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ABSTRACT OF THE DISSERTATION 

 

Three-Dimensional Imaging of the Local Structure of Materials  

at Atomic Resolution by Electron Tomography 

 

by 

 

Chun Zhu 

Doctor of Philosophy in Physics 

University of California, Los Angeles, 2013 

Professor Jianwei Miao, Chair 

 

Electron tomography was originally developed in 1968, and has been primarily applied to 

determine the three-dimensional (3D) structure of biological systems. In the last decade, the 

application of electron tomography in materials science and nanoscience has revived due to the 

utilization of scanning transmission electron microscopy (STEM) in the high-angle annular dark-

field (HAADF) mode, and a highest resolution of ~1 nm
3
 has been achieved. However, 

improving the resolution from ~1 nm
3
 to the atomic level remains a challenging task, which 

requires new tomographic reconstruction algorithms, better projection alignment methods, state-

of-the-art STEM instruments, and more accurate data-acquisition procedures. In this thesis, 

important progress has been made in all these four areas. First, a novel tomographic method, 

termed equally sloped tomography (EST), was developed and allows the 3D image 

reconstruction of tilt series with a limited number projections and a “missing wedge” (i.e. 

specimens cannot usually be tilted beyond ±70°). Second, an alignment method which can be 
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used to align the projections of a tilt series at atomic-level resolution was developed based on 

center of mass. Finally, by using a Titan 80-300 STEM instrument at the California 

NanoSystems Institute, UCLA, more accurate data acquisition procedures were developed and a 

number of tomographic tilt series of atomic resolution projections from different nanoparticles 

have been obtained. With all these combinations, the 3D structure of a 10 nm gold nanoparticle 

was determined at 2.4 Å resolution, the highest resolution ever achieved in any general 

tomography method. More recently, this novel electron tomography method has been applied to 

observe nearly all the atoms in a Pt nanoparticle, and imaged for the first time the 3D core 

structure of edge and screw dislocations at atomic resolution. Furthermore, through numerical 

simulations the feasibility of determining the 3D atomic structure of amorphous materials by the 

Electron Tomography method has been demonstrated. 
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CHAPTER 1 

Introduction 

 

Visualization and analysis of three-dimensional (3D) local structural information at atomic level, 

which attributes to many characteristic properties of materials such as mechanical, optical, 

electronic and magnetic behavior, has played an important role in the evolution of modern 

science and technology. Knowing the knowledge of atomic arrangement inside the material is the 

prerequisite to further theoretical understanding of the material’s properties. For example, 

intentionally doping introduces impurities into the extremely pure semiconductor and modulates 

its electrical properties which are essential to the semiconductor performance
1
; Defects inside 

metals move and absorb energy so that metals will not fracture under a force; the amorphous 

glass exhibits a unique glass-liquid transition while the origin is still unknown
2
. All these 

examples illustrate one fact: accurate knowledge of local structure is critical to the understanding 

of material properties and also their potential applications. Therefore the problem emerges: How 

can we determine the atomic positions inside materials at atomic resolution? 

Nowadays several techniques have been developed to visualize atomic structure of materials, 

such as X-ray crystallography, high-resolution electron microscopy, scanning tunneling 

microscopy and atom force microscopy. X-ray crystallography is generally the most widely used 

method to determine the global-averaged atomic and molecular structure of a crystal
3
. By 

measuring the angles and intensities of diffracted beams the 3D electron density of the crystals 

can be produced. The electron density map is then used to determine the mean atomic positions 
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in the crystals, as well as their chemical bonds and various other information. X-ray 

crystallography is fundamental in the development of many scientific fields, including physics, 

material science and biology. However, a local atomic structure is difficult to be determined by 

applying X-ray scattering to amorphous samples or dislocations due to weak diffracted signals 

and the average effect. Scanning / Transmission Electron Microscopy (S/TEM) has been 

revolutionized over the past few years. With the introduction of aberration-corrected electron 

lenses, both the spatial resolution and the image quality in transmission electron microscopy 

have been significantly improved and resolution below 0.5 Å has been demonstrated
4-6

. However, 

TEM images record the exit wave of the electron beam after a specimen, which represents a 2D 

projection of a 3D object. Interpreting the structure of the 3D object from its 2D projection is an 

ambiguous process as some information is invariably lost. Scanning tunneling and atomic force 

microscopy demonstrated resolution on the order of fractions of a nanometer, but atomic 

structures are only imaged at the surface
7-8

. Although these techniques have made tremendous 

impacts in material science, biology and nanoscience, they have their own limitations and a 

general 3D atomic-resolution imaging technique is needed. 

In this dissertation, a general electron tomography method for determining 3D local structures at 

atomic resolution is discussed and demonstrated. Electron tomography (ET) is one of the most 

promising and rapidly developing techniques to provide detailed 3D information with atomic 

resolution by a tilt series of projections taken in TEM or STEM
9-12

. Different from electron 

crystallography, electron tomography does not need to analyze spatial Fourier Transform and 

thus can resolve the truly unique 3D morphologies. The first application of ET started with three 

seminal papers in 1968
13-15

. The first paper described the determination of the structure of a 

biological macromolecule with helical symmetry from a single projection
13

. The second paper 
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showed the possibility to reconstruct asymmetrical objects from a sufficient number of 

projections
14

. The third paper demonstrated how to improve signal-to-noise ratio in a projection 

by averaging re-projected images from a tilt series of images
15

. Since then, the revolution of 

computation speeds, together with the improvements in mechanical performance of microscopes, 

makes S/TEM tomography a promising tool for 3D atomic structure revelation. However, the 

resolution of electron tomography was previously limited to approximately 1nm
11, 12

 in 3D for 

several reasons: First, aligning the projections of a tomographic tilt series to a common axis with 

atomic level precision is technically challenging. Second, radiation damage limits the number of 

projections that can be acquired from a single object
16, 17

. Thirdly, specimens cannot usually be 

tilted beyond ±79°, preventing acquisition of data from the ‘missing wedge’
9-12, 18

. Last, vibration 

of membrane at large tilt angles prevents high quality projections and affects the resolution of 

reconstruction. To overcome these limitations, I and my colleagues proposed a new method of 

low-exposure data acquisition of tomographic tilt series combined with a novel alignment 

approach and an iterative tomographic reconstruction method – Equally Sloped Tomography 

(EST)
19

. By applying this method, the 3D structure of an approximately 10 nanometer gold 

nanoparticle was determined at 2.4 Å resolution for the first time
20

. Moreover, we further 

developed a 3D Fourier filtering method to improve signal-to-noise ratio in the reconstruction 

and achieved 3D imaging of a number of structural dislocations at atomic resolution inside a 

multiply twinned platinum nanoparticle
21

. We observed atomic steps at 3D twin boundaries and 

produced what I believe are the first images of the 3D core structure of edge and screw 

dislocations at atomic resolution. These dislocations and the atomic steps at the twin boundaries, 

which appear to be stress-relief mechanisms, are not visible in conventional two-dimensional 

projections. 
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Definitely, our ultimate goal is to solve a long-standing problem in the physical sciences: 

determining the 3D atomic structure of disordered materials. Disordered materials such as 

glasses are ubiquitous in our daily life. Although the history of glassmaking can be traced back 

to 3,500 BC in Mesopotamia, the 3D atomic structure of glasses and other disordered materials 

has defied any direct experimental determination for more than 80 years due to its lack of long-

range translational and orientational order. Electron tomography is a very promising technique to 

overcome this barrier. Through numerical experiments, we demonstrate an electron tomography 

method for 3D structural determination of amorphous materials at atomic resolution. By 

combining multislice simulations
22

 of an aberration-corrected scanning transmission electron 

microscope with equally sloped tomography, we have determined the 3D atomic structure of a 

simulated glass particle, consisting of 334 Si and 668 O atoms, from a tilt series of 55 noisy 

projections
23

. An atomic model refinement method has been implemented to locate the positions 

of the Si and O atoms in the reconstruction. This study demonstrates the feasibility of directly 

imaging 3D atomic structure of disordered materials through electron tomography. We expect 

that the development of this general method will find applications across several disciplines in 

the physical sciences.  
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CHAPTER 2 

Electron Tomography 

 

2.1 Basic principle 

The mathematical foundation underlying tomography was developed by the Austrian 

mathematician Johann Radon in his work ‘On the Determination of Functions from their 

Integrals along Certain Manifolds’
1
. He rigorously proved the feasibility of reconstructing the 

object from its tilted series of projections by both Radon Transform and Inverse Radon 

Transform. The Radon Transform maps a real-space object        by its projections, where the 

projection is considered to be the line integral through       along all possible lines. The 

structure of the object        is then able to be reconstructed from projections by the inverse 

form of Radon Transform. All reconstruction algorithms in tomography are the approximations 

of the Inverse Radon Transform. Given the nature of Radon Transform, a prerequisite known as 

projection requirement must be fulfilled in order to reconstruct the structure in practice: the 

intensity recorded in a projection is a monotonic function of the physical property of the object
2
. 

At the very least, the recorded signal must vary strict monotonically with mass thickness. For 

example, in X-ray CT, the recorded signal represents the total attenuation of X-rays as it travels 

in a straight line through the object
3
. At this point, to which extend the images taken in TEM or 

STEM can be considered as projections will be discussed in Section 2.3. 

An alternate way to understand the relation between 2D projections and the 3D object is to use 

projection-slice theorem or central-slice theorem. The theorem links the projections to the object 
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by Fourier Transform
4
. It states that the Fourier Transform of the 2D projection is equivalent to 

the corresponding central slice of the 3D Fourier Transform of the object. A schematic figure 

representing the reconstruction by Fourier-slice theorem is depicted in Fig. 2.1. If we have 

sufficiently large number of 2D projections of the object taken over all angles, and then Fourier 

transform them into Fourier space, the 3D Fourier space can be filled up. So the object is able to 

be reconstructed by 3D inverse Fourier Transform. This is the most intuitive idea, although many 

practical issues need to be addressed. For example, experimental data are always sampled at 

discrete angles and interpolation is required to fill the ‘gap’ in the Fourier space; the measured 

data are distributed unevenly in Fourier space, dense around the center but sparse in high-

frequency domains; no direct and exact fast Fourier transform exists between the polar and 

Cartesian grids; etc. These problems will be discussed in the next section.  

 

 

Figure 2.1.  Schematic diagram of reconstruction by Fourier-slice theorem. 
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2.2 Equally Sloped Tomography 

Conventional tomography reconstructs a 3D object from a tilt-series of projections with constant 

angular increments. Since the set of projections are on a polar grid and the object on a Cartesian 

grid, interpolations have to be performed during the reconstruction process
5, 6

. This is because no 

direct and exact fast Fourier transform exists between the polar and Cartesian grids
7
. While a 

number of iterative algorithms exists such as the algebraic reconstruction technique (ART), the 

simultaneous algebraic reconstruction technique (SART) and the simultaneous iterative 

reconstruction technique (SIRT)
5, 6, 8

, presently the most popular 3D image reconstruction 

method in electron tomography remains weighted back projection (WBP)
9-11

, in which 

interpolations are performed in real space. In 2005, the EST method was developed to alleviate 

the difficulties in conventional tomographic reconstruction
12

. For tilt series with a limited 

number of projections and missing wedge, the EST reconstruction exhibits higher image quality 

and higher resolution than WBP, ART and SART
13, 14

. In this section, we will present the 

principle of the EST. 

When the projections of a tilt series use equal slope increments, it has been shown that a direct 

fast Fourier transform, the pseudopolar fast Fourier transform (PPFFT)
15

, exists between a 

pseudopolar grid and a Cartesian grid. Fig. 2.2 shows a pseudopolar grid and the PPFFT. For an 

    Cartesian grid, the corresponding pseudopolar grid is defined by a set of 2N lines, each 

line consisting of 2N grid points mapped out on N concentric squares. The 2N lines are 

subdivided into a horizontal group (in blue) defined by     , where s is the slope and     , 

and a vertical group (in red) defined by     , where      ; the horizontal and vertical groups 

are symmetric under the interchange of x and y, and       . When these conditions are met, 
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the PPFFT and its inverse algorithm are mathematically faithful
15

. Note that the PPFFT and its 

inverse algorithm were originally developed to interpolate tomographic projections from a polar 

to a Cartesian grid in reciprocal space. The idea of acquiring tomographic tilt-series at equal 

slope increments and then combining the PPFFT with iterative algorithms for 3D image 

reconstructions was first suggested in 2005
12

. 

Compared to other data acquisition approaches, such as the Saxton scheme
16

, the EST data 

acquisition approach is different in that it acquires projections with equal slope increments in 

order to use the PPFFT. Although the PPFFT and its inverse provide an algebraically faithful 

way to do the fast Fourier transform between the Cartesian and pseudopolar grids, three 

difficulties limit its direct application to electron tomography. First, the tilt range has to be from 

     to    . Second, the number of projections in a tilt series needs to be 2N for an     

object. Third, the grid points past the resolution circle (dashed circle in Fig. 2.2) cannot be 

experimentally determined. We overcame these limitations by combining the PPFFT with an 

iterative process
12-14, 17, 18

. Fig. 2.3 shows the schematic layout of the iterative EST method. We 

first convert the electron micrograph projections to Fourier slices in the pseudopolar grid. As 

illustrated in Fig. 2.2, the distance between the sampling points on the individual 2N lines of the 

pseudopolar grid varies from line to line. In order to calculate the Fourier slices from the 

projections, the fractional Fourier transform is used to vary the output sampling distance of the 

Fourier slices
19

. By applying the inverse PPFFT, we obtain a 3D image in real space. A 3D 

support is defined to separate the object from a zero region where the size of the zero region is 

proportional to the oversampling of the projections
20

. The negative-valued voxels inside the 

support and the voxel values outside the support are set to zero, and a new3Dimage is obtained. 

The forward PPFFT is applied to the new image and a set of calculated Fourier slices is obtained. 
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We then replace the corresponding calculated Fourier slices with the measured ones, and the 

remaining slices are kept unchanged. The iterative process is then repeated with each iteration 

monitored by an R factor, defined as the difference between the measured Fourier slices and the 

calculated ones. . The algorithm is terminated after reaching a maximum number of iterations. 

Compared to phase retrieval in coherent X-ray/electron diffraction imaging
18, 21-23

, the EST 

method aims to solve the missing data by combining an iteration process with the PPFFT 

algorithm. 

 

Figure 2.2.  Geometrical relationship between a pseudopolar and a Cartesian grid. For an     

Cartesian grid, the corresponding pseudopolar grid is defined by a set of 2N lines, each line 

consisting of 2N grid points mapped out on N concentric squares (left) with N = 8 in this 

example. The 2N lines are subdivided into a horizontal group (in blue) defined by     , where 

     , and a vertical group (in red) defined by     , where      . The horizontal and 

vertical groups are symmetric under the interchange of x and y, and       . The dashed circle 

on the pseudopolar grid represents the resolution circle. The grid points outside of the resolution 

circle cannot be obtained by applying the Fourier transform to the experimental projections. 
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Figure 2.3. Schematic layout of the iterative EST method. The measured projections are first 

converted to the Fourier slices by the fractional Fourier transform (FrFT)33. The algorithm 

iterates back and forth between real and reciprocal space using the PPFFT and its inversion 

(Supplementary Fig. 1). Our recent work has shown that the inverse PPFFT can be replaced by 

the adjoint PPFFT, allowing for faster convergence without compromising the accuracy19. In 

real space, the negative-valued voxels inside the support and the voxel values outside the support 

are set to zero (that is, constraints are applied). In reciprocal space, the corresponding calculated 

slices are updated with the measured ones (in blue) and the remaining slices (in green) are 

unchanged. The algorithm is terminated after reaching a maximum number of iterations. 
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2.3 Imaging modes for electron tomography  

Transmission Electron Microscopy (TEM) has been a primary imaging tool for high-resolution 

characterization of materials. As the name suggested, TEM uses electrons transmitted through 

the object to form the image. Because of the strong interaction between electrons and matter, 

electrons can only transmit through very thin material, usually much less than 1 micron. This is 

the requirement of all specimen studied in TEM. Nowadays, TEM employs a number of different 

modes to probe the sample. The most commonly used imaging modes are the bright-field TEM, 

Annual Dark Field Scanning TEM (ADF STEM) and High Angle Annual Dark Field Scanning 

TEM (HAADF STEM)
24, 25

. Figure 2.4 shows the principle beam paths for both bright-field 

TEM and ADF STEM imaging modes. In bright-field TEM, the sample is illuminated by parallel 

electron beams. With higher mass thickness of the sample, more of the incident electrons are 

scattered away and removed by the objective aperture, resulting in darker image at the thicker 

part (Fig. 2.4c). Generally the bright-field TEM image satisfies the projection requirement: the 

intensity of the projection varies monotonically with the mass thickness of the sample. However, 

if the sample is crystalline and electron beam direction happens to be close to the zone axis, the 

dominant contrast in the image would be diffraction contrast and the projection requirement is 

not satisfied. Another violation of the projection requirement in BF TEM is caused by the TEM 

phase contrast, which is tunable by defocusing. These practical issues limit the use of BF TEM in 

electron tomography
27, 28

.  
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Figure 2.4.  Ray diagrams in Bright-Field TEM mode (a) and Annual Dark Field STEM mode 

(b). c and d show the same Au particle imaged in BF TEM and ADF STEM modes. Revised 

from Ref. [26].  

 

Unlike the conventional TEM, where the specimen is illuminated simultaneously by parallel 

electron beams, in STEM a focused electron probe is rastered point-by-point across the specimen 

(Fig. 2.4b). At each point, the incident electrons interact strongly with the specimen, resulting in 

different kinds of scattered electrons
24

, like Figure 2.5 illustrated. In ADF and HAADF STEM 
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imaging modes, the ring detector collects scattered electrons in certain angle ranges at each 

rastered point and forms the image (Fig. 2.4b). This imaging scheme leads to brighter images at 

higher mass thickness, contrary to BF TEM images (Fig. 2.4d). Here HAADF imaging mode 

only collects elastically scattered electrons with scattered angle larger than 50mrad, while in 

ADF imaging mode the angular range for collected electrons is usually between 10 to 50 mrad 

(Fig. 2.6). 

 

 

Figure 2.5.  Electron-specimen interaction 
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Figure 2.6.  Angular ranges of scattered electrons collected by detectors in different STEM 

imaging modes. Revised from Ref. [24]. 

 

HAADF images are also known as Z-contrast images, showing that the recorded intensity is very 

sensitive to the atomic weight or chemical composition of the sample. Jennycook, et al
29

 has 

theoretically proved this point by deriving the scattering cross-section       
 using the integral of 

Rutherford scattering intensity from    to   : 
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Here   is the mass of the incident electron,    is the rest mass of an electron, which 

is                ,   is the atomic number,   is the wavelength of the electron,    is the 

Bohr radius, which is       Å;    is the characteristic angle of elastic scattering.  

Suppose    electrons are initially incident on the specimen with thickness t, where t is small 

compared to the mean free path of the specimen. The number of scattered electrons n collected 

by the HAADF detector with the inner angle    and outer angle    should be 

        
                                                            

Here N is the number of atoms per unit volume in the sample. 

The two equations above show that the intensity of the HAADF image is almost proportional to 

the product of    and sample thickness. Besides, HAADF imaging is almost incoherent because 

the scattering is almost entirely thermally diffuse
30

, thus eliminating diffraction and phase 

contrast which are the nightmare for BFTEM tomography. The projection requirement is 

satisfied, leaving HAADF images easy to interpret. All these properties make HAADF STEM 

ideal for electron tomography
27

. It also provides an indirect way to determine the chemical 

composition of the sample based on the Z dependence of the signal. The earliest application of 

HAADF STEM tomography was in the study of heterogeneous catalysts, where the metallic 

nanoparticles were able to be discriminated from the highly porous siliceous and carbonaceous 

support by HAADF signals
31

. Since then, HAADF tomography was applied to the study of 

faceting and crystal morphology
32-35

. It was also widely used in material science and life science 

to study structures at the interface
36, 37

. 
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Although HAADF imaging has many advantages for tomographic applications, it is not a 

universal method for all samples. One drawback is the electron channeling effect. For crystalline 

samples, if the major zone axes coincide with the beam direction, the incident electrons may 

propagate preferentially down the atom cores, scattering stronger to large angles and make the 

image much brighter. To avoid channeling effect, we can remove overly bright images from the 

tilt series. Usually the number is small and removal won’t significantly affect the tomographic 

resolution or fidelity. 

At the end of this section I’d like to particularly mention about ADF imaging. Because the 

normal ADF detector only collects low-angle elastically scattered electrons, sometimes Bragg 

scattered electrons also fall in the angular range and contribute to the ADF image intensity for 

crystalline samples, resulting in somewhat unwanted diffraction contrast. However, ADF 

imaging is still considered as Z-contrast imaging to some extent. Meanwhile, ADF signal is 

much stronger than HAADF signal, which can significantly improve Signal-to-Noise Ratio (SNR) 

in the image. So ADF imaging is also a good choice for electron tomography. In the next chapter, 

the feasibility of high resolution ADF STEM tomography will be demonstrated by numerical 

simulations, and 2.4 Å resolution is achieved experimentally
38

.  

 

2.4 Limitations of electron tomography 

Over decades, S/TEM has been revolutionized, leading to the broad applications of electron 

tomography in the areas of biology, life science and material science
24, 25

. The 3D resolution in 

electron tomography also significantly increased to approximately    39, 40
. However, more 

difficulties arised to increase the resolution from nanometer scale to atomic scale. In order to 
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achieve 3D atomic resolution, several limitations must be overcome: missing wedge
39

, radiation 

damage
24

 and projection alignment in atomic precision. These limitations are crucial to the ET 

resolution and deserve some discussion of their origins. 

 

2.4.1 Missing wedge 

Missing wedge is a long-lasting problem in electron tomography. Generally speaking, missing 

wedge means that the tilt angles cannot cover the whole range from      to     , resulting in 

some missing information in the 3D Fourier space, see Figure 2.7. This inherent problem lies in 

the design of rotation system in transmission electron microscopes. In principle the specimen is 

tilted about the eucentric axis of the specimen holder rod and should be able to cover the whole 

angle range, from      to    . However the limited space between the objective lens pole 

pieces and the finite thickness of the specimen holder limits the tilt range to approximate      

to    . About one third information is lost in the Fourier Space. 

 

Figure 2.7.  Missing wedge in the Fourier space. 
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Various techniques has been proposed and implemented to reduce the missing wedge. The most 

popular solution is dual-axis tilting
39

, where a second tilt series about an axis perpendicular to the 

first is recorded and applied in the reconstruction. Furthermore, a unique holder geometry that 

allows for a ‘needle’ sample to be rotated       was designed for TEAM 1.0 transmission 

electron microscope in Lawrence Berkeley National Lab, completely eliminating the missing 

wedge artifacts. In my research, a general tomographic reconstruction method, termed equally 

sloped tomography (EST) was implemented to alleviate missing wedge effect. A detailed 

discussion is in Chapter 2.2.  

 

2.4.2 Radiation damage 

Electron-specimen interaction provides various useful signals for S/TEM to detect, forming the 

foundation of all the modern electron microscopes
24

. However, an unfortunate side effect, called 

radiation damage, is also brought with the interaction. Radiation damage changes the structure 

and/or the chemistry of the sample and in the worst case, renders the tomographic reconstruction 

meaningless. In William and Carter’s book
24

, radiation damage takes one of the three principle 

forms: 

 Radiolysis: Inelastic scattering (mainly electron-electron interactions such as ionization) breaks 

the chemical bonds of certain materials such as polymers and alkali halides. 

 Knock-on damage or sputtering: Knock-on damage is the displacement of atoms from the crystal 

lattice and creates point defects. If atoms are ejected from the specimen surface we call it 

sputtering. These processes are ubiquitous if the beam energy (  ) is high enough. 
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 Heating: Phonons heat your specimen and heat is a major source of damage to polymers and 

biological tissue. 

The majority of the materials studied in my project were metals. So the primary damage is 

knock-on collision and sputtering. This damage is directly related to the beam energy. It is also 

associated with electron dose. In TEM electron dose is defined as the charge density (    ) 

hitting the specimen. It can be easily converted to the number of electrons per unit area (usually 

      or    
 
) knowing that              . Usually radiation damage is worse with 

increased beam energy and higher electron dose. Fortunately for most metals the electron 

threshold energy for displacement of atoms is higher than 400keV
24

 - the maximum beam energy 

for most commercial TEMs. So the electron dose control is the real concern in data acquisition 

for electron tomography here. Typically, the electron dose in HAADF imaging is much less than 

TEM images but it is still quite a big number. To make things worse, with the popularization of 

aberration corrections, more electron currents are focused into even smaller beams, leading to 

even larger dose exposure. Consequently, the number of projections that can be acquired from a 

single object has to be limited, affecting the resolution in the tomographic reconstruction. To 

reduce the radiation dose to the object of interest, a low-dose data acquisition scheme was 

developed in my research, see Chapter 3.3.3. In addition, the EST is a good solution to this 

problem. Even with a limited number of projections EST is still able to obtain a reconstruction 

with high resolution. 

A side effect of radiation damage comes in the form of contamination. According to Reimer
25

, 

contamination is a carbon-rich, polymerized film formed by radiation damage of adsorbed 

hydrocarbon molecules on the specimen surface, and the film grows on electron-irradiated areas 
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of the specimen by cross-linking. This layer adversely affects the resolution, and can 

significantly reduce the image quality. For a uniform illumination of a large sample area, the 

contamination is proportional to the beam current and exposure time. However, when the beam 

is focused to a probe, contamination builds up much faster
25

. The hydrocarbon originates either 

from the sample, microscope or the sample holder. Precautions must be taken to avoid 

contamination, like the special handlings of the specimen, maintaining a clean vacuum system 

and specimen storage environment, avoiding the frequent use of grease, etc.    

 

2.4.3 Projection alignment 

To achieve an atomic scale resolution reconstruction, the projections in a tilt series have to be 

aligned to a common axis (not necessarily the true tilt axis) with atomic level precision in both 

the x and y axes, where the y axis represents the tilt axis and the z axis the beam direction. 

Projection misalignment in electron tomography usually originates in translational movement of 

the stage when sample is tilted between images to make sure the object of interest is still in the 

view. Currently, there are two methods used to perform tomographic alignments. The first is 

based on the cross-correlation between two neighboring projections
9
, and the other relies on 

fiducial markers such as gold beads in the projections
41

. Although both methods have been used 

in cryo-EM, to our knowledge neither alignment method can achieve atomic-level precision. To 

overcome this limitation, we have developed a method based on the center of mass, which is able 

to align the projections of a tilt series at atomic-level accuracy even with noise. See Chapter 3.1 

for detailed discussion of the center-of-mass method. 
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CHAPTER 3 

Determining Three-Dimensional Structure of a Gold Nanoparticle at 2.4-

Ångström Resolution by Electron Tomography  

 

Since its introduction in 1968, electron tomography has been primarily used to determine the 3D 

structure of biological samples 
1, 2

. In the past decade, electron tomography has been increasingly 

applied in materials science and nanoscience through the use of scanning transmission electron 

microscopy (STEM) 
3, 4, 5

. The highest resolution at present achieved by STEM tomography is 

around 1nm in three dimensions 
4, 5

, although slightly higher resolution has been obtained in a 

study of fullerene-like nanostructures with bright-field electron tomography
6
. A general electron 

tomography method with atomic scale resolution, however, has not been demonstrated for 

several reasons. First, aligning the projections of a tomographic tilt series to a common axis with 

atomic level precision is technically challenging. Second, radiation damage limits the number of 

projections that can be acquired from a single object 
7, 8

. Last, specimens cannot usually be tilted 

beyond 79, preventing acquisition of data from the ‘missing wedge’ 
1-5

. Here we demonstrate 

that these limitations can be overcome or alleviated by applying a novel alignment approach 

based on center of mass and EST reconstruction method (See section) to a tilt series obtained via 

annular dark field (ADF)-STEM 
9, 10

.  

Nanoparticles are an important class of materials with properties different from either molecules 

or bulk solids
7, 11, 12

, and nano-gold is among the most widely studied of this class of material due 

to its broad applications in chemistry, biology, materials science, nanoscience and 
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nanotechnology
13

. In this study, we imaged gold particles with a diameter of ~10 nm as smaller 

particles are not as stable under an electron beam
7, 8

. The 3D structure of a gold nanoparticle has 

been determined with 2.4 Å resolution
14

. 

 

3.1 The center-of-mass alignment method 

To achieve an atomic scale resolution reconstruction, the projections in a tilt series have to be 

aligned to a common axis (not necessarily the true tilt axis) with atomic level precision in both 

the   and   axes, where the   axis represents the tilt axis and the   axis the beam direction. To 

align the tilt series along the   axis, the projections were first projected onto the y axis and a set 

of 1D curves was generated. We then chose a 1D curve at    as a reference, and aligned the 

remaining curves to the reference. To align the projections along the   axis, we developed a 

method based on the center of mass. When a 3D object is tilted around the   axis from    

to     , the center-of-mass of the object forms a circle. However, in the special geometry where 

the center of mass coincides with the origin of the   axis, this circle becomes a point. To 

determine the center of mass in this special geometry, we projected each 2D projection onto the 

  axis, chose a pixel as the origin and calculated the center of mass (CM) along the   axis,  

    
         

       
                                                                        

where       is the Coulomb potential at position   . We then shifted this projection to set     as 

the new origin of the   axis. Through repeating this process for all projections, we aligned the tilt 

series to the common axis that coincides with the new origin. Later it will be shown that both our 
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simulation and experimental results indicate that the center-of-mass alignment is a general 

method and can align the projections of a tilt series at atomic level accuracy, even with relatively 

high noise and the nonlinear effects (Figure 3.2, 3.4 and 3.9, and Table 3.1). 

 

3.2 Simulations  

3.2.1 Multislice simulation 

The most important requirement for specimen imaged in S/TEM is that the specimen needs to be 

thin enough so that multiple scattering is not dominant. However, the electron usually scatters 

more than once as it travels through the specimen as thin as 10Å. This multiple scattering, also 

known as dynamic effect, may result in some unwanted signal distortion and make the image not 

represent the true specimen structures any more. To study how the dynamic effect as well as 

other nonlinear effects will principally influence the image quality and tomographic 

reconstruction, multislice simulations are performed on different nanoparticle models as a best 

way to represent the imaging process in the real S/TEM environment. 

The basic idea of multislice simulation is to slice the specimen into many thin layers. The 

electron wave function is transmitted through one layer, experiencing a phase shift due to the 

atomic potential, and then propagates to the next layer. In general each layer is independent of 

other layers. After the electron wave function reaches the exit surface of the specimen, an image 

is formed by the selected imaging mode and detector conditions. For a detailed explanation, 

please refer to the book by Kirkland 
15

. In this thesis, Kirkland’s codes are used in multislice 

simulations. 
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3.2.2 Numerical simulations and results 

To test the feasibility of achieving a high-resolution tomographic reconstruction by the center-of-

mass and EST methods, we conducted numerical simulations on a ~5 nm gold nanoparticle with 

icosahedral symmetry and a total of 3871 atoms (Figure 3.1a, 3.2a, c, e). A tilt series of 55 

projections was obtained from the particle using multislice STEM calculations
14

 (energy, 300 

keV; spherical aberration, 1.2 mm; illumination semi-angle, 7.98 mrad; defocus, 48.6 nm; 

detector inner and outer angles, 13 and 78 mrad). To minimize nonlinear intensity contributions 

caused by dynamical scattering and electron channelling
16

, projections along zone axis 

orientations were avoided. The tilt angles range from        to        with equal slope 

increments. To more closely approximate realistic experimental conditions, several additional 

modifications were made to generate the simulated data. First, the tilt angles were continuously 

shifted from    to      over the process of the tilt series and the magnification of the images was 

continuously changed from 0 to 0.2%. Second, each projection in the tilt series was arbitrarily 

shifted along the x and y axes, where the electron beam direction is parallel to the z axis. Last, 

Poisson noise was added to the projections of the tilt series with a total electron dose of     

      
  

. Fig. 3.1 shows a linear projection of the model at    and the corresponding multislice 

STEM projection. The apparent increase of the atom size in the multislice projection was mainly 

caused by the nonlinear and diffraction effects in the nanoparticle.  
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Figure 3.1.  Multislice calculations of a ~5 nm simulated Au nanoparticle with ideal icosahedral 

symmetry and a total of 3871 atoms. a, Projected Coulomb potential at tilt angle 0°. b, 0° 

projection calculated by multislice STEM simulations (energy: 300 keV, spherical aberration: 

1.2 mm, illumination semi-angle: 7.98 mrad, defocus: 48.6 nm, detector inner and outer angles: 

13 and 78 mrad, pixel size: 0.37 Å). The particle was rotated by 1° each around the horizontal (X) 

and tilt (Y) axes to avoid the zone axis orientations and reduce the non-linear effects. The 

resolution in (b) was limited by the probe size (~1.5 Å), and the apparent increase of the atom 

size in the multislice projection was caused by diffraction and dynamical scattering effects in the 

nanoparticle. 
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Figure 3.2.  EST reconstructions of the simulated Au nanoparticle (~5 nm) from a tilt series, 

calculated by multislice STEM simulations (energy: 300 keV, spherical aberration: 1.2 mm, 

illumination semi-angle: 7.98 mrad, defocus: 48.6 nm, detector inner and outer angles: 13 and 78 

mrad, pixel size: 0.5 Å). To avoid the zone axis orientations and reduce the non-linear effects, 

the nanoparticle was rotated by 1° each around the horizontal (X) and tilt (Y) axes. The tilt series 

consists of 55 projections with a tilt range of ±72.6° and equal slope increments. To simulate 
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experimental conditions, the tilt angles were continuously shifted from 0° to 0.5° over the 

process of the tilt series and the magnification of the images was continuously changed from 0 to 

0.2%. The total dose of the tilt series is 6.1×10
6
 e/Å

2
 and Poisson noise was added to each 

projection. a, c and e, Three 2.5 Å thick central slices of the Coulomb potential of the simulated 

nanoparticle in the X-Y, Z-X and Z-Y planes, where the Z-axis is the beam direction. b, d and f, 

The corresponding 2.5 Å thick slices in the X-Y, Z-X and Z-Y planes reconstructed from 55 

multislice STEM projections. Although the missing wedge problem is not completely solved (the 

top and bottom parts in (f)) and the size of the reconstructed atoms is increased due to the non-

linear and diffraction effects, the overall atomic positions and grain boundaries in the 3D 

reconstruction are consistent with the model.  

 

The 55 projections were aligned to a common tilt axis with the center-of-mass method, and were 

then reconstructed with the EST algorithm. Figure 3.2b, d, f shows three 2.5-Å-thick central 

slices of the 3D reconstruction in the  –  ,  –   and  –   planes. Although the missing wedge 

problem is not completely solved (the top and bottom parts in Figure 3.2f) and the size of the 

reconstructed atoms is increased mainly due to the nonlinear and diffraction effects, the atomic 

positions and grain boundaries in the 3D reconstruction are consistent with the model. The 

simulation results indicate that the center-of-mass and EST methods can be used to achieve an 

atomic-scale resolution reconstruction from a tilt series of 55 projections with a missing wedge, 

nonlinear effects, Poisson noise and experimental errors. 

In addition, to investigate the nonlinear effects in the experiment, we simulated a ~10 nm gold 

particle with icosahedral symmetry and performed multislice STEM calculations on an 11.5-Å-

thick slab of the particle. Figure 3.3 shows a linear projection of an 11.5 Å thick slab through the 
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center of a ~10 nm simulated Au nanoparticle with ideal icosahedral symmetry and a total of 

21127 atoms at  ° compared with the corresponding multislice STEM projection. We then 

calculated a tilt series for a 2.5-Å central slice using the multislice simulations. The tilt series 

consists of 69 projections with a tilt range of      °. Figure 3.4 shows the model and 

reconstructed slices. The atomic positions and the internal grain boundaries are resolved, except 

in a very few places owing to the nonlinear effects in the projections. 

 

Figure 3.3.  Multislice calculations for an 11.5 Å thick slab through the center of a ~10 nm 

simulated Au nanoparticle with ideal icosahedral symmetry and a total of 21127 atoms. a, 

Projected Coulomb potential at tilt angle 0°. b, 0° projection calculated by multislice STEM 

simulations (energy: 300 keV, spherical aberration: 1.2 mm, illumination semi-angle: 7.98 mrad, 

defocus: 48.6 nm, detector inner and outer angles: 13 and 78 mrad, pixel size: 0.37 Å). The 

particle was rotated by 1° each around the horizontal (X) and tilt (Y) axes to avoid the zone axis 

orientations and reduce the non-linear effects. The resolution in (b) was limited by the probe size 

(~1.5 Å), and the apparent increase of the atom size in the multislice projection was caused by 

diffraction and dynamical scattering effects in the nanoparticle. As a proof of principle, we 

simulated only a 11.5 Å thick slab because calculating a full multislice STEM projection for a 

~10 nm gold particle would take enormous computational power.  
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Figure 3.4.  EST reconstruction of the ~10 nm simulated Au nanoparticle from a tilt series, 

calculated by multislice STEM simulations (energy: 300 keV, spherical aberration: 1.2 mm, 

illumination semi-angle: 7.98 mrad, defocus: 48.6 nm, detector inner and outer angles: 13 and 78 

mrad, pixel size: 0.5 Å). The tilt series consists of 69 projections with a tilt range of ±72.6° and 

equal slope increments. To avoid the zone axis orientations and reduce the non-linear effects, the 

nanoparticle was rotated by 1° each around the horizontal (X) and tilt (Y) axes. To simulate 

experimental conditions, the tilt angles were continuously shifted from 0° to 0.5° over the 

process of the tilt series and the magnification of the images was continuously changed from 0 to 

0.2%. The total dose of the tilt series is 7.6×10
6
 e/Å

2
 and Poisson noise was added to each 

projection. a, A 2.5 Å thick central slice of the Coulomb potential in the X-Z plane, where the Z-

axis is the beam direction. b, A 2.5 Å thick slice in the X-Z plane reconstructed from 69 

multislice STEM projections. The atomic positions and the internal grain boundaries are resolved 

except in very few places (including the origin) owing to the non-linear effects in the projections. 

As a proof of principle, we only used a 2.5 Å thick slice to illustrate the EST reconstruction. 
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Calculating a full tilt series for the ~10 nm gold nanoparticle by multislice STEM simulations 

would take enormous computational power.  

 

3.3 Experiments 

3.3.1 Sample preparation  

Gold nanoparticle solution with an average particle size of ~10 nm (Ted Pella) was sonicated for 

~10min to prevent aggregation. Five-nm-thick Si membranes (TEMwindows.com) were used as 

the particle substrates in the experiment (Figure 3.5). The thin membrane, with a size of     

       , is supported on a 100-   -thick Si frame, allowing for a maximum tilt range of     . 

To avoid breaking the membrane, a micromanipulator was used to place a small drop of solution 

onto the outer frame of the Si grid. After gently moving the drop onto the membrane, it was 

removed and not allowed to dry and leave excessive gold particles and contaminants. The Si 

grids were cleaned pre-deposition in a Gatan Solarus plasma cleaner (Model 950) for 20 s using 

a standard H2/O2 recipe. To further ensure removal of contaminant sources, the sample holder 

(Fischione Model 2020) was plasma-cleaned for an hour before data acquisition using the same 

recipe. 
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Figure 3.5. Grids for tomography. 5nm thick Si membrane is supported on a 100-  -thick Si 

frame. 

 

3.3.2 ADF-STEM  

STEM images of gold nanoparticles were acquired on a FEI Titan 80-300 (energy, 300 keV; 

spherical aberration, 1.2 mm; illumination semi-angle, 7.98 mrad; and defocus, 48.6nm). The 70 

pA electron beam was focused to a probe with a 50 mm probe-forming aperture (C2) and 

rastered over the sample. The scattered electrons were captured by a Fischione Model 3000 ADF 

detector with angles between 13 mrad and 78 mrad from the optical axis. The use of ADF angles 

was to improve the signal to noise ratio with a low current electron beam. The effects of 

nonlinear image intensities and diffraction contrast were carefully determined by multi-slice 

simulations. The maximum tilt angles were limited by the holder to     . 
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3.3.3 Low- exposure acquisition of tomographic tilt series 

In order to reduce vibration and drift during data acquisition, the sample holder was allowed to 

settle for one hour after insertion into the microscope, and also for several minutes after moving 

to each new angle. Tilt series were acquired by manually changing the angle with equal slope 

increments. The tilt angles( ) were determined by
17,18          

      

 
  for         and 

  
 

 
       

       

 
  for            with N=32 or 64 in this experiment. To focus 

each projectional image during data acquisition, a nearby particle was used (rather than the 

particle of interest) to reduce the radiation dose to the particle. By using this low-exposure data 

acquisition scheme, we have obtained several tomographic tilt series. Figure 3.6 shows the tilt 

series used in this reconstruction with 69 projections and a tilt range of        . A representative 

sinogram of the tilt series is shown in Figure 3.7.The probe current was ~70pA with a dwell time 

of 45 μs per pixel, and the magnification of each projection was       
 
. Since the pixel size in 

STEM mode can vary, a calibration image of the particle was taken in TEM mode, and the 

STEM pixel size was determined to be 0.42Å . The total electron dose of the tilt series was 

estimated to be        
   

  
. Figure 3.8 shows three 0 projections and their Fourier 

transforms measured during the acquisition of this tilt series to monitor the effects of radiation 

damage. While some minor shape changes occurred, the crystal lattice structure of the particle 

remained reasonably consistent throughout the experiment. 
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Figure 3.6.  Experimental tilt series of 69 projections and their Fourier transforms, acquired 

from a ~10 nm gold nanoparticle with the tilt axis along the vertical axis. Crystal lattices of the 

nanoparticle are visible in at least 58 projections. The projections were acquired on an FEI Titan 

80-300. The 300 keV electron beam, at spot 8 with a 50 μm C2 aperture, was focused to a probe 

with a probe current of ~70 pA, and rastered over the nanoparticle with a dwell time of 45 μs per 

pixel. The scattered electrons were captured by a Fischione Model 3000 ADF detector with 

angles between 13 and 78 mrad from the optical axis. The electron dose of this tilt series was 

estimated to be ~7.6×10
6
 e/Å

2
. Among all the 69 projections, the one at 7.1° is closest to a zone-

axis orientation (about 17 mrad away from the 2-fold zone axis).  

 

Figure 3.7.  A representative sinogram for the experimental tilt series of 69 projections acquired 

from the ~10 nm Au nanoparticle. The X-axis shows the distance to the tilt axis and the Y-axis 

shows the tilt angles for the projections. Unlike conventional tomography, the angular 

increments in EST are not constant. Thus the angles along the Y-axis are not equally distributed 

and smooth transitions between different angles are not expected. The sudden horizontal 

intensity jumps are mainly due to the lattice structure in the projections, and the rough edge is 

likely caused by the background and noise in the projections. 
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Figure 3.8.  Three 0° projections (a,c,e) and their Fourier transforms (b,d,f) measured during the 

acquisition of the tilt series (Figure 3.6) to monitor the effects of radiation damage. Although 

minor shape changes occurred, the overall crystal lattice structure of the gold nanoparticle 

remained consistent throughout the experiment. The minor shape change may contribute to a 

small degree of uncertainty in the overall shape of the reconstructed nanoparticle.  
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3.4 Methods for data analysis 

3.4.1 Post Data Analysis 

In order to apply the EST method, the background surrounding the nanoparticle in each 

projection has to be subtracted. To systematically eliminate the background, we first projected all 

the projections onto the tilt axis and obtained a set of 1D curves. We then determined the optimal 

cut-off value for background subtraction in each projection by maximizing the cross-correlation 

among these 1D curves. After background subtraction, we binned     pixels into1 pixel, which 

was used to enhance the signal to noise ratio in the projections and improve the EST 

reconstruction. The background subtracted and binned projections with pixel size of 0.84Å were 

aligned using the centre-of-mass approach and reconstructed with the EST method.  

 

3.4.2 Mathematical implementation of the EST method  

 EST method begins with padding each projection with zeros (that is, embedding the 

experimental projection into a larger array of zeros) and calculating its oversampled Fourier slice 

on a pseudopolar grid (blue planes in Figure 2.3) using the fractional Fourier transform 

(FrFT)
19

.The FrFt varies the output sampling distance of the Fourier transform and is defined in 

the 1D case by  

        

   

    

        
     

 
                                                 

Eq. (1) is equivalent to the standard 1D FFT but with an extra factor of α in the exponent. By 

choosing an appropriate value for α, the projection data can be mapped on to the grid points of 
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any line on the pseudopolar grid. The oversampling concept (that is, sampling the Fourier slice at 

a frequency finer than the Nyquist interval)
20

 has been widely used to solve the phase problem in 

coherent diffraction imaging
21-24

. In the EST method, oversampling does not provide extra 

information about the object, but allows the use of iterative algorithms to extract the correlated 

information within the projections. In the first iteration, the grid points outside the resolution 

circle (dashed line in Fig. 2.2 left) and on the missing projections is set to zero. We also note that 

the reconstruction may be improved by supplying each missing projection with the average of its 

two neighboring projections as an initial input. Once this preprocessing step has occurred, the 

algorithm iterates back and forth between real and Fourier space, shown in Figure 2.3. The j
th

 

iteration consists of the following 5 steps:  

i) Apply the inverse PPFFT to the Fourier-space slices        , and obtain a real-space 

image,       . Our recent work has shown that the inverse PPFFT can be replaced by 

the adjoint PPFFT, allowing for faster convergence without compromising the 

accuracy 
19

. 

ii) A support (S) is determined based on the oversampling of the projections34.Outside 

the support,        is set to zero and inside the support, the negative values of        are 

set to zero. A new image,   
′    , is obtained,      

                               
′      

                                              

                                          
                                                                      

iii) Apply the PPFFT to   
′     and obtain new Fourier slices,   

′     . 

iv) Calculate the Fourier slices for the (j+1)
th

 iteration, 

           
  

′                                                                     
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Where   
′       and   

       represent the missing and measured Fourier slices, and 

    forms a complete set of angles on the pseudopolar grid. 

v) An        is calculated, 

       
     

           
′        

    
       

                                                    

Where   
       and   

′       represent the measured and j
th

 calculated Fourier slices.  

In our reconstructions, the algorithm is terminated after reaching a maximum number of 

iterations. To quantify the method, we project back the final 3D reconstruction to calculate a 

series of projections, which are quantified by an      ,  

      
     

           
        

    
       

                                               

where   
       and   

       represent the calculated and measured projections in real space at 

tilt angle  . 

 

3.4.3 Identification of the major 3D grains inside the nanoparticle 

The following procedures were used to determine the major 3D grains inside the gold 

nanoparticle. (1) Apply the 3D Fourier transform to the reconstructed nanoparticle and identify 

the Bragg peaks corresponding to a major grain. (2) Use small spheres with soft edges to select 

these Bragg peaks and set other values to zero. (3) Apply the 3D inverse Fourier transform to the 

selected Bragg peaks and obtain a 3D image. (4) Convolve the 3D image with a Gaussian filter 

and choose a cut-off value to determine the 3D shape of the grain. (5) Use the 3D shape to 
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identify the corresponding 3D grain in the reconstructed nanoparticle. (6) Repeat steps 1–5 to 

determine other major grains. 

 

3.5 Results and discussions  

After aligning the experimental tilt series of projections acquired from gold nanoparticles with 

CM method, EST was performed to reconstruct the 3D structure. To examine the quality of the 

reconstruction, we calculated 69 projections from the final 3D structure and found the average 

normalized discrepancy with the measured projections to be 6.7% (Mathematical implementation 

of the EST method and Table 3.1). Representatives measured and calculated projections at 

different particle orientations are shown in Figure 3.9 and Figure 3.10. While minor shape 

changes occurred in few areas, the overall shape and lattice structure agree well between 

measured and calculated projections. To more rigorously examine the accuracy of the 

reconstruction, an EST reconstruction was performed from 68 experimental projections by 

removing the 7.1° projection. The 3D reconstruction was then projected back to calculate the 

projection at 7.1°, which is reasonably consistent with the experimentally measured one (Figure 

3.11). 
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Table 3.1.  To examine the reconstruction quality, we projected back the reconstructed 3D 

structure at the same experimental tilt angles to calculate 69 projections. An       (Eq.3.6) was 

calculated for each tilt angle. The average       for all tilt angles is 6.7%.  
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Figure 3.9.  Evaluation of the 3D reconstruction quality. a-d, Representative measured (a) and 

calculated (c) projections and their Fourier transforms (respectively b, d) at tilt angle 7.1°. Insets 

in a and c show the projected atomic positions inside the blue square in the main panel. The 

overall shape of the nanoparticle and the location of the Bragg peaks agree well, indicating a 

good quality 3D reconstruction.  
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Figure 3.10.  Measured (a) and calculated (b) projections at -26.6° for the ~10 nm gold 

nanoparticle. The calculated projection was re-projected from the 3D reconstruction of 69 

projections. The zoomed images indicate that, while there are some very minor differences 

between the two projections, the overall shape and lattice structure agree well. 
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Figure 3.11.  Measured (a) and calculated (c) projections and their Fourier transforms (b, d) at 

7.1°, where the calculated projection (b) was re-projected from a 3D reconstruction without 

using the measured projection (a). While the contrast of the lattice fringes and the Bragg peak 

intensity are slightly different between (a), (b) and (c), (d), the overall shape and the lattice 

structure are in good agreement. In the reconstruction, the average of two neighboring 

projections at 3.6° and 8.9° was input as an initial guess for the projection at 7.1°, but was not 

used as a constraint in each iteration.  

 

To estimate the resolution achieved in the reconstruction, we chose a 3.36 Å thick central slice in 

the XY plane. Figure 3.12a and b show the slice and its Fourier transform in which the distance 

between two neighboring atom columns and the location of the Bragg peaks indicate that a 

resolution of 2.4 Å was achieved in the X and Y directions. To estimate the resolution along the 
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Z-axis (beam direction), we selected a 3.36 Å thick slice with the horizontal axis along the Z-axis 

(Figure 3.12c and d). The resolution close to the Z-axis was determined to be 2.4 Å. Individual 

atoms are visible in some regions of the slices, but not all atoms can be identified in the slices. 

Figure 3.13 shows two 3.36 Å thick slices in a different orientation, exhibiting crystal lattice 

structure not visible in Figure 3.12. The apparent flattening of the particle along the beam axis 

was also observed in the 3D reconstructions (Figure 3.12), and was likely caused by the 

interaction between the nanoparticle and the Si substrate. 

 

 

Figure 3.12.  Estimation of the 3D resolution of the reconstruction of the gold nanoparticle. a, b, 

A-3.36-Å thick central slice in the x–y plane (a) and its Fourier transform (b), indicating that a 

resolution of 2.4Å corresponding to the gold (111) lattice was achieved along the x and y axes. c, 
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d, A 3.36-Å-thick slice in the z–y plane (c) and its Fourier transform (d) where the horizontal 

axis is along the z axis (beam direction). The resolution in the z axis was estimated to be 2.4Å. 

Individual atoms are visible in some regions of the slices, but not all atoms can be identified in 

the slices. 

 

 

Figure 3.13.  a and b, A 3.36 Å slice in the X′-Y plane and its Fourier transform, obtained from 

the experimentally reconstructed Au nanoparticle. c and d, A 3.36 Å slice in the Z′-Y plane and 

its Fourier transform. The inset shows the direction of the X, Y, Z and X′, and Z′ axes, and the 

angle between planes Z-Y and Z′-Y is ~60°, whereas the slices shown in Figure 3.12a and c are 

in the X-Y and Z-Y planes, respectively. The crystal lattice structure is visible in the top and 

bottom areas in (a) and the top-right area in (c), but is not present in Figure 3.12a and c. 
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To visualize the internal structure and the morphology of the gold nanoparticle, we generated 3D 

volume and iso-surface renderings of the reconstruction, in which both surface and internal 

lattice structures are visible. Figure 3.14a and b show volume renderings of the nanoparticle and 

their Fourier transforms (insets) at the 2- and 3-fold symmetry orientations. The corresponding 

iso-surface renderings at the same orientations are shown in Figure 3.14c and d. The overall 3D 

shape and facets of the nanoparticle are consistent with an icosahedron (insets in Figure 3.14c 

and d). To identify internal 3D grains, we applied the 3D Fourier transform to the reconstruction. 

By identifying the Bragg peaks of each major grain and applying the 3D inverse Fourier 

transform to the selected Bragg peaks, we determined four major 3D grains inside the gold 

nanoparticle (Section 3.4.3). Figure 3.15 show a volume rendering of the four 3D grains at 

atomic scale resolution, in which grains 1, 2 and grains 3, 4 are related by mirror-reflection 

across the horizontal interfaces marked by dotted lines. The angle enclosed by close-packed 

planes across these interfaces was measured to be 69.9°0.8° between grains 1 and 2, and 

71.3°0.8° between grains 3 and 4, both of which are consistent with the angle for an fcc twin 

boundary (70.53°). By applying the same method to some other Bragg peaks, we identified 3D 

grains in the top and bottom parts of the particle (Figure 3.16). The surface morphology (facets) 

and the internal atomic structures (grains) suggest that this is a distorted icosahedral multiply-

twinned particle, typically found for nano-gold in the size range above 10 nm
25

. 
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Figure 3.14.  3D structure of the reconstructed gold nanoparticle. a, b, 3D volume renderings of 

the nanoparticle and their Fourier transforms (insets) at the two-fold (a) and three-fold (b) 

symmetry orientations. c, d, Iso-surface renderings of the nanoparticle at the two-fold (c) and 

three-fold (d) symmetry orientations. Insets show a model icosahedron at the same orientations. 
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Figure 3.15.  Identification of four major grains inside the gold nanoparticle in three dimensions. 

Grains 1, 2 and grains 3, 4 are related by mirror-reflection across the horizontal interfaces 

marked by dotted lines. The angle enclosed by close-packed planes across these interfaces was 

measured to be 69.9°±0.8° between grains 1 and 2, and 71.3°±0.8° between grains 3 and 4, both 

of which are consistent with the angle for a face-centered cubic twin boundary (70.53°). 
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Figure 3.16.  3D grains were identified in the top and bottom parts of the reconstructed particle 

at the 3-fold symmetry orientation, whereas the particle at in the 2-fold symmetry orientation in 

Figure 3.15.  

 

3.6 Conclusion 

By combining the CM alignment technique and the EST reconstruction method with an ADF-

STEM, we have determined the 3D structure of a ~10 nm gold nanoparticle at 2.4 Å resolution 

from a tilt series of 69 projections with a missing wedge. Several 3D grains are identified inside 

the nanoparticle at atomic scale resolution. While individual atoms are visible in some regions of 

the nanoparticle, we cannot determine all the atomic positions inside the particle. In order to 

identify all the atoms (estimated to be ~23800) without using atomicity and bond information, a 
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resolution higher than 2.4 Å is needed, which requires future developments. With aberration-

corrected STEM
9, 10, 26

, better 3D resolution and image quality should be achievable, but 

extended depth-of-field techniques may have to be applied to the tilt series before the EST 

reconstruction can be performed. Compared to atom-probe tomography
26

, this non-destructive 

technique can not only handle isolated nanoparticles, but also provide 3D local structure of 

complex nanomaterials at atomic scale resolution. We anticipate that this general method can be 

applied to not only determine the 3D structure of nanomaterials at atomic scale resolution
7, 11, 12

, 

but also improve the resolution and image quality in other tomography fields
1, 2, 17, 21, 28-30

. 
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CHAPTER 4 

Imaging Three-dimensional dislocations in Platinum nanoparticles at atomic 

resolution by Electron Tomography 

 

Dislocations and their interactions strongly influence many of the properties of materials, 

ranging from the strength of metals and alloys to the efficiency of light-emitting diodes and laser 

diodes
1-4

. Presently there are several experimental methods to visualize dislocations. 

Transmission electron microscopy (TEM) has long been used to image dislocations in materials
5-

9
, and high resolution electron microscopy can reveal dislocation core structures with increasing 

detail
10

, particularly in annular dark field (ADF)
11

. A TEM image, however, represents a two-

dimensional projection of a 3D object, although stereo TEM provides limited information about 

3D dislocations
4
. X-ray topography can observe dislocations in three dimensions, but with a 

reduced resolution
12

. Using weak-beam dark-field
13

 and scanning transmission electron 

microscopy (STEM)
14

, electron tomography has been used to image 3D dislocations at a 

resolution of ~5 nm
15,16

. Atom probe tomography can offer higher-resolution 3D characterization 

of dislocations, but requires needle-shaped specimens and can detect only ~60% of the atoms in 

the sample
17

.  

In Chapter 3, it was shown that in a combination of ADF-STEM with the center of mass (CM) 

and equally sloped tomography (EST) methods, electron tomography has recently achieved a 

highest resolution of 2.4 Å
18

. However, due to dynamical scattering effects
19

, the missing wedge 

problem
16,18,20

 and Poisson noise in the tilt series, noise exists among the Bragg peaks in the 3D 
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Fourier transform of the EST reconstruction. As a result, while lattice structure and some 

individual atoms are visible in the reconstruction
18

, electron tomography has not been able to 

reveal 3D dislocations in materials at atomic resolution. Here we overcome this obstacle by 

combining 3D Bragg peak filtering with high angle annular dark field (HAADF)-STEM 

tomography, and achieve 3D imaging of dislocations in a nanoparticle at atomic resolution
21

. 

 

4.1 Introduction to crystal defects 

Perfect crystalline solids exhibit infinite periodicity along all three dimensions with atoms or 

molecules arranged in the repeating fixed positions. Practically such perfect crystals never exist, 

which however is not always a bad thing. Sometimes people intentionally introduce defects into 

crystals to manipulate physical properties of the material. Crystal defects can generally be 

divided into four basic classes: point defects, line defects, planar defects and bulk defects. Line 

defects are also called dislocations. Each of the four defects will be discussed in more details in 

the following pages.  

 

4.1.1 Point defects – zero-dimensional imperfections 

Point defects have the volume of atomic dimensions. In the lattice structure, point defects are 

where an atom is missing, or irregular placement of one atom. The most commonly observed 

point defects include self-interstitial atoms, interstitial impurity atoms, substitutional atoms and 

vacancies. Figure 4.1 indicates these four types of point defects. A self-interstitial atom is an 

extra atom of the same type with others in the crystal crowded itself into an interstitial void in the 
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lattice structure. An interstitial impurity atom is much smaller than the other regular atoms in the 

crystal, and always fit into the open space between lattice atoms. The substitution impurity atom, 

usually bigger than the bulk atoms, replaces one of the bulk atoms in the lattice. Vacancies are 

empty lattice sites where atoms should be, but are missing. 

 

 

Figure 4.1  Four types of point defects in the lattice structure. Revised from Ref.[22].  

 

4.1.2 Line defects (dislocations) – one-dimensional imperfections 

The name of line defects comes from the fact that in this type of defects atoms are only 

misaligned along a line, which is known as the dislocation line. Dislocations are generally 

described by the direction of dislocation line l and the Burgers vector b
1
. The Burgers vector b 
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associated with a dislocation is a measure of the lattice distortion and usually determined from a 

Burgers circuit around the dislocation, which will later be illustrated in the edge and screw 

dislocations. There are two basic types of dislocations: the edge dislocation and the screw 

dislocation. These two are just the extreme cases of all possible dislocations. ‘Mixed’ 

dislocations – a hybrid of both edge and screw dislocations – and partial dislocations are most 

common in the real materials, but this discussion will be limited to only edge and screw 

dislocations. 

 Edge dislocations 

The easiest way to picture an edge dislocation is to insert an extra half-plane of atoms into the 

regular lattice structure, just as Figure 4.2a indicates in a cubic primitive lattice. To define the 

Burgers vector b in the edge dislocation, a Burgers circuit is drawn in Figure 4.2b. The Burgers 

circuit is a closed circuit that encloses the dislocation from lattice point to lattice point in a 

clockwise direction. This circuit is then transferred exactly to a perfect crystal lattice of the same 

type (Figure 4.2c). The circuit will not close because of the absence of the dislocation. The 

special vector needed to close the circuit in the perfect lattice is the Burgers vector, b=QM. From 

Figure 4.2, the Burgers vector b is perpendicular to the dislocation line in edge dislocations. 
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Figure 4.2.  The edge dislocation in a cubic primitive lattice. a, 3D visualization of the edge 

dislocation. The red line indicates the dislocation line. b, The closed Burgers circuit 

M→N→O→P→Q(M) around the edge dislocation. c, The same circuit M→N→O→P→Q is 

transferred to the perfect lattice. Now the circuit is not closed as Q and M are not overlap. The 

Burgers vector QM is needed to close the circuit. Revised from Ref.[22, 23]. 

 

 Screw dislocations 

Compared to the edge dislocation, the screw dislocation is somewhat more difficult to visualize. 

Shown in Figure 4.3a, the screw dislocation can be imagined as a block of metal with a shear 

force applied across one end and the metal begins to rip. If the two consecutive layers of atoms –

one just above the rip and the other just beneath the rip – are viewed from the top, the 

characteristic zigzag pattern of the screw dislocation is visible (Figure 4.3b).   
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Figure 4.3.  The screw dislocation in a cubic primitive lattice. a, 3D visualization of  the screw 

dislocation. b, The characteristic zigzag pattern visible in the two consecutive layers of atoms. 

Revised from Ref. [24]. 

 

Similar to the edge dislocation, the Burgers vector b is also determined by the Burgers circuit. 

Figure 4.4a shows the Burgers circuit around the screw dislocation and the Burgers vector b is 

shown Figure 4.4b. Different from the edge dislocation, the Burgers vector b is parallel to the 

dislocation line in the screw dislocation. 
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Figure 4.4.  Burgers vector for the screw dislocation. a, The closed Burgers circuit 

M→N→O→P→Q(M) around the screw dislocation. b, The same circuit M→N→O→P→Q is 

transferred to the perfect lattice. Now the circuit is not closed as Q and M are not overlap. The 

Burgers vector QM is needed to close the circuit. The dislocation line, which is parallel to the 

Burgers vector, is also shown in a. Revised from Ref. [23]. 

 

4.1.3 Planar defects – two-dimensional imperfections 

 Stacking faults  

The stacking fault is another type of commonly observed crystal defects. It is one or two atomic 

layer interruption in the long-range stacking sequences of atom planes. Take face-centered cubic 

(fcc) lattice for example, the stacking sequence is visualized along <110> direction in Figure 

4.5a with each row representing a {111} plane. It is obvious that the stacking sequence of the 

close-pack lattice is ABCABCABC… Here A, B and C represent {111} planes. If parts of a C-
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plane are removed, then the neighboring A and B-planes should relax into the configuration 

shown in Figure 4.5b. Now the stacking sequence ABCABCABC… has been changed to the 

faulty sequence ABCABABC – A stacking fault called intrinsic stacking fault has been produced. 

The other kind of stacking fault is shown in Figure 4.5c. In this case the fault stacking sequence 

becomes ABCABACABC… and it is called extrinsic stacking fault. Both stacking faults shown 

in Figure 4.5 are bordered by Frank partial dislocations
1
.  

 

 

Figure 4.5.  Stacking faults in the face-centered cubic (fcc) structure. a, The regular stacking 

sequence ABCABCABC shown in <110> direction. b, The intrinsic stacking fault in 

ABCABABC sequence. c, The extrinsic stacking fault in ABCABACABC sequence. Revised 

from Ref. [25]. 
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 Grain boundaries 

Another important type of planar defects is the grain boundary. Implied by the name, the grain 

boundary is the interface between two differently oriented crystallographic grains or crystallites, 

in a polycrystalline material. The crystallographic orientations of grains are usually rotated with 

the respect to neighboring grains. Grain boundaries limit the length and motion of dislocations 

through a material, so reducing the grain size helps to improve the strength of the material. 

The twin boundary is a particular kind of grain boundaries, commonly observed in 

polycrystalline fcc metals. Shown in Figure 4.6, the twin boundary serves as the mirror plane 

where the lattices above and beneath the boundary have the mirror symmetry.    

 

 

Figure 4.6.  The twin boundary for an fcc structure. Each dark or light circle represents an atom 

column, while ‘dark’ columns are shifted for half an atomic distance below ‘light’ columns. The 

twin plane is the  11 1  close-packed plane, and it has a 70.53° angle with other close-packed 

planes. Revised from Ref [26]. 
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4.1.4 Bulk defects – three-dimensional imperfections 

Compared to the other crystal defects discussed in this section, bulk defects occur on a much 

larger scale, ranging from 0.1 to 50 micron. Bulk defects include voids and precipitates. Voids 

are regions with no atoms inside, and can be thought of as clusters of vacancies. Precipitates are 

small regions of impurity atoms clustering together.  

 

4.2 Experiments 

4.2.1 Synthesis of Pt nanoparticles 

The Pt nanoparticles were synthesized by peptides in aqueous solution at room temperature as 

reported previously
27

. All regents were dissolved in water before using. A pre-prepared vial 

containing precursor (chloroplatinic acid hydrate (H2Pt(IV)Cl6.xH2O, 1 mM) and S7 peptide (Ser-

Ser-Phe-Pro- Gln-Pro-Asn) solution (30 mg/ ml) were mixed with ascorbic acid (2 mM) 

immediately before injection of fresh NaBH4 (0.8 mM) where NaBH4 and ascorbic acid were 

used as reducing agents. The final volume of the reaction solution was 5 ml, and the reaction 

normally required more than 30 minutes.   

 

4.2.2 Sample preparation  

Pt nanoparticle solution was sonicated for ~10min to prevent aggregation. Five-nm-thick silicon 

nitride membranes (TEMwindows.com) were used as the particle substrates in the experiment. 

The thin membrane, with a size of            , is supported on a 100-   -thick Si frame, 

allowing for a maximum tilt range of     . To avoid breaking the membrane, a 



71 
 

micromanipulator was used to place a small drop of solution onto the outer frame of the silicon 

nitride grid. After gently moving the drop onto the membrane, it was removed and not allowed to 

dry and leave excessive Pt particles and contaminants. The silicon nitride grids were cleaned pre-

deposition in a Gatan Solarus plasma cleaner (Model 950) for 20 s using a standard H2/O2 recipe. 

To dissipate charge efficiently and make the nanoparticles more stable under an electron beam, a 

premium high-temperature ultrathin carbon coating (TEMwindows.com) was applied to the 

nanoparticles based on the following procedure. The silicon nitride membrane grid was first 

placed into a vacuum chamber with the temperature ramping up from 300°C to 700°C at a rate of 

10°C/s. The carbon was coated during a 5 minute soak at 700°C. The chamber then naturally 

cooled to 450°C over the next 5 minutes before the grid being removed. The silicon nitride 

membrane grid was finally loaded on a tomographic sample holder (Fischione Model 2020) for 

data acquisition. 

 

4.2.3 Acquisition of tomographic tilt series using HAADF-STEM 

STEM images of the Pt nanoparticles were acquired on a FEI Titan 80-300 microscope (energy: 

200 keV; spherical aberration: 1.2 mm; illumination semi-angle, 10.7 mrad). The 100pA electron 

beam was focused to a probe with a 50 μm probe-forming aperture (C2) and rastered over the 

sample. The scattered electrons were captured by a Fischione Model 3000 HAADF detector with 

angles between 35.2 and 212.3 mrad from the optical axis. The use of HAADF angles was to 

reduce the nonlinear intensities and diffraction contrast in the images. The maximum tilt angles 

were limited by the holder to ±75°. To reduce vibration and drift during data acquisition, the 

sample holder was allowed to settle for one hour after insertion into the microscope and also for 
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several minutes after moving to each new angle. Tilt series were manually acquired by changing 

the angle with equal slope increments
18,28-31

. When focusing an image, a nearby nanoparticle 

(generally within 20nm along the rotation axis) was first viewed, thus reducing the unnecessary 

radiation dose to the particle under study
32

. Using this low exposure acquisition scheme, a 

tomographic tilt series of 104 projections with equal sloped increments and a tilt range of 72.6° 

was acquired from a Pt nanoparticle. Figs. 4.7 and 4.8 show the tilt series of 104 projections and 

their corresponding Fourier transform. The probe current was ~100 pA with a dwell time of 48 

μs per pixel, and the magnification of each projection was 3.6×10
6
. The total electron dose of the 

tilt series was estimated to be ~2.5×10
7
 e/Å

2
. To monitor beam induced changes to the Pt 

nanoparticle, three 0° projections were measured during the acquisition of the tilt series (Fig. 4.9). 

The consistency of these projections indicates that the lattice structure of the nanoparticle was 

stable throughout the experiment. Since the pixel size in STEM mode may vary, a calibration 

image of an oriented single crystal Au foil (Ted Pella) was taken in STEM mode under the same 

conditions, and the STEM pixel size was characterized to be 0.35 Å. To enhance the SNR in the 

projections of the tilt series, 1.5×1.5 pixel binning was performed for each projection. The pixel 

size of the binned projections is 0.53 Å.  
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Figure 4.7. Experimental tilt series of 104 projections with a tilt range of ±72.6° and equal slope 

increments, acquired from a Pt nanoparticle using HAADF-STEM (energy: 200 keV; spherical 

aberration: 1.2 mm; illumination semi-angle: 10.7 mrad; detector inner and outer angles: 35.2 

and 212.3 mrad; pixel size: 0.35 Å). The total electron dose of the tilt series was estimated to be 

~2.5×10
7
 e/Å

2
. Careful examination of the projections suggests that the facets of this 

nanoparticle are not sharply defined.  
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Figure 4.8. Fourier transforms of the 104 projections (Fig. 4.7), in which Bragg peaks are visible 

in most projections.  
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Figure 4.9. Three 0° projections (a,c,e) and their Fourier transforms (b,d,f) measured during the 

acquisition of the tilt series (Fig. 4.7) to monitor beam induced changes to the Pt nanoparticle. 

While some minor structural changes occurred on the surface of the three projections, the lattice 

structure of the nanoparticle was consistent throughout the experiment.  
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4.3 EST reconstruction and 3D Fourier filtering  

4.3.1 EST reconstruction 

After performing background subtraction and CM alignment (Section 3.1), the tilt series was 

reconstructed by the EST method
18, 28-31

. The EST iterative algorithm started with converting the 

measured projections to Fourier slices by the fractional Fourier transform
33

. The algorithm then 

iterated alternately between real and reciprocal space through the use of the pseudopolar fast 

Fourier transform
34

. In real space, the voxel values outside a loose support (that is, a rectangular 

box larger than the true boundary of the structure to be reconstructed) and the negative voxel 

values inside the support were set to zero, whereas in reciprocal space the corresponding 

calculated Fourier slices were replaced with the measured ones and the remaining slices kept 

unchanged in each iteration. Each iteration was monitored by an error metric, defined as the 

difference between the measured and calculated Fourier slices, and the algorithm was terminated 

after reaching a maximum number of iterations. Using the iterative EST algorithm, a preliminary 

3D reconstruction was obtained after 500 iterations. An updated 3D support was determined by 

convolving the reconstruction with a Gaussian window and selecting a suitable cut-off. The 3D 

shape of the support was also double checked by examining the reconstruction slice-by-slice to 

ensure the support does not crop the structure. Using the updated support, we performed another 

500 iterations to obtain a new reconstruction. To further improve the 3D reconstruction, we also 

projected the reconstruction back to calculate projections at given angles. By computing the 

cross-correlation between the calculated and measured projections, we further adjusted the 

alignment of the projections to achieve maximum consistency in 3D reconstruction. Usually the 

shift should be one pixel or smaller in each dimension. Otherwise, the data analysis and CM 
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alignment procedure has to be re-done. We then repeated the procedure for improving the 

support and back-projection alignment. The final reconstruction was obtained when no further 

improvements can be made.  

 

4.3.2 3D Fourier Filtering 

Figure 4.10a shows the 3D Fourier transform of the reconstruction and Fig. 4.10c shows a 2.6-Å-

thick central slice in the x-y plane, where the electron beam is along the z axis. However, owing 

to the low signal-to-noise ratio (SNR) in the EST reconstruction, 3D dislocations within the 

nanoparticle cannot be identified at atomic resolution. To enhance the SNR of the reconstruction, 

we developed a 3D Fourier filtering method to identify all the measurable 3D Bragg peaks and 

the 3D distribution around each peak by using the following procedure. First, the 3D Fourier 

transform of the raw reconstruction of the Pt nanoparticle consist of two sets of lattice planes 

{111} and {200}. The intensities of the {111} peaks were estimated to be several times higher 

than those of the {200} peaks. We calculated the average radial distance (d) between the {111} 

and {200} peaks. Two radii were then determined by Rin = R111 - d and Rout = R200 + d, 

where R111 and R200 are the average radial distance for the {111} and {200} peaks, 

respectively. By keeping those voxels in the 3D Fourier transform with their radii between Rin 

and Rout, and setting other voxels to zero, we obtained a 2-shell volume including all the 

measurable 3D Bragg peaks.  

Next, we implemented a method to further reduce noise among the Bragg peaks within the 2-

shell volume. We chose the highest intensity {111} Bragg peak as a reference peak and 

calculated thresholds based on the reference peak. We scanned through the thresholds from 1% 
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to 20% of the reference peak with 1% per step. For each threshold, we set those voxels with 

values larger than the threshold to one and the other voxels to zero, and obtained a 3D mask. The 

3D mask was convolved with a 3 voxel diameter sphere to compute a new 3D mask where the 

convolution process was to retain the 3D distribution of each Bragg peak. By multiplying the 

new 3D mask with the Fourier transform of the raw reconstruction, we obtained a new 3D 

Fourier transform.  By monitoring the change of noise among the Bragg peaks, we found that a 

threshold with 10% of the reference peak is large enough to remove noise among the 3D Bragg 

peaks, while retaining all the measurable {111} and {200} peaks and the 3D distribution around 

each peak (Fig. 4.11). Figure 4.10b shows the 3D Fourier transform of the reconstruction after 

3D Fourier filtering, in which the red and black dots indicate the {111} and {200} peaks of the 

Pt nanoparticle, respectively. The optimized threshold of 10% of the reference peak obtained 

here may vary for different samples.  

Finally, by applying the inverse Fourier transform to the Fig. 4.10b and multiplying it by a 3D 

shape (that is, a tight support) of the Pt nanoparticle determined from the EST reconstruction, we 

obtained the 3D structure of the Pt nanoparticle with a size ~11 2  10 7  7 1   3. Fig. 4.10d 

shows a 2.6-Å-thick central slice in the x-y plane of the Pt nanoparticle, in which nearly all the 

atoms are visible. To confirm the accuracy of the 3D Fourier filtering method we use two 

independent approaches: (1) multislice STEM simulations
35

 of a decahedral Pt nanoparticle with 

edge and screw dislocations and (2) performing a comparison with a 3D Wiener filter
36

 on the 

same experimental data. These two approaches will be explicitly explained in the next two 

sections. 

 



80 
 

 

Figure 4.10.  3D reconstruction of a multiply twinned Pt nanoparticle before and after applying a 

3D Fourier filter. a, 3D Fourier transform of the raw reconstruction of the nanoparticle. b, 3D 

Fourier transform of the reconstruction after 3D Fourier filtering where the {111} and {200}  

Bragg peaks are labelled with red and black dots, respectively. c, A 2.6-Å-thick central slice in 

the x-y plane of the raw reconstruction, where the z-axis is along the beam direction d, The same 

slice of the 3D structure after applying a 3D Fourier filter, in which nearly all the atoms (in 

white) are visible. The clear boundary of the nanoparticle is due to the multiplication of the 3D 

structure with a 3D shape obtained from the EST reconstruction. The insets show an enlarged 

region of the atomic positions before and after applying a 3D Fourier filter.  
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Figure 4.11.  3D Fourier filtering of the EST reconstruction of the Pt nanoparticle. a-f, 3D 

Fourier transforms of the reconstruction after applying a 3D Fourier filter with varying 

thresholds: (a) 5%, (b) 6%, (c) 7%, (d) 8%, (e) 9% and (f) 10% of the highest intensity {111} 

Bragg peak in which the central peak has been filtered out. For each threshold, we set those 

voxels with values larger than the threshold to one and the other voxels to zero, and obtained a 

3D mask. After convolving the 3D mask with a 3 voxel diameter sphere, we obtained a new 3D 

mask to identify all the measurable Bragg peaks and the 3D distribution around each peak. In 

this experiment, we found that a threshold of 10% is large enough to remove noise among the 3D 

Bragg peaks (especially cross-streak noise in the images), while retaining all the measurable 

{111} and {200} peaks and the 3D distribution around each peak. Cross-streak noise is due to 

the missing wedge problem. Although the EST method can significantly alleviate the missing 

wedge problem, it cannot completely solve it
20

. We have also tried a 7% threshold for the 

experimental data and obtained consistent results as the 10% case (Fig. 4.18).  
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4.3.3 Numerical simulations and results 

To further examine the 3D Fourier filtering method, we performed numerical simulations on a 

                decahedral Pt nanoparticle with multislice calculations. The Pt particle 

consists of 4015 atoms with edge and screw dislocations (Figs 4.13a–c, 4.14a and b). A tilt series 

of 63 projections with a tilt range of ±72.6° and equal-slope increments was calculated by 

performing multislice STEM simulations (Fig. 4.12). Two levels of Poisson noise were added to 

the projections of the tilt series with total electron doses of        
   

  
 and        

   
  

, 

corresponding to            and 20%, respectively. Here        is an R-factor used to define 

the level of Poisson noise, 

   
noise simulated

x,y

noise

simulated

x,y

P (x, y) P (x, y)
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Where           
       is the projection calculated from multislice STEM simulations at angle , 

and        
       is the same projection with Poisson noise added. After computing       

  for 

each projection, we calculated       
 by averaging       

  for all the projections. 

 The two tilt series were aligned and reconstructed by the CM and EST methods
18, 28-31 

(Fig. 

4.13d-f, j-l). Because of the low SNR in the reconstructions, not all the atoms or dislocations are 

visible in the raw 3D reconstructions, especially with            (Fig. 4.13j-l). After 

applying a 3D Fourier filter to the raw reconstructions, we obtained two 3D structures of the 

simulated Pt nanoparticle with all the atoms resolved (Fig. 4.13g-i, m-o). Furthermore, 3D grain 

boundaries, as well as the 3D core structures of edge and screw dislocations were determined at 

atomic resolution and are consistent with those in the model (Figs 4.13g-i, m-o and 4.14c-f). 
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Figure 4.12.  Multislice calculations of the simulated Pt nanoparticle (energy: 200 keV, spherical 

aberration: 1.2 mm, illumination semi-angle: 10.7 mrad, defocus: 54.86 nm, detector inner and 
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outer angles: 35.2 and 212.3 mrad, pixel size: 0.35 Å). A tilt series of 63 projections was 

calculated with a tilt range of ±72.6° and equal slope increments. To avoid the zone axis 

orientations and reduce the non-linear effects, the nanoparticle was rotated by 1° each around the 

horizontal (X) and tilt (Y) axes. Poisson noise was added to the tilt series with a total electron 

dose of 5.67×10
4
 e/Å

2
 and Rnoise = 20%.  
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Figure 4.13.  EST reconstruction of a simulated decahedral Pt nanoparticle using multislice 

STEM calculations. The 7.3×7.0×4.5 nm
3
 Pt particle consists of a total of 4015 atoms with edge 
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and screw dislocations. A tilt series of 63 projections with a tilt range of ±72.6° and equal slope 

increments was obtained using multislice STEM calculations
35

 (Fig. 4.12). To simulate 

experimental conditions, the tilt angles were continuously shifted from 0° to 0.5° over the 

process of the tilt series. Two levels of Poisson noise were added to the projections of the tilt 

series with a total electron dose of        
   

  
 and        

   
  

, corresponding to Rnoise 

of 10% and 20%, respectively. a nd b, Two 2.6 Å thick central slices of the Coulomb potential of 

the simulated nanoparticle in the XY and ZX planes, where the Z-axis is the beam direction. c, 

Zoomed view of an edge dislocation in a 2.6 Å thick slice, obtained after a  90° rotation of the 

nanoparticle around the Y-axis and another  35.3° rotation around the Z axis. d, e and f, The 

corresponding 2.6 Å thick slices and the edge dislocation reconstructed from 63 multislice 

STEM projections with Rnoise = 10%. g, h and i, The corresponding 2.6 Å thick slices and the 

edge dislocation with Rnoise = 10%, after applying a 3D Fourier filter with an optimized threshold 

of 5% of the highest intensity {111} Bragg peak. Compared to the threshold (10%) used for the 

experimental Pt nanoparticle, a smaller threshold (5%) here is because cross-streak noise in this 

reconstruction is lower than that in the experimental data (Fig. 4.11). The clear boundary of the 

reconstructed nanoparticle is due to the multiplication of the filtered structure with a 3D shape 

obtained from the EST reconstruction. j, k and l, The corresponding 2.6 Å thick slices and the 

edge dislocation from the raw reconstruction with Rnoise = 20%. m, n and o, The corresponding 

2.6 Å thick slices and the edge dislocation with Rnoise = 20% after applying a 3D Fourier filter 

with a threshold of 5%. After applying the 3D Fourier filter, all the atoms in the 3D 

reconstructions (g, h, m and n) are visible. The 3D core structure of the edge dislocation is 

observed at atomic resolution (i and o) and consistent with the model (c). In our numerical 

simulations, we have also found that 3D Fourier filtering is more accurate than the 2D case.  
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Figure 4.14.  Multislice simulations on 3D imaging of a screw dislocation at atomic resolution. a, 

A 4.8 Å thick slice (about two atomic layers) of the simulated Pt nanoparticle. b, Zoomed view 

of a screw dislocation, in which the zigzag pattern, a characteristic feature of a screw dislocation, 
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is visible. c and d, The corresponding 4.8 Å thick slice and zoomed view of the screw dislocation 

after applying a 3D Fourier filter to the EST reconstruction with Rnoise = 10%. e and f, The 

corresponding 4.8 Å thick slice and zoomed view of the screw dislocation after applying a 3D 

Fourier filter to the reconstruction with Rnoise = 20%. In both reconstructions, the 3D core 

structure of the screw dislocation is visible (d and f) and consistent with the model (b). 

 

In our numerical simulations, we also found that, compared to 2D Fourier filtering method
37-39

, 

3D Fourier filtering is more accurate. This is because in 3D Fourier filtering, each voxel in 3D 

reciprocal space is correlated to all voxels in 3D real space, and vice versa. But in 2D Fourier 

filtering, the correlated information only exists in two dimensions. Thus, for a given object, there 

is more correlated information (voxels) in 3D Fourier filtering than in the 2D case. 

 

4.3.4 3D Fourier filtering method verified by 3D Wiener filter 

To verify the 3D Fourier filtering method, we performed a comparison with a 3D Wiener filter 

using the same experimental data. The Wiener filter is well established for reducing the noise in 

a signal, and it is applied to TEMimages
40

. Fig. 4.15b-d shows the 2.6-Å-thick central slice in the 

x-y plane of the reconstruction after applying the 3D Wiener filter            , where S is an 

estimate of the signal, n is the noise and λ = 1, 2 and 3. Fig. 4.15f-j shows enlarged views of four 

regions for the raw reconstruction, and the reconstructions with the 3D Wiener filter (λ = 1, 2 

and 3) and the 3D Fourier filter. Although the result with the λ = 1 Wiener filter is nosier, the 

atomic positions in the reconstructions using the λ = 2 and 3 Wiener filters and the 3D Fourier 

filter are consistent. 
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Figure 4.15.  Comparison between 3D Wiener and 3D Fourier filtering. a,2.6 Å thick central 

slices in the XY plane of the raw reconstruction. b-d, The same slice of the reconstruction with a 

3D Wiener filter (λ = 1, 2 and 3). e, The same slice of the reconstruction with a 3D Fourier filter 
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(threshold = 10%). f-j, Zoomed views of four regions in (a-e), respectively. While the result with 

the λ = 1 Wiener filter is nosier, the atomic positions with the λ = 2 and 3 Wiener filter and the 

3D Fourier filter are consistent. Due to the convolution effect in applying the 3D Wiener and 3D 

Fourier filters, the boundary of the images in (c-e), especially in (e), is not well defined. After 

multiplying the filtered 3D structure with a 3D shape determined from the EST reconstruction, a 

clear 3D boundary of the Pt nanoparticle can be obtained (see Fig. 4.10d). 

 

4.4 Results and discussions  

After verifying 3D Fourier filtering with a 3D Wiener filter and multislice simulation data, we 

analysed 3D dislocations of the Pt nanoparticle obtained fromthe experimental tilt series. Figure 

4.16 shows grain boundary comparisons between a 2D experimental projection and 2.6-Å-thick 

internal slices of the reconstructed particle. The experimental projection in the x–y plane 

suggests that this is a decahedral multiply twinned nanoparticle
41

 with flat twin boundaries (Fig. 

4.16a and Fig. 4.17). However, a 2.6-Å-thick internal slice in the x–y plane and an enlarged view 

indicate the existence of atomic steps at the twin boundaries (Fig. 4.16b, c) that are hidden in the 

projection (Fig. 4.16a). Figure 4.16d and e shows enlarged views of a twin boundary in a 2.6-Å-

thick slice above and below the slice of Fig. 4.16b, revealing that the atomic steps vary in 

consecutive atomic layers. These atomic steps are also independently verified by applying 3D 

Wiener filtering to the same experimental data (Fig. 4.18). In addition, subgrain boundaries in 

the 2.6-Å-thick internal slice (Fig. 4.16b) are two lattice spacings wider than those in the 

projection (Fig. 4.16a). Figure 4.16f shows an enlarged view of a stacking fault in the 2.6-Å-

thick internal slice ending at a twin boundary, which agrees well with the classical model for a 

face-centred-cubic extrinsic stacking fault
1
 (inset in Fig. 4.16f). 
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Figure 4.16.  Grain boundary comparisons between a 2D experimental projection and several 

2.6-Å-thick internal slices of the reconstructed Pt nanoparticle. a, Experimental projection in the 

x-y plane suggesting that this is a decahedral multiply twinned nanoparticle and that the twin 

boundaries (red lines) are flat. Blue lines show two subgrain boundaries. To enhance the image 

contrast, a 2D Fourier filter was applied to the projection. b, A 2.6-Å -thick internal slice 

indicating the existence of atomic steps at the twin boundaries (red lines). The subgrain 

boundaries (blue lines) are two lattice spacings wider than those in a. c, Enlarged view of a twin 

boundary in b. d and e, a 2.6-Å-thick slice above and below the slice of c, revealing that the 

atomic steps vary in consecutive atomic layers. f, Enlarged view of a stacking fault in the 2.6-Å-

thick internal slice, which is in good agreement with the classical model for a face-centered-

cubic extrinsic stacking fault (inset). These images are displayed with Amira. 
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Figure 4.17. Grain boundary comparison between experimental (a) and calculated (b) 

projections in the XY plane, in which the twin boundaries (red lines) and subgrain boundaries 

(blue lines) are consistent. (a) is the same as Fig. 2a, and (b) was calculated by reprojecting the 

EST reconstruction to the XY plane. 2D Fourier filtering was applied to the projections to better 

show the twin and subgrain boundaries. Some of the differences between (a) and (b) are mainly 

caused by 2D Fourier filtering, which, according to our numerical simulations, is not as accurate 

as the 3D case.  
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Figure 4.18.  a-c, Three consecutive 2.6 Å thick slices across a twin boundary after 3D Fourier 

filtering with a threshold of 10% (i.e. the same as Fig. 4.16c-e). The same three consecutive 

slices after 3D Fourier filtering with a threshold of 7% (d-f),and 3D Wiener filtering with λ = 3 

(g-i), λ = 2 (j-l) and λ = 1 (m-o). The atomic steps at the twin boundary (red lines) are consistent 

in all five cases.  
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In addition to twin boundaries, subgrain boundaries and stacking faults, we observed the 3D core 

structure of edge and screw dislocations at atomic resolution in the Pt nanoparticle. Figure 4.19a 

and b shows a 7.9-Å-thick internal slice of the nanoparticle and an enlarged view of an edge 

dislocation, where the red dots indicate the atomic positions. By computationally ‘sectioning’ the  

7.9-Å-thick slice, we obtained three consecutive atomic layers, each 2.6Å thick (Fig. 4.19c-e). 

The three consecutive atomic layers indicate that the dislocation line is in the        direction, 

and the Burgers vector of the edge dislocation was determined to be  
 

 
      (Fig. 4.19c). To 

visualize a screw dislocation, a 5.3-Å-thick slice (two atomic layers) in the        plane was 

selected (Fig. 4.21b) and then tilted to the [011] direction (Fig. 4.20a). Figure 4.20b shows an 

enlarged view of the slice where the zigzag pattern, a characteristic feature of a screw dislocation, 

is visible. To better visualize the screw dislocation, we display surface renderings of the enlarged 

region (Fig. 4.20c), where the atoms indicated by green dots are in the top layer and those 

indicated by red dots are in the bottom layer. The zigzag pattern is more clearly visualized in the 

surface renderings, in which the green line connects the atoms in the top layer and the red line 

connects the atoms in the bottom layer. The Burgers vector of the screw dislocation was 

determined to be 
 

 
      , and the width of the screw dislocation was estimated to be ~8.9 Å, 

which is consistent with the results obtained by combining high-resolution TEM with image 

simulations for Au and Ir (ref. 42). 
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Figure 4.19.  Observation of the 3D core structure of an edge dislocation at atomic resolution. a, 

A 7.9-Å-thick internal slice of the nanoparticle. The lattice structure on the left and at the bottom 

parts of the slice is not well defined, mainly because this decahedral multiply twinned 

nanoparticle consists of five grains with different orientations. b, An enlarged view of an edge 

dislocation in a where red dots represent the position of the atoms. c, d and e, 2.6-Å-thick atomic 

layers sectioning through the slice of b. The three consecutive atomic layers indicate the 

dislocation line is in the direction of       .The Burgers vector (b) of the edge dislocation was 

determined to be  
 

 
     . 
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Figure 4.20.  Observation of the 3D core structure of a screw dislocation at atomic resolution. a, 

Volume renderings of a 5.3-Å-thick slice (two atomic layers) in the        plane (Fig. 4.21b), 

tilted to the [011] direction to visualize the zigzag pattern, a characteristic feature of a screw 

dislocation. b, Enlarged view of a screw dislocation showing the zigzag pattern. c, Surface 

renderings of the screw dislocation where the atoms represented by green dots are in the top 

layer and those by red dots are in the bottom layer. The zigzag pattern is more clearly visualized, 

the Burgers vector (b) of the screw dislocation was determined to be  
 

 
      , and the width of 

the screw dislocation was estimated to be ~8.9 Å. 

 

Careful analysis of the position of the screw dislocation inside the Pt nanoparticle suggests that 

the screw dislocation is associated with atomic steps at a twin boundary (Fig. 4.21). Although it 
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is often thought that nanoparticles cannot support dislocations, this is not the case for multiply 

twinned particles such as the decahedral one imaged here. These contain a  ~2% angular strain 

and a disclination; at larger sizes this can in principle be relieved by dislocations
41

. A recent 

analysis implied that about one-third of this strain is accommodated at the twin boundaries
43

, but 

as a 2D projection method was used in this analysis, it did not provide further insight. Our results 

strongly suggest that the twin boundaries are not flat and that dislocations associated with atomic 

steps at the boundaries account for the strain relaxation (Fig. 4.21). 
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Figure 4.21.  Association of a screw dislocation with atomic steps at a twin boundary. a, 3D 

volume rendering of the reconstructed Pt nanoparticle viewed along the [110] (Z-axis) direction. 

b, Zoomed view of the screw dislocation and twin boundary. The yellow rectangle shows a 5.3 Å 

thick slice in the        plane (left grain) used for generating Fig. 4.20. The green rectangle 

indicates the location of the screw dislocation in the [110] direction and the twin boundary is 

labeled with a red line. c-f, Four consecutive internal slices each with 2.6 Å thick. The positions 

of the atoms inside the green rectangles gradually change in (c-f) suggesting that the screw 

dislocation is associated with atomic steps at the twin boundary. The association of the 

dislocations with the atomic steps at the boundary accounts for the strain relaxation for the 

multiply-twinned particle. Note that the twin boundary inside the green rectangles is not well 

defined. 

 

4.5 Conclusion 

In this Chapter we report 3D imaging of dislocations in materials at atomic resolution by electron 

tomography. By applying 3D Fourier filtering together with equal-slope tomographic 

reconstruction, we observe nearly all the atoms in a multiply twinned platinum nanoparticle. We 

observed atomic steps at 3D twin boundaries and imaged the 3Dcore structure of edge and screw 

dislocations at atomic resolution. These dislocations and the atomic steps at the twin boundaries, 

which appear to be stress-relief mechanisms, are not visible in conventional two-dimensional 

projections. The ability to image 3D disordered structures such as dislocations at atomic 

resolution is expected to find applications in materials science, nanoscience, solid-state physics 

and chemistry. 
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The significance of the present work is twofold. First, 3D atomic resolution imaging of 

dislocations allows us to observe new structures that are not visible in conventional 2D 

projections; this is expected to advance our fundamental understanding of dislocations in 

materials. Second, although discrete tomography through the use of a priori information has been 

applied to reconstruct 3D surface morphology of a small crystalline nanoparticle at atomic 

resolution
44

 , EST-based electron tomography in combination with 3D Fourier filtering 

represents a general method for 3D atomic resolution imaging of the local structure in 

nanomaterials. Although nanoparticles are used in this study, this method could, in principle, be 

applied to 3D imaging of thin materials at high resolution; the sample thickness is limited only 

by dynamical electron scattering. 
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CHAPTER 5 

Towards Three-Dimensional Structural Determination of Amorphous 

Materials at Atomic Resolution by Electron Tomography 

 

Disordered materials such as glasses are ubiquitous in our daily life. Although the history of 

glassmaking can be traced back to 3,500 BC in Mesopotamia, the 3D atomic structure of glasses 

and other disordered materials has thus far defied any direct experimental determination due to 

its lack of long-range translational and orientational order. Nobel Laureate Philip Anderson 

wrote in Science in 1995, “The deepest and most interesting unsolved problem in solid state 

theory is probably the theory of the nature of glass and the glass transition.” This theoretical 

difficulty stems from the lack of experimental techniques that directly probe the three-

dimensional (3D) atomic arrangement in glasses. In addition, the 3D atomic structures of 

amorphous materials, such as glasses, are key to understanding the origin of glass transitions and 

associated phenomena
1
. Previous studies of amorphous structures have relied on conventional 

diffraction, scattering, Raman, and nuclear magnetic resonance spectroscopy, coupled with 

computational methods, such as molecular-dynamics and ab initio calculations
2–9

. Recently, 

atomic resolution transmission electron microscopy has been used to directly image a two-

dimensional (2D) silica glass supported on graphene
10

. However, presently, there are no 

experimental methods available to directly image the atomic structure of amorphous materials in 

three dimensions. A very promising technique to overcome this barrier is electron tomography
11–

17
. The combination of annular dark-field (ADF) scanning transmission electron microscopy

18
 



106 
 

(STEM) and a novel data acquisition and image reconstruction method known as equally sloped 

tomography
19–27

(EST) has recently achieved a 3D reconstruction of a Au nanoparticle at 2.4-Å 

resolution from a tilt series of 69 projections
16

, as shown in Chapter 3. The center of mass (c.m.) 

approach has been used to align the projections of the tilt series at atomic precision
16

. EST has 

been shown to partially recover missing information in the reconstruction better than other 

tomographic reconstruction algorithms
21

. This missing information arises from the need to limit 

the number of total projections due to radiation damage as well as the missing wedge problem 

(i.e., specimens cannot usually be tilted beyond ±79°). More recently, electron tomography has 

been applied to image nearly all the atoms in a Pt nanoparticle, and the atomic core structure of 

edge and screw dislocations in the nanoparticle have been observed in three dimensions
17

, as 

shown in Chapter 4. Here, we make another significant advance in electron tomography and 

demonstrate, through numerical experiments, a general method for 3D structural determination 

of amorphous materials at atomic resolution. By combining multislice STEM simulations
28

 with 

EST
16,17,19–27

, we have shown the feasibility of determining the 3D atomic structure of a (24.7 × 

24.7 × 24.7) – Å
3
 amorphous silica particle. 

 

5.1 Numerical Simulations  

5.1.1 Molecular-dynamic simulations 

The atomic structure of the amorphous silica particle was generated by molecular-dynamics 

simulations. Presently, there are several methods available for the simulation of amorphous 

structures, such as reverse Monte Carlo
5
 and molecular dynamics

6
. Here a simulated melt and 

quench approach was used to generate an amorphous silica structure with a cooling rate of 2.5 
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K/ps. A set of partial charge Buckingham potentials was employed in the molecular-dynamics 

simulations
7
. The amorphous silica structure obtained by this approach has few coordination 

defects
29

 and is in good agreement with neutron-diffraction data
30

. The glass structure, consisting 

of 334 Si atoms and 668 O atoms (Fig. 5.1),was used to calculate a tomographic tilt series by 

multislice STEM simulations
28

. 

 

 

Figure 5.1.  Three-dimensional atomic structure of an amorphous silica particle generated by 

molecular-dynamics simulations. The simulation cell is 24.7 × 24.7 × 24.7 Å
3
, and the total 

number of atoms is 1002 where the yellow balls represent the Si atoms and the red balls 

represent the O atoms. No coordination defects are observed in the structure. 
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5.1.2 Multislice simulations 

An aberration-corrected STEM with an electron energy of 80 keV was employed in the 

multislice STEM calculation (spherical aberration: 0; fifth order spherical aberration: 2.5 mm; 

probe FWHM: 0.8 Å; pixel size: 0.5 Å). In our multislice simulations, we first determined the 

optimal illumination semiangle and detector inner and outer angles by calculating a number of 

tilt series. Each tilt series consists of 55 projections with a tilt range of ±72.6◦ and equal slope tilt 

increments between projections
16, 17, 19–27

. To simulate potential errors in experimental conditions, 

the ideal EST tilt angles were continuously shifted by 0◦ to 0.5◦ throughout the process of the tilt 

series which was randomly shifted in the image plane. Each tilt series was quantified by Rtilt, 

defined as 



 

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),(),(
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tilt 
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
  (Eq. 5.1) 

where ),( yxPl

  represents the linear projection of the Coulomb potential of the glass particle 

and ),( yxPm

  the multislice simulated projection at tilt angle . By averaging 
tiltR  for 55 

projections, we calculated Rtilt for each tilt series. Table 5.1 shows Rtilt as a function of the 

illumination semi-angle and detector inner and outer angles. Rtilt is smallest when the 

illumination semi-angle is 27 mrad and the detector inner and outer angles are 80 and 400 mrad, 

respectively.  
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Table 5.1.  Rtilt as a function of the illumination semi-angle and the detector inner and outer 

angles. Rtilt is smallest when the illumination semi-angle is 27 mrad and the detector inner and 

outer angles are 80 and 400 mrad.  

 

 

Poisson noise was added to the optimal tilt series with a total electron dose of 2.2x10
6
, 1.43x10

6
, 

5.5x10
5
 and 3.0x10

5
 e/Å

2
, respectively. An Rnoise was used to quantify the noise level for each tilt 

series, defined as  
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where ),( yxPnoise

  is the projection calculated from multislice STEM simulations at angle   with 

Poisson noise added. By averaging 
noiseR  for 55 projections, we obtained Rnoise for each tilt series. 

With the dose level of 2.2×10
6
, 1.43×10

6
, 5.5×10

5
 and 3.0×10

5
 e/Å

2
, Rnoise was calculated to be 

10%, 12%, 20% and 25%, respectively. Figure 1a shows a representative multislice projection at 

0° with Rnoise = 25%. To examine the experimental feasibility, we acquired a 0° projection of a 

SiO2 structure by using TEAM 1, an aberration-corrected STEM at the National Center of 

Electron Microscopy, under similar conditions as the multislice STEM simulations. Figure 5.2b 

shows the experimental projection of the SiO2 structure. Figure 5.2c and d show the 2D Fourier 

modulus of Figs. 5.2a and b, respectively. The horizontal and vertical line scans across the origin 

of the 2D Fourier modulus (Figs. 2e and f) indicate that the overall features of the two 

projections are consistent. 
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Figure 5.2.  a, Representative multislice STEM projection at 0° with Rnoise = 25%. b, 

Experimental projection of a SiO2 structure, acquired by an aberration-corrected STEM under 

the similar conditions as the multislice STEM simulations. c, The 2D Fourier modulus of a. d, 

The 2D Fourier modulus of b. e, Horizontal line scans across the origin of the 2D Fourier 

modulus where the spatial frequency (q) is defined as the inverse of the spatial resolution. f, 

Vertical line scans across the origin of the 2D Fourier modulus. The overall features of the two 

projections are consistent, and the differences between the two projections are partially because 

the experimental SiO2 structure is thicker than the simulation. 
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5.1.3 Projection alignment and EST reconstruction 

In order to achieve an atomic resolution reconstruction, the projections of the tilt series have to 

be aligned along both the X and the Y axes with atomic precision where the Y axis is the rotation 

axis and the Z axis is the beam direction. To align the tilt series along the Y axis, we projected 

each projection to the Y axis to obtain a one-dimensional (1D) curve. By using the 1D curve of 

the 0◦ projection as a reference, we aligned the remaining 54 1D curves to the reference based on 

cross correlation. To align the tilt series along the X axis, we used the c.m. method mentioned in 

Chapter 3
16, 17

. First, each projection was projected to the X axis to obtain 55 1D curves. We then 

calculated the center of mass (Xc.m.) for each 1D curve and set Xc.m as the origin of the 1D curve. 

By repeating the procedure for all 1D curves, we aligned the projections along the X axis. The 

accuracy of the c.m. alignment method is a fraction of a pixel where the pixel size is 0.5 Å. 

After aligning the tilt series, the 3D structure of the glass particle was reconstructed using the 

EST algorithm
16, 17, 19–27

. EST first converted the 55 projections to Fourier slices by the fractional 

Fourier transform
31

. The algorithm then iterated back and forth between real and reciprocal 

spaces through the use of the pseudopolar fast Fourier transform
32

. In real space, the values 

outside an estimated loose support (i.e., a rectangular box larger than the particle) and any 

negative values inside the support were set to zero. In reciprocal space, the corresponding 55 

Fourier slices were replaced with the known ones, and the remaining slices were kept unchanged. 

The convergence of the algorithm was monitored by an error metric, defined as the difference 

between the 55 known and the calculated Fourier slices. After 200 iterations, the error metric did 

not improve any further, and a 3D image was obtained. A tighter 3D support was determined 

from the image. Using the tighter support, we ran the EST algorithm for 200 additional iterations 
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and obtained a final 3D reconstruction. We repeated the same reconstruction procedure for all 

four tilt series with different noise levels. Compared to phase retrieval in coherent diffraction 

imaging
33, 34

, the EST algorithm is designed to recover the missing information and, thus, 

converges more quickly to a final solution. 

 

5.1.4 Atom tracing 

To locate the Si and O atoms in the EST reconstructions, we implemented an atomic model 

refinement method based on the Collaborative Computational Project Number 4 (CCP4). CCP4 

was first established in 1979 and has assembled a comprehensive collection of programs for 

phase determination and model refinement in macromolecular crystallography
35

. Here we used a 

CCP4 program called PEAKMAX to trace Si and O atoms in the EST reconstructions. Three 

constraints have been used in the atom tracing procedure: (i) The voxels with atoms should have 

larger values than those without atoms, (ii) the voxels with Si atoms should have larger values 

than those with O atoms, and (iii) each atom has a finite size. After searching for peaks in each 

3D reconstruction, PEAKMAX listed the peak positions and peak intensity in descending order. 

Figure 5.3 shows the peak intensity (σ) as a function of the number of peaks (atoms) for the 

reconstructions with different noise levels where σ represents the peak intensity in PEAKMAX. 

A threshold peak intensity is observed, which is due to the image contrast difference between Si 

and O atoms. In high-angle ADF (HAADF)-STEM, the diffraction and phase contrast effects are 

significantly reduced, and the image contrast of atoms is roughly proportional to Z1.8 where Z is 

the atomic number
11, 13, 18, 36

. The peak intensity difference between Si and O atoms is obvious 

with Rnoise = 10% (Fig. 5.3a) and remains distinguishable with Rnoise = 12%, 20%, and 25% (Figs. 
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5.3b–d). These results indicate that Si atoms are above the threshold peak intensity and the O 

atoms are below the threshold. The number of Si and O atoms traced is 334 and 668, respectively, 

which are in good agreement with the model. 

 

 

Figure 5.3.  Peak intensity (σ) as a function of the number of peaks (atoms) for the 

reconstructions with a noise level of a, Rnoise = 10%, b, 12%, c, 20%, and d 25%, where σ 

represents the peak intensity in PEAKMAX. A threshold peak intensity is observed in the curves, 

which is due to the image contrast difference between Si and O atoms. 
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5.2 Results and discussions  

After tracing the atoms in the EST reconstructions, we examined the 3D atomic structure of the 

glass particle. Figures 5.4a–c show three 3-Å-thick central slices in the YZ, XZ, and XY planes, 

respectively, of the original glass particle in which the yellow spheres represent the Si atoms and 

the red spheres represent the O atoms (hardball model). The corresponding three slices of the 

EST reconstruction with Rnoise = 10% are shown in Figs. 5.4d–f  where the traced atomic 

positions are in excellent agreement with those in the original structure. With the increase in the 

noise level, the 3D atomic structure of the reconstruction is slightly degraded. Figures 5.4g–i 

show the corresponding three slices of the reconstruction with Rnoise = 25%. Whereas the 

positions of all Si atoms and most O atoms are correctly located, several O atoms deviate from 

their correct positions as indicated by arrows in Figs. 5.4g–i. 
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Figure 5.4.  a–c Three 3-Å thick central slices in the YZ, XZ, and XY planes of the original glass 

particle in which the yellow spheres represent the Si atoms and the red spheres represent the O 

atoms (hardball model). d–f Corresponding slices of the EST reconstruction with Rnoise = 10% 

where the atomic positions are in excellent agreement with those in the original structure. g–i 

Corresponding slices of the reconstruction with Rnoise = 25%. While the positions of all Si atoms 

and most O atoms are correctly located, several O atoms are misplaced as indicated by arrows. 
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To quantify the traced atoms, we calculated the deviation of the atomic positions relative to the 

original glass structure model. Figure 5.5 shows the deviation as a function of the traced atoms 

for four different noise levels. With Rnoise = 10%, all Si and O atoms are correctly located from 

the EST reconstruction. In this case, the deviation of all atomic positions is within the resolution 

of the reconstruction [Fig. 5.5a]. When Rnoise is increased to 12%, one O atom deviates about 2.2 

Å from its correct position [Fig. 5.5b]. With Rnoise = 20%, 12 O atoms are misplaced, and the 

deviations of all other atoms are within 0.6 Å [Fig. 5.5c].With Rnoise = 25%, 38 O atoms deviate 

from their correct positions with an average deviation of 2.5 Å, and the positions of all other 

atoms are correctly located [Fig. 5.5d]. These results suggest that, with an electron dose above 

1.43 × 10
6
 e/Å

2
 per tilt series (approximately 14-μs dwell time for an image with 70 pA of probe 

beam current), the positions of all Si and O atoms of the glass particle can be accurately located 

from the EST reconstruction. Finally, we want to point out that our numerical experiments did 

not take into account the contribution from a support film, which would reduce the signal-to-

noise ratio of the projections especially at high angles. We expect to solve this problem by 

making needle-shaped SiO2 samples and avoiding the use of a support film. 
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Figure 5.5.  Deviation of the atomic positions as a function of the traced atoms for the four 

different noise levels. a, The positions of all Si and O atoms are correctly located from the EST 

reconstruction with Rnoise = 10%. b, One O atom is misplaced with Rnoise = 12%. c, Twelve O 

atoms are misplaced, and the positions of all other atoms are correctly identified with Rnoise 

=20%. d, Thirty-eight O atoms are misplaced, and the positions of all other atoms are correctly 

located with Rnoise = 25%. 
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5.3 Conclusions  

In conclusion, by using multislice STEM simulations
28

, we calculated a tomographic tilt series of 

55 projections from a (24.7 × 24.7 × 24.7) − Å
3
 glass particle, consisting of 334 Si and 668 O 

atoms. After adding different levels of Poisson noise to the projections, we aligned the tilt series 

with the c.m. method
16, 17  

and performed tomographic reconstructions with the EST algorithm
16, 

17, 19–27
. The atomic positions in the reconstructed glass particle were identified by PEAKMAX, a 

program originally developed for macromolecular crystallography. We found that, with a low 

noise level (Rnoise =10%), the positions of all 1002 Si and O atoms can be correctly located from 

the EST reconstruction. With an increase in the noise level (Rnoise = 12%, 20%, and 25%), all the 

Si atoms and most of the O atoms can be accurately traced, whereas, several O atoms deviate 

from their correct positions. This study demonstrates the feasibility of determining the 3D atomic 

structure of amorphous materials through the combination of aberration-corrected HAADF-

STEM and the EST method. To confirm our numerical simulations, we have acquired an 

experimental projection from a SiO2 structure with an aberration-corrected STEM under similar 

conditions as the multislice simulations. The overall features of the experimental projection 

agree with the multislice STEM simulation. We expect that the development of this general 

method will find applications across several disciplines in the physical sciences. 
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