
UC Irvine
ICS Technical Reports

Title
Indeterminacy, monitors, and dataflow

Permalink
https://escholarship.org/uc/item/47j7x83v

Authors
Arvind
Gostelow, Kim P.
Plouffe, Wil

Publication Date
1977

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47j7x83v
https://escholarship.org
http://www.cdlib.org/

Indeterminacy, Monitors,
'and Dataflo^*

by

Arvin(^ NOtiC0! TlliS
ST may be protected

by Copyright Law
(Title 17 U.S.C.)

Technical Report #107

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

*This work was supported by NSF Grant MCS76-12460:
The UCI Dataflow Architecture Project.

z.

(L3)

Vui I 61

Indeterminacy, Monitors, and Dataflow*

Arvind, Kim P. Gostelow and. Wil Plouffe

Department of Information and Computer Science
' University of California, Irvine

Irvine, CA 91717

1. Introduction

C^rating systems require concurrent or
asynchronous programming in order to share computer
resources efficiently among competing processes.
Programming these systems is further complicated by
the fact that processes can interact in a
time-dependent manner. Even though this often
results in nondeterminism, traditional programming
larquages have not incorporated nondeterministic
operators in a fundamental way. Instead, the usual
manner of expressing nondeterminism in such
lai^uages is via variables shared among the
programs, and over a period of time various
programming,-language extensions have been proposed
for structuring tnis sharing. Still, it is our
opinion that traditional languages fall short in
deeding with resources in a uniform manner; this
should not be surprising since the proposed
extensions ate not natural to tne essentially
sequential nature of both the languages and the
machines on which these languages execute. If the
correct concept of a "resource" is not basic to a
language, techniques for sharing a resource must be
contrived.

The work described in this paper began with a
desire to include some linguistic concept of a
resource manager within a dataflow language we have
been designing [AGP76]. In doing so, we discovered
that dataflow monitors.(resource managers) provide a
natural way of thinking about resources and
especially their scheduling. Dataflow semantics are
based upon a program composed of asynchronous
operators interconnected by lines along which data
tokens (messages) flow, such that when all of the
input tokens for a given operator have arrived then
that operator may fire (execute) by absorbing the
input tokens, computing, and producing an output
token as its result. These operations closely match
one's intuitive model of resource managers

*This work

Architecture

76-12460.

was done under the UCI Dataflow

Project and supported by NSF grant MCS

(operators) passing signals (tokens) to one another
for the purpose of synchronizing and scheduling
resource usage. Previously though, dataflow
languages [073, K73, W75] have dealt only with the
expression of highly asynchronous yet determinate
computations; however, resource management
characteristically involves indeterminate*
computation. The introduction here of dataflow
monitors and an explicit nondeterministic merge
operator for dataflow streams makes dataflow very
well suited for expressing interprocess
communication and operations on resources.

We also feel that dataflow monitors are

superior to monitors found in some conventional
languages [BH73, H74] primarily because every aspect
of synchronization scheduling that is implicit in
other languages becomes explicit in dataflow, and is
localized to a specific and easily identified
component of the dataflow monitor. Further, the
scheduling and enabling of computation is user
prograiiinable without resorting to any new primitive
function designed only for that purpdse. As a
result, the correspondence between the structure of
a synchronization problem and the structure of the
program solution is preserved far better by dataflow
than by conventional languages. Also, any
indeterminacy in the program is explicit since
indeterminacy can be expressed only through the use
of a dataflow monitor or a nondeterministic merge
operator.

The major points of the paper are illustrated
through the use of two examples. The first is a
resource manager (implemented as a dataflow monitor)
which, with only minor changes, can implement three
versions of the readers and writers problem [CHP71,
H74]. No other system of which the authors are
aware has been able to

Indeterminate computation means that the same
inputs to : a program do not always produce the same
outputs; in the case of resource management, one
would not expect to receive the same airline seat
for every request input to the reservation system.

Page 2

c^ture tne solutions as easily or clearly. Ihe
second example is a solution to a distributed
database problem; tnis example demonstrates the
ease with which dataflow languages may be used to
solve more complex synchronization problems than are
usually used to evaluate the applicability of a new
synchronization construct.

2. Introduction to Dataflow and ID

Tralitionally, a process is viewed as a
completely ordered sequence of instructions (the
program) with a single site of activity (represented
by the program counter) which moves sequentially
through the program's instructions. Branch
instructions are needed to modify the normal
sequencing. In the context of resource management
problems, synchronization primitives explicitly
control the relative positions of program counters.
In particular, one program counter can not move past
a given point until a signal is received from,
another process, i.e., until another program counter
moves past a signal-generating point. This view may
be called the "control flow" view of programming
since it emphasizes the control aspects of the
program. In contrast, "data flow" recognizes only
the data dependencies expressed within the program.
A program is represented by a set of operators and a
partial ordering expressing tne data dependencies
existing among tne operators. Each operator waits
for all of its operands to arrive (i.e., to be
produced by predecessor operators) and then becomes
enabled. Once enabled, the operator may execute at
any time and will send its results to other waiting
operators. Thus, there may be many sites of
activity (operators in execution) within a single
program at any instant. The program terminates when
no operator is enabled.

This event-driven view of dataflow has
analogies in both architecture and operating
systems. The design of central processing units of
sane large scale computer systems (e.g., the •
arithmetic units of the IBM STRETCH and the IBM
360/91) have been based partially upon the flow of
data among instructions. Sane operating systems
have been based upon the idea of cooperating
processes: each process proceeds at its own pace
until either a lack of resources or lack of inputs
from other processes delays that process (e.g., the
RC 4000 IBH73]).

However, program-counter computers are
incompatible with a machine language based solely on
dataflow semantics; thus it is convenient to
hypothesize a dataflow machine. In this machine,
data is carried by tokens (packets of bits) that
flow through a communication medium and arrive at
destination processors. (References [AG77b, DM75]
describe two architectures for such machines.) Each
processor may execute any enabled operator, and
several operators may execute on distinct processors
concurrently. Each token carries either an

elementary value or a structured value. Elementary
valiKs may be integers, reals, strings, booleans,
procedure definitions, monitor definitions, monitor
names, or errors, while structured values represent
vectors with arbitrary selectors (D73]. Variables
in dataflow languages do not represent memory
locations, but rather the lines (channels) along
which tokens flow. A given variable in ID, the
Irvine Dataflow language, is either a simple
variable or a stream variable. A simple variable
carries a single token to each instance of an
operator's execution, while a stream variable
carries a linearly ordered sequence of tokens to
each instance of an operator s execution. Since
variables label the lines, no variable may
semantically refer to more than one line, and thus
no variable may be assigned a value by more than one
statement, i.e., a variable must obey the
"single-assignment" rule.

ID is expression-oriented with syntax
resenfcling an Algol-like block structure language.
All ID programs are expressions. An expression can
be a block, a conditional, or a loop expression.
The inputs to an expression are the variables
referenced but not defined within the expression,
and the output is the value(s) computed. An
assignment statement is an expression that gives
names to the ordered outputs of that expression
(similar to, but not equivalent to, an assignment
statement in most languages). In this paper,
lower-case letters denote simple variables,
upper-case letters stream variables.

Examples of ^ Syntax

1. a + b is a simple expression; [1,2,3] is a
stream of three constants while [] is the empty
stream.

2. A block expression that calculates
Va2 + / \/a2 - is:

(X •<- a*a ;
y *• b*b

return sqrt(x+y)/sqrt(x-y))

A block consists of an unordered sequence of
statements separated by semicolons and followed
by a return clause. If any two statements in a
block are interchanged, the meaning of an ID
program remains unchanged. Hence, the meaning
of

(X sqrt(a); y + x + b/x return x,y)
is the same as

(y X + b/x; x sqrt(a) return x,y).
A graphical representation of these latter two
expressions is given in Figure 1. The inputs to
a block consist of all variables referenced in
the block which are not defined (not assigned)
within the block. The output consists of the
value(s) calculated by the return clause.

Page 3

Figure 1

A dataflow expression

3. A conditional statement:

y (if request = "reader"
then r+1, w

else r, w+l).

The inputs to an ^ expression or statement
consist of the union of the inputs to the
boolean expression, the then clause, and the
else clause. , Ihe above ^ statement requires a
token from each of the lines called request, r,
and w, and produces two tokens on the lines
called X and y. A graphical representation is
presented in Figure 2. The switch operator is
used to route the tokens on the input lines r
and w to the appropriate conditional clause
according to the boolean value produced by the
predicate (the diamond shaped operator). The
conditional merge operator uses the boolean to
gather the tokens fran the appropriate, lines and
to output them as the result.of the if
statement. This requires that the number of
outputs from the then clause equals the number .
from the else clause; thus the following
statement is illegal:

X, y (if request = "reader"
then r+1

else r, w+l).

4.

5.

The first ^ statanent given above has tl
alternative syntax:

(if request = "reader"
then X +• r+1; y w

else X r; y *- w+l)

cotijilionol

Figure 2

A conditional e^qjression

Structures are created using
It -e <record: i, key: newk>

This creates a structure and places that
structure as a value on the line It. The

selectors are the strings "record" and "key".
The value i may be retrieved using either

It["record"] or It.record

A'loop expression (here we input a stream and
output two simple variables):

(initial r *- 0; w •»- 0
for each req ^'RBQ ^

I, w *• (^ req = "reader"
then r+1, w

else r, w+l)
return r, w)

This expression gives the number of readers a
writers in the stream REQ by examining in tur
each individual token (identified as req) in
stream. Here it seems the single-assignment
rule is being violated in the body of the loo
However, the rule is still valid since the r
w on the fight-hand side represent those line
on which the old accumulated values of the

ntinbers of readers and writers arrive; these

Page 4

lines are semantically distinct from the lines
indicated by the symbols r and w on the
left-hand side which represent the output lines
of the loop body (see Figure 3 where the r and w
from the left-hand side are written as new r and

new w). The loop begins execution with a token
with value zero on each of the lines initial r

and initial w; these tokens are gated through -
the conditional merge (because of the initial'
false token represented in.the figure by the
black dot) and sent to the switch operator. The
first token on line req is taken from the stream
RGQ and, assuming it is not the end-of-stream
marker token, req is switched along with the
original values of r and w to compute the new
values for r and w as new tokens on lines new r

and new w. These new values are then sent

through the conditional merge (because of the
true token generated.by tne first token req of
stream fcEQ) to the second initiation of the
switch operator. The loop continues until the
end-of-stream marker token for stream REQ

arrives causing a false token to be directed to
the switch, vAereupon the results are switched
out of the loop.

The•each operator in Figure 3 does not
affect the value of the tokens passing through

rng.ro e

r*cui neuj

T . . F
I'tiOnOwt

iniTifLL

it. Rather it is needed by the interpreter to
change each element of the input stream REQ to a
simple value req and to direct each req to a
separate initiation of the predicate and switch
operators. The interpreter accomplishes this by
manipulating control information contained on a
token.

Loop expressions emphasize the fact that
many simple tokens can appear on a line, yet the
underlying interpreter [AG77bl ensures that the
proper tokens for a particular initiation of an
operation are used. The inputs to the loop
expression are the union of all inputs to the
right-hand sides of the statements in the
initial clause and any externals used within the
loop (such as REQ in the example). The outputs
are the values computed by the return clause.

Loops also allow for a simplification in
the syntax concerning structures. The statement

file[il *- request

means to append the value of request to the old
value of file using the value of i as the
selector. This yields a new structure.which is
the new value of file.
The following is an important construct for
generating streams in ID;

at

<nd
C>^ •jtream

rktfr

neio

r and lo refurneci

values

Figure 3

A loop expression

Page 5

(for each a in A; b in B do
c *• a+b

return all c)

vtiere c is the sum of correspondingly positioned
tokens from streams A and B. The all operator
performs the inverse function of the each
operator. This operator takes a simple token
from each iteration of the loop and creates one
stream by m^ipulating the control information
contained on the tokens. It does not change the
data value carried by the token. The length of
the output stream will be the length of the
shorter of streams A and B. An abbreviation is:

[each a ta A; b ta.B: a+b]
A final example separates the stream of requests
REQ' into a stream of "readers" and a stream of
"writers":

(for each req in REQ ^
rq, wq *- (i^ req = "reader"

then req, A else X , req)
return all rq ^ A, ^-wq ^ X)

The jiirase "all rq but x" does exactly what one
expects — a stream of readers is formed by
outputting all tokens produced on line rq except
those with the value X. fit is important to
realize that in a dataflow language it is
impossible to detect the absence of a token.
Therefore, we must first produce and then
delete it,some appropriate time later, that is,
after it has been incorporated into a stream.)
We also permit the return of a^ X where X is a
stream that is circulated as an entity around a
loop each time the loop predicate is true. Then
return all X means that the current value of X
(an entire stream) is output at each iteration,
and the result will be a single stream
containing all the individual tokens from each
instance of X (as opposed to a stream of
streams). For example, if line X successively
takes the three stream values

D.,2:, [3,4], [5]

the result of all X will be the stream
[1,2,3,4,5].

3. Monitors in ID

The dataflow language described so far can
produce only determinate results.* As we said
earlier, a nondeterministic operator is essential
for ID to be capable of describing, the indeterminacy
often encountered in operating systems and data base

*Ihis follows directly from Patil's result stating
that any interconnection of a finite number of
unconditionally determinate systems•• is
unconditionally determinate [P70, section 3.2.5 of
BH73]. It is also shown in [AG77a] that the result
computed by a dataflow program is the least fixpoint
solution to a set of functional equations. Since a
least fixpoint is unique, the result must be
determinate.

management ^stems. Resources shared among
independent processes are.one such source of
indeterminacy. In ID, we describe such a reSOUrci
as a dataflow monitor. A very simple dataflow
monitor that implements a file,is shown in Figure
and it? ID description follows:. .

filejdef +- monitor (file0)
(entry REQUEST ^
RESULT

(initial file file0
for each request ta REQUEST ^

i *• request.record;
(if request.type •= "read"

then file •»- file;
result file[i]

else file[i] + request.data;
result-*- X)

return all result)
exit RESULT)

/ ilser's rcq^ocsi-c

Result

1 r
/ V

^ ^ llser's resuHs

Figure 4

An instance of a file monitor

I'olcen ccirrym
currenf tile

The variable file0 is a creation-time parameter ai
is the initial state of the resource; to create
instance file_res of monitor filejdef with initia
state A (the null structure or empty file), we wr

file_res -<-create (filejdef. A).
Thus file_res is an instance of filejdef, where

Page 6

£ile0 has tne value A. The keyword entry in a
monitor definition is followed by the monitor input
stream identifier, and exit by the result stream
identifier. Multiple entrys and exits are defined
using several instances of
<entry name>:<stream identifier>. Even though the
entry and exit data within a monitor are always
streams, an individual use (call) of a monitor
supplies only a simple token and expects only a
simple result. For example, to use the monitor
file_res created above we can write

use (file_res, x)
where x is a simple variable (a single token). The
point is that many users are calling upon file_res
and each supplies a simple token that states a
request to read or write the file. These tokens
converge on the single instance file_res and are
nondeterministically ordered by the entry operator
into the single stream REQUEST. Conversely, the
monitor's result stream is broken up by the exit^
operator into simple tokens that are returned to the
individual callers, the ith element of the result
stream being returned to the ith caller. (Please
note that these are positions in space and not
necessarily in time, since the i+lst output may
actually be produced before the ife.) The semantics
of the entry-exit pair ensure that a result is
returned automatically once the request has been
processed by tne monitor. The identity of the
caller is known only to the entry operator which
passes it implicitly to the exit operator for
formiiq a return destination address. Hence, the
caller must explicitly pass his identity as an input
parameter for it to be known inside the monitor.

The monitor file_res guarantees single user
access to the resource and enforces the FIFO

discipline; note that the entry statement in this
monitor is the only indeterminate operator needed.
Consider now independent users sharing the resource
file_res. A resource manager must satisfy
individual requests according to some policy. For

enfr.

rmo-Oonf

the readers and writers problem, the resource
manager may permit simultaneous read accesses, but
any write access must exclude all other accesses.
Figure 5 outlines a resource manager which, with
only minor changes, can implement three different
scheduling policies corresponding to three different
versions of the readers and writers problem. The
manager is composed of two logical parts: the agent
which performs the actual computation, and the
scheduler which blocks or enables individual

requests within the agent. We emphasize the word
"logical", in that the scheduler possesses no new
primitive functions in order to carry out its work,
and is entirely user programmable.

For the resource manager we are now describing,
each request enters the queue READQ or the queue
WRITEQ according to the type of the request (i.e.,
which named entry port was used). Each queued
request will match with an enabling signal from the
streams READ_ENABLE or WRITE_ENABLE that are
generated by the scheduler which then allow queued
values to be released to the access_resource
routine. This is done using a when clause, where an
expression followed by "when t" specifies that
evaluation of the expression must be delayed until t
arrives (this is easily accomplished in dataflow).
Proper operation of the resource manager requires
that the scheduler be notified whenever (1) a
request enters the monitor or (2) a request
completes its read or write access. Since these
signals are nondeterministically generated, we merge
them within the resource manager to form a single
streamiX of signals to the scheduler. Thus,
nondeterminacy may appear in two ways in ID: , in an
entry statement, and in a merge statement. One
difference is that entry expects simple inputs and
produces a stream as output, vhile merge expects
streams as input and produces a stream as outpu':.

In the programmed solution of the resource
manager given below, the scheduler state is
represented by the number of active readers (ra),

• the number of active writers (wa), the number of

Figure 5
A resoiirae manager

Page 7

waiting readers (rw), and the number of waiting
writers (ww). The scheduler enables reauests to
leave the waiting queue by producing a stream of
re^er enabling tokens (RE) or one writer enabling
token (we). Kote that

1) wa<=l at all times,
2) if wa=l then ra=0, and
3) if ra>0 then wa=0.

1; (Hoare [H74]) A new reader is not
pemitted to proceed if a writer is waiting, and a!
refers that are waiting when a writer completes ai

.allowed to proceed. This scheme prevents inde£ihit
exclusion ("starvation") of both the readers ahd tl
writers. The program for this version of the
problem is:

resource_manager *•

fil® monitor resource such as file res above '
(entry read: READQ; - • * •

write: WRITEQ ^

1 this is the agent code for a read request !
READ_RESULT,READ_D0NE -f- [e^ r in READQ; re in READ_ENABLE:

(s •<- access_resource(file,r) when.re
return s, "read exit" when s)];

! this is the agent code for a write request !
WRITE_RESULT,wRITE_DONE •<-[each r in WRITEQ; we m WRITE_ENABLE:

(s-f- access_resource(file,r) when we
return s, "write exit" when s)]; .

X-<- mer2e(R£ADQ,WRITEQ,R£AD_D0NE,WRITE_D0NE) ;

! the scheduler begins here —
its function is to produce enabling signals !

1 the input is stream X, the outputs are streams
R£M_ENABLE and WRITE_ENABLE !

READ_ENABLE,WRITE_ENABLE *•
(initial rw, ww, ra, wa -»• 0,0,0,0 i initial state "
for each x ^ x ^

rw, ww, ra, wa, RE, we •<- @
- (case

x="reader" => (^ wa=0/and ww="0")
yien'fw7"w~~ra+l, wa, ["go"], A
else rw+1, ww, ra, wa, [], X)

x="writer" => (i^ wa=0 ^ ra=0
then rw, ww, ra, 1, [], "go"
else rw, ww+1, ra, wa, [], A)

x="read exit" => (i^ ra=l and ww>0
then rw, ww-i, 0, l, [], "go"
else rw, ww, ra-1, wa, [], i) fnAx="write exit" => (if^0>0 _ _ '
then 1^0^Jiw_,_r_w^_0, ffor I'from'l ~to rw dol
. return ^ "go"), A~'else (if{w>0>(£;

then/rw^fwjlV ra •;>
else rw, ww, raT"0r'fT," aT))

return all RE, all we but A)

! the scheduler ends here !

exit read: READ_RESULt;
write: WRITE_RESULT j end of the monitor !)

Page 8

To anbed the shared file file_res within the
resource manager, we pass file_res to it at creation
time:

file manager^create(resource_manager, file_res)

Requests to read file_res can now be performed by
writing

use (file_manager.read, request)
write requests are handled in a similar manner.

Version 2: (Problem 1 of [CHP71]) No reader is kept

waiting unless a writer has already acquired the
resource. Starvation of writers is possible. This
means that the condition for

generating an enabling signal for a "reader" is
relaxed from wa=0 and ra=0 to simply wa=0. This is
acccanplished by deleting the code marked @ from
the first case condition in the scheduler of Version
1.

Version (Problem 2 of (CHP71]) No reader is
allowed to proceed if a writer is waiting.
Starvation of readers is possible. This does not
affect the scheduling in the case for a "read exit"
because the same condition applied in Version 1.
However, for a "write exit" the scheduler must check

for a waiting writer (ww>0) before testing for
waiting readers (rw>0). In particular, the code for
Version 1 in position @ is interchanged with that
in position (c), and the code in @ is interchanged
with that in .

This example illustrates an advantage of
dataflow. The program presents explicitly the
essential components of the problem: the agent with
separate reader and writer queues, and the scheduler
which clearly shows the conditions under which
enabling signals are sent and which thus is easily
changed to implement different policies. In all the
problems we have programmed, our experience has been
that the scheduler policy is explicit and easily
altered to suit various scheduling criteria.

(Again, please note that the distinction made
between agent and scheduler is only for emphasis,
and that no special scheduling primitives are
required.) Also, the scheme is moduleu:, as
illustrated here by the embedding of the file
resource monitor within the resource manager
monitor.

4. A Problem in Distributed Databases

Consider an airline reservation system which is
to be built from many small databases, each
controlled by its own monitor. To hide the
partitioning of the database, from users, each user
will send requests to an "interface"'monitor which
will route the requests to the appropriate database.
Ideally, most of the requests an interface monitor
receives will pertain to local data. For simplicity
we shall assume that each local database is a single
file comprising many records. (See Figure 6.)

There are only two types of requests that can
be made:

1. Read (fetch) record i from file f and lock it,

so that the record is marked as missing. The
request format is

<type: "lock", file:f, record: i>.
In response, the system returns a copy of the
fetched data record i and a unique key k (a
random number used to later unlock the record)

of the form

<record: i, key: k>.
2. Unlock record i from file f with key k, and

update it with data d. The request format is

<type: "unlock", file: f, record: i,
data: d, key: k>.

There are two possible responses: if the
correct key has been supplied and the record was
previously locked in the file, the response is
"successful"; otherwise the request is ignored
and the response is "unsuccessful".

Usrtr Uier Uxer USdr at«r
2,t '".C,

inter-

J

Figure 6

Ouerview of the Distributed database system

Page 9

We shall require each user to make requests in
packets; in particular, all lock requests must be
made in one packet. However, this is not sufficient
to avoid deadlock, because interface monitors can
still send lock requests in an order that results in
a circular wait. The statement of the problem
precludes a central scheduler to resolve these
conflicts, so we shall use the "ordered resource
usage" method of deadlock avoidance. This method
requires the interface monitor to make lock requests
to the files in some fixed systan-wide order and not
to make a request to a second file until the
requests to the first file have been satisfied. We
assume lock requests are made by

use (file[f].lock, group) when t
where group is the packet of lock requests for file
f and file[f] is the resource manager monitor for
the file. The variable t is the condition of having
received the response to any previous packet of
requests (i.e., to file[f'] where f'<f). The result
will be a packet of responses of the type <record:
i, key: k> mentioned above.

TO achieve greater internal asynchrony, a
resource manager monitor changes the packet of lock
requests from an array into a stream of lock
requests LOCKQ, thus making each request independent
of the other requests in the packet. The reverse
takes places before leaving the monitor. Each lock
request in I£CKQ waits for an enabling signal in
LCX:k_ENABLE from the scheduler in a manner very
similar to that used in the readers and writers
monitor of Section 3. However, the relocking of a
locked record must be.postponed without interfering
with lock requests for other records. To accomplish
this we form a separate queue for each record. The
unbounded and varying number of records in a file
dictates that these queues be created dynamically.
Since a queue is actually just a dataflow stream,
this can be done easily using an ID construct for
creating and manipulating dynamic streams.

The ID construct

dswitch I +- S via L
creates a distinct logical stream Ij for each
distinct value j in stream L. Stream Ij will
contain only those tokens of S for which the
corresponding token of L has the value j. Thus

dswitch I 1- [a,b,c,d,e,f,g]
via [1,3,2,3,3,1,1]

would create the three logical streams

• ^1 ~ [a,f ,gj r ^2 ~ ' ^3 ~ [h,d,e]
The ID construct

dmerqe I via M
is the inverse of dswitch. Thus demerge creates a
single stream using the dynamic stream I according
to the specification stream Mby removing one token
from the logical stream Ij when the next token
from stream Mcarries the value j. Using the
example above,

dmerqe I ^ [2,3,3,1,3,1,1]
would return the stream [c,b,d,a,e,f,g]. Note that
both da^itch arxi dmerqe are deterministic operators.

To create a dynamically varying number of
queues, one queue for the lock requests for each
record, we would write

REQUEST_RECORD [each req ^ LOCKQ: req.fecbfd
dswitch DREQ LOCKQ via REQUEST RECORD

Also, to direct the enabling signals (vdiich have
form <record: i, key: k>) to the correct logical
stream we would write

KEYS [each signal i^ LOCK_ENABLE: signal.key]
SIG_RECORD •>r [each signal m LOCK_ENABLE:

signal.record];
dswitch DKEY KEYS via SIG RECORD

Finally, any expression enclosed by dswitch ,
dmerqe is logically created and independently act
upon by each set of dynamic streams (please see
Figure 7). Thus, the final code for queueing loci
requests is

R£QUEST_RECORD [each req LOCKQ: req.record
KEYS [each signal ^ LaCK_ENABLE: signal.key] ^
SIG_RECQRD [each signal ^ LOCK_ENABLE:

signal.record];
RESULT (dswitch DREQ LOCKQ vi^ REQUEST RECO]

DKEY KEYS SIG_RECORD ^
DRESULT [each req ^ DREQ; key ^ D1

<record: use (file,re
Eey:key>)

dmerqe DRESULT ^ REQUEST_RECORD)

Note that the above code allows each record to be
treated independently of all other records. Now ^
describe exactly how the scheduler for the resoun
manager monitor operates.

Request. Recoko sr&_pEco«o
ILOCKQ I KEYS

iQotue'

I f I

OREQ

R EGuesr. R FCO£;o

Rfsatr

Figure 7

Dynamic streams

DRESULT

Page 10

The scheduler keeps track of all the records
that are locked (lock(i] = "yes" if i is locked),
the keys of the locked records (k[i] is the required
key if i is locked), and the count of lock requests
that are waiting on record i (the value of w[il).
Since the scheduler must be informed after an unlock
operation has been completed, a DONE stream is
generated from the unlock operation. The scheduler
code that generates a lock or unlock enabling signal
follows*:

However the notion of streams together with a
nondeterministic merge operator makes dataflow very
well suited for expressing interprocess
communication and operations on resources. A
dataflow monitor (that is, an entry-exit pair)
further provides a good linguistic feature to encase
a resource and all the programs associated with the
resource within a single programmed unit.

X merge (LOGKQ,UNLOCKQ,DONE);

lcx:k_enable,unlock_enable
(initial lock,k,w A,A,A; newk random (seed)
for each x in X do

i X.record; type x.type;
(if type="unlocked"

then J x is a token from the DONE stream !

(if w[i]= At^ lt,ut-(- A,X; lock[i]-t- A
else lt,ut •<-<record: i, key: newk>,l;

newk random (newk) ;
k[i] -<-newk;
w[i] •>- (^ w[i]=l then Aelse w[i]-l))

else ! X is a new request !
(case

type="lock" and lock[i]="yes" => lt,ut-f-X,X;
w[i] (if w[i] = Athen 1 else w[i]+l);

type="lock" and lock[i]?i"yes" => lt,ut-f-<record: i, key: newk>,X;
lock[i]-(- "yes";
newk +- random (newk);
k(i] •<- newk;

type="unlock" and lock[i]="yes" ^ x.key=k[i]=> lt,ut\"successful";
k[i]-^A;

else lt,ut-t- X, "unsuccessful"))
return all It but X, all ut but X)

5. Conclusions

A great deal of theoretical research has been
done in the last fifteen years that deals with
parallel program schemes [KM69] graph models (e.g.,
[R69]), and Petri nets [P62I. Dataflow — the
notion that operations should be data driven — has
also found periodic favor in various system designs.
Perhaps the time has arrived for dataflow (which is
a practical extension of the theoretical research)
to be taken as a proper linguistic model for
programming oontinuously operating systems. We have
tried to demonstrate in this paper that dataflow
monitors (resource managers) provide a natural way
of thinking about resources and especially about the
schedulirq of resources. Previously, dataflow
languages have dealt with the highly concurrent or
asynchronous expression of determinate computations.

Note that the conditional clauses utilize a

syntactic shorthand within the loop and contain
assignments to only the variables of lock, newk, k,
and w when and where they are actually to change
values.

Dataflow monitors are superior to monitors in
conventional languages because the scheduling policy
may be programmed explicitly in a dataflow monitor.
For example, assume process pj^ is waiting on some
condition C]^ and process P2 is waiting on
conditions C]^ and C2. Further, assume condition
C2 has been true when condition c^ becomes true.
A monitor in a conventional language can not be
programmed easily to give priority to one of the two
waiting processes. Ihis is because the priority

would be intrinsic to the routine that manipulates
the queues associated with each condition. Ihis
routine is generally not treated as part of the
monitor definition and hence is not programmable.
As we have shown using the two examples in this
paper, all such scheduling decisions are an integral
part of a dataflow monitor definition. It is
largely because of this explicit scheduling that the
structure of the readers and writers problem is
reflected so neatly in dataflow.

Another very important fact is that
indeterminacy in dataflow programs cannot "sneak in
through the back door" as it sometimes does in

Page 11

sequential languages (a reader who has prograraned
interrupt, handlers will appreciate this). in
dataflow, a nondeterministic merge operator or a
monitor call must be specified in a program
precisely where the programmer expects
time-dependent behavior from his program.

Finally, we do not believe that dataflow should
be limited to describing just those systems where
understanding the computational process'is at least
as important as the results being produced (i.e.,

systems) . Rather, we believe that
dataflow is a superior vehicle for almost any
programming problem.

Acknowledqements

Our early interest in dataflow was due to the
fundamental work of Jack Dennis. We are grateful to

I Peter Denning for his useful comments, and to
Shirley Rasmussen for typing many of the earlv
drafts. ^

[AG77a]

[AG77b]

[AGP76]

[BH73]

References

Arvind and Gostelow, K.P. Some
ionships between asynchronous

interpreters of a data flow language.
Preprints of IFIP Working Conf. on Formal
Description of Programming Concepts,
Vol. 1, North-Holland, New York, 1977,
pp. 4.1-4.25.

Arvind and Gostelow, K.P. A computer
capable of exchanging processing elements
for time. Information Processing 77,
B. Gilchrist (Ed.), North-Hdlland,ljew
York, 1977, pp. 849-853.

Arvind, Gostelow, K.P., and Plouffe, W.E.
Programming in a viable data flow
language. Technical Report 89, Dept. of
Information &Computer Science, Univ. of
California, Irvine, CA, Aug. 1976.

Brinch Hansen, P. Operating Systems
Principles. Prentice-Hall, Englewood
Cliffs, NJ, 1973.

Courtois, P.J., Heymans, F., and Parnas,
D.L. Concurrent control with "readers"
and "writers". Comm. ACM 14, 10
(Oct. 1971), 667-668.

[D73]
version of a data fproc^ure language. Computation

Structures Group Memo 92, Lab. for
Computer Science, Canbridge, ma
Nbv. 1973. (Revised in Aug. 1974.
reissued as Technical Memorandum 61, May

[DM75] Dennis, j.b. and Misunas, d.p. a
preliminary architecture for a basic

Second Annu

^^12^13™^"'®" Architecture, Jan. 19
[H74]

[KM69]

[K73]

[P70]

[P62]

[R69J

[W75]

toare, C.A.R. Mohitors: An operating
SISt log.'?""® AcS10 (Oct. 1974), 549-557.

Karp, R.M. and Miller, R.e. Parallel
program schemata, j. Comptr. Sys. Sci.
2 (May 1969), 147-195.

K^inski, P.R. Adata flow language for
grating systems programming. SIGPLAN
Notices (ACM) 8, 9 (Sept. 1973), 89-94.

Patil, s.S. Closure properties of
determinate system<tecord Of the Project MAC Conf. on

Concurrent Systems and Parallel
Computation, June 1970, pp. 107-H6.

S^ti>n '̂̂ ^"™"®ikation mit automaterInstitut fur Angewandte Mathenatik der
giversitat Bonn, Wegelerstrasse 10, Bon

Rodriguez, j.e. a graph model for
i^rallel computation. MAC-TR-64, Proie
MAC, M.I.T., Canbridge, m, Sept.

Weng, k.-s. Stream-oriented computatio
in recursive data flow schemas. Lab. f
^puter Science, Cambridge, m,
Oct« 1975»

