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ABSTRACT OF THE DISSERTATION

Multiscale Computational Models and Analysis to Understand Molecule to Organ Effects of
2’-deoxy-ATP on Cardiovascular Function and Disease

by

Marcus Terrence Hock

Doctor of Philosophy in Bioengineering with a Specialization in Multi-scale Biology

University of California San Diego, 2024

Professor Andrew D. McCulloch, Chair
Professor James A. McCammon, Co-Chair

Heart failure is characterized by ventricular weakening, leading to the inability to circu-

late sufficient blood to the body. Despite clinical advances in recent years, heart failure remains

a significant cause of morbidity and mortality within the United States and affects 6.2 million

people. Clinical approaches traditionally target pathological symptoms by targeting calcium

signaling and neurohormonal responses. Recently, novel therapeutics, known as myosin modula-

tors, have shown promise by targeting the contractile machinery to regulate contractile function.

To develop targeted therapeutics, detailed mechanistic models of cardiovascular function are

needed which can account for deviations from normal function based on mechanisms of disease

xv



as well as therapeutics. We have developed and integrated a new framework of multiscale

models that provide mechanistic insights into the mechanisms of therapeutic molecules for

rescue of cardiovascular function. Specifically, we model the effects of deoxy-ATP (dATP), a

known myosin activator, on motor function starting at the molecular level of function. Because

dATP also has shown experimental improvements in diastolic cardiac function, we modeled and

explored the molecular effects of dATP on the SERCA pump, in addition to the effects of dATP

on myosin. This work highlights a new framework that captures allosteric SERCA molecular

changes that influence calcium sequestration and subsequent cardiac relaxation. Molecular

analysis of myosin and dATP demonstrated structural rearrangement in the region of the actin

binding surface. We constructed Markov state models to quantify the nature of these changes and

helps to reduce the MD simulations to more interpretable changes, which led to observed changes

in the actin binding kinetics based on Brownian dynamics simulations. Allosteric changes of

SERCA analyzed via generalized correlation analysis led to changes in calcium handling kinetics.

The molecular effects, when propagated up in scale to tissue and organ scale, help to demonstrate

improvement in cellular and ventricular function, especially in the context of heart failure. This

multiscale framework highlights new methods of analysis within the context of dATP and shows

promise to guide development of new highly targeted heart failure therapeutics.
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Introduction

0.1 Employing computational modeling approaches to solve
cardiovascular biological problems

Cardiovascular disease is the leading cause of death in the US, approximated at about

one in four deaths [1]. Heart failure specifically affects approximately 6.5 million Americans,

of which half exhibit heart failure with reduced ejection fraction in which the heart is unable to

contract strongly enough to supply a sufficient oxygen supply to the body [2]. Most treatments

prolong patient life by treating the symptoms of heart failure, rather than the underlying mecha-

nisms of actions [3]. As such, there is an urgent need to develop new therapies and treatment

approaches which target the underlying mechanisms of the pathophysiology. To develop new

therapies in mechanistic approach, in addition to in vivo, in vitro, and clinical work, detailed

computational models are vital as well to understand the full mechanism and nuisances of a

particular therapy. Computational models, which can range widely in scale and application, have

become an increasingly useful tool for clinicians and well as researchers as computational power

and accessibility has expanded in recent years.

The modern era of computing provides an unprecedented opportunity to simultaneously,

home desktop computers have become increasing powerful and capable, even on the scale

of the smartphone, while high performance computing continues to push the boundaries of

computational power and resources [4]. And while Moore’s Law, which famously presented the

expectation that computing power would double every two years while keeping size, cost and

power constant, appears to have finally failed to hold true in recent years, there is by no means any
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indication that computational power means will not continue to develop. Future developments

will likely arise through new developments in computing architecture and application, rather than

just simply packing more transistors into a chip [5, 6]. Both ARM architecture as well as the

use of graphical processing units (GPUs) also have provided significant benefits over traditional

CPU architectures, by providing more power efficient approaches and computationally efficient

instructions and actions, for example for linear algebra and tensor heavy calculations [7, 8].

In parallel with the raw increase in computational potential, machine learning algorithms

and approaches have reached widespread application. These machine learning advancements

have led to revolutionary new tools in, but not limited to, biological and health sciences and

research. These applications range from scenarios that speed up tedious tasks, to providing

solutions to seemingly unanswerable questions. For instance, machine learning algorithms have

been developed to create 3D meshes from cardiac MRIs, which is a traditionally time consuming

and laborious process [9]. Alphafold has provided scientists with the ability to predict any protein

structure based purely on the amino acid sequence, with an impressive level of accuracy for

most ordered proteins [10, 11]. Though Alphafold is not a replacement for the high-resolution

crystal structures, such a tool enables researchers to gain structure based insights on protein

mechanism and function, that would otherwise be out of reach. Furthermore, the same algorithms

used for Alphafold can be used to predict structures for homology models, using on structure

and sequence to predict another slightly different protein, which can provide access to mutated

structures, or different species structures.

The ability to make precise modifications and predictions about protein structure directly

supports the development of highly personalized medicine for patient treatment [12]. Clinicians

and researchers can collect patient genomic data with relative ease due to the accessibility of

sequencing techniques and therefore generate large scale population datasets. These patient

“atlases” can provide structure to function relationships when combined with tools such as alpha

fold. For instance, hundreds of point mutations within the cardiac β -myosin protein have been

associated with divergent forms, hypertrophy and dilated, cardiomyopathies. As such, identifying
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a particular protein to target is no longer enough to develop mechanism-based therapies. Instead,

the specific pathomechanism of each mutation (or class of mutation) must be elucidated to

develop personalized therapies. Ultimately, linking highly detailed structure-function models

with systems and biochemical models across a range of scales is necessary to achieve these goals

for therapeutic development. Cardiomyopathy severity and prognosis is frequently associated

with the structural changes at the organ level that occur as a compensatory mechanism. Therefore,

additional patient measurements and data based on imaging and patient history, which are readily

available, should also be included in such models which account for and predict growth and

remodeling. This paradigm-shift from reductionist models towards detailed multiscale models

heralds a new frontier for personalized medicine and improved patient care and outcomes.

0.2 Cardiovascular disease and heart failure with reduced
ejection fraction

As mentioned in the previous section, heart disease and therapy remains a significant

unmet challenge for our healthcare system. Different forms of cardiovascular diseases are

estimated to cause $320 billion in annual costs to the healthcare system and lost productive,

with projections to triple by 2030 [13, 14]. Among these, heart failure of various forms some

extremely poor prognosis, and stems from a range of mechanisms and causes [15]. During

systole, the heart contracts to eject and circulate blood and oxygen out to the rest of the body.

Systolic heart failure, or heart failure with reduced ejection fraction (HFrEF), occurs when

the pumping action fails to circulate sufficient oxygen and blood to the rest of the body due

to weakened ventricular function. Clinically, this can be diagnosed by measuring the ejection

fraction (EF), which is the volume of blood pumped, relative to the volume of blood in the

heart. Normal EFs range from 55%-60%, and mild heart failure with reduced ejection fraction is

identified to be an EF from 40-49%, and severe HFrEF is below 40% [16].

Treatments for HFrEF in recent years have improved significantly, prolonging patient life
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expectancy by slowing the progression of the disease. Traditionally, a multipronged treatment

approach is employed which involves inhibitors of the renin-angiotensin-aldosterone system

(RAAS), in combination with β -blockers, MRAs, and SGLT2 inhibitors. A second, but less

commonly employed approach focus on an ionotropic treatments to increase contractile force

such as calcium sensitiving agents, Phosphodiesterase inhibitors or even β -adrenergic receptor

agonists. Overall, these approaches represent an upregulated neurohormonal responses; they can

help to mitigate dysregulated cardiac function but do not directly target contractile efficiency.

Furthermore, these approaches target specific cardiomyocyte pathways to provide a therapeutic

benefit, rather than the underlying cause of the heart failure. As such, these treatments can

be pro-arrhythmogenic, impair ventricular filling and relaxation, leading to increased heart

rate and myocardial oxygen consumption [17], highlighting the need for novel therapeutic

approaches. While regenerative medicine approaches based on the application of cell suspension

and implantable tissue have appears promising, current trials have generally only demonstrated

safety, failing to show significant clinical improvement [18].

Cardiac muscle cells, cardiomyocytes, are a highly organized and structured cell type.

Sarcomeres are the contractile unit within the cell and are composed of a highly order lattice

structure of overlapping filaments [19]. The myosin motor protein powers this action as the

filaments slide past each other during muscle contraction through the cross-bridge cycle [20].

Because the HF is frequently thought of as a disease of the sarcomere, novel therapeutic

approaches have been developed to target β -myosin specifically to either increase or decrease

contractility [21, 22]. Clinical trials of some of myosin modulators have demonstrated the

efficacy of a directed approach, targeting the underlying mechanisms of action leading to the

observed myopathies. A phase III clinical trial for the myosin activator omecamtiv mecarbil

(OM) found that in a treatment of heart failure, OM lowered the incidence of composite heart-

failure or death compared to the non-treatment group [23]. This primary outcome from the study

does not highlight the complications with OM, of which most significant is the reduced filling of

the heart, the diastolic function.
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Contrary to myosin activators, myosin inhibitors similarly approached treating my-

opathies by targeting the underlying molecular machinery. Hypertrophic cardiomyopathy (HCM),

is characterized by thickening of the ventricular walls, reduced relaxation and filling, leading to

reduced cardiac output [24, 25]. Crudely, HCM is often considered to by hyper-contraction of

the sarcomere, and therefore myosin inhibitors present an opportunity to reduce the contractile

function [26]. Genetic studies have demonstrated that HCM is a familial disease, and mutations

within cardiac β -myosin have been linked to HCM [27, 28]. These studies highlight the connec-

tion between malfunction contractile unit and cardiovascular function. Mavacamten, one such

myosin inhibitor, progressed through clinical trials and demonstrated significant improvement in

patient treatment [29, 30, 31]. Given the positive trials results, and relatively low side effects

and additional factors, the FDA granted approval to Mavacamten for treatment of hypertrophic

cardiomyopathy. Though mavacamten and OM were two of the earliest myosin modulators

to reach the clinic, this new targeted approach has opened to a whole new array of possible

therapeutic molecules.

0.2.1 2’-deoxy-ATP as a myosin activator a possible therapuetic

2’-deoxy-adenonsine triphosphate (dATP) is another myosin activator that has demon-

strated its ability to increase contractile function in cardiomyocytes [32]. dATP, a naturally

occurring near analog of ATP, and is formed by the cleavage of the 2’ hydroxyl group on the

ribose ring of ATP. ATP hydrolysis powers most energy demanding cell processes, muscle

cell contraction included [33, 34]. Because dATP contains the same high energy phosphate

bonds, its hydrolysis can also be used to provide chemical energy to cell processes. The enzyme

Ribonucleotide reductase (R1R2) cleaves the hydroxyl group to convert ATP to dATP [35]. This

enzyme is expressed in expressed in cells undergoing cell division because dATP is one of the

building blocks for DNA. However, in cardiomyocytes, this protein is not produced and the

concentration of dATP is effectively zero in these cells. Interestingly, when the concentration of

dATP is increase to 1-2% of the total nucleotide pool, cardiomyocytes demonstrate a significant
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increase in force production and cell shortening [36].

To understand the mechanism by which dATP acts as a myosin activator, a range of

experimental and computational approaches across have been employed to probe at this question.

In vitro motility assays demonstrated increased myosin activity as measured by thin filament

movement when dATP is present in the solution rather than ATP [37]. These results indicate

the direct targeting of dATP on myosin activity, specifically in the cross-bridge cycle. However,

intact muscle experiments are necessary to understand how dATP increases contractile function

at such low levels relative to ATP. Gene therapy experiments in which R1R2 is overexpressed in

cardiomyocytes have demonstrated measured increases in muscle function and overall systolic

function [38, 39, 40]. Furthermore, contrary to other myosin activators like OM, dATP does not

show a reduction in diastolic function, but rather shows improved muscle relaxing and filling

compared to controls. This lusitropric benefit makes dATP a unique candidate to treat HFrEF.

The full mechanism by which dATP induces these therapeutic benefits is still yet to be resolved,

and therefore additional studies are necessary, in particular to understand the changes to cardiac

relaxation.

Computational studies of the effects of dATP on myosin have shown that structural

changes are induced by the binding of dATP [41, 42]. Specifically, dATP induces a rearrangement

of the actin binding surface that leads greater electrostatic attraction towards the actin thin

filament. Increased electrostatics likely directly contribute to increased cross-bridge cycling that

is observed in the in vitro motility assays as described above. Further molecular dynamics studies

have also evaluated the coordinated motion and information flow from the nucleotide binding

pocket where ATP or dATP bind to the regulatory domains of myosin [43]. This regulation

in and out of the “OFF” state, also known super relaxed state, of the muscle is crucial to both

muscle contractile function and metabolic regulation. Important metabolic influences of the super

relaxed state have been highlighted in cardiovascular function, and life-long cellular homeostasis

[44]. Recent studies have investigated the role of the super relaxed state in skeletal muscle as well.

A 2024 study demonstrated that the regulation in and out of the super relax state is important for
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thermogenesis during hibernation of small mammals, but found that in large mammals, there is

no significant difference in in SRX state, showing the OFF state is not always used to regulate

energetics and reduce metabolic demands [45]. Ultimately, these studies show that the super

relaxed state provides regulation across a range of muscle types and regulation needs.

0.2.2 Additional targets of dATP and heart failure therapeutics

dATP also likely influences other cellular function because it is a near analog of ATP

which is widely used across a myriad of cellular processes. Beyond the actomyosin ATP demand,

the sarcoendoplasmic ATPase pump (SERCA), Plasma membrane Ca2+ ATPase, and sodium

potassium (Na+/K+) pump also have high ATP demands during the active transport of ions [46].

dATP may influence the function of all these pumps, (in addition to other ATP utilizing processes

that demand the remaining fractions of ATP). SERCA function is crucial to maintaining cellular

calcium homeostasis, and malfunction is heavily implicated in disease. Therefore, SERCA

presents another attractive therapeutic target to promote healthy cardiac diastolic function. Phase

I/II clinical trials have demonstrated that AAV delivery of SERCA itself is safe to patients with

advanced heart failure, though specific clinical endpoint results have been mixed [47, 48, 49].

Despite these outcomes, these studies have paved the way for the future development of safe

gene therapies for cardiovascular diseases. The lack of clinical improvement also may be due to

the relatively low dose of gene delivery, rather than SERCA being a poorly selected mechanistic

target.

0.3 Multi scale computational approaches to build more
insightful models

In this work, we leverage existing modeling techniques, and combine them with novel

approaches and analysis to meet the demands necessary for detailed disease pathology and

drug development. Specifically, we will apply computational multiscale biology approaches

to understand dATP as a myosin activator. Deoxy-ATP particularly highlights the necessity
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for highly detailed models because a single change of two atoms provides, even in 1% of the

nucleotides, leads to such pronounced change in muscle behavior. Furthermore, though dATP

does show significant promise as a HFrEF therapeutic, it still poses clinical barriers, most notably

drug delivery, which likely will require gene therapy approaches, as well as possible metabolic

remodeling [39, 50]. Therefore, a detailed mechanistic viewpoint is not only beneficial to move

dATP towards the clinic, but to also identify possible therapeutic targets and molecules which

may circumvent those limitations specific to dATP, while still providing the same mechanistic

advantage.

0.3.1 Molecular dynamics simulations

Protein crystallography, which is a robust field that has only grown since its inception

with the first crystal structure of myoglobin in 1957 [51], provides a glimpse into the complex

machinery of cellular processes. Though some proteins exists in a relatively static nature, all

proteins undergo some degree of motion, and have a dynamic behavior, which static crystal

structures fail to capture [52]. Molecular dynamics (MD) simulations apply Newton’s equations

of motion to these static structures and enable the visualization of proteins in dynamic environ-

ments [53]. Thanks to recent advances in computational power, as described in the previous

sections, we can simulate larger proteins than ever before, and in fact ensembles of proteins,

for longer than ever [54]. Because crystallography typically requires some manipulation of the

protein environment, MD simulations help to visualize protein structures in their native solvated

state, and when simulated for long enough, allow for transitions to be observed [55].

In this work, we use MD simulations as a computational microscope to understand

how dATP changes the protein dynamics of the myosin motor protein. We also investigate the

influence of dATP on SERCA as it sequesters calcium diastole. Molecular dynamics simulations,

though still often too short to see significant conformational or kinetic changes depending on the

size of the protein, do still provide a much more detailed picture as to how a protein, such as

myosin behave in the presence of a different bound nucleotide, ligand or even mutation. Because
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Figure 0.1. Multi-scale framework showing the range of systems from molecular levels to organ
system model. Specifically highlighting the structure and function of myosin, the major ATPase
involved in muscle contraction, and SERCA, another major ATPase involved in calcium handling
and relaxation.
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of the control by which users can build the simulation, molecular dynamics provide an extremely

valuable computational “sandbox” to explore molecular behavior, which we leverage in this

dissertation.

However, even with the advances in computational power, the conclusions drawn can

often be obscured by the relatively limited simulation durations [56]. For instance, observing

the full transition of the myosin protein from the post-powerstroke to pre-powerstroke transition

is outside the realm of traditional molecular dynamics simulations. Enhanced sampling and

steered molecular dynamics techniques modify the energy surface of the simulation in order

to overcome large free energy barries in an attempt to reach a desired state [57]. Gaussian

accelerated molecular dynamics changes the energy landscape based on a Gaussian distribution

which enables reweighting of the simulation to predict how an unbiased simulation would behave.

In doing so, the sampling of the simulation increases in a manner comparable to increasing the

simulation duration by an order of magnitude. Despite enhanced sampling methods like these,

the challenge of insightful interpretation of MD simulation remains.

Generalized Correlation Analysis

The flow of information through a protein is crucial to its function. This information

flow is ultimately driven by thermodynamics, or changes in thermodymics based on a catalyst,

co-factor or environmental change. However, as mentioned in the section above, because of the

sampling limitations of molecular dynamics simulations, we often fail to observe the desired

event or transition. Fundamentally, protein function reduces to the coordinated motion of residues

relative to one another. Initial attempts to quantify the relationship between residues relied on

linear measurements such as the Pearson correlation [58]. A generalized correlation coefficient

based on the mutual information of protein motion was proposed by Grubmüller and Lange

which has been widely adapted [59]. Generalized correlated (GC) analysis highlights key residue-

residue information that obscure via visual or traditional analysis method. The insights provided

by GC analysis can help to predict drugable domains of a protein, or estimate the severity of an
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identified mutation. In the following work, we apply this approach to understand the allosteric

communication within SERCA based on the binding of ATP or dATP to the nucleotide binding

site. Further, we use a newly developed software tool, Netsci, which leverages CUDA GPU

acceleration in its algorithm which significantly reduces the computational time and increases

the accessibility of generalzied correlation analysis [60].

Markov State Models

The construction of Markov State models (MSMs) provide a means to reduce the com-

plexity of a molecular dynamics simulation (or frequently several simulations) into a reduced

set of kinetically relevant structures [61, 62]. Simply put, a Markov state model is composed

of a finite number of discrete states, between which, the protein can transition between based

on some estimated probability, though of course MSMs may be employed outside the scope

of protein simulation. By definition, the different states of the Markov model are memoryless,

meaning that the probability of transition to the next state of the protein system does not depend

on its previous state [63]. Therefore, to estimate the transition probability between states, one

can simply count the frequency of transitions to adjacent states. Though the transitions can

be estimated trivially, identifying the model states is much more nuanced. This selection of

states can be broken down into the following steps: featurization, dimensionality reduction, and

clustering [64]. After these steps the MSM can be constructed and analyzed. Feature selection

requires expert knowledge of the simulation system, and poorly selected features lead to either

MSMs that fail to converge, do not behave in a Markovian manner, or do not provide any kinetic

insights. Yet, properly constructed models can provide significant insights and help to understand

molecular systems in new ways. In this work, we successfully construct a validated Markov

model that characterizes the behavior of pre-powerstroke myosin. Specifically, we compare how

the dynamics and transition kinetics differ depending on whether ATP is bound to myosin, or

dATP.
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0.3.2 Brownian Dynamics Simulations

Even rapid cellular processes such as cross-bridge cycling between actin and myosin

occur over timescales, and length scales, outside of the scope of MD simulation capabilities,

which makes predicting drug effects on biological systems so difficult. Yet, estimated changes to

kinetics in protein protein binding, based on structural and molecular information is quintessential

to mechanistic and targeted drug design. Brownian dynamics (BD) simulations provide a means

to compute the rates of protein-protein binding kinetics, but at the expense of reduced structural

detail [65, 66]. Brownian dynamics generally use an implicit water model, contrary to MD

simulations the explicitly model water molecules, and treat the protein structures as static

[67]. Rather than focuses on the interatomic forces from chemical bonds, Brownian dynamics

simulations predict protein-protein association based on simplified long range electrostatics,

hydrodynamics, and the random motion of a Brownian walk [68]. Traditionally, tens of thousands

up to millions of independent BD simulations are carried out to construct and estimate of the

second order association rate between molecules. Based on the frequency of successful binding

events to unsuccessful, the rate constant can be estimated. To overcome the limitation of rigid

simulations structures, in our work, we apply an ensemble based BD simulation approach.

Ensemble docking provides a balanced approach of conformational detail without requiring

excessive computational resources. Specifically, we use different molecular structures based

on the influence of different bound nucleotides (ATP, dATP) or nucleotide free structures to

understand the molecular influence of dATP. When using BD simulations to characterize the

behavior of actomyosin binding during the attachment step of the cross-bridge cycle, we use

distinct conformations identified from MSM analysis. In other BD approaches this this thesis

work, we use an ensemble BD approach based on conformations identified via traditional

clustering algorithms to predict the kinetics of nucleotide and calcium binding to SERCA.
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0.3.3 Muscle filament and cellular modeling

Since the original sliding filament theory was put forth by two independent papers

[69, 70] and subsequent two and three state models of muscle contraction were postulated, newer

and more complex models have continued to blossom. Present day models of the sarcomere,

for instance, are spatially explicit, account for cooperative effects of calcium binding, account

for metabolite concentrations and even incorporate electrical activation of the calcium release

[71, 72, 73]. While the complexity and accuracy of these models are greatly improved in recent

years, the tunability of individual model parameters is most crucial. For instance, measured

changes in Brownian dynamics 2nd order kinetics can be modified in a model of sarcomere

contractility. Alternatively, and estimated change in the free energy of a particular reaction be

used to predict a new equilibrium for binding events [74]. We account for changes in kinetics to

the cross-bridge cycle, on and “off” state, and calcium handling of SERCA to modify existing

models of cardiovascular mechanics in this work. Furthermore, we combine two scales, a Monte

Carlo cross-bridge model and differential equation cell model, of muscle activation in order to

highlight the increased importance of cooperative muscle activation due the presence of dATP.

0.3.4 Whole heart and circulatory modeling

While clinical significance can be observed at each of the previous scales analyses

discussed previously, we maintain the perspective that modeling whole heart function and

cardiovascular output is essential to truly understand the effects of molecular level therapeutics

such as dATP. Beyond the context of dATP, these final scale is essential for understanding possible

mechanisms and applications of additional drugs [75]. In this work, we use a relatively simple

geometry of the heart coupled to a circulatory model based on restive flow [76, 77]. Though

a finite element model may provide greater insight into heterogeneous activation of myosin

activators, and how this influences function, it is outside the scope of this work. Additionally, a

finite element model would have significantly greater cost. Most importantly, our current organ
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and circulation model still provides additional context that helps to resolve differences between

predicted effects and existing mechanistic hypotheses with in vivo models of cardiovascular

function. Ultimately, the models at each scale are only as useful as identifying what they fail to

explain.
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Chapter 1

Multiscale Computational Modeling of
the Effects of 2’-deoxy-ATP on Cardiac
Muscle Calcium Handling

1.1 Abstract

2’-deoxy-ATP (dATP), a naturally occurring near analog of ATP, is a well-documented

myosin activator that has been shown to increase contractile force, improve pump function, and

enhance lusitropy in the heart. Calcium transients in cardiomyocytes with elevated levels of

dATP show faster calcium decay compared with cardiomyocytes with basal levels of dATP, but

the mechanisms behind this are unknown. Here we design and utilize a multiscale computational

modeling framework to test the hypothesis that dATP acts on the Sarcoendoplasmic Reticulum

Calcium-ATPase (SERCA) pump to accelerate calcium re-uptake into the sarcoplasmic reticulum

during cardiac relaxation. Gaussian accelerated Molecular Dynamics simulations of human

cardiac SERCA2A in the E1 apo, ATP-bound and dATP-bound states showed that dATP forms

more stable contacts in the nucleotide binding pocket of SERCA and leads to increased closure of

cytosolic domains. These structural changes ultimately lead to changes in calcium binding, which

we assessed using Brownian Dynamics simulations. We found that dATP increases calcium

association rate constants to SERCA and that dATP binds to apo SERCA more rapidly than ATP.

Using a compartmental ordinary differential equation model of human cardiomyocyte excitation-
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contraction coupling, we found that these increased association rate constants contributed to the

accelerated rates of calcium transient decay observed experimentally. This study provides clear

mechanistic evidence of enhancements in cardiac SERCA2A pump function due to interactions

with dATP.

1.2 Introduction

The Sarcoendoplasmic Reticulum Calcium-ATPase (SERCA) 2A is a P-Type ATPase

[78, 79] which is critical for sequestration of calcium into the Sarcoplasmic Reticulum (SR)

during cardiac relaxation and is the dominant SERCA isoform in cardiac muscle [79]. SERCA

is a transmembrane protein embedded in the SR lipid membrane which consists of 3 cytosolic

domains (Nucleotide binding domain - ”N”, Phosphorylation domain - ”P”, Actuator domain

- ”A”) as well as 10 transmembrane (M) helices, M1 through M10 (Fig. 1A) [80, 81]. The

nucleotide binding region is located within the N domain. Calcium binding occurs in the

transmembrane region between helices M4, M5, M6, and M8, at binding locations known as

Site I and Site II (Fig. 1C) [82, 81]. Generally, SERCA transitions between two major states

as it pumps calcium into the SR in an ATP-driven manner: E1 and E2. In the first state, E1,

the the calcium binding sites face the cytosolic side of the membrane. Binding of ATP and two

calcium ions, followed by ATP dephosphorylation and hydrolysis, reconform the protein so that

calcium can be released into the SR lumen [83, 81]. The SR-facing conformation is known as

E2. Release of ADP, phosphate, and calcium ions into the SR lumen allow the protein to move

back into the E1 state [84, 81]. A simplified ordinary differential equation model of SERCA

function developed by Tran et al. [85] describes several rate-limiting steps within the cycle: (1)

Mg2+ATP binding, (2) binding of the first calcium ion to site I (site II binding is then considered

to occur instantaneously), (3) ADP release, coupled with the E1-E2 transition, (4) Release of

calcium ions into the SR lumen, and (5) Pi release, coupled with E2-E1 transition. Here we focus

on how the first two of these rate-limiting steps may be affected by a molecular modification to
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ATP.

2’-deoxy-ATP (dATP) is a naturally occurring nucleotide that differs in structure to ATP

by only a cleaved hydroxyl group on the 2’ carbon of the ribose ring (Fig. 1B). In spite of the

similar structures of the two molecules, force production has been found to increase dramatically

in cardiac cells when ATP is replaced by even a small fraction of dATP [86, 87]. This finding has

led to various studies exploring the potential for dATP as a therapeutic myosin activator to treat

heart failure [88, 39, 36, 50, 40, 89]. In one such study, upregulation of dATP to ∼ 1% of the

overall ATP pool led to increased cell shortening, but also had a marked and beneficial effect on

the calcium transient leading to improved lisutropy [38]. These results showed decreased time to

50% and 90% calcium transient decay, suggesting that the rate of intracellular calcium reduction

is enhanced during dATP treatment. This may confer additional therapeutic benefit in heart

failure which is commonly characterized by decreased function and expression of SERCA2A in

failing cardiac myocytes [90, 91, 92]. SERCA is also under investigation as a therapeutic target

[90, 93, 92, 94, 95, 49]. To reveal potential therapeutic mechanisms of dATP on SERCA2A,

analysis at multiple scales from atomic resolution molecular dynamics to whole cell function is

required.

We developed a multiscale modeling approach spanning molecular to whole cell scales.

Gaussian accelerated Molecular Dynamics (GaMD) simulations of human cardiac E1 SERCA2A

embedded in a lipid bilayer [96, 97, 98, 99] were conducted on 3 separate systems: apo, ATP-

bound, and dATP-bound. Analysis of the GaMD trajectories allowed us to locate key sites in

the cytosolic and transmembrane domains of SERCA that may be modified by dATP binding.

Rigid body Brownian Dynamics (BD) simulations [68] were then used to measure association

rate constants of ATP, dATP, and calcium ions to SERCA2A. We found that dATP bound to

SERCA2A with greater affinity than ATP, and calcium bound with a higher affinity to dATP-

bound than ATP-bound SERCA. Finally, in a compartmental ordinary differential equation model

of whole cell calcium handling [100], the effects of these molecular differences on the calcium

transient were predicted.
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Figure 1.1. (A) Overview of SERCA structure. A, N, and P cytosolic domains, as well as
M1-M10 transmembrane helices are labeled. D351, the nucleotide phosphorylation site, is also
labeled. Nucleotide and Mg2+ are shown in the binding site on the N domain. (B) ATP and dATP
chemical structures. Note missing hydroxyl group on the ribose ring for dATP. (C) Calcium
binding site I and site II, and key residues used for assessing calcium binding path dynamics
including E907 on M8, E770 on M5, and T798 on M6 (site I), E309 on M4 (site II), and E109
(M2) and E51 (M1) which comprise part of the calcium entry path.
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1.3 Methods

1.3.1 Gaussian Accelerated Molecular Dynamics

We began with a crystal structure of human cardiac SERCA2A in the E2 state from

the Protein Data Bank (PDB) (PDB ID: 7BT2) [101, 99]. Since no human cardiac SERCA2A

structures in the E1 state were available, we constructed a homology model using a SERCA 1A

crystal structure in the E1 state purified from rabbit fast-twitch skeletal muscle (PDB ID: 3W5A)

[98]. Homology modeling was done using SWISS-MODEL [102]. Sequence identity was 83.7%,

with 93.1% similarity, determined using Clustal Omega, [103] and the GMQE score for the

model was 0.77. Chain A from the 3W5A crystal structure was used for homology modeling.

Ligands K+, MPD, and PCW were removed from the 7BT2 structure, and Na+, Mg2+, M1, PTY,

and sarcolipin were removed from the 3W5A structure. Nucleotide and Mg2+ position within

the nucleotide binding pocket were taken directly from the 7BT2 structure. CHARMM-GUI

was used to prepare all simulation files [104]. Protonation states were determined using the

PDB2PQR PropKa tool, at a pH of 7.0 [105, 106, 107, 108]. Protonated residues were: HSE

(683), and HSD (5, 32, 38, 190, 278, 284, 868, 872, 880, 882, 944). A disulfide bond was added

between CYS 875 and CYS 887. The protein was embedded in a 12.5 by 12.5 nm lipid bilayer,

and the position of SERCA within the bilayer was determined using the Orientations of Proteins

in Membranes (OPM) database [109]. The lipid bilayer was composed of POPC (51% upper

leaflet, 66% lower leaflet), POPE (43% upper leaflet, 17% lower leaflet), and POPS (6% upper

leaflet, 17% lower leaflet), with 308 total lipids in the upper leaflet and 297 total lipids in the

lower leaflet, based on experimentally determined membrane composition in the cardiac SR

[110]. A rectangular water box of thickness 22.5 nm was added, and period boundary conditions

were utilized for simulation. K+ and Cl− ions were added using the Monte Carlo placement

method at a 150 mM concentration to neutralize the system [111]. AMBER input files were

generated using CHARMM-GUI[112, 104].

To construct the dATP structure, the extra hydroxyl group was removed from the ATP
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structure, taken directly from the 7BT2 crystal structure, using Chimera [113]. These ATP and

dATP structures were then input into CHARMM-GUI, and antechamber was used to generate

force field parameter files using the AMBER GAFF2 force field [114, 115]. The AMBER

FF19SB [116] force field was used for protein residues, and the Lipid17 and OPC [117] force

fields were used for lipid and water molecules, respectively. The SHAKE algorithm was used to

constrain the motion of hydrogen-containing bonds [118].

MD and GaMD simulations were performed using Amber20 [119], and all simulations

were run on the Triton Shared Computing Cluster through the San Diego Supercomputer Center

[120]. A total of 150 ns of conventional MD and 200 ns of GaMD (3 replicates) were performed

for apo-SERCA, and ATP- and dATP-bound SERCA. Prior to these simulations, minimization

was done over 5000 steps of steepest decent minimization with 10 kcal mol−1 Å−2 positional

restraints on all protein atoms and 2.5 kcal mol−1 Å−2 positional restraints on all lipid atoms,

with NMR restraints. Equilibration was done over 6 steps, for 1.875 ns total. The Langevin

temperature equilibration scheme using a collision frequency of 1.0 ps−1 was utilized to set the

system temperature to 303.15 K using the NVT ensemble over 2 steps (125 ps each). During

these heating steps, 10 kcal mol−1 Å−2 positional restraints were present on all protein atoms

for the first step and 5 kcal mol−1 Å−2 positional restraints were present on all protein atoms

for the second step, and 2.5 kcal mol−1 Å−2 positional restraints with NMR restraints were

present on all lipid atoms for both steps. The system was then equilibrated over 4 stages using

the semi-isotropic (with constant surface tension) NPT ensemble (constant number of particles,

pressure, and temperature), for 125 ps, 500 ps, 500 ps, and 500 ps, respectively, with the system

set to 1.0 bar. Positional restraints on all protein atoms were 2.5, 1.0, 0.5, and 0.1 kcal mol−1

Å−2 for each step, respectively. Positional and restraints on all lipid atoms were 1.0, 0.5, 0.1,

and 0 kcal mol−1 Å−2 for each step, respectively, with NMR restraints.

MD and GaMD simulations were run at 303.15 K using the PMEMD (Particle Mesh

Ewald Molecular Dynamics) method with a 9 Å nonbonded cutoff, and 2 fs timestep. Coordinates

were saved every 100 ps for MD and 20 ps for GaMD simulations. In GaMD, a Gaussian
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distribution is used to provide a boost potential for the system in order to enhance conformational

sampling at shorter simulation time scales [96]. A single boost potential was applied to the

total potential energy only. The final frame from the 150 ns MD simulations was used as

the starting point for the GaMD simulations, and 0.4 ns of conventional MD prep, 2.4 ns of

conventional MD (to calculate potential statistics), 0.4 ns of GaMD pre-equilibration (with

boost potential applied), and 10.4 ns of GaMD equilibration (with boost potential applied and

boost parameters updated) were run before all GaMD production simulations. The three GaMD

replicates were averaged for analysis. Chimera, VMD, and PyMol were used for trajectory

analysis and visualization [113, 121, 122]. Analysis was performed using the AMBER cpptraj

[123] and the MDTraj python libraries [124]. Hydrogen bonding analysis used a 3 Å and 135°

cutoff. Energetic reweighting of trajectory data was performed after all simulations using a

Gaussian approximation of cumulant expansion to the second order. This step is necessary

because a boost potential was applied at each time step in order to flatten the energy landscape

during the simulation and increase conformational sampling [96]. Briefly, the potential for mean

force (PMF) as a function of reaction coordinate A j is calculated as:

PMF(A j) =− 1
β

ln p(A j) (1.1)

Where β = kBT and p(A j) is the canonical ensemble distribution. Because boost potentials

followed a Gaussian distribution, p(A j) must be calculated from the ensemble distribution of the

boosted data set as:

p(A j) = p∗(A j)
⟨eβ∆V (r)⟩ j

∑
M
j=1⟨eβ∆V (r)⟩ j

ln p(A j),J = 1, ...,M (1.2)

Where ∆V (r) is the boost potential for each frame, M is the number of bins, and ⟨eβ∆V (r)⟩ j is the

ensemble averaged Boltzmann factor for frames in bin j. ⟨eβ∆V (r)⟩ is approximated using second
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order cumulant expansion and is calculated as:

⟨eβ∆V (r)⟩= exp{
∞

∑
k=1

β k

k!
σ

2
∆V} (1.3)

Re-weighting of the GaMD simulations was done using scripts and protocols developed by Miao

et al. [125].

1.3.2 Brownian Dynamics

BD simulations with Browndye 2 [68] were used to probe SERCA binding kinetics.

Browndye treats molecules as rigid cores and uses an adaptive time step to efficiently simulate

binding kinetics. We first carried out BD simulations of ATP and dATP binding to the apo

SERCA structures derived from our GaMD simulations and compared their respective associ-

ation rate constants. In order to better capture the conformational dynamics and variability of

SERCA, 30 SERCA structures were used independently in 30 separate simulations for ATP and

dATP. The 30 conformations were obtained through hierarchical clustering of the apo GaMD

SERCA simulations, using Cα RMS as the cutoff metric. The lipid bilayer was removed for

nucleotide binding simulations to reduce simulation compute cost, given that the bilayer should

not substantially affect the relative rates of binding of ATP and dATP. Browndye uses ”reaction

pairs” as a reaction coordinate to measure progress of binding events. These pairs were defined

based on the starting homology model with ATP or dATP present. Pairs were defined by contacts

between (d)ATP and residues PHE 487 and ARG 559 with a distance less than 3.5 Å. The

full list of binding pairs can be found in Table 1.1, and is further illustrated in Fig. 1.2 in the

supplementary material. The encounter complex description in Browndye, which specifies the

distance between pairs necessary for a reaction to be considered complete, was left unspecified,

allowing for a range of binding probabilities to be observed as a function of reaction distance.

For each of the 30 representative structures, BD simulations were carried out to measure the

association of ATP, and separately with dATP, with 50,000 individual trajectories simulated per
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Figure 1.2. Labeled diagram for the atom names of ATP used to define Browndye reaction pairs.
The same naming scheme is used for dATP, and only atoms conserved in both structures are used
in the reaction pair criteria.

conformation. Overall, 1.5 million total ATP trajectories were simulated as well as 1.5 million

dATP trajectories. The same AMBER force field used for the GaMD simulations was used to

parameterize the protein and nucleotide charges and radii for BD simulations. Binding rate

constant curves of the resulting simulations were then averaged based on the cluster weight of

each observed representative structure. [h!]

We again employed BD simulations to investigate changes in calcium binding to site I

and II in SERCA when ATP or dATP is bound. The starting SERCA structures were clustered

from the GaMD ATP and dATP simulations. Thirty representative structures were extracted

from each nucleotide condition, with the membrane intact. The same hierarchical clustering

approach based on the Cα RMS was again applied to generate representative structures. The

membrane was included to ensure that calcium enters the SERCA protein through a realistic

entry point, likely via the M1/M2/M4 path, and not through the transmembrane region buried in

the lipid bilayer [81]. Reaction pairs for calcium to site I were defined based on atoms forming

hydrogen bonds in a previously solved crystal structure [126]. A second set of reaction pairs

was also established from the same crystal structure for site II (full list for site I and II can be

found in Table 1.2 in the supplementary material). For site I, the 30 structures from the ATP

conditions were used to run 50,000 BD trajectories, leading to 1.5 million trajectories. Similarly,
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Table 1.1. Encounter complex description used for Browndye simulations of (d)ATP binding to
SERCA

SERCA Binding Pairs
Residue-Atom Name ATP or dATP Atom

PHE 486-CB H10
PHE 486-CG H10
PHE 486-HB2 H10
PHE 486-CD2 H10
ARG 558-NE C3
ARG 558-NE H4
ARG 558-HE C1
ARG 558-HE O1
ARG 558-HE H1
ARG 558-HE H2
ARG 558-HE C3
ARG 558-HE H4
ARG 558-HE C5
ARG 558-CZ C3

ARG 558-HD2 O1
ARG 558-HD2 H1
ARG 558-NH2 C3
ARG 558-NH2 H4
ARG 558-HH21 C3
ARG 558-HH21 H4
ARG 558-HH21 C5
ARG 558-HH21 H8
ARG 558-HH21 N1
ARG 558-HH21 C6
ARG 558-HH21 H9
ARG 558-HH21 C7
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the 30 structures from the dATP GaMD simulations were used to run an additional 50,000 BD

trajectories per conformation, again leading to 1.5 million trajectories simulated. The binding

rate constant curves were averaged based on the frequency of the cluster throughout the GaMD

simulations. The same procedure was repeated using the same structures to investigate binding

to site II, with the reaction pairs adjusted accordingly for an additional 1.5 million trajectories

per nucleotide condition. In total, between the two calcium sites and two nucleotides bound, 6

million calcium binding BD trajectories were simulated.

Table 1.2. Encounter complex description used for Browndye simulations of calcium associating
to (d)ATP-bound SERCA

Atom Calcium Interaction Pairs
Site I Site II

ASN 767-OD1 ASN 795-OD1
GLU 770-OE1 GLU 309-OE1
GLU 770-OE2 GLU 309-OE2
GLU 907-OE1
GLU 907-OE2
THR 798-OG1

All BD simulations for both the nucleotide and calcium association simulations used 150

mM ionic strength, and a desolvation parameter of 0.025 based on sensitivity analysis to allow

for realistic binding distance criteria. Each BD trajectory had a maximum of 1000000 steps. The

dielectric coefficient of the solvent was set to 78, while the solute dielectric coefficient was set to

4.

1.3.3 Calcium Transient Modeling

To assess how changes in nucleotide and calcium association rate constants to SERCA

impact the myocyte calcium transient as a whole, we utilized a whole cell excitation-contraction

coupling (ECC) model developed by Himeno et al. [100]. This model was chosen because it

explicitly includes a three-state model of SERCA [85] which has parameters for ATP binding,

calcium binding, and E1-E2 transition. In this model, state P1 is E1 SERCA, which undergoes a
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reversible reaction dictated by rates K+
1 and K−

1 to state P2−5 (E1 with ATP and 2 calcium ions

bound). Calcium binding is considered to be fully cooperative, i.e. binding of the second calcium

ion is instantaneous after the first calcium binding event. Reaction rates K+
2 and K−

2 encompass

MgADP dissociation as well as the E1-E2 transition, leading the model to state P6−10. Finally,

reversible reaction rates K+
3 and K−

3 return the pump to state P1 [85]. dATP experimental data

were digitized from Korte et al. Fig. 1B (GFP and R1R2, respectively) [38]. Fura ratio units

were converted to calcium concentration by setting the maximum fluorescence value to 0.45 µM,

and the minimum value to 0.05 µM, since these are approximately the maximum and minimum

calcium values typically seen in the ECC model [100]. The ECC model was optimized to match

the ATP experimental calcium transient by varying AmpSERCA, AmpNCX , AmpNaK , and fn, the

same parameters which were tuned by Himeno et al. in parameterizing their original model

[100]. Optimization was conducted using Particle Swarm Optimization in MATLAB [127]. The

timescale of the applied current in the ECC model was adjusted to reflect differences between

human and rat and to more closely fit control (ATP) calcium transients.

1.4 Results

1.4.1 dATP is more stable in the nucleotide binding pocket, facilitating
E1-ATP to E1-ADP transition via enhanced phosphorylation and
movement of cytosolic domains

We first assessed differential interactions of ATP and dATP in the nucleotide binding

pocket in the N domain. Computing the overall number of contacts between the nucleotide

and residues identified to come within 3 Å for at least one frame of any of the simulations, we

found that dATP had a greater number of contacts overall (Fig. 2A). The average number of

contacts was 8.7 for ATP and 10.5 for dATP. Further, we found that dATP had a lower RMSD

overall (averaged across all 3 GaMD simulations) than ATP (Fig. 2B). This suggests that dATP

is interacting more closely with a greater number of residues in the N domain binding pocket,

and that it binds more stably, leading to less movement within the binding pocket.
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Figure 1.3. dATP is more stable in the nucleotide binding pocket. (A) The overall number
of contacts in the binding pocket (averaged across 3 replicates) was greater for dATP than for
ATP. Only residues identified to come within 3 Å for at least one frame of the simulation were
included. Data are displayed as histograms showing the frequency distribution across the GaMD
simulations. (B) The RMSD for dATP (averaged across 3 replicates) was lower than for ATP.

We next assessed specific residue interactions with ATP and dATP in the nucleotide

binding pocket. The distances across three GaMD replicates between the nucleotide and several

residues of interest are shown in Fig. 3A. Distances to known nucleotide interaction residues

PHE 487, ARG 559, and LYS 514 [81, 128, 129, 130] were unchanged (the average distances

were 0.39 nm, 0.30 nm, and 0.47 nm for ATP and 0.39 nm, 0.26 nm, and 0.45 nm for dATP,

respectively). This suggests that interactions with these residues do not explain differences

in nucleotide association. However, we found that ATP came in closer contact with several

residues towards the top of the nucleotide binding pocket than dATP, including THR 441, LYS

492, ARG 677, and ARG 489 (average distances were 0.50 nm, 0.33 nm, 0.36 nm, and 0.43

nm for ATP and 0.56 nm, 0.39 nm, 0.53 nm, and 0.49 nm for dATP, respectively) (Fig. 3B).

The phosphate tail of dATP was shown to come in closer contact with several residues towards

the bottom of the nucleotide binding pocket than ATP, including LYS 352, THR 353, THR 624,

and ASP 626 (average distances were 0.83 nm, 0.95 nm, 0.91 nm, and 0.56 nm for ATP and
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0.45 nm, 0.47 nm, 0.41 nm, and 0.42 nm for dATP, respectively (Fig. 3C). We hypothesize that

this is due to the additional hydroxyl group on ATP (Fig. 1B), allowing it to form additional

hydrogen bonding interactions with residues at the top of the binding pocket, while dATP does

not, causing the phosphate tail to be pulled downwards. The hydrogen bond occupancy of the 2’

hydroxyl group on ATP was measured to be 8.21% as a hydrogen bond acceptor, 4.80% as a

donor, and overall acting as either a donor or acceptor in 12.4% of the simulation. While this is a

minority of the simulation time, the consistent interaction significantly alters its orientation and

behavior in the pocket. The preserved 3’ hydroxyl shows similar levels of hydrogen bonding

occupancy between ATP and dATP, at 30.4% and 34.8% occupancy respectively as either a

donor or acceptor. Interestingly, in dATP, the 3’ hydroxyl almost never bonds as a donor, at only

0.0312% of frame compared to 4.92% in ATP. These results are further supported by clustering

analysis, which confirmed that ATP is most commonly located more horizontally across the

top portion of the binding pocket across all 3 replicates, while dATP shows a more vertically

aligned conformation in which the phosphate tail is drawn downwards towards the P domain.

This serves to position dATP such that the gamma phosphate is located substantially closer to the

phosphorylation residue ASP 351 (average distance was 1.2 nm for ATP and 0.74 nm for dATP)

(Fig. 3A, C) [81]. This may allow for faster phosphorylation by dATP compared with ATP.

Finally, we assessed the differential effects of ATP and dATP on the movement of

cytosolic domains of SERCA2A. Closure of the A and N domains (Fig. 1A) in particular is

important for the E1-ATP to E1-ADP transition [131, 79, 131]. We found that the average

difference between the center of mass of the A and N domains was smaller for dATP than for

ATP (average distance was 3.8 nm for ATP and 3.5 nm for dATP), suggesting that dATP enhances

closure of these domains (Fig. 4A). Further, the standard deviation in A-N domain distances was

smaller for dATP than ATP (0.09 nm for ATP vs 0.08 nm for dATP), suggesting that dATP may

also stabilize these domains in a more closed conformation. This was also shown to correspond

to the first principal component from a PCA analysis conduced on SERCA structures from

the GaMD simulations (Fig. 4B), suggesting that this is the major motion captured by our
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Figure 1.4. dATP occupies a more vertically aligned conformation in the binding pocket than
ATP. (A) Distance between nucleotide and residues of interest for ATP and dATP (averaged
across three replicates). For each residue of interest, distance distributions (between the residue
and nucleotide) are shown as violin plots, where the white dot in the center represents the median,
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the left side of the plot and dATP on the right side of the plot, where the width of the curve
represents the frequency of the data (nucleotide-residue distance) at that point. ATP came in
closer contact with residues towards the top of the binding pocket, including THR 441, LYS
492, ARG 677, and ARG 489 (shown in (B)). dATP was shown to come in closer contact with
residues towards the bottom of the binding pocket including LYS 352, THR 353, THR 624, ASP
626, and phosphorylation residue ASP 351 (shown in (C)). This may be explained by the missing
hydroxyl group on dATP leading to weaker interactions with residues at the top of the binding
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were unchanged.
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Figure 1.5. dATP enhances transition from E1-ATP to E1-ADP via A-N domain closure. Data
are displayed as histograms showing the frequency distribution across the GaMD simulations.
(A) A-N domain distance (averaged across 3 replicates), measured from the center of mass for
each domain, was lower for dATP than ATP. (B) First principal component from PCA analysis of
Cα movement performed on GaMD trajectories, which corresponds to A-N domain movement.

simulations. Further, reweighting analysis confirmed that these effects were not due to bias in

the GaMD simulations since the decrease in A-N distance with dATP, represented by a minimum

in the Potential of Mean Force (PMF), was still present even after recovering the original energy

landscape (without the GaMD boost potential) via reweighting. Interestingly, ATP increased A-N

domain distances with respect to the apo structure, while dATP decreased A-N domain distances

with respect to the apo structure. This may be due to the fact that our GaMD simulations do not

have calcium present; in the absence of calcium, the nucleotide can bind to the N domain and

can lead to opening of the cytosolic domains, but cannot lead to subsequent complete closure

of these domains or phosphorylation [81, 99]. The effects of dATP on SERCA appear to be

pronounced enough to lead to greater closure of the A and N domains. We expect that if calcium

was present in the GaMD simulations, ATP A-N distances would be smaller than the apo case,

and dATP A-N distances would be decreased even further.
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1.4.2 dATP binding to SERCA leads to opening of calcium binding path

Next, we assessed whether dATP binding affects calcium association in the transmem-

brane region. The calcium binding sites have been shown to be allosterically linked to the

nucleotide binding site via transmembrane helix M5 [81]. Calcium binds first to site I (passing

through site II, which is gated by GLU 309) [79, 131, 132, 128]. This is believed to occur

through a cooperative mechanism, where binding of calcium to site I increases calcium binding

affinity for site II [133, 132, 134]. We computed distances between THR 799 (M6), GLU 770

(M5), and GLU 709 (M8), since these residues make up calcium binding site I [131] (Fig. 1C).

We found that the average distances between M5 and M6 were increased (average distances

were 0.55 nm for ATP and 0.66 for dATP) (Fig. 5A). Average distances between M5 and M8

were also increased (average distances were 0.45 nm for ATP and 0.52 nm for dATP) (Fig. 5B).

Average distances between M6 and M8, on the other hand, were decreased (average distances

were 0.26 nm for ATP and 0.25 nm for dATP) (Fig. 5C). This suggests that the net effect of

dATP is to cause opening of calcium binding site I, since M5-M6 and M6-M8 distances were

increased by a greater magnitude than M6-M8 distances were decreased with dATP. Similar to

the effects of dATP on A-N domain distances, here we observed again that ATP and dATP had

opposing effects on transmembrane helix distances with respect to the apo structure. This may

again be due to the fact that our GaMD simulations were carried out in the absence of calcium.

Further, we assessed the effects of dATP on calcium entry. Calcium is proposed to enter

SERCA through two different paths [135, 132]. The first is composed of M6, M7, M8, and

M9, while the second is composed of M1, M2, and M4. We chose to focus on the second,

since there is greater evidence supporting this path [135, 136, 137, 138]. We assessed distances

between GLU 51 (M1) and GLU 109 (M2), residues which have been implicated in calcium

sensing and compose part of the binding path [135] (Fig. 1C), and found that dATP also led

to an increase in this distance (average distance was 0.88 nm for ATP and 0.94 nm for dATP)

(Fig. 5D). We again verified that these results were not due to bias in the GaMD simulations by
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conducting a reweighting analysis since the changes in residue distances with dATP, represented

by a minimum in the Potential of Mean Force (PMF), were still present even after recovering

the original energy landscape (without the GaMD boost potential) via reweighting. Further, the

standard deviation of the distance distribution was smaller for dATP than ATP (0.11 nm for ATP

and 0.06 nm for dATP), suggesting that dATP also acts to stabilize these residues in a more open

position. Thus, dATP may lead to opening of both the calcium binding path and calcium binding

site I, which could facilitate enhanced calcium association.

1.4.3 dATP increases rates of nucleotide and calcium association to
SERCA compared with ATP

BD simulations revealed that dATP bound more rapidly to the apo structure of SERCA

compared with ATP. The weighted average binding curve shows that across a wide range of

reaction distances greater than 7 Å, dATP binds more rapidly to the apo structure than ATP (Fig.

6A and B). Selecting a reaction distance of 8.11 Å corresponding to the ATP binding rate constant

of 2.59×107 (M s)−1 used by Tran et al. [85], the corresponding dATP association rate constant

was 36% higher (3.52 ×107 (M s)−1). We attribute the lower dATP binding rate constants at low

reaction distances to noise, since very few BD simulations reached these small distances. Less

than 0.05% of simulations reached a distance of less than 8 Å and less than 0.03% of reactions

reached a distance of less than 5 Å. Although ATP does have an additional polar hydroxyl

group that may promote additional electrostatic attraction to the nucleotide binding pocket, we

anticipate that removal of this functional group reduces steric hindrance, therefore allowing dATP

easier access to the binding site, and that this effect dominates the BD simulations. Furthermore,

analysis of a structure by structure comparison of the 30 SERCA conformations used in our

simulations revealed that although the nucleotide binding rate constant varied considerably from

conformation to conformation, dATP consistently associated more rapidly to SERCA compared

with ATP.

Further, BD simulations of dATP-bound SERCA showed differences in calcium binding
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Figure 1.6. dATP binding leads to rearrangement of calcium binding path. Distances for key
residues on M5 (GLU 770), M6 (THR 798), and M8 (GLU 907) that make up calcium binding
site I, as well as calcium sensing residues on M1 (GLU 51) and M2 (GLU 109) that make up the
calcium entry path are shown. Distances were averaged across 3 replicates. Data are displayed as
histograms showing the frequency distribution across the GaMD simulations. Distances between
M5 and M6 (A) and M5 and M8 (B) were increased, while distances between M6 and M8 (C)
were decreased with dATP. Distances between M1 and M2 were increased with dATP (D). This
suggests that dATP may facilitate calcium binding by opening the calcium entry path to site I.
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compared to ATP-bound SERCA (Fig. 1.7C, D). For reaction distances between 4 and 12 Å,

calcium bound more rapidly to site I when dATP was bound than ATP. Experimental estimates

of calcium association rate constants to SERCA vary by up to three orders of magnitude, making

determining an absolute binding distance and rate constant difficult, however a previous BD

study estimated a calcium association rate constant of 3.13×109 (M s)−1 to ATP-bound SERCA

[135]. In our simulations, this value corresponded to a reaction distance of 10 Å at which calcium

binding to site I of dATP-bound SERCA was 23% greater (3.85×109 (M s)−1). Interestingly,

dATP reduced the association rate constant of calcium to site II. It is believed that calcium binds

to site I first and initiates a conformational change before a second calcium ion can bind to

site II. Therefore, the structures extracted from our GaMD simulations may not be an accurate

representation of SERCA when the first calcium ion is bound. This process is also cooperative,

so we anticipate that this sequential step significantly alters the binding kinetics of the second

calcium ion. As such, we focus our subsequent multiscale analysis on the effects of dATP on

calcium binding to SERCA at site I.

1.4.4 Enhanced calcium binding to dATP-bound SERCA accelerates
myocyte calcium transient decay

We optimized parameters of the Himeno ECC model to match measured calcium tran-

sients in the presence of ATP, as described in the methods [100, 127, 38]. In the Tran model

of SERCA kinetics[85] (incorporated within the Himeno model), K+
1 (rate of ATP binding to

SERCA) and Kd,Cai (dissociation constant for calcium binding to SERCA) were then adjusted

based on the results of the BD simulations. Thus, K+
1 was increased from 2.59×107 (M s)−1 to

3.52×107 (M s)−1 based on the BD-predicted change in nucleotide association to SERCA, and

Kd,Cai was was decreased by 23% from 0.0027 mM to 0.0021 mM based on the BD-predicted

change in calcium binding to site I. These changes decreased time to 50% decay (DT50) of the

calcium transient, but only modestly from 279 ms to 240.5 ms (Fig. 7A). However, decreasing

Kd,Cai by 41%, which is still within the range of the BD simulation results, shortened DT50 by

34



B

C D

A
N

u
cl

eo
ti

d
e 

b
in

d
in

g
ra

te
 c

o
n

st
an

t (
(M

 s
)-1

)

Reaction distance (Å)

ATP

dATP

106

107

109

108

0 5 10 15 20
Reaction distance (Å)

0 5 10 15 20

Lo
g

2 fo
ld

 c
h

an
g

e 
in

 n
u

cl
eo

ti
d

e 
b

in
d

in
g

-2

0

2 ATP

dATP

C
al

ci
u

m
 b

in
d

in
g

ra
te

 c
o

n
st

an
t (

(M
 s

)-1
)

105

109

107

Reaction distance (Å)
0 5 10 15 20

Reaction distance (Å)
0 5 10 15 20

Lo
g

2 fo
ld

 c
h

an
g

e 
in

 c
al

ci
u

m
 b

in
d

in
g

-2

0

2

ATP site I
dATP site I

ATP site I
dATP site I

ATP site II
dATP site II

Figure 1.7. (A) BD-predicted binding rate constants as a function of reaction distance. Dotted
lines represent reaction distance for association rate constant of ATP to SERCA used in the Tran
et al. model [85]. (B) Log2 fold change in nucleotide binding rate constant as a function of
reaction distance. Log2 fold change is used to more easily visualize changes in binding rate
constant e.g. a doubling of the binding rate constant is equivalent to a log2 fold change of 1,
quadrupling is equivalent to a log2 fold change of 2, etc. Log fold changes of less than 1 are
negative while fold changes greater than 1 are positive (e.g. a halving of the binding rate constant
is equivalent to a log2 fold change of -1). dATP binds more rapidly to the nucleotide site for
reaction distances greater than 7 Å below which sampling errors increase owing to the low
number of simulations reaching lower reaction distances. (C) BD-predicted association rate
constant of calcium to sites I and II. dATP increases calcium binding to site I compared with
ATP. Calcium binds site II more rapidly when ATP is bound to SERCA than dATP. Dotted lines
represent reaction distance that corresponds to the calcium association rate constant determined
from a previous BD study [135]. (D) Log2 fold change in the association rate constant of calcium
to site I when dATP is bound compared with ATP.
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Figure 1.8. dATP accelerates the rate of myocyte calcium transient decay via enhanced calcium
association. (A) Effects of changing model parameters K+

1 and Kd,Cai (nucleotide and calcium
association rate constants, respectively) in the Tran model [85]. ATP and dATP experimental
data digitized from Korte et al. [38] are shown as dotted lines. ATP model calcium transient
(optimized to match ATP experimental data), and dATP predicted model calcium transients for
36% increase in K+

1 combined with 23% and 41% decreases in Kd,Cai are also shown. (B) Percent
decrease in Kd,Cai vs DT50. With a 23% decrease in Kd,Cai (based on BD results), we are not
able to fully match experimental measurements. However, with a 41% decrease in Kd,Cai, we are
able to match experimental measurements of DT50 with dATP. These simulations also include a
36% increase in K+

1 based on BD results, but changes in K+
1 were not shown to substantially

affect DT50.

an amount similar to experimental observations in the presence of dATP (Fig. 7B). In contrast,

changes in the nucleotide association rate constant had little effect, suggesting that increasing

calcium binding to site I may be the primary mechanism by which dATP increases SR calcium

reuptake.

1.5 Discussion

The results of this study provide new evidence for mechanisms by which dATP treatment

may contribute to improved SERCA pump function in cardiac myocytes. Firstly, dATP was

shown to be more stable in the binding pocket of SERCA and was positioned to facilitate faster

phosphorylation. Increased separation of the A-N cytosolic domains indicates faster pump
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function with dATP treatment. Further, we observed separation of transmembrane helices M5

and M6 and M5 and M8, as well as M1 and M2, which may facilitate faster calcium association.

dATP demonstrates a 36% higher association rate constant than ATP to the N domain of SERCA.

However, inputting the nucleotide and calcium association rate constants determined from BD

analysis (K+
1 and Kd,Cai) into an ECC model did not fully explain experimentally observed

differences in the calcium transient due to dATP, but further decreasing the calcium dissociation

constant could.

While this study provides valuable insight into the molecular mechanisms by which dATP

affects SERCA function, our GaMD simulations did not capture the phosphorylation event or

downstream protein conformational changes after calcium binding. Future molecular dynamics

or quantum mechanics simulation studies would aid in better elucidating these effects. Our BD

simulations also allowed for the entry of the nucleotides and calcium from any orientation from

the SERCA pump, not only the cytosolic side, which is a limit of our approach. Moreover, there

are also other ATPases that contribute to intracellular calcium dynamics such as the Plasma

Membrane Calcium-ATPase (PMCA) and the Sodium-Potassium ATPase exchanger (NCX)

which may also be affected by dATP to enhance calcium efflux from the cell. SERCA is regulated

by phospholamban and several post-translational modifications that could also affect its pump

function [92]. It is likely that both SERCA upregulation and these other pumps together could

explain the improved relaxation observed experimentally due to dATP treatment. This could

be further explored with computational and experimental studies that specifically focus on the

effects of the cooperative binding of Ca2+ with relation to dATP and ATP. For instance, additional

MD simulations of SERCA with one or both Ca2+ binding sites occupied will certainly change

the free-energy landscape and thus, yield additional structures and insights. Additionally, since

dATP is a candidate therapeutic approach for heart failure with reduced ejection fraction, which

is characterized by prolonged twitch relaxation and calcium transient decay associated with

downregulated SERCA function, it would be useful to apply this analysis to a model of ECC in

the failing cardiac myocyte.
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In this study, we analyzed the effects of nucleotide binding on SERCA pump kinetics and

the differential effects of ATP and dATP on calcium affinity via changes to the transmembrane

domain. This study has demonstrated the power of multiscale modeling for investigating the

effects of ATP analogs on cardiac cells, as we integrated knowledge from the atomic to the

cellular level to uncover potential mechanisms of dATP which scale up to a significantly altered

calcium transient and cardiac function as a whole.

1.6 Acknowledgments

Chapter 1, in full, is a reprint of the material as it appears in the Journal of Applied

Physics. Multiscale computational modeling of the effects of 2’-deoxy-ATP on cardiac muscle

Ca2+ handling. M. T. Hock*, A. E. Teitgen*, K. J. McCabe*, S. P. Hirakis, G. A. Huber, M.

Regnier, R. E. Amaro, J. A. McCammon, and A. D. McCulloch. Multiscale computational

modeling of the effects of 2’-deoxy-ATP on cardiac muscle Ca2+ handling. J. Appl. Phys.

134(7):074905, 2023. *Equal contribution. The dissertation author was the co-first author of this

publication.

38



Chapter 2

Correlated Motion Analysis of SERCA
Allostery

2.1 Abstract

We present the Netsci program - an open-source scientific software package that leverages

GPU acceleration and a k-nearest-neighbor algorithm in order to estimate the mutual information

(MI) between data in a set. The GPU acceleration presented here, as an improvement upon

existing estimators, enables calculation speeds several orders of magnitude faster than CPU-based

implementations, all with dataset size limits determined only by the available hardware. To

demonstrate the validity and usefulness of Netsci, we show that the MI is correctly computed

for the analytically-verifiable two-dimensional Gaussian distribution, and we also reproduce

the generalized correlation (GC) analysis performed in an earlier study on the B1 domain of

protein G. In addition, we apply Netsci to the analysis of molecular dynamics simulations of the

Sarcoendoplasmic Reticulum Calcium-ATPase (SERCA) pump. Specifically, we use Netsci to

understand the allosteric mechanisms and pathways of SERCA, and compare the differential

effects of the binding of two nucleotides, ATP and 2’-deoxy-ATP (dATP). We determine that

ATP binding to SERCA, compared to dATP, induces differential allosteric effects. The most

likely information pathways from the bound nucleotide to the calcium binding domain are also

predicted using our MI estimator in combination with network analysis tools on the SERCA

pump, which differs based on the bound nucleotide. Netsci is shown to be a useful program
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for the estimation of MI and GC within general datasets, and for the analysis of intraprotein

communication and information transfer, in particular.

2.2 Introduction

One important problem within molecular structural biology is the need to quickly and

robustly extract meaningful information about the concerted motion between different regions

of a biomolecule, or as an effect of other molecules, from the large quantities of data generated

within simulation trajectories detailing atomic motion. For instance, allostery occurs when a

binding event or conformational change at one part of a protein causes a meaningful structural

change at another part of the protein - this can be quantified by analyzing the correlated motion

between the different parts of the protein, signifying the strength of their relationship. Many

alternative approaches have been developed to solve this problem. For instance, such studies

have focused on the communication of allosteric information between any two residues in

a protein [58, 139, 59, 140, 141, 142, 143]. Among them, metrics that make use of mutual

information (MI), and its extension, generalized correlation (GC), stand out for their ability

to handle nonlinear relationships. A number of tools exist which can peform MI or GC for

the analysis of biomolecular motion, some of the most prominent being Dynetan[144], and

MDiGest[145]. However, these packages only utilize CPU implementations of the MI estimation

algorithm.

In this work, we develop a novel computational tool called “Netsci” that uses GPU-

accelerated code in order to perform the k-nearest neighbors algorithm for estimating MI, and by

extension, GC. We show that Netsci correctly predicts the MI for analytically verifiable systems,

reproducing the results of non-GPU-accelerated (CPU) implementations. When compared to

CPU implementations, Netsci can perform MI calculations many orders of magnitude faster, and

is not subject to space constraints - Netsci is essentially limited only by hard constraints imposed

by system hardware. Although we have prepared Netsci to be usable for a wide variety of data
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applications in any scientific field, we focus on applying Netsci to perform correlation analyses

of real biomolecular systems of interest.

Molecular dynamics (MD) simulation is a widely-used computational technique to

provide atomic-resolution details about the behavior of biomolecular systems. By utilizing a

classical approximation of the forces between atoms of the system, a molecular trajectory may

be propagated forward in time, showing likely conformational motions and both intramolecular

and intermolecular interactions. When the trajectory is written, MD simulations generate large

quantities of data, encapsulating the details of the atomic motions. A detailed explanation of

generalized correlation within the context of MD is provided below in the Theory section. We

repeat and regenerate the results of a seminal GC analysis of the B1 domain of protein G. We also

perform a new study on the inter- and intra-molecular correlations within the Sarcoendoplasmic

Reticulum Calcium-ATPase (SERCA) pump as an additional use case. We also implement a

”local alignment” procedure that seems to greatly reduce spurious correlations detected in large

or highly flexible structures.

Netsci has been applied to the analysis of allosteric motions within a biomolecule in this

study, yet the tool may be used for purposes outside of biophysics, and may be applied to the fast

correlation analysis of large data sets, regardless of their field of application.

2.3 Theory

2.3.1 Information theory and mutual information

The original presentation of information theory by Shannon [146] applied specifically to

the transmission of a message of length N from a source to a destination across a noisy channel.

In the time since the original publication, information theory has been applied to a wide variety

of applications [147, 148, 149, 150]. To generalize beyond the communication problem, we

will assume that a bivariate set of data zi = (xi,yi), i = 1, ...,N has been gathered. The data sets

x or y can be of any dimension. We will assume that each of the N elements of the data are
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independent and identically distributed realizations of the random variables Z = (X ,Y ), and that

the they are distributed according to µ(x,y), a proper smooth function. The marginal densities

are µ(x) =
∫

µ(x,y)dy and µ(y) =
∫

µ(x,y)dx.

The Shannon entropy can be defined as:

H(X) =−
∫

µ(x) log µ(x)dx (2.1)

where the base of the logarithm depends on the units desired for the information, whether

bits (log2), nats (loge), decimal digits (log10), or otherwise. In this work, we will use the natural

logarithm. The Shannon entropy, in this context, represents the logarithm of the number of

“reasonably probable” data outcomes. The mutual information I(X ,Y ) is defined as:

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (2.2)

The value of I(X ,Y ) measures the strength of the connection between the variables X

and Y ; if the two variables were completely independent, then I(X ,Y ) would be zero.

MI may be exactly obtained only if the distribution of variables is known. In most cases,

the underlying distribution of data is not known, and the distribution, and thus the MI, must be

estimated approximately. A number of methods to estimate MI have been developed, including

approaches that use cumulant expansions [151, 152], kernel density estimators [153, 154], and

adaptive binning [155, 156, 157, 158]. One successful algorithm to estimate MI, which we

particularly focus on, uses a k-nearest neighbor approach to estimate the densities of the data

within the distribution [159]. The k-nearest neighbor approach to estimating MI has been utilized

in a number of interesting biophysics applications [160, 161]. The advantages of the k-nearest

neighbors approach include data efficiency (it works well for smaller data sets compared to other

estimators), adaptive (the algorithm automatically uses higher resolution where the data is dense),

and minimal bias.

Under the condition that µ is a uniform distribution, we may approximate the continuous
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integral in eq. 2.1 by a discrete sum.

Ĥ(X) =− 1
N

N

∑
i=1

̂log(µ(xi)) (2.3)

Now, an estimate for ̂log(µ(xi)) must be defined. In this paper, we use a k-nearest

neighbor estimator. In order to rank neighbors of a data point zi by nearness, we use the max

norm,

||z− z′||= max{||x− x′||, ||y− y′||} (2.4)

where we choose to use the a similar max norm for ||x− x′|| and ||y− y′||, although this

is not required - a Euclidean norm could be used, for instance. For each data point zi, let εx(i)/2

and εy(i)/2 represent the distances from zi to its kth nearest neighbor projected onto the X and Y

subspaces, respectively. The value pi is the integrated density within a distance ε/2 of the point

xi defined as:

pi(ε) =
∫
||ξ−xi||<ε/2

µ(ξ )dξ (2.5)

Note that ε(i) = max{εx(i),εy(i)}. Consider the probability distribution:

Pk(εx,εy) = P(b)
k (εx,εy)+P(c)

k (εx,εy) (2.6)

Specifically, P(b)
k (εx,εy) represents the probability distribution that there are k−1 data

points within the rectangle xi ± εx(i)/2 and yi ± εy(i)/2, a rectangle defined by the kth nearest

neighbor within in the x subspace, N − k−1 points that are outside a different rectangle defined

by xi ± (εx(i)+dεx)/2 and yi ± (εy(i)+dεy)/2, and one data point in the space between the two

rectangles. The probability distribution P(c)
k (εx,εy) is similar, though the rectangles are defined

by the kth nearest neighbor within the y subspace, which may be the same, or a different, point
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used to define P(b)
k (εx,εy). These quantities are then

P(b)
k (εx,εy) =

N −1

k

(
d2[qk

i ]

dεxdεy

)
(1− pi)

N−1−k (2.7)

and

P(c)
k (εx,εy) = (k−1)

N −1

k

(
d2[qk

i ]

dεxdεy

)
(1− pi)

N−1−k (2.8)

Similar to pi, the value qi(εx,εy) is the integrated density within a tiny rectangle of size

εx × εy centered at (xi,yi). As mentioned before, pi is the integrated density within a tiny square

of side length ε - tiny enough that we may assume that µ(x) is constant within:

pi(ε)≈ cdε
d
µ(xi) (2.9)

where d is the dimension of x, and cd is the volume of the d-dimensional unit ball. For

the maximum norm used in this study, we simply use cd = 1. In this case,

I(X1,X2) = ψ(k)−1/k−⟨ψ(nx)+ψ(ny)⟩+ψ(N) (2.10)

where ψ(x) is the digamma function, and nx(i) and ny(i) are the number of points with

distance less than or equal to εx(i)/2 and εy(i)/2, respectively.

2.3.2 Generalized correlation

Many approaches to estimate the correlation of data have been developed. One of the

most commonly used correlation measures is the Pearson (linear) correlation coefficient - which

quantifies the strength of the relationship between two variables as a value between -1 and 1. A

Pearson correlation value of 1 indicates perfect correlation, a value of 0 indicates independence

of the variables, and a value of -1 indicates perfect anticorrelation. The Pearson product-moment
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correlation is defined as

r(X ,Y ) =
E(X −µX)(Y −µY )

σX σY
, (2.11)

where E indicates expectation value, µX is the mean of random variable X , µY is the mean of

random variable Y , σX is the standard deviation of X and σY is the standard deviation of Y .

The Pearson correlation defines the best linear fit between data sets sampled from X and Y . As

mentioned before, the Pearson correlation suffers a number of insufficiencies when used for data

that is related nonlinearly, and sets of related vector data that oscillate in non-parallel directions.

The MI can address these shortcomings. In order to provide an equivalent quantity to r in eq.

2.11, researchers have defined the GC coefficient rMI [59], which makes use of the MI.

rMI(X ,Y ) =
(

1− e−
2I(X ,Y )

d

) 1
2

(2.12)

2.3.3 Local alignments

While performing MI calculations on large structures, such as the SERCA pump, we

had initially aligned the structures against a reference structure (for instance, the first frame

of the trajectory). We observed that this approach tended to cause the MI algorithm to predict

anomalously large correlations at the distant extremities of the protein, as the larger structures

would exhibit “breathing” motions upon structural alignment. Since large groups of atoms at

the protein extremities would exhibit concerted motions that would disproportionally bias the

algorithm, causing it to indicate an unrealistically large correlated motion for these groups of

atoms, compared to the relatively stationary atoms at the protein core.

To remedy this problem, we developed an algorithm to perform local structural align-

ments. For each node of data (each residue center of mass, in this study), we choose all adjacent

nodes within a certain cutoff value (10 Å in this study), not including the original node. We then

align the entire molecule by this set of adjacent nodes, and then input the trajectory positions

of the original node into the MI algorithm for analysis. All molecular MI results reported were
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made following such a local alignment - which functioned well to remove the anomalously large

correlated motions observed at the protein extremities when such a local alignment was not

performed.

2.3.4 Network construction and analysis

The full residue-residue matrix of GC measurements provides a robust dataset with

a wide range of analyses to consider. Converting the measured correlation between residues

into an adjacency matrix first, and then a full network, opens the correlated motion analysis

to another myriad of graph theory analyses. In this work, we construct a weighted graph

between residues by converting the rMI matrix into a weighted adjacency matrix A. Specifically,

A(i, j) =− ln(rMI(i, j))D(i, j) where rMI(i, j) is the GC between residues (or nodes) i and j and

D(i, j) is the shortest distance between any heavy atoms of residues i and j. In each case, the

structure used to calculate the distances was the average structure from each individual MD

simulation using a traditional whole protein RMS alignment, not the local alignment approach

outlined in the previous section. In this definition, although no cutoff distance is necessary to

define whether two residues can be connected, closer residues are prioritized.

With this adjacency matrix, a weighted graph is easily constructed with shorter edge

weights corresponding to highly correlated motions in closer proximity. We then use shortest

path algorithms to identify pathways between residues of interest and compare the information

flow through allosteric pathways.

2.4 Results and Discussion

2.4.1 Gaussian distribution

We first validate the Netsci implementation of the k-nearest neighbors algorithm using a

distribution whose MI value can be exactly computed - a two-dimensional Gaussian distribution

with zero mean and unit variance, and a covariance value r. Netsci predicts the MI with an
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Figure 2.1. Absolute error I(2)(X ,Y )− Iexact(X ,Y ) for the Gaussian system with zero mean,
unit variance, and differing values of covariance r. This plot demonstrates the sensitivity of
the algorithm to the number of data points, showing the importance of larger N. In all cases,
k = 1 and the number of trials is 2×106 if N ≤ 100, 5×105 if 100 < N ≤ 1000, and 1×104 if
N > 1000.

accuracy typical of previous implementations of the k-nearest-neighbors algorithm (Figure 2.1;

compare with Figure 2 of Kraskov et al. [159]).

In this case, the exact value of I(x,y) is known (Eq. 2.13).

Iexact(X ,Y ) =−1
2

log(1− r2) (2.13)

In Figure 2.1, we show the relative error between the exact MI and the MI computed

for a few values of r, where r is the determinant of the covariance matrix describing the 2D

Gaussian. As was also shown by Kraskov et al., the estimates improve with larger N, and the

algorithm shows no systematic error when the Gaussians are truly uncorrelated (r=0). Because

of this systematic error, Kraskov et al. recommended a value of k between 2 and 4, which shows

reduced noise compared to a k value of 1, but without the large systematic bias from larger

values of k. However, if one is testing for statistical independence of the datasets, Kraskov et

al. recommended a value of k = N/2, since for independent data, the systematic error will be
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Figure 2.2. Benchmarks of Netsci computed for sets of data points sampled from independent
Gaussian distributions. For each platform, pairwise MI quantities for 10, 30 and 100 nodes
were defined, each with independent Gaussian distributions relating each pair of nodes. MI
values were computed pairwise for each distribution. The x-axes indicate the number of data
points, for the set of all distributions, that were sampled and fed into the MI algorithm. The time
per MI calculation is plotted on the y-axis, representing the time per individual MI calculation
between each pair of nodes. For larger inputs, benchmarks seemed to show that the GPU
algorithm consistently performed approximately three orders of magnitude faster than the CPU
implementation using GTX1080 GPUs, and yet another order of magnitude of performance, at
least, was gained by using RTX6000 Ada GPUs. Note that some data points overlap due to close
similarities in the benchmarks.

nonexistent, and a larger k value will diminish noise. This toy system shows that our GPU

implementation of the algorithm is correct - producing the same results as Kraskov’s original

publication and the same as a correct CPU implementation. Benchmarks show a performance

gain of at least three orders of magnitude for large inputs, compared to the CPU implementation,

when using a GTX1080 GPU, and at least another additional order of magnitude increase when

using the powerful RTX6000 Ada GPUs (Figure 2.2).

2.4.2 Protein G System

In order to demonstrate the utility and correctness of our GPU implementation of the

MI and GC estimator, we repeat a previous study by Lange et al. [59], where GC estimates
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Figure 2.3. The GC coefficient (upper echelon) and the Pearson coefficient (lower echelon)
correlation matrices for the B1 domain of protein G.

using MI were first applied to a set of biochemical systems. One of these systems was the B1

domain of Protein G. Lange et al. examined the correlated motions of protein G using both GC

and the linear (Pearson) correlation, showing that linear correlation predicted a number of key

relationships within protein G intramolecular motion, but that a GC description revealed all the

same relationships and more. Their original results are replicated in this study and displayed in

Figure 2.3.

As observed in Figure 2 of Lange et al., strong correlations are detected near the main

diagonal, due to close backbone connections, as well as two other diagonals perpendicular to the

main. As mentioned by Lange et al., these correlations represent tight hydrogen-bond contacts

between beta strands β1 and β2, as well as between β3 and β4. A weaker correlation close to

the main diagonal between residues 22 and 38 are caused by the less-tight-packing within the
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α-helix. The new signals that appeared due to the use of GC, but not linear correlation, include a

connection between the α-helix and the β2 sheet - probably due to their close proximity. One

interesting result of this analysis implies that, while linear correlations would detect correlations

within secondary structure elements, GC showed the ability to detect correlations between

different secondary structure elements, as highlighted by Lange et al. [59]. We used the local

alignment procedure for this analysis which, due to protein G’s relatively small size, had little

effect on the outputs, and very similar results to Lange et al. were generated, in spite of the

fact that Lange et al. aligned the entire trajectory using a global least-squares fitting to all alpha

carbons.

2.4.3 SERCA pump results

The SERCA pump is localized to the Sarcoplasmic Reticulum (SR) membrane and is

responsible for pumping calcium ions back into the SR following muscle contraction. SERCA is

an ATPase pump and is thus powered by energy from ATP hydrolysis, allowing it to establish

a concentration gradient of calcium across the SR membrane. It is typically characterized by

its three cytosolic domains, canonically labeled “N”, where nucleotide binding occurs, “A”, the

actuator domain, and “P”, where phosphorylation occurs [81]. After nucleotide binding to the N

domain, the N and A domains move within a closer proximity and phosphorylation occurs at

ASP351, which allows for further conformational changes in the protein, eventually leading to

calcium release into the SR [162]. Further, SERCA contains 10 transmembrane helices, typically

labeled M1 through M10, where calcium binding occurs [80]. Specifically, calcium from the

cytosol binds between helices M4, M5, M6, and M8. Helices M1 and M2 make up part of the

calcium entry pathway into these binding sites [81]. Two calcium ions bind per hydrolyzed ATP,

at two sites within this region. Calcium binds cooperatively, and binding of calcium to the first

binding site increases the affinity of the second binding site for calcium [82].

SERCA 2A is the dominant isoform found in cardiac muscle, and thus plays a large role

in cardiac relaxation and calcium handling [163]. SERCA 2A dysfunction has been linked to
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pathogenesis in the heart and elsewhere, and SERCA has also been investigated as a therapeutic

target [90, 163]. A recent computational study investigated the effects of 2’-deoxy-ATP (dATP), a

small molecule analog of ATP, on SERCA [164]. dATP is a potential small molecule therapeutic

for treating heart failure, and has been shown to improve contractile function in the heart by

acting on myosin, a motor protein largely responsible for cardiac contraction [50, 32, 87, 39, 36,

89, 40, 38, 88]. dATP has also been shown to speed reuptake of calcium into the SR, leading

to improved cardiac relaxation [38]. We previously showed that this could be at least partially

explained by dATP binding and activating the SERCA pump in place of ATP [164]. This study

found that dATP formed more stable contacts in the nucleotide binding pocket than ATP, leading

to enhanced A-N domain closure and an increase in the calcium association rate via opening of

the calcium binding pathway. However, it is unclear how changes in the cytosolic region due

to dATP binding lead to conformational and functional changes in the transmembrane calcium

binding region. The M5 helix has been shown to mechanically couple the calcium and nucleotide

binding sites [81], but it is unknown how dATP affects this or if other connection pathways exist.

Therefore, MI provides a useful tool for investigating how conformational changes to the protein

following dATP binding propagate to changes in calcium association.

In order to demonstrate the practical utility of Netsci on a real system of biomedical

interest, we perform a number of analyses using GC on the SERCA pump. As mentioned

previously, the SERCA pump binds ATP (or dATP), which induces an allosteric mechanism that

binds and pumps calcium ions across a lipid bilayer. We first examine the correlated motions

between the nucleotide (ATP or dATP) bound in the active site and the alpha carbons within the

entire protein (Fig. 2.4).

Overall protein correlation and nucleotide influence

As can be seen in Fig. 2.4, a wide range of correlations are observed between the motions

of the ATP and dATP center of mass and the center of mass of each residue. Most notably,

relatively low correlation is observed between ATP and the residues forming the calcium-binding
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Figure 2.4. The SERCA pump structure, depicted in cartoon representation, bound to ATP (A,
B) or dATP (C, D). The residues of the protein are colored by GC between the residue’s center of
mass and the nucleotide center of mass. Correlations within the protein span a continuum from
values indicating low correlation (blue) to areas of high correlation (red) to ATP or dATP.
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sites Fig. 2.4A and B as denoted by the white and blue coloring of the cartoon ribbon diagram in

the lower third of the intermembrane domain. We see a similar low amount of correlation when

dATP is bound as well (Fig. 2.4C and D. Relatively high correlated motion to ATP and dATP is

observed in the core regions of the transmembrane domain above the calcium binding sites, as

colored by the pink regions.

Relatively low correlated motion is observed between ATP and the most of the P, N, and

A domains. There is fairly high correlation at the lumenal ends of the transmembrane helices,

which may be important to regulate motion in order to prevent or allow ion flow. There is also

a conspicuous “pathway” of high correlation that extends down the back side of the SERCA

pump (Fig. 2.4B), which may function to propagate the allosteric signal between the nucleotide

binding site and the calcium binding site. The correlation between Asp351 and the nucleotides

is moderately high, with values of 0.536 for ATP and 0.579 for dATP.This makes the bound

nucleotide (ATP or dATP) one of the most correlated residues to this autophosphorylation site.

Surprisingly though, the bound Mg2+ ion shows a stronger correlation to Asp351 than either

nucleotide does to Asp351. Furthermore, there is an increase in correlation between Asp351

and Mg2+ when transitioning from the apo state to either dATP or ATP bound. We see an

increase in rMI from 0.523 to 0.600 and 0.637 for ATP and dATP respectively. This suggests

that the binding of either nucleotide increases the strength of interaction to the Mg2+ ion to the

autophosphorylation site.

Upon the binding of ATP from the apo state, we observe a reduction in correlation in

some of the calcium binding residues relative to the rest of the protein, specifically residues

D800, V304, T799, and E908 (Fig 2.5). The remaining calcium coordinates residues do no

show any obvious change in correlation relative to the rest of the protein. Alternatively, upon

dATP binding from apo, residues N796, A305, and E309 increase in correlated motion. Again,

the other calcium residues do not show any visible difference in correlation. When directly

comprising the correlation between ATP or dATP and the calcium coordinating residues, we

found consistently greater correlation between dATP and the residues compared to dATP. As
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Figure 2.5. (A) Change in measured correlation (rMI) from apo to nucleotide condition of
residues in involved with calcium coordination relative to the rest of the protein shown as a
heatmap. Calculated as rMI(ATP) - rMI(apo) or rMI(dATP) - rMI(apo). Positive (red) indicates an
increase in measured correlation upon the nucleotide being bound, and negative (blue) indicates a
decrease in measured correlation upon nucleotide binding. Top portion is for the ATP simulations
and bottom portion for dATP simulations. (B) Distributions of the measured correlation separated
by simulation type.
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Figure 2.6. The net change in correlation to the nucleotide when ATP is replaced by dATP as
calculated by rMI,dAT P − rMI,AT P. Blue indicates greater correlation to ATP and red indicates
greater correlation to dATP. The calcium handling residues around site I and II (orange) are
shown from a top–down slice across the protein indicating most residues have greater correlation
to dATP.

seen in Fig. 2.6 which shows the stronger correlation between the residues in site I and site II to

dATP.

In addition to analysis of the correlated motions of every alpha carbon to ATP, we also

used Netsci to compute the pairwise correlated motion of residue center of mass to every other

residue center of mass. The raw correlated motion plots in Fig. 2.7A-C resemble the raw GC

plot for protein G in Fig. 2.3. Several “blocks” or “bands” of high pairwise correlated motions

can be found throughout the plot. Most of these, as in the case of protein G, are likely caused

by the close proximity of rigid substructures within the protein, such as secondary structure

elements. Specifically, in regions of the transmembrane domain, the highly ordered alpha helices

appear highly correlated (e.g. residues 800 - 994). The most interesting information that one can

obtain from a pairwise correlated motion analysis, however, is the observation of the change of

correlated motion upon binding of ATP from apo, binding of dATP from apo, or the exchange

from ATP to dATP (Fig. 2.7D-F).

First, we will consider the effect of binding ATP to the apo system. By careful analysis of

the “bands” in figure 2.7D, we can see that an overall loss of correlation occurs in many regions

of the protein - which implies a sort of “loosening” of motion, or an “unfreezing” of the protein
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Figure 2.7. Absolute and relative pairwise correlated motion between every pair of alpha
carbons within the SERCA pump. The top row shows the raw correlated motions for the apo
system (A), the ATP-bound system (B), and the dATP-bound system (C). The lower row shows
the relative change in correlation going from the apo to the ATP-bound state (D), from the apo to
the dATP-bound state (E), and the ATP-bound to dATP-bound state (F). Regions of the cytosolic
domain are labeled based on their residue spans.
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itself. Among the regions that experienced an overall loss of correlation upon ATP binding to

the apo structure, the A and N cytosolic domains, which are fairly close to and encompass the

ATP binding site itself, experienced such a “loosening”. This finding agrees well with previous

results showing an increase in A-N domain distance with ATP binding [164]. Additionally,

and significantly, the transmembrane region close to the calcium binding domain experienced a

“loosening” phenomenon upon ATP binding, a result that corroborates our observation in Fig.

2.4, where a low correlated motion was also observed between the ATP and the calcium-binding

residues. In contrast, some of the “bands” indicate that several regions gained correlated motion

upon ATP binding, implying a sort of “freezing up” or “stiffening” of regions of the protein.

Among the regions that “stiffened”, a few parts of the A cytosolic domain, as well as a few

residues (556 to 563) near the back of the ATP binding site, were included. Additionally, a few

parts of the P cytosolic domain, as well as the lumenal domain of the transmembrane region.

In the case of the “stiffening” of the lumenal domain, our data supports the idea of a “disorder

gradient” from a high amount of disordered motion within the calcium-binding region, gradually

shifting towards a region of low disorder in the lumenal portion, where the calcium is released.

We hypothesize that this “disorder gradient” provides the mechanism that promotes the traversal

of calcium across the membrane, thereby contributing to the pumping mechanism of SERCA.

Network and graph theory analysis of SERCA

Given these global observations of correlated motions, we now employ the graph theory

and network analysis to further characterize SERCA behavior. The constructed graphs for each

of the simulations have 996 nodes, including the nucleotide and magnesium ion, or 995 nodes for

the apo simulation case without a bound nucleotide. A shortest distance pathfinding algorithm

was then utilized to find the pathways of communication between the nucleotide and calcium

binding coordinating residues in the transmembrane helices. The definition of the adjacency

matrix used to construct prioritizes both nearby residues as well as high degrees of correlation,

leading to a smaller network weight between nodes.
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Figure 2.8. Network analysis comparing the information flow via correlated motions between
ATP bound and dATP bound SERCA. A) The average computed effective path length from
the nucleotide (ATP or dATP) to calcium coordinating residues. Each of the triplicate MD
simulations and subsequent network analyses are shown as a different symbol (square, diamond
and circle). B) An example visualization of the pathway from the nucleotide (colored green) to
VAL304 (red) with the residues along the path shown in blue for ATP, and teal for dATP. C-E)
Network analysis measuring the betweenness centrality, which represents the frequency that each
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deviations of trilplicate analysis plotted as gray error bars.
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In order for SERCA to undergo catalytic activity, both calcium and the nucleotide must

be bound to the protein [99]. Therefore, understanding the communication pathway between the

calcium binding sites and nucleotide is essential to understanding the allosteric mechanisms at

work. We computed the shortest path from either ATP or dATP and found that for eight of the

nine pathways, the path length is shorter for dATP bound network compared to the ATP bound

(Fig. 2.8A). The one exception is GLU309 (which functions as a gating residue [165]), which is

extremely close, and likely within the expected error of the path length measurements. However,

surprisingly, while almost all of the measured path lengths according to the defined weights were

shorter for dATP than ATP, the number of nodes visited along each path was greater for all dATP

network paths. Although the individual correlation between ATP and the rest of the SERCA

protein tended to be greater than for dATP and the rest of the protein, the intra-protein correlations

are higher for dATP, and this is reflected in the shorter measured pathways from nucleotide to

residues around Site I and II. We also measured the path length from the nucleotide to GLU340

which has been studied extensively and known to be crucial for interdomain communication and

found that dATP also has a shorter measured path than ATP to GLU340.

We also carried out non residue-specific global pathway analysis of protein correlation

and information flow. Betweenness centrality of each node, which determines how frequently a

node appears in the shortest path between other nodes in the network, estimates the significance

of a residue in protein communication (figure 2.8C and D). Unsurprisingly, both ATP and dATP

had the greatest betweenness centrality, likely acting as a linker between the N and P domains.

However, dATP had a much lesser measure of betweenness compared to ATP. Arg236, which

lies in the A domain, just at the start of the linkage to helix 3 had nearly the same measure of

betweenness in the dATP simulation. This is contrary to the ATP simulation where the protein

residues with the greatest degree of betweenness was only one third of ATP. The global pathway

results reveal that there is a more uniform distribution of high visit residues for the dATP network

as compared to ATP, which dominates the distribution and drops off sharply thereafter. We

propose that as dATP promotes the headpiece closure, and induces a more highly correlated
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structure, it allows for more efficient communication overall, therefore relying less on ATP as

the primary residue for information transduction.

2.5 Conclusions

In this study, we developed and applied Netsci - a fast implementation k-nearest-neighbor-

based algorithm that utilizes GPU acceleration for the estimation of MI within sets of data. We

also present the use of the ”local alignment”, which was useful for reducing spurious correlations

in large or flexible biomolecular systems. We validated Netsci by estimating the MI of a 2D

Gaussian distribution - a situation for which results may be directly compared to the analytic

solution. We also repeated a MI and GC analysis on the B1 domain of protein G.

We also applied Netsci towards a detailed analysis of allostery within the SERCA pump.

A loss of correlated motion within the calcium binding site upon ATP and dATP binding

constituted a potentially interesting observation, perhaps suggesting a mechanism for forced

calcium traversal across the membrane through the use of a “disorder gradient.” Additionally,

pathway analyses of information travel through the protein suggest routes through which the

allosteric signal is propagated from the bound nucleotide to the calcium binding domain. The

differential effects of ATP vs. dATP binding have also been characterized - where ATP shows

a “stiffening” of portions of the A and P domains of the SERCA pump, and pathway analyses

indicate that ATP functions as a sort of information bottleneck through which communication of

information across the protein tends to flow. In contrast, dATP binding shows more of general

“stiffening” of many different domains, facilitating the traversal of information across the protein,

but not through a bottleneck. Our novel local alignment approach also served to remove spurious

systematic bias in the MI estimation caused by global protein “breathing” motions.

While we specifically applied this algorithm to MD simulation of a biomolecule, to

explain the allosteric communication within domains of proteins, Netsci is not limited to this

purpose and may be used to estimate MI and GC for essentially any data application.

60



2.6 Materials and Methods

2.6.1 Protein G molecular dynamics

Protein G simulations were prepared and run in a manner as similar as possible to a

previously published work [59]. A crystal structure for Protein G was obtained from the Protein

Data Bank indexed as structure 1PGB. Using Gromacs software, the protein was solvated with

a cubic box of TIP4PEW waters with a margin of at least 1 nm in the X, Y, and Z directions.

Sodium ions were added to neutralize the system charge. The periodic system was modeled

using Particle Mesh Ewald with a nonbonded cutoff of 1 nm, and all bonds were constrained to

their equilibrium lengths for simulation. Using OpenMM, the system was minimized, and then

simulated at a constant temperature of 300 K, and a constant pressure of 1 ATM with a Langevin

integrator with a damping constant of 0.1/ps and a timestep of 2 fs. Equilibration was performed

for 5 ns, followed by production simulations of 195 ns. During the production phase, trajectory

frames were saved at a frequency to generate 19500 frames. Following the local alignment

procedure described above, with a cutoff of 0.75 nm defining all adjacent residues, The MI of all

pairs of alpha carbons was then performed using Netsci with a k-nearest-neighbors k value of 6.

2.6.2 SERCA pump molecular dynamics

All atom molecular dynamics simulations were performed with AMBER [166] starting

with the crystal structure of SERCA1A in the E1.Mg2+ state from Oryctolagus cuniculus (PDB:

3W5A) [98]. In preparation for simulation, all ligands and ions were removed from the 3W5A

structure, and ATP or dATP were manually docked in the nucleotide binding pocket based on

the ATP position in 7BT2, which has the nucleotide bound [99]. Protein protonation state was

determined based on PropKa at a pH of 7 [106, 107]. SERCA was oriented for placement into

a lipid bilayer according to the Orientations of Proteins in Membranes (OPM) database [109].

CHARMM-GUI was used to build the membrane and solvate the system in a 12.5 by 12.5 nm

lipid bilayer composed of POPC (51% upper leaflet, 66% lower leaflet), POPE (43% upper leaflet,
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17% lower leaflet), and POPS (6% upper leaflet, 17% lower leaflet) experimentally determined

membrane composition in the cardiac SR [110]. The water box padding was set to 22.5 nm and

150 mM K+ Cl− ions were added according to Monte Carlo placement. The dATP structure was

constructed by removing the extra hydroxyl from the ATP structure in 7BT2. Both ligands were

parameterized using antechamber to generate AMBER GAFF2 force field parameters [114, 115].

The proteins and lipids were parameterized according to AMBERFF19FSB and Lipid17 with

OPC water molecules [116, 117]. All molecular dynamics simulations were carried out on the

Triton Shared Computing Cluster (TSCC). The production runs for each SERCA condition

(apo, ATP, and dATP) were each 312 ns. Prior to the production simulation, minimization was

carried out over 5000 steps of steepest descent minimization with 10 kcal mol−1 Å−2 positional

restraints on all protein atoms and 2.5 kcal mol−1 Å−2 positional restraints on all lipid atoms,

with NMR restraints. A six step equilibration approach was carried out for 1.875 ns total. During

the first two steps, an NVT Langevin equilibration scheme was applied where 10 kcal mol−1

Å−2 positional restraints were present on all protein atoms for the first step and 5 kcal mol−1

Å−2 positional restraints were present on all protein atoms for the second step. Lipids were

restrained using 2.5 kcal mol−1 Å−2 positional restraints with NMR restraints were present on

all lipid atoms for both steps. The next four stages used an NPT ensemble for 125 ps, 500 ps,

500 ps, and 500 ps, respectively, with the system set to a pressure of 1.0 bar. All atom protein

restraints set decreased through these stages and were specified at 2.5, 1.0, 0.5, and 0.1 kcal

mol−1 Å−2 respectively. Similarly, positional and restraints on all lipid atoms were 1.0, 0.5, 0.1,

and 0 kcal mol−1 Å−2 for each step, respectively, with NMR restraints. Triplicate production

MD simulations were run at 303.15 K using the PMEMD (Particle Mesh Ewald Molecular

Dynamics) method with a 9 Å nonbonded cutoff, and 2 fs timestep. The first triplicate was ran

for 312.25 ns coordinates saved every 5 ps leading to 62,450 frames, while the second and third

triplicate were each ran for 300 ns with 60,000 frames per simulation for replicates 2 and 3. The

mutual information algorithm was applied to the first triplicate with all 62,450 frames, as well as

just the first 60,000 frame with no significant change. Therefore we selected to use all available
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data and include the full trajectory. Images were generated using VMD[121, 167].

2.7 Acknowledgements

Chapter 2, in part, has been submitted as it may appear in the Journal of Chemical

Information and Modeling 2024. NetSci: A Library for High Performance Biomolecular

Simulation Network Analysis Computation. A. M. Stokely, L. W. Votapka, M. T. Hock, A. E.

Teitgen, J. A. McCammon, A. D. McCulloch, R. E. Amaro. The dissertation author and carried

out the biomolecular simulation and analysis of SERCA.

63



Chapter 3

Multiscale modeling shows how 2’-deoxy-
ATP rescues ventricular function in heart
failure

3.1 Abstract

2’-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge

cycling and Ca2+ transient decay. However, the mechanisms of these effects and how therapeutic

responses to dATP are achieved when dATP is only a small fraction of the total ATP pool

remain poorly understood. Here, we used a novel multiscale computational modeling approach

to analyze the mechanisms by which dATP improves ventricular function. We integrated

atomistic simulations of pre-powerstroke myosin and actomyosin association, filament-scale

Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca2+ dynamics

and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level

modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that

dATP increases the actomyosin association rate by 1.9 fold via stabilization of pre-powerstroke

myosin. Markov state models predicted that dATP also increases the pool of myosin heads

available for crossbridge cycling, increasing steady state force development at low dATP fractions

by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was shown to be

the primary mechanism by which dATP improves contractile function at all scales. Together
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with faster myocyte Ca2+ handling, this led to improved ventricular contractility, especially in a

failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency

of cardiac contraction by 1%. This work represents a complete multiscale model analysis of

a small molecule myosin modulator from single molecule to organ system biophysics, and

elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart

failure with reduced ejection fraction.

3.2 Introduction

The naturally occurring nucleotide 2’-deoxy-ATP (dATP) is a candidate myosin activator

that has shown promise for treating heart failure with reduced ejection fraction (HFrEF) [50].

dATP has been shown to increase force production in skinned myocardium, to increase shortening

in isolated cardiomyocytes, and to improve ventricular function in animal models [50, 32, 87,

39, 36, 89, 40, 38, 88]. How levels of dATP as low as 1-2% of the ATP pool significantly

improve muscle contraction is not well-understood [38, 88]. In addition to increasing the rate of

crossbridge cycling, recent studies in cardiac and skeletal muscle suggest that dATP may also

increase the pool of myosin available for crossbridge cycling [168, 169, 37, 170]. We hypothesize

that dATP alters the recruitment dynamics of myosin from the thick filament backbone to more

active states and that nearest-neighbor cooperativity leads to increased cardiac muscle force

development even when dATP is only a small fraction of total adenine nucleotide content in the

cell. Further, our recent simulations suggest that dATP increases SERCA pump function, leading

to faster Ca2+ transient decay [164], which has also been observed previously experimentally

[39, 38]. This may contribute to faster relaxation of cardiomyocytes post-contraction. It is unclear

how the these distinct molecular and cellular mechanisms of dATP integrate into improved

ventricular pump function, especially in HFrEF when energy metabolism is typically impaired

[171, 172].

Here, we use a novel combination of multiscale computational models to simulate
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the effects of dATP on myosin dynamics, using molecular dynamics (MD) and rigid body

Brownian dynamics (BD). We investigate the resulting effects on sarcomere kinetics using a

spatially explicit Markov state sarcomere model. We then assess how these mechanisms interact

with altered myocyte Ca2+ handling to enhance contractility and lusitropy, using a model of

cardiomyocyte mechanics and Ca2+ dynamics. Finally, we assess how these myocyte responses

contribute to observed improvements in left ventricular mechanoenergetics and hemodynamics

in the normal and failing heart by incorporating this cardiomyocyte model into a biventricular

mechanics and lumped-parameter circulatory system model. This comprehensive multiscale

model analysis of the heart can be used to predict organ system scale cardiovascular function

from atomic resolution simulations of molecular mechanisms and shows how very low fractions

of dATP are able to significantly improve pump function and efficiency in the failing heart. Our

modeling approach may additionally be a useful tool to study other sarcomere-targeted small

molecule activators and inhibitors.

3.3 Results

3.3.1 dATP alters pre-powerstroke myosin dynamics, increasing its
affinity for actin

A combination of molecular modeling techniques were utilized to assess how dATP

and ATP differentially affect the pre-powerstroke conformation of myosin at a molecular level.

Three molecular dynamics (MD) simulations of 2 µs each for ATP-myosin and dATP-myosin

were carried out (Fig. 3.1A), and featurization analysis of these MD trajectories was carried

out based on structural loops and motifs associated with actin binding based on experimental

studies [173, 174, 175] (Fig. 3.2A). Time-lagged Independent Component Analysis (tICA) was

employed for further dimensionality reduction, and was utilized to construct three-state Markov

state models (MSM) for ATP-myosin and dATP-myosin to capture their major conformational

dynamics (Fig. 3.2B,C, Fig. 3.8 and 3.9). Representative conformations from the three states are
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Figure 3.1. Multiscale modeling overview. Gray arrows indicate coupling between models.
MD simulations of ATP-myosin and dATP-myosin binding to actin (A) in combination with
BD simulations (B) were utilized to determine myosin.actin association rate, which was used to
constrain a spatially explicit model of cooperative sarcomere mechanics (C). The effects of dATP
on myosin predicted by this model were extended to a myocyte model containing an implicit
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is embedded within a biventricular mechanics and hemodynamics model of the failing heart (F).
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shown in Fig. 3.2G, H. The stationary distribution of the ATP MSM for states 0, 1 and 2 was

34.1%, 40.7% 25.2%, respectively. However, for the dATP MSM, the stationary distribution was

5.00% , 8.17%, 86.8% for states 0, 1 and 2, respectively, suggesting that dATP-myosin has a

lower probability of transitioning to a new conformational sub-state. Further, based on mean

first passage time (MFPT) anaysis of the transition times between metastable states, the dATP

model shows much more rapid transitions into state 2 as the dominant state, whereas the ATP

model has much more balanced kinetic transitions between all of the states (Fig. 3.2E, F). We

further found that the overall root mean square fluctuation (RMSF) of the protein was lower

for dATP-myosin than ATP-myosin (Fig. 3.2D). Together, these results suggest that dATP may

stabilize pre-powerstroke myosin within the context of our MD simulations. However, it should

be noted that this MD-MSM method does not explicitly demonstrate increased stability of the

pre-powerstroke biochemical state, since these simulations do not capture transition out of the

pre-powerstroke state.

An ensemble-based approach was used to carry out rigid body BD simulations (Fig.

3.1B) of actomyosin association, with conformations sampled from the metstastable states of the

MSM. dATP-myosin showed a significantly higher ensemble-averaged crossbridge formation

rate than ATP-myosin at all simulated reaction distances, where reaction distance is a parameter

in the simulation which defines the distance at which the two molecules are considered to bind

(Fig. 3.8). The previously reported ATP-myosin.actin association rate of 2.50×106 M−1s−1

based on experimental measurements [42, 176, 177] corresponds to a reaction distance of 7.17 Å

(indicated by the dashed vertical line in Fig. 3.2I). Using this reaction distance, the predicted

association rate for dATP-myosin.actin was 4.78×106 M−1s−1, a 1.9-fold increase over ATP-

myosin.actin. For reaction distances between 6.5 Å and 10 Å, association rates were 1.54 to 2.13

fold greater for dATP than ATP.
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3.3.2 Increased force-dependent recruitment of myosin and nearest-
neighbor cooperativity explain significantly increased steady state
tension development with low fractions of dATP

We next assessed how the predicted increase in actomyosin association affects sarcomere

mechanics. Several studies have shown that fractions of dATP as low as 1-2% of the ATP pool

are sufficient to significantly increase contractile force and shortening [38, 88, 169]. We utilized

a spatially explicit Markov state sarcomere model to assess whether increased actomyosin

association could explain these effects with 1% dATP [42, 178] (Fig. 3.1C). After prescribing the

ATP-myosin.actin association rate (k+f = 2.50×106 M−1s−1) based on reported measurements

[42, 176, 177], increasing the actomyosin association rate to 4.78×106 M−1s−1 as predicted for

dATP-myosin.actin by the BD simulations resulted in an 3% increase in overall sarcomere steady

state force at maximal Ca2+ activation (Fig. 3.3B).

A previous study in our group showed using this sarcomere model that dATP increases

the crossbridge cycling rate (the powerstroke and crossbridge detachment rates, specifically) in

addition to increasing the actomyosin association rate, and that these parameter changes were

sufficient to explain experimental changes for simulations with 100% dATP [42]. However,

increasing parameters k+p (powerstroke rate) and k+g (detachment rate) in addition to k+f by

the same amount as in [42] resulted in an 8% increase in steady state force with 1% dATP.

Experimentally, 100% dATP was shown to increase maximum steady state force by 31% in

demembranated rat cardiac trabeculae [87]. Experimental data on changes in steady state force

with 1% dATP are not available, but given data showing that small fractions of dATP are sufficient

to significantly increase force production, we would expect a larger increase in force with 1%

dATP. This suggests that although our previous modeling results were sufficient to explain the

effects of 100% dATP, additional mechanisms must be considered for small fractions of dATP

(Fig. 3.3B).

We then modified the model to include the active (ON) and inactive (OFF) states of

myosin. Transition between these ON and OFF states is governed by parameters k+m and k−m ,
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Figure 3.2. MD simulations and MSM demonstrate that binding of dATP may stabilize the
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(A) Correlation analysis between input features from MD simulations (distances between key
structural features on myosin) and first (0) and second (1) tICA components. Clustered with
’City-Block’ metric. Center of mass is abbreviated as COM, and alpha carbons are abbreviated
as CA. (B)-(C) tICA space visualization of MD simulations, with three metastable states shown
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(D) Root mean square fluctuation (RMSF) shown for ATP and dATP, averaged across three MD
trajectories for each. Regions of interest on myosin are highlighted. (E) Mean first passage
times between metastable states shown in (B) of ATP-bound myosin simulations (ns). (F) Mean
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(ns). (G) Representative conformations from three metastable states for ATP-bound myosin. (H)
Representative conformations from three metastable states for dATP-bound myosin. (I) Binding
rate constant estimates of myosin binding to actin using BD simulations.
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shown for ATP (purple) and 1% dATP (teal). ATP curve was fit to experimental steady state
force-pCa data from [87]. dATP simulation includes increases in actomyosin association rate
(k+f ), powerstroke rate (k+p ), and detachment rate (k+g ), as well as increased force-dependent
recruitment of myosin (krecruit). Effects of setting cooperative parameters γB and µM to one, thus
removing their effects from the model, are also shown. (B) Relative contributions of increased
crossbridge binding and cycling and increased myosin recruitment to increases in maximum
steady state force (at pCa 4.0) relative to ATP. Differences are expressed as percentages relative
to ATP.

as well as krecruit , which describes the force dependence of this transition [179, 33]. We found

that increasing parameter krecruit from 0.2 N−1m−2 to 779 N−1m−2, in addition to k+f , k+p , and

k+g , resulted in a 28% increase in steady state force with 1% dATP, which was the maximal

increase in force that could be achieved and is close to the observed increase of 31% for 100%

dATP (Fig. 3.3A, B, additional details found Table 3.1). krecruit was the only parameter in

the model which could be increased to produce such a dramatic increase in steady state force.

krecruit determines the force dependence of the recruitment of myosin from the thick filament

backbone, and is regarded as a mechanism of thick filament mechanosensing [179]. Previous

computational work [37] showed that dATP activates the resting conformation of cardiac myosin,

and X-ray diffraction data [169] and fluorescent assays [170] showed decreases in the fraction

of myosin heads in an ordered or low ATPase activity state (respectively) with increased dATP

[168]. Further, X-ray diffraction data indicates that dATP treatment increases strain in the thick

filament backbone, providing support for the idea that dATP leads to recruitment of additional
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myosin heads via mechanosensing [169]. Therefore, our results suggest that dATP-mediated

recruitment of myosin to state(s) that can contribute to contraction is the dominant mechanism

by which it increases steady state force, especially at low dATP fractions.

We further assessed whether nearest-neighbor cooperativity could explain this increase

in steady state force with increased myosin recruitment. After increasing k+f , k+p , k+g , and krecruit ,

we set each of the cooperative parameters (γB, γM, and µM) to one, thus eliminating their effects

from the model, and assessed their relative impacts on maximum steady state force. We found

that setting γB to one resulted in increased steady state force (41% increase relative to ATP) but

flattened the force-pCa curve due to loss of cooperativity via thin filament (tropomyosin) overlap

(Fig. 3.3A). Setting µM to one resulted in reduced steady state force (6% increase relative to

ATP) due to a loss of cooperativity between neighboring bound crossbridges (Fig. 3.3A).

These results support the hypothesis that by increasing the pool of myosin available for

crossbridge cycling, a small fraction of dATP can have a disproportionate effect on sarcomere

mechanics by promoting the formation of ATP-myosin.actin crossbridges via nearest-neighbor

cooperative interactions, both from neighboring bound crossbridges and tropomyosin overlap.

3.3.3 Increased myosin recruitment and calcium sequestering dynamics
are needed to explain improvements in myocyte contractility and
lusitropy with elevated dATP

We next utilized an implicit model of sarcomere mechanics and cardiomyocyte Ca2+

handling to extend these results to the whole myocyte level (Fig. 3.1D. This implicit model was

chosen because it is less computationally expensive than the spatially explicit sarcomere model

utilized above (Fig. 3.1C), and is more comprehensive in its inclusion of a viscoelastic model,

Ca2+ dynamics, and coupling to a mitochondria model (Fig. 3.1E) to allow for cell shortening

and whole heart mechanoenergetics simulations (Fig. 3.1F). The implicit myocyte model utilized

in this study contains an additional crossbridge cycling state (the weakly-bound state) compared

with the spatially explicit model, and we thus adjusted slightly different crossbridge cycling
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parameters to achieve the same effect in the implicit model (k+f , k−f , and k+w ) as in the spatially

explicit model (k+f , k+p , and k+g ). More details on these models, including parameter selection,

can be found in the Methods and tables 3.1 and 3.2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
a

2
+  (
n

o
rm

a
liz

e
d

) ATP
dATP

0

20

40

F
S

-10
0

R
T

5
0

-20

-10

0

R
T

9
0

Time (s)

0.9

0.92

0.94

0.96

0.98

1

R
e

la
ti
v
e

 s
h

o
rt

e
n

in
g

A

C

B

ATP
dATP

0 0.2 0.4 0.6 0.8 1

%
 C

h
a

n
g

e

xxxkf
+

xxkf
-

xxkw
+

xxkrecruit

ATP experimental data
dATP experimental data

Ca2+ x

x

x

x

x

x

-20

x

x

Figure 3.4. Increased myosin recruitment and Ca2+ sequestering dynamics are needed to
explain improvements in myocyte contractility and lusitropy with elevated dATP. (A): Model-
simulated Ca2+ transients for ATP (purple) and dATP (teal), based on average experimental
data from [38, 39]. (B): Cell shortening simulations for ATP (purple) and 1% dATP (teal),
including increased crossbridge binding (increasing k+f ) and cycling (increasing k−f and k+w ),
faster Ca2+ dynamics (shown in (A)), and increased myosin recruitment (increasing krecruit).
(C): Relative contributions of increased crossbridge binding and cycling, faster Ca2+ dynamics,
and increased myosin recruitment to changes in FS, RT50, and RT90 compared with average
experimental data from [38, 39]. Baseline experimental ATP values are shown as purple dashed
lines, and experimental dATP values are shown as teal dashed lines. Differences are expressed as
percentages relative to ATP.

We found that increasing the ATP-myosin.actin association rate, k+f , from 2.50×106

M−1s−1 to 4.78×106 M−1s−1 in the myocyte model based on the BD results resulted in only a

1% increase in fractional shortening (FS) with 1% dATP, consistent with our findings using the

spatially explicit model (Fig. 3.4C). Similarly, increasing parameters k−f (actomyosin detachment

rate) and k+w (weakly- to strongly-bound transition rate) in addition to k+f did not further increase
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FS (Fig. 3.4C). However, as was the case at the filament scale, we found that increasing parameter

krecruit from 0.2 N−1m−2 to 37 N−1m−2 in addition to k+f , k−f , and k+w resulted in a 41% increase

in FS with 1% dATP (Fig. 3.4B), greater than the experimentally measured increase of 34%.

Again, this was the only parameter which could produce this effect. This further supports the

conclusion that dATP treatment leads to disproportionate increases in force with 1% dATP by

disrupting the resting states of myosin, which outweighs the effects of increased crossbridge

binding and cycling. However, increased recruitment of myosin with elevated dATP resulted

in slowed time to 50% relaxation (RT50) and only explained 21% of the experimental change

in time to 90% relaxation (RT90) [38, 39]. (Fig. 3.4C), so we next sought to assess additional

factors that could explain these changes in relaxation.

When the effects of 1% dATP (99% ATP) on the Ca2+ transient were simulated by

prescribing the average experimental dATP Ca2+ transient, which showed decreased time to 50%

and 90% Ca2+ transient decay (DT50 and DT90, respectively) relative to the 100% ATP transient

[38, 39] (Fig. 3.4A), RT50 was decreased by 22% and RT90 was decreased by 20%, which

is closer to the experimental data [38, 39] (Fig. 3.4C). When the more rapid Ca2+ dynamics

with elevated dATP were combined with increased myosin recruitment from resting states, as

described above, these three mechanisms together explained 97% of the average experimental

increase in FS, 70% of the experimental increase in RT50, and 96% of the experimental increase

in RT90 (Fig. 3.4B, C). Additionally, including increased rates of crossbridge binding and

cycling with elevated dATP in addition to increased myosin recruitment and faster Ca2+ transient

decay did not substantially change FS, RT50, or RT90 (Fig. 3.4C).

Therefore, our model predictions suggest that the integrative mechanisms of dATP on

myosin recruitment and Ca2+ sequestering dynamics can explain improved contractility and

lusitropy with elevated dATP at the myocyte level, as well as the high sensitivity of cardiac

muscle to small fractions of dATP.
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75



3.3.4 Increased myosin recruitment with elevated dATP contributes to
improved ventricular mechanoenergetics

In animal models, the ventricular concentration of dATP has successfully been increased

via upregulation of the enzyme ribonucleotide reductase (R1R2), which converts ADP to dADP

[50]. dADP is then converted to dATP by the normal cellular rephosphorylation process.

Elevated dATP has been observed to significantly increase left ventricular developed pressure

(LVdevP), cardiac output (CO), and ejection fraction (EF) in transgenic mice over-expressing

R1R2 and infarcted pig hearts treated with R1R2 via an adeno-associated viral vector in vivo

[39, 40]. Therefore, we next utilized our whole heart and circulation model to assess how the

predicted effects of dATP on sarcomere and Ca2+ dynamics at the myocyte level extend to altered

ventricular function. This model contains the same implicit sarcomere and Ca2+ handling models

utilized for myocyte level simulations (Fig. 3.1D), which are further coupled to a mitochondria

model (Fig. 3.1E) and embedded within a biventricular mechanics and hemodynamics model

(Fig. 3.1F), as described in the Methods.

After adjusting parameters KSE , kpassive, η , kon, CAo, and Amre f in the baseline ventricular

model to match experimentally measured EF in mice [39] (all other parameters were kept the

same as in the myocyte model), we simulated dATP treatment in the same way as in the myocyte

shortening simulations (Table 3.2). We found that increasing k+f from 2.50×106 M−1s−1 to

4.78×106 M−1s−1 in the ventricular model based on the BD results led to a <1% increase in EF,

and increasing k−f (actomyosin detachment rate), and k+w (weakly- to strongly-bound transition

rate) did not further increase in EF (Fig. 3.5C). Consistent with our results at the filament and

myocyte scales, we found that increasing krecruit from 0.2 N−1m−2 to 37 N−1m−2 in addition to

k+f , k−f , and k+w led to a 9% increase in EF, which more closely matches experimental data which

showed a 14% increase in EF with dATP [39] (Fig. 3.5C).

Interestingly, when we included faster Ca2+ dynamics in the ventricular model (Fig. 3.5A,

B, C) we observed reduced EF, contrary to our findings at the myocyte scale (Fig. 3.5C). However,
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these findings are consistent with multiscale modeling results from [180], where increasing the

Ca2+ reuptake rate into the sarcoplasmic reticulum led to reduced EF. The combined effects of

dATP on myosin recruitment and Ca2+ sequestering dynamics led to an overall decrease in EF

with 1% dATP, likely due to these Ca2+ transient effects. However, these results support the

conclusion that increased recruitment of myosin from the thick filament backbone is the primary

mechanism by which dATP improves contractility.

3.3.5 Elevated dATP improves ventricular function in the failing heart
in part due to improved energetic efficiency

To simulate HFrEF, the metabolite concentrations in the model were adjusted to mean

values previously measured experimentally in failing rat hearts [73]. This resulted in reduced

EF (Fig. 3.6A, C). Further, ATP and ADP concentrations were decreased and Pi concentrations

were increased, consistent with [73] (Fig. 3.6G-I). We found that with 1% dATP in the failing

heart model, EF increased by 16%, CO increased by 16%, and LVDevP increased by 13% (Fig.

3.6C-E). EF was returned closer to normal with just 1% dATP (61% vs 67% in the baseline

healthy simulation), and was returned to 67% with 7% dATP (Fig. 3.6C). This aligns well

with experimental data in pigs which showed a 16% increase in EF with dATP in failing hearts

[40]. Therefore, the mechanisms identified at the filament (increased recruitment of myosin),

and cellular (faster Ca2+ dynamics) scales were sufficient to explain experimentally measured

changes in EF with 1% dATP in the failing heart.

Overall, dATP improved ventricular function in a dose-dependent manner (Fig. 3.6).

Further, our model was able to predict the effects of varying percentages of dATP on metabolite

concentrations and energetic function in the failing heart. ATP levels were unchanged (suggesting

that dATP treatment does not substantially deplete ATP pools), while ADP and Pi levels increased

with increasing dATP ratio (Fig. 3.6G-I), as in [39]. The creatine phosphate (CrP)/ATP ratio

was decreased slightly with increasing dATP ratio (Fig. 3.6K). Further, myocardial oxygen

consumption (MVO2) and ATPase rate also increased with increasing dATP ratio (Fig. 3.6J, L).
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However, with 1% dATP these metrics remained below normal, non-failing levels. Interestingly,

efficiency, defined as the work per beat divided by ATP hydrolysis rate, increased with increasing

dATP ratio, and was increased by 1% with 1% dATP (Fig. 3.6M). This indicates another potential

mechanism by which dATP may improve ventricular function in the failing heart, and could

explain why dATP treatment does not lead to further metabolic impairment at low dATP fractions.
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Figure 3.7. Elevated dATP improves ventricular function, especially in the failing heart. (A)-
(H): Effects of parameter changes on percent change in metrics of LV function and energetics
with 1% dATP in healthy and failing heart simulations, compared to ATP. Parameter changes
include increased myosin recruitment (increasing krecruit), crossbridge binding (increasing k+f )
and cycling (increasing k−f and k+w ), and Ca2+ sequestering dynamics with elevated dATP.

Finally, we assessed how each of our identified mechanisms of dATP contributed to

changes in ventricular function in our normal and failing models. EF, CO, and LVDevP all

increased to a greater extent with 1% dATP in failure (16%, 16%, and 13%, respectively) than in

the healthy heart simulations, where EF was decreased by 2%, CO was decreased by 2%, and
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LVDevP was increased by 3% compared to ATP (Fig.3.7A, B, C). Further, these results show

that increased myosin recruitment has a larger impact in failure, leading to greater improvements

in function. Interestingly, faster Ca2+ dynamics with dATP treatment led to increased EF in

the failing heart simulation, despite decreasing it in the healthy heart simulation (Fig. 3.7A).

Increased myosin recruitment also led to greater increases in work rate (Fig. 3.7D) and efficiency

in the failing heart simulations (Fig. 3.7H) (despite decreasing efficiency in the healthy heart

simulations), while faster Ca2+ dynamics led to an 8% increase in the CrP/ATP ratio (Fig. 3.7F)

and a 31% decrease in MVO2 (Fig. 3.7E) in the failing heart. These findings suggest that the net

effect of dATP treatment is to improve contractile function, primarily due to its effects on myosin

recruitment, while simultaneously improving energetic efficiency and the overall metabolic state

of the failing heart, at least in part due to its effects on Ca2+ handling.

3.4 Discussion

In this study, we used multiscale computational modeling to integrate therapeutic mecha-

nisms of dATP from the molecular scale to the cardiovascular system in the failing heart. We

predicted an increase in the actomyosin association rate with elevated dATP, potentially via stabi-

lization of pre-powerstroke myosin. However, we found that this increase, as well as enhanced

crossbridge cycling, did not lead to significant changes in contractile function. We found that

recruitment of myosin into the crossbridge cycling pool contributed to increases in steady state

force at the filament level, as well as increases in myocyte shortening and ventricular ejection

fraction. Enhanced recruitment of myosin was shown to dominate contractile behavior at all

scales, suggesting that this is the primary mechanism by which dATP improves contractility. This

illustrates a particular strength of a multiscale modeling approach, since we were able to assess

which mechanisms identified at different scales are most important in translating to changes

in physiology, rather than focusing only on parameter changes at a single scale which may or

may not be physiologically relevant. Accounting for the faster Ca2+ transient decay observed
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with elevated dATP along with enhanced myosin recruitment allowed us to also fully explain

changes in cellular relaxation, as well as ventricular mechanics in the failing heart. LV function

was shown to improve in a dose-dependent manner in simulations of the failing heart, with 1%

dATP restoring EF closer to normal levels, in agreement with experimental results. dATP also

improved energetic efficiency without further impairing metabolic state in HFrEF simulations.

Notably, dATP had a more pronounced impact on ventricular function and energetic efficiency in

the failing heart. The multiscale modeling framework developed in this study not only provides a

powerful tool for linking molecular effects to changes in ventricular function, but also allowed us

to parse the relative effects of several mechanisms of dATP at various scales of function, which

would be difficult to accomplish experimentally.

Our modeling approach allowed us to gain new mechanistic insight into the effects of

dATP on myosin, which agrees well with previous MD simulations [41, 168, 169, 181]. While

previous myosin MSM have been constructed [182], the novel MSM-BD framework utilized in

this study allowed us to gain insight into the mechanisms by which dATP specifically increases

the actomyosin association rate, suggesting a combination of stabilization of the pre-powerstroke

myosin structure and conformational changes in key protein regions, as well as overall changes

in electrostatics. Our hypothesized mechanism of stabilization of the pre-powerstroke state of

myosin may also decrease the likelihood of transition back into the OFF state, which could be

further investigated in future computational studies. Interestingly, our BD simulations showed

that dATP increases the actomyosin association rate to a slightly lesser extent than was shown

previously [42], although our results were generally consistent (we observed a 1.9 fold change

in the association rate compared with a 2.3 fold change in [42]). This is likely because our

simulations covered a broader range of possible myosin conformations. Featurization and

dimensionality reduction analysis using tICA showed that loop 2 motion was the most important

kinetic feature in the MD simulations. This could increase actomyosin association rates and

possibly other steps in the crossbridge cycle, and warrants further investigation [183]. This aligns

with previous work suggesting that switch 1 provides an allosteric mechanism for transmitting
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changes in the nucleotide binding pocket to loop 2 and the actin binding surface, increasing the

electrostatic affinity of myosin for actin [37]. Further, the metastable conformation that was

most dominant in our analysis, state 2 of the dATP simulation, also had the fastest association

rate according to our ensemble BD approach. Generally all of these structures in state 2 can

be described by having a more pronounced loop 2 extension. Even within this subsample of

conformations found in state 2, the conformation that associated most quickly according to the

BD simulations had an even greater extension of loop 2 relative to the other structures in the state,

again pointing to loop 2 as a key structural and electrostatic feature. This analysis also matches

with experimental assessments of loop 2 function, which highlight how additional positively

charged lysines inserted into the loop increases weak binding [173]. Our improved method

therefore overcomes a major limitation of BD in which molecules are treated as rigid bodies, by

accounting for the conformational variability in several distinct sub-states, and allowing us to

analyze the impact of structural features on protein-protein association.

Our model predictions indicate that thick filament mechanosensing largely contributes to

the disproportionate effects of dATP on force. This has been proposed as a mechanism underlying

length-dependent activation, where force development coincides with myosin heads transitioning

from the thick filament backbone towards thin filaments [179, 184, 169, 185]. It is plausible that

this may explain how elevated dATP leads to increased recruitment of myosin S1 heads from

the thick filament backbone, but the underlying mechanism is still unclear. Furthermore, our

model predictions indicated that nearest-neighbor cooperativity was also necessary to explain

the large increases in force observed at low dATP percentages, which is consistent with results

published in [179, 42]. This may point to a mechanism in which a greater number of myosin

heads binding to actin increases the number of exposed myosin binding sites via cooperative

mechanisms; this in turn allows more myosin heads to bind and generate force, leading to

increased recruitment from the thick filament backbone via a strain-dependent positive feedback

mechanism [37, 179]. However, it is important to note that myosin can also be recruited from

the OFF state via phosphorylation of myosin binding protein C [186] and the myosin light
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chain [187], so further investigation is warranted to determine whether these mechanisms may

play a role. Further, our results suggest that myosin recruitment is the dominant mechanism

by which dATP treatment leads to large increases in force with small amounts (1%) of dATP,

while increases in crossbridge binding and cycling were sufficient to explain experimental data

with 100% dATP, as shown previously [42]. This may be due to the fact that relatively low

amounts of dATP may be sufficient to fully deplete the inactive myosin pool. Indeed, recent

work showed that with 100% dATP, most myosin heads in the inactive pool have likely been

recruited [169, 170]. Thus, with 100% dATP, increased crossbridge binding and cycling may be

the dominant mechanism by which dATP further increases force production, since all available

myosin heads have already been recruited. A combination of experimental techniques and

molecular modeling would allow us to fully explore how dATP interacts with nearest-neighbor

cooperativity and the inactive state of myosin at varying percentages.

We found that the combined mechanisms of increased myosin recruitment and faster

Ca2+ dynamics led to both improvements in contractile function and energetic efficiency in the

failing heart, while efficiency was decreased in healthy heart simulations. This is consistent with

previous findings for Omecamtiv Mecarbil, which has some similar mechanisms to dATP [188].

This is likely because in both healthy and failing conditions, dATP improves both work rate and

ATPase rate; however, work rate is increased to a greater extent in the failing model, leading to

an overall increase in efficiency, while ATPase rate is increased to a greater extent in the healthy

model, leading to an overall decrease in efficiency. Interestingly, the large improvements in both

ventricular function and energetic efficiency in HFrEF were mainly due to increased myosin

recruitment into the crossbridge cycling pool. This could plausibly be due to a larger initial pool

of myosin heads in inactive states in failure, but additional data is needed to further explore this.

We also observed that increased myosin recruitment led to increases in MVO2 in the healthy

heart, but not in the failing heart, which may also contribute to improvements in energetics in

failure. Further, we observed that faster Ca2+ transient decay led to reduced EF in healthy heart

simulations but increased EF in failing heart simulations, which could be due to the fact that
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relaxation is likely impaired in failure. Further, we found that dATP increased the CrP/ATP ratio

in failure despite not changing it in healthy heart simulations with 1% dATP. Experimental data

from healthy transgenic mouse hearts showed a decreased CrP/ATP ratio with elevated dATP

[39], but the CrP/ATP ratio has not been measured in HFrEF with dATP, so additional data is

needed.

This model provides a powerful tool for assessing the mechanisms of dATP by integrating

existing experimental data spanning the molecular to whole organ levels to generate new model

predictions which can be tested through further experimentation and modeling.

3.5 Limitations

While the modeling framework developed in this study provides valuable insight into the

mechanisms of dATP and could be extended in the future to assess additional small molecule

therapeutics, additional work is needed to further develop the model to enable modular re-

placement of model components and parameter adjustment, since this model was developed

specifically based on data for dATP. One major limitation of our model framework is propagation

of uncertainty across scales, which remains a major challenge in multiscale modeling.

We chose to utilize two different sarcomere models in this study: a spatially explicit

model [42] for filament scale force-pCa simulations, and an implicit model [73] for myocyte

shortening and ventricular scale pressure-volume loop simulations. We chose to utilize the

spatially explicit model to assess how small fractions of dATP interact with nearest-neighbor

cooperativity to produce disproportionate amounts of steady state force, because this model

contains a sophisticated representation of cooperative mechanisms. However, this model is

computationally expensive and does not allow for simulation of myocyte shortening, Ca2+

dynamics, or energetics, so we chose to utilize the implicit modeling framework developed

by Lopez et al. [73] for larger scale simulations. Due to differences in each of these models,

the parameter values adjusted in each model differed slightly, mainly due to the addition of
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a weakly-bound state in the implicit model. dATP may also increase the transition between

the weakly- and strongly-bound states, but additional studies are needed to fully address the

mechanisms by which dATP increases the rate of crossbridge cycling. Further, it was necessary

to increase krecruit by a greater extent in the spatially explicit model than in the implicit model

to achieve the same effect. This may be explained by the fact that overall forces are lower by

several orders of magnitude in the spatially explicit model, which represents a single sarcomere,

than in the implicit model, which represents a whole cell.

Further, while we were able to estimate an actomyosin association rate from BD simu-

lation results based on the measured ATP-myosin.actin association rate, we observed a range

of possible association rates for varying reaction distances. Additionally, the ensemble binding

curve from dATP state 2, which has the largest stationary distribution also has the fastest binding

rate. It is possible that within dATP state 2, conformational variability leads to greater exploration

of states to identify a more favorable conformation. However, the variance of binding rates from

each of the dATP states is not substantially different, which suggests that the change in measured

association rate is not based on conformational exploration. Further, our BD simulations only

included a single myosin head and several actin monomers. The accuracy of these simulations

could be further improved in the future by including a more complete representation of the thin

filament and multiple myosin heads. Adding additional constraints on myosin head movement,

rather than allowing it to freely diffuse around the actin filament, would also improve association

rate predictions. Additionally, it is important to emphasize that while our MD and MSM analysis

inform our hypothesis that dATP stabilizes pre-powerstroke myosin, leading to increases in the

actomyosin association rate, additional simulations are needed to assess transition kinetics of

dATP out of the pre-powerstroke state.

Additional work is needed to fully explore the effects of dATP on Ca2+ dynamics. The

relative changes in DT50 and DT90 of the Ca2+ transient with dATP measured in isolated

cardiomyocytes (in vitro) at 1 Hz were utilized to scale the Ca2+ transient for the ventricular

simulations (at 7 Hz). This does not take into account possible frequency effects on changes to
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the Ca2+ transient with dATP, or the effects of the experimental preparation. Further, we assumed

that the changes in the Ca2+ transient were independent of dATP fraction, but the validity of

this assumption warrants further investigation. Additional work is also needed to determine the

underlying mechanism by which dATP increases the rate of Ca2+ transient decay. We showed in

a recent study that dATP acts on the sarcoplasmic reticulum ATPase (SERCA), leading to faster

pumping of Ca2+ back into the sarcoplasmic reticulum and thus faster Ca2+ transient decay,

[164, 42] but additional studies are needed to determine whether dATP also acts on other ATPase

pumps or mechanisms that regulate Ca2+ handling in the cell. Extension of our model to include

a model of the SERCA pump and other proteins involved in Ca2+ handling would allow us to

further investigate the effects of dATP on the Ca2+ transient. It is possible that there are additional

mechanisms at play at the ventricular level such as regulation by the autonomic nervous system

that could be taken into account in future studies [189]. Additionally, we utilized averaged

experimental dATP Ca2+ transient data for our simulations, but experimental measurements of

the extent of the effect of dATP on Ca2+ dynamics vary substantially.

In addition to uncertainty in the Ca2+ transient, krecruit was increased to a different extent

at the filament level than at the cell and ventricular levels, and had to be increased by around

three orders of magnitude to match the expected increase with 1% dATP in the spatially explicit

model, and by around 2 orders of magnitude in the spatially implicit model. The representation

of myosin transition out of the OFF state in this model is fairly simplistic, so it is difficult to

determine the exact increase in this parameter caused by elevated dATP without a more structural

relevant representation of myosin ON/OFF state dynamics. The myosin OFF state is an ongoing

area of investigation, and the mechanisms by which dATP disrupts the resting conformation

of myosin are still not fully understood, but additional experimental and computational studies

will aid in improving understanding. Regardless, model results showed that krecruit was the only

parameter which could be increased to produce disproportionate increases in force with small

amounts of dATP, so while the exact magnitude of this change is unknown, this provides support

for the conclusion that this is the primary mechanism by which small amounts of dATP improve
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contractile function. We also carried out an additional sensitivity analysis where we varied krecruit

simultaneously with the Ca2+ transient to assess how variability in these parameters affects

myocyte and ventricular mechanics. Generally, faster Ca2+ transient decay leads to decreased

FS, RT50, and RT90, while increased krecruit leads to increased FS, RT50, and RT90. At the

ventricular level, faster Ca2+ transient decay leads to decreased EF, CO, LVDevP, work rate,

MVO2, and ATPase rate, while increasing the CrP/ATP ratio and efficiency. Increasing krecruit

has the opposite effect, increasing EF, CO, LVDevP, work rate, MVO2, and ATPase rate, while

decreasing the CrP/ATP ratio and efficiency. However, the effects on efficiency are more variable,

especially in HFrEF simulations. These patterns are consistent with our overall conclusions. In

the future, additional experimental data on Ca2+ dynamics, as well as higher resolution data and

simulations on myosin OFF state dynamics will aid in better elucidating these mechanisms and

the interplay between them.

Finally, our modeling approach utilized a simplified model of the heart which approx-

imates the left and right ventricles as hemispheres. While this approach allowed us to gain

valuable insight into the ways in which dATP affects ventricular performance at a relatively low

computational cost, in the future this framework could be extended to capture more realistic

geometries. A finite element model of the heart would allow us to incorporate patient-specific

geometries and to assess regional changes in mechanics, as well as potential growth and re-

modeling. Further, in our assessment of changes in ventricular function with elevated dATP in

healthy and HFrEF simulations, we focused primarily on changes in EF, as well as other global

heart metrics such as CO and LVDevP, because these were the only experimental in vivo data

available for comparison. In the future, it would be valuable to expand our model to include

additional mechanisms of heart failure such as myocyte death in myocardial infarction, changes

in excitation-contraction coupling, and spatially varying changes in sarcomere dynamics with

mutations in sarcomere proteins. Additionally, dATP treatment may lead to functional and/or

morphological changes in mitochondria, so further experimental data and expansion of our model

to include these mechanisms would allow for a more complete assessment of the effects of dATP
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on energetics in failure.

Fig. 3.1 provides an overview of the modeling approach. Code can be found at

https://github.com/abbyteitgen11/dATP multiscale model, and was developed in part based

on a previously published multiscale rat mechanoenergetics model [73, 190, 188, 33], as well as

a spatially explicit sarcomere model developed in our group [42].

3.6 Methods

3.6.1 Molecular Dynamics Simulations of ATP-Myosin and dATP-
Myosin

We first conducted Molecular Dynamics (MD) simulations of pre-powerstroke ADP.Pi-

myosin and dADP.Pi-myosin. Starting coordinates for Atlantic bay scallop (Argopecten irradi-

ans) myosin II S1 in the pre-powerstroke state (ADP.Pi) were obtained from an X-ray crystal

structure in the Protein Data Bank (PDB, www.rcsb.org [101]) solved by [191] (PDB ID: 1QVI,

2.54 Å resolution). The original structure includes myosin II with ADP and vanadate (VO4)

[192], a Ca2+-bound essential light chain (ELC), and a Mg2+-bound regulatory light chain

(RLC). The VO4 ion was replaced with inorganic phosphate (Pi). To increase the computational

efficiency of simulations investigating motor domain dynamics, myosin II was truncated after

residue 810 and residues in the RLC were removed. Then, missing heavy atoms were built using

Modeller [193]. These starting coordinates were used to generate an additional system in which

ADP was replaced by dADP via removal of the 2’ oxygen. These systems will be referred to as

ADP.Pi-myosin and dADP.Pi-myosin, respectively. Next, hydrogen atoms were modeled onto

the structures using the leap module of AMBER and each protein was solvated with explicit

water molecules in a periodic, truncated octahedral box that extended 10 Å beyond any protein

atom. Finally, Na+ and Cl− counterions were added to neutralize the systems and then 120 mM

Na+ and Cl− ions were added.

All simulations were performed with the AMBER package [119, 194] and the ff14SB
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force field [195]. Water molecules were treated with the TIP3P force field [196]. Metal ions

were modeled using the Li and Merz parameter set [197, 198, 199]. ADP, dADP, and Pi

molecules were treated with the GAFF2 force field [200] with custom parameters derived from

QM simulations using ORCA [201, 202]. The SHAKE algorithm was used to constrain the

motion of hydrogen-containing bonds [203, 118]. Long-range electrostatic interactions were

calculated using the particle mesh Ewald (PME) method.

Each system was minimized in three stages. First, hydrogen atoms were minimized

for 1000 steps in the presence of 100 kcal mol−1 restraints on all heavy atoms. Second, all

solvent atoms were minimized for 1000 steps in the presence of 25 kcal mol−1 restraints on all

protein atoms. Third, all atoms were minimized for 8000 steps in the presence of 25 kcal mol−1

restraints on all backbone heavy atoms (N, O, Cα and C atoms) After minimization, systems

were heated to 310 K during three successive stages. In each stage, the system temperature is

increased by ∼100 K over 100 ps (50,000 steps) using the canonical NVT (constant number

of particles, volume, and temperature) ensemble. During all heating stages, 25 kcal mol−1

restraints were present on the backbone heavy atoms (N, O, Cα and C atoms). After the system

temperatures reached 310 K, the systems were equilibrated over 5 successive stages using the

isobaric-isothermal NPT (constant number of particles, pressure, and temperature) ensemble.

During the first 4 stages, the systems were equilibrated for 0.4 ns in the presence of restraints

on backbone atoms. The strength of the restraints was decreased from 25 kcal mol−1 during

the first stage to 1 kcal mol−1 during the fourth stage. During the final equilibration stage, the

systems were equilibrated for 5 ns in the absence of restraints.

Production dynamics for conventional MD simulations were then performed using

pmemd in the canonical NVT ensemble using an 8 Å nonbonded cutoff, a 2 fs time step, and

coordinates were saved every 10 ps. Simulations were run in triplicate for 2,000 ns each (12 µs

net sampling). Unless specified otherwise, simulations were analyzed separately, and the results

of replicate simulations were averaged together.
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3.6.2 Markov State Model Construction

These triplicate simulations of ADP.Pi-bound and dADP.Pi-bound myosin were used

to construct two Markov state models (MSM) for each of the nucleotide conditions (ATP and

dATP) (Fig. 3.8). Feature selection to inform these MSM was carried out, focusing on the

behavior of the actin binding surface. The residue composition and structural dynamics of the

cardiomyopathy loop, loop 2, and loop 4, and closure of the cleft have all been associated with

myosin binding to actin during the cross-bridge cycle [204, 205, 174, 175]. Therefore, we used

a collection of these features, based on the distances between their centers of mass of either the

tip, base or entire loops of interest, as well as two different measurements of the cleft opening.

Center of mass calculations were used as an initial dimensionality reduction, and provided a set

of internal coordinates. To further reduce the number of dimensions, time-lagged Independent

Component Analysis (tICA) was used to reduce these 22 features to only two primary features,

using a time lag of 200 ps (Fig. 3.8B). tICA is widely used in MSM construction because it

effectively identifies the slow kinetics of MD simulations (as compared to principal component

analysis or other dimensionality reduction techniques) [206]. All six trajectories were used in

featurization and dimensionality reduction steps.

A k-means clustering algorithm was applied to the 2-D tICA spaces, to reduce the MD

simulations into 500-state space using the two primary features from the tICA analysis, where

each frame of the simulation is classified into one of the 500 states, and transitions between

states were counted using a Bayesian approach (Fig. 3.8C) [207, 208]. Implied timescales (IT)

analysis was utilized to determine an appropriate lag time for MSM construction. This analysis

indicated that at a lag time of 900 ps, the timescales plateaued. Therefore, a lag time of 900

ps was used to construct MSM for both ATP-bound myosin as well as dATP-bound myosin

(Fig. 3.9). IT analysis also revealed two major motion components for both ATP and dATP

myosin simulations, suggesting that these 500-state MSMs could be reduced to three metastable

states (Fig. 3.8). Note that states 0, 1 and 2 are used purely for naming convention, and state
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Figure 3.8. Workflow of the MD to Markov state model construction used. The ATP and
dATP trajectories were first reduced in dimensions to 22 features measured on different loops
and surfaces on the actin binding surface of myosin (A). From the input features, time-lagged
Independent Component Analysis (tICA) was used to further reduce the simulation to two
dimensions (B). A k-means clustering algorithm was used to cluster the MD trajectory into a 500
microstate Markov model using a Bayesian estimation approach (C). PCCA+ fuzzy clustering
were used to further reduce the Markov state models of ATP and dATP into 3 metastable state
models each (D). From each metatstable state, 15 conformations were sampled, and used as
inputs to the Brownian dynamics simulations using an ensemble based approach (E). Brownian
dynamics simulations were carried out over a range of reaction distances to generate a binding
curve.
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the forbidden timescale space where the lag time becomes larger than the timescales of the
motion, and the behavior cannot be resolved. A lag time of 900 ns was selected for the model. (C)
The ratio of the implied timescales were plotted at a lag time of 900 ns to visualize the timescale
separation. Three macro states were selected based on ratio of the 2nd and 3rd timescales being
greater than 1.5 for both the ATP and dATP models.

0 in the ATP MSM is not analogous to state 0 in the dATP MSM. A Chapman-Kolmogorov

test was used to validate the MSMs, and showed minimal deviation between the observed and

predicted transition kinetics within the expected bounds (Fig. 3.10) [209]. From each of the

three metastable states, 15 frames were sampled to be used in the Brownian dynamics (BD)

simulations, for both the ATP model and dATP model, cumulatively leading to 45 structures

per nucleotide condition to be used in BD simulations (Fig. 3.8E). Analysis was carried out in

Python using PyEMMA [207].

3.6.3 Brownian Dynamics Simulations of Actomyosin Association

We used rigid body BD simulations to estimate the association rate of pre-powerstroke

myosin to actin. In this work, we improved upon previous BD simulations [42] by using an

ensemble of representative structures from the MD trajectories that have been sampled from
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metastable states in the MSM as described above. Traditional approaches using BD typically

require a single frame from the MD simulation to be selected and used for the BD simulations.

However, our approach using an ensemble of conformations avoids this frame selection challenge.

In BD simulations, the first protein of interest (myosin) is placed randomly on a sphere and

allowed to diffuse, either binding to the second protein of interest (actin) if it reaches a set

reaction distance criteria, or escaping if it reaches a set escape orbital (Fig. 3.8E).

BD simulations were carried out with Browndye 2.0 [68]. From each independent

conformation sampled from the ATP and dATP MSMs, independent BD simulations were

carried out to estimate the association rate between the myosin S1 head and a scallop actin dimer

homology model. The homology model was built using the source sequence from p. magellanicus

and template structure (PDB ID: 3J8A) [210]. We defined reaction pairs within Browndye based

on possible hydrogen bonding pairs within 3.5 Å from sampled conformations within each

metastable state of the MSM (15 per metastable state), defined in the bound actomyosin state.

The bound state was constructed by aligning the myosin structure with actin using a crystal

structure of bound actin and myosin (PDB ID: 6X5Z) as a reference [205]. Alignment was

done in VMD [167, 211, 212]. PQR files were created for all structures using the Amber20

force field with PDB2PQR [105, 108]. Electrostatic fields were generated for both myosin and

actin structures using APBS [213]. Rather than define a reaction distance, we simulated BD

trajectories without a reaction endpoint and recorded the closest distance between actin and

myosin during the trajectory in order to calculate association rates at a range of reaction distance

criteria. BD simulations were carried out with 250,000 trajectories per conformation, leading

to 3.75 million total trajectories for each metastable state of each MSM, and 11.25 million

BD trajectories for ATP and dATP each. The binding curves were then averaged based on the

stationary distributions of the metstable states in the three-state MSM for both ATP and dATP.

These binding curves were then used for analysis and comparison. The full mechanics and

simulation approach of the BD methods are described in more detail in [68].
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3.6.4 Spatially Explicit Sarcomere Model

We next modeled the effects of dATP on sarcomere mechanics, incorporating the asso-

ciation rates determined from the BD simulations. To do this, we modified a spatially explicit

cooperative model of the sarcomere previously published in our group [42, 178]. This model is

constructed using a Monte Carlo Markov Chain and contains 26 regulatory units (RUs). Each RU

represents seven actin monomers, one myosin S1 head, troponin, and tropomyosin. This model

consists of five states: blocked, with no calcium bound to the thin filament (B0), blocked, with

calcium bound to the thin filament (B1), closed (C), strongly bound (M1), and post-powerstroke

(M2). Parameters k+Ca and k−Ca determine transition between B0 and B1, representing calcium

binding to the thin filament; parameters k+b and k−b determine the transition between B1 and C,

representing the movement of tropomyosin across the actin surface to expose the myosin binding

site; parameters k+f and k−f determine the transition between C and M1, representing myosin bind-

ing to actin; parameters k+p and k−p determine the transition between M1 and M2, representing the

powerstroke; parameters k+g and k−g determine transition from M2 to C, representing detachment.

Transition rates between states B1, C, M1, and M2 for a given RU depend on the states

of the two neighboring RUs. Cooperative coefficients γB and γM (for a B to C transition),

and µB and µM (for a C to M transition) are computed based on the additional free energy

contributions of nearest-neighbor RUs compared to a reference state. µB is set equal to γM

to maintain reversibility. These cooperative coefficients incorporate mechanisms of both thin

filament (tropomyosin) overlap and strain dependence from neighboring bound myosin heads.

In addition to these five states, we added a sixth state to represent the pool of inactive

myosin heads not available for crossbridge cycling (OFF). To do this, we incorporated the

transition between the active and inactive states based on [179] and [33], governed by parameters

k+m and k−m , as well as krecruit , which describes the force dependence of this transition (Equation

3.1), where [M2] is the fraction of RUs in the M2 (post-powerstroke, force-producing) state.
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k+m = k+re f
m (1+ krecruit [M2]) (3.1)

After addition of this state, all other state occupancies were approximately the same as in

the original model formulation, except for a lower occupancy in the C state. Further description

of this model can be found in [42]. External RUs were clamped in the B0 state, and all other

RUs were initially set to the OFF state. 640 simulations were run for steady state force-pCa

simulations, and transition probability was determined using a random number from 0 to 1, using

a time step of 5×10−4 as in [42]. Analysis was carried out using CUDA 11.7 [60] and Python

3.9.13 [214].

Default parameters from the McCabe et al. model [42] were utilized for this study,

except those that were optimized: parameters k+m , k−m , and krecruit were optimized to match the

approximate steady state percentage of myosin heads in the OFF state (30%) based on X-ray

diffraction data [170, 169], as well as to match steady state force-pCa data for ATP from [87].

Parameters k+p and k+g were adjusted to simulate dATP treatment in the same way as in [42],

further detailed in Table 3.1. krecruit was further adjusted to maximize steady state force with 1%

dATP, and k+f was set based on BD results (Table 3.1). Fitting was done to minimize the sum

of squared error between data and model and was conducted using parameter sweeps carried

out in Python 3.9.13 [214]. Hill curve fits were utilized to smooth model outputs for force-pCa

simulations.

3.6.5 Myocyte Mechanics Model

We next assessed the effects of dATP on whole myocyte mechanics using a non-spatially

explicit sarcomere and myocyte mechanics model developed by [73], which is comprised of

a system of differential-algebraic equations (DAEs). Analysis was carried out in MATLAB

R2018b [215]. ODE15s was used to solve all differential equations. This model consists of

six states: inactive (OFF), nonpermissible (N), permissible (P), weakly-bound (A1), strongly-
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bound (A2), and post-ratcheted (A3) [73, 190, 188]. Parameters k+f and k−f determine transition

between P and A1, representing myosin binding to actin; parameters k+w and k−w determine

transition between A1 and A2, representing the transition from weakly-bound to strongly-bound;

parameters k+p and k−p determine transition between A2 and A3, representing the powerstroke;

parameter k+g determines transition from A3 to P, representing detachment. Parameters kon and

ko f f represent Ca2+ association to the thin filament and determine transition from N to P, along

with a cooperative parameter kcoop. This model includes the same model of transition between

the active and inactive states as the spatially explicit model, based on [179] (Equation 3.2), where

ON represents the active states, OFF represents the inactive states, and σXB represents active

contractile force. This model also includes parallel passive and series elastic springs, and a

parallel dashpot, to represent sarcomere viscoelasticity. Additional details on this model can be

found in [33, 190].

dON
dt

= k+m(1+ krecruitσXB)OFF − k−mON (3.2)

Default model parameters from the rat model [73] were used for this study, except those

that were optimized as described in Table 3.2. Parameters were optimized to match steady state

force-pCa rat data from [87] and average unloaded shortening data from [38, 39]. For force-pCa

simulations, sarcomere length was fixed at 2.25 µm based on experimental protocols [87], and

kSE was set to 5× 104 mmHg/µm to simulate isometric contraction. kon was set to 50 s−1,

kpassive was set to 0.1 mmHg/µm, and η was set to 1.5 mmHg/µm to match EC50 and steady

state force for ATP. For shortening simulations, kSE was set to 35 mmHg/µm, kpassive was set

to 0.1 mmHg/µm, and η was set to 0.001 mmHg/µm to match FS, RT50, and RT90 for ATP

average shortening data. For each simulation, all myosin heads were initially set to the OFF

state. Shortening simulations were carried out at 1 Hz for comparison to average experimental

shortening data from [38, 39], and the model was run for 3 beats to reach steady state.
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kx = kx,AT P[1−dAT P(%)]+ kx,dAT P[dAT P(%)] (3.3)

Since this model is not spatially explicit, parameters were scaled as functions of dATP

level, with overall nucleotide concentrations kept constant according to Equation 3.3, where

kx represents the parameter assumed affected by dATP. Parameter k+f was set based on BD

results, and parameters k−f and k+w were optimized to mach EC50 and steady state force for

100% dATP, further described in Figs. S12-S14. This achieved the same effect as increasing

parameters k+f , k+p , and k+g in the spatially explicit sarcomere model. Parameter krecruit was

further optimized to match average shortening data for 1% dATP [38, 39]. Optimization was

done using a combination of manual tuning (to determine a reasonable parameter range) and

Particle Swarm Optimization in MATLAB [127]. Some parameter and state names were altered

from original model: USR was changed to OFF, UNR was changed to ON, k+SR was changed to k+m ,

k−SR was changed to k−m , k f orce was changed to krecruit , ka was changed to k+f , kd was changed to

k−f , k1 was changed to k+w , k−1 was changed to k−w , k2 was changed to k+p , k−2 was changed to

k−p , and k3 was changed to k+g .

The Ca2+ interpolation function from this model (based on experimental data from [216])

was used to simulate Ca2+ transients at a range of frequencies for analysis at the cellular and

organ levels. We adjusted parameters a, b, c, and Ca0 in the interpolation function to match

DT50 and DT90 for ATP and dATP seen experimentally. Experimental studies have shown

varying results on the effects of dATP on Ca2+; Korte et al. [38] reported a 50% decrease in

DT50 and a 49% decrease in DT90 with elevated dATP, while Nowakowski et al. did not report

a significant decrease in DT50 and DT90 with elevated dATP. Therefore, to account for the range

in experimental values, we averaged these two data points to obtain an average Ca2+ transient for

dATP, where DT50 is decreased by 31% and DT90 is decreased by 25%. This variability in Ca2+

data is further addressed in Figs. S22-S26. Corresponding shortening data was also averaged

as described above, where average FS for ATP was 7.1 and average FS for dATP was 9.5.. For

98



Table 3.1. Summary of parameter changes made to spatially explicit sarcomere model from
[42] compared to implicit sarcomere model from [73]. All original parameters from [42] were
utilized in updated model after addition of the OFF state, except for transition parameters k+m , k−m ,
and krecruit , which were optimized to match steady state ATP force-pCa data [87] and to maintain
a baseline OFF state occupancy of approximately 30%, based on experimental data [169, 170].
In the updated model, k+f was increased to 478 s−1 compared to 567 s−1 in the original model
based on updated BD data, but k+p and k+g were increased by the same amount to simulate dATP.
krecruit was also increased to simulate dATP. This differs slightly from the parameters increased
to simulate dATP in the spatially implicit model (k+f , k−f , k+w , and krecruit , further discussed in
the main text). Additionally, krecruit was increased by a greater amount in the spatially explicit
model than in the spatially implicit model, also discussed in the main text. Values shown are for
100% dATP.

Original Spatially Explicit Model Updated Spatially Explicit Model Spatially Implicit Model
ATP dATP ATP dATP ATP dATP

k+Ca (µM−1 s−1) 90 90
k−Ca (s−1) 570 570
k+b (s−1) 13000 13000
k−b (s−1) 100 100

k+f (M−1s−1) 250 567 250 478 250 478

k−f (s−1) 304.7 460

k+w (N−1m−2) 112.4 170
k+p (s−1) 50 80 50 80 811.7
k+g (s−1) 135 230 135 230 144.6

γB 45 45
γM 21 21
µM 2 2

k+m (s−1) 16 15.5
k−m (s−1) 15 50
krecruit

(N−1m−2)
0.2 779 0.2 37

ventricular simulations, we used the original model Ca2+ transient from [73], and applied these

same relative changes to DT50 and DT90 for dATP. Maximum and minimum Ca2+ transient

values were set to be equal for ATP and dATP for all simulations since they were not shown to

vary significantly experimentally [38, 39]. For cellular-level simulations, minimum Ca2+ was

set to 0, and maximum Ca2+ was set to 1. For organ-level simulations, minimum and maximum

Ca2+ values were set to be be the same as in the original model from [73].

3.6.6 Crossbridge Energetics and Mitochondrial Metabolism Model

The mitochondria model implemented in [73] (based on [77]) was utilized to simulate

myocardial energetics. This model consists of 29 ordinary differential equations describing

the membrane potential, metabolite concentrations, and ion concentrations in the mitochondria.

The mitochondria is divided into three main compartments: matrix, inter-membrane space, and

99



Table 3.2. Summary of parameter changes made to implicit model from [73] to simulate ATP and
dATP compared to original model parameters. ATP and dATP parameters were fit independently.
k+f was altered based on actomyosin association rate from BD. k−f , k+w , and krecruit were optimized
to match dATP experimental data [87, 38, 39]. Viscoelastic parameters kpassive, η and kSE were
adjusted based on experimental protocol (force-pCa for filament simulations, shortening for
myocyte simulations, and PV loops for ventricular simulations), as described in the methods.
Ca2+ association parameter kon was adjusted to account for differences between in vitro and in
vivo data [217]. Parameter values shown are for 100% ATP and 100% dATP. Parameters k+f , k−f ,
k+w , and krecruit were increased to simulate dATP treatment.

Original Filament Simulations Myocyte Simulations Ventricular Simulations
ATP ATP dATP ATP dATP ATP dATP

kpassive (mmHg/
µm)

25 0.1 0.1 5.8×104

kcoop 9.68
kon (s−1) 101.2 50 50 200

ko f f (s−1) 723.9
k+m (s−1) 15.5
k−m (s−1) 50
krecruit

(N−1m−2)
0.2 37 37 37

k+f (M−1s−1) 559.6 250 478 250 478 250 478

k−f (s−1) 304.7 460 460 460

k+w (s−1) 112.4 170 170 170
k−w (s−1) 21.3
k+p (s−1) 811.7
k−p (s−1) 43.3
k+g (s−1) 144.6

kSE (mmHg/
µm)

5×104 35 1×104

η (mmHg∗ s/
µm)

1 1.5 0.001 1×10−4

cytosol. As in [73], metabolite concentrations in the mitochondria model feed into the myocyte

mechanics model. The crossbridge cycling rate from the sarcomere model is used to calculate

the ATPase rate, which feeds into the mitochondria model. Coupling to the energetics model

was only implemented for ventricular simulations. The model from [73] was altered so that

the mitochondria model updates the metabolite pools every three beats to allow for assessment

of changes in metabolite concentrations over time. Three beats was chosen as a reasonable

timescale to allow for a stable solution to model equations. Analysis was carried out in MATLAB

R2018b [215].

3.6.7 Ventricular Mechanics and Hemodynamics Model

Ventricular simulations under healthy and failing conditions were carried out using the

rat ventricular mechanics and hemodynamics model from [73]. This model is based on [76],
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Table 3.3. Summary of model metabolite concentrations in healthy and HFrEF simulations.
Total adenine nucleotide pool (TAN), total creatine pool (CRtot), total exchangeable phosphate
pool (TEP), and oxidative capacity (Oxcapacity) were adjusted based on average experimental
values for healthy and TAC (heart failure) rats from [73].

Healthy HFrEF
TAN (M/L cell) 0.0076 0.0070
CRtot (M/L cell) 0.0303 0.0230
TEP (M/L cell) 0.0263 0.0242

Oxcapacity (unitless) 1 0.7482

where the left and right ventricles are modeled geometrically using thin-walled hemispheres with

three segments: left ventricular free wall, right ventricular free wall, and the septum. In each

of these segments, the implicit sarcomere and energetics model described above is utilized to

calculate tension. Thus, sarcomere length and active force from the implicit myocyte model feed

into the ventricular model, and the recomputed geometry is used to update sarcomere length in

the implicit sarcomere model. This model is also coupled to a lumped-parameter circulation

model, which represents the aorta, arteries, capillaries, and veins.

Mean sham rat data from Lopez et al. were used for all analysis in healthy simulations,

and mean transverse aortic constriction (TAC) rat metabolite data were swapped in for heart

failure simulations [73]. The optimized crossbridge parameters described above for the myocyte

mechanics model were also used here (Table 2). We also updated the passive force formulation

in the model (Equation 3.4, 3.5) to produce a more realistic end diastolic pressure volume

relationship, based on [218], where γ was set to 8 to produce a physiologic end-diastolic

pressure-volume relationship (Equation 3.6).

σpassive(SL) = kpassive(SL−SLrest)+σpassive,collagen(SL) (3.4)

σpassive,collagen(SL) =

 Pconcollagen[ePExpcollagen(SL−SLcollagen)−1] SL > SLcollagen

0 otherwise

 (3.5)
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σpassive(SL) = kpassive(SL−SLrest)
γ (3.6)

Ca2+ association parameters were adjusted to account for the differences between in

vivo and in vitro data [217]. KSE was adjusted to 1×104 mmHg/µm, kpassive was adjusted to

5.8×104 mmHg/µm, and η was adjusted to 1×10−4 (Table 3.2). Further, aortic compliance

(CAo) was set to 0.0015 mL/mmHg and LV, RV, and septal midwall reference surface areas Amre f

were scaled by a factor of 1.28 to match the wild-type experimental EF from [39]. All other

parameters were kept unchanged, and dATP was simulated in the same way as in the myocyte

model. The model was run for 120 beats to reach steady state as in [73]. Analysis was carried

out in MATLAB R2018b [215]. Additional details on this model can be found in [33].
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Chapter 4

Conclusions

In this work, we present a cohesive model that uses molecular level simulation and

analysis to predict whole organ function. This modeling framework focuses on the application of

the myosin activator deoxy-ATP and its therapeutic potential to treat heart failure with reduced

ejection fraction. However, the methods and interconnected models presented truly present their

application in the ability to be modified for other targeted approaches to treat myopathies. For

instance, at the molecular scale, the combination of molecular Markov motors, while not novel

on its own, when combined with ensemble docking or Brownian dynamics simulations reveal

previously uncovered insights. As such, the approaches used in this dissertation are immediately

highly impactful even beyond the context of cardiovascular and musculoskeletal diseases focused

on myosin modulators. The development of new computational resources, as well, based around

new computing architectures such as GPU acceleration also increase the accessibility of our

modeling approaches.

4.1 Key Findings

Molecular dynamics simulations demonstrated that dATP influences the structural dy-

namics of SERCA, which directly influences the calcium handling and subsequently diastolic

function. When compared to ATP bound simulations of SERCA, dATP bound in a manner

with stronger protein contacts and changes in the cytosolic domains of SERCA. Simultaneously,

103



dATP promoted changes in the calcium entry pathways to binding sites. Brownian dynamics

simulations of calcium binding revealed that dATP increased accessibility to the binding sites

results in faster calcium sequestration.

Using our newly developed software tool Netsci, we observed that dATP leads to changes

in the correlated motion of SERCA relative to the binding of ATP. Specifically, dATP appears

to aid SERCA in more efficient allosteric communication between the nucleotide binding site,

the autophosphorylation site and the rest of the protein. Therefore, with a tighter network of

communication, the SERCA pump is more readily able to open binding pathways for calcium.

This helps to explain the changes in diastolic function based on the increased calcium flux from

the cytosol into the sarcoplasmic reticulum.

Molecular dynamics simulations of pre-powerstroke myosin, led to altered conforma-

tional dynamics based on whether ATP or deoxy-ATP was bound. The simulations showed that

myosin explored different conformational states based on the nucleotide bound. Further, these

states were explored with different kinetics as measured using MSM analysis and validation.

Matching out expectations, Brownian dynamics simulations showed that the different conforma-

tional states from the MSM different based on the state in the model, as well as the nucleotide

bound, underscoring the importance of an ensemble-based approach to protein-protein docking.

Incorporating the observed changes in molecular behavior into filamentous and cellular

models helped to match and explain changes to muscle mechanics. Crossbridge attachment

rates contributed to a modest increase in contractility. The cooperative nature of thin filament

activation helped to explain the non-linear increases in contractility based on dATP. However,

modifications to the transitions in and out of the OFF state of myosin were required to match

experimental measurements that show such significant changes in contractility.

Using an ordinary differential equation model, we recapitulated the cooperative and XB

effects to simulate whole organ function and include calcium handling behavior. The changes

to calcium sequestration are essential to capture the changes in diastolic function in addition

to other clinical measurements of cardiac function. A metabolic model of heart failure also
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supported the finding that dATP provides a larger measured increase in cardiovascular output

and function than when dATP is applied to a healthy heart. This is compounded by increases in

metabolic efficiency due to dATP. A coupled “tri-seg” model of whole heart function coupled

to lumped parameter resistance model of circulation completed the molecule to whole organ

framework and similarly predicted increases in circulatory function.

4.2 Limitations in modeling approaches

This work presents the first analysis, to our knowledge, that specifically models molecular

mechanisms all the way up to whole organ and body analysis, and interconnects across each

model step. However, like all models, this framework also has limits and assumptions in its

approach. On the whole, we used a very targeted, ‘depth-first’ modeling approach which focused

on bridging known and predicted changes across scales.

A breadth-first modeling approach, for instance, may have focused exclusively on molec-

ular simulations of the effects of dATP in a wide range of crystal structures and structural

states through cross-bridge cycle, and interacting heads motifs. However, we chose to focus

our simulation analysis on crystal structures that were available in high resolution, and would

mostly likely result in significant and observable changes. Even though structural resolution

has been increasing, thanks in part to advances in cryo-EM approaches, the resolution of the

myosin in different states does not each the desired threshold for accurate molecular modeling.

Additionally, larger structures reduce the simulation and sampling available based on current

computational resources. However, as structural biologists continue to push the boundaries of

measuring protein structures in parallel with advances in computing power, we acknowledge

such limitations will be more easily overcome.

Within the context of our molecular simulations, we acknowledge there were limitations

and assumptions in our approach. Specifically, we assume that the ensemble based approach

taken in the Brownian dynamics simulations are adequate to capture the necessary dynamics
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involved in binding, both for actomyosin association and SERCA calcium handling. However,

combined MD-BD approaches could further improve accuracy.

One area that we believe could use greater analysis is uncertainty quantification, es-

pecially as we step up in scales. Our modeling approach was based on limiting the number

model parameters necessary in order match or compare against experimental data. However,

future modeling would be well suited to focused on quantifying the uncertainty associated

with particular model parameter changes. This type of error analysis would provide insights to

highlight possible gaps or highly sensitive model parameters that should be further studied with

additional experiments, or adjustments to the model framework. Specifically, the use of machine

learning or artificial intelligence to direct parameter adjustment and error quantification could

advance the development of this type of modeling significantly. For instance, using Bayesian

parameter estimation with conditional variational autoencoders [219].

As computational biologists, our approach was to use all available data to help informs

and build or multiscale model. However, this required integrating data sources from multiple

different species and tissue preparations. Specifically, we integrated dATP modeling data from

mouse measurements, skinned myofibrils, intact muscle and rat measurements. Ideally, there

would be no inconsistency in the model species and would be from an animal model that is

clinically relatively similar to humans, such as swine or bovine. However, these animal models

are much more expensive, and take longer to develop compared to smaller rodent models.

Additionally, at the organ scale, when we model full circulatory function, a rat trans-aortic

constriction model which focused on energetic remodeling. This is important to consider that

the TAC model of heart failure may not be the best model of HFrEF, and is only one particular

instances. In this modeling scheme, the metabolic changes were actually used as the underlying

causes of the changes in function rather than a filament change or modification of the heart

geometry.
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4.3 Future Directions

The limitations discussed in the previous section all represent additional possible work

that I or future researchers could follow. However, the modeling framework is it stands now is still

robust and can provide significant and novel insights when applied in new contexts. Specifically,

we believe that this framework could be used to model the effects of mysoin inhibitors in the

context of hypertrophic cardiomyopathy. Because the key mechanisms of dATP appear to be in

opposition to myosin inhibitors, we believe that the framework could be modified intuitively.

This multiscale modeling framework could also be utilized in a reverse mechanism drug

discovery approach. Robust sensitivity across the model parameters could be used to identify

potential mechanisms with high impact on organ function. This approach could be particularly

useful in the context of modeling other cardiovascular diseases beyond a metabolic model of

HF, and then identifying sensitive parameters and mechanisms afterwards. For example, using a

geometry that reflects dilated cardiomyopathy, and adjusting constitutive properties of the organ

model, we may find different mechanisms and model parameter sensitivities than with a health

heart model. These mechanisms could then guide and identify specific protein targets.

Ultimately, this multiscale modeling approach, and depth of analysis, not only highlights

the current mechanisms of dATP in the context of cardiovasuclar function, but provides a

framework for future modeling endeavors of myosin modulators. We believe that developing

detailed multiscale models are a necessary step to increasing the accessibility of personalized

medicine and therefore leading to widespread improved clinical outcomes.
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ferović, R. C. Starling, J. R. Teerlink, O. Vardeny, K. Yamamoto, C. Yancy, J. Zhang,
and S. Zieroth, “Universal definition and classification of heart failure: a report of the
Heart Failure Society of America, Heart Failure Association of the European Society
of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal
Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure
Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart
Failure Association,” European Journal of Heart Failure, vol. 23, pp. 352–380, 2021.

[17] F. I. Malik, J. J. Hartman, K. A. Elias, B. P. Morgan, H. Rodriguez, K. Brejc, R. L.
Anderson, S. H. Sueoka, K. H. Lee, J. T. Finer, R. Sakowicz, R. Baliga, D. R. Cox,

109



M. Garard, G. Godinez, R. Kawas, E. Kraynack, D. Lenzi, P. P. Lu, A. Muci, C. Niu,
X. Qian, D. W. Pierce, M. Pokrovskii, I. Suehiro, S. Sylvester, T. Tochimoto, C. Valdez,
W. Wang, T. Katori, D. A. Kass, Y.-T. Shen, S. F. Vatner, and D. J. Morgans, “Cardiac
Myosin Activation: A Potential Therapeutic Approach for Systolic Heart Failure,” Science,
2011.

[18] E. M. McNally and L. Mestroni, “Dilated Cardiomyopathy,” Circulation Research,
vol. 121, pp. 731–748, 2017.

[19] J. D. Powers, S. A. Malingen, M. Regnier, and T. L. Daniel, “The Sliding Filament Theory
Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research,” Annual
Review of Biophysics, vol. 50, no. 1, p. null, 2021.

[20] A. Huxley, “Muscle Structure and Theories of Contraction,” Progress in Biophysics and
Biophysical Chemistry, vol. 7, pp. 255–318, 1957.

[21] S. M. Day, J. C. Tardiff, and E. M. Ostap, “Myosin modulators: emerging approaches for
the treatment of cardiomyopathies and heart failure,” The Journal of Clinical Investigation,
vol. 132, 2022.

[22] Y.-J. Chen, C.-S. Chien, C.-E. Chiang, C.-H. Chen, and H.-M. Cheng, “From Genetic
Mutations to Molecular Basis of Heart Failure Treatment: An Overview of the Mechanism
and Implication of the Novel Modulators for Cardiac Myosin,” International Journal of
Molecular Sciences, vol. 22, p. 6617, 2021.

[23] J. R. Teerlink, R. Diaz, G. M. Felker, J. J. McMurray, M. Metra, S. D. Solomon, K. F.
Adams, I. Anand, A. Arias-Mendoza, T. Biering-Sørensen, M. Böhm, D. Bonderman, J. G.
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