactor in a limit where

the optimal bound can be computed, namely the case of a straight pipe, for which

κ = τ = 0. This bound was computed by Plasting and Kerswell (2005) to be

λ3D
b,∞(0, 0) = 0.27, and using this result we then expect that the optimal bound for

helical pipes in the limit of high Reynolds number is

λ3D
b,∞ = 0.27I(κ, τ). (5.81)

Finally, the results presented in this paper potentially open the door to solv-

ing many important outstanding problems in engineering. Indeed, within that
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context we are often interested in finding the optimal geometry of the system

or the object involved that minimizes or maximizes a certain flow quantity sub-

ject to some physical constraint. These types of problems therefore, demand a

careful study of the effect of the domain shape on a flow quantity. From this

perspective, our study has broader implications. Even though we ruled out the

applicability of the background method to a large class of problems (see §5.6),

this still leaves a number of interesting problems open for analysis. For example,

two problems which have been investigated using direct numerical simulations

before but where an application of the background method can provide further

insights are the Taylor–Couette flow with axisymmetric grooved walls (Zhu et al.,

2016) and pressure-driven flow in a pipe with an elliptic cross-section (Nikitin and

Yakhot, 2005). Another problem where the background method has previously

been used but capturing the exact domain shape dependence in the bounds were

not the primary focus are the flow of fluid in an arbitrary domain driven by mov-

ing boundaries (Wang, 1997). Our study suggests an interesting avenue towards

solving these problems, by using the background method, together with pertur-

bations that are not assumed to be incompressible, which, as we demonstrated

here, can greatly simplify the calculation.
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Appendix 5.A The background method

In this section, we formulate the background method to obtain an upper bound

on the quantity

1

Re
‖∇u‖2

2, (5.82)

in Taylor–Couette flow. It is clear from (5.19) that an upper bound on this

quantity immediately provides an upper bound on the dissipation ε.

We begin by writing the total flow field u as a sum of two divergence-free flow

fields,

u = U + v. (5.83)

We call U the background flow, and require that it satisfies same boundary con-

ditions as u and is only a function of space. We call v, the perturbation, or

perturbed flow, which satisfies homogeneous boundary conditions. The governing

equation for the perturbation, obtained by substituting (5.83) in (5.3), is given by

∂v

∂t
+ U · ∇U + U · ∇v + v · ∇U + v · ∇v =−∇p+

1

Re
∇2U +

1

Re
∇2v.(5.84)

We then obtain the evolution equation of the energy in the perturbed flow by

taking the dot product of (5.84) with v and integrating over the volume,

d‖v‖2
2

dt
=

1

Re

∫

V
∇2U · v dx − 1

Re
‖∇v‖2

2 −
∫

V
v · ∇U · v dx

−
∫

V
U · ∇U · v dx, (5.85)
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Now using integration by parts, we can write

∫

V
∇2U · v dx = −a

∫

V
∇U : ∇v dx + (1 − a)

∫

V
∇2U · v dx. (5.86)

where, in the index notation,

∇U : ∇v = ∂ivj∂iU j. (5.87)

At the same time, one also has the following identity

∇U : ∇v =
|∇u|2 − |∇U |2 − |∇v|2

2
. (5.88)

Using (5.86) and (5.88) in (5.85) leads to

d‖v‖2
2

dt
+
a‖∇u‖2

2

2Re
=
a‖∇U‖2

2

2Re
− (2 − a)

2Re
‖∇v‖2

2 +
(1 − a)

Re

∫

V
∇2U · v dx

−
∫

V
v · ∇U · v dx −

∫

V
U · ∇U · v dx.(5.89)

The introduction of a balance parameter ‘a’ in the background formulation goes

back to Nicodemus et al. (1997). Now it can be shown within the framework of

the background method that the quantity ‖v‖2
2 is uniformly bounded in time (see

Doering and Constantin, 1992, for example). As a result, the long-time average

of the time derivative of ‖v‖2
2 vanishes. Therefore, taking the long-time average

of the equation (5.89) leads to the following bound

1

Re
‖∇u‖2

2 ≤ 1

Re
‖∇U‖2

2 − 2

a
F(v), (5.90)
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where

F(v) =

[
2 − a

2Re
‖∇v‖2

2 − (1 − a)

Re

∫

V
∇2U · v dx

+
∫

V
v · ∇U · v dx +

∫

V
U · ∇U · v dx

]
. (5.91)

This formulation of the background method is general, until this point. From here

onward, we restrict the background flow U to be unidirectional, of the form

U = Uθ(r)eθ. (5.92)

At this point, we give proof of a straightforward but important lemma.

Lemma 5.A.1. Let the domain V be given by (5.8). Then for a continuous

function f : [ri, ro] → R and a divergence-free vector field w : V → R
3 such that

w|r=ri
= w|r=ro

= 0 and periodic in the z direction, the following holds:

∫

V
f(r)wr dx = 0, (5.93)

where, wr is the radial component of w.

Proof. Let

F (r, θ, z) =
∫ r

r′=ri

f(r′) dr′. (5.94)

Then we can write

∫

V
f(r)wrdx =

∫

V
∇F · w dx =

∫

V
∇ · (Fw)dx = 0 (5.95)

where we used the divergence theorem and the boundary conditions on w to
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obtain the last equality. �

The assumption (5.92) combined with lemma 5.A.1 implies

∫

V
U · ∇U · v dx = 0. (5.96)

The functional F therefore takes the following form

F(v) =

[
2 − a

2Re
‖∇v‖2

2 +
∫

V
v · ∇U · v dx − (1 − a)

Re

∫

V
∇2U · v dx

]
. (5.97)

If the infimum of this functional F over all the divergence-free vector fields v is

finite then it may not be zero as F is not homogeneous due the presence of a

linear term. Therefore, similar to Doering and Constantin (1998a) and Plasting

and Kerswell (2003), we define a shifted perturbation as

ṽ = v − φ, (5.98)

where both ṽ and φ are divergence-free and satisfy homogeneous boundary con-

ditions at the surface of the cylinders, and select φ to eliminate the linear term

when the bound (5.90) is written in terms of ṽ.

We substitute (5.98) in (5.90) and use (5.92) and lemma 5.A.1 whenever re-

quired. We obtain the following linear term in ṽ:

2

aRe

∫

V

[
(2 − a)∇2φ + (1 − a)∇2U

]
· ṽ dx. (5.99)

Therefore, for this linear term to be zero, we require

(2 − a)∇2φ + (1 − a)∇2U = 0. (5.100)
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Without loss of generality, we can select the unidirectional solution

φ = −1 − a

2 − a
[Uθ − ulam,θ] eθ. (5.101)

Using this expression for φ, the bound in terms of ṽ now reads

1

Re
‖∇u‖2

2 ≤ 1

a(2 − a)Re
‖∇U‖2

2 − (1 − a)2

a(2 − a)Re
‖∇ulam‖2

2 − 2

a
H(ṽ), (5.102)

where

H(ṽ) =
[
2 − a

2Re
‖∇ṽ‖2

2 +
∫

V
ṽ · ∇U · ṽ dx

]
. (5.103)

If we choose a background flow U such that the functional H is positive semi-

definite on the space of divergence-free vector field ṽ, i.e.

inf
ṽ

∇·ṽ=0

H(ṽ) ≥ 0, (5.104)

then the bound (5.102) simply is

1

Re
‖∇u‖2

2 ≤ 1

a(2 − a)Re
‖∇U‖2

2 − (1 − a)2

a(2 − a)Re
‖∇ulam‖2

2. (5.105)

The positive semi-definite condition (5.104) on H is referred to as the spectral

constraint. Since the functional H is quadratic and homogeneous, we can rewrite

the spectral constraint as

H(ṽ) ≥ 0 ∀ṽ such that ∇ · ṽ = 0 and ‖ṽ‖2 = 1. (5.106)

Using the Euler–Lagrange equations, the spectral constraint (5.106) is equivalent
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to the non-negativity of the smallest eigenvalue λ of the following self-adjoint

spectral problem

∇ · ṽ = 0, (5.107a)

2λṽ =
(2 − a)

Re
∇2ṽ − 2ṽ · ∇U sym − ∇p̃. (5.107b)

Here, p̃ and λ are the Lagrange multipliers for the constraints ∇ · ṽ = 0 and

1 − ‖ṽ‖2
2 = 0.

Now, to optimize the bound (5.102) under the incompressibility constraint on

ṽ, we write the following Lagrangian

L =
1

a(2 − a)Re
‖∇U‖2

2 − (1 − a)2

a(2 − a)Re
‖∇ulam‖2

2 − 2

a
H(ṽ)

+
∫

V
p̃ ∇ · ṽ dx. (5.108)

Letting the first variation (the Frechet derivative) of this functional with respective
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to ṽ, p̃, U and a to zero, leads to

δL
δṽ

=
2(2 − a)

aRe
∇2ṽ − 4

a
ṽ · ∇U sym − ∇p̃ = 0, (5.109a)

δL
δp̃

= ∇ · ṽ = 0, (5.109b)

δL
δUθ

= − 4πL

a(2 − a)Re

(
r
d2Uθ
dr2

+
dUθ
dr

− Uθ
r

)

+
1

r

d

dr

(
2r2

a

∫ 2π

θ=0

∫ L

z=0
ṽrṽθdθdz

)
= 0,

(5.109c)

δL
δa

=
2(a− 1)

a2(2 − a)2Re

(
‖∇U‖2

2 − ‖∇ulam‖2
2

)

+
2

a2

(
1

Re
‖∇ṽ‖2

2 +
∫

V
ṽ · ∇U · ṽ dx

)
= 0.

(5.109d)

In general, these equations do not have a unique solution. However, the solution to

these equations for which the background flow also satisfies the spectral constraint

(5.104), or equivalently, all the eigenvalues of the eigenvalue problem (5.107 a,b)

are non-negative, is unique.

Appendix 5.B A useful lemma

Here we prove that the marginally stable perturbations in the energy stability

analysis §5.3 or optimal perturbations in §5.5 only depend on radius when they

are not required to be incompressible.

Lemma 5.B.1. Let D(V ) be the set of smooth velocity fields (not necessarily

incompressible) that satisfy the homogeneous boundary conditions. For a given

choice of the balance parameter 0 < a < 2 and of the unidirectional background
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flow U = Uθ(r)eθ, the functional H(ṽ) (given by (5.103)) achieves a minimum

when ṽ is a function of the radial direction only. Furthermore, if the background

flow satisfies (dUθ/dr − Uθ/r) ≤ 0 then the optimal perturbed flow corresponds to

ṽr = ṽθ.

Remark 5.B.1. Although we do not prove that the optimal background flow sat-

isfies (dUθ/dr − Uθ/r) ≤ 0, this condition was found to hold in every numerical

computations of optimal bounds in all the three cases considered in our paper as

well as for the choice of the background flow in analytical construction presented

in §5.4. Therefore, it is natural to make the assumption that (dUθ/dr−Uθ/r) ≤ 0.

Proof. In the first part of the lemma, it is sufficient to show that for every ṽ ∈

D(V ) there exist ṽ0 ∈ D(V ) with ṽ0(x) = ṽ0(r) such that H(ṽ0) ≤ H(ṽ).

H(ṽ) =
[
2 − a

2Re
‖∇ṽ‖2

2 +
∫

V
ṽ · ∇U · ṽ dx

]

=

[∫ L

z=0

∫ 2π

θ=0

(∫ ro

r=ri

2 − a

2Re
|∇ṽ|2 + ṽ · ∇U · ṽ rdr

)
dθdz

]

≥



∫ L

z=0

∫ 2π

θ=0
inf

0≤θ≤2π
0≤z≤L

(∫ ro

r=ri

2 − a

2Re
|∇ṽ|2 + ṽ · ∇U · ṽ rdr

)
dθdz




= H(ṽ0), (5.110)

where ṽ0(x) = ṽ(r, θ0, z0) and θ0, z0 corresponds to the values for which the

infimum in third line is achieved.

In the second part, for every perturbation ṽ = (ṽr, ṽθ), we define a modified

perturbation

v̂ =




√
ṽ2
r + ṽ2

θ√
2

,

√
ṽ2
r + ṽ2

θ√
2


 . (5.111)
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So, if the initial perturbations ṽ are weakly differentiable in space then so is the

modified perturbation v̂. Therefore, all the operations below apply. For this

modified perturbation, we have

‖∇v̂‖2
2 =

ṽ2
r

ṽ2
r + ṽ2

θ

(
∂ṽr
∂r

)2

+
ṽ2
θ

ṽ2
r + ṽ2

θ

(
∂ṽθ
∂r

)2

+
ṽrṽθ

ṽ2
r + ṽ2

θ

∂ṽr
∂r

∂ṽθ
∂r

+
ṽ2
r + ṽ2

θ

r

≤
(
∂ṽr
∂r

)2

+

(
∂ṽθ
∂r

)2

+
ṽ2
r + ṽ2

θ

r
= ‖∇ṽ‖2

2, (5.112)

where we used Young’s inequality on the third term on the right-hand side in the

first line to obtain the second line. Now the assumption on Uθ implies

ṽ2
r + ṽ2

θ

2

(
dUθ
dr

− Uθ
r

)
≤ ṽrṽθ

(
dUθ
dr

− Uθ
r

)
, (5.113)

again through the use of Young’s inequality. Combining (5.112) and (5.113) with

the definition of H(v), leads to

H(v̂) ≤ H(ṽ). (5.114)

Finally, noting that v̂r = v̂θ proves the lemma. �
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Appendix 5.C Analytical solution of the Euler–

Lagrange equations in case 1 at

high Reynolds number

Before writing the Euler–Lagrange equations, we recall the simplifications per-

taining to case 1. From lemma 5.B.1, we note that the optimal perturbations

depends only on the radial direction and that ṽr = ṽθ. Finally, noting that the

Lagrangian L in case 1 does not involve the pressure term, as we do not impose

the incompressibility condition, therefore the simplified Euler–Lagrange equations

(5.109a-d) in case 1 are given by

(2 − a)

Re

(
d2ṽr
dr2

+
1

r

dṽr
dr

− ṽr
r2

)
− ṽr

(
dUθ
dr

− Uθ
r

)
= 0, (5.115a)

− 1

(2 − a)Re

(
r
d2Uθ
dr2

+
dUθ
dr

− Uθ
r

)
+

1

r

d(r2ṽ2
r)

dr
= 0, (5.115b)

(a− 1)

(2 − a)2Re

(
‖∇U‖2

2 − ‖∇ulam‖2
2

)
+

1

Re
‖∇ṽ‖2

2 +
∫

V
ṽ · ∇U · ṽ dx = 0. (5.115c)

These equations need to be solved with boundary conditions

Uθ = 1, ṽr = 0 at r = ri, (5.116a)

Uθ = 0, ṽr = 0 at r = ro. (5.116b)

As ṽz does not enter into the computations, it can be taken to be zero; as such

ṽ here should be understood as (ṽr, ṽr, 0).

These equations can be solved using the method of matched asymptotics as

described below. We consider three different regions: the inner boundary layer,

the bulk and the outer boundary layer. We use the following scaled coordinates

181



for the inner and outer boundary layer, respectively:

si =
r − ri
δ

, so =
ro − r

δ
, (5.117)

where

δ =
1

Re
. (5.118)

We will use in, bulk and out in the superscript of the variables to indicate in which

region the variable is being considered. Before proceeding further, we make the

following change of variables

U =
Uθ
r
, ṽ = rṽr. (5.119)

Next, we write separate expansions for the variables in each of the three different

regions as

ṽin(si) = ṽin0 (si) + δ ṽin1 (si) + δ2 ṽin2 (si) + . . . , (5.120a)

ṽbulk(r) = ṽbulk0 (r) + δ ṽbulk1 (r) + δ2 ṽbulk2 (r) + . . . , (5.120b)

ṽin(so) = ṽout0 (so) + δ ṽout1 (so) + δ2 ṽout2 (so) + . . . . (5.120c)

A similar expansion can be written for U . Finally, we also use a simple expansion

for the balance parameter

a = a0 + δa1 + δ2a2 + . . . . (5.121)

Substituting the change of variables (5.119) and the series expansions of these new
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variables in (5.115a-c), one can find out the leading order equations in different

regions which then need to be solved with the boundary conditions (5.116a-b) and

the following matching conditions

U in
0 (si → ∞) = U bulk

0 (r = ri), U bulk
0 (r = ro) = U out

0 (so → ∞), (5.122a)

ṽin0 (si → ∞) = ṽbulk0 (r = ri), ṽbulk0 (r = ro) = ṽout0 (so → ∞). (5.122b)

Upon solving the resultant set of equations, we find that the leading order term

in the background flow in the three different regions is given by

U in
θ =

r

ri

(
1 − 4

√
2

3
α tanh

(
αsi√

2

))
+O (δ) , (5.123a)

U bulk
θ =

rir

r2
i + r2

o

+O (δ) , (5.123b)

U out
θ =

r

ro

(
4
√

2

3
β tanh

(
βso√

2

))
+O (δ) , (5.123c)

whereas the perturbed flow field is given by

ṽinr = ṽinθ =
αri
r

tanh

(
αsi√

2

)
+O (δ) , (5.124a)

ṽoutr = ṽoutθ =
βro
r

tanh

(
βso√

2

)
+O (δ) , (5.124b)

ṽbulkr = ṽbulkθ =

(
3rir

2
o

4
√

2(r2
i + r2

o)

)
1

r
+O (δ) , (5.124c)

where α and β depend on η and are given by

α =
3

4
√

2

1

1 + η2
, β =

3

4
√

2

η

1 + η2
. (5.125)

The balance parameter takes the value a = 2/3+O(δ). This optimal value a = 2/3
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of the balance parameter, in the limit of large Re, is also observed numerically by

Ding and Marensi (2019) (and corresponds to 3/2 in their nondimensionalization)

as well as in case 2 and case 3 in our study. Using the expression of the background

flow (5.123a-c) in (5.105) and the relationships between different mean quantities

(5.19) and (5.24), the leading order term in the bound on the Nusselt number in

the limit of high Reynolds number (or equivalently high Taylor number), is given

by

Nuncb =
9

8

η3

(1 + η)2(1 + η2)2
Ta1/2. (5.126)

This bound is 2/3 of the bound (5.46) obtained using standard inequalities. This

improvement has also been confirmed from the numerical results.
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Chapter 6

Analytical bounds on the heat

transport in internally heated

convection

This chapter is based on the paper Kumar, Arslan, Fantuzzi, Craske and

Wynn(2022) published in the Journal of Fluid Mechanics, Volume 938, 10 May

2022, A26.

6.1 Introduction

Convection driven by buoyancy is abundant in geophysical and astrophysical

flows, from atmospheric convection driving ocean currents to solar convection

transporting heat in stars. The prototypical setup for studying these flows is

that of Rayleigh–Bénard convection, where flow in a layer of fluid is driven by

the temperature differential across the boundaries. In reality, convection in many

natural or engineering situations is at least partially driven by an internal heating

185



source. Examples include convection in the Earth’s mantle due to radiogenic

heat (Davies and Richards, 1992; Schubert et al., 2001; Mulyukova and Bercovici,

2020), convection in radiative planet atmospheres (Seager, 2010; Pierrehumbert,

2010; Guervilly et al., 2019), and engineering flows where exothermic chemical or

nuclear reactions drive the convection (Tran and Dinh, 2009). Gaining insights

into these physical and practical scenarios requires a thorough understanding of

internally heated (IH) convection, and yet studies in this direction are relatively

few.

Following the early investigations by Roberts (1967) and Tritton (1975), re-

search into IH convection has recently gained renewed momentum through com-

putational analysis (Goluskin and Spiegel, 2012; Goluskin, 2015; Goluskin and

van der Poel, 2016) and experiments (Lepot et al., 2018; Bouillaut et al., 2019; Li-

mare et al., 2019, 2021). However, a comprehensive understanding of flows driven

by internal heating is far from complete and the behaviour of such flows in the

limiting regime of extreme heating remains unknown.

Here, we probe this regime using rigorous upper bounding theory. Specifi-

cally, we bound the mean vertical convective heat flux in two configurations of

IH convection, one where the fluid is bounded between horizontal plates held at

the same temperature and one where the bottom plate is replaced by a perfect

insulator. These two configurations, which we refer to as IH1 and IH3 following

the terminology introduced by Goluskin (2016), are illustrated schematically in

panels (a) and (b) of figure 6.1.

The mean vertical convective heat flux 〈wT 〉, where w and T are the nondimen-

sional vertical velocity and temperature and angled brackets denote space-time

averages, has a slightly different physical interpretation in the two configurations.

For the IH1 case, 〈wT 〉 is related to the asymmetry in the heat fluxes FT and FB
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(a) (b)

Figure 6.1: The two configurations considered in this paper. (a) IH1: Isothermal
boundaries, (b) IH3: Isothermal top boundary and insulating bottom boundary.
In both configurations the heating is uniform, so the non-dimensional thermal
source term is H = 1. Dashed lines show the temperature profiles in the pure con-
duction state, while solid lines sketch the temporally- and horizontally-averaged
temperature profiles in a typical turbulent state (also shown using the color plot).

through the top and the bottom boundaries. Specifically, space-time averaging the

dimensionless transport equation for temperature (see (6.6c) in §6.2) multiplied

by the wall-normal coordinate z yields

FT =
1

2
+ 〈wT 〉, FB =

1

2
− 〈wT 〉. (6.1)

In the purely conductive state, the heat generated inside the domain leaves equally

between the two boundaries, hence FT = FB = 1/2. In the convective state,

instead, the asymmetry of buoyancy combines with the uniform heat source to

create boundary layers with different characteristics near the top and bottom

boundaries, as illustrated in figure 6.1(a). The bottom boundary layer is stably

stratified, whereas the top boundary layer is unstably stratified. Convective heat

transport (〈wT 〉 > 0) makes the top boundary layer thinner than the bottom one,

so in any convective state one has FT > FB. Since the boundary temperature is

fixed and the fluid is internally heated, one also expects the boundary flux FB to

remain non-negative, meaning that heat can escape from the bottom boundary

but not enter through it. This fact can be proved rigorously (Goluskin and Spiegel,
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2012, Appendix A.1; Arslan et al., 2021b, Appendix A) and translates into the

following upper bounds on the vertical heat transport (Goluskin and Spiegel,

2012):

〈wT 〉 ≤ 1

2
in IH1. (6.2)

For the IH3 configuration, instead, the mean vertical flux 〈wT 〉 is related to the

difference of the horizontally-averaged temperature between the top T T and the

bottom wall TB. Indeed, upon multiplying the dimensionless evolution equation

for the temperature (see (6.6c) in §6.2) with the wall-normal coordinate z and

space-time averaging one obtains

〈wT 〉 = T T − TB +
1

2
. (6.3)

The isothermal boundary condition implies that the temperature TT at the top

boundary is in fact constant, so T T = TT , and we take it be zero without loss

of generality in our nondimensionalization. Since the nondimensional internal

heating rate is positive, one expects the mean bottom temperature TB to be non-

negative. As before, this fact can be proved rigorously and results in the upper

bound (Goluskin, 2016, Chapter 1)

〈wT 〉 ≤ 1

2
in IH3. (6.4)

For the IH1 configuration, Arslan et al. (2021b) recently proved that 〈wT 〉 ≤

2−21/5R1/5, where R is a nondimensional parameter that measures the strength

of the internal heating and may be interpreted as a Rayleigh number. This re-

sult, which is independent of the Prandtl number Pr, fails to improve the uni-

form bound in (6.2) for R > 216 = 65536. However, numerical evidence by the
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same authors suggests that an upper bound on 〈wT 〉 approaching 1/2 from below

monotonically as R is increased may be provable when the background method

by Doering & Constantin (Doering and Constantin, 1992, 1994, 1996; Constantin

and Doering, 1995) is augmented with a minimum principle stating that the fluid’s

temperature cannot be smaller than that the top boundary. Unfortunately, they

also provided a rather tantalizing proof that such a bound cannot be obtained

using typical analytical constructions.

In this paper we overcome this barrier and show that R-dependent bounds on

〈wT 〉 strictly smaller than 1/2 can be obtained analytically not only in the IH1

case, but also for the IH3 configuration. Precisely, we prove that

〈wT 〉 ≤ 1

2
− c1R

1
5 exp

(
−c2R

3
5

)
in IH1, (6.5a)

〈wT 〉 ≤ 1

2
− c3

R
1
5

exp
(
−c4R

3
5

)
in IH3, (6.5b)

where c1, c2, c3 and c4 are constants (independent of both R and Pr). To establish

these results, we formulate a bounding principle for 〈wT 〉 using the auxiliary func-

tional method (Chernyshenko et al., 2014; Fantuzzi et al., 2016; Tobasco et al.,

2018; Chernyshenko, 2022). This method is a generalization of the background

method of Doering and Constantin, which has successfully been applied to several

fluid dynamical problems (Doering and Constantin, 1992; Constantin and Doer-

ing, 1995; Doering and Constantin, 1996; Caulfield and Kerswell, 2001; Tang et al.,

2004; Whitehead and Doering, 2011b; Goluskin and Doering, 2016; Fantuzzi et al.,

2018; Fantuzzi, 2018; Kumar and Garaud, 2020; Kumar, 2020; Fan et al., 2021;

Arslan et al., 2021a,b; Kumar, 2022a). The auxiliary functional method, as im-

plemented in this paper, also has an equivalent formulation using the background

method.
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The novelty aspects in our arguments are the use of a background temperature

field with a lower boundary layer growing as z−1, motivated by the numerical

results by Arslan et al. (2021b), and the application of Hardy inequalities (IH1)

and Rellich inequalities (IH3). Such inequalities have already been employed to

prove bounds on convective flows at infinite Prandtl number (Doering et al., 2006;

Whitehead and Doering, 2011a) but, to the best of our knowledge, their use at

finite Prandtl number is new.

The rest of this work is organized as follows. We start by describing the prob-

lem setup in §2. In §3, we apply the auxiliary function method formulate upper

bounding principles for 〈wT 〉 in both IH1 and IH3 configurations. We then prove

the upper bound (6.5a) in §4 and the upper bound (6.5b) in §5. Finally, §6, dis-

cusses our method of proof, compares our results with available phenomenological

theories, and offers concluding remarks.

6.2 Problem setup

We consider the flow of a Newtonian fluid of density ρ, viscosity ν, thermal

diffusivity κ and specific heat capacity cp driven by buoyancy forces resulting from

internal heating. The fluid is confined between two horizontal no-slip plates with a

gap of width d and the heat is produced at a constant volumetric rate of H∗ (with

units W/m3 = kg/ms3). We consider the two configurations sketched in figure

6.1, one where both plates are kept at constant temperature T ∗
0 (IH1) and one

where the top plate is kept at a constant temperature T ∗
0 while the bottom plate

is insulating (IH3). We assume that the fluid properties are a weak function of the

temperature and use the Naiver–Stokes equations under the Boussinesq approx-

imation to model the problem. Various justifications have been put forward for
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the Boussinesq approximation; see, for example, Spiegel and Veronis (1960) and

Rajagopal et al. (1996). In their non-dimensional form, the governing equations

are

∇ · u = 0, (6.6a)

∂tu + u · ∇u + ∇p = Pr∇2u + PrRTez, (6.6b)

∂tT + u · ∇T = ∇
2T + 1, (6.6c)

where we have used the following non-dimensionalization for the variables:

x =
x∗

d
, t =

t∗

d2/κ
, u =

u∗

κ/d
, p =

p∗ − p0

ρκ2/d2
, T =

T ∗ − T ∗
0

d2H∗/(κρcp)
. (6.7)

Here, x, t, u, p and T denote the non-dimensional position, time, velocity, pressure

and temperature, respectively, whereas p0 is the dimensional hydrostatic ambient

pressure. The quantities with a star in superscript are dimensional. The non-

dimensional governing parameters of the flow are the Prandtl number and the

Rayleigh number, given by

Pr =
ν

κ
and R =

gαd5H∗

ρcpνκ2
, (6.8)

where α is the coefficient of thermal expansion. Our choice of nondimensionaliza-

tion implies that the heating source appears as a unit force in (6.6c).

We use the Cartesian coordinates x = (x, y, z) and place the origin of the

coordinate system at the bottom plate. The z-direction points vertically upward

and the x and y directions are horizontal. In this coordinate system, we write the

velocity vector as u = (u, v, w) where u, v and w are the velocity components in
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the x, y and z directions respectively. In this coordinate system, the boundary

conditions at the top and bottom plates for velocity and temperature can be

written as

u(x, y, 0, t) = u(x, y, 1, t) = 0, (6.9a)

T (x, y, 0, t) = T (x, y, 1, t) = 0 for IH1, (6.9b)

∂zT (x, y, 0, t) = T (x, y, 1, t) = 0 for IH3. (6.9c)

We further assume that the fluid layer is periodic in the horizontal directions

x and y with length Lx and Ly, meaning that the domain of interest is Ω =

T[0,Lx] × T[0,Ly ] × [0, 1].

Throughout the paper, spatial averages, long-time horizontal averages and

long-time volume averages will be denoted, respectively, by

−
∫

Ω
[ · ] dx =

1

LxLy

∫ 1

0

∫ Ly

0

∫ Lx

0
[ · ] dxdydz, (6.10a)

[ · ] = lim
τ→∞

1

τLxLy

∫ τ

0

∫ Ly

0

∫ Lx

0
[ · ] dxdydt, (6.10b)

〈[ · ]〉 = lim
τ→∞

1

τ

∫ τ

0
−
∫

Ω
[ · ] dxdt. (6.10c)

6.3 The auxiliary functional method

A bound on the mean vertical heat flux can be derived using the auxiliary

function method. The formulation of the method given here is very similar to the

one given by Arslan et al. (2021b) for isothermal boundaries, but we repeat it to

make the paper self-contained and highlight the changes required when the lower
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boundary is insulating.

Let V{u, T} be a functional that is uniformly bounded in time along solutions

u(t) and T (t) of the governing equations (6.6a-c). Further, let L{u, T} be the Lie

derivative of V{u, T}, meaning a functional such that

L{u(t), T (t)} =
d

dt
V{u(t), T (t)} (6.11)

when u(t) and T (t) solve the governing equations. Then, a simple calculation

shows that the long-time average of L{u(t), T (t)} vanishes and, given any constant

B, we can rewrite the mean vertical heat flux as

〈wT 〉 = lim
τ→∞

1

τ

∫ τ

0

[
−
∫

Ω
wT dx + L{u(t), T (t)}

]
dt,

= B + lim
τ→∞

1

τ

∫ τ

0

[
−
∫

Ω
wT dx + L{u(t), T (t)} −B

]
dt. (6.12)

If the functional V can be chosen such that

S∗{u, T} := −
∫

Ω
wT dx + L{u, T} −B ≤ 0 (6.13)

for any solution of the governing equations, then it follows that 〈wT 〉 ≤ B. Of

course, it is intractable to impose (6.13) only over the set of solutions of the

governing equation, because they are not known explicitly. However, to obtain

a (possibly conservative) bound it suffices to enforce the stronger condition that

(6.13) holds for all pairs of divergence-free velocity fields u and temperature fields

T that satisfy the boundary conditions (6.9a-c).
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Following Arslan et al. (2021b), we choose the functional V to be

V{u, T} = −
∫

Ω

[
a

2PrR
|u|2 +

b

2
|T |2 − (ψ(z) + z − 1)T

]
dx, (6.14)

where the function ψ(z) and the nonnegative scalars a and b are to be optimised

to obtain the best possible bound. The profile [ψ(z) + z − 1]/b corresponds ex-

actly to the background temperature field. Differentiating this functional in time

along solutions of the governing equations, followed by standard integrations by

parts using the divergence-free and boundary conditions, yields an expression for

L{u, T} that can be substituted into (6.13) to obtain

S∗{u, T} = −
∫

Ω

[
a

R
|∇u|2 + b|∇T |2 − (a− ψ′)wT + (bz − ψ′)

∂T

∂z
+ ψ

]
dx

+ T (0) − T (1) + ψ(1)
∂T

∂z

∣∣∣∣∣
z=1

− (ψ(0) − 1)
∂T

∂z

∣∣∣∣∣
z=0

+B − 1

2
≥ 0. (6.15)

This inequality needs to be satisfied for all u and T satisfying (6.6a), (6.9a) and

either (6.9b) for IH1 or (6.9c) for IH3.

A crucial improvement to the best upper bound B implied by (6.15) can be

achieved by imposing the minimum principle, which says that T ≥ 0 at all times

if it is so initially, and that any negative component decays exponentially quickly

(Arslan et al., 2021b). We may therefore restrict the attention to nonnegative

temperature fields, thereby relaxing inequality (6.15). As explained by Arslan

et al. (2021b), the constraint can be enforced with the help of a nondecreasing

Lagrange multiplier function q(z) by adding the term

−
∫

Ω
q′(z)Tdx (6.16)
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to the right-hand side of (6.15). Integrating by parts and rearranging leads to the

weaker constraint

S{u, T} := S∗{u, T} + −
∫

Ω
q(z)

∂T

∂z
dx + q(0)T (0) − q(1)T (1) ≥ 0, (6.17)

and the best upper bound on 〈wT 〉 implied by this inequality is

〈wT 〉 ≤ inf
B,ψ(z),q(z),a,b

{
B : q(z) non-decreasing,

S{u, T} ≥ 0 ∀(u, T ) satisfying (6.6a) and (6.9)

}
.

(6.18)

Moreover, since no derivatives of the Lagrange multiplier q(z) appear in inequal-

ity (6.17), one can perform the optimization over nondecreasing Lagrange mul-

tipliers that are not necessarily differentiable everywhere and may even be dis-

continuous. A rigorous justification of this statement is given by Arslan et al.

(2021b).

To prove an explicit rigorous bound on 〈wT 〉, it is convenient to replace in-

equality (6.17) with a stronger condition that is more amenable to analytical

treatment. To achieve this, we introduce the following Fourier series decomposi-

tion of the variables in the x and y directions:




u(x)

T (x)


 =

∑

k∈K



ûk(z)

T̂k(z)


 e

ikxx+ikyy, (6.19)

where

K ≡
{

(kx, ky) =

(
2mπ

Lx
,
2nπ

Ly

) ∣∣∣∣∣ (m,n) ∈ Z
2

}
. (6.20)
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Since u and T in (6.19) are real-valued, the Fourier expansion coefficients satisfy

ŵ∗
k = ŵ−k and T̂ ∗

k = T̂−k for all k ∈ K, subject to the boundary conditions

ŵk(0) = ŵ′
k(0) = ŵk(1) = ŵ′

k(1) = 0, (6.21a)

T̂k(0) = T̂k(1) = 0, IH1, (6.21b)

T̂ ′
k(0) = T̂k(1) = 0, IH3. (6.21c)

Substituting (6.19) in (6.17), using the incompressiblity condition on u, ap-

plying the inequality of arithmetic and geometric means (AM–GM inequality),

and dropping positive terms in ûk and v̂k, we can estimate

S{u, T} ≥ S0{T̂0} +
∑

k 6=0

Sk{ŵk, T̂k}, (6.22)

where

S0{T̂0} :=
∫ 1

0

[
b|T̂ ′

0
|2 + (bz − ψ′ + q)T̂ ′

0
+ ψ

]
dz + (q(0) + 1)T̂0(0)

− (q(1) + 1)T̂0(1) + ψ(1)T̂ ′
0
(1) − (ψ(0) − 1)T̂ ′

0
(0) +B − 1

2
, (6.23)

and

Sk{ŵk, T̂k} :=
∫ 1

0

[
a

R

(
1

k2
|ŵ′′

k|2 + 2|ŵ′
k|2 + k2|ŵk|2

)

+b|T̂ ′
k|2 + bk2|T̂k|2 − (a− ψ′)ŵkT̂

∗
k

]
dz. (6.24)

In the last expression, k =
√
k2
x + k2

y.

To establish inequality (6.17), therefore, it suffices to check the nonnegativity

of the right-hand side of (6.22). As all the different Fourier modes ŵk and T̂k can

196



be chosen independently, this requires Sk{ŵk, T̂k} + S−k{ŵ−k, T̂−k} ≥ 0 for all

wavevectors k ∈ K, which in turn holds true if and only if Sk{Re{ŵk},Re{T̂k}} ≥

0 and Sk{Im{ŵk}, Im{T̂k}} ≥ 0 for all wavevectors k ∈ K. This, combined

with the fact that the real and imaginary parts of ŵk and T̂k can be chosen

independently, implies that we may take ŵk and T̂k to be real-valued without loss

of generality and impose

S0{T̂0} ≥ 0, (6.25a)

Sk{ŵk, T̂k} ≥ 0 ∀k ∈ K, k 6= 0. (6.25b)

From the nonnegativity condition on S0{T̂0}, it is possible to extract the bound

B explicitly. First of all, the nonnegativity of S0{T̂0} requires

ψ(0) = 1, ψ(1) = 0 for IH1, (6.26a)

q(0) = −1, ψ(1) = 0 for IH3, (6.26b)

otherwise it is possible to choose a profile T̂0(z) that is non-zero only near the

boundaries and for which S0{T̂0} ≤ 0. With these simplifications, one can write

S0{T̂0} =
∫ 1

0

[√
bT̂ ′

0
+

(bz − ψ′ + q)

2
√
b

]2

dz +B − 1

4b

∫ 1

0
(bz − ψ′ + q)2dz

+
∫ 1

0
ψ(z)dz − 1

2
. (6.27)

Therefore, S0{T̂0} is nonnegative if we choose B to cancel the negative and sign-

indefinite terms. After gathering (6.18), (6.19), (6.21), (6.25b) and (6.26) we
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conclude that

〈wT 〉 ≤ inf
a,b,ψ(z),q(z)

{
1

2
+

1

4b

∫ 1

0
(bz − ψ′ + q)2dz −

∫ 1

0
ψ(z)dz

}
, (6.28)

provided

q(z) is a nondecreasing function, (6.29a)

ψ(0) = 1, ψ(1) = 0 for IH1, (6.29b)

q(0) = −1, ψ(1) = 0 for IH3, (6.29c)

Sk{ŵk, T̂k} ≥ 0 ∀ŵk, T̂k : (6.21), ∀k 6= 0 (6.29d)

Explicit constructions for which the right-hand side of (6.28) is strictly less

than 1/2 at all Rayleigh numbers are given in §6.4 and §6.5 for the IH1 and

IH3 configurations, respectively. First, however, we summarize our proof strategy

to explain the intuition behind our constructions. From (6.28), we see that the

competition between the second term (which is always positive) and the third term

will decide if 〈wT 〉 can be less than 1/2 as long as we are able to enforce that

Sk{ŵk, T̂k} ≥ 0. For previous studies using the background method, the standard

approach has been to choose a profile ψ(z) that is linear in boundary layers near

the walls, whereas in the bulk region ψ(z) is chosen such that the sign indefinite

term in Sk is zero. Unfortunately, in the present case, for a profile of ψ(z) which

is linear in the boundary layers, we are unable to show that the magnitude of

the second term in (6.28) is smaller than the third term unless we violate the

constraint (6.25b). However, if we use a z−1 profile in ψ(z) in the outer layer of

a two-layer lower boundary layer we gain an extra factor of a logarithm in the
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integral of ψ. Such a boundary layer structure, along with the choice q(z) = ψ′(z)

in the bottom boundary layer to cancel the otherwise large contribution of this

layer to the quadratic term in (6.28), matches the numerically optimal profiles

computed by Arslan et al. (2021b, Fig. 7). This makes it possible to show that

sum of the last two terms in (6.28) is negative without violating Sk{ŵk, T̂k} ≥ 0.

To establish this nontrivial result we rely on the following Hardy and Rellich

inequalities, proofs of which are provided for completeness in Appendix 6.A.

Lemma 6.3.1 (Hardy inequality). Let f : [0,∞) → R be a function such that

f, f ′ ∈ L2(0,∞) and such that f(0) = 0. Then, for any ǫ > 0 and any α ≥ 0,

∫ α

0

|f |2
(z + ǫ)2

dz ≤ 4
∫ α

0
|f ′|2dz. (6.30)

Lemma 6.3.2 (Rellich inequality). Let f : [0,∞) → R be function such that

f, f ′, f ′′ ∈ L2(0,∞) and such that f(0) = f ′(0) = 0. Then, for any ǫ > 0 and any

α ≥ 0,

∫ α

0

|f |2
(z + ǫ)4

dz ≤ 16

9

∫ α

0
|f ′′|2dz. (6.31)

We now present detailed proofs of the main results. Our emphasis is on the

steps necessary to obtain an R-dependent bound on 〈wT 〉, and we do not attempt

to optimize the constants appearing in our estimates.
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6.4 Bound on heat flux in IH1 configuration

To prove the bound in (6.5a), we start by setting

ψ(z) =





1 − z
4σδ

0 ≤ z ≤ 2σδ,

σδ
z

2σδ ≤ z ≤ δ,

σ + a(z − δ) δ ≤ z ≤ 1 − γ,

(1 − z)σ+a(1−γ−δ)
γ

1 − γ ≤ z ≤ 1,

q(z) =





− 1
4σδ

0 ≤ z ≤ 2σδ,

−σδ
z2 2σδ ≤ z ≤ δ,

0 δ ≤ z ≤ 1.

(6.32)

These functions are sketched in figure 6.2. In the definition of ψ, the parameter δ

denotes the thickness of the boundary layer near the bottom plate. The parameter

σ is the value of ψ taken at the edge of lower boundary layer (z = δ). The

lower boundary layer itself is divided into two parts, an inner sublayer where

ψ is linear and an outer sublayer where ψ ∼ z−1. These sublayers meet at an

intermediate point (z = 2σδ) where both the value and slope of ψ are equal. The

inverse-z scaling of ψ in the outer part of the lower boundary layer is one of the

key ingredients in proving (6.5a). The linear inner sublayer, instead, is used to

satisfy the boundary condition ψ(0) = 1 from (6.29b). In the bulk of the layer

(δ ≤ z ≤ 1 − γ) we have ψ′ = a, so the indefinite sign term in (6.24) is zero.

Thus, we only need to control the indefinite sign term in the boundary layers.

The parameter γ is the thickness of the boundary layer near the upper boundary

in which the profile of ψ is linear.

The sole purpose behind the choice of the function q(z) is to ensure ψ′ − q = 0

in the lower boundary layer, thereby making the positive contribution from the

second term in the bound (6.28) small in this layer. All parameters are taken to
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(a) (b)

Figure 6.2: Sketch of the functions ψ(z) and q(z) from (6.32), used to obtain a
bound on the heat flux 〈wT 〉 in the IH1 configuration.

satisfy

a, b, σ, δ, γ ≤ 1 (6.33)

and this assumption will be implicit in the proof below.

The goal now is to adjust the free parameters a, b, σ, δ and γ such that the

spectral constraint (6.29d) is satisfied and, at the same time, the bound (6.28) is

as small as possible. We begin by estimating from above the second term in the

bound (6.28):

1

4b

∫ 1

0
(bz − ψ′ + q)2dz ≤ 1

2b

∫ 1

0
b2z2 dz +

1

2b
‖ψ′(z) − q(z)‖2

2

=
b

6
+

1

2b

∫ 1

δ
|ψ′(z) − q(z)|2 dz

≤ b

6
+

1

b

∫ 1

δ
|ψ′(z)|2 dz +

1

b

∫ 1

δ
|q(z)|2 dz

≤ b

6
+

(σ + a)2

bγ
+
a2

b

≤ b

6
+

2(σ + a)2

bγ
. (6.34)
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Next, we estimate from below the last term in the bound (6.28):

∫ 1

0
ψ dz =

3σδ

2
− σδ log(2σ) +

(2σ + a(1 − γ − δ))

2
+

(σ + a(1 − γ − δ))γ

2

≥ −σδ log(σ). (6.35)

Combining (6.34) and (6.35) with (6.28), we obtain

〈wT 〉 ≤ 1

2
+
b

6
+

2(σ + a)2

bγ
+ σδ log(σ). (6.36)

Assuming that

b

6
≤ −1

4
σδ log(σ),

2(σ + a)2

bγ
≤ −1

4
σδ log(σ), (6.37a,b)

which will be the case for the choices of a, b, σ, δ, γ made below, the right-hand

side of (6.36) can be further estimated from above to obtain

〈wT 〉 ≤ 1

2
+

1

2
σδ log(σ). (6.38)

We now shift our focus to the constraint (6.29d). Dropping the positive terms

proportional to |ŵk|2, |ŵ′′
k|2 and |T̂k|2, it is enough to verify that

S̃(ŵ, T̂ ) :=
∫ 1

0

[
2a

R
|ŵ′|2 + b|T̂ ′|2 − (a− ψ′)ŵT̂

]
dz ≥ 0. (6.39)

Here, ŵ and T̂ satisfy the boundary conditions

ŵ(0) = ŵ′(0) = T̂ (0) = 0, (6.40a)

ŵ(1) = ŵ′(1) = T̂ (1) = 0, (6.40b)

202



where ŵ′(0) = ŵ′(1) = 0 is a result of the no-slip boundary condition and the

incompressibility of the flow field. For brevity, we have dropped k from the

subscript. The positive terms we have dropped could be retained, at the expense of

a more complicated algebra, in order to improve various prefactors in the eventual

bounds. Since this is not our primary goal and the functional form of the bound

one obtains does not change, we work with the stronger constraint (6.39) to ease

the presentation.

Substituting the expression of ψ from (6.32) into (6.39) gives

S̃(ŵ, T̂ ) =
∫ 2σδ

0

[
2a

R
|ŵ′|2 + b|T̂ ′|2 −

(
a+

1

4σδ

)
ŵT̂

]
dz

+
∫ δ

2σδ

[
2a

R
|ŵ′|2 + b|T̂ ′|2 −

(
a+

σδ

z2

)
ŵT̂

]
dz

+
∫ 1

1−γ

[
2a

R
|ŵ′|2 + b|T̂ ′|2 −

(
σ + a(1 − δ)

γ

)
ŵT̂

]
dz. (6.41)

Since S̃(ŵ, T̂ ) ≥ S̃(|ŵ|, |T̂ |) with equality when w and T are nonnegative, we shall

assume without loss of generality that ŵ, T̂ ≥ 0. We further observe that, if

8aδ ≤ σ, (6.42)

then

9

2

σδ

(z + σδ)2
≥ a+

1

4σδ
when 0 ≤ z ≤ 2σδ,

9

2

σδ

(z + σδ)2
≥ a+

σδ

z2
when 2σδ ≤ z ≤ δ. (6.43)

Assuming that 8aδ ≤ σ, therefore, we can combine the first two terms in (6.41)
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to conclude

S̃(ŵ, T̂ ) ≥ S̃B(ŵ, T̂ ) + S̃T (ŵ, T̂ ) (6.44)

where

S̃B(ŵ, T̂ ) =
∫ δ

0

[
2a

R
|ŵ′|2 + b|T̂ ′|2 − 9

2

σδ

(z + σδ)2
ŵT̂

]
dz, (6.45a)

S̃T (ŵ, T̂ ) =
∫ 1

1−γ

[
2a

R
|ŵ′|2 + b|T̂ ′|2 − (σ + a)

γ
ŵT̂

]
dz. (6.45b)

Next, we derive conditions that ensure S̃B(ŵ, T̂ ) and S̃T (ŵ, T̂ ) are individually

nonnegative, thereby implying the nonnegativity of S̃(ŵ, T̂ ).

First, we deal with S̃T (ŵ, T̂ ). Using the boundary conditions (6.40b) along

with the fundamental theorem of calculus and the Cauchy–Schwarz inequality

leads to

|ŵ|2 ≤ (1 − z)
∫ 1

1−γ
|ŵ′|2dz, |T̂ |2 ≤ (1 − z)

∫ 1

1−γ
|T̂ ′|2dz. (6.46a,b)

Using (6.46a,b) in the expression (6.45b) of S̃T , along with the AM–GM inequality,

implies that S̃T ≥ 0 if

γ(σ + a) ≤ 4

√
2ab

R
. (6.47)

A condition for the nonnegativity of S̃B(ŵ, T̂ ), instead, can be derived using

the Hardy inequality given in Lemma 6.3.1. First, using the AM-GM inequality,
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we write

S̃B(ŵ, T̂ ) ≥
∫ δ

0

[
2a

R
|ŵ′|2 + b|T̂ ′|2 − 9

4

σδβ

(z + σδ)2
|ŵ|2 − 9

4

σδ

(z + σδ)2β
|T̂ |2

]
dz(6.48)

for some constant β > 0 to be specified later. Then, we can apply Lemma 6.3.1

to estimate

∫ δ

0

|ŵ|2
(z + σδ)2

dz ≤ 4
∫ δ

0
|ŵ′|2dz,

∫ δ

0

|T̂ |2
(z + σδ)2

dz ≤ 4
∫ δ

0
|T̂ ′|2dz. (6.49a,b)

Using (6.49a,b), (6.48), and choosing

β =

√
2a

bR
, (6.50)

we conclude that S̃B(ŵ, T̂ ) is nonnegative if

σδ ≤ 1

9

√
2ab

R
. (6.51)

Given (6.47) and (6.51), and the functional forms of (6.37a,b) with respect

to the variables, one can show that the bound (6.38) is optimized when a is

proportional to σ and δ is proportional to γ. For simplicity, therefore, we take

a = σ and δ = γ; we expect that different choices affect only the value of various

prefactors appearing in the final bound, but not its functional form or the powers

of R. With these additional simplifications, the constraints (6.47), (6.51) and
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(6.37a,b) are satisfied if we take

a = σ = exp
(
−2

8
5 3

8
5R

3
5

)
, (6.52a)

b = 2
7
5 3

6
5R

1
5 exp

(
−2

8
5 3

8
5R

3
5

)
, (6.52b)

δ = γ = 2
6
5 3− 7

5R− 2
5 . (6.52c)

These choices satisfy the inequalities (6.33) and (6.42) assumed in our derivation

provided that R ≥ 2
21
2 3− 7

2 ≈ 30.97. We therefore conclude from (6.38) that

〈wT 〉 ≤ 1

2
− 2

7
5 3

1
5R

1
5 exp

(
−2

8
5 3

8
5R

3
5

)
∀R ≥ 2

21
2 3− 7

2 . (6.53)

We end this section with two remarks. First, the scaling of the upper boundary

layer thickness given by (6.52c) is stronger (i.e. the boundary layer is thinner) than

the scalings γ ∼ R−1/4 and γ ∼ R−1/3 implied by classical (Malkus, 1954; Priest-

ley, 1954) and ultimate (Spiegel, 1963) scaling arguments for Rayleigh-Bérnard

convection, respectively (for further details see §3 in Arslan et al., 2021b). Second,

if instead of using the Hardy inequality in (6.45) we had used the Cauchy–Schwarz

and AM–GM inequalities, as we did in the upper boundary layer, then we would

have obtained the condition

−9

2
σδ
(

1

1 + σ
+ log

(
σ

1 + σ

))
≤ 1

2

√
2ab

R
, (6.54)

and therefore σδ log σ .
√
ab/R. This is worse than condition (6.51) by a factor

of log σ−1 and, as a result, no bound on 〈wT 〉 strictly smaller than 1/2 can be

obtained beyond a certain Rayleigh number.
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6.5 Bound on heat flux in IH3

We now prove the bound (6.5b) for the IH3 configuration. Similar to the

previous section, the key ingredients of the proof are (i) a profile of ψ propor-

tional to 1/z near the bottom boundary, and (ii) the use of a nonstandard Rellich

inequality.

We start by choosing the functions ψ(z) and q(z):

ψ(z) =





2
√
σδ − z 0 ≤ z ≤

√
σδ,

σδ
z

√
σδ ≤ z ≤ δ,

σ + a(z − δ) δ ≤ z ≤ 1 − γ,

(1 − z)σ+a(1−γ−δ)
γ

1 − γ ≤ z ≤ 1.

q(z) =





−1 0 ≤ z ≤
√
σδ,

−σδ
z2

√
σδ ≤ z ≤ δ,

0 δ ≤ z ≤ 1.

(6.55)

These choices are sketched in figure 6.3 and the parameters σ, δ and γ have the

same purpose as in the last section. The difference between these profiles and

those used for the IH1 configuration in §6.4 is in the bottom boundary layer

(0 ≤ z ≤ δ). Here, we require q(0) = −1 and at the same time want q − ψ′ = 0

in the lower boundary. To satisfy these requirements we take the linear boundary

sublayer of ψ near the bottom boundary (0 ≤ z ≤
√
σδ) to have slope equal to

−1. As before, in the outer part of bottom boundary layer (
√
σδ ≤ z ≤ δ), ψ

behaves like z−1 and matches smoothly with inner part up to the first derivative.

At the edge of the bottom boundary layer (z = δ), the value of ψ is σ. In the

proof below, we assume

a, b, σ, δ, γ ≤ 1 (6.56)
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(a) (b)

Figure 6.3: Sketch of the functions ψ(z) and q(z) from (6.55), used to obtain
bound on the heat flux 〈wT 〉 in the IH3 configuration.

Estimating the second term in the bound (6.28) from above gives

1

4b

∫ 1

0
(bz − ψ′ + q)2dz ≤ b

6
+

2(σ + a)2

bγ
, (6.57)

while the last term can be estimated from below as

∫ 1

0
ψ dz ≥ −1

2
σδ log

(
σ

δ

)
. (6.58)

Combining (6.57) and (6.58) with (6.28), we obtain

〈wT 〉 ≤ 1

2
+
b

6
+

2(σ + a)2

bγ
+

1

2
σδ log

(
σ

δ

)
. (6.59)

Finally, we assume that

b

6
≤ −1

8
σδ log

(
σ

δ

)
,

2(σ + a)2

bγ
≤ −1

8
σδ log

(
σ

δ

)
(6.60)

(these constraints will be verified later) and estimate the right-hand side of (6.59)

to arrive at the simpler bound

〈wT 〉 ≤ 1

2
+

1

4
σδ log

(
σ

δ

)
. (6.61)
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For this bound to be valid, we need to adjust the parameters a, b, δ, γ and σ

such that the spectral condition (6.29d) is satisfied. Dropping the positive terms

proportional to |ŵk|2, |ŵ′
k|2 and |T̂ ′

k|2, we will verify the stronger inequality

S̃(ŵ, T̂ ) :=
∫ 1

0

[
a

Rk2
|ŵ′′|2 + bk2|T̂ |2 − (a− ψ′)ŵT̂

]
dz ≥ 0 (6.62)

for all z-dependent functions ŵ and T̂ satisfying the boundary conditions

ŵ(0) = ŵ′(0) = T̂ ′(0) = 0, (6.63a)

ŵ(1) = ŵ′(1) = T̂ (1) = 0. (6.63b)

Again, we have dropped the subscript k to lighten the notation.

Using arguments similar to those used in §6.4 and noticing that if

8aδ ≤ σ (6.64)

then

9

2

σδ

(z +
√
σδ)2

≥ a+ 1 when 0 ≤ z ≤
√
σδ, (6.65)

9

2

σδ

(z +
√
σδ)2

≥ a+
σδ

z2
when

√
σδ ≤ z ≤ δ, (6.66)

we can write

S̃(ŵ, T̂ ) ≥ S̃B(ŵ, T̂ ) + S̃T (ŵ, T̂ ), (6.67)
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where

S̃B(ŵ, T̂ ) =
∫ δ

0

[
a

Rk2
|ŵ′′|2 + bk2|T̂ |2 − 9

2

σδ

(z +
√
σδ)2

ŵT̂

]
dz, (6.68a)

S̃T (ŵ, T̂ ) =
∫ 1

1−γ

[
a

Rk2
|ŵ′′|2 + bk2|T̂ |2 − (σ + a)

γ
ŵT̂

]
dz. (6.68b)

Finding a condition under which S̃T (ŵ, T̂ ) ≥ 0 is straightforward. Using the

fundamental theorem of calculus, the boundary conditions on ŵ and Cauchy–

Schwarz inequality, we obtain

|ŵ|2 ≤ 4(1 − z)3

9

∫ 1

1−γ
|ŵ′′|2dz. (6.69)

Then, substituting (6.69) in (6.68b) and using the AM-GM inequality shows that

S̃T (ŵ, T̂ ) is nonnegative as long as

(σ + a)γ ≤ 6

√
ab

R
. (6.70)

To show that S̃B(ŵ, T̂ ) is nonnegative, instead, we rely on the Rellich inequality

stated in Lemma 6.3.2. First, using the AM-GM inequality we estimate

S̃B(ŵ, T̂ ) ≥
∫ δ

0

[
a

Rk2
|ŵ′′|2 + bk2|T̂ |2 − 9

4

σδβ

(z +
√
σδ)4

|ŵ|2 − 9

4

σδ

β
|T̂ |2

]
dz, (6.71)

for a the positive constant β to be specified below. Next, using Lemma 6.3.2 we

obtain

∫ δ

0

|ŵ|2
(z +

√
σδ)4

dz ≤ 16

9

∫ δ

0
|ŵ′′|2dz. (6.72)
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Combining (6.72) in (6.71) and setting

β =
3

4k2

√
a

bR
(6.73)

we conclude that S̃B(ŵ, T̂ ) is nonnegative if

σδ ≤ 1

3

√
ab

R
. (6.74)

At this stage, all that remains is to choose values for a, b, δ, γ and σ such

that (6.60), (6.70) and (6.74) hold, at least for sufficiently large Rayleigh numbers,

while minimizing the right-hand side of (6.61). For the same reasons explained

at the end of §6.4, we simplify the algebra by choosing a = σ and δ = γ. Then,

optimizing the bound (6.61) subject to (6.70) and (6.74) leads to

a = σ =
2

4
5

3
3
5

1

R
2
5

exp
(
−2

14
5 3

2
5R

3
5

)
, (6.75a)

b =
2

12
5 3

1
5

R
1
5

exp
(
−2

14
5 3

2
5R

3
5

)
, (6.75b)

δ = γ =
2

4
5

3
3
5

1

R
2
5

. (6.75c)

These choices satisfy the constraints in(6.60) assumed in our proof for all R ≥

2
19
2 3− 3

2 ≈ 139.35. Thus, from (6.61) we obtain

〈wT 〉 ≤ 1

2
− 2

12
5

3
4
5

1

R
1
5

exp
(
−2

14
5 3

2
5R

3
5

)
∀R ≥ 2

19
2 3− 3

2 . (6.76)

It is interesting to note that only the boundary layer thicknesses δ and γ have the

same O(R− 2
5 ) scaling as for the IH1 configuration. The parameters σ, a, b and the

correction to 1/2 in the bound (6.76), instead, are all O(R
2
5 ) smaller than their

211



corresponding values for the IH1 case.

6.6 Discussion and concluding remarks

We considered the problem of uniform internally heated convection between

two parallel boundaries where either both the boundaries are held at the same

constant temperature (IH1 configuration) or the temperature at the top bound-

ary is fixed and the bottom boundary is insulating (IH3 configuration). For both

configurations we obtained rigorous R-dependent bounds on the heat flux using

the background method, which we formulated in terms of a quadratic auxiliary

function and augmented with a minimum principle that enables one to consider

only nonnegative temperature fields in the optimization problem for the bound.

In each configuration, we were able to prove that 〈wT 〉 < 1/2 with exponentially

decaying corrections. The two essential ingredients in our proofs were a bound-

ary layer with inverse-z scaling in the background field and the use of Hardy

and Rellich inequalities, which allow for a refined analysis of the spectral con-

straint compared to standard Cauchy–Schwarz inequalities. Without any of these

two components, the proof breaks down and it appears impossible to obtain R-

dependent corrections to the uniform 〈wT 〉 ≤ 1/2 at arbitrarily large Rayleigh

numbers.

The exponential rate at which our analytical bounds (6.53) and (6.76) ap-

proach 1/2 is not inconsistent with the numerically optimal bounds computed

by Arslan et al. (2021b) for the IH1 configuration. These numerical bounds also

approach 1/2 from below rapidly as R → ∞ and appear to do so faster than any

power law, suggesting that the best possible bounds provable with the background
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method may indeed have the functional form

〈wT 〉 ≤ 1

2
− c1R

α exp
(
−c2R

β
)

in IH1, (6.77a)

〈wT 〉 ≤ 1

2
− c3

Rα
exp

(
−c4R

β
)

in IH3 (6.77b)

for some positive exponents α, β and positive constants c1, c2, c3, c4. Unfortunately,

the limited range of Rayleigh numbers spanned by the available numerical results

does not permit a confident estimation of these parameters, so we cannot say

whether the exponents α = 1/5 and β = 3/5 of our analytical bounds are optimal

or not. Nevertheless, as illustrated in figure 6.4, the numerically optimal profiles

for the functions ψ(z) and q(z) computed by Arslan et al. (2021a) in the IH1 case

exhibit the same inverse-z behaviour in the outer part of the bottom boundary

layer as the suboptimal profiles used in our analysis. We expect the same to

be true for the IH3 configuration even though we have not optimized ψ and q

numerically in this case due to the computational challenges of accurately resolving

the nonsmooth bottom boundary layers, which our present analysis suggest will

be much thinner that those observed in the IH1 computations by Arslan et al.

(2021a). If the exponents α and β can be improved at all, such improvements

must come either from improved estimates, or from different choices for ψ and q

in other parts of the fluid layer.

In the case of IH3, if (6.77b) is the correct scaling of the optimal bound in

the framework of quadratic auxiliary functions, then we note that it will not be

trivial to prove the conjecture (Goluskin, 2016, p. 17)

〈wT 〉 ≤ 1

2
− C

R1/3
. (6.78)
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(a) (b)

Figure 6.4: Bottom boundary layer structure of the numerically optimal func-
tions ψ(z) and q(z) computed by Arslan et al. (2021b) for the IH1 configuration.
The results shown are for R = 2.67×105 but are typical of the behaviour observed
at all sufficiently large R values. The boundary layer in ψ(z) has an approxi-
mately linear inner sublayer (0 ≤ z / 0.001) followed by an outer sublayer where
ψ(z) ∼ z−1 (0.001 ≤ z / 0.002). The transition between the two is nonsmooth.
The optimal q approximately satisfies q(z) = ψ′(z) in the boundary layer. This
boundary layer structure is modelled similar to the analytical ψ and q sketched
in Figure 6.2.

It seems reasonable to expect that progress can be made by considering further

constraints derived from the governing equations, which go beyond the energy

balances encoded by the auxiliary function V in (6.14) and the minimum principle.

However, it is presently unclear if this can be done within an analytically tractable

framework.

For the IH3 configuration, moreover, any bound on 〈wT 〉 can be translated

into a bound on the Nusselt number—defined as the ratio of the mean total heat

flux to the conductive heat flux—via the identity

Nu =
1

1 − 2〈wT 〉 . (6.79)
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In particular, (6.76) implies

Nu ≤ 3
4
5

2
17
5

R
1
5 exp

(
2

14
5 3

2
5R

3
5

)
. (6.80)

The exponential growth of this bound is in stark contrast with the power-law

bounds available for Raleigh-Bénard convection, most of which can be obtained

with much simpler arguments that those used here for IH3.

In the case of IH1, we can compare our bound on 〈wT 〉 with 3D direct numer-

ical simulations by (Goluskin and van der Poel, 2016), which suggest

〈wT 〉 ∼ 1

2
− 0.8

R0.055
. (6.81)

Again, this slow power-law correction to the asymptotic value of 1/2 contrasts the

exponential behaviour of our bound (6.77a). It remains to be seen if this result

is truly overly conservative, as one may expect based on phenomenological argu-

ments (Arslan et al., 2021b), or if there exist solutions of the governing equations

(6.6) that saturate it. In that regard, there are two approaches generally used in

the Rayleigh–Bénard convection. The first one is the study of bulk properties of

steady-state solutions bifurcating from the pure conduction state has attracted

growing interest in recent years (Waleffe et al., 2015; Sondak et al., 2015; Miquel

et al., 2019; Wen et al., 2020, 2022; Kooloth et al., 2021; Motoki et al., 2021), and

it has been shown that they can transport more heat than turbulence (Wen et al.,

2022). The second one is the optimal wall-to-wall approach (Hassanzadeh et al.,

2014; Tobasco and Doering, 2017; Motoki et al., 2018b; Doering and Tobasco,

2019; Souza et al., 2020; Tobasco, 2022), which concerns designing incompressible

flows with a constraint on the kinetic energy or enstrophy that leads to optimal
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heat transfer. It would be interesting to conduct similar studies for the two cases

of internally heated convection studied in this work.
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Appendix 6.A Proof of Hardy and Rellich in-

equalities

6.A.1 Proof of the Hardy inequality in Lemma 6.3.1

Set f(z) = g(z)
√
z + ǫ for a suitable function g(z) satisfying g(0) = 0, and

estimate

|f ′|2 = (z + ǫ)|g′|2 +
(

1

2
g2
)′

+
1

4
(z + ǫ)−1|g|2

= (z + ǫ)|g′|2 +
(

1

2
g2
)′

+
1

4
(z + ǫ)−2|f |2

≥
(

1

2
g2
)′

+
1

4
(z + ǫ)−2|f |2. (6.82)
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Upon integrating this inequality in z from 0 to α and using the boundary condition

g(0) = 0, we find

∫ α

0
|f ′(z)|2 dz ≥ 1

2
g(α)2 +

1

4

∫ α

0
(z + ǫ)−2|f(z)|2 dz

≥ 1

4

∫ α

0
(z + ǫ)−2|f(z)|2 dz, (6.83)

which is the desired inequality.

6.A.2 Proof of the Rellich inequality in Lemma 6.3.2

Write f ′(z) =
√
z + ǫg(z) and f(z) = (z + ǫ)3/2h(z) for suitable functions g

and h satisfying g(0) = 0 = h(0). Then,

|f ′′|2 = (z + ǫ)|g′|2 +
g2

4(z + ǫ)
+
(

1

2
g2
)′

= (z + ǫ)|g′|2 +
|f ′|2

4(z + ǫ)2
+
(

1

2
g2
)′

≥ |f ′|2
4(z + ǫ)2

+
(

1

2
g2
)′

(6.84a)

and

|f ′|2 = (z + ǫ)3|h′|2 +
9

4
(z + ǫ)h2 + (z + ǫ)2

(
3

2
h2
)′

= (z + ǫ)3|h′|2 +
9

4

|f |2
(z + ǫ)2

+ (z + ǫ)2
(

3

2
h2
)′

≥ 9

4

|f |2
(z + ǫ)2

+ (z + ǫ)2
(

3

2
h2
)′

(6.84b)
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Combining (6.84b) and (6.84a) and then integrating in z from 0 to α yields

∫ α

0
|f ′′|2dz ≥

∫ α

0

9|f |2
16(z + ǫ)4

+
(

3

8
h2
)′

+
(

1

2
g2
)′

dz

=
∫ α

0

9|f |2
16(z + ǫ)4

dz +
3

8
h(α)2 +

1

2
g(α)2

≥
∫ α

0

9|f |2
16(z + ǫ)4

dz, (6.85)

which completes the proof. �
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Chapter 7

Three dimensional branching

pipe flows for optimal scalar

transport between walls

This chapter is based on the paper Kumar (2022b) (to be submitted soon). A

preprint is available at arXiv:2205.03367.

7.1 Introduction

7.1.1 Motivation

An important subdiscipline of thermal engineering is devoted to the design of

heat exchangers, ventilation systems, air-conditioning systems, refrigeration sys-

tems, boilers, and chemical reactors (Arora, 2000; Jakobsen, 2008; Thulukkanam,

2013; Alam and Kim, 2018). A fundamental challenge in this field is how to trans-

port heat from a hot surface to a cold surface by moving the fluid using actuators
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such as fans or pumps, which can advect heat at a quicker rate than pure conduc-

tion. For most practical purposes, one would of course like to do so in the most

economical way, minimizing the power supplied to the actuators. In the design of

the systems described above, we would therefore like to know the answers to the

following questions:

(A) What is the optimal heat transfer rate as a function of the power supplied?

(B) What is the corresponding placement of fans/pumps which maximizes the

heat transfer for a given amount of power supplied?

In this paper, we are able to provide a definitive answer to a mathematical ide-

alization of this problem and thus gain insight into possible practical engineering

solutions.

To model the problem mathematically, we use the forced Navier–Stokes equa-

tion to describe the flow of an incompressible fluid:

∂tu + u · ∇u = −∇p+ ν∆u + f in Ω,

where Ω is a bounded domain with smooth boundaries and ν is the viscosity of

the fluid. We assume that the fluid satisfies a no-slip boundary condition on the

surface, i.e., u|∂Ω = 0. In this mathematical formulation of the problem, the

question of interest now involves finding the optimal design for the force f that

maximizes the heat transfer with a given finite mean power supply P∗. Denoting

the volume average and the long-time volume average, respectively, as

−
∫

Ω
[ · ] dx =

1

|Ω|
∫

Ω
[ · ] dx and 〈[ · ]〉 = lim sup

τ→∞

1

τ

∫ τ

0
−
∫

Ω
[ · ] dxdt,

we can express the constraint on the mean power supply as 〈f · u〉 ≤ P∗.
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Assuming the velocity field stays smooth and the kinetic energy of flow stays

bounded in time, then the long-time spatial average of the energy equation leads

to

〈f · u〉 = ν〈|∇u|2〉.

Physically, this means that the work done by the force f to move the fluid is

eventually dissipated viscously. It also shows that instead fixing the power sup-

ply, one can equivalently impose a constraint on the enstrophy of the flow, i.e.,

〈|∇u|2〉 ≤ ν−1P∗.

The advantage of formulating the constraint in terms of the enstrophy is that

we can from here on ignore the momentum equation entirely. We can simply

ask, what is the flow u that maximizes the heat transfer, for a given bound on

the enstrophy (〈|∇u|2〉 ≤ ν−1P∗). Once that flow u is found, the corresponding

forcing f can then be computed from (7.1). Whether the optimal flow u obtained

in this manner is dynamically stable is a separate question that we will not address

in this paper.

Beyond the primary engineering motivation, the optimal heat transport prob-

lem considered in this paper is also inspired by two problems: (1) anomalous

dissipation in a passive scalar, (2) Rayleigh–Bénard convection. These problems,

and their relationship with the optimal transport problem investigated here, will

be discussed in section 7.5.

7.1.2 Problem setup

Although the problem discussed above is very general, we now focus on a

special case in the simplest possible geometry namely the transport of a passive

scalar T (which we refer to as temperature) by a flow field u between two parallel
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walls held at different constant values of T . We assume that the flow field u is

incompressible and satisfies no-slip boundary conditions at the walls, which in the

wall-normal coordinates are located at z = −H/2 and z = H/2, where H denotes

the distance between the walls. The temperature field evolves according to the

advection-diffusion equation

∂tT + u · ∇T − κ∆T = 0, (7.1)

and satisfies Dirichlet boundary conditions

T = TB at z = −H/2, T = TT at z = H/2. (7.2)

In (7.1), κ is the thermal diffusivity, and without loss of generality, we choose

TB > TT in (7.2). For simplicity, we consider the horizontal directions x and y

to be periodic with length lx and ly. The domain of interest is thus given by

Ω := Tlx × Tly × (−H/2, H/2).

For a given flow field u, we define the corresponding rate of heat transfer as

Q(u) :=

〈
uzT − κ

∂T

∂z

〉
= 〈uzT 〉 +

κ(TB − TT )

H
.

By performing the long-time horizontal average of equation (7.1), one can show

that Q(u) is equal to the heat flux at the top or the bottom boundary, hence the

definition. Furthermore, by multiplying (7.1) with T and performing the long-

time volume average, one can alternatively express the rate of heat transfer Q(u)

as

Q(u) =
κH

TB − TT
〈|∇T |2〉.
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The question of optimal heat transport described in the previous subsection

seeks to find the maximum possible value of Q over all incompressible flow fields

satisfying the no-slip boundary condition and the enstrophy constraint:

Qmax(P∗) := sup
u(t,x)

∇·u=0, u|∂Ω=0

〈|∇u|2〉≤ν−1P∗

Q(u).

Before we proceed further, we nondimensionalize the problem by making the

following transformations, respectively, for the position, time, velocity field, tem-

perature and the heat transfer:

x → Hx, t → H2

κ
t, u → κ

H
u,

T → (TB − TT )T + TT , Q → κ(TB − TT )

H
Q. (7.3)

We continue to denote the nondimensional horizontal periodic lengths with lx and

ly. After the rescaling (7.3), a single nondimensional parameter remains, namely

the nondimensional power given by

P = P
∗ H

4

νκ2

which can be increased by either increasing the dimensional power supply P∗

and the domain size H or by decreasing the thermal diffusivity κ and viscosity ν

of the fluid. After the nondimensionalization the enstrophy constraint becomes

〈|∇u|2〉 ≤ P.

As the problem of optimal heat transport can be considered both in two and
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three dimensions, let us define

Ω 2D := Tlx × (−1/2, 1/2), Ω 3D := Tlx × Tlx × (−1/2, 1/2). (7.4a-b)

In the introduction, Ω is used to mean either Ω2D or Ω3D except in places where

the distinction is required, in which case we will make the reference explicit. In

rest of the paper Ω will only mean Ω3D. Without loss of generality, we assume

that the aspect ratio of the domain satisfies lx ≤ ly. Next, we explicitly formulate

the steady and unsteady versions of the optimal heat transport problem.

Steady case

In the steady case, we seek

Qs
max(P) = sup

u∈L∞(Ω)
∇·u=0, u|∂Ω=0

−
∫

Ω
|∇u|2 dx≤P

Q(u) where Q(u) = −
∫

Ω
|∇T |2 dx, (7.5)

and T solves the steady advection-diffusion equation with Dirichlet boundary

conditions

u · ∇T − ∆T = 0,

T = 1 at z = −1/2, T = 0 at z = 1/2.





(7.6)

Unsteady case

In the unsteady case, we seek

Qu
max(P) = sup

u∈L∞([0,∞)×Ω)
∇·u=0, u|∂Ω=0

〈|∇u|2〉≤P

Q(u) where Q(u) = 〈|∇T |2〉, (7.7)
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and T solves the unsteady advection-diffusion equation with Dirichlet boundary

conditions

∂tT + u · ∇T − ∆T = 0,

T = T0 ∈ L2(Ω) at t = 0,

T = 1 at z = −1/2, T = 0 at z = 1/2 ∀ t ∈ (0,∞).





(7.8)

Remark 7.1.1. It is clear that for every P, we have the inequality Qs
max ≤ Qu

max.

Therefore, any upper bound on Qu
max provides an upper bound on Qs

max. Similarly,

any lower bound on Qs
max is also a lower bound on Qu

max.

Remark 7.1.2. The values of Qs
max and Qu

max for the three-dimensional problem

are larger than their corresponding values for the two-dimensional problem. This is

because any two-dimensional solution of the advection-diffusion equation is also a

solution in three dimensions by an extension that is invariant in the third direction.

Remark 7.1.3. In the unsteady case, the quantity Q(u) does not depend on the

initial condition T0 as long as this initial condition belongs to L2(Ω). Physically,

this means that the dependence of the solution T on the initial data is lost at long

times because of the presence of diffusion.

For both the steady and unsteady cases, in their two- and three-dimensional

versions, the questions of prime importance are:

(A) How do the maximum heat fluxes Qs
max and Qu

max scale with the input power

P for asymptotically large values of P?

(B) What does the structure of the flow fields that transfer heat “most effi-

ciently” look like?
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In this paper, we investigate these questions for the steady case only. The

unsteady case is also of great importance and will be considered in a future study.

7.1.3 Previous work and the present results

The problem of optimal heat transport between parallel walls, as described

above, was first introduced in the work of Hassanzadeh et al. (2014) whose moti-

vation was to improve previously known upper bounds on heat transfer in porous

medium convection (Doering and Constantin, 1998b) and Rayleigh–Bénard con-

vection (Doering and Constantin, 1996; Plasting and Kerswell, 2003; Whitehead

and Doering, 2011b; Wen et al., 2015). They studied the problem in two dimen-

sions, with stress-free boundary conditions. Using a combination of numerical

techniques and matched asymptotic analysis, they were able to establish distinct

upper bounds on the heat transport for fixed energy, as well as for fixed enstrophy.

Their initial investigation has since inspired several studies of optimal heat

transport between differentially heated plates (Tobasco and Doering, 2017; Mo-

toki et al., 2018b; Doering and Tobasco, 2019; Souza et al., 2020) and the slightly

different problem of optimal cooling of a fluid subjected to a given volumetric

heating (Marcotte et al., 2018; Iyer and Van, 2022; Tobasco, 2022). Of all these

studies, the three of particular interest to the current paper are (Tobasco and

Doering, 2017), (Motoki et al., 2018b) and (Doering and Tobasco, 2019). They all

investigate the same problem considered in this paper, i.e., optimal heat transport

between parallel boundaries by incompressible flows satisfying no-slip boundary

conditions with an enstrophy constraint. Doering and Tobasco (2019) derived an

upper bound on the maximum possible heat transfer, and showed that flows satis-

fying the required constraint cannot transport heat faster than a rate proportional
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to the enstrophy to the power of 1/3, i.e.,

Qu
max(P) ≤ C ′

P
1/3 for P ≥ C ′′, (7.9)

where C ′ is a universal constant but C ′′ depends on the aspect ratio. This upper

bound is valid both in two and three dimensions and applies to Qs
max(P) as well

(see Remark 7.1.1). The same bound had been proved before in the context of

Rayleigh–Bénard convection in at least three different ways: using the variational

principle of Howard (Howard, 1963; Busse, 1969), the background method of Do-

ering & Constantin (Doering and Constantin, 1996; Plasting and Kerswell, 2003)

and more recently by Seis (Seis, 2015).

Complementary to their upper bound, Tobasco and Doering (2017) and Do-

ering and Tobasco (2019) constructed two-dimensional steady branching flows

(in which the flow structures have increasingly fine scales as one approaches the

boundary, see figure 7.2b) and showed that the upper bound (7.9) could be at-

tained up to an unknown logarithmic correction. More specifically, they showed

P1/3

log4/3
P

. Qs
max(P).

Soon after the work of Tobasco and Doering (2017), Motoki et al. (2018b), through

a numerical optimization procedure, discovered complicated but rather beautiful

three-dimensional steady branching flows (depending on P) that appear to dis-

play a heat transfer rate Qs
max(P) ∼ P1/3.

In this paper, we rigorously prove the empirical results of Motoki et al. (2018b)

and show that P1/3 . Qs
max(P) by constructing three-dimensional steady branch-

ing pipe flows. Our main result is:
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Theorem 7.1.4 (Steady three-dimensional case). Let Ω be Ω 3D as defined in

(7.4a-b). Then there exists two positive constants P0 and C such that Qs
max, as

defined in (7.5), obeys the following lower bound:

CP
1/3 ≤ Qs

max(P)

for P0 ≤ P. The constants P0 and C depends on lx as follows:

P0(lx) =
1 + l2x
l2x

P
′
0, C(lx) =

l8/3
x

1 + l
8/3
x

C ′,

where P ′
0, C

′ > 0 are two universal constants.

Remark 7.1.5. Combining the result of Theorem 7.1.4 with the upper bound

(7.9) and Remark 7.1.1, we fully characterize the exact behavior of maximum

heat transfer in three dimensions. In particular, we have Qs
max ∼ P1/3 (as a result

Qu
max ∼ P1/3) in three dimensions. Whether Qs

max ∼ P1/3 in two dimensions as

well as an open problem (see Conjecture 7.1.9).

Remark 7.1.6. It is clear that if lx ≥ 1, then P0 and C are bounded from below

by two positive constants independent of lx. Therefore, assuming lx ≥ 1, i.e., for

sufficiently wide domains, we can also restate the above theorem where P0 and C

are two positive constants independent of any parameter.

Remark 7.1.7. We consider here a periodic setting in the x and y directions. As

the flows that we construct to prove the theorem have a compact support in space,

the theorem remains true if Ω is a closed box of size lx and ly with insulating and

no-slip side walls.
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7.1.4 Overview and philosophy of the proof

The variational principle

The proof of Theorem 7.1.4 relies on a variational principle for the heat trans-

fer derived by Doering and Tobasco (2019), which was inspired by the work in

homogenization theory such as of Avellaneda and Majda (1991); Fannjiang and

Papanicolaou (1994) about estimating the effective diffusivity in a random or pe-

riodic array of vortices. To state the result, we start by defining two admissible

sets:

As := L∞(Ω;R3) ∩H1
0 (Ω;R3), (7.10a)

X s := H1
0 (Ω). (7.10b)

For steady velocity fields, the variational principle associated with the maximiza-

tion of heat transfer can be stated as

Proposition 7.1.8 (Doering and Tobasco (2019)). For Qs
max given by (7.5), we

have

Qs
max(P) − 1 =

sup
u∈As

∇·u=0

sup
ξ∈X s

ξ 6≡0

(−
∫

Ω uzξ dx)2

−
∫

Ω |∇∆−1(u · ∇ξ)|2 dx + 1
P

−
∫

Ω |∇u|2 dx−
∫

Ω |∇ξ|2 dx
.(7.11)

In (7.11), ∆−1 denotes the inverse Laplacian operator in Ω corresponding to

the homogeneous Dirichlet boundary conditions. For completeness, we provide

a derivation of this variation principle in Appendix 7.B, which is adapted from

Doering and Tobasco (2019).

From the variational principles (7.11), we see that any choice of admissible
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(a) (b)

Figure 7.1: Panel (a) illustrates good and bad strategies to maximize term I
defined in (7.12a-c). In the good scenario, ξ is positive (indicated by red color)
where the flow is moving upward (positive z-direction) and is negative (blue color)
where the flow is moving downward. Therefore, uz and ξ are positively correlated.
This is not the case in the bad scenario. Panel (b) illustrates good and bad
strategies to minimize term II. In the good scenario, ∇ξ is perpendicular to u,
hence u · ∇ξ ≡ 0, i.e., ξ is constant along the streamlines and therefore the term
II zero. In the bad scenario, ∇ξ is parallel to u, so the term II is nonzero.

velocity field u and scalar field ξ provides a lower bound on the heat transfer.

Our goal, therefore, is to find a “good" flow field u (depending on P), and a

corresponding ξ, for which the dependence on P of the lower bound obtained

matches that of the theoretical upper bound (7.9), namely, P1/3.

We closely analyze each term involved in the right-hand side of (7.11). We

label them

I =
(

−
∫

Ω
uzξ dx

)2

, II = −
∫

Ω
|∇∆−1(u · ∇ξ)|2 dx,

III =
1

P
−
∫

Ω
|∇u|2 dx−

∫

Ω
|∇ξ|2 dx, (7.12a-c)

and henceforth refer to them as the transport term (I), the nonlocal term (II)

and the dissipation term (III), respectively.

In order to obtain a good lower bound, we would ideally like to choose u and

ξ to maximize the right-hand side of (7.11) as much as possible. This, in turn,

means we should aim to maximize I and minimize II and III.

To maximize I, we should choose a flow field u such that its z-component is
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“positively correlated” with the ξ field. Figure 7.1a shows examples of a good and

a bad scenario. To minimize II, we should choose u to be perpendicular to ∇ξ

in most of the domain, which can alternatively be stated as ξ should be constant

along the streamlines of the flow u. Figure 7.1b shows examples of a good and a

bad scenario.

Our aim at this point is to provide heuristic but compelling arguments why trial

velocity profiles such as (i) standard convection rolls and (ii) the two-dimensional

steady branching flows considered by Tobasco and Doering (2017); Doering and

Tobasco (2019) are not sufficient to prove Theorem 7.1.4. By diligently inspecting

the limitations of these trial flow fields, we are then naturally led to propose

three-dimensional branching pipe flows as the optimal solution.

Convection rolls

The first choice of a trial velocity profile u that comes to mind is the one

associated with planar convection rolls, as this is one of the simplest incompress-

ible flow fields capable of transporting heat by advection. Figure 7.2a shows the

streamlines of typical convection rolls. In the bulk region, far from the horizontal

walls, the flow either moves up or down. To maintain the incompressibility con-

straint, the flow must turn around in a boundary layer near the walls. We then

select a ξ field accordingly, in an attempt to maximize I and minimize II (see

figure 7.1).

The advantage of this configuration is that it is possible to restrict the region

where u·∇ξ is non-zero (which eventually contributes toward II) to the boundary

layer only. However, this choice turns out to be particularly bad with respect to

the term III. Indeed, assuming the flow velocity |u| ∼ 1 in the bulk region, then

we must have a “large” fluid velocity |u| ∼ ℓ/δ in the boundary layer because
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of the incompressibility condition, where ℓ is the width of a single convection

roll. Consequently, ∇u ∼ ℓ/δ2, which essentially becomes “very large" for small

boundary layer thickness δ. Performing a formal scaling analysis of each individual

terms in the variational principle (7.11) yields

Qs
max &

1

δ + 1
P

(
ℓ2

δ4 + 1
ℓ4

) .

The right-hand side is optimized by choosing δ ∼ P−3/11 and ℓ ∼ P−2/11, which

leads to

Qs
max & P

3/11.

This scaling recovers the result of Souza et al. (2020), who rigorously showed

that Qs(u) ∼ P3/11 for a particular choice of convective rolls, as well as the results

of Howard (1963); Doering and Constantin (1996) who found the same scaling in

the context of Rayleigh–Bénard convection. The exponent 3/11 is clearly less

than 1/3, suggesting that the convection rolls may not be the most efficient way

of transporting heat at high P.

Two-dimensional steady branching flows

One way to improve the heat transport is to consider a flow field with a branch-

ing structure, i.e., where the scale of flow patterns becomes smaller (possibly in a

self-similar manner) as one approaches the walls, an idea that goes back to Busse

(Busse, 1969). The branching ends after a finite number of steps N , which de-

pends on P. The idea behind the branching is to continue dividing the flow into

“multiple channels" as it moves towards the wall, which helps maintain the typical

magnitude of the velocity field to be order unity throughout the domain. Letting
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(a) (b)

Figure 7.2: Panel (a) shows the streamlines of a set of typical convective rolls.
Panel (b) shows the streamlines of a steady two dimensional branching flow. In
both figures, the streamlines have been overlayed with a ξ field according to the
good scenario described in figure 7.1a (i.e. ξ is positive whenever uz is positive,
and ξ is negative whenever uz is negative). The red color indicates a positive
value of ξ, whereas the blue color indicates a negative value. The dashed circles
in both figures show regions where u · ∇ξ is nonzero.

δbl be the vertical thickness of the last branching level (namely, the boundary

layer), then such branching flows have ∇u ∼ δ−1
bl in the boundary layer, which

is significantly smaller than ∇u ∼ δ−2
bl in the case of convection rolls. As a re-

sult, branching greatly helps minimize term III compared with a flow without

branching.

A replica of the two-dimensional steady branching flow structure constructed

by Tobasco and Doering (2017); Doering and Tobasco (2019) is shown in figure

7.2b and we have overlaid the streamlines with a ξ field according to the good

scenario shown in figure 7.1a. Branching in two dimensions requires some part of

the flow to fold back at every branching level. Although this solves the problem

regarding the size of term III, it creates a different topological issue. From figure

7.2b, it becomes clear that ∇ξ is parallel to u not just in the boundary layer but

also in the bulk at every branching level. A typical region is shown in the dashed
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circle in figure 7.2b. As a result, u·∇ξ is nonzero (which ultimately increases term

II) in a significant portion of the domain compared with the case of convection

rolls where this term was nonzero only in the boundary layer. Furthermore, there

does not appear to be a way around this topological obstruction by simply choosing

a different ξ field. This is because the streamlines of the flow u continually fold

back throughout the branching structure, from the bulk to the boundary layer,

(see figure 7.2b) and leaving only very few streamlines to continue towards the

boundary layer. It therefore appears that the ‘good’ strategy of figure 7.1a (which

chooses ξ positive wherever uz is positive), is not compatible with maintaining ξ

constant along streamlines (even in the bulk). In other words, it does not seem to

be possible to maximize I and minimize II at the same time in two dimensions.

However, it turns out the situation is still much better than the convection rolls

and a formal scaling analysis (see Doering and Tobasco, 2019) shows that

Qs
max &

1

ℓbl +
∫ 1−δbl

1
2

(ℓ′)2 dz + 1
P

(
1

ℓ2
bulk

+
∫ 1−δbl

1
2

1
ℓ2

dz + 1
ℓbl

)2 ,

where ℓbulk and ℓbl denote the horizontal width of a typical roll in the bulk region

and in the boundary layer region, respectively, while the function ℓ(z) captures

the change of the roll width as a function of the z coordinate. After optimizing

the unknown parameters (δbl, lbulk, lbl and l(z)), one can at best show

Qs
max &

P1/3

log4/3
P
,

which is result of Tobasco and Doering (2017); Doering and Tobasco (2019).

Whether there exists a two-dimensional steady flow that can overcome the

topological obstruction elaborated above to show P1/3 . Qs
max remains an open
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question. Based on the heuristic reasons given previously, we believe that there

are no such flows and therefore conjecture the following:

Conjecture 7.1.9 (Weak). Let Ω be Ω2D given by (7.4a-b). Then the heat transfer

defined in (7.5) obeys

Qs
max = o(P1/3)

for large P, where ‘o’ denotes the little-o.

The weak conjecture states that Qs
max is asymptotically smaller than P1/3

but does not identify the correct asymptotic scaling of Qs
max at large P. It

is reasonable to assume that the lower bound estimate of Tobasco and Doering

(2017); Doering and Tobasco (2019) could be sharp. We therefore also conjecture:

Conjecture 7.1.10 (Strong). Let Ω be Ω2D given by (7.4a-b). Then the heat

transfer defined in (7.5) obeys

Qs
max ∼ P1/3

log4/3
P
,

for large P.

We strongly believe that the weak conjecture is true but have somewhat less

confidence that the strong conjecture is also true.

Three-dimensional steady branching pipe flows

The novelty of this work comes from the realization that the topological ob-

struction discussed above can be overcome by taking advantage of the third di-

mension. Indeed, in three dimensions, it is possible to construct flows with a

branching structure that continues all the way to the wall without the need to
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(a)

(b) (c)

Figure 7.3: Illustration of the branching pipe flow. Panel (a): the parent con-
struct u. It consists of red and blue pipes which are the part of pipelines P up

and P down, respectively. In panel (a), arrows are used in some pipes to show the
direction of the flow. The reducer region of a pipe, in which the radius of the pipe
decreases by a factor of half to ensure that the velocity remains, is also shown
using a dashed circle. Panel (b): the branching skeleton. To build the main copy
uN away from the boundary layer, we place the appropriately dilated version of
the parent construct u along the skeleton up to N levels. Panel (c): the parent
construct ub, used in the boundary layer. In the construct ub, the flow from red
pipes turn back to blue pipes (shown in the pink color). A 2D cartoon of the
resultant pipe flow is shown in figure 7.4.
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fold back as in the two-dimensional case. Therefore, in three dimensions, it is

possible to construct a flow field u that has a branching structure that ensures

|u| ∼ 1 everywhere, and a scalar field ξ such that uz and ξ always have the same

sign and u · ∇ξ = 0 everywhere except in the boundary layer. The construction

of the flow field u is both self-similar, and has finite support, so it looks like a

branching pipe flow.

The parent construct used to generate the self-similar flow u and scalar field

ξ is shown in figure 7.3a. It consists of two different types of pipes, one in which

the flow moves up (shown in red), so we choose ξ positive in this region, and one

in which the flow moves down (shown in blue), so we choose ξ negative in this

region. By placing appropriately scaled copies of this parent construct along the

tree structure shown in figure 7.3b, we obtain the desired self-similar branching

flow field. The self-similar construction does not continue forever, however, it

truncates after a finite number of levels N that depends on the value of P. After

N branching levels, the flow finally folds back in the boundary layer, according

to the construct shown in figure 7.3c. This is the region where the hot and cold

pipelines finally merge and where u · ∇ξ is nonzero. A two-dimensional cartoon

projection of this three-dimensional branching pipe structure is shown in figure

7.4. This projection also illustrates the appearance of the topological obstruction

in two dimensions which informally can be expressed as “it is not possible to

build two branching channels, one hot (in which the flow moves up) and other

one cold (in which the flow moves down), in two-dimensions without having them

intersect.”

Using this choice of flow u and scalar field ξ, we demonstrate in section 7.3

that a formal scaling analysis of the various terms in the variational principle
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stated in Proposition (7.1.8) yields

Qs
max &

1

2−N + 4N

P

. (7.13)

The right-hand-side of this equation is optimized by choosing N = ⌈log2 P1/3⌉, so

we find that Qs
max & P1/3. Theorem 7.1.4 is the rigorous result of this statement,

which will be proved in the subsequent sections. The construction carried out in

this paper can thus be summarized in three steps.

• Step I: Creating the parent constructs (the building blocks)

The velocity fields from this step form the basis for the self-similar con-

struction in the second step. In this step, we construct (i) u (figure 7.3a),

which is used to build branching flow away from the boundary layer. (ii) ub

(figure 7.3c), which is used in the boundary layer to truncate the branching

structure.

• Step II: Construction of the main copy (a single tree)

In this step, we assemble the appropriately dilated copies of the parent

constructs from the previous step to build the flow field uN (a 2D cartoon is

shown in figure 7.4). Here, N denotes the number of branching levels which

depends on P. We also refer to this main copy as a single tree.

• Step III: Construction of the final flow field (a forest)

The flow field constructed in the last step is enough to capture the correct

dependence of Qs
max on P. However, to capture the correct dependence on

the domain length and width lx and ly, we build the final flow field u by

placing several copies of the tree side-by-side to fill the whole domain, which

then looks like a forest.
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Figure 7.4: shows a 2D cartoon of the main copy uN . The pipeline P up is shown
in red color and the pipeline P down is shown in blue color. In the blow-up figure
of a section of the pipeline, the graph of ξN is also shown. Notice is that ξN is
constant in the support of uN .

7.1.5 Organization of the paper

The rest of paper is organized as follows. In section 7.2, we introduce a few

notations and preliminaries that will be frequently used throughout the paper. In

section 7.3, we perform Step III of the construction and prove the main theorem.

We provide a detailed sketch of the parent constructs in section 7.4. We then

carry out Step I and Step II. We provide a proof of Proposition 7.3.2 (essential for

the analysis of the nonlocal term defined in (7.12a-c)) in section 7.A. We close by

discussing implications of our results in section 7.5. A few of the more cumbersome

but trivial calculations required to finish the proofs are carried out in appendices.
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7.2 Notation and preliminaries

The three domains we will be frequently using in this paper are: R
3, Ω and

D, where

Ω := Tlx × Tly × (−1/2, 1/2), D := R
2 × (−1/2, 1/2). (7.14a-b)

Here, for some l > 0, Tl := (R/lZ) and Tl is identified with [−l/2, l/2) in the

usual way. In the rest of this section, V will denote either of these three domains:

R
3, Ω and D, whereas Ṽ will denote either R

3 or D. Let x,x′ ∈ Ṽ , for which we

denote

x‖ := (x, y, 0), and |x − x′|‖ := |x‖ − x′
‖|, (7.15a-b)

where | · | denotes the Euclidean distance. Let S ⊆ V , we will use 1S to denote

the indicator function corresponding to the set S.

We define the support of a scalar or a vector-valued function f on V as

supp f := {x ∈ V | f(x) 6= 0}, (7.16)

and the support only in the z variable as

suppz f := {z ∈ R | (x, y, z) ∈ V, f(x, y, z) 6= 0}. (7.17)

For a given p ∈ R
3, we define a translation map T p : R3 → R

3 as T p(x) =

x+p. The inverse map is therefore denoted as T−p. Then, if f is a scalar function

or a vector-valued function on R
3, we define the corresponding translated function
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T pf as

(T pf)(x) = f(T−p(x)), where x ∈ R
3. (7.18)

Similarly, for a given θ ∈ [0, 2π], we define a rotation map ρθ : Ṽ → Ṽ ,

which performs a counterclockwise rotation in the xy-plane by an angle θ. We

denote the inverse map by ρ−θ. Then, if ζ is a scalar function on Ṽ , we define the

corresponding rotated scalar function ρθζ on Ṽ as

(ρθζ)(x) = ζ(ρ−θ(x)), where x ∈ Ṽ . (7.19)

Furthermore, if v is a vector-valued function defined on Ṽ , we define the corre-

sponding rotated vector-valued function ρθv on Ṽ as

(ρθv)(x) = ρθ (v(ρ−θ(x))) , where x ∈ Ṽ . (7.20)

Let us denote the σ−algebra of Borel sets by B(R3). Given a Radon measure

µ : B(R3) → R and a vector field u ∈ L1
loc(R

3;R3, µ), the set function ν : B(R3) →

R
3

ν := (νx, νy, νz) := (uxµ, uyµ, uzµ) (7.21)

is called a vector-valued Radon measure. In what follows, we will also use the

alternate notation ν = uµ. The Riesz’s theorem ensures that the space of vector-

valued Radon measure M is dual to the space of compactly supported continuous

vector fields Cc(R3;R3) (Giaquinta et al., 1998; Maggi, 2012). Given a function

f ∈ Cc(R
3) and ν ∈ M as defined in (7.21), the integration of f with respect to
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the measure ν is a vector in R
3 and is given by

∫

R3
f dν =

(∫

R3
fux dµ,

∫

R3
fuy dµ,

∫

R3
fuz dµ

)
, (7.22)

and the convolution is given by

(f ∗ ν)(x) =
∫

R3
f(x − x′) dν(x′). (7.23)

7.3 Step III of the construction: Proof of Theo-

rem 7.1.4

In this section, we begin by performing Step III of the construction of the full

flow field u and scalar function ξ. We assume the existence of main copies uN

and ξN with properties stated in the proposition below. Then we place several of

these copies together in Ω, to build the flow field u and scalar field ξ, which we

then use in the variational principle (7.11) to prove Theorem 7.1.4.

Proposition 7.3.1. For every positive integer N , there exist uN ∈ C∞
c (D;R3)

and ξN ∈ C∞
c (D) such that

(i) ∇ · uN ≡ 0,

(ii) supp uN ∪ supp ξN ⋐ (−1/2, 1/2) × (−1/2, 1/2) × (−1/2, 1/2),

(iii) suppz(uN ·∇ξN) ⋐ (1/2−c12
−N , 1/2−c22−N)∪(−1/2+c22

−N ,−1/2+c12−N),

(iv)
∥∥∥uN · ∇ξN

∥∥∥
L∞(D)

. 2N ,

(v)
∫
D |∇uN |2 dx +

∫
D |∇ξN |2 dx . 2N ,

(vi)
∫
D uN,z ξN dx ≥ c3 > 0,

Here, 0 < c2 < c1 < 1 and c3 are constants independent of N and uN,z is the

z-component of uN .
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Proof of Theorem 7.1.4. We construct u (and ξ) by appropriately placing several

horizontally scaled copies of uN (and ξN) from Proposition 7.3.1 side-by-side (see

below for details). Specifically, let nx and ny be two positive integers, then we

place nxny copies of uN (and ξN) in a two-dimensional rectangular horizontal

array. Then from the conditions on uN and ξN given in Proposition 7.3.1, we can

obtain estimates on the various terms in the expression (7.11) and show that the

desired lower bound on Qs
max, stated in Theorem 7.1.4.

More specifically, given nx, ny ∈ N, we define two lengths dx and dy as follows:

dx =
lx
nx

and dy =
ly
ny
.

Next, we define u : D → R
3 and ξ : D → R as

u

(
xdx − lx

2
+

2i− 1

2
dx, ydy − ly

2
+

2j − 1

2
dy, z

)
:= uN(x, y, z)

ξ

(
xdx − lx

2
+

2i− 1

2
dx, ydy − ly

2
+

2j − 1

2
dy, z

)
:= ξN(x, y, z)

for all i, j ∈ Z and (x, y, z) ∈ (−1/2, 1/2) × (−1/2, 1/2) × (−1/2, 1/2), otherwise,

u := 0 and ξ := 0. It is clear that u and ξ are lx − ly−periodic functions. It

is the identification of these lx − ly−periodic functions with functions on Ω =

Tlx × Tly × (−1/2, 1/2), which we continue to denote as u and ξ, that we use

throughout.

By construction, u ∈ C∞
c (Ω;R3) and ξ ∈ C∞

c (Ω) and therefore belongs to the

admissible sets As and X s defined in (7.10a) and (7.10b), respectively. Having

constructed these functions, we can now estimate the important terms in the
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variational formula (7.11). Let’s start with the following:

−
∫

Ω
|∇u|2 dx =

1

lxly

∫

Ω
|∇u|2 dx =

nxny
lxly

∫ − lx
2

+dx

− lx
2

∫ − ly
2

+dy

− ly
2

∫ 1
2

− 1
2

|∇u|2 dx

.
nxnydxdy

lxly min{d2
x, d

2
y, 1}

∫

D
|∇uN |2 dx .

nxnydxdy
lxly min{d2

x, d
2
y, 1}2N . (7.25)

Similarly, we have

−
∫

Ω
|∇ξ|2 dx .

nxnydxdy
lxly min{d2

x, d
2
y, 1}

∫

D
|∇ξN |2 dx .

nxnydxdy
lxly min{d2

x, d
2
y, 1}2N . (7.26)

and

−
∫

Ω
uzξ dx =

nxnydxdy
lxly

∫

D
uN,z ξN dx ≥ nxnydxdyc3

lxly
, (7.27)

Finally, we have

‖u · ∇ξ‖L∞(Ω) .
2N

min{dx, dy, 1} , (7.28)

with

suppz(u · ∇ξ) ⋐

(1/2 − c12
−N , 1/2 − c22

−N) ∪ (−1/2 + c22
−N ,−1/2 + c12

−N).(7.29)

Provided N ≥ 3, we obtain

−
∫

Ω
|∇∆−1 div(uξ)|2 dx .

1

2N min{d2
x, d

2
y, 1} , (7.30)

using the following proposition.
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Proposition 7.3.2. Let f ∈ L∞(Ω) such that suppz f ⊆ (1/2 − c1ε, 1/2 − c2ε) ∪

(−1/2 + c2ε,−1/2 + c1ε), where 0 < c2 < c1 < 1 and ε < 1/4 are three constants,

then we have

−
∫

Ω
|∇∆−1f |2 dx . ε3 ‖f‖2

L∞(Ω) . (7.31)

Proof of the Proposition 7.3.2 is provided in section 7.A.

At this point, we prescribe nx and ny. As stated in the introduction, we have

chosen lx ≤ ly without loss of generality. We divide the proof of the theorem into

two parts: (i) when lx ≥ 1, (ii) when lx < 1.

In the first case (lx ≥ 1), we choose

nx = ⌈lx⌉ and ny = ⌈ly⌉ , (7.32)

where ⌈ · ⌉ is the ceiling function. Then from the definitions of dx and dy, we have

1

2
≤ dx, dy ≤ 1. (7.33)

Noting this and using the estimates (7.25), (7.26), (7.27) and (7.28) in (7.11) gives

1

c5
1

2N + c6
4N

P

. Qmax(P), (7.34)

where c5 and c6 are two constants independent of any parameter. Choosing the

value of N as

N =

⌈
1

3
log2

c5P

2c6

⌉
, (7.35)
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we can show

P
1/3 . Qmax(P) (7.36)

provided

P &
2c6

c5

. (7.37)

In the second case, when lx < 1, we choose

nx = 1 and ny =

⌈
ly
lx

⌉
, (7.38)

then we have

dx = lx and
lx
2

≤ dy ≤ lx. (7.39)

The estimates (7.25), (7.26), (7.27) and (7.28) then imply

1

c7
1

2N l2x
+ c8

4N

Pl4x

. Qmax(P), (7.40)

for some positive constants c7 and c8 independent of any parameter. Now choosing

the following value of N

N =

⌈
1

3
log2

c7Pl2x
2c8

⌉
, (7.41)

we obtain

P
1/3l8/3

x . Qmax(P), (7.42)
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provided

P &
2c8

c7l2x
, (7.43)

which then completes the proof of the Theorem 7.1.4.

7.4 Construction of three-dimensional branch-

ing pipe flow: Step I and Step II

Having established that if Proposition 7.3.1 holds, then we can prove Theorem

7.1.4, we now turn to the more delicate question of how to prove Proposition 7.3.1.

In other words, the goal of this section is to perform Step I, which is to build the

parent constructs u, ub, ξ and ξb, followed by Step II, which is to create the main

copies uN and ξN . We start by giving a sketch of the parent copies and how to

assemble their dilated versions to create the main copies, which is then followed

by the actual construction in Step I and Step II.

7.4.1 An overivew of the construction

As the support of the velocity field uN looks like a pipe network (see figure

7.4) and the flow field itself is similar to flow in pipes, we use words such as pipe,

pipe network or pipeline for ease of exposition below.

The main copy uN consists of two “pipelines”: one in which the flow goes

upward (the positive z-direction) in a branching fashion, P up (shown in red in

figure 7.4) and one in which the flow goes downward (the negative z-direction),

again in a branching fashion, P down (shown in blue). The part of the pipelines
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P up and P down that resides in the parent construct u is also shown in red and

blue, in figure 7.3.

The volume flow rate through both of these pipelines is the same. In what

follows, we describe the pipeline design only for z ≥ 0 and simply use mirror

symmetry to construct the pipeline for z ≤ 0. In the parent construct, P up starts

from a center pipe, denoted by Pc in figure 7.3a. The center pipe goes up vertically,

until a first junction at z = 1/8, where it splits into four pipes going right (positive

x-direction) Pr, left (negative x-direction) Pl, front (positive y-direction) Pf and

back (negative y-direction) Pb. In plumbing terms, the junction of these pipes

would be known as a 5-way cross. The horizontal extent of these pipes is 1/4.

Near the junction, each of the four horizontal pipes has a radius equal to that

of Pc. Therefore, because of incompressibility condition, the speed of the flow

goes down by a factor of four as the flow enters from Pc to Pr, Pl, Pf and Pb.

However, away from the junction (midway), a constriction is added to reduce

the radii of these four pipes by a factor of half after which the speed of the flow

regains its original value (again because of incompressibility). In plumbing terms,

the region where the radius of the pipe decreases is known as a reducer. Finally,

these horizontal pipes bend upward up to a level z = 1/4. With this construction,

the pipeline P up near z = 1/4 consists of four pipes whose radius is half that of

the pipe Pc near z = 0 but all of them with same magnitude of velocity. We can

then continue the pipeline from z = 1/4 to z = 1/4+1/8 by adding four half-sized

copies of the original one. In a similar way, the pipeline can be further continued

up to any number of levels N .

The pipeline Pdown in which the flow goes down, consists of four pipes sur-

rounding Pc, each with radii equal to that of Pc. The speed of the flow in one of

these four pipes is 1/4 the speed of the flow in Pc, ensuring that the total volume
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flow going upward and downward are the same. The flow in these four pipes come

from the horizontally placed pipes that are similarly surrounding the pipes Pr, Pl,

Pf and Pb as shown in figure 7.3a. The radii of these horizontal pipes, similar to

the case of the previous pipeline, changes by a factor of two to ensure that the flow

velocity in the vertical pipes that they connect remains the same. Finally, before

bending in the upward direction, the horizontal pipes, in this pipeline, close their

distance to the horizontal pipes from pipeline P up to make sure that we can glue

a self-similar parent copy of half-the-size to continue the pipeline.

The self-similar continuation of both pipelines truncates after a fixed number

of levels N (depending on P). In the last level (closest to the wall), the two

pipelines merge, i.e., the flow from the pipeline P up goes to the pipeline P down.

This done by gluing an appropriately scaled parent construct ub as shown in figure

7.3c.

Once we have the main copy uN ready, we can select ξN . We choose ξN

(everywhere except in the boundary layers where the pipelines truncate) to be

such that its value is a positive constant ξ0 in the region where the pipeline P up

lies and is −ξ0 in the region where the pipeline P down lies and decays to zero

rapidly away from these pipelines (see figure 7.4). There are two advantages with

this choice:

(i) The quantity uN · ∇ξN is identically zero except in the last level of con-

struction where the branching structure truncates. Therefore, it is possible

to restrict the support of uN ·∇ξN to a thin horizontal layer close to the wall,

which helps in obtaining a good estimate on the nonlocal term in (7.12a-c).
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(ii) The transport term simplifies as follows.

∫
uN,z ξN dx ≈ ξ0

∫

P up

uN,z dx − ξ0

∫

P down

uN,z dx ≈ 2ξ0V0,

where V0 > 0 is the total flow (constant volume flux through any horizontal

section) going upward in pipeline P up or downward in pipeline P down. There

will be minor corrections in the region where the pipelines truncate, which

is why we use the approximate symbol.

In summary, we built two pipelines with a self-similar “tree-like” branching

structure. The first one, P up, is “hot” (as ξN is positive in that region) in which the

flow goes up and the second one, P down, is “cold” (as ξN is negative) and surrounds

(without touching) the hot pipeline P up. This type of “disentanglement” of the

hot pipeline from the cold one is possible in three dimensions but not in two

dimensions and is the main reason behind the proof of Theorem 7.1.4.

7.4.2 Step I: Construction of the parent copies

The purpose of this subsection is to build the parent constructs: u, ub and

the trial ξ-field: ξ, ξb. Let us define a few parameters that will be frequently used

in this section:

γ =
1

500
, λ =

1

100
, δ =

1

20
. (7.44)

These parameters can roughly be understood as follows. The parameter γ can be

thought of as the radius of pipes in which the flow field is supported, whereas λ is

the radius of pipes in which the ξ−field is supported and δ denotes the distance

between pipeline P up and P down in the parent copy u.

250



The flow field u and ub

To construct the flow field, the basic idea is to define an appropriate vector-

valued Radon measure supported on a set. This set is a collection of line segments

and rays, which, in a loose sense, form the skeleton of the pipelines whose sketch

is described in subsection 7.4.1. Most of the desired flow field will then be created

by regularizing the Radon measure using a convolution with a mollifier, except in

the reducer region of the pipelines. The flow field in the reducer region will be

designed separately with the help of an axisymmetric streamfuction.

We start by defining a few important points in R
3, which will be helpful in

creating the “skeleton” of the pipelines. We define

p1 := (0, 0, 0), p2 := (0, 0, 1/8), p3 := (1/4, 0, 1/8), p4 := (1/4, 0, 1/4),

and

q
i,j
1 := (δ, jδ, 0) , q

i,j
2 := (δ, jδ, 1/8 − iδ) , q

i,j
3 :=

(
1

4
+
iδ

2
, jδ, 1/8 − iδ

)
,

q
i,j
4 :=

(
1

4
+
iδ

2
,
jδ

2
, 1/8 − iδ

)
, q

i,j
5 :=

(
1

4
+
iδ

2
,
jδ

2
,

1

4

)
,

where i, j ∈ Z. Next, we define a family of points, obtained by horizontal rotation

of the points defined above. Let θ ∈ [0, 2π], we define

pk,θ := ρθ(pk) for k ∈ {1, 2, 3, 4};

q
i,j
k,θ := ρθ(q

i,j
k ) for k ∈ {1, 2, 3, 4, 5}. (7.45)

We recall that the transformation ρθ, defined in section 7.2, is a counterclockwise

horizontal rotation by an angle θ.
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We define two sets:

J := {−1, 1} and Θ :=
{

0,
π

2
, π,

3π

2

}
.

Before defining the appropriate vector-valued Radon measures, we set a few

notations. Given two points a1,a2 ∈ R
3, where a1 6= a2, we denote the line

segment whose end points are a1 and a2 as

a1a2 := {(1 − t)a1 + ta2| t ∈ [0, 1]}, (7.46)

whereas to denote the ray that starts at a1 and goes all the way up to infinity,

passing through the point a2 as

−−→a1a2 := {(1 − t)a1 + ta2| t ∈ [0,∞)}. (7.47)

For a given S ⊆ R
3 and ε > 0, we denote the ε−neighborhood of the set S by

Sε := {x ∈ R
3 | dist(x, S) ≤ ε}. (7.48)

Finally, H1 denotes the Hausdorff measure of dimension one.

Using Table 7.1, we now define a few vector-valued measures as

νu := ν0 + ν1 + ν2, (7.50a)

νd := ν3 + ν4 + ν5 + ν6 + ν7, (7.50b)

νb := ν0 + ν8 + ν9. (7.50c)

The measure νu will be used in constructing the upward moving part of the flow

252



ℓ0 := −−→p2p1 e0 := ez ν0 := e0H1xℓ0 (7.49a)

ℓ1,θ := p2,θ p3,θ e1,θ :=
1

4

p3,θ − p2,θ

|p3,θ − p2,θ|
ν1 :=

∑

θ∈Θ

e1,θH1xℓ1,θ (7.49b)

ℓ2,θ := −−−−−→p3,θ p4,θ e2,θ :=
ez

4
ν2 :=

∑

θ∈Θ

e2,θH1xℓ2,θ (7.49c)

ℓ3,θ :=
−−−−−→
q

1,1
2,θ q

0,1
1,θ e3,θ := −ez

4
ν3 :=

∑

θ∈Θ

e3,θH1xℓ3,θ (7.49d)

ℓ4,θ := q
−1,1
2,θ q

1,1
2,θ e4,θ := −ez

8
ν4 :=

∑

θ∈Θ

e4,θH1xℓ4,θ (7.49e)

ℓ i,j5,θ := q
i,j
2,θ q

i,j
3,θ e

i,j
5,θ :=

1

16

q
i,j
2,θ − q

i,j
3,θ

|qi,j2,θ − q
i,j
3,θ|

ν5 :=
∑

θ∈Θ

∑

i,j∈J
e
i,j
5,θH1x ℓ i,j5,θ (7.49f)

ℓ i,j6,θ := q
i,j
3,θ q

i,j
4,θ e

i,j
6,θ :=

1

16

q
i,j
3,θ − q

i,j
4,θ

|qi,j3,θ − q
i,j
4,θ|

ν6 :=
∑

θ∈Θ

∑

i,j∈J
e
i,j
6,θH1x ℓ i,j6,θ (7.49g)

ℓ i,j7,θ :=
−−−−−→
q
i,j
4,θ q

i,j
5,θ e

i,j
7,θ := −ez

16
ν7 :=

∑

θ∈Θ

∑

i,j∈J
e
i,j
7,θH1x ℓ i,j7,θ (7.49h)

ℓ8,θ :=
−−−−−→
q

0,1
2,θ q

0,1
1,θ e8,θ := −ez

4
ν8 :=

∑

θ∈Θ

e8,θH1xℓ8,θ (7.49i)

ℓ9,θ := p2 q
0,1
2,θ e9,θ :=

1

4

q
0,1
2,θ − p2

|q0,1
2,θ − p2|

ν9 :=
∑

θ∈Θ

e9,θH1x ℓ9,θ (7.49j)

Table 7.1: A few useful definitions: line segments or rays (column one), vectors
in R

3 (column two) and vector-valued measures (column three).

field u and νd will be used for constructing the downward moving part of the flow

field, whereas, νb will be useful in constructing the flow field ub. We also define a
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few useful sets as

Su := ℓ0 ∪
⋃

θ∈Θ

ℓ1,θ ∪ ℓ2,θ, (7.51a)

Sd :=
⋃

θ∈Θ


ℓ3,θ ∪ ℓ4,θ ∪

⋃

i,j∈J
ℓi,j5,θ ∪ ℓi,j6,θ ∪ ℓi,j7,θ


 , (7.51b)

S := Su ∪ Sd, (7.51c)

Sb := ℓ0 ∪
⋃

θ∈Θ

ℓ8,θ ∪ ℓ9,θ. (7.51d)

To regularize the measures, we define a family of mollifiers. Let ϕ ∈ C∞
c (R3)

be any radial bump function whose support lies in |x| ≤ 1, such as

ϕ(x) := ϕ(|x|), (7.52)

where ϕ : R → R is defined as

ϕ(r) :=





c exp
(

1
r2−1

)
if |r| < 1,

0 if |r| ≥ 1,

(7.53)

and c is chosen such that
∫
R3 ϕ(x) dx = 1. For any ε > 0, we then define a

standard mollifier as

ϕε(x) :=
1

ε3
ϕ
(

x

ε

)
. (7.54)

We use this definition of mollifier and the measures (7.50a-d) to define the velocity
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fields

uu
1 := ϕγ ∗ νu, uu

2 := ϕ γ
2

∗ νu,

ud
1 := ϕγ ∗ νd, ud

2 := ϕ γ
2

∗ νd,

ub := ϕγ ∗ νb.





(7.55a-e)

From the definition of ϕε in (7.54) and the definition of the velocity fields (7.55a-e),

we see that

supp uu
1 ∪ supp uu

2 ⊆ S u,γ, supp u d
1 ∪ supp u d

2 ⊆ S d,γ ,

supp ub ⊆ Sγb .





(7.56a-c)

Here, we added γ in the superscripts to mean γ-neighborhood of the sets (see

definition (7.48)). Also, from the definition (7.55a-e), we see that all the velocity

fields belong to L∞(R3;R3).

Our next task is to show that the velocity fields as defined in (7.55a-e) belong

to C∞(R3;R3) and are divergence free. We start with the following definition.

Definition 7.4.1 (Kirchhoff’s junction). Let p̂ ∈ R
3 be a point and êj ∈ R

3,

for j = 1 to n ∈ N, be different non-zero vectors. Also, let oj ∈ {−1, 1}, for

j ∈ {1, . . . n}, be n numbers. We say p̂ together with the set of pairs êj and oj

forms a Kirchhoff’s junction if

n∑

j=1

oj|êj| = 0. (7.57)

For every Kirchhoff’s junction defined above, we can associate a vector-valued

Radon measure ν̂. First define n rays emanating from p̂ as ℓ̂j := {yj(t) | t ∈

[0,∞)}, where yj : R → R
3 are curves which in the parametric form are given by
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yj(t) := p̂ + têj/|êj|, for t ∈ [0,∞). Consider the vector-valued Radon measures

supported on these rays as ν̂j := ojêjH1xℓ̂j. Using these measures, we define a

measure corresponding to the Kirchhoff’s junction as

ν̂ :=
n∑

j=1

ν̂j. (7.58)

Next, we state an important lemma.

Lemma 7.4.1. Let ψ ∈ C∞
c (R3) be a radially symmetric mollifier such that the

support of ψ lies in |x| ≤ ε, for some ε > 0. Assume that p̂ ∈ R
3 and a set of n

pairs, êj ∈ R
3 and oj ∈ {−1, 1}, for j = 1 to n ∈ N, forms a Kirchhoff’s junction.

Let ν̂ be the associated vector-valued Radon measure to this junction. Then the

velocity field given by û := ψ ∗ ν̂ belongs to C∞(R3;R3) and is divergence-free.

Proof of Lemma 7.4.1. By differentiating under the integral sign in the expression

of û, we immediately see that û ∈ C∞(R3;R3). Next, for any x0 ∈ R
3, the

following calculation holds

(∇ · û)(x0) =
n∑

j=1

oj

∫

R3
êj · ∇ψ(x0 − y) dH1xℓ̂j(y)

=
n∑

j=1

oj

∫ ∞

0
êj · ∇ψ(x0 − yj(tj)) dtj

= −
n∑

j=1

oj|êj|
∫ ∞

0

∂ψ(x0 − yj(tj))

∂tj
dtj

= −
n∑

j=1

oj|êj| ψ(x0 − yj(tj))
∣∣∣
∞
0

= ψ(p̂)
n∑

j=1

oj|êj|.

Finally, using the assumption of the Kirchhoff’s junction, implies ∇ · û ≡ 0.
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Corollary 7.4.1. Let ψ ∈ C∞
c (R3) be a radially symmetric mollifier such that the

support of ψ lies in |x| ≤ ε, for some ε > 0. Let p̂i ∈ R
3, where i ∈ {1, . . .m},

be m points which are part of m different Kirchhoff’s junctions and let ν̂i be the

vector-valued Radon measures associated to each of the Kirchhoff’s junction. Then

for the vector-valued Radon measure defined as ν

∧:=
∑m
i=1 ν̂i, the velocity field given

by u

∧:= ψ ∗ ν∧belongs to C∞(R3;R3) and is divergence-free.

Lemma 7.4.2. Let p̂1 and p̂2 be two different points in R
3. Let ℓ̂12 = p̂1p̂2

and ê12 = c(p̂2 − p̂1) for some c > 0. Then a vector-valued measure defined as

ν̂12 := ê12H1xℓ̂12 can also be written as ν̂12 = ν̂in+ ν̂out, where ν̂in = (−ê12)H1xℓ̂in,

ν̂out = ê12H1xℓ̂out, ℓ̂in = {p̂2 +te12 | t ∈ [0,∞)}, and ℓ̂out = {p̂1 +te12 | t ∈ [0,∞)}.

Proof of 7.4.2. We can write ν̂out = ν̂outxℓ̂12 + ν̂outxℓ̂in. Now ν̂outxℓ̂12 coincides

with ν̂12 in R
3, whereas ν̂in + ν̂outxℓ̂in is a zero measure, which then finishes the

proof.

A tedious verification shows that using Lemma 7.4.2, the vector-valued mea-

sures (7.50a-c) can be written as a sum of vector-valued measures associated with

different Kirchhoff’s junctions. Therefore, the velocity fields as defined in (7.55a-e)

belong to C∞(R3;R3) and are divergence free. Here, we write down the Kirchhoff’s

junctions such that the sum of associated vector-valued measures is νu:

Junction No. The point p̂ The set of pairs of êj and oj

1 p2

{
(ez, 1) ,

(
ex
4 , −1

)
,
(ey

4 , −1
)

,
(−ex

4 , −1
)

,
(−ey

4 , −1
)}

2 p3,0

{(
−ex

4
, 1
)
,
(

ez

4
,−1

)}

3 p3,π
2

{(
−ey

4
, 1
)
,
(

ez

4
,−1

)}

4 p3,π

{(
ex

4
, 1
)
,
(

ez

4
,−1

)}

5 p3, 3π
2

{(
ey

4
, 1
)
,
(

ez

4
,−1

)}
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It can be shown that a similar decomposition exists for the other three measures

defined in (7.50).

Patching up u1 and u2: Construction in the reducer region

To design the velocity field u, we need to patch the velocity fields u1 and

u2 by defining an appropriate velocity field in the reducer region. Therefore, at

this point, we shift our focus to designing velocity field in the reducer region.

We start by considering a simple example of one reducer, where we design such

a velocity field. Let’s define a function m : R → R as

m(r) :=
1

γ3

∫ ∞

−∞
ϕ

(√
x′2 + r2

γ

)
dx′, (7.59)

where ϕ is defined in (7.53). In what follows, we will use

̺ as a placeholder for
√
y2 + z2

in rest of the section. With these definitions in hand, we define two velocity fields

us,ue : R3 → R
3 as

us(x) := (ux,s, uy,s, uz,s) := (m(̺), 0, 0),

ue(x) := (ux,e, uy,e, uz,e) := (4m(2̺), 0, 0) for x ∈ R
3.

(7.60)

As ϕ has a compact support, therefore, us,ue ∈ L∞(R3,R3). The arguments given

in Appendix 7.D show that both of these velocity fields also belong to C∞(R3,R3).

Furthermore, it is clear that both the velocity fields are divergence free. Finally,
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one can verify that the volume flux through any plane parallel to the yz-plane is

same for both the velocity fields.

The task at hand is to come up with a divergence free velocity field uc such

that it coincides with us in the region x ≤ 0 and it coincides with ue in the region

γ ≤ x, and it belongs to L∞(R3;R3)∩C∞(R3,R3). To ensure the required velocity

field is divergence free, we work with streamfunctions. The strategy is to define

the velocity field in the reducer region (0 < x < γ) based on a streamfunction

which smoothly matches with streamfunction corresponding to the velocity field

us for x ≤ 0 and with streamfunction corresponding to the velocity field ue for

x ≥ γ. To pursue this idea, we define two functions Ψs,Ψe : R → R as

Ψs(r) :=
∫ |r|

0
r′m(r′) dr′, Ψe(r) := 4

∫ |r|

0
r′m(2r′) dr′.

Next, we define Ψc : R2 → R as

Ψc(x, r) := (1 − ηγ(x))Ψs(r) + ηγ(x)Ψe(r),

where ηε = η(x/ε) and η is a smooth cut-off function such that η ≡ 0 for x ≤ 0

and η ≡ 1 for x ≥ 1.

The function Ψc(x, r) may be understood as the axisymmetric streamfunction

of the desired velocity field. With the help of Ψc(x, r), we are ready to define the
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components of the velocity field that we wish to construct as

ux,c(x) := (1 − ηγ(x))m(̺) + 4m(2̺)ηγ(x)

uy,c(x) :=





y dηγ

dx
1
̺2 (Ψs(̺) − Ψe(̺)) if ̺ 6= 0,

0 if y, z = 0.

uz,c(x) :=





z dηγ

dx
1
̺2 (Ψs(̺) − Ψe(̺)) if ̺ 6= 0,

0 if y, z = 0.

where x ∈ R
3. The velocity field is then given by

uc := (ux,c, uy,c, uz,c). (7.61)

With this definition, we state the following lemma.

Lemma 7.4.3. Let the velocity field uc be as defined in (7.61). Then it coincides

with us when x ≤ 0 and with ue when γ ≤ x. Furthermore, uc ∈ L∞(R3;R3) ∩

C∞(R3;R3) and is divergence free with

supp uc ⊆ {(x, y, z) | y2 + z2 ≤ γ2}. (7.62)

Proof. With the definition of function m (7.59) and noting that Ψs(̺) = Ψe(̺)

when ̺ > γ, we obtain (7.62). It is clear by construction that uc coincides with us

when x ≤ 0 and with ue when γ ≤ x and therefore it is also infinite differentiable

in these regions. To see the infinite differentiability in the region 0 < x < γ, we

use Lemma 7.4.3 given in Appendix 7.D. Finally, as the velocity field uc is defined

based on a streamfunction, it is necessarily divergence-free.
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With this lemma in hand, we are ready to patch u1 and u2 using uc to con-

struct the velocity field u. For this purpose, we define a few points in R
3 as

s0 = (1/8, 0, 0), s
i,j
1 = (1/8, jδ,−iδ) for i, j ∈ J. (7.63)

We also define two velocity field as

uu
red :=

1

4
T s0uc, u d

red := − 1

16

∑

i,j∈J
T s

i,j
1 uc.

As a result of Lemma 7.4.3, the velocity fields

uu := uu
1 1{|x|,|y|≤1/8} + uu

2 1{|x|≥1/8+γ}∪{|y|≥1/8+γ} +
∑

θ∈Θ

ρθ uu
red1{1/8<x<1/8+γ},

u d := u d
1 1{|x|,|y|≤1/8} + u d

2 1{|x|≥1/8+γ}∪{|y|≥1/8+γ} +
∑

θ∈Θ

ρθ u d
red1{1/8<x<1/8+γ},

are uniformly bounded, infinitely differentiable, divergence free with supp uu ⊆

S u,γ and supp u d ⊆ S d,γ . Finally, we arrive at the definition of the parent con-

struct

u := uu + ub. (7.64)

Summarizing the properties of the parent constructs u and ub (from (7.55a-e)),

we have u,ub ∈ C∞(R3;R3) ∩L∞(R3;R3), both obeying ∇ · u ≡ 0 and ∇ · ub ≡ 0

with

supp u ⊆ S γ, supp ub ⊆ S γ
b . (7.65)
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Next, define a few points in R
3 as

τ θ :=

(
cos θ

4
,
sin θ

4
,−1

4

)
for θ ∈ Θ.

We now gather an important property of the parent constructs u and ub, which

is that the velocity fields defined as

ũ := u(x)1{z<1/4} +


∑

θ∈Θ

T τ θu(2x)


1{z≥1/4}, (7.66a)

ũb := u(x)1{z<1/4} +


∑

θ∈Θ

T τ θub(2x)


1{z≥1/4}, (7.66b)

ũr := u(x) 1z≥0 + (−ux(x, y,−z),−uy(x, y,−z), uz(x, y,−z)) 1z<0, (7.66c)

all belong to C∞(R3;R3). For example, let’s look at ũ. The infinite differen-

tiability away from z = 1/4 is clear by definition. However, the velocity fields u

and
∑

θ∈Θ

T τ θu(2x)

are identical when 7/32 < z < 9/32, which can be shown by writing down their

explicit expressions in this region. Therefore, ũ is infinitely differentiable at z =

1/4 as well. Similar arguments apply for ũb and ũr.

The scalar fields ξ and ξb

The construction of ξ and ξb is relatively simple but somewhat different from

that of u and ub. Recall from the detailed sketch given in section 7.4.1, we want to

create a scalar field ξ that is constant in the support of the velocity field u (with the

exception of the boundary layer). To that end, we first define a few sets consisting

of line segments and rays, which in a sense form the skeleton. This step is the
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same as in the previous subsection. We then consider a λ-neighborhood of this

skeleton for sufficiently small positive λ. Next, we mollify the indicator function

of this λ-neighborhood set. If the mollification parameter, which we choose to be

γ, is small compared with λ, we will have designed a smooth function supported

in tubes of radius λ + γ and constant in tubes of radius λ − γ enveloping the

skeleton. This strategy works everywhere except in the reducer region, where we

design the scalar field using a cut-off function similar to the case of the velocity

field. We now begin our construction.

In addition to (7.45), we define a few extra points in R
3 as

p5 := (0, 0, h), q6 := (δ, δ, h),

and a few rays

ℓ10 := −−−→p5 p1 , ℓ11,θ :=
−−−−−→
q6,θ q

0,1
1,θ ,

where q6,θ = ρθ(q6). Here, we choose

h :=
1

16
.

To complement (7.51), we also define

S̃ub := ℓ10, S̃db :=
⋃

θ∈Θ

ℓ11,θ.

Remember, we chose λ = 1/100 and γ = 1/500 (see (7.44)). Now using the
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definition of ε-neighborhood of a set (7.48), we define the following scalar fields:

ξ
u

1 := ϕγ ∗ 1Su,λ , ξ
d

1 := −ϕγ ∗ 1Sd,λ ,

ξ
u

2 := ϕγ/2 ∗ 1Su,λ/2 , ξ
d

2 := −ϕγ/2 ∗ 1Sd,λ/2 ,

ξ
u

b := ϕγ ∗ 1
S̃u,λ

b
, ξ

d

b := −ϕγ ∗ 1
S̃d,λ

b
,





(7.67a-f)

which belong to C∞(R3) as a result of the following lemma.

Lemma 7.4.4. Let f : R
3 → R be a locally integrable function and let ψ ∈

C∞
c (R3) be a radially symmetric mollifier such that the support of ψ lies in |x| ≤ ǫ.

Then the function given by g = ψ ∗ f belongs to C∞(R3).

Proof. By differentiating under the integral sign in the expression of g, one can

finish the proof.

From the definitions (7.67a-f), we notice

supp ξ
u

1 ∪ supp ξ
u

2 ⊆ Su, λ+γ, supp ξ
d

1 ∪ supp ξ
d

2 ⊆ Sd, λ+γ,

supp ξ
u

b ⊆ S̃u,λ+γ
b , supp ξ

d

b ⊆ S̃d,λ+γ
b .





(7.68a-d)

Moreover,

ξ
u

1 (x) = ξ
u

2 (x) = 1 when x ∈ Su,
λ−γ

2 ,

ξ
d

1 (x) = ξ
d

2 (x) = −1 when x ∈ Sd,
λ−γ

2

ξ
u

b (x) = 1 when x ∈ S̃u, λ−γ
b ,

ξ
d

b(x) = −1 when x ∈ S̃d, λ−γ
b .





(7.69a-d)
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Next, let’s define two scalar fields for the construction in the reducer region

ξ
u

red(x) := ξ
u

1 (x) (1 − ηγ(x− 1/8)) + ξ
u

2 (x) ηγ(x− 1/8) for x ∈ R
3,

ξ
d

red(x) := ξ
d

1 (x) (1 − ηγ(x− 1/8)) + ξ
d

2 (x) ηγ(x− 1/8) for x ∈ R
3.

We can use them to define

ξ
u

:= ξ
u

1 1{|x|,|y|≤1/8} + ξ
u

2 1{|x|,|y|≥1/8+γ} +
∑

θ∈Θ

ρθ ξ
u

red1{1/8<x<1/8+γ},

ξ
d

:= ξ
d

1 1{|x|,|y|≤1/8} + ξ
d

2 1{|x|,|y|≥1/8+γ} +
∑

θ∈Θ

ρθ ξ
d

red1{1/8<x<1/8+γ}.

It can be easily verified that ξ
u

is infinitely differentiable, that its support lies

in Su, λ+γ and that its value is 1 when x ∈ Su,
λ−γ

2 . Similarly, ξ
d

is infinitely

differentiable has a support that lies in Sd, λ+γ and its value is −1 when x ∈ Sd,
λ−γ

2 .

We finally define the parent copies for the scalar field as

ξ := ξ
u

+ ξ
d
, ξb := ξ

u

b + ξ
d

b . (7.72a-b)

In summary, ξ, ξb ∈ L∞(R3) ∩ C∞(R3), supp ξ ⊆ Su, λ+γ ∪ Sd, λ+γ and supp ξb ⊆

S̃u, λ+γ
b ∪ S̃d, λ+γ

b

Similar to the case of velocity field, an important outcome of our construction

is that scalar fields

ξ̃(x) := ξ(x) 1z<1/4 +
∑

θ∈Θ

T τ θ(ξ(2x)) 1z≥1/4, (7.73a)

ξ̃b(x) := ξ(x) 1z<1/4 +
∑

θ∈Θ

T τ θ(ξb(2x)) 1z≥1/4, (7.73b)

ξ̃r(x) := ξ(x) 1z≥0 + ξ(x, y,−z) 1z<0, (7.73c)
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all belong to C∞(R3).

Let’s now gather some of the important properties of the parent constructs of

the velocity field and the scalar field in the following proposition.

Proposition 7.4.2. In the definitions (7.64, 7.55a-e) and (7.72a-b) the two

velocity fields u,ub ∈ C∞(R3,R3) ∩ L∞(R3,R3) and the scalar fields ξ, ξb ∈

C∞(R3) ∩ L∞(R3) are such that the following statements are true.

(i) ∇ · u ≡ 0 and ∇ · ub ≡ 0,

(ii) supp u ∪ supp ξ ⊆ (−1/3, 1/3) × (−1/3, 1/3) × R,

(iii) supp ub ∪ supp ξb ⊆ (−1/3, 1/3) × (−1/3, 1/3) × (−∞, 1/4),

(iv) u · ∇ξ ≡ 0, while suppz(ub · ∇ξb) ⋐ (1/32, 5/64),

(v)
∫
R2

∫ 1/4
z=0 uzξ dx ≥ c3 > 0 and

∫
R2

∫ 1/8
z=0 ub,zξb dx ≥ 0.

Here, c3 is a positive constant independent of any parameter. Furthermore, the

velocity fields ũ, ũb, ũr as defined in (7.66) and the scalar fields ξ̃, ξ̃b, ξ̃r defined in

(7.73), respectively belong to C∞(R3,R3) and C∞(R3).

Proof of Proposition 7.4.2. We already proved all the points except (iv) and (v),

which we prove now.

We first focus on point (iv). We note that: (1) supp u = supp uu ∪ supp ud,

(2) supp uu ⊆ Su,γ ⊂ Su,
λ−γ

2 , (3) supp ud ⊆ Sd,γ ⊂ Sd,
λ−γ

2 . Furthermore, because

of our choices of δ, γ and λ, we see that Su,
λ−γ

2 ∩ Sd,
λ−γ

2 = ∅. Now, if x /∈

Su,
λ−γ

2 ∪ Sd,
λ−γ

2 , it clear that (u · ∇ξ)(x) = 0, as for this case x /∈ supp u. In the

next case, when x ∈ Su,
λ−γ

2 , we have ξ ≡ 1 which implies (u · ∇ξ)(x) = 0. In a

similar manner, one can show (u · ∇ξ)(x) = 0 when x ∈ Sd,
λ−γ

2 .

Next, we show that suppz ub · ∇ξb ⋐ (1/32, 5/64). We first note that

{z < h} ∩ supp ub ⊂ S̃u,λ−γ
b ∪ S̃d,λ−γ

b ,
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and that S̃u,λ−γ
b ∩ S̃d,λ−γ

b = ∅. For z < h, we proceed as in the last paragraph to

show (ub · ∇ξb)(x) = 0. When z > h+λ+ γ, from the definition of S̃ub and S̃du, we

see that ξb ≡ 0, therefore, (ub · ∇ξb)(x) = 0 in this region as well. To summarize,

suppz ub · ∇ξb ⊆ [h, h+ γ + λ] ⋐ (1/32, 5/64).

Now we move to point (v) of Proposition 7.4.2. From a straightforward calcu-

lation, we see that

∫

R3∩{0<z<1/4}
uzξ dx =

∫

(supp uu∪supp ud)∩{0<z<1/4}
uzξ dx

=
∫

supp uu∩{0<z<1/4}
uzξ dx +

∫

supp ud∩{0<z<1/4}
uzξ dx

=
∫

supp uu∩{0<z<1/4}
uuzξ dx +

∫

supp ud∩{0<z<1/4}
udzξ dx

=
∫

supp uu∩{0<z<1/4}
uuz dx −

∫

supp ud∩{0<z<1/4}
udz dx

=
∫

R3∩{0<z<1/4}
uuz dx −

∫

R3∩{0<z<1/4}
udz dx

=
1

4

∫

R2
uuz (·, 0) dxdy − 1

4

∫

R2
udz(·, 0) dxdy

= c3 > 0, (7.74)

where c3 is some constant. To obtain the fourth line, we used the fact that

ξ(x) = 1 when x ∈ supp uu and ξ(x) = −1 when x ∈ supp ud. To obtain the

sixth line, we used the fact that uu and ud are divergence-free and that their

support is bounded in the xy-plane, which in turn implies that the volume flux

through any horizontal section is the same, i.e.,

∫

R2
uuz (·, z) dxdy =

∫

R2
uuz (·, 0) dxdy and

∫

R2
udz(·, z) dxdy =

∫

R2
udz(·, 0) dxdy for any z.
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To show
∫

R3∩{0<z<1/4}
ub,zξb dx ≥ 0,

we simply note that ξb ≡ 0 when z ≥ h + λ + γ and for z < h + λ + γ, the

velocity ub is unidirectional (only the z-component is non-zero). Furthermore, in

this region, wherever ub,z > 0, we have ξb ≥ 0 and wherever ub,z < 0, we have

ξb ≤ 0.

7.4.3 Main copies uN and ξN : Proof of Proposition 7.3.1

Let’s begin with a few useful definitions. First, let

zi :=
1

2
− 1

2i+1
for i ∈ Z≥0,

mark the vertical positions of the interfaces of different layers, while the intervals

Zi := [zi−1, zi) for i ∈ N, (7.75)

denote the different layers. We define the set

F := {(1, 0), (−1, 0), (0, 1), (0,−1)}

which we use to define sets of nodal points as

Ni =



(x, y, zi)

∣∣∣∣∣∣
x =

|i|∑

j=1

αj
2j+1

, y =
|i|∑

j=1

βj
2j+1

, (αj, βj) ∈ F



 for i ∈ N. (7.76)

Proof of Proposition 7.3.1. For a given integer N ≥ 1, we need to construct a

velocity field uN and a scalar field ξN in the domain D such that they satisfy
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the properties specified in Proposition 7.3.1. To that end, we start by creating an

intermediate flow field uint,1 : R3 → R
3, whose support lies in z ≥ 0 and is defined

as follows:

uint,1(x) := u(x) 1Z1 +
N−1∑

i=1

∑

p∈Ni

T p(u(2ix))1Zi+1
+

∑

p∈NN

T p(ub(2
Nx)) 1ZN+1

for x ∈ R
3. (7.77)

To create uN , we glue uint,1 and its mirror reflection about z = 0. Let

uint,2(x) := (−ux,int,1(x, y,−z),−uy,int,1(x, y,−z), uz,int,1(x, y,−z)) 1z<0

for x ∈ R
3. (7.78)

Notice that the signs of x and y components are flipped to maintain the divergence-

free condition. We finally define uN as

uN(x) := uint,1(x) + uint,2(x). (7.79)

Note that supp uN ⋐ D and it is really the restriction of uN to D, which we

continue to call uN , that we use in the proof of Proposition 7.3.1. We then define

ξN in a similar way. First, we define an intermediate scalar field ξint,1 : R3 → R

as

ξint,1(x) := ξ(x) 1Z1 +
N−1∑

i=1

∑

p∈Ni

T p(ξ(2ix))1Zi+1
+

∑

p∈NN

T p(ξb(2
Nx)) 1ZN+1

for x ∈ R
3,
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and its reflection about z = 0 as

ξint,2(x) = ξint,1(x, y,−z)1z<0 for x ∈ R
3,

using which we define

ξN(x) := ξint,1(x) + ξint,2(x) for x ∈ R
3. (7.80)

As before, supp ξN ⋐ D and it is the restriction of ξN to D, which we continue

to denote as ξN , that we use in Proposition 7.3.1. We claim that the velocity

field uN and the scalar field ξN defined here satisfy all the requirements stated in

Proposition 7.3.1.

We first show that supp uN ⋐ (−1/2, 1/2)×(−1/2, 1/2)×(−zN+2, zN+2) ⋐ D.

It is clear from the definition of uN given in (7.79) along with (7.77), (7.78) and

the definition of Zi in (7.75) that if x̂ ∈ supp uN then

ẑ ∈ [−zN+1, zN+1] ⊂ (−zN+2, zN+2). (7.81)

Next from the statement (ii) in Proposition 7.4.2, we note that if x̂ ∈ supp u(2ix)

then

x̂, ŷ ∈
(

− 1

3 · 2i
,

1

3 · 2i

)
.

Also, note that if p ∈ Ni for i ∈ N, then

|px|, |py| ≤ 1

2
− 1

2i−1
,

Combining these two pieces of information tells us that if x̂ ∈ supp T pu(2ix)
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then

x̂, ŷ ∈
(

−1

2
+

1

3 · 2i
,

1

2
− 1

3 · 2i

)
⊂
(

−1

2
,

1

2

)
. (7.82)

Finally, combining (7.81) and (7.82) with the definition (7.79) gives

supp uN ⋐ (−1/2, 1/2) × (−1/2, 1/2) × (−zN+2, zN+2) ⋐ D. (7.83)

We now show that uN is infinitely differentiable, which together with (7.83)

will imply uN ∈ C∞
c (D;R3). Let’s first define two sets

Λ :=


 ⋃

0≤i≤N−1

(zi, zi+1)


 ∪


 ⋃

0≤i≤N−1

(−zi+1,−zi)

 ∪ (zN , 1/2) ∪ (−1/2,−zN ),

Γ := {z0, z1,−z1, . . . zN ,−zN}.

It is easy to see from (7.77), (7.78), (7.79) and from the infinite differentiability

of u and ub in Proposition 7.4.2 that uN(x) is infinitely differentiable when z ∈

Λ. Therefore, the only thing we still need to show is that uN(x) is infinitely

differentiable when z ∈ Γ, i.e., at the interfaces.

The fact ũr in Proposition 7.4.2 belongs to C∞(R3,R3) and uN coincides with

ũr when z ∈ (−z1, z1), implies uN(x) is infinite differentiable when z = z0. Now

if x is such that z ∈ (z0, z2) then uN(x) coincides with ũb(x) when N = 1 or it

coincides with ũ(x) whenN > 1, which then concludes the infinite differentiability

of uN at z = z1. A similar argument can be applied to conclude the infinite

differentiability at z = −z1. In the last case, when N > 1 and i ∈ {2, . . . N − 1},
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then one can show

uN(x) =
∑

p∈Ni−1

T p(u(2i−1x))1Zi
+
∑

p∈Ni

T p(u(2ix))1Zi+1

=
∑

p∈Ni−1

T p




u +

∑

p′∈N1

T p′

u


 (2i−1x)




=
∑

p∈Ni−1

T p(ũ(2i−1x)) when x ∈ (zi−1, zi+1),

or when i = N , then

uN(x) =
∑

p∈Ni−1

T p(ũb(2
i−1x)) when x ∈ (zi−1, zi+1),

which then establishes that uN(x) is infinitely differentiable when z = zi for

2 ≤ i ≤ N . A similar argument applies when z = −zi for 2 ≤ i ≤ N , which

finishes the proof of uN ∈ C∞
c (D;R3). We note similar arguments will also work

to show ξN ∈ C∞
c (D).

It is now fairly easy prove (i) in Proposition 7.3.1. It is trivial to see that

∇·uN = 0 when z ∈ Λ. As uN ∈ C∞
c (D;R3), the derivatives of uN are continuous

in D, which leads us to conclude that ∇ · uN = 0 everywhere in D.

Next, we see that (7.83) and a similar conclusion derived for ξN proves (ii) in

Proposition 7.3.1.

To prove (iii) in Proposition 7.3.1, we need the following simple lemma.

Lemma 7.4.5. For i ∈ N, let p1,p2 ∈ Ni such that p1 6= p2, then

(
suppT p1u(2ix) ∪ suppT p1ξ(2ix)

)⋂(
suppT p2u(2ix) ∪ suppT p2ξ(2ix)

)
= ∅,

(
suppT p1ub(2

ix) ∪ suppT p1ξb(2
ix)

)⋂(
suppT p2ub(2

ix) ∪ suppT p2ξb(2
ix)

)
= ∅.
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Proof of Lemma 7.4.5. As p1 6= p2, from the definition (7.76) of Ni , we note the

following lower bound on the absolute difference of x and y coordinates of p1 and

p2:

|p1,x − p2,x| ≥ 1

2i
and |p1,y − p2,y| ≥ 1

2i
,

which implies

|p1 − p2|‖ ≥
√

2

2i
.

Now, if x1 ∈
(
suppT p1u(2ix) ∪ suppT p1ξ(2ix)

)

or x1 ∈
(
suppT p1ub(2

ix) ∪ suppT p1ξb(2
ix)

)
and if

x2 ∈
(
suppT p2u(2ix) ∪ suppT p2ξ(2ix)

)
or x2 ∈

(
suppT p2ub(2

ix) ∪ suppT p2ξb(2
ix)

)
, then using the statements (ii) and

(iii) from Proposition 7.4.2, we see that

|x1 − p1|‖ ≤
√

2

3 · 2i
and |x2 − p2|‖ ≤

√
2

3 · 2i
.

We can now finish the proof with a simple application of the triangle inequality

as

|x1 − x2| ≥ |p1 − p2|‖ − |x1 − p1|‖ − |x2 − p2|‖ ≥
√

2

3 · 2i
.
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Using the lemma, we can write

(uint,1 · ∇ξint,1)(x) = u(x) · ∇ξ(x) 1Z1 +
N−1∑

i=1

∑

p∈Ni

T p(u(2ix)) · ∇T p(ξ(2ix))1Zi+1

+
∑

p∈NN

T p(ub(2
Nx)) · ∇T p(ξb(2

Nx)) 1ZN+1
for z ∈ Λ,

which implies

(uint,1 · ∇ξint,1)(x) = u(x) · ∇ξ(x) 1Z1 +
N−1∑

i=1

∑

p∈Ni

T p
(
u(2ix) · ∇ξ(2ix)

)
1Zi+1

+
∑

p∈NN

T p
(
ub(2

Nx) · ∇ξb(2Nx)
)

1ZN+1
for z ∈ Λ.

(7.85)

Using (7.85) and point (iv) from Proposition 7.4.2, we conclude

(uint,1 · ∇ξint,1)(x) = 0 when z ∈ Λ \
(

1

2
− 15

32 · 2N
,
1

2
− 27

64 · 2N

)
(7.86)

A simple calculation then shows that

(uN · ∇ξN)(x, y, z) = −(uN · ∇ξN)(x, y,−z) when z ∈ Λ (7.87)

which, combined with the result (7.86) and the fact that uN and the derivatives

of ξN are continuous when z ∈ Γ, help us conclude

(uN · ∇ξN)(x) = 0 when x ∈ Γ.

In total, we then have

suppz(uN · ∇ξN) ⋐
(

1

2
− 15

32 · 2N
,
1

2
− 27

64 · 2N

)
∪
(

−1

2
+

27

64 · 2N
,−1

2
+

15

32 · 2N

)
.
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To prove (iv) in Proposition 7.3.1, we note from (7.85) and point (iv) in Proposi-

tion 7.4.2 that

(uint,1 · ∇ξint,1)(x) =
∑

p∈NN

2NT p
(
(ub · ∇ξb)(2Nx)

)
1ZN+1

for z ∈ Λ,

which when combined with Lemma 7.4.5, implies

∥∥∥uint,1 · ∇ξint,1
∥∥∥
L∞(D)

≤ 2N
∥∥∥ub · ∇ξb

∥∥∥
L∞(R3)

.

Noting (7.87) and that uN · ∇ξN coincides with uint,1 · ∇ξint,1 when z > 0, we

have

∥∥∥uN · ∇ξN
∥∥∥
L∞(D)

≤ 2N
∥∥∥ub · ∇ξb

∥∥∥
L∞(R3)

.

Now ub ·∇ξb is an infinite differentiable function and its support lies in a bounded

set from (iii) and (iv) in Proposition 7.4.2, therefore
∥∥∥ub · ∇ξb

∥∥∥
L∞(R3)

is bounded

and we can conclude that

∥∥∥uN · ∇ξN
∥∥∥
L∞(D)

. 2N .

Proof of (v) in Proposition 7.3.1 is a simple computation. Once again using

Lemma 7.4.5, one can write the following

∫

D
|∇uN |2 dx = 2

∫

{0<z<1/2}
|∇uint,1|2 dx

= 2
∫

{z∈Z1}
|∇u(x)|2 dx + 2

N−1∑

i=1

∑

p∈Ni

∫

{z∈Zi+1}
|∇T p(u(2ix))|2 dx

+2
∑

p∈NN

∫

{z∈ZN+1}
|∇T p(ub(2

Nx))|2 dx.
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After an appropriate translation and dilation of the coordinate variables and not-

ing that |Ni| = 4i, one can show that

∫

D
|∇uN |2 dx =

(
N−1∑

i=0

2i+1

)∫

Z1

|∇u(x)|2 dx + 2N+1
∫

{z∈Z1}
|∇ub(x)|2 dx

= 2N+1 max

{∫

{z∈Z1}
|∇u(x)|2 dx,

∫

{z∈Z1}
|∇ub(x)|2 dx

}
. 2N .

Similarly, one can also conclude

∫

D
|∇ξN |2 dx . 2N ,

which then proves (v).

The proof of (vi) in Proposition 7.3.1 is also very similar to that of (v). We

first write

∫

D
uN,z ξN dx = 2

∫

{0<z<1/2}
uint,1,z ξint,1 dx

= 2
∫

{z∈Z1}
uz ξ dx

+2
N−1∑

i=1

∑

p∈Ni

∫

{z∈Zi+1}
T p

(
uz(2

ix)
)
T p

(
ξ(2ix)

)
dx

+2
∑

p∈NN

∫

{z∈ZN+1}
T p

(
ub,z(2

ix)
)
T p

(
ξb(2

ix)
)

dx.

After an appropriate translation and dilation of the coordinate variables and not-

ing that |Ni| = 4i, we obtain

∫

D
uN,z ξN dx =

(
N−1∑

i=0

2−i+1

)∫

{z∈Z1}
uz ξ dx + 2−N+1

∫

{z∈Z1}
ub,z ξb dx ≥ 2c3 > 0,

where c3 is a strictly positive constant independent of N .
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7.5 Discussion

In this paper, we studied the problem of optimizing the heat transfer between

two differentially heated parallel plates by incompressible flows that satisfy an

enstrophy constraint (〈|∇u|2〉 ≤ P) and no-slip boundary conditions. The main

result of this paper was to show that the previously derived upper bound on

the heat transfer are sharp in the scaling with P, which we demonstrated by

constructing an explicit example of three-dimensional branching pipe flows. In this

section, we discuss the implications of our result in the context of (1) anomalous

dissipation in a passive scalar and (2) Rayleigh–Bénard convection.

7.5.1 Anomalous dissipation in a passive scalar

The initial motivation for our study was a result by Drivas et al. (2022a), re-

garding the anomalous dissipation in a passive scalar transport. They constructed

a velocity field u ∈ C∞([0, τ) × T
d) ∩ L1([0, τ ];Cα(Td)), where d ≥ 2, τ is a fixed

time and α < 1, such that the solution of the advection-diffusion equation

∂tT
κ + u · ∇T κ = κ∆T κ

follows

lim inf
κ→0

κ
∫ τ

0

∫

Td
|∇T κ|2 dx dt ≥ χ > 0,

where χ may depend on the initial data. While this result was obtained for a

periodic domain, we were inspired by the possibility of proving such a result in a

domain with boundaries. After appropriately rescaling the velocity fields that we

created to prove Theorem 7.1.4, we can state a weak result in this direction.
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Corollary 7.5.1. For a constant κ0 > 0, there exist velocity fields uκ, for every

0 < κ < κ0, such that ‖uκ‖H1
0 (Ω) ≤ 1 and the solution of the steady advection

diffusion equation: uκ · ∇T κ = κ∆T κ in Ω with boundary conditions T κ = 1 at

z = −1/2 and T κ = 0 at z = 1/2 obeys

lim inf
κ→0

κ2/3−
∫

Ω
|∇T κ|2 dx ≥ χ0 > 0. (7.88)

for a constant χ0.

We see from (7.88) that the exponent for κ is 2/3, which is less than one.

Therefore this corrolary is not as strong as the statement we would have hoped

to prove. However, the a priori upper bound (7.9) also shows that this is the best

result one can achieve in the setting considered in Corollary 7.5.1. However, if we

allow the velocity field to be less smooth, in particular, we allow uκ to be only

uniformly bounded in the L2 norm, then we can indeed prove

lim inf
κ→0

κ−
∫

Ω
|∇T κ|2 dx ≥ χ0 > 0. (7.89)

This can be shown after appropriately rescaling the velocity fields of Doering and

Tobasco (2019) used to prove Theorem 1.1 in their paper. Another possibility

is to allow the walls to be rough. This has not yet, to our knowledge, been

investigated, which raises the following question: if we allow the boundary of the

domain, which locally is the graph of functions that are α–Hölder continuous with

exponent α < 1, can one also prove (7.89) in that case? Physically, it would mean

that we are increasing the heat transfer by letting the area of walls go to infinity.

Indeed, it is known in the literature that fractal boundaries tend to enhance heat

transfer (Toppaladoddi et al., 2021). Answer to such a question will, therefore,
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help in understanding the role played by rough boundaries in increasing the heat

transfer. Along the same line, it would also be interesting to investigate the role

played by a slip boundary condition for the velocity field (see (Drivas et al., 2022b)

and a recent review by Nobili (2021)).

7.5.2 Rayleigh–Bénard convection

Rayleigh–Bénard convection is the flow of fluid between two differentially

heated parallel plates driven by buoyancy force. The flow is traditionally modeled

by the Navier–Stokes equations under the Boussinesq approximation, written here

in nondimensional form as

∂tu + u · ∇u = −∇p+ Pr∆u + PrRaTez, (7.90a)

∂tT + u · ∇T = ∆T, (7.90b)

where Ra is the Rayleigh number and Pr is the Prandtl number, respectively

given by

Ra =
gαH3(TB − TT )

κν
, Pr =

ν

κ
.

In these above expressions, ν is the kinematic viscosity, κ is the thermal diffusivity,

α is the coefficient of thermal expansion, H is the height of the domain, TB−TT is

the temperature difference and g is the magnitude of the gravitational acceleration

acting in −ez direction.

We solve the nondimensional governing equations (7.90a-b) in domain Ω with
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boundary conditions

u = 0, T = 1 at z = −1/2 and u = 0, T = 0 at z = 1/2.

The quantity of interest is the nondimensional heat transfer known as the

Nusselt number Nu given by

Nu = 1 + 〈uzT 〉.

The angle brackets denote the long-time volume average and uz is the component

of the velocity in the z direction. Of course, Nu depends on the initial condition.

However, Doering and Constantin (1996) using the background method (see Fan-

tuzzi et al. (2022) for a survey), proved the following a priori bound for any initial

condition when Ra ≫ 1:

Nu . Ra
1
2 .

This bound is uniform in the Prandtl number Pr. To date, the best known upper

bound, namely Nu ≤ 0.02634Ra
1
2 , was obtained by Plasting and Kerswell (2003).

An important question is whether the scaling of this bound with respect to

the Rayleigh number is sharp. Our result, in this context, proves that this scaling

is indeed sharp if one replaces the momentum equation with a simple enstrophy

condition.

〈|∇u|2〉 = Ra(Nu− 1). (7.91)

In other words Theorem 7.1.4 proves that, for large enough Rayleigh number, there

exists velocity fields (depending on Ra) such that the solution of the advection-
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diffusion equation (7.90b) satisfies the relation (7.91) and for which

Nu ∼ Ra
1
2 .

Appendix 7.A A useful estimate for the solution

of the Poisson’s equation: Proof

of Proposition 7.3.2

The aim of this section is to give an estimate on the solution of Poisson’s

equation ∆ϕ = f solved between parallel boundaries with homogeneous Dirichlet

boundary conditions imposed on ϕ. In particular, we are interested in obtaining

bounds on the L2 norm of ∇ϕ for a given specific form of the function f . The

calculations done in this section will be helpful in establishing an upper bound

on the nonlocal term −
∫

Ω |∇∆−1 div(uξ)|2 from the section 7.3 (see calculation

(7.30)). The basic idea is to write down the solution of Poisson’s equation using

the Green’s function method and then obtain estimates on the derivative of the

Green’s function to achieve our goal.

The domain of interest for this section is

D := R × R × (−1/2, 1/2),

as defined in section 7.2 with boundary

∂D := ∂D+ ∪ ∂D− := R × R × {1/2} ∪ R × R × {−1/2}.
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Now, suppose ϕ solves Poisson’s equation

∆ϕ = f in D, (7.92)

with boundary condition

ϕ = 0 on ∂D. (7.93)

Then for a sufficiently smooth function f , we can write the solution of Poisson’s

equation using a Green’s function

ϕ(x) =
∫

D
G(x,x′)f(x′) dx, (7.94)

where G : D ×D → [−∞,∞] is given by

G(x,x′) := K(|x − x′|‖, z, z′) (7.95)

and

K(σ, z, z′) :=
∫ ∞

1
I(σ, z, z′, τ)

dτ√
τ 2 − 1

, (7.96)

I(σ, z, z′, τ) :=
cos(πz) cos(πz′) sinh(πτσ)

2π [cosh(πτσ) + cosπ(z′ + z)] [cosh(πτσ) − cos π(z′ − z)]
.

(7.97)

In particular, we have the following theorem

Theorem 7.A.1 (Solution of the Poisson’s equation). Let f ∈ C2(D) ∩ L∞(D)

whose is support lies a finite distance away from the boundary, i.e., supp f ⊆

R×R×(−1/2+β, 1/2−β) for some β ∈ (0, 1/2). Then ϕ given by (7.94) belongs
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to C2(D) and solves the Poisson’s equation (7.92) with boundary condition (7.93).

Proof. The proof of the theorem is a standard one and is therefore omitted from

the paper. The proof relies on the method of images to write the desired Green’s

function between parallel boundaries as a sum of appropriately translated Green’s

functions corresponding to the whole space R
3, where the summation is then

performed using Cauchy’s residue theorem.

Once we know that the solution ϕ of the Poisson’s equation is given by (7.94),

we can use it to calculate ∇ϕ. If f ∈ L∞(D) then by an application of the

mean value theorem and the dominated convergence theorem, we can perform

differentiation under the integral sign in (7.94), which leads to

∇ϕ =
∫

D
∇xG(x,x′)f(x′) dx. (7.98)

From (7.98), we see that estimates on ∇xG(x,x′) can provide an upper bound on

|∇ϕ|. Next, we state our result in that direction, but first, we note the following.

For clarity, we use a and b as placeholders for

∣∣∣∣∣
2

π
sin

(
π(z − z′)

2

)∣∣∣∣∣ and

∣∣∣∣∣
2

π
cos

(
π(z + z′)

2

)∣∣∣∣∣ (7.99)

respectively in the rest of this section and we will use the fact that

b2 − a2 =
4

π2
cosπz cosπz′ ≥ 0 when z, z′ ∈ (−1/2, 1/2) (7.100)

in several places. We will use c for a positive constant (not necessarily the same

in all places) independent of any parameters.
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Proposition 7.A.2. Let f ∈ L∞(D) and let ϕ be defined by the formula (7.94),

then the following holds:

|∇ϕ|(x) ≤ ‖f‖L∞(D)

∫

suppz f
g(z, z′) dz′

where

g(z, z′) = c

(
log

(
1 +

(b2 − a2)

a2

)
+

cos πz′

b

)
(7.101)

and c > 0 is a positive constant.

The functions f that are of special interests to us are those which are supported

in a “thin layers” close to the boundaries. From Proposition 7.A.2, we can derive

the following result for such functions.

Corollary 7.A.3. Let f ∈ L∞(D) such that supp f ⊆ R × R × (1/2 − c1ε, 1/2 −

c2ε) ∪ R × R × (−1/2 + c2ε,−1/2 + c1ε), where 0 < c2 < c1 < 1 and ε < 1/4 are

three constants. If ϕ is defined by the formula (7.94), then the following holds

1

lxly

∫ lx/2

−lx/2

∫ ly/2

−ly/2

∫ 1/2

−1/2
|∇ϕ|2 dzdydx . ε3 ‖f‖2

L∞(D) . (7.102)

Proof of Proposition 7.3.2. We identify a lx − ly−periodic function on D with the

function f . Then using Corollary 7.A.3, we can finish the proof.
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Proof of Corollary 7.A.3. We note from Proposition 7.A.2

1

lxly

∫ ly/2

−ly/2

∫ lx/2

−lx/2

∫ 1/2

−1/2
|∇ϕ|2 dzdxdy ≤

‖f‖2
L∞(D)

∫ 1/2

−1/2

(∫

suppz f
g(z, z′) dz′

)2

dz

= ‖f‖2
L∞(D)

∫ 1/2

0

(∫

suppz f
g(z, z′) dz′

)2

dz+

‖f‖2
L∞(D)

∫ 0

−1/2

(∫

suppz f
g(z, z′) dz′

)2

dz. (7.103)

We focus on obtaining a bound on the first term (where the integral is carried

from z = 0 to z = 1/2) in (7.103), as the calculation for the other integral is

identical.

When z′ ∈ (1/2 − c1ε, 1/2 − c2ε) ∪ (−1/2 + c2ε,−1/2 + c1ε) and z ≥ 0, the

following simple succession of inequalities hold:

b ≥ 1

π
max{cos πz, cos πz′} (7.104a)

b ≥ 1

2π
(cos πz + cos πz′) ≥ 1

4

(
1

2
− z + c2ε

)
(7.104b)

πc2ε

2
≤ cos πz′ ≤ πc1ε (7.104c)

π

4
− πz

2
≤ cos πz ≤ π

2
− πz (7.104d)

a ≥ 1

2

(
1

2
− c1ε− z

)
when

1

2
− 2c1ε ≥ z ≥ 0 (7.104e)

a ≥ 1

2
|z − z′| when

1

2
≥ z ≥ 1

2
− 2c1ε (7.104f)

a ≥ 1

5
when z′ ∈ (−1/2 + c2ε,−1/2 + c1ε) (7.104g)

log(1 + α) ≤ α when α ≥ 0 (7.104h)

Here, (7.104c), (7.104d), (7.104e) and (7.104f) are a simple consequence of the

inequality z/2 ≤ sin z ≤ z when z ∈ [0, π/2], whereas (7.104a) is obtained by
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simple applications of trigonometric identities and (7.104b) is a result of (7.104a),

(7.104c) and (7.104d). The result (7.104g) is a consequence of the assumption

0 < c2 < c1 < 1. Finally, (7.104h) can be derived using a Taylor series expansion.

Next, using (7.101) and the Young’s inequality, we can write

(∫

suppz f
g(z, z′) dz′

)2

.

(∫

suppz f∩R+

log

(
1 +

(b2 − a2)

a2

)
dz′
)2

+

(∫

suppz f∩R−

log

(
1 +

(b2 − a2)

a2

)
dz′
)2

+

(∫

suppz f

cos πz′

b
dz′
)2

. (7.105)

Using (7.104b) and (7.104c), the last term in (7.105) can be bounded from

above by

.
ε4

(
1
2

− z + c2ε
)2 , (7.106)

Using (7.100), (7.104c), (7.104g) and (7.104h), the second term in (7.105) satisfies

the bound

. ε4. (7.107)

We divide the calculation of the first term in (7.105) into two cases, when 0 ≤

z ≤ 1/2 − 2c1ε and when 1/2 − 2c1ε ≤ z ≤ 1/2. In the first case, using (7.100),

(7.104c), (7.104d), (7.104e) and (7.104h), we conclude the first term is

.
ε4

(
1
2

− z − c1ε
)2 . (7.108)

In the second case, when 1/2−2c1ε ≤ z ≤ 1/2, we use (7.100), (7.104c), (7.104d),
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(7.104f), which gives

. ε2. (7.109)

Note that in this calculation we do not use the estimate (7.104h). After using

(7.104f), we have a logarithmic singularity in the integrand but it is integrable.

Finally, collecting the results (7.106), (7.107), (7.108) and (7.109), and carrying

out an integration in z from 0 to 1/2, one can bound the first term in (7.103) as

. ε3 ‖f‖2
L∞(D) .

A similar calculation can be performed for the second term in (7.103) and the

same result can be derived which then finishes the proof.

7.A.1 Proof of Proposition 7.A.2

To prove Proposition 7.A.2, we need to obtain estimates on ∇xG(x,x′). From

(7.95), we notice that the derivative of G(x,x′) with respect to x can be written

as

∂

∂x
G(x,x′) =

∂|x − x′|‖
∂x

· ∂

∂σ
K(σ, z, z′)

∣∣∣∣∣
σ=|x−x′|‖

=
(x− x′)

|x − x′|‖
· ∂

∂σ
K(σ, z, z′)

∣∣∣∣∣
σ=|x−x′|‖

,

which leads to the following estimate

∣∣∣∣∣
∂

∂x
G(x,x′)

∣∣∣∣∣ ≤
(∣∣∣∣∣

∂

∂σ
K(σ, z, z′)

∣∣∣∣∣

)∣∣∣∣∣
σ=|x−x′|‖

. (7.110)
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A similar calculation for the y-derivative of G(x,x′) leads to

∣∣∣∣∣
∂

∂y
G(x,x′)

∣∣∣∣∣ ≤
(∣∣∣∣∣

∂

∂σ
K(σ, z, z′)

∣∣∣∣∣

)∣∣∣∣∣
σ=|x−x′|‖

, (7.111)

while the estimate for the z-derivative of G(x,x′) simply is

∣∣∣∣∣
∂

∂z
G(x,x′)

∣∣∣∣∣ ≤
(∣∣∣∣∣

∂

∂z
K(σ, z, z′)

∣∣∣∣∣

)∣∣∣∣∣
σ=|x−x′|‖

. (7.112)

Using (7.110), (7.111) and (7.112), we conclude that

|∇xG(x,x′)| ≤
∣∣∣∣∣
∂

∂x
G(x,x′)

∣∣∣∣∣+
∣∣∣∣∣
∂

∂y
G(x,x′)

∣∣∣∣∣+
∣∣∣∣∣
∂

∂z
G(x,x′)

∣∣∣∣∣

≤ 2

(∣∣∣∣∣
∂

∂σ
K(σ, z, z′)

∣∣∣∣∣

)∣∣∣∣∣
σ=|x−x′|‖

+

(∣∣∣∣∣
∂

∂z
K(σ, z, z′)

∣∣∣∣∣

)∣∣∣∣∣
σ=|x−x′|‖

≤ H(|x − x′|‖, z, z′), (7.113)

for some suitable H : R+ × (−1/2, 1/2) × (−1/2, 1/2) → [0,+∞]. It then follows

that

|∇ϕ(x)| ≤ ‖f‖L∞(D)

∫ ∞

−∞

∫ ∞

−∞

∫

suppz f
H(|x − x′|‖, z, z′) dz′dx′dy′,

= ‖f‖L∞(D)

∫ ∞

−∞

∫ ∞

−∞

∫

suppz f
H(|x′|‖, z, z′) dz′dx′dy′.

By considering a transformation from Cartesian coordinates to cylindrical coor-

dinates

(x′, y′, z′) 7→ (σ, θ, z′)
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one obtains

|∇ϕ(x)| ≤ ‖f‖L∞(D)

∫ ∞

0

∫ 2π

0

∫

suppz f
σH(σ, z, z′) dz′dθdσ,

. ‖f‖L∞(D)

∫ ∞

0

∫

suppz f
σH(σ, z, z′) dz′dσ.

So, to prove Proposition 7.A.2, we need to find an appropriate H(σ, z, z′) and

then perform the integral

∫ ∞

0
σH(σ, z, z′) dσ, (7.114)

which is our next goal.

To calculate (7.110), (7.111) and (7.112), we need the derivative of K(σ, z, z′)

with σ and z. Using (7.96) and (7.97) along with an application of the mean value

theorem and the dominated convergence theorem leads to

∂K

∂σ
=
∫ ∞

1
Iσ1

dτ√
τ 2 − 1

+
∫ ∞

1
Iσ2

dτ√
τ 2 − 1

+
∫ ∞

1
Iσ3

dτ√
τ 2 − 1

, (7.115)

and

∂K

∂z
=
∫ ∞

1
Iz1

dτ√
τ 2 − 1

+
∫ ∞

1
Iz2

dτ√
τ 2 − 1

+
∫ ∞

1
Iz3

dτ√
τ 2 − 1

, (7.116)
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where

Iσ1 :=
cos(πz) cos(πz′) τ cosh(πτσ)

2 [cosh(πτσ) + cosπ(z′ + z)] [cosh(πτσ) − cos π(z′ − z)]
, (7.117a)

Iσ2 := − cos(πz) cos(πz′)τ sinh2(πτσ)

2 [cosh(πτσ) + cosπ(z′ + z)]2 [cosh(πτσ) − cos π(z′ − z)]
,(7.117b)

Iσ3 := − cos(πz) cos(πz′)τ sinh2(πτσ)

2 [cosh(πτσ) + cosπ(z′ + z)] [cosh(πτσ) − cos π(z′ − z)]2
,(7.117c)

Iz1 := − sin(πz) cos(πz′) sinh(πτσ)

2 [cosh(πτσ) + cosπ(z′ + z)] [cosh(πτσ) − cos π(z′ − z)]
, (7.117d)

Iz2 :=
cos(πz) cos(πz′) sin π(z′ + z) sinh(πτσ)

2 [cosh(πτσ) + cosπ(z′ + z)]2 [cosh(πτσ) − cos π(z′ − z)]
, (7.117e)

Iz3 :=
cos(πz) cos(πz′) sin π(z′ − z) sinh(πτσ)

2 [cosh(πτσ) + cosπ(z′ + z)] [cosh(πτσ) − cos π(z′ − z)]2
. (7.117f)

Next, we state a few important lemmas to bound the derivatives of K(σ, z, z′).

We will always implicitly assume that z, z′ ∈ (−1/2, 1/2).

Lemma 7.A.1. Let σ ≥ 1
2π

, then we have

(i)

∫ ∞

1
(|Iσ1| + |Iσ2| + |Iσ3|)

dτ√
τ 2 − 1

. cos(πz′) exp(−πσ).

(ii)

∫ ∞

1
(|Iz1| + |Iz2| + |Iz3|)

dτ√
τ 2 − 1

. cos(πz′) exp(−πσ).

Lemma 7.A.2. Let 0 < σ < 1
2π

, then we have
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(i)

∫ ∞

1
πσ

(|Iσ1| + |Iσ2| + |Iσ3|)
dτ√
τ 2 − 1

.
cos(πz′)

σ
.

(ii)

∫ ∞

1
πσ

(|Iz1| + |Iz2| + |Iz3|)
dτ√
τ 2 − 1

. cos(πz′).

Lemma 7.A.3. Let 0 < σ < 1
2π

and z 6= z′, then we have

(i)

∫ 1
πσ

1
(|Iσ1| + |Iσ2| + |Iσ3|)

dτ√
τ 2 − 1

.
1

σ

[
1√

σ2 + a2
− 1√

σ2 + b2

]
.

(ii)

∫ 1
πσ

1
|Iz1|

dτ√
τ 2 − 1

. | tan πz|
[

1√
σ2 + a2

− 1√
σ2 + b2

]
.

(iii)

∫ 1
πσ

1
|Iz2 + Iz3|

dτ√
τ 2 − 1

. cos2 πz cos πz′ [P1(σ, z, z
′) + P2(σ, z, z

′)] .
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Here,

P1(σ, z, z
′) :=

2abπ

4(b2 − a2)3

[
4√

σ2 + b2
− 4√

σ2 + a2

+(b2 − a2)

(
1

(σ2 + a2)3/2
+

1

(σ2 + b2)3/2

)]
,

P2(σ, z, z
′) :=

π3

4(b2 − a2)3

[
4b2

√
σ2 + b2

− 4a2

√
σ2 + a2

+(b2 − a2)

(
2σ2 + a2

(σ2 + a2)3/2
+

2σ2 + b2

(σ2 + b2)3/2

)]
.

Proof of Proposition 7.A.2. Using the results from the above lemmas, a suitable

function H(σ, z, z′) that works in (7.113) is

H(σ, z, z′) := c

(
1

σ

[
1√

σ2 + a2
− 1√

σ2 + b2

]
+ | tan πz|

[
1√

σ2 + a2
− 1√

σ2 + b2

]

+ cos2 πz cosπz′ [P1(σ, z, z
′) + P2(σ, z, z′)] +

cos πz′

σ

)
,

when (σ, z, z′) ∈ (0, 1/2π) × (−1/2, 1/2) × (−1/2, 1/2) and

H(σ, z, z′) := c cos πz′ exp(−πσ),

when (σ, z, z′) ∈ [1/2π,∞) × (−1/2, 1/2) × (−1/2, 1/2). Here, c > 0 is some

positive constant. With this definition of the function H and Lemma 7.C.1 from

appendix 7.C, we can obtain a bound on the integral (7.114) as

∫ ∞

0
σH(σ, z, z′) dσ . log

(
1 +

4(b2 − a2)

3a2

)

+
cosπz′

b
+

cos2 πz cos πz′

b3
+ cos πz′

. log

(
1 +

(b2 − a2)

a2

)
+

cos πz′

b
. (7.119)
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Here, we used (7.104a) to obtain the last line.

Proof of Lemma 7.A.1. We first note that

∫ ∞

1
(|Iσ1| + |Iσ2| + |Iσ3|)

dτ√
τ 2 − 1

≤
∫ 2

1
(|Iσ1| + |Iσ2| + |Iσ3|)

dτ√
τ 2 − 1

+2
∫ ∞

2
(|Iσ1| + |Iσ2| + |Iσ3|)

dτ

τ
. (7.120)

We also have

∫ ∞

1
(|Iz1| + |Iz2| + |Iz3|)

dτ√
τ 2 − 1

≤
∫ 2

1
(|Iz1| + |Iz2| + |Iz3|)

dτ√
τ 2 − 1

+
∫ ∞

2
(|Iz1| + |Iz2| + |Iz3|) dτ. (7.121)

Now the assumption in the lemma is σ ≥ 1/2π. So, if τ ≥ 1, then

cosh(πτσ) − 1 ≥ cosh(πτσ)

8
,

and we always have

sinh(πτσ) ≤ cosh(πτσ) and
exp(πτσ)

2
≤ cosh(πτσ).

Using these relations in (7.117a-f), one can show

|Iσ1| . cos(πz′)τ exp(−πτσ), |Iσ2| . cos(πz′)τ exp(−πτσ),

|Iσ3| . cos(πz′)τ exp(−πτσ),

|Iz1| . cos(πz′) exp(−πτσ), |Iz2| . cos(πz′) exp(−2πτσ),

|Iz3| . cos(πz′) exp(−2πτσ).

293



In total, we obtain

|Iσ1| + |Iσ2| + |Iσ3| . cos(πz′)τ exp(−πτσ), (7.122a)

|Iz1| + |Iz2| + |Iz3| . cos(πz′) exp(−πτσ). (7.122b)

Next, we substitute (7.122a) in (7.120) and (7.122b) in (7.121). We also use the

fact exp(−πτσ) ≤ exp(−πσ) for the integrals carried from τ = 1 to τ = 2 in

(7.120) and (7.121), which leads to

∫ ∞

1
(|Iσ1| + |Iσ2| + |Iσ3|)

dτ√
τ 2 − 1

. cos(πz′) exp(−πσ) + cos(πz′)
exp(−2πσ)

πσ

. cos(πz′) exp(−πσ), (7.123)

and

∫ ∞

1
(|Iz1| + |Iz2| + |Iz3|)

dτ√
τ 2 − 1

. cos(πz′) exp(−πσ) + cos(πz′)
exp(−2πσ)

πσ

. cos(πz′) exp(−πσ). (7.124)

Proof of Lemma 7.A.2. The proof is similar to the proof of lemma 7.A.1.

Proof of Lemma 7.A.3. First, we establish a few simple relations. The assumption

in the lemma is σ < 1
2π

. So, if 1 ≤ τ ≤ 1
πσ

, then

sinh(πστ) ≤ (πστ) sinh(1), cosh(πστ) ≤ cosh(1),

and cosh(πστ) ≤ 1 + (cosh(1) − 1)π2σ2τ 2,
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and we always have

cosh(πστ) ≥ 1 +
(πστ)2

2
.

(i) We can then use the relations above to derive a simple bound on |Iσ1|:

|Iσ1| ≤ Ibσ1 :=
2 cosh(1) cos(πz) cos(πz′) τ

π4 [σ2τ 2 + a2] [σ2τ 2 + b2]
.

We can also obtain a simple bound on |Iσ2| as follows

|Iσ2| ≤ 4 sinh2(1) cos(πz) cos(πz′)σ2τ 3

π4 [σ2τ 2 + a2]2 [σ2τ 2 + b2]

≤ 4 sinh2(1) cos(πz) cos(πz′) τ

π4 [σ2τ 2 + a2] [σ2τ 2 + b2]
=

2 sinh2(1)

cosh(1)
Ibσ1.

With a similar calculation, we prove that the same bound also holds for |Iσ3|. We

can now finish the proof as given below

∫ 1
πσ

1
|Iσ1| + |Iσ2| + |Iσ3|

dτ√
τ 2 − 1

.
∫ ∞

1
|Ibσ1|

dτ√
τ 2 − 1

.
1

σ

[
1√

σ2 + a2
− 1√

σ2 + b2

]
.

(ii) We can obtain a following simple bound on |Iz1| as

|Iz1| ≤ 2πσ sinh(1)| sin πz| cos πz′τ

π4 [σ2τ 2 + a2] [σ2τ 2 + b2]
= (πσ) tanh(1)| tan(πz)|Ibσ1.

Performing an integration in τ as in part (i) leads to the desired result.
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(iii) We first obtain a simple bound on the sum Iz2 + Iz3 given as follows

Iz2 + Iz3 =
cos2(πz) cos(πz′) sinh(πτσ) [sin πz′ cosh(πστ) − sin πz]

[cosh(πτσ) + cosπ(z′ + z)]2 [cosh(πτσ) − cosπ(z′ − z)]2
,

=⇒ |Iz2 + Iz3| ≤ 16

π7
cos2(πz) cos(πz′)

στ [| sin πz′ − sin πz| + π2σ2τ 2]

[σ2τ 2 + a2]2 [σ2τ 2 + b2]2
.

This result, combined with the following integrals

∫ ∞

1

στ

[σ2τ 2 + a2]2 [σ2τ 2 + b2]2
dτ√
τ 2 − 1

=

π

4(b2 − a2)3

[
4√

σ2 + b2
− 4√

σ2 + a2

+(b2 − a2)

(
1

(σ2 + a2)3/2
+

1

(σ2 + b2)3/2

)]
,

∫ ∞

1

σ3τ 3

[σ2τ 2 + a2]2 [σ2τ 2 + b2]2
dτ√
τ 2 − 1

=

π

4(b2 − a2)3

[
4b2

√
σ2 + b2

− 4a2

√
σ2 + a2

+(b2 − a2)

(
2σ2 + a2

(σ2 + a2)3/2
+

2σ2 + b2

(σ2 + b2)3/2

)]
,

leads to the desired result.

Appendix 7.B Derivation of the variational

principle for heat transfer (7.11)

In this appendix, we derive the variational principle given in (7.11). The proof

is taken from the paper of Doering & Tobasco (Doering and Tobasco, 2019) and

provided here for completeness. We begin by recalling

Q(u) = −
∫

Ω
|∇T |2 dx = 1 + −

∫

Ω
uzT dx, (7.126)
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where T solves the steady convection diffusion equation and the velocity is as-

sumed to be in L∞(Ω;R3). After substituting

T = θ +
1

2
− z,

we obtain

Q(u) = 1 + −
∫

Ω
|∇θ|2 dx = 1 + −

∫

Ω
uzθ dx, (7.127)

where θ ∈ H1
0 (Ω) solves

u · ∇θ = ∆θ + uz in Ω,

and satisfies the homogeneous Dirichlet boundary conditions. Next, we consider

a system of two PDEs.

u · ∇η0 = ∆ξ0 + uz,

u · ∇ξ0 = ∆η0,





in Ω, (7.128a-b)

where both η0 and ξ0 satisfy the homogeneous Dirichlet boundary conditions.

Clearly then

θ = η0 + ξ0. (7.129)

By multiplying the equation (2.128b) with ξ0 and integrating, one obtains

∫

Ω
∇η0 · ∇ξ0 dx = 0. (7.130)
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Next, we multiply the equation (2.128a) with η0 and integrate and use (7.130) to

obtain

∫

Ω
uzη0 dx = 0. (7.131)

Finally, we substitute (7.129) in (7.127) and use (7.130) and (7.131) to get

Q(u) − 1 = −
∫

Ω
|∇ξ0|2 + |∇η0|2 dx = −

∫

Ω
uzξ0 dx, (7.132)

which after using (2.128b) can be rewritten as

Q(u) − 1 = 2−
∫

Ω
uzξ0 dx − −

∫

Ω
|∇ξ0|2 dx − −

∫

Ω
|∇∆−1u · ∇ξ0|2 dx, (7.133)

where ∆−1 denotes the inverse Laplacian operator in Ω corresponding to the ho-

mogeneous Dirichlet boundary conditions. We now consider the following maxi-

mization problem

sup
ξ∈H1

0 (Ω)

2−
∫

Ω
uzξ dx − −

∫

Ω
|∇ξ|2 dx − −

∫

Ω
|∇∆−1u · ∇ξ|2 dx, (7.134)

which is strictly concave, therefore, the only maximizer satisfies the Euler–

Lagrange equation

u · ∇∆−1(u · ∇ξ) = ∆ξ + uz.

We see that ξ0 is the solution of above equation, therefore, ξ0 maximizes (7.134),

which then combined with (7.133) gives us

Q(u) − 1 = max
ξ∈H1

0 (Ω)
2−
∫

Ω
uzξ dx − −

∫

Ω
|∇ξ|2 dx − −

∫

Ω
|∇∆−1u · ∇ξ|2 dx. (7.135)
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To make this formulation homogeneous in the variable ξ, we consider the trans-

formation ξ → sξ and optimize in the scaling s to obtain

Q(u) − 1 = sup
ξ∈H1

0 (Ω)
ξ 6≡0

(−
∫

Ω uzξ dx)2

−
∫

Ω |∇ξ|2 dx + −
∫

Ω |∇∆−1 div(uξ)|2 dx
. (7.136)

Next, from the definition of Qs
max(P) given in (7.5), we simply obtain

Qs
max(u)−1= sup

u∈L∞(Ω)
∇·u=0, u|∂Ω=0

−
∫

Ω
|∇u|2 dx≤P

sup
ξ∈H1

0 (Ω)
ξ 6≡0

(−
∫

Ω uzξ dx)2

−
∫

Ω |∇ξ|2 dx + −
∫

Ω |∇∆−1 div(uξ)|2 dx
.(7.137)

Finally, considering the following transformation

u → P
1
2

−
∫

Ω |∇u|2 dx
u, ξ → −

∫
Ω |∇u|2 dx

P
1
2

ξ, (7.138)

in (7.137) leads to the desired result stated in Proposition 7.11.

Appendix 7.C Bounds on a few integrals

Lemma 7.C.1. Let a and b be as given in (7.99). Let z, z′ ∈ (−1/2, 1/2) and

z 6= z′, then the following estimates hold

(i)

∫ 1

0

[
1√

σ2 + a2
− 1√

σ2 + b2

]
dσ ≤ 1

2
log

(
1 +

4(b2 − a2)

3a2

)
. (7.139)

(ii)
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∫ 1

0

[
σ√

σ2 + a2
− σ√

σ2 + b2

]
dσ ≤ b2 − a2

b
. (7.140)

(iii)

∫ 1

0
σP1(σ, z, z

′) dσ ≤ π

2b3
. (7.141)

(iv)

∫ 1

0
σP2(σ, z, z

′) dσ ≤ π3

4b3
. (7.142)

Proof of Lemma 7.C.1.

Recall from the definition (7.99) of a and b that a ≤ b, a fact which we will use in

the proofs below.

(i)

∫ 1

0

[
1√

σ2 + a2
− 1√

σ2 + b2

]
dσ =

1

2
log

1 +
√

1 + a2

1 +
√

1 + b2
+

1

2
log

√
1 + b2 − 1√
1 + a2 − 1

≤ 1

2
log

(
1 +

√
1 + b2 −

√
1 + a2

√
1 + a2 − 1

)

≤ 1

2
log


1 +

8(b2 − a2)

3a2
[√

1 + b2 +
√

1 + a2
]




≤ 1

2
log

(
1 +

4(b2 − a2)

3a2

)
. (7.143)
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(ii)

∫ 1

0

[
σ√

σ2 + a2
− σ√

σ2 + b2

]
dσ =

√
1 + a2 −

√
1 + b2 + b− a

≤ b2 − a2

b+ a
≤ b2 − a2

b
. (7.144)

(iii)

∫ 1

0
σP1(σ, z, z

′) dσ =
πab

2

[
1

ab(b+ a)3
− 1√

1 + a2
√

1 + b2(
√

1 + b2 +
√

1 + a2)3

]

≤ π

2b3
. (7.145)

(iv)

∫ 1

0
σP2(σ, z, z′) dσ =

π3

4

[
1

(b+ a)3
− 1

(
√

1 + b2 +
√

1 + a2)3

− 1√
1 + a2

√
1 + b2(

√
1 + b2 +

√
1 + a2)3

]

≤ π3

4b3
. (7.146)

Appendix 7.D A few basic lemmas

Lemma 7.D.1. Let f ∈ C0(R) such that f ′(r) exists for all r 6= 0. Now assume

that f ′(r) → f′0 as r → 0 for some finite f′0, then f ′(0) exists and its value is f′0.

Proof of Lemma 7.D.1. Using the mean value theorem, we have

f(h) − f(0)

h
= f ′(η) for some η ∈ (0, h), (7.147)
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The proof of lemma follows by taking h → 0.

Definition 7.D.1. A function f : R → R is said to have the property (N) if

f ∈ C∞(R) and
d2n−1f(r)

d r2n−1

∣∣∣∣∣
r=0

= 0 ∀ n ∈ N. (7.148)

It is clear that if f(r) has the property (N) then so does the f(αr) for any

α 6= 0. Furthermore, we have the following lemma.

Lemma 7.D.2. If a function f : R → R has the property (N) then so does the

function g : R → R defined as

g(r) :=





1
r
df(r)
dr

if r 6= 0,

f ′′(0) if r = 0,

(7.149)

has the property (N).

Proof of Lemma 7.D.2. It is clear that g(r) is continuous when r 6= 0. Now from

L’Hospital’s rule we obtain

lim
r→0

1

r

df(r)

dr
= lim

r→0

d2f(r)

dr2
= f ′′(0), (7.150)

therefore, using Lemma 7.D.1, g(r) is continuous at r = 0 as well. Now, for n ≥ 1,

we have

dng(r)

drn
=

n!

rn+1

n∑

i=0

(−1)n−iri

i!

di+1f(r)

dri+1
if r 6= 0. (7.151)
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Taking the limit r → 0 and using the L’Hospital’s rule, we obtain

lim
r→0

dng(r)

drn
= lim

r→0

n!

rn+1

n∑

i=0

(−1)n−iri

i!

di+1f(r)

dri+1

= lim
r→0

n!

(n+ 1)rn

[
n∑

i=0

(−1)n−iri

i!

di+2f(r)

dri+2
−

n∑

i=1

(−1)n−i−1ri−1

(i− 1)!

di+1f(r)

dri+1

]

=
1

(n+ 1)

di+2f(r)

dri+2

∣∣∣∣∣
r=0

. (7.152)

Noting that g is continuous and using Lemma 7.D.1 and the formula (7.152), for

n = 1, we see that g(r) is differentiable at r = 0, furthermore, g′(r) is continuous

everywhere. Proceeding in a similar manner, an induction argument then shows

that g is infinitely differentiable. Once again, noting from the formula (7.152)

that all the odd derivatives of g are zero at r = 0, proves the lemma.

Lemma 7.D.3. Let g : R2 → R be given by g(y, z) = yαyzαzf(̺), where αy and

αz are nonnegative integers and ̺ is a placeholder for
√
y2 + z2. Furthermore,

the function f : R → R has the property (N). Then the function g is infinitely

differentiable.

Proof. We can prove this lemma using an induction argument combined with

Lemma 7.D.2.

Now it is a standard exercise in classical real analysis to show that the func-

tions ϕ(r), h(r), Ψs(r), Ψe(r),
Ψs(r)
r2 and Ψe(r)

r2 , with relevant definitions given in

(7.53), (7.59)and (7.61), have the property (N). Using Lemma 7.D.3, one can then

conclude that the velocity field, as defined in (7.61), is infinitely smooth.
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Chapter 8

Nonuniqueness of trajectories on

a set of full measure for Sobolev

vector fields

This chapter is based on the paper Kumar (2023) (to be submitted soon). A

preprint is available at arXiv:2301.05185.

8.1 Introduction

In this paper, we consider the following system of ordinary differential equa-

tions (ODE)

dx(t)

dt
= u(t,x(t)) with x(0) = x0 ∈ T

d, (8.1)

where T
d is a d-dimensional Torus and u : [0, T ] ×T

d → R
d is a vector field taken

to be continuous for convenience. We are interested in studying an important
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question regarding this ODE for the case when the vector field u has only Sobolev

regularity. To describe the complete problem, let us start with a few definitions.

Definition 8.1.1 (Trajectory). We say γu
x : [0, T ] → T

d is a trajectory corre-

sponding to the vector field u starting at x if γu
x is absolutely continuous, γu

x

solves the ODE (8.1), i.e., γ̇ u
x(t) = u(t, γu

x(t)) ∀t ∈ [0, T ] and γu
x(0) = x.

For a vector field u, by bundling these trajectories for L d-a.e. x ∈ T
d, we can

define a flow map as follows.

Definition 8.1.2 (Flow map). A map Xu : [0, T ] ×T
d → T

d is called a flow map

corresponding to the vector field u if, for L d-a.e. x ∈ T
d, Xu(·,x) : [0, T ] → T

d

is a trajectory starting from x.

With this definition, we say two flow maps Xu
1 and Xu

2 are the same if trajec-

tories Xu
1 (·,x) and Xu

2 (·,x) are the same for L d-a.e. x ∈ T
d. A restricted class

of flow maps is called regular Lagrangian flows, which plays an important role in

DiPerna and Lions (1989) theory. The following definition is taken from a paper

by Ambrosio (2004).

Definition 8.1.3 (Regular Lagrangian flow). A map Xu
RL

: [0, T ] × T
d → T

d is a

regular Lagrangian flow if it is a flow map corresponding to the vector field u. In

addition, it satisfies the following condition.

• For any time t ∈ [0, T ], Xu
RL

(t, ·)#L d ≤ CL d for some constant C > 0.

If the vector field is Lipschitz continuous, then the classical Cauchy–Lipschitz

theorem guarantees the uniqueness of trajectories starting from any x. Moreover,

the corresponding flow map Xu is automatically a regular Lagrangian flow, i.e.,

the additional condition required in the definition (8.1.3) is a consequence in the

classical theory.
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In the late 1980s, DiPerna and Lions (1989), in a pioneering work, developed

the theory of ODE for Sobolev vector fields with bounded divergence, where they

showed the existence and uniqueness in the class of regular Lagrangian flow. The

theory of DiPerna and Lions was later extended by Ambrosio (2004) to vector

fields of bounded variation. Since the theory of DiPerna and Lions first came out,

an interesting question remained: is it possible to show the uniqueness of a general

flow map, as in definition (8.1.2), for Sobolev vector fields? In other words, is any

flow map automatically a regular Lagrangian flow, just as in the classical case?

In recent years, the answer to this question has been given. Caravenna and

Crippa (2021) showed that if u ∈ C([0, T ];W 1,p(Td,Rd)) with p > d, then the tra-

jectories are unique for L d-a.e. x ∈ T
d. However, if p < d, then Brué et al. (2021)

showed that there are divergence-free vector fields u ∈ C([0, T ];W 1,p(Td,Rd)∩Ls)

for s < ∞ such that the trajectories are not unique on a set of positive measure,

which also implies that there are flow maps Xu that are not regular Lagrangian.

Their proof uses a convex integration type scheme to prove the nonuniqueness of

positive solutions of the continuity equation and then uses Ambrosio’s superposi-

tion principle to conclude the nonuniqueness of trajectories for the ODE. Using

the same methodology, Giri and Sorella (2022); Pitcho and Sorella (2021) cov-

ered the case of autonomous vector fields. They constructed a divergence-free

vector field u ∈ W 1,p(Td,Rd) with p < d− 1 and showed that the nonuniqueness

of trajectories could occur on a set of positive measure. We also note that ex-

plicit examples of vector fields for which nonuniqueness happens on a set of full

Hausdorff dimension but of measure zero are known (Fefferman et al., 2021).

Inspired by one of our recent studies on branching flow for optimal heat trans-

port (Kumar, 2022b), in this paper, we give an explicit example of a vector field

u ∈ C([0, T ];W 1,p(Td,Rd) with p < d, for which we show that the set of initial
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conditions for which trajectories are not unique can be of full measure. Fur-

thermore, the vector field that we construct also possesses Hölder continuity of

exponent α arbitrarily close to one. The following theorem summarizes our result

for the unsteady case.

Theorem 8.1.1 (Main result: unsteady case). For every integer d ≥ 2 and

every 1 ≤ p < d, 0 < α < 1 and T > 0, there exists a divergence-free vector

field u ∈ C([0, T ];W 1,p(Td,Rd)) ∩ Cα([0, T ] × T
d,Rd) such that the set of initial

conditions for which trajectories are not unique is a full measure set.

The unsteady vector field construction to prove the above theorem can be triv-

ially modified to produce a similar result using a steady vector field. Essentially,

we trade time for one space dimension. The result is summarized in the following

theorem.

Theorem 8.1.2 (Main result: steady case). For every integer d ≥ 3 and ev-

ery 1 ≤ p < d − 1 and 0 < α < 1, there exists a divergence-free vector field

us ∈ W 1,p(Td,Rd) ∩ Cα(Td,Rd) such that the set of initial conditions for which

trajectories are not unique is a full measure set.

8.1.1 Notation

In this paper, we will work with both R
d and a d-dimensional torus T

d =

R
d/Zd. We identify point x ∈ R

d or T
d through its components as x =

(x1, . . . , xd), where xi ∈ R or T for 1 ≤ i ≤ d. We will also use the notation

(x)i to denote the ith component of x when it is more convenient to do so. We

use L d to mean the d-dimensional Lebesgue measure on R
d or Td. Given a vector
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field u, we define the support of u in the time variable as

suppt u := {t ∈ R|u(t,x) = 0 ∀ x ∈ Rd or Td}. (8.2)

Throughout the paper, we will use a . b to mean that a < c b for some constant

c > 0 independent of any parameter, except we will allow this constant c to depend

on the dimension d.

8.1.2 Organization of the paper

The paper is arranged as follows. As our design of vector field u will involve a

Cantor set, we give the required Cantor set construction and prove a few associated

basic lemmas in section 8.2. We give an overview of the design of the vector field u

in section 8.3. In section 8.4, we give proof of Theorem 8.1.1 and briefly summarize

the changes required to prove Theorem 8.1.2. Finally, in section 8.5, we construct

a useful flow that helps translate cubes in the domain and is essential in the design

of vector field u.

8.2 Cantor set construction

The purpose of this section is to fix some notations and give a Cantor set

construction in a way that is readily usable throughout the paper. We also state

and prove a few basic lemmas required later for constructing the vector field.

Notation 1. Given a point xc in R
d or T

d and ℓ > 0, we define an open cube of

length ℓ centered at xc as follows

Q(xc, ℓ) :=

{
x ∈ R

d or T
d

∣∣∣∣∣ |xi − xci | <
ℓ

2
, 1 ≤ i ≤ d

}
, (8.3)
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and a close cube Q(xc, ℓ) to be the closure of Q(xc, ℓ).

Notation 2. In preparation for constructing Cantor sets, we first define a few

important sets and sequences. We let,

I := {1,−1}, and I
d := {s = (s1, . . . , sd) | si ∈ I}. (8.4)

For every n ∈ N, we define a set of n−tuples with elements from I
d as

Sn := {s = (s1, . . . , sn) | si ∈ I
d, 1 ≤ i ≤ n}. (8.5)

It is clear that |Sn| = 2nd. We define a set of sequences with elements from I
d as

S := {s = (s1, s2, . . . ) | si ∈ I
d, i ∈ N}. (8.6)

We note that we use Fraktur font to denote elements from a set Sn and bold

Fraktur font to denote elements from the set S. Given s ∈ Sn with n ≥ 2, we will

denote

s′ := (s1, . . . , sn−1) ∈ Sn−1, (8.7)

and we define σn : S → Sn as follows

σn(s) := (s1, . . . sn) for s ∈ S. (8.8)

Notation 3. Consider a sequence Ψ := {ψi}∞
i=1 with elements 0 < ψi ≤ 1 and a
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sequence of 1’s

Θ := {1, 1, . . . }. (8.9)

We define a few lengths corresponding to Ψ as

ℓ0
Ψ = 1 and ℓnΨ =

n∏
i=1

ψi

2n
for n ∈ N. (8.10)

With this definition and the fact that 0 < ψi ≤ 1, we note that

ℓnΨ ≤ ℓn−1
Ψ

2
for n ∈ N. (8.11)

The significance of ℓnΨ is shown in figure 8.1. The length ℓnΨ represents the size

of the n-th generation cubes in the Cantor set construction process or the n-th

generation dyadic cubes if Ψ is chosen to be Θ (the sequence of 1’s).

Next, for a given sequence Ψ as above, we associate every element s in Sn with

a point x in T
d. For every n ∈ N, we define P n

Ψ : Sn → T
d as

P n
Ψ(s) :=

(
1

2
+

1

4

n∑

i=1

s1
i ℓ
i−1
Ψ , . . . , 1

2
+

1

4

n∑

i=1

sdi ℓ
i−1
Ψ

)
for s = (s1, . . . , sn) ∈ Sn.

(8.12)

The positions P n
Ψ(s) would denote the centers of the n-th generation cubes in the

Cantor set construction process (see figure 8.1), and P n
Θ(s) denote the centers of
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the n-th generation dyadic cubes. We also define P̃ n
Ψ : Sn → T

d as P̃ 1
Ψ := P 1

Ψ and

P̃ n
Ψ(s) := P n

Ψ(s) − P n−1
Ψ (s′) + P n−1

Θ (s′)

=

(
1

2
+

1

4

n−1∑

i=1

s1
i

2i−1
+

1

4
s1
nℓ
n−1
Ψ , . . . , 1

2
+

1

4

n−1∑

i=1

sdi
2i−1

+
1

4
sdnℓ

n−1
Ψ

)
for n ≥ 2.

(8.13)

We will need P̃ n
Ψ while constructing the vector field, which will be based on trans-

lating various cubes (see section 8.3). In that respect, P̃ n
Ψ(s) represents the center

of an n-th generation cube in the Cantor set construction process relative to the

center P n−1
Ψ (s′) of a cube from the previous generation, which is then shifted to

P n−1
Θ (s′), the center of an (n − 1)th-generation dyadic cube. Finally, we define

PΨ : S → T
d as

PΨ(s) :=

(
1

2
+

1

4

∞∑

i=1

s1
i ℓ
i−1
Ψ , . . . 1

2
+

1

4

∞∑

i=1

sdi ℓ
i−1
Ψ

)
. (8.14)

Next, we state a few useful lemmas whose proof is fairly straightforward and

given here only for completeness.

Lemma 8.2.1. Let Ψ = {ψi}∞
i=1 be a sequence with 0 < ψi < 1 and let s and r be

two different elements of Sn then the closed cubes Q(P n
Ψ(s), ℓnΨ) and Q(P n

Ψ(r), ℓnΨ)

are disjoint.

Proof. Since s = (s1, . . . , sn) and r = (r1, . . . , rn) are different, that means for

some 1 ≤ i ≤ n, si = (s1
i , . . . , s

d
i ) and ri = (r1

i , . . . , r
d
i ) are different. This, in turn,

implies that for some 1 ≤ j ≤ d, sji and rji are different. From the definition of

P n
Ψ in (8.12), we see that

∣∣∣(P n
Ψ(s) − P n

Ψ(r))j

∣∣∣ ≥ 1

2
ℓn−1

Ψ ,
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Figure 8.1: An illustration of the construction process of the Cantor set CΦ in
two dimensions. The sequence Φ is given by (8.20), and we have chosen ν = 3

4
.

The figure shows the collection of first four generations of cubes, C1
Φ, C2

Φ, C3
Φ and

C4
Φ, in increasingly less pale red color. In the figure, x0 = (1/2, 1/2), x1 = P 1

Φ(s1),
x2 = P 2

Φ(s2) and x3 = P 3
Φ(s3). Here, s1, s2 and s3 are the elements of S1, S2

and S3, respectively, given by s1 = {(−1,−1)}, s2 = {(−1,−1), (−1,−1)} and
s3 = {(−1,−1), (−1,−1), (−1,−1)}.

where ( · )j denotes the j-th component. Now suppose that x ∈ Q(P n
Ψ(s), ℓnΨ),

this means

∣∣∣(P n
Ψ(s) − x)j

∣∣∣ ≤ ℓnΨ
2
, (8.15)

which implies

∣∣∣(P n
Ψ(r) − x)j

∣∣∣ ≥
∣∣∣(P n

Ψ(s) − P n
Ψ(r))j

∣∣∣−
∣∣∣(P n

Ψ(s) − x)j

∣∣∣

≥ 1

2
ℓn−1

Ψ − 1

2
ℓnΨ ≥ 1

ψi
ℓnΨ − 1

2
ℓnΨ >

1

2
ℓnΨ.

Therefore, x 6∈ Q(P n
Ψ(r), ℓnΨ), which then completes the proof.
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Lemma 8.2.2. Let the sequence Ψ be the same as in the previous lemma, and let

s and r be two different elements of S. Then PΨ(s) 6= PΨ(r).

Proof. The proof is similar to the previous lemma.

Lemma 8.2.3. Let Θ be a sequence of 1′s as defined in (8.9). Let s and r be two

different elements of Sn then the open cubes Q(P n
Θ(s), ℓnΘ) and Q(P n

Θ(r), ℓnΘ) are

disjoint.

Proof. The proof works the same as in Lemma 8.2.1. The only difference is that

instead of (8.15), for x to be in Q(P n
Θ(s), ℓnΘ), we need

∣∣∣(P n
Θ(s) − x)j

∣∣∣ <
ℓnΘ
2
. (8.16)

Lemma 8.2.4. Let Ψ = {ψi}∞
i=1 be a sequence with 0 < ψi ≤ 1 and let s =

(s1, . . . sn) ∈ Sn for some n ≥ 2 and s′ = (s1, . . . sn−1). Then Q(P n
Ψ(s), ℓnΨ) ⊂

Q(P n−1
Ψ (s′), ℓn−1

Ψ ).

Proof. Suppose x ∈ Q(P n
Ψ(s), ℓnΨ). This means

∣∣∣(P n
Ψ(s) − x)j

∣∣∣ ≤ ℓnΨ
2
,

where ( · )j denotes the j-th component. A straightforward calculation shows that

∣∣∣∣
(
P n−1

Ψ (s′) − x
)
j

∣∣∣∣ ≤
∣∣∣∣
(
P n−1

Ψ (s′) − P n
Ψ(s)

)
j

∣∣∣∣+
∣∣∣(P n

Ψ(s) − x)j

∣∣∣ ≤ ℓn−1
Ψ

4
+
ℓnΨ
2

≤ ℓn−1
Ψ

2
.

This implies x ∈ Q(P n−1
Ψ (s′), ℓn−1

Ψ ). Hence, Q(P n
Ψ(s), ℓnΨ) ⊂ Q(P n−1

Ψ (s′), ℓn−1
Ψ ) is

true.
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Lemma 8.2.5. Let s ∈ S. Then for every n ∈ N, PΨ(s) ∈ Q(P n
Ψ(σn(s)), ℓnΨ).

Proof. For any j ∈ {1, . . . , d}, we note that

∣∣∣(PΨ(s) − P n
Ψ(s))j

∣∣∣ ≤ 1

4

∞∑

i=n+1

ℓi−1
Ψ ≤ 1

4

∞∑

i=n+1

ℓnΨ
2i−n−1

≤ ℓnΨ
2
.

Corollary 8.2.1. Let s ∈ S. Then PΨ(s) =
⋂
n∈N

Q(P n
Ψ(σn(s)), ℓnΨ).

Proof. From Lemma 8.2.4, Q(P n
Ψ(σn(s)), ℓnΨ) forms a nested sequence of cubes,

i.e.,

Q(P 1
Ψ(σ1(s)), ℓ1

Ψ) ⊃ Q(P 2
Ψ(σ2(s)), ℓ2

Ψ) ⊃ . . . .

Also, the size of the cube Q(P n
Ψ(σn(s)), ℓnΨ) goes to zero as n → ∞. Therefore,

⋂
n∈N

Q(P n
Ψ(σn(s)), ℓnΨ) contains only one single point from T

d. From Lemma 8.2.5,

we note that PΨ(s) ∈ ⋂
n∈N

Q(P n
Ψ(σn(s)), ℓnΨ), which finishes the proof.

Lemma 8.2.6. Let s ∈ Sn, then Q(P n
Θ(s), ℓnΘ) =

⋃
r∈Sn+1

r′=s

Q(P n+1
Θ (r), ℓn+1

Θ ). Further-

more, Td =
⋃

s∈Sn

Q(P n
Θ(s), ℓnΘ) for any n ∈ N.

Proof. These are standard properties in a dyadic decomposition.

Lemma 8.2.7. For every x ∈ T
d, ∃ s ∈ S such that x = PΘ(s).

Proof. From Lemma 8.2.6, there exist s1 ∈ S1 such that x ∈ Q(P 1
Θ(s1), ℓ

1
Θ).

Having selected si ∈ Si for i ≥ 1 such that x ∈ Q(P i
Θ(si), ℓ

i
Θ), again using Lemma

8.2.6, we choose si+1 ∈ Si+1 such that s′
i+1 = si and x ∈ Q(P i+1

Θ (si+1), ℓ
i+1
Θ ).

Finally, we define s ∈ S as follows. We let the nth component of s to be the

nth component of sn, i.e., sn = sn,n. By construction x =
⋂
n∈N

Q(P n
Ψ(σn(s)), ℓnΨ).

Finally, referring to Corollary 8.2.1 finishes the proof.
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Notation 4. If Ψ = {ψi}∞
i=1 is such that 0 < ψi < 1, then we define

Cn
Ψ :=

⋃

s∈Sn

Q(P n
Ψ(s), ℓnΨ). (8.17)

The set Cn
Ψ is the union of nth generation cubes in the Cantor set construction

process. From Lemma 8.2.4, we note that Cn
Ψ’s form a nested sequence of sets,

i.e.,

C1
Ψ ⊃ C2

Ψ ⊃ C3
Ψ . . . . (8.18)

Finally, we define a Cantor set corresponding to the sequence Ψ as

CΨ :=
∞⋂

i=1

Cn
Ψ. (8.19)

From the definition (8.19) and Corollary 8.2.1, we immediately see that for any

s ∈ S, PΨ(s) ∈ CΨ. Moreover, the following lemma states that any x ∈ CΨ can

be represented this way.

Lemma 8.2.8. Let Ψ = {ψi}∞
i=1 be a sequence with 0 < ψi < 1, then for every

x ∈ CΨ, ∃!s ∈ S such that x = PΨ(s).

Proof. We only need to show the existence of s ∈ S as the uniqueness is clear from

Lemma 8.2.2. Given x ∈ CΨ, we construct an s = (s1, s2, . . . ) ∈ S as follows.

By definition of CΨ, for every n ∈ N there is sn ∈ Sn such that x ∈

Q(P n
Ψ(sn), ℓnΨ). Moreover, as the cubes from the nth generation in the Cantor

set construction process are disjoint from Lemma 8.2.1, this sn is unique. Using

(8.7) from Notation 2, this also means s′
n = sn−1. Finally, we define the nth

component of s as sn := sn,n, where sn,n is the nth component of sn.
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By construction of s, we see that for every n ∈ N, x ∈ Q(P n
Ψ(σn(s)), ℓnΨ).

Finally, noting Corollary 8.2.1 implies x = P(s).

An important sequence that we use for the construction of our vector field is

Φ := {φi}∞
i=1 :=

{
1

2ν

}∞

i=1
where ν ∈ (0, 1) is a constant. (8.20)

From this sequence Φ, we have that

ℓ0
Φ = 1 and ℓnΦ =

1

2(1+ν)n
for n ∈ N. (8.21)

Lemma 8.2.9. Let the sequence Φ be as given in (8.20). Then the Hausdorff

dimension of the corresponding Cantor set CΦ is

dimH CΦ =
d

1 + ν
.

Proof. The calculation of the Hausdorff dimension of a Cantor set is standard, see

for example, (Stein and Shakarchi, 2005, ch. 7) or (Falconer, 2014, ch. 3).

Finally, we finish this section by stating a simple lemma that will be useful in

proof of Proposition 8.4.2 given in section 8.5.3. We first let

ϑ = ϑ(ν) :=
1

8
(2ν − 1). (8.22)

Lemma 8.2.10. For any a ∈ [0, 1] and for any s ∈ Si for some i ∈ N, let
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xa = (1 − a)P̃ i
Φ(s) + aP i

Θ(s) then

Q(xa, (1 + ϑ)ℓiΦ) ⋐ Q(P i
Θ(s), ℓiΘ).

Proof. The proof is a straightforward verification of the statement.

8.3 Overview of the approach

In order to prove Theorem 8.1.1, we aim to construct a vector field u such

that there exists a flow map for which, at some time, T > 0, we have

Xu(T,Td) ⊆ CΦ. (8.23)

From Lemma 8.2.9, we see that the Hausdorff dimension dimH CΦ < d. Therefore,

the d-dimensional Lebesgue measure of CΦ is zero. As a result, this flow map Xu

is not a regular Lagrangian flow. However, as we shall see, the flow u possesses a

Sobolev regularity and falls in the range of DiPerna and Lions theory, which then

guarantees the existence of a regular Lagrangian flow Xu
RL

as well. The existence

of two different flow maps implies that the set of initial conditions for which the

trajectories are not unique is a set of positive measure. Because the condition

(8.23) holds, this set is, in fact, a full-measure set.
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Figure 8.2: The motion of the first four generations of cubes in the Cantor
set construction process under the flow of vector field v =

∑∞
i=0 vi. At the ith

stage, the vector field vi translates the cubes of the ith generation so that their
centers align with the dyadic cubes of the ith generation. In the first step, by
definition of the centers (8.12), we have this alignment at t = τ0 itself. Therefore,
in the first step, we simply choose v0 ≡ 0. The arrows in the figure indicate the
direction of the motion of cubes. In panels (b), (c) and (d), the tails of the arrow
lie at the shifted center (see (8.13)), P̃ 1

Φ(s1), P̃ 2
Φ(s2) and P̃ 3

Φ(s3), respectively, for
s1 ∈ S1, s2 ∈ S2 and s3 ∈ S3. Finally, in our construction, the vector field vi−1

is supported near the ith generation cubes in the Cantor set construction process
as they move around in space. The size of these ith generation cubes becomes
increasingly smaller compared to ith generation dyadic cubes, as can be seen in
panel (e), for example. This shrinking of the support of the vector field vi with
large i is one of the main reasons that allow us to bound the Sobolev norm of the
vector field uniformly in time.
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We construct the vector field u through a time reversal argument applied to

a vector field v, whose construction we describe next. For some 0 < β < 1, let us

define a sequence of times as

τi :=
1 − 2−(1−β)i

2(1−β) − 1
for i ∈ Z≥0 and τ∞ :=

1

2(1−β) − 1
. (8.24)

It is clear that

τi − τi−1 =
1

2(1−β)i
for i ∈ N.

We design the vector field v to be such that it has a unique flow map Xv.

Moreover, at time t = τ∞, we have

Xv(τ∞, CΦ) = T
d. (8.25)

In our definition of the vector field v, we will write v to be an infinite sum of vector

fields vi’s, i.e., v =
∑∞
i=0 vi. Under the flow of vector field v, the mapping of CΦ to

T
d will occur in a sequence of infinite steps. The vector field vi−1, whose support

lies in [τi−1, τi], will execute the ith step in the sequence. Figure 8.2 depicts the

first four steps in this infinite sequence of steps.

In the first step, the vector field v0 translates Q(P 1
Φ(s), ℓ1

Φ) (the first-generation

cubes in the Cantor set construction process) such that after the translation, the

centers of these cubes align with the centers of first-generation dyadic cubes.

Continuing in this way, at the ith step, the vector field vi−1 translates the cubes

Q(P̃ i
Φ(s), ℓiΦ) (the ith generation cubes in the Cantor set construction process

after translations under flow vj’s, j < i − 1) such that their centers align with

the centers of the ith generation dyadic cubes. After performing the ith step, the
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centers of the i + 1th generation of cubes in the Cantor set construction process

now shift to P̃ i+1
Φ (s), which we note are different from the centers P i+1

Φ (s) in the

original configuration of the Cantor set. To translate the cubes at any step, we

use what we call a “blob flow." An overview and the construction of a blob flow

are given in section 8.5.

Now we quickly see why the flow of vector field v takes CΦ to T
d. From

Lemma 8.2.7, we see that for every xe ∈ T
d, there is an element s ∈ S such

that xe = PΘ(s). But for this s there is xs ∈ CΦ given by xs = PΦ(s). From

the description given above, a trajectory corresponding to vector field v starting

at xs after time τi is given by γv
xs

(τi) = PΦ(s) − P i
Φ(σi(s)) + P i

Θ(σi(s)). Letting

i → ∞, we see that γv
xs

(τ∞) = PΘ(s). In conclusion, Xv(τ∞, CΦ) = T
d.

Finally, we note that the vector field v that we create lies in

C([0, τ∞];W 1,p(Td,Rd)), and we can do this for any 1 ≤ p < d. Our vector field

design has one main advantage compared to, for example, the “checkerboard" flow

used in optimal mixing problems (Yao and Zlatoš, 2017; Alberti et al., 2019). For

both a checkerboard flow and our vector field v, the number of cubes at the ith

step are the same, which is 2id. However, the size of cubes that we translate at

the ith step in our vector field v is 1
2(1+ν)i , which is at large i substantially smaller

than 1
2i , the size of cubes at the ith step in a typical checkerboard flow. This is

one of the main reasons we are able to bound the Sobolev norm uniformly in time.
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8.4 Proof of Theorem 8.1.1 and the design of

vector field v

This section will prove Theorem 8.1.1 and construct the vector field v from

last section, given the properties of its components vi. Before stating the next

proposition, recall the definition of Φ from (8.20), which uses a parameter ν and

the definition of τi from (8.24), which uses a parameter β.

Proposition 8.4.1. For every p < d and α < 1, there are two numbers,

ν := ν(p, α) ∈ (0, 1) and β := 1 − ν2, and there exists a divergence-free vector

field v ∈ C([0, τ∞];W 1,p(Td,Rd)) ∩ Cα([0, τ∞] × T
d,Rd) ∩ C∞([0, τ∞) × T

d,Rd)

with the following two properties:

(i) For every xs ∈ T
d, the trajectory γv

xs
: [0, τ∞] → T

d is unique. As a result, the

flow map Xv is also unique.

(ii) Let Φ be as in (8.20). Then given a sequence s ∈ S, let xs = PΦ(s) and

xe = PΘ(s), then γv
xs

(τ∞) = xe.

Proof of Theorem 8.1.1. Let’s define the required vector field u : [0, T ]×T
d → R

d

as

u(t,x) := −τ∞
T

v

(
τ∞

(
1 − t

T

)
,x
)
.

Clearly, u ∈ C([0, T ];W 1,p(Td,Rd)) ∩ Cα([0, T ] × T
d,Rd) and is divergence-free.

Next, for every x ∈ T
d, we define a trajectory corresponding to the vector field

u that starts at x. From Lemma 8.2.7, for every xe ∈ T
d, there exist an s ∈ S

such that xe = PΘ(s). After choosing such an s, let us assign xs = PΦ(s). With
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that, it is easy to verify that γu
xe

: [0, T ] → T
d defined as

γu
xe

(t) := γv
xs

(
τ∞

(
1 − t

T

))

is a trajectory corresponding to the vector field u starting from xe.

Finally, we define a map Xu : [0, T ] × T
d → T

d as

Xu(t,x) := γu
x(t).

Clearly, Xu is a flow map for which

Xu(T,Td) ⊆ CΦ. (8.26)

As the Hausdorff dimension dimH CΦ < d, which means L d(CΦ) = 0. Therefore,

Xu is not a regular Lagrangian flow. As the vector field u has the required Sobolev

regularity, from DiPerna–Lions theory, there is another flow map Xu
RL

which is

regular Lagrangian. This implies that the set of initial conditions for which the

trajectories are not unique has a positive d-dimensional Lebesgue measure. Fur-

thermore, from (8.26) and the definition of regular Lagrangian flow (8.1.3), we see

that this set is, in fact, a full-measure set.

Proposition 8.4.2. Given ν ∈ (0, 1) and β ∈ (0, 1), for every i ∈ Z≥0, there

exists a vector field vi : [0, τ∞] × T
d → R

d with the following properties.

(i) vi ∈ C∞([0, τ∞] × T
d,Rd),

(ii) vi is divergence-free,

(iii) suppt vi ⋐ (τi, τi+1),
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(iv) ‖vi‖L∞
t,x

. 1
(2ν−1)

1
2βi

(v) ‖∇vi‖L∞
t,x

. 2(1+ν−β)i

(2ν−1)2

(vi) For a given p ∈ [1,∞), ‖vi(t, ·)‖W 1,p . 1
(2ν−1)2 × 2

[(1+ν−β)p−dν]
p

i,

(vii) ‖∂tvi‖L∞
t,x

. 1
(2ν−1)2

1
2[2β−ν−1]i

(viii) For a given s ∈ Si+1 and x ∈ Q(P̃ i+1
Φ (s), ℓi+1

Φ ), we have

γvi
x (τi+1) = x − P̃ i+1

Φ (s) + P i+1
Θ (s).

Proof of Proposition 8.4.1. Let us define a vector field v : [0, τ∞] × T
d → R

d as

follows

v :=
∞∑

i=0

vi, (8.27)

where vi’s are the vector fields from Proposition 8.4.2. Next, we show that the

vector field v has the properties stated in Proposition 8.4.1.

In the proof that follows, we make the following choices of parameters: ν

is a sufficiently small number and β = 1 − ν2.

• v ∈ C∞([0, τ∞) × T
d,Rd): We conclude this by noting property (i) and

that the support of vi’s are disjoint.

• v is divergence-free: As for any time t ∈ [0, τ∞], at most one of the vi is

non-zero, ∇ · v ≡ 0 follows from the divergence-free nature of the vi’s.

• v ∈ C([0, τ∞];W 1,p(Td,Rd)): From the disjoint support of vi’s in time,
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we note that

‖v‖L∞
t W 1,p

x

≤ sup
i

‖vi‖L∞
t W 1,p

x

.

From property (vi) in Proposition 8.4.2, we see that the right-hand side is bounded

if we choose

p <
dν

1 + ν − β
. (8.28)

As v ∈ C∞([0, τ∞) × T
d,Rd), the continuity of the Sobolev norm in time is clear

for any t ∈ [0, τ∞). For t = τ∞, we simply have

∥∥∥v(τ∞, ·) − v(t̃, ·)
∥∥∥
W 1,p

=
∥∥∥v(t̃, ·)

∥∥∥
W 1,p

.

Using the property (vi) in Proposition 8.4.2, the right-hand side decreases to zero

as t̃ approaches τ∞ if (8.28) holds. Finally, we note that in condition (8.28), the

exponent p can be made arbitrarily close to d if we choose ν small enough and

β = 1 − ν2.

• v ∈ Cα([0, τ∞] × T
d,Rd): We start with the definition of α-Hölder norm:

‖v‖Cα
t,x

= sup
(t1,x1) 6=(t2,x2)

|v(t1,x1) − v(t2,x2)|
|(t1,x1) − (t2,x2)|α

. (8.29)

If t1 = t2 = τ∞, but x1 6= x2, then the right-hand side in (8.29) is simply zero. If

t1 = τ∞, but t2 6= τ∞, then we have

|v(t1,x1) − v(t2,x2)|
|(t1,x1) − (t2,x2)|α

=
|v(t2,x2)|

|(τ∞,x1) − (t2,x2)|α

≤ |v(t2,x2)|
|τ∞ − t2|α

.
1

2ν − 1
sup
i

1

2[β−α(1−β)]i
,
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which is bounded if

α <
β

1 − β
. (8.30)

Finally, if t1, t2 ∈ [0, τ∞), then we have

|v(t1,x1) − v(t2,x2)|
|(t1,x1) − (t2,x2)|α

≤ ‖∂tv‖L∞
t,x

|t1 − t2|1−α + sup
t

‖v(t, ·)‖Cα .

Now the first term on the right-hand side is bounded if α ≤ 1 and 1 + ν < 2β,

which is true for the choices we made at the beginning of the proof. For the second

term, we have

sup
x1 6=x2

|v(t,x1) − v(t,x2)|
|x1 − x2|α

≤ 2 min

{
|x1 − x2|1−α ‖∇v(t, ·)‖L∞ ,

‖v(t, ·)‖L∞

|x1 − x2|α
}
,

≤ 2 ‖v(t, ·)‖1−α
L∞ ‖∇v(t, ·)‖αL∞ ,

.
(

1

2ν − 1

)1+α

sup
i

2[α(1+ν)−β]i,

which is bounded if

α <
β

1 + ν
. (8.31)

As before, by choosing ν to be small enough and β = 1 − ν2, the exponent α can

be made arbitrarily close to one.

• Uniqueness of trajectories: As the vector field v ∈ C∞([0, τ∞) × T
d,Rd),

the existence and uniqueness of a trajectory γv
x starting from x ∈ T

d is clear for

any time t < τ∞. The existence and uniqueness at time t = τ∞ are obtained from
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the fact that ‖v(t, ·)‖L∞ → 0 as t → τ∞.

• Trajectories starting from CΦ: Let xs ∈ CΦ, then from Lemma 8.2.8,

there is a unique s ∈ S such that xs = PΦ(s). We will show that γv
xs

(τ∞) = xe,

where xe = PΘ(s), which will then imply Xv(τ∞, CΦ) = T
d from Lemma 8.2.7.

Given a x ∈ T
d, let us first define yi ∈ T

d for all i ∈ Z≥0 as

y0 := xs, and yi+1 := γvi
yi

(τi) ∀ i ∈ Z≥0.

Next, let us define a trajectory γv
x : [0, τ∞] → T

d as

γv
x(t) :=





γvi
yi

(t) for t ∈ [τi, τi+1),

lim
i→∞

γvi
yi

(τi) if t = τ∞.

(8.32)

Using property (iii) about the disjoint supports of vi’s, one can verify through an

induction argument that γv
x is indeed the unique trajectory corresponding to the

flow v starting at x. Next, we claim that

γv
xs

(τi) = PΦ(s) − P i
Φ(σi(s)) + P i

Θ(σi(s)). (8.33)

The claim is obviously true for i = 1. Now suppose that the claim is true for some

i ≥ 1. We will show that it is also true for i + 1. From Lemma 8.2.5, we know

that

PΦ(s) ∈ Q(P i+1
Φ (σi+1(s)), ℓi+1

Φ ).
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This implies

PΦ(s) − P i
Φ(σi(s)) + P i

Θ(σi(s)) ∈ Q(P̃ i+1
Φ (σi+1(s)), ℓi+1

Φ ), (8.34)

after using the fact that

P̃ i+1
Φ (σi+1(s)) = P i+1

Φ (σi+1(s)) − P i
Φ(σi(s)) + P i

Θ(σi(s)). (8.35)

Using (8.34), property (viii) and definition (8.32), we have that

γv
xs

(τi+1) = PΦ(s) − P i
Φ(σi(s)) + P i

Θ(σi(s)) − P̃ i+1
Φ (σi+1(s)) + P i+1

Θ (σi+1(s))

= PΦ(s) − P i+1
Φ (σi+1(s)) + P i+1

Θ (σi+1(s)),

where we used (8.35) to obtain the second line. Finally, taking the limit i → ∞,

we see that

γv
xs

(τ∞) = PΘ(s).

8.4.1 Modifications required to prove Theorem 8.1.2

Our design of a steady vector field us : Td → R
d for d ≥ 3 is based on the

unsteady vector field construction of dimension d− 1, which we denote as ud−1 in

this subsection. Let x = (x1, x2, . . . xd) ∈ T
d, we denote x′ = (x1, . . . xd−1) ∈ T

d−1,

and we write x = (x′, xd). In our definition below, the coordinate xd serves as a
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function of time. Given 0 < ε < 1, we define

us(x′, xd) :=





(0, . . . , 0, 1) if 0 ≤ xd < 1 − ε,

(
1
ε
ud−1

(
xd−(1−ε)

ε
,x′

)
, 1
)

if 1 − ε ≤ xd ≤ 1,

(8.36)

where we use final time T = 1 in the definition of ud−1. Using the properties of

the unsteady vector field ud−1, it is not difficult to show that us is indeed the

required vector field in Theorem 8.1.2.

8.5 Blob flow

As described in the approach, to translate a cube in the domain from a starting

point xs to an endpoint xe, we use what we call a “blob flow.” A schematic of

a blob flow is shown in figure 8.3. The properties of a blob flow ṽ are specified

in Proposition 8.5.1. For a blob flow, the vector field ṽ is uniform inside a cube

of length λ, and the support of the vector field lies in a cube of a slightly larger

length λ(1 + δ), where δ can be understood as an offset. The vector field folds

back outside the cube of length λ to maintain the divergence-free condition (see

figure 8.3). Our goal now is to first construct a stationary blob flow, using which

we construct the required blob flow and finally give proof of Proposition 8.4.2.

8.5.1 A stationary blob flow

Let us first define a bump function as

ϕ(x) :=





c exp
(

1
x2− 1

4

)
if x ∈

(
−1

2
, 1

2

)
,

0 if x ∈
(
−∞,−1

2

]
∪
[

1
2
,∞

)
,

(8.37)
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where the constant c is chosen such that
∫
R
ϕ(x′) dx′ = 1. For any ε > 0, we define

a standard mollifier as

ϕε(x) :=
1

ε
ϕ
(
x

ε

)
. (8.38)

Next, for δ ∈ (0, 1), let χ[− 1
2

− 3δ
8
, 1

2
+ 3δ

8
] be an indicator function which is 1 if x ∈

[−1
2

− 3δ
8
, 1

2
+ 3δ

8
] and zero otherwise. We define a function ζ1 : R → R as

ζ1 := ϕ δ
8

∗ χ[− 1
2

− 3δ
8
, 1

2
+ 3δ

8
]. (8.39)

For d ≥ 2, we define ζd : Rd → R as

ζd(x) := ζ1(x1)ζ1(x2) . . . ζ1(xd). (8.40)

It is a standard calculation to check that ζd ∈ C∞
c (Rd), supp ζd ⊆ [−1

2
− δ

2
, 1

2
+ δ

2
]d,

‖ζd‖L∞ = 1 and that ζd(x) = 1 if x ∈ [−1
2
, 1

2
]d. Furthermore, ‖∇iζd‖L∞ . 1

δi for

i ∈ N.

Let q ∈ S
d−1 and d = 2k or 2k + 1 for some k ∈ N, we define a function

F1 : Rd → R as

F1(x) := (q1x2 − q2x1 + q3x4 − q4x3 · · · + q2k−1x2k − q2kx2k−1) ζd(x). (8.41)

When d = 2k + 1, we also define a function F2 : Rd → R as

F2(x) := q2k+1x1ζd(x). (8.42)
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Finally, we define the stationary blob flow w : Rd → R
d. When d = 2k, we let

w = (w1, w2, . . . , w2k)

:=
(
∂x2F1,−∂x1F1, ∂x4F1,−∂x3F1, . . . , ∂x2k

F1,−∂x2k−1
F1

)
, (8.43)

and when d = 2k + 1, we let

w = (w1, w2, . . . , w2k+1)

:=
(
∂x2F1 − ∂x2k+1

F2,−∂x1F1, ∂x4F1,−∂x3F1, . . . , ∂x2k
F1,−∂x2k−1

F1, ∂x1F2

)
.

(8.44)

From the definition itself, it is clear that w is divergence-free. In general, we

record the properties of w in the following lemma.

Lemma 8.5.1. Depending on two parameters, q ∈ S
d−1 and δ ∈ (0, 1), there is a

divergence-free vector field w(· ; q, δ) ∈ C∞
c (Rd,Rd) with the following properties.

(i) supp w ⊆ Q(0, 1 + δ),

(ii) If x ∈ Q(0, 1), then w(x) = q,

(iii) ‖w‖L∞ . 1
δ
,

(iv) ‖∇iw‖L∞ . 1
δi+1 ∀ i ∈ N.

8.5.2 A moving blob

Using the vector field w, our goal now is to design an unsteady vector field ṽ

which translates a cube centered around a starting point xs to an endpoint xe.

330



Figure 8.3: An illustration of the blob flow ṽ in two dimensions. The vector field
ṽ translates a cube of length λ centered at xs at time t = ts to a cube centered
at xe at t = te. The cube is shown in red color. As the cube moves, the vector
field ṽ inside the red cube is always uniform, and the support of the vector field
lies in a slightly bigger cube of length λ(1 + δ) (shown in dashed).

We first define η : R → R as

η(x) :=
∫ x− 1

2

−∞
ϕ(x′) dx′, (8.45)

where ϕ is given by (8.37). It is clear that η(x) = 0 if x ≤ 0 and η(x) = 1 if x ≥ 1.

Given two points xs,xe ∈ R
d and time ts < te, we define xp : R → R

d as

xp(t) := xs + (xe − xs)η(t; ts, te). (8.46)
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where we define

η(t; ts, te) := η
(
t− ts
te − ts

)
. (8.47)

Finally, given 0 < δ < 1 and λ > 0, we define a vector field ṽ(· ; xs,xe, ts, te, λ, δ) :

R × R
d → R

d as

ṽ(t,x) := |x′
p(t)|w

(
x − xp(t)

λ
;

xe − xs

|xe − xs|
, δ

)
. (8.48)

Here, xp(t) signifies the trajectory of the center of the cube that ṽ would trans-

late. We collect all the important properties of the vector field ṽ in the following

proposition.

Proposition 8.5.1. Given a few parameters q ∈ S
d−1, δ ∈ (0, 1), xs,xe ∈ R

d

and 0 ≤ ts < te, then the vector field ṽ(· ; xs,xe, ts, te, λ, δ) : R × R
d → R

d as

defined in (8.48) has the following properties.

(i) ṽ ∈ C∞
c (R × R

d,Rd),

(ii) ṽ is divergence-free,

(iii) suppt ṽ ⊆ [ts, te],

(iv) supp ṽ(t, ·) ⊆ Q(xp(t), λ(1 + δ)),

(v) If x ∈ Q(xp(t), λ) then ṽ(t,x) = (xe−xs)
te−ts η′

(
t−ts
te−ts

)
,

(vi) ‖ṽ‖L∞
t,x

. |xe−xs|
δ(te−ts)

,

(vii) ‖∇iṽ‖L∞
t,x

. 1
λiδi+1

|xe−xs|
te−ts ∀i ∈ N,

(viii) ‖∂tṽ‖L∞
t,x

. |xe−xs|
δ(te−ts)2 + 1

λδ2
|xe−xs|2
(te−ts)2 ,

(ix) If x ∈ Q(xs, λ) then γṽ
x(te) = x + (xe − xs)η(t; ts, te).
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Proof of Proposition 8.5.1. The proof of all these properties is straightforward.

Properties (i) to (v) is straight from the definition and Lemma 8.5.1.We perform

a few simple computations to show properties (vi) to (viii). For the property (vi),

we have

ṽ =
|xe − xs|
te − ts

η′
(
t− ts
te − ts

)
w

(
x − xp(t)

λ
;

xe − xs

|xe − xs|
, δ

)

=⇒ ‖ṽ‖L∞
t,x

≤ |xe − xs|
te − ts

sup
t

|η′| ‖w‖L∞ .
|xe − xs|
δ(te − ts)

.

The property (vii) can be shown to hold as follows.

∇iṽ =
1

λi
|xe − xs|
te − ts

η′
(
t− ts
te − ts

)
(∇iw)

(
x − xp(t)

λ
;

xe − xs

|xe − xs|
, δ

)

=⇒
∥∥∥∇iṽ

∥∥∥
L∞

t,x

≤ 1

λi
|xe − xs|
te − ts

sup
t

|η′|
∥∥∥∇iw

∥∥∥
L∞

.
1

λiδi+1

|xe − xs|
te − ts

.

The property (viii) is also proved through a simple computation.

∂tṽ =
|xe − xs|
(te − ts)2

η′′
(
t− ts
te − ts

)
w

(
x − xp(t)

λ
;

xe − xs

|xe − xs|
, δ

)

+
|xe − xs|
te − ts

η′
(
t− ts
te − ts

) [
(∇w)

(
x − xp(t)

λ
;

xe − xs

|xe − xs|
, δ

)
·

(
(xs − xe)

λ(te − ts)
η′
(
t− ts
te − ts

))]

=⇒ ‖∂tṽ‖L∞
t,x

.
|xe − xs|
δ(te − ts)2

+
1

λδ2

|xe − xs|2
(te − ts)2

Finally, for the property (ix), we claim that

γṽ
x(t) := x + (xe − xs)η

(
t− ts
te − ts

)
for x ∈ Q(xs, λ)

is a trajectory starting from x. It is easy to see that in the above definition
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γṽ
x(t) ∈ Q(xp(t), λ), therefore, from the property (v), we have

ṽ(t, γṽ
x(t)) =

(xe − xs)

te − ts
η′
(
t− ts
te − ts

)
.

Next, we simply verify that

dγṽ
x(t)

dt
= ṽ(t, γṽ

x(t)) and γṽ
x(0) = x.

8.5.3 Assembly of moving blobs: A proof of Proposition

8.4.2

Proof of Proposition 8.4.2. Given s ∈ Si+1 for i ∈ Z≥0, let us first define vs :

[0, τ∞] × T
d → R

d as

vs(t,x) := ṽ

(
t,x; P̃ i+1

Φ (s), P i+1
Θ (s),

2τi + τi+1

3
,
τi + 2τi+1

3
, ℓi+1

Φ , ϑ(ν)
)
, (8.49)

where

ϑ(ν) =
2ν − 1

8
,

as defined in (8.22). In the above definition, ṽ : [0, τ∞] × T
d → R

d is the T
d-

periodized version of the ṽ from Proposition 8.5.1 restricted to time 0 to τ∞.

Next, we define vi : [0, τ∞] × T
d → R

d as

vi :=
∑

s∈Si+1

vs. (8.50)
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We claim that vi satisfies all the properties as specified in Proposition 8.4.2.

Noting properties (i) and (ii) from Proposition 8.5.1, it is clear that vi ∈

C∞([0, τ∞] × T
d,Rd) and that vi is divergence-free. Further, using property (iii)

from Proposition 8.5.1, we see that

suppt vi ⊆
[
2τi + τi+1

3
,
τi + 2τi+1

3

]
⋐ (τi, τi+1).

Before proving the rest of the properties in Proposition 8.4.2, we first notice

that in the definition (8.50), supp vs(t, ·) are disjoint. Using the property (iv) in

Proposition 8.5.1, for any s ∈ Si+1, we note that

supp vs(t, ·) ⊆ Q(xs(t), ℓ
i+1
Φ (1 + ϑ)),

where

xs(t) = P̃ i+1
Φ (s)

[
1 − η

(
3t− 2τi − τi+1

τi+1 − τi

)]
+ P i+1

Θ (s)η

(
3t− 2τi − τi+1

τi+1 − τi

)
.

Next, using Lemma (8.2.10), we have that

supp vs(t, ·) ⊆ Q(xs(t), ℓ
i+1
Φ (1 + ϑ)) ⋐ Q(P i+1

Θ (s), ℓi+1
Θ ).

From Lemma 8.2.3, the open cubes Q(P i+1
Θ (s), ℓi+1

Θ ) are disjoint, which in turn

implies that supp vs(t, ·) are disjoint, an important detail we frequently use in the

rest of the proof. Using property (vi) from Proposition 8.5.1, we obtain

‖vi‖L∞
t,x

≤ max
s∈Si+1

‖vs‖L∞
t,x

.
1

(2ν − 1)

ℓi+1
Θ

(τi+1 − τi)
≤ 1

(2ν − 1)

1

2iβ
.

335



Using property (vii) from Proposition 8.5.1, we have

‖∇vi‖L∞
t,x

≤ max
s∈Si+1

‖∇vs‖L∞
t,x

.
1

ℓi+1
Φ (2ν − 1)2

ℓi+1
Θ

(τi+1 − τi)
≤ 2(1+ν−β)i

(2ν − 1)2
.

The Sobolev norm of the vector field vi can be obtained after using properties

(vi) and (vii) as

‖vi(t, ·)‖W 1,p ≤

 ∑

s∈Si+1

(
‖vs‖pL∞

t,x
+ ‖∇vs‖pL∞

t,x

)
L

d(supp vs(t, ·))



1
p

.


 ∑

s∈Si+1

(
2(1+ν−β)pi

(2ν − 1)2p

1

2(1+ν)d(i+1)

)


1
p

.
1

(2ν − 1)2
× 2

[(1+ν−β)p−dν]
p

i.

An upper bound on the time derivative of the vector field vi can be obtained after

using (viii) as

‖∂tvi‖L∞
t,x

≤ max
s∈Si+1

‖∂tvs‖L∞
t,x

.
1

(2ν − 1)

ℓi+1
Θ

(τi+1 − τi)2
+

1

ℓi+1
Φ (2ν − 1)2

(ℓi+1
Θ )2

(τi+1 − τi)2

.
1

(2ν − 1)2

1

2[2β−ν−1]i
.

Finally, using the fact that at any point in time supp vs(t, ·) ⋐ Q(P i+1
Θ (s), ℓi+1

Θ )

and the property (ix) in Proposition 8.5.1, we conclude that if for some s ∈ Si+1,

x ∈ Q(P̃ i+1
Φ (s), ℓi+1

Φ ), then γvi
x (τi+1) = x − P̃ i+1

Φ (s) + P i+1
Θ (s).
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8.6 Conclusion and Future work

In this chapter, we studied a problem related to the nonuniqueness of flow

maps Xu in an ODE system

dx(t)

dt
= u(t,x(t)) with x(0) = x0 ∈ T

d, (8.51)

where the vector field u is divergence-free and belongs to the Sobolev space W 1,p.

We constructed an explicit example of a vector field u that is continuous in time

with values in Sobolev space W 1,p, i.e., u ∈ C([0, T ];W 1,p(Td;Rd), for every p < d

such that the flow map corresponding to the ODE (8.51) is not unique. The

nonuniqueness of flow maps with vector fields in Sobolev space has previously

been proven by Brué et al. (2021), but their construction was not continuous. In

contrast, our construction in this paper is continuous. In particular, for every

α < 1, our example belongs to Hölder space, u ∈ Cα([0, T ] × T
d;Rd).

Our construction can further be used to prove the nonuniqueness of solutions

of two PDEs: the transport equation

∂tρ+ u · ∇ρ = 0, on T
d (8.52)

and the continuity equation

∂tρ+ ∇ · (uρ) = 0, on T
d. (8.53)

We note that these two equations are the same when the vector field u is divergence

free. Therefore, in what follows, we discuss the nonuniqueness of solutions of the

continuity equation but all of the arguments automatically apply to the transport

337



equation.

Consider solutions of the continuity equation (8.53) with an initial condition

that is identically unity, i.e., ρ(0, ·) = ρ0 ≡ 1. The construction proposed in this

paper already produces nonuniqueness of the solution of the continuity equation

in the class of measures L∞([0, T ],M). Note that the flow map Xu that we con-

structed maps the whole domain T
d to a Cantor set CΦ of measure zero. There-

fore, using the pushforward formula (see, for example, (Ambrosio and Crippa,

2014)), we see that the pushforward of the density ρ0 under the flow map Xu,

ρ(t, ·) = X(t, ·)#ρ0 is a solution of the continuity equation. The support of this

measure ρ(T, ·) (at time t = T ) is concentrated on the Cantor set CΦ. In par-

ticular, it is not the d-dimensional Lebesgue measure L d. However, noting that

a density field that is always unity in time and space is a trivial solution to the

continuity equation, we prove the nonuniqueness of the solutions of (8.53) in the

class of measures.

As an extension, it appears that we can further modify our construction to

produce nonuniqueness of solutions in the class of integrable solutions, ρ ∈ L∞
t L

r
x

for 1 ≤ r depending on the Sobolev exponent p for the vector field. We plan to

work on this problem in the future.
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Chapter 9

Conclusion

In this thesis, we have presented and investigated a few problems related to

the study of bulk properties and flow structures in turbulence. As explained in

Chapter 1, these questions are of foremost importance in the study of natural

turbulent flows (e.g. to explain the transport of mass, energy or momentum for

flows in rivers, oceans or accretion disks around stars), and in engineering (e.g.

in the design of airfoils or heat exchangers). The “bulk” properties are spatially

averaged, time-averaged emergent quantities in a flow system, such as the drag

force, energy dissipation, heat, mass and momentum transport. In contrast, the

study of flow structures, roughly speaking, relates to quantifying the range and the

energy distribution through different flow scales. With these questions in mind,

we pursued two different but complementary research directions. Accordingly, the

thesis is divided into two parts.

In the first part, we were interested in estimating rigorous upper or lower

bounds on bulk quantities, such as the ones mentioned above, as a function of

system parameters in different flow setups. There are two advantages of these

bounds: (i) the bounds are obtained directly from the governing equations, and
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therefore, their derivation does not involve any unwarranted assumption, (ii) these

bounds provide useful information about the bulk quantities in the extreme pa-

rameter regimes which often concerns geophysical and engineering turbulent flows.

In the second part of the thesis, we were interested in problems related to the con-

struction of incompressible flows that possess some specific properties. In this part

of the thesis, we worked on two related but different problems: (i) the design of

flows for optimal heat transport between two differentially heated walls and (ii)

the design of “rough” vector fields in an ODE system leading to the nonuniqueness

of flow maps.

The rest of this chapter summarizes the studies considered in each part of

this thesis and highlights the most important findings. We also state a few open

problems and future directions.

9.1 Rigorous bounds on bulk quantities

9.1.1 Summary of the thesis results

In the first part of the thesis we studied four different flow systems from the

perspective of rigorous bounds on global mean quantities. In all these flow prob-

lems, we use a tool known as the background method, described in Chapter 2,

to obtain the bounds. The flow setups we investigated and the corresponding

important findings are as follows.

In Chapter 3, we studied uniform flow past a flat plate kept at zero incidence.

We obtained a bound on the drag coefficient and showed that it stays bounded

in the limit of a high Reynolds number. Although similar bounds have previously

been obtained for internal flow systems (flow between boundaries), the flat plate
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is the first example of an external flow problem (flow past an obstacle) where such

a bound is derived.

In Chapter 4, we studied pressure-driven flow in a helical pipe. In this chapter,

we were interested in obtaining a bound on the friction factor (equivalently on the

volume flow rate). Our main achievement was to obtain a nontrivial dependence

of this bound on the pipe’s geometry (curvature and torsion of the pipe). In

this chapter, we also provided a sufficient criterion for the applicability of the

background method to flow problems.

In Chapter 5, we looked at Taylor–Couette flow (flow of fluid between two

independently rotating concentric cylinders) with a stationary outer cylinder. We

obtained bounds on the rate of energy dissipation, torque and angular momentum

transport. The Taylor–Couette flow is the simplest setup with a geometrical

parameter governing the dynamics, namely the radius ratio. We first derived

suboptimal but analytical bounds using simple functional inequalities augmented

with a boundary layer optimization procedure. We also obtained optimal bounds

in the background method framework by setting up an optimization procedure and

numerically solving the corresponding Euler–Lagrange equations. One of the main

findings of this study was to show that the dependence of suboptimal analytical

bounds on the radius ratio (the geometrical dependence) is the same as in the

optimal bounds. Moreover, we demonstrated that this geometrical dependence is

consistent with that obtained in the direct numerical simulations. In this chapter,

we also conclusively established the limitation of the background method to two

example flow setups: Taylor–Couette flow with suction and Taylor–Couette flow

with injection.

In Chapter 6, we studied internally heated convection between two parallel

plates with no slip boundaries in two different scenarios: (1) IH1: isothermal
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boundaries, (2) IH3: isothermal top boundary and insulating bottom boundary.

In both cases, we derived upper bounds on the mean vertical heat flux. The

derivation of bounds in the internally heated case is substantially more complex

than in its more standard counterpart, Rayleigh–Bénard convection. We used

a maximum principle for the temperature and a nonstandard background field

which takes the form of a vertical varying temperature profile with a two-layered

boundary layer structure.

9.1.2 Open problems and future prospects

As mentioned in Chapter 2, flow setups where the background method can

provide a useful bound are relatively rare. In this subsection, we list a few open

problems where obtaining a bound has not been possible using the background

method or any other mathematical technique. We then discuss the auxiliary

functional method, a recently developed tool to obtain bounds on mean quantities,

which may be helpful in making further progress.

Open problems

Despite the numerous successes of the background method, there are several

important flow systems where a bound on the quantity of interest is not known.

For example, an important open problem is whether the rate of energy dissipation

in pressure-driven flows between non-planar walls remains bounded in the limit

of vanishing viscosity. The exact mathematical formulation of this problem is as
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follows: consider two non constant functions, hB, hT ∈ Ck(TLx × TLy) such that

−H

2
≤ min

x,y
hB(x, y) < max

x,y
hB(x, y) ≤ −cH

2
,

c
H

2
≤ min

x,y
hT (x, y) < max

x,y
hT (x, y) ≤ H

2
,

where 0 < c < 1 is a prescribed constant. The degree of smoothness k can be

chosen as large as one desires. The domain of interest Ω is

Ω := {(x, y, z) |hB(x, y) < z < hT (x, y), x ∈ TLx , y ∈ TLy}. (9.1)

The lengths 0 < Lx, Ly set the periodicity of the flow in x and y directions, and

the functions hB and hT are the graphs of the bottom and top boundaries. We

are interested in solving for the velocity field u : [0,∞) × Ω → R
3 from equations

∇ · u = 0, (9.2a)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∆u +

∆P

∆L
ex, (9.2b)

with initial condition u(0, ·) = u0 and no-slip boundary conditions

u(t,x) = 0 when z = hB(x, y) or z = hT (x, y) ∀t > 0. (9.3)

In equation (9.2b), ∆P/∆L is the applied pressure in the x direction divided by

the density. We define the rate of energy dissipation as

εν := ν〈|∇u|2〉 where 〈[ · ]〉 = lim sup
T→∞

1

T

∫ T

0

1

|Ω|
∫

Ω
[ · ] dx. (9.4)

The following is an open problem:
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Problem 9.1.1. For sufficiently small ν0, is it true that for every 0 < ν < ν0

εν < c0

√
H

(
∆P

∆L

) 3
2

, (9.5)

where c0 is a constant independent of ν?

Another important problem concerns the rate of energy dissipation in flow

past a sphere or cylinder, as raised for instance in Doering and Constantin (1994).

This problem motivated the work presented in Chapter 3 on flow past a flat plate,

but to date, our work remains the only known example of bounds obtained in

external flows.

The auxiliary function method

Given the limitations of the background method, new ideas or tools are needed

to progress. One such tool was recently introduced by Chernyshenko et al. (2014)

and is known as the auxiliary functional method. The idea of this method is

quite simple and is described below (based on Chernyshenko (2022)). Consider a

dynamical system, finite or infinite dimensional, as

du

dt
= f(u), with u(0) = u0. (9.6)

The Navier–Stokes equation, for example, can be recast in this form, where u

would be an incompressible flow field. Suppose that for this dynamical sys-

tem, we are interested in obtaining a bound on F , the long-time average of a

particular functional F [u]. For the Navier–Stokes equation, F [u] could be the

volume-averaged energy dissipation rate, for example. Now for a given (different)
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functional V [u] (differentiable w.r.t. u), let us define a functional DV [u] as

DV [u] = f ·
δV

δu
, (9.7)

which is the Lie derivative of V with respect to f . Now assuming u(t) (solution to

(9.6)) stays bounded in time, then so does V [u(t)]. As a result, from the long-time

average of DV [u], we get

DV [u(t)] = f ·
δV

δu

∣∣∣∣∣
u=u(t)

= lim
t→∞

V [u(t)] − V [u(0)]

t
= 0. (9.8)

From these considerations, we see that if we can find a functional V [u] and a

constant B such that

F [u] +DV [u] ≤ B, (9.9)

then by taking the long-time average, we can obtain a bound on F as

F [u(t)] ≤ B. (9.10)

Furthermore, by trying all possible choices of functional V , we can obtain the

optimal bound in the framework of the auxiliary functional method:

F [u(t)] ≤ Bopt := inf
V

sup
u

(F [u] +DV [u]). (9.11)

The auxiliary functional method can, in principle, provide a sharp bound as shown

by Tobasco et al. (2018) for finite dimensional systems (ODEs) and by Rosa

and Temam (2020) for infinite dimensional systems (PDEs). In recent years, the
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auxiliary functional method has become popular, and been applied to both finite

dimensional systems (Fantuzzi et al., 2016; Goluskin, 2018; Fantuzzi and Goluskin,

2020; Goluskin, 2020; Kumar, 2019; Olson et al., 2021) and infinite dimensional

systems, such as the Kuramoto–Sivashinsky equation (Goluskin and Fantuzzi,

2019).

As for the Navier–Stokes equations, the auxiliary functional method can, in

principle, produce a bound on the energy dissipation rate for flow systems such as

pressure-driven flow between nonplanar walls or uniform flow past a cylinder. The

main difficulty with this method is to find a good functional V [u]. For a choice of

quadratic functional V [u], the background method and the auxiliary functional

method are equivalent (Chernyshenko, 2022), which can be shown by choosing

V [u] = α ‖u − U‖2
2 , (9.12)

where α is a constant and U is a background flow. However, no-one has yet found

a suitable functional V [u], that can be used in the auxiliary functional method

and is beyond quadratic for the Navier-Stokes equations, that would help obtain

bounds in systems that cannot be treated using the background method.

To move forward, there are two potential options. One way is to extend the

background method by making the background flow U depend on the flow u. The

idea roughly is that there may not exist a single good choice of the background

flow U that works for all perturbed flow v (equivalently for all total flows u) but

for every total flow u we may still be able to find a good choice (not necessarily the

same) of the background flow U . This idea was successfully applied by Goodman

(1994) in the context of Kuramoto–Sivashinsky equation. For the Navier–Stokes

equations, this idea is given in Chernyshenko (2022). The strategy of choosing
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the background flow U that depends on the total flow u was also independently

realized by us in unpublished work. The main problem with this strategy is

to identify the right dependence of U on u. Another way to move forward, as

suggested by Chernyshenko (2022), is to make use of the information about the

total helicity in the flow (Moffatt, 1969; Moffatt and Tsinober, 1992) in designing

a suitable functional V [u].

9.2 The design of incompressible flows in fluid

problems

In the second part of the thesis, we investigated two problems related to the

design of incompressible flows under some given constraint (which can be under-

stood as the cost to generate the flow) such that the velocity field has some specific

desired property.

In Chapter 7, we studied the problem of optimizing heat transport between two

parallel walls kept at different temperatures by designing a convective velocity field

u (with a given enstrophy constraint, 〈|∇u|2〉 ≤ P) in the convection-diffusion

equation. The budget on the enstrophy can also be understood as a constraint on

the power supply to generate this flow using a body force in the Navier–Stokes

equation. An upper bound on the maximum heat transfer is known, which says

that with P amount of power supply budget, the heat transfer cannot scale faster

than P1/3. However, it was not previously known whether velocity fields exist

(under the power supply constraint) for which the corresponding heat transfer

saturates this upper bound. In this chapter, we designed novel three-dimensional

incompressible branching velocity fields for which the heat transfer scales precisely
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as P1/3, therefore establishing the sharpness of the known upper bound. Our

construction also allows us to identify the exact physical mechanism that makes

these branching flows very efficient in transferring heat.

In Chapter 8, we studied a problem related to the nonuniqueness of tra-

jectories in an ODE system where the vector field of bounded divergence be-

longs to the Sobolev space W 1,p, and therefore falls under Diperna–Lions the-

ory. Recently, Brué et al. (2021) constructed a divergence-free vector field

u ∈ C([0, T ];Ls(Td;Rd) ∩ W 1,p(Td;Rd)) (s < ∞, p < d) using the method of

convex integration and employing Ambrosio’s superposition principle to prove

that the flow map of the corresponding ODE, dx
dt

= u(x, t), is not unique. In

this chapter, we provide an explicit construction of a divergence-free vector field

u ∈ C([0, T ];W 1,p(Td;Rd))∩Cα([0, T ]×T
d;Rd) (α < 1, p < d) for which we show

that the set of initial conditions for which the trajectories are not unique is of full

measure. In particular, the flow map is not unique.

9.2.1 Open problems and future prospects

In the last fifteen years, there has been a tremendous amount of activity in the

mathematical fluid dynamics community to study various turbulent flow prop-

erties, such as anomalous dissipation (De Lellis and L. Székelyhidi, 2013; Isett,

2018; Buckmaster et al., 2019; Drivas et al., 2022a; Bruè and De Lellis, 2023),

enhanced dissipation (Bedrossian and Coti Zelati, 2017; Coti Zelati et al., 2020;

Coti Zelati and Dolce, 2020) and mixing (Yao and Zlatoš, 2017; Alberti et al.,

2019; Elgindi and Zlatoš, 2019). Arguably, one of the remarkable achievements

of the last decade was the resolution of Onsager’s conjecture which is related to

anomalous dissipation, an intrinsic characteristic of turbulence. Anomalous dis-
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sipation, as we explained in the Introduction (see Chapter 1), is the statement

that the energy dissipation remains finite in the limit of viscosity going to zero,

namely

lim sup
ν→0

εν ≥ ε0 > 0. (9.13)

The phenomenon of anomalous dissipation is such a fundamental characteristic of

turbulent flows that it is aptly called the “Zeroth law” of turbulence.

For viscous incompressible flows, the viscosity provides a route to dissipate

energy; therefore, statement (9.13) is feasible. However, such a mechanism is

absent for ideal fluids governed by the Euler equations:

∇ · u = 0, (9.14a)

∂u

∂t
+ u · ∇u = −1

ρ
∇p, (9.14b)

as the viscosity is zero. Indeed, by taking the dot product of equation (9.14b)

with u and performing a volume and time integration, we find that the kinetic

energy is conserved for the smooth Euler solutions, i.e.,

1

2
‖u(T )‖2

2 =
1

2
‖u(0)‖2

2 . (9.15)

The conservation of kinetic energy for the Euler equation seems incompatible with

the phenomenon of anomalous dissipation. This, therefore, suggests that in the

limit viscosity going to zero, the turbulent solutions of the Navier–Stokes equation

cannot possess enough regularity to justify the derivation of (9.15) from (9.14). In

fact, Onsager’s conjecture quantifies this regularity of the Euler solution. Onsager

conjectured the following:
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• (rigidity part) if the solution of the Euler equations has at least one-third

Hölder regularity, then the energy is conserved, i.e., (9.15) holds,

• (flexibility part) there are examples of solutions of the Euler equations with

Hölder regularity less than one-third for which the energy dissipates.

The important consequence of this conjecture is that the turbulent velocity field

cannot possess more than 1/3 Hölder regularity in the limit viscosity going to

zero.

The energy conservation part of the conjecture, which is relatively more

straightforward, was proved by Constantin et al. (1994), with initial partial re-

sults by Eyink (1994). The more difficult part of the conjecture is proving that

for every α < 1/3 in the class Cα, there are solutions to the Euler equations which

do not conserve energy. In a pioneering work, De Lellis and L. Székelyhidi (2009,

2013) introduced the method of convex integration to the Euler equation to build

precisely these types of solutions. Their work was inspired by the Nash embed-

ding theorem and Gromov’s h-principle. The initial construction of De Lellis and

L. Székelyhidi (2013) did not reach the one-third limit, as conjectured by Onsager.

But a series of studies after their initial construction progressively filled this gap,

eventually leading to the proof of this conjecture (Isett, 2018). The construction

of Isett was compactly supported in time. Buckmaster et al. (2019) then showed

that in the class Cα (α < 1/3), there are solutions for which the kinetic energy is

non-increasing.

With the construction of solutions that dissipate energy for the Euler system,

the next significant challenge, which is also of physical importance, is to create

solutions of the Navier–Stokes which has the fundamental property of turbulence,

i.e., anomalous dissipation. More precisely, the question is whether it is possible

350



to design with “simple” solutions of the Navier–Stokes equations (either steady

or time-periodic) uν , which depend on viscosity, to the Navier–Stokes equations

and obey the relation (9.13). Two physically important settings to consider this

problem are (1) surface-velocity driven flows such as Couette flow or flow past a

cylinder (2) fixed body force driven flows, where the applied body force is smooth

(such as one created by combining a finite number of Fourier modes). Even

though this problem is one of the most important problems in mathematical fluid

dynamics, it remains (as stated) open and probably too difficult to solve with

currently available tools.

Consequently, before getting into the more challenging problem of anomalous

dissipation, one can consider simplified versions of the problem that are still non-

trivial but are within reach of current methods and tools available to us and,

therefore, can help us gain the insights needed to tackle the original problem.

For example, one could instead ask the following question: is it possible to build

velocity fields driven by a body forcing that is “rough” for which (9.13) holds?

Indeed, this line of questioning is already considered by Bruè and De Lellis (2023)

in a recent paper, where they construct a family of forcings that belongs to the

class of Cα for every exponent α < 1 and for which (9.13) is true. Their result is

nontrivial in the sense that if the Navier–Stokes equations are replaced with the

Stokes equations (without the nonlinear term) but same forcing, then the resul-

tant velocity fields do not have anomalous dissipation. Therefore, along with the

rough forcing, the nonlinearity plays a nontrivial role in their construction to help

generate small enough scales for (9.13) to hold.

Another way to simplify the problem is first to create numerically the required

velocity fields that exhibit anomalous dissipation. To date, even numerical evi-

dence of the existence of such simple (steady or time-periodic) velocity fields is
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(a) (b)

Figure 9.1: (a) A background decomposition of the flow as described in the main
text. (b) One flow unit as described in the main text. The main property of this
flow unit is that at level z = 1, the flow field is made up of four self-similar copies
at level z = 0.

absent. A simple flow setup that comes to mind where creating the required ve-

locity fields might be possible is Couette flow. A schematic of Couette flow is

shown in Chapter 2 in Figure 2.1. For Couette flow, a formal calculation shows

that one can relate the energy dissipation to the momentum transport between

two walls as

εν =
U0

H

[
uxuz − ν

∂ux
∂z

]

z=z0︸ ︷︷ ︸
Momentum Transport

,

where the overbar denotes a long-time horizontal average. Therefore, more mo-

mentum transport implies more energy dissipation. From this identity, the prob-

lem of anomalous dissipation can therefore be posed as a problem of optimal

momentum transport between two walls.

To solve this optimal momentum transport problem, we propose to combine

ideas from Chapter 2 (the background method) and Chapter 7 (the design of

352



branching flows for optimal heat transport). We begin by splitting the total flow

u as the sum of two divergence-free flow fields, the background flow U = U(z)ex

(can be thought of as anticipated mean flow and is chosen in advance) and the

perturbed flow v. Figure 9.1a shows such a decomposition which is the same as the

one in the background method from Chapter 2. Then, we propose to construct the

perturbed flow v as a branching flow, which contains self-similarly scaled copies

of a unit building block v0, specifically designed to facilitate efficient transfer of

momentum. An example of such a unit v0 is shown in figure 9.1b. The idea is to

find a solution to the Navier–Stokes equation such that the velocity field and the

pressure gradient are periodic in the x, and y directions and, the slice at z = 1 level

consists of four dilated (half the size) copies of the slice at z = 0 level as explained

in figure 9.1b. This approach is different from previous computational work, as

the emphasis here is on producing one single unit that can be glued with dilated

copies of itself to design the perturbed flow v in whole domain. Once we have

designed such a unit, a rough scaling analysis shows that by gluing self-similar

copies of v0 to N branching levels and choosing N appropriately (depending on

the viscosity), we should be able to get anomalous dissipation. Physically, these

branching structures help carry the momentum, which is dominated by advection

in the bulk of the domain (i.e., the losses to diffusion are negligible) up to very

thin boundary layers near the top and bottom walls, where finally, diffusion takes

over. The physical mechanism invoked here, echoes the way energy is transferred

in turbulent flows from large scales to small enough scales where the viscous

diffusion takes over. This is one line of research that we plan to pursue in the

future.

Finally, the question of the design of velocity fields such that the evolution of

passive scalar exhibits anomalous dissipation is yet another physically interesting
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problem as it relates to Obukhov–Corrsin’s theory but is simpler than the original

problem. In fact, there has been a lot of activity recently in this direction (see, for

example, Drivas et al., 2022a; Colombo et al., 2022). In the spirit of anomalous

dissipation with forcing, one can ask the question about anomalous dissipation

of a passive scalar in an internally heating setup. In particular, is it possible

to find a smooth source of volumetric heating H : T
d → R which is balanced,

i.e.,
∫
Td H dx = 0 and a velocity field u : T

d → R
d such the evolution of the

temperature field in the equation

∂T

∂t
+ u · ∇T = κ∆T +H in T

d, (9.16)

exhibits lim sup
κ→0

∫ τ

0

∫

Td
|∇T |2 dxdt ≥ c > 0, (9.17)

for any initial condition T (0, ·) = T0 ∈ L2(Td)? The vector fields we designed in

Chapter 8 or similar ideas can be instrumental in resolving this question and we

are actively pursuing this line of investigation.

In conclusion, even though the original problem of producing an example of

a velocity field that obeys the fundamental property of turbulent flows remains

elusive, the pursuit of this problem has generated tremendous activity in the

mathematical fluid dynamics community. Every month new studies are pub-

lished that are related to this problem in one way or the other, and explore new

ways/mechanisms to trigger anomalous dissipation for simpler or modified prob-

lems. Whether this problem of anomalous dissipation will be solved anytime soon

is up for debate, but working in this direction is extremely engaging at this point

in time, and the future of the field seems bright.
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