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Abstract  
By developing metrics for evaluating cleanroom air system performance and overall load intensity, this paper provides energy 
benchmarking results for thirteen cleanroom environmental system performance, and identifies opportunities for improving 
cleanroom energy efficiency while maintaining or improving cleanroom contamination control.  Comparisons with IEST 
Recommended Practice are made to examine the performance of cleanroom air systems.  These results can serve as a vehicle 
to identify energy efficient cleanroom design practices and to highlight important issues in cleanroom operation and 
maintenance.  Results from this study confirm that there are opportunities in improving energy efficiency of cleanroom 
environmental systems while maintaining effective contamination control. 

Introduction 
Effective contamination control is the principal reason to operate a cleanroom.  Because the purpose of a cleanroom is to 
control the concentration of airborne particles to minimize undesired existence of particles inside the cleanroom, and to 
maintain certain environmental conditions[1], environmental systems (HVAC systems) designed for cleanrooms are extremely 
energy intensive compared to their counterparts in commercial buildings.  Some industries use production metrics such as 
watts per unit of product, which focus on overall production efficiency but overlook the efficiency of energy intensive 
environmental systems.  Since energy generally represents a significant operating cost for cleanroom facilities, improving 
energy efficiency in cleanrooms can contribute to significant cost savings.  Because the number of cleanrooms in the US and 
around the world has been growing rapidly in the last decade and involves many industries, improvement in energy efficiency 
is becoming more important.  

Energy intensity varies with the system design, cleanliness levels[2], cleanroom functions, and critical parameter control such 
as temperature, humidity, etc.  According to an earlier study[3], an estimate of cleanroom electricity intensity for the energy 
use for cooling and fan energy ranged from 159 kWh/ft2 to 945 kWh/ft2, corresponding to different cleanroom classes in 
California.  Depending on cleanroom class, fan energy intensity ranged from 5 W/ft2 to 96 W/ft2.  Derived from the data in 
the study, we estimate that fan energy use for cleanrooms of ISO Classes 3, 4, 5 is the most electricity intensive, and 
collectively accounts for approximately 80% of the fan energy use for cleanrooms of all classes.  A review of studies on 
cleanroom costs indicated that energy cost could amount to 65-75% of the total annual cost associated with cleanroom 
operation and maintenance in Europe[4].  Another study conducted a comprehensive review of strategies for energy 
benchmarking and specifically addressed issues associated with cleanrooms and laboratory-type buildings[5].  A later study 
indicated that HVAC energy use accounted for 36-67% of the total cleanroom energy use in three facilities in California[6].  
There is, however, a lack of data on the energy performance of actual operating cleanroom environmental systems.   

To better understand the energy performance of existing cleanroom environmental systems in various industries, and to 
identify opportunities in improving energy-efficiency thereby achieving energy savings, it was necessary to obtain field data 
and to evaluate how real environmental systems actually perform.  This data also enable building owners, operators, and 
designers to compare energy use of their facility to others. 

Objective 
The objectives of this paper are to 1) present energy benchmarking results for environmental system performance related to 
thirteen cleanrooms; 2) examine the performance of air systems as compared to relevant IEST Recommended Practice[7]; and 
3) identify opportunities for improving cleanroom energy efficiency while maintaining or improving cleanroom 
contamination control.  This paper focuses on air system performance, and uses important metrics to assess air system 
performance and process load intensity.  The benchmarking results can serve as a vehicle to identify energy efficient design 
practices, efficiency innovations, and to highlight important issues in cleanroom operation and maintenance. 
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Approaches 
The main approach employed was to conduct field measurements and monitoring in the environmental systems serving 
cleanrooms.  To characterize the physical information of each cleanroom system, we also compiled related system 
information based upon a review of building and system drawings, existing balance reports, vendor submittals, energy 
management systems, and interviews with building engineers.  In addition, physical inspections were carried out to locate 
field measurement points and to collect monitoring data.   

We selected cleanrooms of different cleanliness classes, which were likely to be the most energy intensive HVAC systems 
serving cleanrooms.  Specifically, this study includes field measurements and monitoring of air systems in 13 cleanrooms 
classified as ISO Cleanliness Classes 4, 5 and above[1], which respectively correspond to Cleanliness Classes 10, 100, and 
above in Federal Standard 209E[8]. Because Federal Standard 209E has been recently cancelled and the industry is in the 
transition of adopting the ISO cleanliness classification, we preserve limited use of the FS209E cleanliness classification in 
this paper.  After the on-site measurements were completed, performance data were entered into a database, which was used 
for further analysis. 

We develop relevant metrics to evaluate air system’s energy performance for various designs, cleanliness classes, and 
processes occurring in the cleanroom.  The metrics allow direct comparison of energy intensive systems and components 
based on design or measured data.  Specifically, air system efficiency is defined as the airflow rate per unit of total electricity 
input (cfm/kW).  Since cleanrooms are used for many different activities, we expected wide variations in process loads.  
Process heat loads and its removal by air systems largely influences the cooling load dealt by HVAC systems.  A portion of 
the process heat load may also be accommodated directly by the chilled water system.  To compare process load intensity, 
process load was characterized based upon the process heat output per unit of primary cleanroom floor area (W/ft2).  Table 1 
defines key metrics used in this paper.  

Table 1.  Performance Metrics of Cleanroom Air Systems and Process Load 

Metrics Definition Unit 
Re-circulation Air Handler Unit 
Efficiency 

Recirculated airflow rate per kW of electricity used by all re-
circulation air fans Cfm/kW 

Power Intensity for Re-circulation 
Air Handler Unit  

Total fan power of re-circulation air handler unit per unit of 
primary cleanroom floor area W/ft2 

Re-circulation Air Change Rate  Re-circulation airflow rate divided by primary cleanroom 
volume 1/hr 

Average Cleanroom Air Velocity Re-circulation airflow rate divided by primary cleanroom 
floor area fpm 

Make-up Air Handler Unit 
Efficiency 

Make-up airflow rate per kW of electricity used by make-up 
air fans Cfm/kW 

Process Load Intensity Process load per unit of primary cleanroom floor area W/ft2 

Results 

General Description of the Cleanroom Air Systems 
This study includes field measurements and monitoring to evaluate the performance of air systems in 13 cleanrooms of three 
cleanroom cleanliness classes.  Five of them were ISO Class-4 cleanrooms, and eight of them were ISO Class-5 cleanrooms 
(including one combined with Class-6).  

The majority of the energy use in cleanroom HVAC systems is associated with the re-circulation system and to a lesser 
degree, the make-up air and exhaust systems.  This paper presents the results of benchmarking re-circulation systems and 
make-up air systems in various cleanrooms.  Re-circulation air systems re-circulate clean conditioned air through high 
efficiency particulate air (HEPA) or Ultra Low Penetration Air (ULPA) filters for cleanrooms.  Re-circulation systems in this 
study utilize three common designs: a) Fan-tower with pressurized-plenum (FT-PP); b) Distributed re-circulation (DRC) air 
handler units with ducted-systems; and c) Fan-filter units (FFU).  Make-up air systems provide additional fresh air that is 
drawn from outdoors to replace air lost through exhaust or leakage and thereby maintain certain cleanroom pressure.  For 
cleanrooms that generate toxics or hazardous materials that need to be removed to ensure cleanliness, health, and safety, 
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building codes require exhausting minimum amounts of air from the cleanroom, which must then be replaced through the 
make-up air system.  For these applications, significant quantities of make-up air are required.  

In a fan tower system, re-circulation air is discharged into a pressurized plenum-type system or through ductwork to HEPA or 
ULPA filters in the ceiling.  FT-PP systems are often most efficient but also may require additional sound attenuation.  This 
adds to the overall system static pressure, which increases the required fan horsepower.  In a DRC system serving a specific 
area of the cleanroom, the re-circulation air is discharged into an open plenum through multiple mid-sized fan units.  They 
may be connected through ductwork, connected directly to plenum ceiling boxes, or connected directly to HEPA filters in the 
ceiling.  DRC systems generally have large air passageways and have lower static pressures and noise levels compared to 
other types of systems.  In fan-filter unit systems, a small fan is integrated with a HEPA or ULPA filter housing which is 
typically the same size as a ceiling grid.  FFU systems have advantages in redundancy, and ease of design and construction.   

Performance of Re-circulation Air Systems  

Circulation Energy Efficiency for Re-circulation Air Systems  
Table 2 shows the energy efficiency of different types of re-circulation air systems used to re-circulate clean conditioned air 
for five ISO Class-4 cleanrooms, seven ISO Class-5 cleanrooms, and one ISO Class-5/6 cleanroom.  Overall, the system 
efficiency varied dramatically from cleanroom to cleanroom.    

Table 2.  Performance Data of Re-circulation Air Systems 

Cleanroom 
Cleanliness 

Class 
(ISO[1]) 

 
Cleanroom 

Cleanliness Class 
(FS 209E[8]) 

 
RC-AHU 

Airflow Type 

 
RC-AHU Efficiency 

(Cfm/kW) 

 
RC-AHU Power 
Intensity (W/ft2) 

Class 4 Class 10 FT-PP 4839 16.3 
Class 4 Class 10 FT-PP 3152 37.5 
Class 4 Class 10 FT-PP 3301 31.3 
Class 4 Class 10 FT-PP 3086 32.9 
Class 4 Class 10 DRC 1898 30.5 
Class 5 Class 100 FFU 1276 15.6 
Class 5 Class 100 FFU 1325 21.6 
Class 5 Class 100 FT-PP 7050 2.8 
Class 5 Class 100 FT-PP 10138 7.9 
Class 5 Class 100 FT-PP 4831 9.5 
Class 5 Class 100 DRC 2214 10.9 
Class 5 Class 100 DRC 1087 24.1 

Class 5/6 Class100/1000 FFU 2374 15.8 

Among the five ISO Class-4 cleanrooms, the efficiency of re-circulation air systems ranged from 3,086 to 4,839 cfm/kW.  FT 
pressurized-plenum systems had fan system efficiencies over 3,000 cfm/kW.  This was more efficient than the DRC ducted 
distributed system tested, which was below 2,000 cfm/kW.   

Including the Class-5/6 cleanroom, the efficiency of re-circulation air systems serving ISO Class-5 cleanrooms ranged from 
1,087 to 10,138 cfm/kW.  Among these, energy efficiency of the FT pressurized-plenum systems ranged from 4,831 to 
10,138 cfm/kW, which was more efficient than their counterparts for cleanrooms of Class-4 were.  This was largely because 
more space was available for the re-circulation system layout in the Class-5 cleanrooms, thus reducing air resistance in 
general.  

In addition, these FT pressurized-plenum systems were relatively more efficient compared to other types of re-circulation 
systems (DRC and FFU) serving ISO Class-5 cleanrooms.  This was because in general pressure drops along the FT 
pressurized-plenum system were lower while pressure drops along the DRC air handler units and FFUs were higher.  A study 
shows that on average the energy effectiveness for three types of re-circulation air systems was 0.168 W/cfm for a fan tower 
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(with a pressurized-plenum), 0.202 W/cfm for a distributed RC-AHU, and 0.212 W/cfm for a fan-filter unit[9].  These 
translate into the energy efficiency metric defined here as the following: 5,952 cfm/kW for the fan-tower  
(pressurized-plenum), 4,950 cfm/kW for the DRC air handler units, and 4,717 cfm/kW for the FFUs.  A state-of-the-art 
fan-filter unit with an electronically commutated DC motor operates more efficiently (as much as 60 percent) than do models 
with conventional motors[10].  

Compared to these, the fan-filter units and distributed RC-AHUs in this study were rather inefficient in energy performance, 
ranging from 1,276 to 2,374 cfm/kW (for FFUs), and from 1,087 to 2,214 cfm/kW (for DRC systems).  We should however 
point out that for FFUs, the total fan energy use also includes the fan energy used to transport the conditioned air in addition 
to the energy use directly by fan-filter units.  Overall, the low energy efficiency illustrated was due to a combination of 
inefficient motors and inefficient design or layout of the re-circulate pathways.  In contrast, systems with fan tower 
pressurized plenums were much more efficient.  

Fan Power Intensity for Re-circulation Air systems 
Table 2 also includes the measured fan power intensity of re-circulation air systems for the same five ISO Class-4 
cleanrooms and seven ISO Class-5 cleanrooms and one ISO Class-5/6 cleanroom.  Overall, fan power intensity varied 
dramatically from cleanroom to cleanroom.  Among ISO Class-4 cleanrooms, fan power intensity of the re-circulation air 
handler units ranged from approximately 16 to 38 W/ft2.  Including the ISO Class-5/6 cleanroom, the fan power intensity of 
re-circulation air handler units in ISO Class-5 cleanrooms ranged from approximately 3 to 24 W/ft2.  This indicates that 
power intensity for various re-circulation air systems for cleanrooms of the same cleanliness class can differ by more than a 
factor of eight.  In ISO Class-5 cleanrooms, FFUs and DRC units on average used more fan power per cleanroom area than 
pressurized-plenum systems did.    

Compared with the same types of systems (e.g., pressurized plenum) for the cleanrooms studied, the measured intensities 
indicate that re-circulation fan power intensity was greater for higher cleanliness levels, whereas the efficiency decreased 
accordingly.  The findings indicate that it is important for designers not to specify higher cleanroom cleanliness than is 
needed for a specific cleanroom process.  Designing and operating a cleanroom with higher cleanliness levels than needed 
would increase fan power demand and would be less economical to operate. 

The electrical demand  (kW) for fan power at the same time is, however, largely affected by system design and process 
equipment needs, in addition to the requirements for cleanroom cleanliness.  From the performance data discussed, one can 
easily see the wide variations of energy efficiency even among cleanrooms of same cleanliness class.  This was largely due to 
the system design and space allocation.  Furthermore, the design details and layout alone can sometimes dictate the 
magnitude of overall air system efficiency, regardless of the cleanroom cleanliness level.  For example, the re-circulation 
system efficiency for cleanrooms with a more stringent cleanliness level (e.g., ISO Class-4 with a distributed re-circulation 
system) turned out to be more efficient than those with lower cleanliness levels (e.g., ISO Class-5 with a distributed system).  
This confirms that air system design and space allocation can play a significant role in affecting the system efficiency.  The 
implications from the findings for cleanroom system design are that carefully reducing resistance in the air path throughout 
air systems can lower pressure drops, and thus require less power and energy to recirculate the air needed to maintain 
contamination control.  From a design point of view, the planning and eventual design of the cleanroom should provide 
necessary adjacencies and space for efficient air systems and components. 

Re-circulation Air Change Rates and Cleanroom Air Velocities 
Simply to relate a cleanliness class level to a specific cleanroom air velocity is a prohibitively complex task due to the 
number of factors involved.  For example, the operating protocol, flow direction, filter performance, equipment and space 
configuration all have direct or indirect impact on cleanliness level given the same cleanroom air velocity.  Unfortunately, 
there is a lack of scientific basis for determining an optimal cleanroom re-circulation air change rate. 

The Institute of Environmental Science and Technology recommends a range of air change rates between 300 and 540/hr for 
ISO Class-4 (Class-10) cleanrooms for a unidirectional airflow pattern[7].  The air change rates correspond to cleanroom air 
velocities between 50 and 90 fpm (or 0.254-0.457 m/s) based upon a ceiling height of 10 ft and full ceiling coverage.  
Similarly, the IEST also recommends a range for air change rates between 240 and 480/hr for ISO Class-5 (Class-100) 
cleanrooms, which correspond to cleanroom air velocities between 40 and 80 fpm (or 0.203-0.406 m/s) for any airflow 
pattern (unidirectional, non-directional and mixed)[7].  These ranges were originally established based on design of earlier 
cleanrooms built to support the space program before the 1970s.  ASHRAE[11] indicates that re-circulation rates around 
90 cfm per square foot, which equals cleanroom air velocities of 90 fpm (or 0.457 m/s) on average for full ceiling coverage, 
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are usual for ISO Class-5 (Class-100) or cleaner cleanrooms.  A recent study[12] recommended 70-100 fpm for cleanrooms of 
ISO Class-1 through 5, and provided a low range of air change rate (up to 275/hr) for ISO Class-5 through 8.  Apparently, 
there have been conflicting guidelines and acceptable ranges, however, none of the above provided a scientific basis for the 
guideline.  In practice, acceptable contamination levels have been achieved with either significantly lower or higher than 
recommended air change rates.  There is some confusion among designers and operators in use of guidelines, rules of thumb, 
and their actual operating experience.   

The in-situ measurements provide data to indicate how the re-circulation system actually performed.  Figure 1 shows the 
actual air change rates and average air velocities for the cleanroom measured.  For the five cleanrooms of ISO Class-4 
(Class-10), we have measured the air change rates at 385, 474, 516, 591, and 678/hr each, corresponding to average air 
velocities between 58 fpm (0.3 m/s) and 118 fpm (0.6 m/s).  This indicates that there was a large variation in re-circulation air 
supply among different systems, depending on design, layout, and cleanroom activities.  Obviously, some of these exceeded 
higher limit that IEST recommended.  Energy saving opportunities might well exist in the meanwhile.  For example, reducing 
the re-circulation air supply by 10% and 20% for the cleanrooms with air change rates of 591 and 678/hr, respectively, could 
bring down the air change rates below or around 540/hr, which is near the upper limit recommended by IEST for Class-4 
cleanrooms.  The reduction of airflow rates would then in theory curtail re-circulation fan power by up to 30-50% while 
complying with the recommended air change rates.  In addition, the decrease of fan power use to re-circulate cleanroom air 
would also reduce the overall cooling load, which would otherwise induce extra heat generated from fan operation.  

For the ISO Class-5 cleanrooms, the measured air change rates ranged from 98 up to 479/hr, corresponding to average air 
velocities between 20 fpm (0.1 m/s) and 80 fpm (0.4 m/s).  The majority of the air change rates fell below the recommended 
lower limit of 240/hr.  Although generalization of these findings may be premature based upon the limited number of 
cleanrooms tested, the IEST recommended range of 240 to 480/hr for all ISO Class-5 (Class-100) cleanrooms appears to 
require more re-circulation airflow than is needed.   
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Figure 1.  Actual re-circulation air change rates and cleanroom air velocities as compared 
to IEST recommended values[7]. 
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Make-up Air Systems 
Outdoor air supply is needed to make-up exhaust (general exhaust, heat exhaust, process exhaust, etc.) and exfiltration to 
maintain pressurization associated with the cleanroom.   

Figure 2 shows the measured energy efficiency of make-up air systems along with the re-circulation air systems of for three 
ISO Class-4 cleanrooms and eight ISO Class-5 cleanrooms and above.  Except for two Class-5 cleanrooms, the energy 
efficiency of make-up air systems overall was much lower than that of the re-circulation air systems (by a factor of up to 18) 
serving the same cleanrooms.  This was probably because of greater pressure losses along the make-up air pathways, which 
were likely caused by a combination of longer duct runs, more-confined space available for efficient duct layouts, and less-
efficient fans or motors.  Including the Class-5/6 cleanroom, the efficiency of make-up air handler units in ISO Class-5 
cleanrooms ranged from around 540 up to 1,800 cfm/kW.  Unlike re-circulation systems, the make-up air systems efficiency 
varied less dramatically from cleanroom to cleanroom (by a factor of up to 3 for both cleanliness classes combined).  All of 
these indicate that the energy efficiency of make-up air systems can be improved by integrating mechanical design with 
architectural design at early stage of the project, and by adopting fans and motors that are more efficient. 
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Figure 2.  Energy efficiency for make-up air and re-circulation air systems. 

 

Process Loads 
Cooling load required to remove process heat is one of the major considerations during the design and operation of HVAC 
systems.  The amount of process load varies significantly from cleanroom to cleanroom.  How to estimate process loads in 
order to accurately size HVAC systems often presents a design challenge.  These systems are frequently oversized due to 
inaccurate heat load or load diversification assumptions.  We measured energy use by process tools in the cleanrooms tested.  
Figure 3 illustrates the measured process load intensity within some of the cleanrooms.  Depending upon the process 
activities, the process load intensity ranged from 4 to 26 W/ft2 among six ISO Class-5 cleanrooms, and from 36 to 49 W/ft2 in 
two ISO Class-4 cleanrooms.  These were generally quite low compared to many cleanrooms that are designed for design 
load intensities between 75 and 125 W/ft2. 
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Figure 3  Cleanroom process load density (W/ft2). 

 
 

While the magnitude of process loads is dependent on cleanroom activities, the measured results suggest a strong likelihood 
that process loads were often over-estimated and that HVAC systems have been commonly over-sized.  Although oversizing 
may be intentional for additional reasons such as the provision for future expansion, reliability, etc., tendencies to add extra 
conservatism in the design process often result in extra energy waste.  The result shown above confirms that process 
generated heat load tends to be over-estimated in practice and therefore HVAC systems are oversized.  The design 
implication from this benchmarking analysis is that it is necessary and critical to have more accurate estimates of process 
load for an energy efficient system design. 

Discussion 
Cleanroom HVAC systems account for a large percentage of the energy budget.  Depending on cleanroom cleanliness 
requirement, cleanroom size, system design and utility rates, the cost may vary significantly.  In this study, we tested 
cleanrooms with various cleanroom areas, including some over 20,000 ft2.  To illustrate the cost impact of an efficient re-
circulation system, we looked at the cost difference for cleanroom with an assumed floor area of 20,000 ft2, operating 24 
hours per day for the whole year (8,760 hours), and an electricity cost of $0.065 per kWh.  By comparing the various power 
densities of the benchmarked re-circulation systems for a cleanroom of 20,000 ft2, this amounts to an annual kWh cost alone 
of up to 0.43million US dollars, as shown in Figure 4.  Figure 4 also indicates that even a slight decrease in re-circulation 
fan power for energy intensive cleanrooms, which could be realized through careful space planning, design, operation, and 
control, would result in considerable cost reduction in operating the cleanrooms. 

 

7 



������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������

�������
�������

������
������
������
������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������$-

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

$450,000

Clas
s 1

0, 
 Pres

su
riz

ed
 Plen

um

Clas
s 1

0, 
 Pres

su
riz

ed
 Plen

um

Clas
s 1

0, 
 ID

21
 Pres

su
riz

ed
 Plen

um

Clas
s 1

0, 
Pres

su
riz

ed
 Plen

um

Clas
s 1

0, 
Rec

irc
ula

tio
n A

HU

Clas
s 1

00
, F

an
 Filte

r

Clas
s 1

00
, F

an
 Filte

r

Clas
s 1

00
, P

res
su

riz
ed

 Plen
um

Clas
s 1

00
, P

res
su

riz
ed

 Plen
um

Clas
s 1

00
, P

res
su

riz
ed

 Plen
um

Clas
s 1

00
,  R

ec
irc

ula
tio

n A
HU

Clas
s 1

00
, R

ec
iru

lat
ion

 AHU

Clas
s 1

00
/10

00
  F

an
 Filte

r

Es
tim

at
ed

 A
nn

ua
l k

W
h 

C
os

t (
0.

06
5$

/k
W

h)

Figure 4  Annual kWh cost of re-circulation air systems for a 20,000 ft2 cleanroom. 

 

To determine which air management system is the best selection for a given cleanroom application, there is no direct or 
simple answer.  The key is that designers should carefully consider initial cost, operating cost, process load, and requirements 
for cleanroom performance and contamination control.  For example, the most efficient pressurize-plenum may require 
additional space.  It may also require noise control, which would increase air system static pressure and thus increase the fan 
power.  So comparing these undesired consequences against the efficiency gains from the selection of an efficient plenum 
system is the challenge.  Another example is that fan-filter units exist that are more efficient than those tested in the study.  
They come with electronically commutated DC motors and can thereby significantly reduce the operating cost over their 
lifetime.  Currently there is no standard comparison data however to allow designers and owners to easily compare 
performance of these units.  This type of fan-filter unit requires larger air passageways and larger cooling coil surfaces in the 
re-circulation path in order to reduce air friction, however.  

The appropriate amount of re-circulation airflow is critical to the satisfactory performance of cleanroom environmental 
systems as well as effective contamination control.  Apparently, there is a need to further examine the scientific basis for 
appropriate ranges of air change rates and corresponding average cleanroom air velocities currently recommended by IEST.  
It is recommended that the guidelines be re-examined based upon scientific studies addressing the factors that affect yields in 
cleanrooms such as protocol, air turbulence, human occupants, molecular contamination, filtration, and their impact on 
various activities.  This would help cleanroom designers and operators achieve highly performing and reliable cleanroom 
systems.    

Conclusions and Recommendations 
Benchmarking energy use of mechanical systems and components provides rich information on the system and component 
performance and can be used as a baseline for tracking energy performance over time.  This provides an effective way to 
understand energy end use in complex cleanroom facilities.  The energy performance evaluation can help to prioritize 
measures to achieve improvements in system energy efficiency.  Analysis of energy metrics can provide better understanding 
of system performance, and can suggest energy efficient design practices and long-lasting energy-saving opportunities in 
cleanrooms.  Specifically, the following are the major conclusions and recommendations discussed in this paper: 
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Energy efficiency and fan-power density for re-circulation air systems and make-up air systems varied widely, even among 
cleanrooms of the same cleanliness classes.  We have found potential energy savings opportunities by reducing re-
circulation airflow rates while still meeting the recommended air change rates specified by IEST.  In addition, the decrease 
of fan power needed to recirculate cleanroom air will also reduce the overall cooling load, which would otherwise 
introduce extra heat from fan operation.  Like optimizing system design and components, carefully arranging system and 
process layouts can have lasting and benign impact on energy use of air systems. 

• 

• 

• 

• 

• 

The range for air change rates from 240 to 480/hr recommended by IEST for ISO Class-5 (Class-100) cleanrooms tested in 
this study appears to require more airflow than needed.  There is also a need to further examine the scientific basis for the 
IEST recommended air change ranges for cleanrooms of different cleanliness classes. 

In general, air systems with lower pressure drops (lower resistance to flow) along the return air paths have higher 
efficiency (cfm/kW) than those with higher air pressure drops.  Fan-tower type re-circulation systems with a pressurized 
plenum providing air to the cleanroom ceiling filters usually result in better efficiency than using separate ductwork to each 
of the ceiling filters.  From a design point of view, the planning and design of the cleanroom systems should provide 
necessary adjacencies and space for efficient air systems and components. 

To determine which air management system is the right choice for an application, there is no direct and simple answer.  
The key is that designers should compare and consider initial cost, operating cost, process load, and requirements for 
performance and control.  In particular, if applying fan-filter units, caution should be made to make sure that the 
state-of-the-art techniques are employed. 

The benchmarking analysis provides actual data on process loads that were considerably below typical design values 
developed by designers.  This suggests that it is necessary and important for designers to obtain more accurate process 
loads and their diversification; and to avoid oversizing HVAC systems as a result.  Improvement in energy efficiency in 
cleanroom systems while maintaining or improving contamination control will benefit industries by creating immediate 
capital cost savings as well as overall life-cycle savings, thus improving productivity and contributing to power reliability. 

To maximize the usefulness of benchmarking efforts, it will be necessary to obtain more data by benchmarking additional 
cleanrooms and/or by integrating available measured field data.  Once a statistically sound dataset is available, building 
operators will be able to compare performance of their cleanroom facilities with others.  Future research may include 
investigations of continuous energy performance as compared to the design intent.  In addition, there is a need to develop an 
end-user’s self-benchmarking tool that allows computer interface to compare cleanroom energy performance to a large 
sample of similar cleanrooms.  This will be useful for identifying good design practices and new energy-saving opportunities.  
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