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ABSTRACT OF THE DISSERTATION 
 

Driver Response to Variable Message Signs in a 2D Multiplayer Real-time Driving Simulator 

By 

Si-Yuan Kong 

Doctor of Philosophy in Economics 

University of California, Irvine, 2018 

Professor Michael McBride, Chair 

 

 This research seeks to understand how information displayed by variable message signs 

(VMS) can affect driver route-choice and be better used for active traffic incident management. I 

study the effect of various VMS messaging strategies using a money incentivized behavioral 

experiment with a novel 2D real-time driving simulator that supports dozens of subjects driving 

on a shared virtual roadway where traffic incidents unpredictably occur. Drivers are shown a 

VMS display before choosing between two congestible routes. I conducted this experiment with 

students at the UCI Experimental Social Science Laboratory (ESSL) and with a more diverse 

sample of online subjects crowdsourced from the Amazon Mechanical Turk (MTurk) 

marketplace. 

 Chapter 1 will present the research motivation and methodology, the design and 

implementation of the experiment platform, and the results with student subjects. I find that 

subjects learned to efficiently operate the driving simulator, all tested VMS messaging strategies 

improved aggregate outcomes compared to the No VMS baseline, displaying messages didn’t 
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cause highly volatile diversion rates, and subject gender exhibited consistent correlations with 

route choice. 

Chapter 2 will discuss the reasons for replicating on MTurk, the methodological 

modifications necessary to conduct the experiment online, and how the MTurk results compare 

to the student results. I find that it’s viable but challenging to conduct real-time multiplayer 

experiments on MTurk, there are significant differences in individual characteristics between the 

MTurk and student subjects, and there are limited behavioral differences between the two 

groups. 

Chapter 3 will introduce a framework using long short-term memory (LSTM) neural 

networks to predict driver route choice using real-time contextual data. I use varyingly limited 

vectors of data from my driving simulator experiments as the neural network’s input to predict 

driver route choice at the decision point between the two available routes. I find that the best 

performing model configuration can predict individual route choice with 74.0% average 

accuracy with in-sample cross validation and 72.2% average accuracy with out-of-sample 

validation. 
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CHAPTER 1 

A Real-time 2D Driving Simulator Experiment with Variable Message Signs 
 

 

1.1 Introduction 

Non-recurring traffic incidents cause nearly 60% of roadway delays, prompting the need 

for efficient incident management (Traffic Incident Management Handbook, 2000). Network 

operators can mitigate congestion and reduce delays by diverting traffic from affected roadways 

onto alternate routes. One widely available tool for inducing diversions is variable message signs 

(VMS) – programmable electronic roadside displays that can provide travelers with timely 

information regarding road conditions. VMS systems in the U.S. have been used since the 1960s 

to direct motorists to alternate routes (Dudek, 2002), and field studies in multiple locales have 

confirmed their usefulness for aiding traffic incident management. (Weaver et al., 1977; Dudek 

et al., 1978; Dunn, Reiss, and Latoski, 1999) 

However, some transportation agencies are hesitant to divert traffic for incident 

management because they think the risks outweigh the benefits; they fear that too many drivers 

will divert to alternate routes and that the ensuing congestion will undermine VMS credibility.  

(Dunn et al., 1999) While agencies can now determine the optimal proportion of vehicles to 

divert (Cragg and Demetsky, 1995), they still lack reliable methods to achieve the targeted 

diversion rates. Theory has shown that when many myopic travelers are presented with route-

choice information, their choices may reduce road network performance in aggregate. 

(Mahmassani and Jayakrishnan, 1991) Case studies have demonstrated that providing traffic 

information using VMS does not guarantee a reduction in travel time. (Levinson and Huo, 2003)  
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To use VMS efficiently for managing traffic incidents, it’s necessary to devise a strategy 

for displaying public information that will produce the desired distribution of traffic across 

available routes. Achieving the desired distribution is complicated by the driver’s limited ability 

to self-coordinate. This problem has been observed in stylized route-choice games where an 

efficient distribution was extremely difficult to reach despite repeated trials with full information 

and feedback. (Iida, Akiyama, and Uchida, 1992; Selten et al., 2004) In fact, some field studies 

have observed unpredictable and/or non-smooth changes in diversion rates as VMS content is 

varied. (Chatterjee et al., 2002, Horowitz, Weisser, and Notbohm, 2003)  

Although selectively provisioning information through in-vehicle systems can mitigate 

some of these coordination issues, such systems are not yet ubiquitous. System operators have 

limited control over the driver’s sources of information, and third-party information providers’ 

objectives may differ from those of the operators. Given the extant VMS infrastructure in the US 

and abroad, operators want to improve the effectiveness of VMS as a low-cost and readymade 

tool for incident management. Furthermore, studying how drivers react to public information 

while under the cognitive load of real-time driving will support the initiatives to build Advanced 

Traveler Information Systems (ATIS) that address the needs of both system operators and users 

who receive real-time traffic information. (Burgess, Toppen, and Harris, 2012) 

I seek to understand how drivers respond to VMS information to optimize the use of 

VMS induced diversions for traffic incident management. To this end, I designed a money-

incentivized human subject laboratory experiment to study driver response to a variety of VMS 

messaging schemes. I implemented my experimental platform as a networked multiplayer 2-

dimensional real-time driving simulator. My platform serves as a controlled environment for 

observing the time-limited decision-making of drivers who possess imperfect information of the 
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environment and influence each other’s behavior. I incentivized subjects with real monetary 

payments to induce a controlled value of time (VoT) preference that rewards subjects for 

minimizing their travel times. Within this setting, I explored how an increase or decrease in the 

“intensity” of VMS content, message adjustment intended to induce more or fewer drivers to 

divert, can produce a desired change in the diversion rate while avoiding unpredictable and/or 

extreme changes. 

In this chapter, I will address the following key questions: 1. Do subjects learn to 

optimize their operation of the driving simulator to minimize their travel time for each driving 

scenario? 2. How effective are the messaging schemes in inducing optimal route choices and 

reducing travel times? 3. Does using VMS result in unpredictable or highly volatile diversion 

rates? 4. How do driver’s individual characteristics affect their response to and compliance with 

VMS? I will begin by discussing in detail the design and implementation of my experiment 

platform. Then, I will analyze aggregate trends such as subject demographics, learning across 

rounds, and average travel times. Then, I will conduct a treatment by treatment analysis of route 

choice optimality, predictability, and correlation with individual characteristics. Finally, I will 

analyze driver’s compliance for treatments with individually targeted VMS recommendations. 

1.1.1 Collaborators and Funding 

My research in this chapter was conducted in close collaboration with my colleague 

Amine Mahmassani and our advisors: Professors David Brownstone and Michael McBride. 

Portions of this study have been jointly published in Brownstone et al. (2016) and Kong et al. 

(2017). We received significant guidance and feedback from our project manager Melissa Clark 

and other partners at Caltrans. This study was supported by the University of California Center 

on Economic Competitiveness in Transportation through contract UCCONNECT-65A0529. I 



4 

 

received additional support from the UC Irvine Economics department, the Experimental Social 

Science Laboratory, and the Center for Economics and Public Policy through a generous award 

from Steve Borowski. 

1.1.2 Related Literature 

There is a substantial body of research on VMS and other real-time public traffic 

information systems. Previous studies have demonstrated the efficacy of information in 

encouraging diversions1, identified numerous factors that influence route switching behavior2, 

and confirmed the difficulty of attaining stable equilibria in route selection3. Among these 

studies, none have specifically examined the predictability of the diversion response as a 

function of message intensity or how the risk of over-diversion can be mitigated. The diversion 

rates observed and/or route choice models estimated in these studies do not reveal methods of 

control that operators can apply to their messages to achieve desired diversion responses over a 

full range of desired outcomes. These studies also estimate the effect of an alternate route’s 

travel time savings on the probability of an individual diverting, but this knowledge is of limited 

use since real-world time savings are endogenous to the aggregate diversion response and cannot 

be known a priori. 

At least two studies identify ways in which VMS content can be manipulated to produce 

specific aggregate changes in the diversion rate. Wardman, Bonsall, and Shires (1997) 

demonstrate the effects of different types of messages, while Peeta, Ramos, and Pasupathy 

(2000) establish a relationship between information quantity and diversion rates. However, 

                                                      
1 Weaver et al., 1977; Dudek et al., 1978; Khattak, Schofer, and Koppelman, 1993; Horowitz et al., 2003; Levinson 

and Huo, 2003; Chatterjee and McDonald, 2004 
2 Allen et al., 1991; Brocken and Van der Vlist, 1991; Mahmassani and Jayakrishnan, 1991; Bonsall and Palmer, 

1995; Emmerink et al., 1996; Abdel-aty, Kitamura, and Jovanis, 1997; Mahmassani and Liu, 1999; Chatterjee et al., 

2002; Jou et al., 2005; Gan, 2013; Kattan et al., 2009 
3 Iida et al., 1992; Selten et al., 2004 
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neither study shows if and how such features can be manipulated to predictably achieve desired 

changes in diversion rates. 

Some recent studies have used laboratory experiments in conjunction with driving 

simulators of varied sophistication to study the effects of VMS on drivers. Ben-Elia and Shiftan 

(2010) conducted a laboratory experiment to study the effect of real-time information on driver 

route-choice using an abstract route selection game. They show that information, experience, and 

risk characteristics jointly affect individual driver behavior, but their experiment does not 

attempt to capture group interactions or real driving dynamics. Yan and Wu (2014) use a high-

fidelity 3D real driving simulator to study how subjects respond to VMS information when the 

layout of displayed information and physical location of the signs are varied. They demonstrate 

that the placement of VMS and driver’s characteristics affect their response to traffic 

information, but they do not incorporate real incentives, traffic incidents, or group interactions in 

their design. 

My laboratory experiment is novel in its incorporation of monetary incentives, group 

interactions, and realistic driving dynamics in one design. Compared to other route-choice 

experiments, it elicits more realistic behavior from human subjects by better simulating the 

context, cognitive load, and decision timing drivers face on the road. My treatments incorporate 

novel usage of standard and non-standard VMS verbiage not found in other studies. I also study 

the predictability of route choice in response to VMS – analysis that is desired by system 

operators yet often lacking in route choice studies. 

1.2 Methodology 

 With my colleague Amine, I designed and implemented a 2D real-time multiplayer 

driving simulator that embodies several important aspects of real-world driving: 1. Vehicles 
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move continuously and obey simplified Newtonian physics, requiring drivers to exert effort to 

maintain course and speed. 2. Up to 39 human participants drive together on a shared roadway to 

create a sense of immersive traffic and endogenous congestion. 3. The driver’s viewport into the 

2D world is constrained to approximate what they can see while driving in the 3D world. 4. 

Drivers are incentivized to complete their trips as quickly as possible to maximize their payoff. 

The simulator was written as a web app using HTML5, JavaScript, and Node.js (see 

Appendix B for more information). Subjects see a top-down view of the roadway where vehicles 

are represented as small colored squares - the driver's own vehicle is colored blue while all other 

vehicles are colored red. The driver's viewport constantly tracks their vehicle and allows them to 

see farther ahead than behind. From top to bottom, the driver's screen contains the following 

elements: the secondary information area that displays the current experiment round, the VMS 

display area, the driver's viewport, and the primary information area that displays the driver's 

earnings and percent completion of their itinerary in real-time. 

Using the W / A / D or arrow keys, drivers control their vehicles to accelerate or change 

lanes left / right. All vehicles accelerate at the same rate and quickly reach the same maximum 

speed. If a driver stops accelerating, their vehicle will decelerate at a constant rate until it reaches 

the minimum speed that’s designed to prevent a driver from completely blocking their lane. 

While cruising, vehicles are automatically guided to stay in the center of the nearest lane. A 

minimum following distance is enforced between cruising vehicles to allow space for lane 

changes to occur. If a driver's vehicle is obstructed by another vehicle when attempting to change 

lanes, their vehicle will be slowed down slightly to allow them to move in behind the obstructing 

vehicle. Drivers are informed that there are no rewards or penalties for colliding with other 

objects or vehicles. In addition to human controlled vehicles, computer controlled vehicles which 
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follow simple pre-defined control routines are used to fill in the front of the driving platoon to 

prevent drivers from easily knowing their starting position within the platoon. 

 

Figure 1: Driver's screen is shown on the right with feature descriptions on the left. 

 

1.2.1 Road Network, Traffic Flow, and Incidents 

The road network consists of two routes: a three-lane main freeway where traffic 

incidents may occur and a two-lane alternate surface street regulated by traffic signals. All 

vehicles start driving on the main route simultaneously at random locations on a closely spaced 

grid within a platoon. Their goal is to travel as quickly as possible from their starting point to a 

shared finish line. Soon after they leave the start, drivers encounter the VMS region where traffic 

information may be shown for approximately 7.5 seconds. Then, drivers encounter the exit to the 

alternate route where they can divert. After passing this decision-point, drivers cannot observe 
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traffic on the route they did not choose. My choice of exit location is motivated by the finding of 

Dong and Mahmassani (2009) that a flow breakdown can be very difficult, if not impossible to 

reverse. Therefore, subjects must make their decision before evidence of a breakdown is 

apparent, conditioning only upon their prior experience, the actions of other visible vehicles, and 

any VMS information presented. 

Shortly after the decision point, drivers on the main route pass through the incident area 

where a traffic incident may occur (see Table A2 in Appendix A for the full sequence of 

incidents used). The possible incident severity levels are: 

0. No incident – roadway is clear 

1. Minor incident – one lane is blocked, an automated “traffic cop” directs vehicles 

through the incident area at reduced speed 

2. Medium incident – two lanes are blocked, vehicles queue into a three-to-one merge to 

pass through the incident area 

3. Major incident – three lanes are blocked, vehicles queue into a three-to-one merge and 

wait for one lane to open before passing through the incident area. Cars are slowed while 

passing through the single open lane for a period of up to 20 seconds. 

4. Severe incident – three lanes are blocked, vehicles must wait longer than in severity 

level 3 before one lane opens. Cars are slowed in the single open lane for up to 80 

seconds. 

When there is no incident, it is optimal for all drivers to stay on the main route, but when an 

incident occurs, system performance is maximized when an optimal proportion of traffic diverts 

to the alternate route. Drivers who divert to the alternate route will pass through two traffic 

signals before reaching the finish line. Each signal forms an unpassable barrier when red that 
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prevents drivers from running the light. I conducted simulations using computer-controlled 

agents to determine the optimal proportion of drivers who should divert to the alternate route for 

each incident scenario. See Figure A1 in Appendix A for a visual overview of the road network 

and incident geometries. 

1.3 Experiment Design 

I conducted a series of experiment sessions which typically lasted for 1 hour and involved 

up to 39 participating subjects. My subjects were randomly recruited from UCI students 

registered in the Experimental Social Science Laboratory (ESSL) subject pool (IRB approval HS 

#2011-8378). For each session, I attempted to recruit fresh subjects with no prior experience 

from this experiment. However, the pool of fresh subjects was exhausted near the end of the 

academic year, and two sessions had a significant number of repeat subjects who had 

participated in previous sessions. My results analysis indicates that experience from prior 

sessions did not significantly affect subject performance or decision making.  

Subjects receive a detailed instructional presentation at the start of each session that 

informs them of the simulator’s controls, the layout of the road, the available routes and types of 

congestion that may occur on each, and how they earn money. Sessions were comprised of two 

parts: 

Part I featured a risk elicitation task in which subjects choose between three options: 

receive $3.50 with certainty, receive $2.90 or $4.20 with equal chance, or receive $1.90 or $5.00 

with equal chance. These options are increasing in the spread of outcomes and slightly increasing 

in expected value. Based on their choice, subjects are classified as risk averse, risk neutral, or 

risk seeking. My three-choice task is a simplified version of a well-known five choice design. 

(Eckel and Grossman, 2008) 
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Part II featured the driving task comprised of a series of 23 driving rounds – three guided 

practice rounds at the beginning followed by 20 normal rounds. At the beginning of each driving 

round, subjects started with a $14.00 endowment that decreased at $0.15 per second until they 

crossed the finish line. After all subjects either crossed the finish line or ran out of money, the 

next driving round would begin after a short delay. A single traffic incident may occur each 

round, and the same pre-randomized sequence of incidents was used for each experiment session 

to make order and learning effects comparable (see Table A2 in Appendix A for the full 

sequence of incidents used). 

After completing Part I and Part II, subjects answer a post-experiment questionnaire 

regarding demographic information, route choice strategies, and other feedback. Subjects were 

paid the sum of their show-up payment, the realization of the lottery they selected in Part I, and 

the average of what they earned from three randomly chosen non-practice rounds in Part II. 

Averaging across three rounds helped mitigate the effect of randomized starting positions on 

potential earnings. Across all subjects, the average payment for Part I was $3.54 and the average 

for Part II was $7.65. Combined with the $7.00 show-up fee that all subjects received, the total 

average earnings per subject per session was $18.19. 

My experiment treatments were designed to test the standard messaging content approved 

for use by California’s system operators as well as unconventional content designed to improve 

the optimality and predictability of the diversion response. Standard messaging content was 

crafted following the Changeable Message Sign (CMS) Guidelines document published by 

California’s Department of Transportation. (Wooster and Al-Khalili, 2013) Each treatment 

features a coherent messaging scheme that displayed information on VMS according to traffic 

and/or incident conditions. For static messaging schemes, a single message was displayed to all 
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drivers within one round of driving according to the incident severity level, while dynamic 

messaging schemes varied the displayed message in real-time according to the diversion 

response. For a complete list of the individual VMS messages shown for each treatment 

condition and incident scenario, see Table A1 in Appendix A. 

I will present detailed analysis on the messaging treatments listed below. The No VMS 

treatment serves as a control for the worst-case scenario where drivers receive no traffic 

information. Treatments with VMS are expected to have differing effects on drivers’ travel times 

as well as the aggregate diversion response, but all are expected to improve driver outcomes 

relative to the No VMS baseline. On the aggregate level, the optimal aggregate diversion 

response is achieved when the combined travel time among all drivers is minimized for any 

given incident severity level. In other words, enough drivers will divert to the alternate route 

such that travel times will be equalized for the last drivers to finish on either route.  

Treatment 1: No VMS baseline: A control treatment where no traffic information is ever 

displayed. 

Hypothesis: Travel times will be highest in this treatment. Drivers will settle on a mixed route 

choice strategy that does not condition upon the incident severity level, and the aggregate 

diversion response will not change much from round to round. 

Treatment 2: Qualitative description of incident severity – A treatment that displays a 

qualitative description of incident severity using Caltrans approved verbiage. (e.g. 

“ACCIDENT AHEAD, EXPECT MINOR DELAY” for incident severity 1). This serves as a 

benchmark for the efficacy of messaging strategies currently in use. 
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Hypothesis: Drivers will learn to condition their route choice on the variable intensity traffic 

messages, travel times will be shorter than the No VMS case, and the aggregate diversion 

response will be more optimal. 

Treatment 3: Qualitative description with guidance – Same as treatment 2, but with 

supplemental recommendations to use the main route when there is no traffic incident (e.g. 

“ROAD CLEAR, ALL CARS: USE MAIN ROUTE”) and to use the alternate route for 

severe incidents (e.g. “USE ALT RTE AHEAD”). This treatment tests whether adding a 

guidance recommendation can increase the diversion response. 

Hypothesis: Compared to treatment 2, showing the guidance recommendation will increase the 

diversion rate when there’s an incident and decrease the diversion rate when there isn’t one. 

As a result, the aggregate diversion response will be more optimal. 

Treatment 4: Dynamic diversion rate – In addition to a static qualitative description of 

incident severity, drivers are shown the current optimal rate at which they should divert to the 

alternate route (e.g. “1 IN 10 CARS SHOULD EXIT”). This rate is updated in real-time 

according to the usage of the two routes to nudge the diversion response towards the optimal 

target. 

Hypothesis: The aggregate diversion response in this treatment will be more optimal than in 

treatment 2, but there will be more volatility. 

Treatment 5: Numeric IDs – In addition to a qualitative description of incident severity, each 

vehicle is assigned a publicly visible numeric ID between 1 to 39. The VMS message 

instructs vehicles within a range of IDs to use the alternate route (e.g. “IF YOUR CAR IS #1-

4, USE ALT ROUTE” for incident severity 1). The idea is to use a public message to induce 
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individual drivers to divert based on a unique characteristic such as their vehicle’s license 

plate number or their date of birth. Given a known distribution of characteristics, system 

operators would be able to target subsets of drivers in traffic. 

Hypothesis: The aggregate diversion response in this treatment will be more optimal and less 

volatile than in non-targeted treatments. 

Treatment 6: Color outlines – In addition to a qualitative description of incident severity, a 

subset of vehicles is outlined with a bright green border each round based on the optimal 

number who should divert. The VMS message instructs outlined vehicles to use the alternate 

route. Subjects are instructed that the best possible traffic outcome is achieved if all drivers 

follow the recommendations. This serves as a benchmark of driver compliance with targeted 

recommendations. 

Hypothesis: The aggregate diversion response in this treatment will be the most optimal and least 

volatile among all tested treatments. 

1.4 Results and Discussion 

1.4.1 Subject Characteristics 

Table 1: Summary of experiment sessions. 

 

 

Treatment Subjects
Repeat 

Subjects

Avg. 

Age
M F

Licensed in 

USA

Avg. Weekly 

Hours Driven

Seen 

VMS

1 / No VMS baseline 30 0 20.1 14 16 88% 7.9 97%

2 / Qualitative description 39 0 19.9 9 30 77% 8.0 87%

3 / Qualitative with guidance 38 18 20.4 22 16 84% 7.6 84%

4 / Dynamic diversion rate 35 0 20.6 12 23 77% 8.0 86%

5 / Numeric IDs 37 0 19.9 14 23 73% 7.0 86%

6 / Color outlines 39 25 20.9 16 23 72% 8.0 85%
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A summary of the treatments conducted is shown in Table 1. Subjects recruited from the 

ESSL subject pool were 20.3 years old on average. Over 80% held a valid US driving license 

and over 88% reported having seen VMS before. Most subjects reported that their typical driving 

locale is in Southern California and that they received real-time traffic information while driving. 

There were significantly more female than male subjects in each experiment session. In 

comparison, drivers in the US were nearly evenly split between males and females, and males 

are known to drive more miles on average within every age group. (Highway Statistics 2016, 

2016; Sivak, 2015) 

For my risk elicitation task, most subjects in each session preferred the risk averse or risk 

neutral options. Compared to Eckel and Grossman (2008), there was a similar risk distribution 

pattern with most subjects preferring the middle risk option and a greater percentage of males 

preferring the riskiest option than females (see Figure 2). A chi-squared test shows no 

statistically significant difference between male and female risk preference distributions (p-value 

< 0.255). While simpler to implement, my three-option task might not provide enough 

differentiation in riskiness to observe a statistically significant difference between male and 

female risk preferences. 
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Figure 2: Elicited risk preferences among all male and female subjects. 

 

1.4.2 Travel Times 

Travel time was measured as the number of seconds it takes a driver to move from their 

starting point to the finish line in an experiment round. To compare average travel times between 

treatments, subjects’ average travel times per round were regressed on VMS treatment dummies 

alone and on VMS treatment dummies with other treatment parameters (shown in Table 2). For 

the reduced regression, the intercept estimate is the average travel time in seconds for the No 

VMS baseline treatment, while the treatment / variable estimates are the average number of 

seconds saved compared to the baseline treatment. As hypothesized, all treatments with VMS 

improved average travel time over the No VMS treatment. Treatment 6 with color outlines 

resulted in the lowest average travel times. Based on the full regression, subjects who started 

driving in the rightmost lane had slightly longer travel times than subjects who started in the 

other two lanes, and I will show that this is likely due to a greater likelihood of diverting to the 

alternate route in all driving scenarios. The average effect of being a repeat subject with 
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participation experience from a prior session was insignificant. Starting advantage ranged from 0 

for subjects who start driving at the rear of the platoon to 1 for subjects who start at the front. 

The average time advantage of starting at the very front of the platoon was about 16 seconds. 

Table 2: Linear regression of subject travel time per round. 

  

 

1.4.3 Simulator Experience 

 As subjects gained experience operating the simulator, they should’ve reduced the 

number of extraneous inputs they make to focus on minimizing their travel time. This tendency 

can be confirmed by examining the trend in the average keypresses and average travel time per 

subject over the course of the experiment for rounds with no traffic incident (see Figure 3 and 

Figure 4). In these rounds, the optimal driving strategy was to continuously drive forward 

without changing lanes as soon as subjects realize there will be no incident based on what’s 

displayed by the VMS. With experience, subjects learned to reduce both keypresses and travel 

times for no incident rounds. This indicates that subjects learned to grasp how their actions affect 

Treatment / Variable Estimate tStat Estimate tStat

1 / No VMS (intercept) 45.52 92.43 39.97 106.31

4 / Dynamic diversion rate -2.59 -3.86 -2.68 -7.74

2 / Qualitative description -2.70 -4.12 -2.81 -8.32

5 / Numeric IDs -2.71 -4.09 -2.77 -8.11

3 / Qualitative w/ guidance -3.05 -4.63 -3.15 -8.45

6 / Color outlines -3.08 -4.70 -3.16 -7.97

Started in middle lane 0.98 4.22

Started in right lane 1.22 5.30

Incident Severity 1 7.70 25.83

Incident Severity 2 10.75 36.05

Incident Severity 3 18.66 62.62

Incident Severity 4 26.66 89.43

Repeat subject -0.04 -0.14

Starting advantage -15.88 -50.19

F-stat vs constant model 5.90 933.00

p-value 1.92E-05 0.00E+00
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their travel time in the simulator and that they followed the incentive to minimize their travel 

time. 

 

Figure 3: Average aggregate keypresses for no incident rounds. 

 

 

Figure 4: Average travel time for no incident rounds. 

 

1.4.4 Treatment Analysis 

 The following sections present specific results from the six treatment conditions tested – 

one baseline No VMS treatment and five treatments with VMS. In each section, I will describe 

the observed behavior of and feedback received from subjects, compare the route choice of 
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subjects to an optimal benchmark, analyze the stability of the diversion response, and use logit 

regressions to estimate the effect of individual characteristics on the subject’s route choice. 

My optimal route choice benchmark is obtained by running the experiment scenario with 

all computer-controlled cars to simulate different route usage proportions for each level of traffic 

incident severity. The optimal diversion response is determined by iterating over the number of 

cars that divert to the alternate route until the aggregate travel time for all cars is minimized for a 

given incident severity level. The amount by which subjects over or under utilized the alternate 

route is quantified by taking the difference between subject and optimal alternate route usage 

proportions to obtain a metric for “mis-diversion”. Then, the overall root mean square deviation 

(RMSD) of route choice from optimality across all rounds is calculated from the mis-diversion 

per round. I calculated RMSD across all rounds and for the last three rounds (RMSD3) of each 

incident severity level to represent route choice performance after one round of learning for each 

incident type. These results are listed in Table 3. Note that RMSD3 is always lower than RMSD, 

indicating subjects are learning towards optimal route usage. 

I examined route choice stability by calculating the change in alternate route usage 

between rounds of the same incident severity. Then, I quantified the overall stability by 

calculating the root mean square variation (RMSV) across all occurrences of an incident severity 

level and for the last 3 occurrences (RMSV3). These results are listed in  

Table 4. Note that RMSV3 is not always lower than RMSV. 

Since route choice is binary in my experiment, I used logit regressions to estimate the 

effects of elicited and controlled individual characteristics such as risk preference or starting lane 

on individual route choice. For treatments 5 and 6 with individually targeted route guidance, I 
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used logit regressions to estimate the effects of individual characteristics on subjects’ compliance 

with VMS recommendations. I provide tables with the estimated model coefficients and t 

statistics (coefficients significant at the 5% level are bolded). 

Table 3: Root mean square deviation across all and last 3 rounds of each incident severity. 

 

 

Table 4: Root mean square variation between all and last 3 rounds of each incident severity. 

 

 

1.4.5 Treatment 1: No VMS baseline 

In this treatment, subjects received no traffic information and had no knowledge of road 

conditions upstream of the exit to the alternate route. As seen in Figure 5, subjects produced a 

flat and unreactive diversion response uncorrelated with each round’s incident severity level. 

Based on the logit model estimates given in Table 5, subjects who preferred the riskiest lottery 

option were also significantly more likely to use the alternate route. 

Treatment All Last 3

1 / No VMS baseline 0.299 0.288

2 / Qualitative description 0.141 0.121

3 / Qualitative with guidance 0.134 0.118

4 / Dynamic diversion rate 0.172 0.146

5 / Numeric IDs 0.138 0.135

6 / Color outlines 0.099 0.098

Root Mean Square Deviation (RMSD)

Treatment All Last 3

1 / No VMS baseline 0.085 0.085

2 / Qualitative description 0.065 0.058

3 / Qualitative with guidance 0.071 0.077

4 / Dynamic diversion rate 0.104 0.096

5 / Numeric IDs 0.108 0.104

6 / Color outlines 0.058 0.057

Root Mean Square Variation (RMSV)
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Figure 5: Diversion response graph. 

 

Table 5: Logit regression of route choice, treatment 1. 

 

 

1.4.6 Treatment 2: Qualitative description of incident severity 

In this treatment, subjects were given traffic information with a verbal description of 

traffic incident severity on the main route (e.g. “ACCIDENT AHEAD, EXPECT MINOR 

DELAY”). As shown in Figure 5, the addition of incident severity information significantly 

changes the diversion response. Subjects now conditioned their route choice on the traffic 

information displayed. They could better learn and coordinate upon the optimal diversion 

response for each incident severity level as they gain experience across rounds. 

Mis-diversion for each incident level tended to decrease over time. Compared to the No 

VMS baseline, the overall diversion response was both more optimal with lower RMSD and 

Variable Meaning Value tStat

(Intercept) -0.892 -3.954

risk = 1 Risk Neutral -0.204 -1.011

risk = 2 Risk Loving 0.718 2.880

lane = 1 Start middle lane 0.014 0.061

lane = 2 Start in right lane 0.285 1.323

gender = female -0.026 -0.145

Treatment 1: No VMS baseline
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more stable with lower RMSV. As shown in Table 6, each increasing level of VMS intensity had 

statistically significant and increasing effects on the probability of choosing the alternate route. 

Starting in the right lane increased the chance of diverting while being risk loving reduced the 

chance, but neither effect was statistically significant. 

Table 6: Logit regression of route choice, treatment 2. 

 

 

1.4.7 Treatment 3: Qualitative description with guidance 

 In this treatment, subjects were shown the same qualitative description of incident 

severity as treatment 2 with supplemental recommendations to use the main route when there is 

no traffic incident (e.g. “ROAD CLEAR, ALL CARS: USE MAIN ROUTE”) and to use the 

alternate route for some major and severe incidents (e.g. “USE ALT RTE AHEAD”). Compared 

to treatment 2, adding the additional guidance recommendations reduced average travel time. 

Diversion response optimality improved with lower RMSD, while stability was slightly worse 

with higher RMSV. Table 7 shows the logit regression of route choice in this treatment unpooled 

and pooled with data from treatment 2. The unpooled results shows a positive but statistically 

insignificant effect on the probability of diversion for the “Alt. rte. available" message and 

essentially no significant effect for the “Use alt. rte.” message. The pooled results support a large 

Variable Meaning Value tStat

(Intercept) -1.529 -4.753

risk = 1 Risk Neutral -0.026 -0.146

risk = 2 Risk Loving -0.476 -1.932

lane = 1 Middle Lane 0.040 0.208

lane = 2 Right Lane 0.371 1.946

gender = female -0.120 -0.616

VMS = 1 VMS Intensity 1, "Minor" 0.604 2.169

VMS = 2 VMS Intensity 2, "Medium" 0.879 3.222

VMS = 3 VMS Intensity 3, "Major" 1.398 5.231

VMS = 4 VMS Intensity 4, "Severe" 1.685 6.308

Treatment 2: Qualitative description
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negative but statistically insignificant effect for the “Use main route” message and uphold the 

effects from the unpooled regression for the other two messages. Used together, the guidance 

recommendations in this treatment effectively improved system performance over treatment 2. 

Table 7: Logit regression of route choice, treatment 3 unpooled and pooled with treatment 2. 

 

 

1.4.8 Treatment 4: Dynamic diversion rate 

In this treatment, subjects were shown the same qualitative description of incident 

severity as treatment 2 with the addition of the current optimal rate at which they should divert to 

the alternate route (e.g. “1 IN 10 CARS SHOULD EXIT”) updated in real-time according to 

route usage. This treatment provided the lowest improvement in average travel time over the No 

VMS baseline among all treatments tested. Route choice optimality and stability were both 

notably worse than treatment 2. The logit regression of route choice in Table 8 shows significant 

positive effects on diversion for subjects who started in the right lane and/or are risk loving. 

It was a challenge to design an effective way of presenting real-time public information 

that could improve system outcomes. Several refinements of the messaging scheme used in this 

Variable Meaning Value tStat Value tStat

(Intercept) -2.411 -7.020 -1.652 -6.223

risk = 1 Risk Neutral 0.148 0.751 0.061 0.474

risk = 2 Risk Loving -0.192 -0.783 -0.326 -1.900

lane = 1 Middle Lane -0.023 -0.110 0.007 0.047

lane = 2 Right Lane 0.470 2.355 0.416 3.021

gender = female -0.023 -0.133 -0.056 -0.450

VMS = 1 VMS Intensity 1, "Minor" 1.224 3.718 0.587 2.361

VMS = 2 VMS Intensity 2, "Medium" 1.452 4.473 0.839 3.415

VMS = 3 VMS Intensity 3, "Major" 2.470 7.264 1.569 6.370

VMS = 4 VMS Intensity 4, "Severe" 2.327 6.857 1.646 6.682

NULL = 1 Guidance 0, "Use main route" -0.655 -1.891

DIV = 1 Guidance 1, "Alt. rte. available" 0.334 1.153 0.464 1.812

DIV = 2 Guidance 2, "Use alt. rte." -0.164 -0.578 -0.032 -0.126

Treatment 3: Qualitative description w/ guidance

Unpooled Pooled
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treatment were tested, and most performed worse on average compared to using the standard 

qualitative description. Displaying the diversion rate doesn’t seem to help subjects coordinate on 

achieving it. Most subjects reported focusing on the qualitative description component of the 

VMS messages. As implemented, displaying the dynamic diversion rate as supplemental 

information did not improve system performance over treatment 2. 

Table 8: Logit regression of route choice, treatment 4. 

 

 

1.4.9 Treatment 5: Numeric IDs 

 In this treatment, each subject’s vehicle was assigned a numeric ID, and the VMS 

message instructs vehicles within a range of IDs to use the alternate route (e.g. “IF YOUR CAR 

IS #1-4, USE ALT ROUTE” for incident severity 1). Subjects were still shown a qualitative 

description of incident severity as in treatment 2. Adding the targeted numeric ID based 

messaging did not significantly reduce average travel time or improve the optimality of the 

diversion response. On the other hand, route choice stability was the lowest among all treatments 

tested. The logit regression of route choice in Table 9 shows that targeted subjects were 

significantly more likely to divert to the alternate route than non-targeted subjects, and this effect 

dominated the effect of the qualitative description for the Minor and Medium severity levels. 

Variable Meaning Value tStat

(Intercept) -1.760 -5.776

risk = 1 Risk Neutral 0.252 1.254

risk = 2 Risk Loving 0.865 3.201

lane = 1 Middle Lane 0.000 0.000

lane = 2 Right Lane 0.463 2.300

gender = female -0.280 -1.601

VMS = 1 VMS Intensity 1, "Minor" 0.467 1.594

VMS = 2 VMS Intensity 2, "Medium" 0.974 3.444

VMS = 3 VMS Intensity 3, "Major" 1.372 4.908

VMS = 4 VMS Intensity 4, "Severe" 1.457 5.220

Treatment 4: Dynamic diversion rate
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Female subjects were much less likely to divert, but this effect may be confounded by their 

increased tendency to comply with targeted VMS that I will discuss in section 1.4.11 below. 

Table 9: Logit regression of route choice, treatment 5. 

 

 

1.4.10 Treatment 6: Color outlines 

 In this treatment, a subset of vehicles is outlined with a bright green border each round 

based on the optimal number who should divert, and the VMS message instructs outlined 

vehicles to use the alternate route. Subjects were still shown a qualitative description of incident 

severity as in treatment 2. This treatment provided subjects with the clearest signal and easiest 

way to coordinate on the optimal diversion response. Overall, it performed the best with the 

shortest average travel time, most optimal diversion response, and highest route choice stability 

among all treatments tested. The logit regression of route choice in Table 10 shows that targeted 

subjects were significantly more likely to divert to the alternate route, and this effect was much 

stronger than the other effects considered. Female subjects were less likely to divert, but this 

effect is again confounded by their increased tendency to comply with targeted VMS. 

Variable Meaning Value tStat

(Intercept) -1.164 -3.741

risk = 1 Risk Neutral -0.211 -1.129

risk = 2 Risk Loving -0.556 -1.572

lane = 1 Middle Lane 0.552 2.633

lane = 2 Right Lane 0.217 1.017

gender = female -0.898 -4.629

VMS = 1 VMS Intensity 1, "Minor" 0.370 1.249

VMS = 2 VMS Intensity 2, "Medium" 0.302 0.999

VMS = 3 VMS Intensity 3, "Major" 0.885 2.928

VMS = 4 VMS Intensity 4, "Severe" 0.942 2.935

target = 1 Targeted to use alt. rte. 1.193 5.795

Treatment 5: Numeric IDs
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Table 10: Logit regression of route choice, treatment 6. 

 

 

1.4.11 Compliance with Targeted Guidance 

 For treatments 5 (numeric IDs) and 6 (color outlines), compliance is defined as the 

subject choosing to divert only when instructed to do so by VMS. Overall, compliance rates were 

higher using color outlines than numeric IDs. This could be attributed to the ease with which 

outlined subjects could identify themselves as being targeted for the alternate route, whereas it 

was harder for numeric ID subjects to distinguish. Figure 6 depicts the difference between male 

and female compliance levels for both treatments combined. Female subjects tended to comply 

more frequently with targeted guidance, but the gap diminishes for Severe incidents. This trend 

is supported by the logit regression of compliance on individual characteristics in Table 11. 

Again, the probability of compliance decreased as incident severity increased, and female 

subjects were more likely to be compliant overall. 

Variable Meaning Value tStat

(Intercept) -2.321 -6.404

risk = 1 Risk Neutral -0.160 -0.674

risk = 2 Risk Loving 0.339 1.412

lane = 1 Middle Lane -0.043 -0.157

lane = 2 Right Lane 0.818 2.549

gender = female -0.557 -2.753

VMS = 1 VMS Intensity 1, "Minor" 0.598 1.679

VMS = 2 VMS Intensity 2, "Medium" 0.427 1.126

VMS = 3 VMS Intensity 3, "Major" 1.474 3.914

VMS = 4 VMS Intensity 4, "Severe" 0.955 2.278

target = 1 Targeted to use alt. rte. 2.063 6.758

Treatment 6: Color outlines
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Figure 6: Male and female subject compliance with targeted VMS for treatments 5 and 6. 

Table 11: Logit regression of compliance, treatments 5 and 6. 

 

 

1.4.12 Aggregate Route Choice Effects 

 The pooled regression across all treatments shown in Table 12 depicts the overarching 

effects of individual characteristics on route choice. Based on this analysis, female drivers were 

significantly less likely to divert than male drivers under similar driving conditions. This result is 

consistent with findings from many other previous studies. (Khattak et al., 1993; Emmerink et 

al., 1996; Abdel-Aty et al., 1997; Wardman et al., 1997; Peeta et al., 2000) Age wasn’t included 

in this regression because there was low variation among the student subjects. My elicited risk 

preference didn’t have a significant effect on route choice. 

0%

20%

40%

60%

80%

100%

Minor Medium Major Severe

%
 C

o
m

p
li

a
n

t

Incident Severity

Male vs. Female Compliance Levels

Male Female

Variable Meaning Value tStat

(Intercept) 1.196 5.859

risk = 1 Risk Neutral -0.125 -0.866

risk = 2 Risk Loving 0.339 1.731

lane = 1 Middle Lane 0.046 0.282

lane = 2 Right Lane -0.162 -1.007

scenario = 2 2 Lanes Blocked -0.177 -0.892

scenario = 3 3 Lanes Blocked, Short -0.491 -2.553

scenario = 4 3 Lanes Blocked, Long -0.648 -3.414

gender = female 0.384 2.877

Compliance: Treatment 5 & 6
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Notably, subjects who started in the right lane were significantly more likely to divert to 

the alternate route due to their close lane proximity to the exit ramp. In practice, it’s typically 

less costly to take the exit when starting in the right lane since there’s no need to slow down for 

an opening to change lanes right. 

Table 12: Logit regression of route choice, all treatments pooled. 

 

 

1.5 Conclusions 

My study has shown that a real-time 2D driving simulator experiment incorporating value 

of time incentives and key features of the real-world environment can shed new light on how 

drivers decide which route to take in the face of uncertainty on the roadway. With respect to my 

primary research questions, I find that: 

1. Subjects learned to optimize their operation of the simulated vehicle in this experiment. 

They reduced the amount of extraneous inputs made as well as their travel time under 

free flow traffic conditions. 

2. All messaging schemes improved route choice and average travel times compared to the 

No VMS baseline, and displaying a standardized description of traffic incident severity 

was among the most effective strategies tested. Drivers clearly learned to differentiate 

Variable Meaning Value tStat

(Intercept) -1.425 -13.760

risk = 1 Risk Neutral 0.026 0.348

risk = 2 Risk Loving 0.112 1.160

lane = 1 Middle Lane 0.204 2.430

lane = 2 Right Lane 0.642 7.835

gender = female -0.280 -4.048

VMS = 1 VMS Intensity 1, "Minor" 0.197 1.840

VMS = 2 VMS Intensity 2, "Medium" 0.503 4.872

VMS = 3 VMS Intensity 3, "Major" 1.260 12.693

VMS = 4 VMS Intensity 4, "Severe" 1.382 13.913

All Treatments
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their route choice in response to message intensity. However, different information 

schema had significantly varied results on driver behavior. Firstly, providing additional 

route guidance for no incident and severe incident scenarios improved system 

performance. Secondly, dynamically updated information and system optima were 

difficult for subjects to understand – they may not improve the performance of VMS 

schemes without careful tuning and refinement. Finally, clear direct targeted guidance 

induced the most optimal route choices and resulted in the lowest average travel times. 

3. Displaying VMS messages didn’t result in unpredictable or highly volatile diversion 

rates. Route choice variation typically stabilized after one or two periods of learning for 

each incident severity level. 

4. Gender was the only individual characteristic with a significant effect on route choice 

across all treatments with females being less likely to divert than males under the same 

treatment conditions. This result is consistent with the findings of other studies in the 

literature. However, this gender effect may be confounded by an underlying effect arising 

from differences in risk preference between males and females that my risk elicitation 

task was unable to fully differentiate. 

Based on these results, I conclude that system operators should utilize variable intensity message 

schemes for active traffic incident management. To this end, individually targeted route guidance 

could be the most effective method of inducing a targeted diversion response. It can be 

implemented using private traffic information systems, and transportation authorities should 

further investigate the use and development of these strategies. Otherwise, system operators 

should consider field testing displaying qualitative descriptions of traffic incident severity on 

VMS with route guidance for no incident and severe incident conditions. This strategy performed 
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well in my experiment and is a practical candidate for expediently improving traffic incident 

management using extant VMS infrastructure. 
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CHAPTER 2 

Real-time Multiplayer Driving Simulator Experiments on Amazon 

Mechanical Turk 
 

 

2.1 Introduction 

 In Chapter 1, I presented a laboratory experiment to study driver response to variable 

message signs (VMS) using a 2D multiplayer real-time driving simulator designed by me and my 

colleague Amine Mahmassani. This experiment demonstrated that subjects learn to efficiently 

control their simulated vehicles and incorporate the information displayed by VMS to coordinate 

on optimal diversion responses. However, due to cost and human subject approval limitations, 

my experiment only recruited subjects from UCI students (mostly undergraduates) registered 

with the Experimental Social Science Laboratory. Although UCI is considered a diverse college 

campus, its subject pool is not perfectly representative of either the California or the US driving 

population. For example, the overwhelming majority of student subjects were between the ages 

of 18 and 22, whereas this age group only encompasses about 7.2% of all US drivers. (Highway 

Statistics 2016, 2016) As stated preference studies have found potential correlations between 

driver age and other individual characteristics on the effect of VMS on route choice (Khattak et 

al., 1993; Emmerink et al., 1996; Abdel-Aty et al., 1997; Wardman et al., 1997; Peeta et al., 

2000) it’s prudent to conduct robustness checks on the experimental findings derived from 

student subjects with a more representative sample even if there isn’t a well-defined theoretical 

cause for concern. Understanding the external validity of this experiment is crucial to applying 

its insights to real-world traffic incident management policy. 

Considering the efficacy and salience of my platform, I designed and implemented a 

follow-up experiment to test whether the results derived from college aged student subjects is 
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robust and applicable to the broader US adult driver population. To this end, I undertook the 

substantial task of porting my driving simulator to run on the Amazon Mechanical Turk (MTurk) 

platform with up to 39 simultaneously connected online subjects. MTurk is an online 

crowdsourcing marketplace that enables requesters to recruit workers from a pool of over 

500,000 registered individuals to work on Human Intelligence Tasks (HITs) – computerized 

tasks designed to be completed by humans. The MTurk website provides a framework for 

publishing HIT listings online, recruiting workers, and paying them electronically. Minor 

differences aside, the US MTurk worker population is comparable in demographics to the US 

adult working population, and over a third of MTurk requesters are academics. (Hitlin 2016) 

Although the MTurk worker pool won’t yield a perfectly representative sample of the US driving 

population, it’s significantly more diverse in age and other characteristics than college student 

subject pools (Paolacci and Chandler, 2014). I maintained maximum parity between the MTurk 

and laboratory experimental designs where possible and modified the experiment procedure and 

software where necessary to accommodate running the experiment with remote participants. 

In this chapter, I will address the following key questions: 1. Is it viable to conduct real-

time multiplayer experiments online using MTurk? 2. What are the characteristic differences 

between the MTurk and student subject groups? 3. Are there any substantial behavioral 

differences between the MTurk and student subject groups? I will begin by detailing the process 

of porting my experiment to run on MTurk and the challenges of conducting real-time 

multiplayer experiments online. Then, I will analyze aggregate and treatment specific topics such 

as subject demographics, learning, travel times, and route choices using the same methodology 

as in Chapter 1. Finally, I will compare the observed behavior of student versus MTurk subject 

groups and discuss policy implications where applicable. 
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2.1.1 Collaborators and Funding 

My research in this chapter was conducted with help from my colleague Amine 

Mahmassani and our advisors: Professors David Brownstone and Michael McBride. Portions of 

this study have been jointly published in Brownstone et al. (2016) and Kong et al. (2017). We 

received significant guidance and feedback from our project manager Melissa Clark and other 

partners at Caltrans. This study was supported by the UC Transportation Center Multiple-

Campus Award number 00008817. 

2.1.2 Related Literature 

Since launching in 2005, MTurk has been used to conduct countless social science 

research studies. Paolacci and Chandler (2014) discussed the characteristics of MTurk as a 

subject pool for social science research and surveyed a variety of studies conducted on the 

platform. In general, the authors found that MTurk workers were more diverse than college 

students, they truthfully and/or consistently self-reported individual characteristics, and they 

provided data comparable in quality to lab subjects even when paid much less. Paolacci, 

Chandler, and Ipeirotis (2010) and Goodman, Cryder, and Cheema (2013) found that while 

MTurk subjects were slightly more risk averse than college student subjects, both groups 

behaved similarly with respect to loss / gain framing effects. All the authors above have endorsed 

MTurk as a low-cost platform for conducting large scale research studies but caution that 

researchers must take steps to mitigate issues such as repeat participation, collusion or cheating, 

and worker inattentiveness during instruction or participation. 

Researchers have conducted a wide variety of real-time behavioral experiments on 

MTurk using custom browser-based software, but few of these experiments have entailed 
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simultaneous interaction between dozens of subjects. Crump, McDonnell, and Gureckis (2013) 

successfully replicated a variety of visual and real-time behavioral tasks from experimental 

psychology using in-browser software to trigger actions and record responses at the millisecond 

timescale. Studies such as theirs demonstrated the technical feasibility of implementing real-time 

behavioral tasks in web browsers using standard technologies such as HTML and JavaScript. 

Hawkins (2014) developed a platform using Node.js, HTM5 canvas, and jQuery for conducting 

real-time multiplayer experiments online through platforms such as MTurk. They demonstrated 

the ability to create two-player games with real-time physics, 2D graphics, and player input. My 

platform’s architecture is similar in design and uses many of the same industry standard 

frameworks as other browser-based experiments. However, my experiment features multiplayer 

interaction on a much greater scale with support for 39 clients and even more entities 

simultaneously interacting in a single virtual environment. In addition, I’m unaware of any other 

real-time research-oriented driving simulator that features as many human controlled drivers 

sharing the same roadway as mine. 

2.2 Methodology 

 The driving simulator in this experiment retains the core functionality and mechanics of 

the simulator described in Chapter 1. Subjects control 2D vehicles moving in real-time using 

their keyboard, up to 39 participants drive together on a shared roadway viewed from a 

constrained top-down perspective, and subjects are incentivized to complete their trips as quickly 

as possible. The road network consists of a three-lane main freeway and a two-lane alternate 

surface street with traffic signals. All drivers start on the main route and view the VMS display 

before the exit to the alternate route. Upstream of the exit, a traffic incident of random severity 

may occur. For a more detailed description of the simulator’s core features, please see Chapter 1 
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section 1.2. In the following sections, I will describe the process of converting the experiment to 

run online with remotely connected subjects from MTurk (also see Appendix B for more 

information on the experiment software). 

2.2.1 Amazon Mechanical Turk Integration 

 To conduct my experiment through the MTurk Marketplace, I adapted my procedure and 

software to create a Human Intelligence Task (HIT). In general, MTurk workers and requesters 

engage in the following process to create and complete HITs: 

1. Requesters add money to their MTurk account to pay for HIT listings and/or worker bonuses. 

2. Requesters create and publish their HITs using the MTurk web interface or application 

programming interface (API) and pay fees for doing so. Requesters can add qualification 

requirements to HITs to filter workers based on the presence, absence, or value of 

qualification attributes they possess. 

3. Workers browse the HIT listings on the MTurk website and may accept HITs for which they 

possess the necessary qualifications attributes. 

4. Workers complete and submit the HIT they accepted within the time limit specified by the 

requester. 

5. Requesters review the results submitted by the workers and approve or reject them. Workers 

are automatically paid the HIT’s base payment upon approval, and requesters may pay 

additional bonuses to any workers who have attempted a HIT. Requesters may grant workers 

custom qualification attributes to grant or deny access to subsequent HITs. 

6. Workers review requesters and discuss HITs using 3rd party websites and forums. 

The current state of the MTurk framework presents several challenges that complicate 

running this experiment. Firstly, the MTurk graphical web interface is ill equipped to handle the 
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creation and management of custom web apps. They need to be hosted on separate servers and 

deployed/managed with the MTurk API via Amazon Web Services (AWS). Secondly, the 

MTurk framework was not designed for hosting tasks with concurrent multi-worker 

participation. Experimenters must implement their own worker pool and lobby systems to handle 

multiplayer experiments. Thirdly, MTurk does not provide an adequate means of communicating 

with workers in real-time. It’s practically a necessity for the experimenter to implement a live 

chat system to answer subjects’ questions or provide troubleshooting when things go wrong. 

Lastly, MTurk does not provide information or enforce requirements on workers’ browser, 

computer, or Internet configurations. This complicates designing the experiment application for 

system compatibility. 

 To make my experiment work on MTurk, I added the following features to the driving 

simulator platform: 

1. Integration with the MTurk API to manage HIT listings, manage worker 

qualifications, approve assignments, and pay worker bonuses 

2. An experiment database using MongoDB to store subject and session records 

3. A qualification task to determine whether workers meet system and demographic 

requirements to participate in the experiment 

4. An experiment command and control console to monitor and manage the MTurk HIT, 

experiment session, and subjects in real-time 

5. A live chat support system using the free service provided by tawk.to 

In addition, I used pdf2htmlEX (Wang 2017) to convert and embed my instruction slides into the 

web app. I also used the MTurkR package for R to send mass notification emails and perform 

miscellaneous management on individual workers and sessions. 
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2.2.2 MTurk Experiment Procedure 

To conduct experiments on MTurk, I first recruited workers into a subject pool through a 

qualification HIT, and then invited workers from the pool to participate in experiment sessions. 

Both the qualification and experiment HITs were restricted to US workers only using MTurk’s 

built-in locale qualification attribute. Workers were also granted a custom qualification attribute 

after each HIT to prevent them from participating more than once in either the qualification or 

experiment HITs. 

The qualification HIT consisted of three stages: a connection latency test, a browser 

performance test, and a pre-screening questionnaire. The latency test measured ping times 

between my server and the worker’s computer, while the performance test measured the rendered 

frames per second for a test scene with a large platoon of moving vehicles. Then, the pre-screen 

questionnaire asked for the worker’s age, possession of a valid US driver’s license, ability to 

read English, and ability to work MTurk on weekends. Workers qualified for the experiment if 

their latency test averaged less than 300 ms, their performance test averaged more than 20 frames 

per second, and they answered yes to possessing a valid US driver’s license and ability to read 

English. All workers were paid $0.75 for completing this HIT, their results were added to the 

subject pool database, and those who qualified were granted custom qualification attributes to 

enable them to view and accept experiment task. 

Qualified workers were notified of upcoming experiment HITs one day before they were 

published. Once the experiment task was live, workers were asked to read through a preliminary 

set of instructions regarding the do’s and don’ts of interacting with the experiment webpage. If 

they accept the task, they’re redirected to the experiment site in a new browser window and 
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placed in a waiting room until the session was launched. While they waited, workers could 

communicate with me using a 3rd party live chat system. This chat system proved to be critical 

to the success of the experiment as it enabled me to answer questions and keep workers engaged 

in case of delays or unexpected issues. In addition, I used sound and text alerts to notify subjects 

of experiment phase changes. 

I typically waited up to 15 minutes for between 20 to 39 workers to connect before 

starting the experiment. Once started, subjects read through an instructional presentation with 

visual aids and screenshots. I enforced a time limit of 45 seconds per instruction slide to ensure 

the instruction phase lasts no longer than 15 – 17 minutes. Subjects who disconnected during 

instructions could reconnect and resume from the page they were on. 

When all subjects finished reading the instructions, I launched the participation phase of 

the experiment. This phase was comprised of two parts: 

Part I featured a risk elicitation task in which subjects choose between three options: 

receive $3.50 with certainty, receive $2.90 or $4.20 with equal chance, or receive $1.90 or $5.00 

with equal chance. These options are increasing in the spread of outcomes and slightly increasing 

in expected value. Based on their choice, subjects are classified as risk averse, risk neutral, or 

risk seeking. My three-choice task is a simplified version of a well-known five choice design. 

(Eckel and Grossman 2008) 

Part II featured the driving task comprised of a series of 23 driving rounds – three guided 

practice rounds at the beginning followed by 20 normal rounds. At the beginning of each driving 

round, subjects started with a $14.00 endowment that decreased at $0.15 per second until they 

crossed the finish line. After all subjects either crossed the finish line or ran out of money, the 
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next driving round would begin after a short delay. A single traffic incident may occur each 

round, and the same pre-randomized sequence of incidents was used for each experiment session 

to make order and learning effects comparable (see Table A2 in Appendix A for the full 

sequence of incidents used). 

I monitored subjects in real-time and used alerts to remind idling subjects to pay attention 

to the driving task. If a subject continued idling, I situationally removed them from the 

experiment. Subjects who disconnected for any reason during this phase were not allowed to 

reconnect and were paid according to how many rounds of the experiment they completed. 

After completing the participation phase, subjects filled out the post-experiment 

questionnaire. This questionnaire was administered using a custom Google Form that was 

embedded in the simulator web app but still submitted its data to Google’s servers. Subjects then 

submitted the experiment task on MTurk, after which I approved the task submission, paid them 

according to their participation, and granted them a qualification attribute to prevent them from 

participating in future sessions. 

2.2.3 MTurk Worker Compensation 

 Workers on MTurk are compensated through electronic payments deposited in their 

Amazon Pay account. Funds in the Amazon Pay account can be used to make payments directly 

on Amazon.com or with 3rd parties that support this payment service. Funds can also be 

transferred to bank accounts with no fees and a minimum transaction amount of $1.00. 

 When setting the payoff parameters for this experiment, I tried to strike a balance 

between maintaining parity with the amounts paid to the student subjects and staying within the 

norm of what’s paid on the MTurk marketplace. In the lab, student subjects were paid a $7.00 
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show-up fee for arriving at the experiment on-time and a participation payment of $11.19 on 

average. Since sessions typically lasted around 75 minutes inclusive of the pre-experiment sign-

in and post-experiment payment periods, the student subjects earned an average of $14.55 per 

hour. According to Hitlin 2016, 52% of the MTurk workers surveyed reported earning less than 

$5 per hour, 39% reported earning between $5 to $7.99 per hour, and only 8% reported earning 

$8 per hour or more. 

Given these hourly wages, I decided to retain the original payoff structure for the 

participation phase of the experiment while reducing the “show-up” payment for MTurk workers 

to $1.50. My experiment HITs were listed with a base payment of $1.50, and my session 

invitations told workers to expect more than $7.00 in bonuses on average. Workers who 

successfully completed the entire experiment earned a participation payment of $11.18 on 

average. Combined with their base payment, these workers earned an average of $10.14 per hour 

given the typical session length of 75 minutes. Workers who accepted the HIT but did not finish 

the session were paid the base payment and a bonus at a rate of $7 per hour according to 

approximately how long they spent in the session. Workers who reported encountering a 

technical issue while trying to accept the HIT were situationally also paid the amount of the 

HIT’s base payment. Since workers commonly rate and discuss MTurk tasks and requesters on 

several community websites, it is advisable to keep them satisfied and compensated for their 

time regardless of whether they complete the entire experiment. 

2.2.4 Other Issues and Pitfalls 

 When running these experiments, I spent significant time and effort dealing with two 

major issues: coordination problems when starting experiment sessions and software problems 

due to wildly varying computer setups. 
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Coordination problems at the start of sessions would stem from too many workers 

competing for a spot in a first-come-first-serve system. Many MTurk workers use browser 

scripts to automatically accept new available HITs en masse but don’t actually work on the tasks 

they accepted for a long time. This pollutes the experiment queue with workers who don’t 

connect – an issue like students signing up but not showing up for lab experiments. I dealt with 

this problem by posting far more HITs than the number of workers that could be accommodated 

in a session and paying a “show-up fee” to excess workers who accepted the HITs. I recommend 

using an RSVP based system to further mitigate these problems. 

 Despite best efforts in testing the software, writing clear instructions, and system 

requirement prescreening, approximately 5% to 10% of the test subjects would disconnect from 

sessions due to crashes or bugs specific to their computing setup. In addition, workers would 

often “stress” the software through unpredictable behavior or concurrently doing other things on 

their computer while the experiment was running. This occasionally resulted in unhandled 

server-side exceptions which forced the termination of entire sessions. Over time, these issues 

were resolved by logging detailed information on the state of the simulator for debugging 

purposes. Having the live chat support system available greatly reduced the headache of 

appeasing frustrated workers and troubleshooting errors. 

2.3 Experiment Design 

Based on the best performing treatments from the laboratory experiment with student 

subjects, five messaging schemes were retested. Except for one treatment, the treatment 

conditions tested on MTurk were identical to those tested with student subjects. As before, each 

treatment features a coherent messaging scheme that displayed information on VMS according to 

traffic and/or incident conditions. For static messaging schemes, a single message was displayed 



41 

 

to all drivers within one round of driving according to the incident severity level, while dynamic 

messaging schemes varied the displayed message in real-time according to the diversion 

response. For a complete list of the individual VMS messages shown for each treatment 

condition and incident scenario, see Table A1 in Appendix A. 

I will present detailed analysis on the messaging treatments listed below. Only treatments 

with VMS were tested in the MTurk replication. When necessary, comparisons to the No VMS 

control treatment will be made using the data from the student subjects. I will follow the 

numbering and naming conventions I used in Chapter 1 Section 3. Treatments with MTurk 

subjects will be labeled “M#”, while treatments with student subjects will be labeled “S#”. 

Different VMS schemes are expected to have differing effects on drivers’ travel times as 

well as the aggregate diversion response, but all are expected to improve driver outcomes 

relative to the No VMS baseline. In addition, I hypothesize that there will be no significant 

difference in diversion response between the MTurk and student subjects under identical 

treatment conditions. As before, the optimal aggregate diversion response is achieved when the 

combined travel time among all drivers is minimized for any given incident severity level. 

Treatment S1: No VMS baseline: A control treatment where no traffic information is ever 

displayed. 

Student results: Travel times were highest in this treatment, and drivers exhibited a mixed route 

choice strategy. The diversion response did not change much from round to round. 

 

 



42 

 

Treatment S2 / M2: Qualitative description of incident severity – A treatment that displays a 

qualitative description of incident severity using Caltrans approved verbiage. (e.g. 

“ACCIDENT AHEAD, EXPECT MINOR DELAY” for incident severity 1). This serves as a 

benchmark for the efficacy of messaging strategies currently in use. 

Student results: Drivers learned to condition their route choice on the variable intensity traffic 

messages, travel times were shorter than the No VMS case, and the aggregate diversion 

response was more optimal. 

Treatment S3 / M3: Qualitative description with guidance – Same as treatment 2, but with 

supplemental recommendations to use the main route when there is no traffic incident (e.g. 

“ROAD CLEAR, ALL CARS: USE MAIN ROUTE”) and to use the alternate route for 

severe incidents (e.g. “USE ALT RTE AHEAD”). This treatment tests whether adding a 

guidance recommendation can increase the diversion response. 

Student results: Compared to treatment S2, showing the guidance recommendation reduced 

average travel time and improved the optimality of the diversion response. 

Treatment S4: Dynamic diversion rate – In addition to a static qualitative description of 

incident severity, drivers are shown the current optimal rate at which they should divert to the 

alternate route (e.g. “1 IN 10 CARS SHOULD EXIT”). This rate is updated in real-time 

according to the usage of the two routes to nudge the diversion response towards the optimal 

target. 

Student results: Displaying the desired diversion rate didn’t seem to help the student subjects 

coordinate on achieving the optimal diversion response. Average travel time was still shorter 

than in the No VMS case but was the longest among treatments with VMS. 
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Treatment M4: Dynamic qualitative description – This treatment attempts to improve upon 

the dynamic messaging scheme of treatment S4 by using the same qualitative message 

verbiage as treatment S2 / M2 but with real-time updating of the incident severity adjective 

to nudge the diversion response towards the optimal target. 

Hypothesis: Compared to treatment S4, average travel time will be shorter and the aggregate 

diversion response will be more optimal. 

Treatment S5 / M5: Numeric IDs – In addition to a qualitative description of incident severity, 

each vehicle is assigned a publicly visible numeric ID between 1 to 39. The VMS message 

instructs vehicles within a range of IDs to use the alternate route (e.g. “IF YOUR CAR IS #1-

4, USE ALT ROUTE” for incident severity 1). The idea is to use a public message to induce 

individual drivers to divert based on a unique characteristic such as their vehicle’s license 

plate number or their date of birth. Given a known distribution of characteristics, system 

operators would be able to target subsets of drivers in traffic. 

Student results: Compared to only showing the qualitative description, adding the ID targeted 

messages did not significantly reduce average travel time or improve the diversion response 

optimality. Route choice stability between rounds was the lowest among all treatments tested. 
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Treatment S6 / M6: Color outlines – In addition to a qualitative description of incident 

severity, a subset of vehicles is outlined with a bright green border each round based on the 

optimal number who should divert. The VMS message instructs outlined vehicles to use the 

alternate route. Subjects are instructed that the best possible traffic outcome is achieved if all 

drivers follow the recommendations. This serves as a benchmark of driver compliance with 

targeted recommendations. 

Student results: Overall, this treatment performed the best with the shortest average travel time, 

most optimal diversion response, and highest route choice stability among all treatments 

tested with the student subjects. 

2.4 Results and Discussion 

 In discussing the experiment results, I will focus on examining differences between the 

MTurk and student subject groups. For detailed analyses of the behavioral effects of VMS 

messaging, see Chapter 1 section 1.4. 

2.4.1 Subject Characteristics 

Table 13: Summary of experiment sessions. 

 

 

 A summary of the treatments conducted on MTurk is shown in Table 13. MTurk subjects 

were 36.5 years old on average with a median age of 35, 99% held a valid US driver’s license, 

and all reported having seen VMS. Comparatively, student subjects recruited from the ESSL 

Treatment Subjects
Avg. 

Age
M F

Licensed in 

USA

Avg. Weekly 

Hours Driven

Seen 

VMS

M2 / Qualitative description 36 37.2 27 9 100% 6.9 100%

M3 / Qualitative with guidance 37 37.6 20 17 100% 8.0 100%

M4 / Dynamic qualitative description 35 36.3 19 16 97% 9.6 100%

M5 / Numeric IDs 26 35.6 18 8 96% 8.3 100%

M6 / Color outlines 35 35.4 25 10 100% 8.1 100%
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subject pool were 20.3 years old on average, 79% held a valid US driving license, and 87% 

reported having seen VMS before. As shown in Figure 8, the age distribution of MTurk subjects 

was much broader than the student subjects. Most lab subjects reported that their typical driving 

locale is in Southern California, while MTurk subjects hailed from across the continental US (see 

Figure 7). Most subjects in both groups reported receiving some form of real-time traffic 

information while driving. Both lab and MTurk subjects should be familiar with the physical and 

mental aspects of driving, but MTurk subjects have driven in a much wider variety of locales and 

report driving more hours per week on average (see Figure 9). With respect to race, the MTurk 

subjects predominantly identified as white or Caucasian, while the student subjects mainly 

identified as Asian (see Figure 10). 

 Based on results from the same risk elicitation task, the MTurk subjects were notably 

more risk averse than student subjects (see Figure 11). The elicited risk preference distribution is 

also more risk averse than that obtained by Eckel and Grossman (2008) from their university 

student sample, a trend that agrees with the findings of Paolacci et al. (2010) and Goodman et al. 

(2013). Chi-squared tests show a statistically significant difference between MTurk and student 

risk preference distributions (p-value < 0.001) but do not show a statistically significant 

difference between male and female risk preference among MTurk subjects (p-value < 0.670). 

Overall, the characteristic differences in age, driving habit, and risk preference imply the 

presence of behavioral differences between the subject groups. 
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Figure 7: Geographic distribution of subjects’ reported driving locale. 

 

Figure 8: Distribution of subjects’ reported ages. 

Student 

MTurk 
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Figure 9: Distribution of subjects' reported hours driven per week. 

 

 

Figure 10: Reported ethnicity groups among student and MTurk subjects. 

 

Student 

MTurk 
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Figure 11: Elicited risk preferences among student and MTurk subjects. 

 

2.4.2 Travel Times 

Travel time is measured as the number of seconds it takes a driver to move from their 

starting point to the finish line in an experiment round. To compare average travel times between 

treatments, subjects’ average travel times per round were regressed on VMS treatment dummies 

(shown in Table 14). In this regression, the intercept estimate is the average travel time in 

seconds for the No VMS baseline treatment, while the treatment / variable estimates are the 

average number of seconds saved compared to the baseline treatment. As expected, all MTurk 

VMS treatments reduce the average travel time compared to the No VMS baseline. Travel times 

are similar in magnitude and ranking between MTurk and student subjects for the qualitative 

description, qualitative description with guidance, dynamic diversion rate / description, and color 

outline treatments. However, average travel time for the numeric ID treatment was much shorter 

in the MTurk session than in the student session. As shown in Table 15, a t-test confirms that 

there is a statistically significant difference between the mean travel times in the MTurk and 

student subject sessions for that treatment. I will more detailed analyses of this treatment in the 

following sections to show whether there is a real behavioral anomaly. 
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Table 14: Linear regression of subject travel time per round. 

S treatments are students, M treatments are MTurk. 

 

 

Table 15: t-tests for differences in mean travel time between student and MTurk sessions for the 

same treatment condition. 

 

 

2.4.3 Simulator Experience 

 The degree to which subjects learn to operate the driving simulator efficiently can be 

gauged from the round-to-round trend in average keypresses and average travel time per subject 

for rounds with no traffic incidents. In these rounds, the optimal driving strategy is to 

continuously drive forward without changing lanes as soon as subjects realize there will be no 

incident based on what’s displayed by the VMS. As shown in Figure 12 and Figure 13, both 

average keypresses and travel time per subject tend to decrease over time for rounds with no 

incidents. This trend holds true for both MTurk and student subjects, and MTurk subjects may be 

slightly more efficient at operating the simulator. 

Treatment / Variable Estimate tStat

S1 / No VMS (intercept) 45.52 95.06

M4 / Dynamic qualitative description -2.43 -3.73

M2 / Qualitative description -2.51 -3.86

S4 / Dynamic diversion rate -2.59 -3.97

S2 / Qualitative description -2.70 -4.24

S5 / Numeric IDs -2.71 -4.20

M3 / Qualitative with guidance -2.92 -4.54

S3 / Qualitative with guidance -3.05 -4.76

S6 / Color outlines -3.08 -4.83

M6 / Color outlines -3.14 -4.81

M5 / Numeric IDs -4.04 -5.74

F-stat vs constant model 4.18

p-value 8.42E-06

Treatment Condition Pair p-value tStat df

S2/M2: Qualitative description 0.742 -0.330 1498

M3/S3: Qualitative with guidance 0.836 -0.208 1498

M5/S5: Numeric IDs 0.036 2.099 1258

M6/S6: Color outlines 0.921 0.099 1478
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Figure 12: Average aggregate keypresses for no incident rounds. 

 

 

Figure 13: Average travel time for no incident rounds. 

 

2.4.4 Treatment M4: Dynamic Qualitative Description 

 The dynamic qualitative description messaging treatment was the only treatment tested 

on MTurk that wasn’t an exact replication of a treatment tested with the student subjects. The 

version that was tested with students displayed a dynamically updated desired diversion rate 

based on the remaining proportion of drivers who should divert to the alternate route. For 

MTurk, this treatment displayed a dynamically updated description of expected travel delay 

using the same standard verbiage as the static qualitative description treatments. The results 
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indicate that this treatment didn’t perform substantially better than the version tested with 

students. 

One potential issue lies with the distinguishability of the adjectives that were displayed. 

The logit regression of the decision to divert (see Table 16) indicates that while there were 

significant increases in likelihood to divert when the incident was described as “Medium” as 

opposed to “Minor” or “Major” as opposed to “Medium”, there was little difference in effect 

between incidents described as “Major” instead of “Severe” or in displaying the strong 

recommendation of “All cars should exit”. This indicates that subjects may interpret the three 

strongest VMS messages very similarly without additional context. The differential impact of 

“Major” vs. “Severe” is also low in the static qualitative description treatments. 

Table 16: Logit regression of decision to divert for treatment M4. 

 

 

2.4.5 Compliance with Targeted Guidance 

In the treatments with numeric IDs (M5/S5) and color outlines (M6/S6), compliance is 

defined as the subject choosing to divert only when instructed to do so by the individually 

targeted VMS messages. For the color outline treatments, student and MTurk subjects behaved 

Variable Meaning Value tStat

(Intercept) -1.387 -5.782

risk = 1 Risk Neutral -0.208 -1.079

risk = 2 Risk Loving 0.978 3.314

gender = female 0.512 3.012

older = 1 Age greater than median age (35) -0.513 -2.572

lane = 1 Middle Lane 0.112 0.548

lane = 2 Right Lane 0.019 0.093

VMS = 1 VMS Intensity 1, "Minor" 0.603 2.633

VMS = 2 VMS Intensity 2, "Medium" 1.460 5.497

VMS = 3 VMS Intensity 3, "Major" 1.675 6.086

VMS = 4 VMS Intensity 4, "Severe" 1.625 6.249

VMS = 5 VMS Intensity 5, "All cars should exit" 1.655 2.733

Treatment M4: Dynamic qualitative description
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similarly across all rounds (see Figure 14). For the numeric ID treatments, however, MTurk 

subjects were significantly more compliant with VMS guidance than their student counterparts, 

especially during major and severe incidents (see Figure 15). As a result, the MTurk numeric ID 

group also achieved a significantly shorter average travel time than the student group. For either 

treatment type, student subject compliance tended to decrease as incidents became more severe, 

whereas the opposite was true for MTurk subjects. The logit regressions of compliance shown in 

Table 17 confirm that MTurk subjects were significantly more likely to comply with VMS. In 

addition, more risk averse subjects were more likely to comply. These differences in compliance 

with targeted guidance could be attributed to the MTurk drivers taking the instructions more 

seriously or having more trust in the system operator (researcher) than the student subjects. Not 

complying with VMS guidance could also be indicative of exploratory behavior which may be 

more prevalent among student subjects. Whatever the causes may be, these results indicate that 

MTurk subjects can behave differently than student subjects under the same VMS treatment 

condition. 

 

Figure 14: Compliance over time grouped by incident severity, color outline treatments. 
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Figure 15: Compliance over time grouped by incident severity, numeric ID treatments. 

Table 17: Logit regression of compliance for numeric ID and color outline treatments. 

(student and MTurk pooled) 

 

 

2.4.6 Aggregate Route Choice Effects 

 The pooled regression across all MTurk treatments shown in Table 18 depicts the 

overarching effects of individual characteristics on route choice. In contrast to the student results, 

gender did not exhibit a significant consistent overall effect on route choice across all sessions. 

Additionally, subjects older than the MTurk sample median age of 35 and those who were more 

risk seeking were more likely to divert. As with the student results, subjects who started the 

round further towards the right lane were more likely to divert to the alternate route due to their 

easier access to the exit ramp. 

Variable Meaning Value tStat Value tStat

(Intercept) 0.928 3.944 1.410 5.894

mturk MTurk Treatment 0.474 2.983 0.575 3.454

risk = 1 Risk Neutral -0.353 -2.286 -0.295 -1.677

risk = 2 Risk Loving 0.086 0.337 -0.417 -1.970

gender = female 0.003 0.019 0.852 4.936

lane = 1 Middle Lane 0.183 1.044 -0.029 -0.152

lane = 2 Right Lane 0.156 0.894 -0.179 -0.954

scenario = 2 2 Lanes Blocked -0.124 -0.608 -0.104 -0.454

scenario = 3 3 Lanes Blocked, Short -0.100 -0.491 -0.342 -1.536

scenario = 4 3 Lanes Blocked, Long -0.168 -0.829 -0.508 -2.331

Numeric IDs Color Outlines

M5 / S5 M6 / S6
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Table 18: Logit regression of route choice, all MTurk treatments pooled. 

 

 

2.5 Conclusions 

My MTurk results generally support the validity of the student subject results but also 

highlight the usefulness of replication with a broader sample of subjects. Overall, I find that: 

1. It is viable to conduct real-time multiplayer experiments online using MTurk, although 

there are a wide variety of challenges and pitfalls that need to be mitigated. 

2. There are significant differences in demographics, geographic locale, and risk preferences 

between MTurk and student subjects. 

3. There are limited behavioral differences between MTurk and student subjects that are 

likely caused by hidden and revealed characteristic differences between the two groups. 

Most notably, MTurk subjects are much more willing to comply with targeted route 

guidance recommendations shown by VMS. Otherwise, the MTurk and student subject 

results were very similar. The change in setting between the lab and online experiments is 

unlikely to have significantly affected route choice or simulator operation. 

Variable Meaning Value tStat

(Intercept) -2.330 -18.246

risk = 1 Risk Neutral -0.042 -0.555

risk = 2 Risk Loving 0.221 1.966

gender = female 0.044 0.601

older = 1 Age greater than median age (35) 0.242 3.390

lane = 1 Middle Lane 0.184 2.131

lane = 2 Right Lane 0.471 5.473

VMS = 1 VMS Intensity 1, "Minor" 0.997 7.845

VMS = 2 VMS Intensity 2, "Medium" 1.447 11.501

VMS = 3 VMS Intensity 3, "Major" 2.211 17.695

VMS = 4 VMS Intensity 4, "Severe" 2.408 19.242

VMS = 5 VMS Intensity 5, "All cars should exit" 2.408 4.127

All MTurk Treatments
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Although online driving simulator experiments with crowdsourced subjects cannot replace real-

world field studies, they are a useful way of checking the robustness of laboratory experiments 

before transitioning to more extensive and expensive field tests. The results of my MTurk 

experiment have further validated the potential of the proposed VMS messaging strategies to 

improve traffic incident management and provide system operators with a path forward to better 

utilize VMS infrastructure. 

Through this study, I’ve found MTurk to be a useful venue for experimental research that 

makes affordable the otherwise expensive process of recruiting non-student adult subjects to 

participate in experiments. My driving simulator demonstrates that it’s feasible to conduct large-

scale multiplayer real-time experiments on this platform using browser-based software 

implemented with industry standard web technologies. With careful planning and consideration 

for expected pitfalls, the MTurk marketplace can enable researchers to study complex behavioral 

scenarios while sampling from populations that would be otherwise be impractical or unfeasible 

to recruit in the laboratory setting. 
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CHAPTER 3 

Contextual route choice prediction using LSTM neural networks 
 

 

3.1 Introduction 

In the previous chapters, I demonstrated the efficacy of using variable intensity VMS 

messages to induce predictable changes to driver’s route choice in an experimental setting. If 

such messaging strategies are to be incorporated into traffic incident management strategies, then 

the ability to predict route choice in response to the information displayed by VMS would afford 

system operators greater power and flexibility in utilizing VMS for incident management. The 

sooner the operator can predict the route choice of drivers who are exposed to VMS, the sooner 

they would be able to adjust VMS content displayed to drivers further downstream of the 

incident affected area. This will give drivers more time and opportunity to commit to and execute 

a route choice decision before they encounter congestion. 

I implement a Long Short-Term Memory (LSTM) artificial neural network model for 

predicting driver route choice based on real-time information such as driver inputs, vehicle 

trajectory, and visible VMS leading up to the decision point between routes. Artificial neural 

networks are computational models that use series of interconnected signal processing nodes to 

transform input data into outputs. The LSTM network is a variant of recurrent neural networks 

(RNN) – a type of artificial neural network defined by functional units that recurrently act on 

both input data at a current timestep as well as the network’s internal “hidden” state from a 

previous timestep. This hidden state functions as a type of memory that enables RNNs to 

internalize time-dependent correlations between input and output data features without the need 
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to explicitly specify time-correlation parameters and structures. (See LeCun, Bengio, and Hinton 

(2015) for an overview of these models.) 

Under the paradigm of supervised learning, RNNs can be trained through the process of 

backpropagation of errors, in which the gradient of the network’s loss function is used to 

iteratively adjust the model’s internal parameters or “weights” until it produces the targeted 

outputs from the training inputs. However, the vanilla RNN architecture encounters vanishing 

and exploding error gradients when backpropagating over many time steps that hinder its ability 

to incorporate long term correlations. The LSTM architecture mitigates this issue by introducing 

a special memory component to its functional unit that additively accumulates information from 

previous timesteps. (Hochreiter and Schmidhuber, 1997; Olah, 2015; Li, Karpathy, and Johnson, 

2016) This enables the LSTM network to internalize longer term correlations than are possible 

with the basic RNN. In recent years, LSTMs have been used to great effect to tackle a variety of 

classification, prediction, and data generation problems ranging from machine translation to 

image captioning. (LeCun et al., 2015; Karpathy, Johnson, and Li, 2015) 

I use the human driving data collected from my 2D real-time driving simulator 

experiment to train and validate my predictive model of driver route choice along a simple two 

route road network. For a complete description of the experiment methodology, see Chapter 1 

section 1.2. The data captured from this experiment include vehicle trajectory, driving simulator 

inputs, the message displayed on VMS, route choices, and driver outcomes. Using this data, the 

complete sequence of simulation states can be reconstructed and distilled into inputs for the 

neural network, which produces probability predictions of which route drivers took. 

Using the Keras deep learning framework (Chollet and others, 2015), I created, trained, 

and validated many variants of my model on data spanning 3 to 9 seconds (20 to 60 simulation 
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sync-frames) before the driver’s vehicle reached the decision-point that commits them to either 

route. I tested how different combinations of LSTM hyperparameters, input features, and input 

feed generators affect the model’s predictive accuracy. With in-sample cross-validation, I find 

that a network with two 256-unit LSTM layers using a fixed 20 frame random window generator 

had the best accuracy for data from between three to nine seconds before the decision-point. This 

model predicts individual route choice with 74.0% accuracy and mis-predicts the aggregate 

response by 8.1%, averaged across rounds. With out-of-sample validation, this model predicts 

individual route choice with 72.2% accuracy and mis-predicts aggregate response by 8.8%, 

averaged across rounds. In both cases, the model performed best when it was not trained to full 

convergence and required early stopping to avoid overfitting. Overall, I find that LSTM neural 

networks can give operators useful predictive capability after drivers encounter VMS, but well 

before they reach route decision-points. 

3.1.1 Funding 

 My research in this chapter was supported by the US Department of Transportation 

Pacific Southwest Region University Transportation Center Fellowship. 

3.1.2 Related Literature 

There is a significant body of research on using machine learning techniques to predict 

driver route choice, vehicle trajectories, and/or aggregate network traffic levels. Simmons et. al. 

(2006) build a Hidden Markov Model to predict driver route choice based on vehicle GPS 

coordinates in conjunction with a known map layout. They achieve up to 98% aggregate 

predictive accuracy after estimation and cross-validation on a sample of real driving trips, but 

note that the number of unforced link transitions within their dataset is typically on the order of 

5%. For unforced transitions, their model’s predictive accuracy falls to around 73%. Recently, an 
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increasingly body of research has focused on using a variety of neural network architectures to 

predict vehicle trajectories from coordinate data or traffic imagery / visualizations. Morton and 

Wheeler (2016) evaluate using convolutional neural networks, LSTM neural networks, and a 

hybrid of both types to predict vehicle trajectory via acceleration and turn rate from the NGSIM 

dataset. Polson and Sokolov (2017) design a deep learning model to predict traffic flows and 

evaluate their model on road sensor data from Interstate I-55 during special congestion events. 

Ma et. al. (2015) use LSTM neural networks to perform traffic speed prediction from time-series 

microwave sensor data, and Ma et. al. (2017) use convolutional neural networks to perform 

traffic speed prediction from artificial images generated from vehicle trajectory data on sub-

sections of Beijing’s transportation networks. Finally, Yu et. al. (2017) combine convolutional 

and LSTM neural networks into a hybrid architecture that attempts to separately capture and 

combine spatial and temporal features of traffic data. 

My methodology is unique in using complete contextual data from a controlled real-time 

human subject experiment as the training set for a deep learning model. This approach enables 

the joint incorporation of drivers’ individual characteristics and their precise perceived 

information into my model, elements which would otherwise be latent or difficult to observe in 

the field today. As connected vehicles become more prevalent, more individualized driver data 

will become available to support the use of such models in practice. 

3.2 Predictive Model 

 I implemented my predictive model using the Keras high-level neural networks 

framework. Keras provides a variety of pre-programmed neural network building blocks and 

enables researchers to build models quickly by connecting various neural network layers 

sequentially using simple function calls and parameters. 
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My model is comprised of the following stages: an input stage, an LSTM neural network 

stage, a densely connected neural network stage, and an output stage. The model is fed sequences 

of features extracted from simulation sync-frames to produce a vector of unit interval outputs 

representing the probability of each driver diverting to the alternate route. The input data feed 

consists of features such as the driver’s lane, keyboard inputs (i.e., the desired direction of 

movement), VMS currently seen, and remaining distance to the decision point. At the input 

stage, categorical features are one-hot encoded and real-valued features are normalized to the [0, 

1] interval. Each sequence of driver data is truncated to and end-aligned by the decision point. 

Since drivers start the round at random positions within a grid, the length of their sequences from 

start to decision-point will vary. For efficiency, all sequences within a round are padded to be of 

equal length using a signaling value such as 0 or -1 to indicate timesteps without data. At this 

point, the input sequences form a tensor with shape <N = number of subjects, T = number of 

timesteps, F = number of features / feature binaries> containing all the data of interest from the 

start of the round to simulation frame at which the driver reaches the decision point. 

Up to four 256-unit LSTM layers with tanh activation functions act on the input data and 

produce outputs. If multiple LSTM layers are used, the complete output sequence at every 

timestep from the previous layer is fed into the next layer. The final LSTM layer returns a vector 

of shape <N, F> that is fed into a single fully connected neuron with sigmoid activation function, 

which generates a unit interval “probability” of diverting to the alternate route for each driver. 

During training, the binary observed route choice is used to generate error gradients for 

backpropagation. This process of feeding inputs, generating outputs, and backpropagation is 

performed for the collection (batch) of N sequences within an experiment round and repeated for 

batches from all other rounds use for training. Then, batch training across rounds is iteratively 
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repeated for many training steps (epochs) until the model has reached a desired level of 

convergence. During prediction, a threshold such as 0.5 is used to classify which probability 

predictions are considered diversions, generating the final binary route choice predictions. I used 

a single Nvidia GeForce GTX 1080 GPU with the Theano backend during training and 

evaluation. 

3.2.1 Model Input Feed Generation 

If the model were trained on full length input sequences, it would be able to perfectly 

classify whether drivers diverted to the alternate route by learning the association between route 

choice and lane position. My predictive model was trained on incomplete sequences that end 

before the driver has reached the decision-point so that its weights are conditioned upon events 

that occur before the driver’s choice is revealed. I explored using three different methods to 

generate partial sequences of data for training the model. First, I tested a data generator that 

truncates the input tensor by a fixed number of sync-frames / timesteps before the decision point 

but includes all available data prior to the point of truncation. Second, I tested a generator that 

produces a “window” tensor of fixed length (number of timesteps) from a random contiguous 

sub-section of the full tensor. The window’s location along the full tensor is randomized from 

batch to batch. Third, I tested a generator that produces a window tensor of variable and 

randomized length from a sub-section of the full tensor. The latter two generators attempt to 

prevent the model from overfitting on identical sequences for each training round, which may 

prevent it from achieving good predictive power for sequences it has not been trained on. 
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Figure 16: Block diagram of the LSTM based model. 

 

3.3 Evaluation and Results 

I used two approaches to train and evaluate my model: 1. I trained the model on a subset 

of rounds within an experiment session and cross-validate on the untrained subset, or 2. I trained 

the model on all or a subset of rounds from one experiment session and validate on out-of-

sample data from a different experiment session / subject group. Between these two approaches, 

I expected that predictive power would be worse on average when the model is evaluated out-of-

sample. 
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My input data consisted of the following features: 

• motion -  a vector representing the driver’s input sequence to the driving simulator 

• lane - a vector encoding the driver’s current lane 

• vms - a vector encoding the current VMS as seen by the driver 

• speed, direc - vectors encoding the current traffic flow visible to the driver 

• dist - a vector encoding the distance remaining until the driver reaches the decision-point 

(exit) 

In the experiment, subjects should and typically always move forward at the maximum allowed 

speed to maximize their payoff. To divert to the alternate route, subjects must change into the 

exit lane on their right and remain there until they pass the decision point that commits them to 

either the main or alternate route. For my purposes, predictive power of my model was evaluated 

according to the model’s ability to correctly predict route choices as early or as far downstream 

from the decision point as possible. Since the VMS display begins at approximately 9 seconds 

(20 sync-frames) before the decision-point and ends at approximately 3 seconds (60 sync-

frames) before the decision-point, I performed validation for each model configuration on input 

sequences that terminate from between 3 to 9 seconds (20 to 60 sync-frames) before the decision 

point. 

I present the validation results using two metrics: individual accuracy and aggregate 

accuracy. Individual accuracy is the percentage of route choices correctly predicted for 

individual drivers in a round, averaged across validation rounds. Aggregate accuracy is one 

minus the percentage by which the total number of predicted diverting drivers in a round 

deviates from the observed total number of diverting drivers, averaged across validation rounds. 
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3.3.1 In-sample Training and Cross-Validation 

Using data from the standard description of incident severity treatment that was 

conducted in the laboratory, I trained the network on the first three occurrences of each incident 

severity type (3 rounds x 5 types = 15 rounds) and validated it on the final occurrence (1 round x 

5 types = 5 rounds) within the session. A variety of networks were considered with varying 

hyperparameters such as the number of LSTM layers, the input data features, the input sequence 

generator, and the number of training epochs. 

The cross-validation results are shown in Table 19. When ranked from best to worst 

according to overall average individual accuracy, I found that using two LSTM layers increases 

predictive power over one LSTM layer when all input data features are used, while using four 

LSTM layers seemed to worsen performance on average. The fixed and variable window 

sequence generators didn’t dominate the fixed endpoint sequence generators, but improved 

average predictive accuracy and consistency across the shorter input sequences spanning 20 to 

60 frames prior to the decision point. Models using the fixed endpoint generator suffered greatly 

in predictive accuracy when trained using early endpoints, indicating that they were not 

internalizing the relevant predictive features of the inputs. 
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Table 19: In-sample cross validation results. 

 

 

3.3.2 Out-of-sample Validation 

 To conduct out-of-sample validation, I trained the network on data from the standard 

description of incident severity treatment conducted in the laboratory and validated it on data 

from an identical treatment that was conducted online through Amazon Mechanical Turk (20 

rounds of data for each treatment). I evaluated the best performing network structure from the in-

sample case that uses two 256-unit LSTM layers with a fixed 20 frame random window 

generator. This network was trained and validated after 1500 and 10000 epochs. 

The out-of-sample validation results are shown in Table 20. I found that the network 

performed slightly worse on average in individual accuracy and aggregate mis-prediction when 

validated out-of-sample. Additionally, network performance declined after prolonged training, 

indicating an overfitting issue. Early stopping before the training loss was fully minimized 

seemed to improve predictive accuracy. Further tests are required to better judge the correlation 

between training length and model performance. 

-9 sec -6 sec -3 sec -9 sec -6 sec -3 sec

2 Layer, 20 Frame 

Window, Full Data
2 X LSTM

motion, lane, vms, 

speed, direc, dist
window, 20 1500 65.6% 72.8% 82.1% 92.3% 92.3% 91.3%

2 Layer, -20 Fixed 

Endpoint, Full Data
2 X LSTM

motion, lane, vms, 

speed, direc, dist
endpoint, 20 300 70.3% 72.8% 79.5% 87.7% 91.3% 95.9%

1 Layer, -20 Fixed 

Endpoint, Partial Data
1 X LSTM motion, lane, vms endpoint, 20 150 67.7% 70.3% 81.0% 84.1% 93.8% 90.3%

2 Layer, 40 Frame 

Window, Full Data
2 X LSTM

motion, lane, vms, 

speed, direc, dist
window, 40 1500 67.7% 72.8% 78.5% 93.3% 92.3% 87.7%

2 Layer, 20-60 Frame 

Window, Full Data
2 X LSTM

motion, lane, vms, 

speed, direc, dist

variable 

window, 20-60
1500 66.2% 73.3% 78.5% 94.9% 93.8% 93.8%

Individual Accuracy Aggregate Accuracy
Network Name Layers Features Generator Epochs
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Table 20: Out-of-sample validation results. 

 

 

3.4 Conclusions 

My evaluation of LSTM models for real-time route choice prediction indicates that they 

can offer useful predictive power well before drivers reach the route decision point. For my best 

model configuration, I was able to achieve average predictive accuracies on the order of 70% 

(cross-validated) across different incident scenario types for input sequences that terminate in the 

middle of the VMS display region. In some respects, my experiment scenario represents a worst-

case test of my model’s predictive power since subjects may act freely with no regard to causing 

collisions, resulting in significantly increased jitter noise and last-minute decision making for 

some individuals. When applied to real-world traffic data, one can expect clearer correlations 

between driver lane changes and their intended route choice as well as earlier lane changes in 

anticipation of route selection. Additionally, one can expect to incorporate additional information 

such as variations in vehicle speed to further distinguish the intentions behind lane changes. 

Finally, the emerging public and private initiatives to rapidly transition to manufacturing 

connected and semi-autonomous vehicles will significantly expand both the scale of training 

datasets that are necessary for building predictive models as well as the volume of real-time data 

streams that are required for using them to mitigate traffic incidents through the dynamic 

provisioning of information on VMS and other sources. Neural network models such as LSTMs 

are well-suited towards this application as they can easily leverage big datasets to bolster 

-9 sec -6 sec -3 sec -9 sec -6 sec -3 sec

2 Layer, 20 Frame 

Window, Full Data
2 X LSTM

motion, lane, vms, 

speed, direc, dist
window, 20 1500 70.1% 70.9% 76.3% 87.8% 93.2% 91.7%

2 Layer, 20 Frame 

Window, Full Data
2 X LSTM

motion, lane, vms, 

speed, direc, dist
window, 20 10000 62.8% 69.5% 78.6% 93.1% 89.5% 93.5%

Individual Accuracy Aggregate Accuracy
Network Name Layers Features Generator Epochs
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predictive power. Although the training process is computationally intensive, the prediction 

process is not, so they can be easily used in real-time traffic management applications. 
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 APPENDIX A 

Experiment VMS and Traffic Incidents  
 

Table A1: VMS messages displayed for treatment and incident severity. Treatment 1, the No 

VMS baseline, displays nothing for any incident severity. S_ denotes a treatment with student 

subjects, while M denotes a treatment with MTurk subjects. 

 

Incident Severity VMS: M2/S2: Qualitative description M3/S3: Qualitative with guidance

0: No incident LINE 1 ROAD CLEAR

LINE 2 ALL CARS: USE MAIN ROUTE

LINE 3

1: One lane blocked LINE 1 ACCIDENT AHEAD ACCIDENT AHEAD

LINE 2 EXPECT MINOR DELAY EXPECT MINOR DELAY

LINE 3

2: Two lanes blocked LINE 1 ACCIDENT AHEAD ACCIDENT AHEAD

LINE 2 EXPECT MEDIUM DELAY EXPECT MEDIUM DELAY

LINE 3

3: Three lanes blocked LINE 1 ACCIDENT AHEAD ACCIDENT AHEAD

LINE 2 EXPECT MAJOR DELAY EXPECT MAJOR DELAY

10 sec delay LINE 3

15 sec delay LINE 3 ALT RTE AVAILABE AHEAD

20 sec delay LINE 3 USE ALT RTE AHEAD

4: Three lanes blocked, LINE 1 ACCIDENT AHEAD ACCIDENT AHEAD

extended delay LINE 2 EXPECT SEVERE DELAY EXPECT SEVERE DELAY

50 sec delay LINE 3

54 sec delay LINE 3 ALT RTE AVAILABE AHEAD

80 sec delay LINE 3 USE ALT RTE AHEAD

Incident Severity VMS: S4: Dynamic diversion rate M4: Dynamic diversion rate

0: No incident LINE 1 ROAD CLEAR

LINE 2 ALL CARS: USE MAIN ROUTE

LINE 3

1: One lane blocked LINE 1 MINOR ACCIDENT AHEAD ACCIDENT AHEAD

LINE 2 X CARS SHOULD EXIT* **

LINE 3

2: Two lanes blocked LINE 1 MEDIUM ACCIDENT AHEAD ACCIDENT AHEAD

LINE 2 X CARS SHOULD EXIT* **

LINE 3

3: Three lanes blocked LINE 1 MAJOR ACCIDENT AHEAD ACCIDENT AHEAD

LINE 2 X CARS SHOULD EXIT* **

LINE 3

4: Three lanes blocked, LINE 1 SEVERE ACCIDENT AHEAD ACCIDENT AHEAD

extended delay LINE 2 X CARS SHOULD EXIT* **

LINE 3

*X changes depending on the 

proportion P of remaining drivers who 

should divert: (P, X) s.t. 

(0.0, "NO CARS"), (0.1, "1 IN 10"), 

(0.2, "1 IN 5"), (0.33, "1 IN 4"), 

(0.5, "1 IN 3"), (0.66, "1 IN 2"), 

(0.88, "2 IN 3"), (>0.88, "3 IN 4")

**The message displayed changes 

depending on the proportion P of remaining 

drivers who should divert: (P, MESSAGE) 

s.t. (0.0, "STAY ON MAIN ROUTE"), 

(0.16, "EXPECT MINOR DELAY"), 

(0.33, "EXPECT MEDIUM DELAY"), 

(0.52, "EXPECT MAJOR DELAY"), 

(0.75, "EXPECT SEVERE DELAY"), 

(>0.75, "ALL CARS SHOULD EXIT")
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Table A1 (continued) 

 

  

Incident Severity VMS: M5/S5: Numeric IDs M6/S6: Color outlines

0: No incident LINE 1 ROAD CLEAR

LINE 2 ALL CARS: USE MAIN ROUTE

LINE 3

1: One lane blocked LINE 1 MINOR ACCIDENT AHEAD MINOR ACCIDENT AHEAD

LINE 2 IF YOUR CAR IS #1-4* GREEN OUTLINE CARS: TAKE EXIT.**

LINE 3 USE ALT ROUTE ALL OTHER CARS USE MAIN ROUTE

2: Two lanes blocked LINE 1 MEDIUM ACCIDENT AHEAD MEDIUM ACCIDENT AHEAD

LINE 2 IF YOUR CAR IS #1-11* GREEN OUTLINE CARS: TAKE EXIT.**

LINE 3 USE ALT ROUTE ALL OTHER CARS USE MAIN ROUTE

3: Three lanes blocked LINE 1 MAJOR ACCIDENT AHEAD MAJOR ACCIDENT AHEAD

LINE 2 IF YOUR CAR IS #1-18* GREEN OUTLINE CARS: TAKE EXIT.**

LINE 3 USE ALT ROUTE ALL OTHER CARS USE MAIN ROUTE

4: Three lanes blocked, LINE 1 SEVERE ACCIDENT AHEAD SEVERE ACCIDENT AHEAD

extended delay LINE 2 IF YOUR CAR IS #1-27* GREEN OUTLINE CARS: TAKE EXIT.**

LINE 3 USE ALT ROUTE ALL OTHER CARS USE MAIN ROUTE

*Numeric IDs are displayed as white 

text overlaying the center of each car:

**Green outlines are displayed as borders 

surrounding each car:
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Table A2: List of traffic incident severities (pre-randomized) for each experiment round. 

Severity levels are 0: No incident, 1: One lane blocked, 2: Two lanes blocked, 3: Three lanes 

blocked, and 4: Three lanes blocked, extended delay. Delay indicates the number of seconds for 

which traffic is slowed through the 3rd lane after the blockage clears. 

 

 
 

  

Round Severity Delay

Practice 1 Main only

Practice 2 Alt. only

Practice 3 0

1 0

2 1

3 0

4 1

5 2

6 0

7 4 50 s

8 3 10 s

9 4 50 s

10 1

11 1

12 3 15 s

13 4 54 s

14 2

15 4 80 s

16 0

17 3 10 s

18 2

19 2

20 3 20 s
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Figure A1: Route overview with traffic incident examples. 
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APPENDIX B 

Experiment Software Implementation 
 

 

B.1 Game Engine 

 My experiment software was written as a web application that runs in a standard HTML5 

/ ECMAScript 6 compliant web browser on the client side (Google Chrome preferred) and is 

hosted using the Node.js framework on the server side. Node.js is a server-side JavaScript run-

time environment that uses the Google Chrome V8 JavaScript engine. Both the client and server-

side applications are built using a self-modified version of the npm_crafty variant of the Crafty.js 

game engine. (See Figure B1 for an architectural overview.) 

Crafty.js is a JavaScript library that features a high-level API for implementing 2D real-

time videogames. It provides input handling, entity management, entity physics, graphics and 

animations using HTML5 Canvas or DOM, and game state management using an event / 

message-based system. Npm_crafty implements multiplayer functionality for Crafty by using the 

socket.io WebSocket library to exchange event messages between client and server instances of 

Crafty. Event messages received on either side can contain arbitrary message data and will 

trigger a user-defined callback function. The programmer can use labels to define what code runs 

on which client or server instances. For more information, see 

https://github.com/mucaho/npm_crafty. 

B.2 Game Synchronization 

The simplest way to implement a multiplayer game using npm_crafty is to run an 

identical game loop on all clients and use the server to synchronize inputs between all players. 

For example, a pong game can be implemented by having two clients run the same game 

https://github.com/mucaho/npm_crafty
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simulation with two paddle entities and a ball with object physics. Then, each client’s keyboard 

inputs are captured and sent as event messages containing the key inputs to the server. Finally, 

the server rebroadcasts these input event messages to both clients, allowing inputs commanding 

the movement of the paddles to be synchronized. With minimal delay, clients can now move 

their paddle in both their own simulation as well as their opponent’s. In this case, the server only 

functions to receive and rebroadcast client inputs and doesn’t run its own game simulation. 

While this approach can work for relatively simple games with few simultaneous players, 

synchronization issues quickly arise as player count or simulation complexity increases. Network 

latency and computational deviations between clients can quickly lead to desynchronization 

between different client simulations, resulting in each client seeing and playing an increasingly 

different game! 

To mitigate this issue for my driving simulator, I implemented a “master” game 

simulation that runs on the server instance. Player inputs are still captured and rebroadcast to all 

clients via the server. However, the server’s master simulation also runs according to the 

received player inputs, and the positions of all vehicle entities on this master are collected and 

broadcast to all clients at regular time intervals as a sync update. When a client receives a sync 

update, it immediately sets all vehicle entity positions to those contained in the update. Thus, all 

clients and the server simulations are synchronized at regular intervals. To reduce CPU usage 

and conserve bandwidth, these sync updates are sent every 150 ms, or about 6.67 times a second. 

By letting each client’s local simulation run at a target framerate of 50 frames per second in 

parallel to the server’s master simulation, players can experience smooth framerates while 

remaining synchronized to each other. This technique worked flawlessly up to the 39 client limit 

for my experiment. 
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B.3 App Hosting 

 Npm_crafty uses the Express framework to serve files and handle HTTP requests and 

responses. In the laboratory, subjects are connected to the driving simulator page directly. On 

MTurk, subjects must click through the experiment launch page (see Figure B2) and be directed 

to a new tab / window containing the driving simulator page. In this case, HTTPS is required to 

embed the experiment’s launch page in an MTurk HIT using an iframe. 

When clients initially connect to the simulator, they provide an identifier via a GET 

query string. This string is typically either their lab computer number or their MTurk WorkerID 

and is used to label their vehicle entity and data within the simulator. The server will also log 

other connection information such as IP address, user agent, and originating HIT / assignment 

IDs for MTurk clients. For MTurk experiments, session and client data are stored in a MongoDB 

database. 

B.4 Command and Control 

 The experiment software is launched from a command prompt / terminal and displays a 

variety of contextual information in the terminal window. Special localhost client instances can 

be used to access the command and spectator interfaces. The command interface enables the 

experimenter to view and manage the experiment state and connected clients. Available controls 

include starting or stopping the experiment, notifying or kicking clients, and publishing or 

expiring MTurk HITs (see Figure B3). The spectator interface uses an enlarged Crafty viewport 

to draw the entire road network in real-time for viewing from an all-seeing perspective. 

B.5 Data Storage and Analysis 

 Experiment data is logged exclusively on the server as text files. Round-to-round subject 

outcomes are logged in CSV format, while real-time data is stored by saving client input and 
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sync update messages to file in JSON format. Survey data is sent to Google Forms and stored as 

Sheets that can be downloaded. I wrote a set of MATLAB scripts to parse all types of data and 

perform statistical analysis. In addition, I designed a visual analysis toolkit that provides a 

MATLAB GUI for plotting and replaying the real-time data (see Figure B4). 

 

Figure B1: Experiment software architecture. 

(Dashed components are only used for MTurk experiments) 
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Figure B2: MTurk experiment launch page. 
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Figure B3: Experiment control interface. 
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Figure B4: MATLAB experiment replay analysis tool. 

 




