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Abstract 
Research on artificial language acquisition has shown that 
insertion of short subliminal gaps to a continuous stream of 
speech has a notable effect on how human listeners interpret 
speech tokens constructed from syllabic constituents of the 
language. It has been argued that the observed results cannot 
be explained by a single statistical learning mechanism. On 
the other hand, computational simulations have shown that as 
long as the gaps are treated as structurally significant units of 
the language, a single distributional learning model can 
explain the behavioral results. However, the reason why the 
subliminal gaps interfere with processing of language at a 
linguistic level is currently unknown. In the current work, we 
concentrate on analyzing distributional properties of purely 
acoustic representations of speech, showing that a system 
performing unsupervised learning of transition probabilities 
between short-term acoustic events can replicate the main 
behavioral findings without a priori linguistic knowledge.  
 
Keywords: language acquisition; pattern discovery; 
distributional learning; acoustic analysis; lexical learning 

Introduction 
There is an ongoing debate regarding the degree that 
distributional learning mechanisms can explain aspects of 
language acquisition from speech, and the degree that rule-
based mental processes are required in the task (e.g., 
Endress & Bonatti, 2007; Laakso & Calvo, 2011; Peña et al. 
2002). Experimental studies with human test subjects have 
shown that both infants and adults are able to learn 
statistical regularities in continuously spoken artificial 
languages and use these regularities to segment speech into 
word-like units (e.g., Peña et al. 2002; Saffran, Aslin & 
Newport, 1996). Based on these findings, it has been 
suggested that the listeners may be using transitional 
probabilities (TPs) between speech units such as phones or 
syllables in order to discover statistically regular segments 
of speech (e.g., Saffran et al., 1996). Computational 
simulations have also verified that the TPs between signal 
events can be used to discover word-like units from 
continuous speech, and that these units do not necessarily 
need to be linguistic or phonetic in nature (Räsänen, 2011).  

Of especial interest is the degree that distributional 
learning can explain the learning of non-adjacent 
dependencies in a language. In earlier work, the learning of 
non-adjacent dependencies has been studied using an 

artificial nonsense language consisting of three-syllabic 
CVCVCV words with the middle syllable being always 
randomly selected from a pool of “fillers”, but the first and 
last syllable occurring always together (hence a “high- 
probability word”). It has been found out that when human 
listeners are familiarized with a continuous stream of such 
language without gaps between the high-probability words, 
and then later tested for preference between three-syllabic 
words that have different TPs between the syllables in terms 
of the familiarization stream, the listeners seem to prefer 
words that have occurred with higher internal TPs in the 
familiarization stream (Endress & Bonatti, 2007; Peña et al. 
2002). However, introduction of 25 ms subliminal segments 
of silence between the high-probability words in the 
familiarization stream leads to a notable change in the 
learning outcome: the listeners start to prefer word forms 
that do not necessarily have the highest TPs across all 
syllables in the word. Instead, the preferred words may 
contain partially novel surface form but have dependencies 
between syllables that can be explained by abstract rules 
that are also valid for the words in the familiarization stream 
(Endress & Bonatti, 2007; Peña et al. 2002).  

The above finding is somewhat unexpected from the 
perspective of distributional learning at a linguistic level. 
The learning results between continuous and gapped 
familiarization streams should not differ as long as the 
perceived linguistic units and their ordering in the two 
conditions do not differ either. The result is also 
counterintuitive due to the fact that the gaps are tiny in 
duration in comparison to the other relevant signal segments 
such as syllables, and since CV-syllable based languages 
already contain natural silences associated with closures of 
plosives (e.g., word “#pura#ki”, where # denotes a closure).  

Peña et al. (2002) and Endress and Bonatti (2007) suggest 
that the additional silent gaps provide direct (but 
unconscious) cues to the segmentation of words from 
speech, freeing computational resources to structural 
learning of rule-like relations between constituents of the 
words. On the contrary, the absence of the gaps necessitates 
that the segmentation has to be first learned from the data 
(Endress & Bonatti, 2007; but see also discussion in Laakso 
& Calvo, 2011). It is therefore argued that the change in 
learning outcomes after introduction of the gaps provides 
evidence for non-distributional learning of structural 
relations between syllabic units (Bonatti & Endress, 2007). 
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However, a possible auditory processing mechanism for 
differentiating gaps associated with segmental cues and, 
e.g., the intra-word gaps related to closures of plosives has 
not been described in the existing work. 

Lately, Laakso and Calvo (2011) have shown that the 
experimental results of Peña et al. (2002) and Endress and 
Bonatti (2007) can actually be modeled with a single 
distributional connectionist model when the silent gaps are 
represented as equally significant units as the consciously 
perceived syllables. As long as Occam’s razor is concerned, 
the distributional model of Laakso and Calvo (2011) 
provides a more coherent and simple explanation for the 
observed data instead of resorting to the more than one 
mechanisms (MOM) hypothesis of Peña et al. (2002) and 
Endress and Bonatti (2007). However, the model of Laakso 
and Calvo also has a shortcoming: it does not explain how 
the short subliminal gaps end up with an equally large role 
as the syllabic units in the distributional learning process. 

The goal of the current work is to study the distributional 
learning hypothesis in the context of the artificial language 
of Peña et al. (2002) by focusing on the analysis of recurring 
acoustic patterns in a speech stream. Unlike earlier work, we 
study TPs of short-term acoustic events instead of 
linguistically or phonetically motivated units such as 
syllables or segments. This provides a novel perspective to 
the learning problem by assuming that the listeners may not 
be directly analyzing the speech stream as a sequence of 
linguistic units, but may treat the language-learning task as a 
generic auditory patterning problem. Still, the current 
approach does not exclude the possibility that the listeners 
can extract basic recurring units such as syllables or 
segments from the acoustic speech stream and perceive 
these as linguistically significant units. We simply show that 
the behavioral results of Peña et al. (2002) and Endress and 
Bonatti (2007) can be explained with a single distributional 
learning mechanism that performs pattern discovery at the 
level of acoustic signal instead of assuming TP analysis of 
segments or syllables. 

Motivation for Acoustic Learning 
There are multiple reasons to assume that the listeners may 
utilize generic acoustic patterning instead of purely 
linguistic coding of input during perception of an artificial 
language. First of all, test subject preferences towards 
specific test probe types are typically only slightly above 
chance level even for extended familiarization periods (Peña 
et al., 2002; Endress & Bonatti, 2007). If the learning would 
be based on categorically perceived segments or syllables, 
one could expect more robust preference for one probe type 
over another due to the systematically different overall TPs 
or learned rules for the tokens. Also, the initial preference 
for specific probe types degrades over longer familiarization 
periods, suggesting that the low-level distributional 
properties of the speech stream interfere with the processing 
of the abstract generalizations. Finally, the introduction of 
subliminal gaps introduces notable qualitative changes to 
the learning outcomes. Since these gaps are clearly not 

serving any explicit linguistic function but still affect the 
learning results, it can be taken as evidence that the acoustic 
level perception, including temporal relationships of 
acoustic patterns, may play an important role in the process.  

Why distributional analysis at the acoustic level would 
then lead to different results than analysis on the segmental 
or syllabic level? The major difference comes from temporal 
relationships between sound events. At the syllabic level, 
the relevant units and their distances from each other are 
well defined. Therefore the TP statistics also become well 
defined after a small number of word occurrences in 
different contexts. At the acoustic level, a syllable is not 
perceived as a categorical unit with a well-defined duration, 
but as a constantly evolving spectrotemporal trajectory that 
has very low predictability over larger temporal distances. 
This means that the typical acoustic level dependencies are 
limited to a time scale much shorter than the tri-syllabic 
words in the artificial language of Peña et al. (2002). 
Therefore the acoustic TP analysis must also pay attention 
to dependencies at a very fine temporal resolution, 
potentially increasing the relative role of temporal 
asynchronies caused by the introduction of silent gaps to the 
familiarization stream. 

Material 
The speech material for the experiments was reproduced 
from the work of Peña et al. (2002). In this material, the 
familiarization stream of the artificial language consists of 
three CV-syllable words of form AiXCi so that each word 
starts with one of three possible syllables Ai (i ∈ {1,2,3}). 
Importantly, the first syllable always uniquely determines 
the last syllable Ci of the word (i.e., P(Ci|Ai) = 1, ∀i) so that 
there are also three different possibilities for end syllables. 
Finally, the medial syllable, or filler, is chosen randomly 
from a set of three CV syllables. In total this produces three 
word templates “pu … ki”, “be … ga”, and “ta … du” where 
one of the following three fillers are used in the medial 
position: “li”, “ra” or “fo”.  

Based on Endress and Bonatti (2007), four types of 
probes were used during testing: 1) words, i.e., tri-syllable 
constructs that correspond directly to the ones used in the 
familiarization (e.g., AiXCi), 2) part-words, where the 
sequential order of syllables was from the familiarization 
data but the word straddles a word boundary (e.g., XCiAj), 
therefore having a smaller overall TPs across the word, 3) 
rule words of form AiX’Ci, where the X’ is familiar from 
the training but has never occurred in the word-medial 
position, and 4) class words of form AiXCj (i ≠ j) so that all 
Ai, X, and Cj are familiar from the familiarization data but 
the Ai and Cj have never occurred in the same word (see 
Endress & Bonatti, 2007, for detailed word lists).  

The familiarization data and test probes were synthesized 
into speech signals using a Kelly-Lochbaum model based 
articulatory synthesizer of Rasilo, Räsänen and Laine (in 
preparation) using articulatory positions of Finnish vowels 
as targets for the vowel sounds. Sampling rate of the signals 
was set to 16000 Hz and fundamental frequency of the 
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Figure 1: Temporal dependencies of acoustic events 
measured from continuous English speech. The two learning 
parameter configurations BC and EC are also shown. 
 
speaker was set to 120 Hz. In order to create familiarization 
data, all words in a training epoch (one occurrence of each 
word) were concatenated into one long string before 
synthesis so that the coarticulatory effects were consistent 
for both intra-word and across-word transitions. In addition 
to the continuous stream, the gapped familiarization stream 
of Peña et al. was also created by inserting silent segments 
of 25 ms between the words. It was also confirmed 
perceptually that the perception of the gaps was subliminal 
and no other audible artifacts were introduced to the signals. 

Methods 
Preprocessing 
The goal of the preprocessing was to convert synthesized 
speech signals into sequences of automatically discovered 
discrete acoustic events for further statistical modeling. This 
was achieved by extracting Mel-frequency cepstral features 
(MFCCs) from the signals using a window length of 25 ms 
and a step size of 10 ms (see, Appendix B in Räsänen 2011 
a for detailed description). A total of 12 coefficients + 
energy were used. A random subset of 10000 MFCC vectors 
from the familiarization data set was then clustered into 64 
clusters using the standard k-means algorithm. The obtained 
cluster centroids were treated as prototypes for the 
corresponding clusters (“atomic acoustic events”) and each 
cluster was assigned with a unique integer label i ∈ [1, 2, 
…, 64]. Finally, all MFCCs vectors were vector quantized 
(VQ) by representing the original feature frames with labels 
corresponding to the nearest cluster centroids for the given 
frame. This led to a signal representation where the 
synthesized speech was represented as a sequence of 
discrete elements, each element being one of the 64 possible 
choices and one element occurring every 10 ms.  

Discovery of Acoustic Patterns 
In order to learn distributional patterns from the artificial 
speech data, a statistical learning mechanism is needed. In 
the current work, we utilized the unsupervised word 
learning model of Räsänen (2011) that has been shown to be 
able to discover recurring word patterns from real 
continuous speech. This algorithm will be referred to as the 
unsupervised distributional learning algorithm (UDLA). 

The basic principle of the UDLA is to study the TPs 
between the atomic acoustic events (VQ indices) in order to 
discover multiple segments of speech that share similar local 
TP distributions. Unlike typical distributional analysis of 
syllabic, phonemic, or ortographic units (e.g., Saffran, 
1996), UDLA analyzes TPs between short-term acoustic 
events at several temporal distances (lags) in parallel so that 
dependencies between non-adjacent acoustic events also 
become modeled. When recognizing novel patterns, 
statistical support from all lags is combined in order to 
provide a uniform and noise robust estimate of familiarity of 
the pattern. Instead of modeling global TPs, UDLA creates a 
separate TP model for each novel pattern discovered from 
the data, where a novel pattern is defined as a sequence of 
acoustic events whose TPs do not match any of the 
previously learned patterns.  

From the perspective of pattern discovery, it is beneficial 
to study temporal dependencies up to approximately 200 ms 
in case of continuous speech. This is because the statistical 
dependencies between acoustic events diminish to a non-
existent level at larger temporal distances and provide no 
further support for pattern discovery (Räsänen & Laine, 
2012). This temporal scale also corresponds to the typical 
signal integration times measured in human auditory 
perception in the context of loudness perception or forward 
masking of speech sounds, suggesting that the integration 
times in human hearing are matched to the typical temporal 
structure of acoustic speech signals. As an example, Figure 
1 shows the statistical dependencies of short-term acoustic 
events as a function of temporal distance for continuous 
English speech measured in terms of mutual information 
function (MIF; Li, 1990). As can be observed from the 
figure, majority of the dependencies at the acoustic level are 
limited to temporal distances shorter than 100 ms. 

Since the amount of statistical information diminishes at 
longer distances, one can hypothesize that the human 
hearing system would be adapted to process temporal 
dependencies at such timescale where, on average, 
dependencies do exist. Therefore, in baseline configuration 
(BC), we use UDLA in a mode in which dependencies are 
modeled up to 80 ms, capturing approximately 90 % of the 
statistical dependencies in terms of MIF (Fig. 1). However, 
we also measure UDLA behavior in the artificial language 
learning task using TP modeling up to 390 ms. This 
configuration will be referred to as extended configuration 
(EC). In terms of the current experiments, this means that 
the TPs were studied at lags k = {1, 2, …, 8} for BC and at 
lags k = {1, 3, 5, …, 39} for EC, corresponding to the 
modeling of acoustic dependencies at temporal distances of 
10 ms – 80 ms and 10 ms – 390 ms, respectively. 

The hypothesis was that, if acoustic and non-linguistic 
patterning can explain the results of the experiment of Peña 
et al. (2002), and if human hearing is actually specialized for 
learning dependencies according the curve shown in Fig. 1, 
the learning outcomes in the baseline configuration should 
have better correspondence to the behavioral results than the 
extended condition. On the other hand, the extended 
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configuration should show higher preference for part words 
than class or rule words due to the diminishing role of the 
gaps in terms of dependencies across all temporal distances. 

 
Training Phase The learning process in UDLA proceeds as 
follows (see also Räsänen, 2011): the sequential discrete 
familiarization stream X is analyzed in windows of length Lr 
elements and window step size Ls. For each window 
position, the TPs between all elements ai and aj in the 
window are modeled in parallel for lags k = {k1,k2,…kK}. 
For the TPs in the first window position, the first statistical 
model c1 is created by storing all transitions at all lags to a 
transition probability matrix. In the model, the probability of 
a transition from element ai to aj at lag k is defined as 

    

€ 

Pc
S(a j | ai, k ) = Fc(ai,a j | k ) / Fc(ai,a j

j=1

N A

∑ | k )   (1) 

where Fc(ai,aj|k) is the frequency of ordered pairs [ai aj] at 
distance k in the context of model c. 

When the window is moved incrementally across the 
input sequence, all previously learned models are used to 
recognize the contents of the current window position. First, 
activation Ac(t) of each model c at each moment of time t is 
computed by calculating the mean of the TPs over all k:  

    

€ 

Ac( t) =
1
K

Pc
S( X [t] | X [t − k], k )

k=1

K
∑   (2) 

The cumulative activation of each model is then calculated 
over the window and normalized by the window length: 

    

€ 

Ac
cum (T ) =

1
Lr

Ac( t
x=T

T +Lr −1

∑ [x])  (3) 

where T denotes the window position. Now if activation 

  

€ 

Ac
cum of the most activated model cM exceeds a pre-defined 

familiarity threshold tr, the transition frequencies in the 
current window of analysis XT are used to update the 
statistics of the model cM according to Eq. (1). Otherwise, a 
new model cN is created from the window contents using the 
Eq. (1). This process is repeated for the entire training data 
set, producing a set of models that incrementally increase 
their selectivity towards specific structures in the speech 
signal.  

After the familiarization is complete, the learned models 
are normalized according to 

    

€ 

Pc(a j | ai, k ) = Pc
S(a j | ai, k ) / Pm

S(a j | ai, k )
m=1

N C

∑ −
1

N C
 (4) 

where NC is the total number of models learned. This 
changes the nature of the statistics so that now Pc describes 
how likely the given transition from aj to ai occurs in case of 
pattern c instead of any other pattern (i.e., classification 
task). The 1/Nc term forces the total activation across all 
models to zero at all times, ensuring that the total activation 
level of the system does not increase with increasing 
number of learned models. Note that the learning process is 
purely incremental and requires the storage of the previous 
inputs only up to maximum lag K (i.e., 80 or 390 ms). 

 
Recognition Phase During the testing phase, the test probes 
were pre-processed into discrete VQ sequences similarly to 
the familiarization data. Then the instantaneous activation of 
each model c at time t given input probe X was measured 
according to 

    

€ 

Ac( t) =
1
K

Pc( X [t] | X [t − k], k )
k=1

K
∑   (5) 

The total activation induced by the probe was then 
computed as 

     

€ 

Atot = argt,c max( Ac( t) |∀t,c)   (6) 
In other words, the total activation caused by the probe X 
was obtained as the maximum instantaneous activation1 in 
the pool of all pattern models c.    

Experiments 
In the experiments, UDLA was first used to discover 
recurring acoustic patterns from the familiarization stream, 
and then to recognize novel test probes using the learned 
models. During each test round, the system was shown one 
token from each of the four possible probe classes and the 
overall activation caused by each token was measured. A 
total of 600 probe quartets were generated by randomly 
sampling one token from each probe class for each quartet. 

In all experiments, the UDLA model was run with a 
familiarity threshold of tr = 0.16 and window step size Ls = 
50 ms (5 frames). The analysis window length was set to Lr 
= 200 ms and Lr = 600 ms for baseline and extended 
conditions, respectively, so that multiple transitions at 
maximal lags would fit to the analysis window. These 
parameters led to the learning of NC = 26-33 acoustic 
patterns depending on the familiarization type (continuous 
vs. segmented), modeling conditions (baseline vs. 
extended), and on the duration of the familiarization. Since 
the number of learned patterns exceeded the number of 
unique syllables (nine), the system had learned multiple 
context-sensitive variants of syllable-like units. 

Figure 1 shows the mean activation levels of the four 
different probe types (words, part words, rule words and 
class words) as a function of familiarization duration for 
segmented (top) and continuous (bottom) familiarization 
stream in the baseline condition with temporal dependency 
modeling up to 80 ms. As can be observed, the insertion of 
25 ms gaps between tri-syllable words in the familiarization 
stream is sufficient to induce a change of preference from 
part words to rule words and class words. This is in line 
with the behavioral results of Peña et al. (2002) and Endress 
and Bonatti (2007) who found out that the use of subliminal 

                                                 
1 The decoding criterion of probabilities was compared across 
numerous different possibilities, including, e.g., total activation of 
all models across the entire probe, temporally integrated maximum 
activation, and number of models exceeding a pre-defined 
threshold in activation. However, unlike the used approach in Eq. 
(6), none of the other criteria were able to replicate the main 
findings of Peña et al. (2002) and Endress & Bonatti (2007). 
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gaps in the familiarization stream causes a change of 
preference from part words to rule words and class words at 
short familiarization periods.  

However, when the TPs between acoustic events are 
measured beyond the typical dependencies in speech 
signals, the situation changes notably. Figure 3 shows the 
mean activation levels of the probes in the extended 
condition where temporal dependencies are modeled up to 
390 ms. Despite the fact that the only difference to the 
earlier simulation is the distance up to which TPs are 
measured, there is no sign of difference between the 
continuous and segmented familiarization streams.  

Based on the mean probe activities, it seems that the 
distributional learning of acoustic patterns without any a 
priori or intervening linguistic component can explain the 
experimental results of Peña et al. (2002) and Endress and 
Bonatti (2007), but only if it is assumed that the system is 
able to learn acoustic dependencies up to a limited temporal 
distance defined by typical structure in continuous speech. If 
the dependency modeling is extended up to much longer 
delays, the UDLA model is no longer able to replicate the 
behavioral findings. 

In addition to computing overall activations, pair-wise 
comparisons of probe activities were carried out for all 
possible probe pairs in the test set in order to simulate 
behavior in a forced-choice task similar to the one used with 
human experiments.  
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Figure 2: The mean activation levels of the four different 
probe types in baseline condition for segmented stream (top) 
and for continuous stream (bottom). Only relative mean 
activations of the probes are shown (zero mean). 
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Figure 3: The mean activation levels of the four different 
probe types in extended condition for segmented stream 
(top) and for continuous stream (bottom). 

More specifically, the relative probabilities of the tokens in 
each pair were compared separately across all 600 test cases 
in the baseline configuration. For each pair, a binary flag 
was used to denote a response for the probe that had the 
higher activation. Then the distribution of responses was 
tested against the null hypothesis that the model shows no 
preference for either probe type (t-test). Table 1 illustrates 
the results from the statistical analysis. 

It is evident that the segmented familiarization stream 
leads to a preference order of words > rule words > class 
words > part words at short familiarization durations. On 
the other hand, continuous stream leads to order of words > 
part words > rule words and class words. This is largely in 
line with the results of Laakso and Calvo (2011), confirming 
that a single distributional learning mechanism can explain 
the change of preference between the two conditions. 
However, the previous studies do not always report 
statistically significant order of preference between all probe 
types (Laakso & Calvo, 2011), whereas the current 
simulations show statistically significant order of preference 
for all learning conditions except for the continuous 
familiarization stream of 3 minutes. This can be largely 
explained by the fact that the deterministic nature of UDLA 
leads to a consistent response pattern across multiple trials 
even for minor statistical biases between the probe types. In 
contrast, responses of human test subjects contain additional 
sources of variation (e.g., fatigue) and are based on a limited 
number of test trials, possibly rendering minor differences in 
probe familiarity invisible to statistical analysis.    

Discussion 
In Peña et al. (2002) and Endress and Bonatti (2007) it was 
found that adult test subjects, when familiarized with 10 
minutes of continuous stream of speech from an artificial 
language, prefer words over part words and show no 
preference between class words, part words and rule words. 
However, when subliminal gaps were introduced between 
words in the familiarization stream, the participants started 
to prefer class words and rule words over part words. Based 
on these findings, Peña et al. (2002) put forward the MOM 
hypothesis that the learning of a language might consist of 
several different processes: a distributional process 
responsible for discovery of statistically significant patterns 
and a separate mechanism responsible for modeling of 
structural relation between the discovered patterns. Endress 
and Bonatti (2007) provided further support to the MOM 
hypothesis by failing to replicate the behavioral findings of 
Peña et al. when modeling the learning task with a 
distributional system (a recurrent neural network or RNN).  

Lately, Laakso and Calvo (2011) showed that RNNs can 
replicate the main behavioral findings of Peña et al. when 
the modeling parameters are properly set up, and when the 
silent gaps between syllables are modeled as separate units 
with equal importance to syllabic units. Their results 
undermine the argument for the necessity of multiple 
mechanisms of learning in this specific context. However, 
Laakso and Calvo limited their analysis to purely linguistic 
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Table 1: Pair-wise preference for the four different types of 
test probes with segmented (left) and continuous (right) 
familiarization streams. W stands for word, PW for part 
word, C for class word and R for rule word.  
 
 segmented continuous 
 preference % p preference % p 

W over PW 82.1 0.0000 W over PW 77.8 0.0000 
R over PW 74.0 0.0000 PW over R 57.1 0.0005 
C over PW 70.5 0.0000 PW over C 64.0 0.0000 
W over R 58.8 0.0000 W over R 89.5 0.0000 
W over C 68.3 0.0000 W over C 90.0 0.0000 3 

m
in

 

R over C 56.9 0.0032 
No pref. R 

and C 51.4 0.5156 
W over PW 78.4 0.0000 W over PW 71.2 0.0000 
R over PW 70.0 0.0000 PW over R 60.1 0.0000 
C over PW 69.1 0.0000 PW over C 57.0 0.0006 
W over R 68.4 0.0000 W over R 83.4 0.0000 
W over C 74.9 0.0000 W over C 79.0 0.0000 10

 m
in

 

No pref. R 
and C 55.9 0.0113 C over R 59.7 0.0000 

 
level, assuming that the learner perceives artificial language 
as a sequence of syllabic units and silences even though the 
silences were not consciously perceived by the participants. 

Current work studied the hypothesis that the findings of 
Pena et al. could be based on generic distributional learning 
at the acoustic level instead of using linguistic level rep-
resentations. More specifically, we analyzed TPs of short-
term acoustic events that were extracted from speech in 
purely unsupervised manner. Notably, we were able to 
replicate the behavioral findings related to the change of 
preference across familiarization conditions by using the 
UDLA model of word learning from continuous speech, but 
only when the TP analysis of acoustic events was limited to 
a temporal window matching to the temporal dependencies 
of normal continuous speech (Räsänen & Laine, 2012).  

If this constraint is violated by exceeding the temporal 
scale of modeling to several hundreds of milliseconds, the 
model systematically prefers words over part words, and 
part words over class words or rule words also in case of 
segmented familiarization stream. The change of model 
behavior is driven by the fact that the synthesized speech 
lacks the acoustic variability and lexical complexity of 
normal speech, and therefore unnaturally strong long-
distance dependencies exist in the speech tokens. By 
modeling the TPs at increasingly long distances, the relative 
statistical contribution of the short-term gaps between the 
words in the segmented condition become too small to 
affect the preference of word tokens in the testing phase.   

This suggests that if human responses in the task are 
based on acoustic level patterning, it may be the case that 
the human auditory system is not able to capture 
dependencies at extended temporal distances. This is closely 
related to the study of Newport and Aslin (2004) who found 
that adult listeners are unable to learn dependencies between 
non-adjacent syllables whereas dependencies between non-
adjacent segments (either vowels or consonants) were 
readily learned when familiarized with continuous stream of 
artificial language. The inability to learn non-adjacent 

syllabic dependencies could be also explained by the finite 
length temporal integration in the auditory processing. 
Segmental dependencies with an interleaved random 
segment in between could be readily captured by a system 
modeling statistical dependencies up to, e.g., 150 ms, but 
dependencies across multiple syllables may simply be too 
distant to be captured by such short-term analysis.  

Note that the inability to capture acoustic dependencies at 
longer temporal distances does not imply that long-range 
linguistic dependencies would not exist or could not be 
captured by a distributional learning mechanism. It is well 
known that such dependencies do exist. However, the huge 
variability and dimensionality of the acoustic space strongly 
points towards the necessity of an intermediate represen-
tation upon which further analysis and learning can take 
place. Given the current knowledge of human speech 
perception, it is early to say whether these units are phones, 
syllables, morphemes or something else (see Räsänen, 
2011), and whether the computations are distributional or 
structural in nature. The current study does not exclude the 
possibility that the human listeners are directly utilizing 
syllable level TPs in the artificial language learning task, but 
simply shows that the TP analysis at the acoustic level can 
also explain behavioral observations to a large degree.  

Acknowledgements 
This research was financially supported by Nokia NRC. 

References 
Endress, A. D., & Bonatti, L. L. (2007). Rapid learning of 

syllable classes from a perceptually continuous speech 
stream. Cognition, 105(2), 247-299. 

Laakso, A., & Calvo, P. (2011). How Many Mechanisms 
Are Needed to Analyze Speech? A Connectionist 
Simulation of Structural Rule Learning in Artificial 
Language Acquisition. Cognitive Science, 35, 1243-1281. 

Li, W. (1990). Mutual Information Functions versus 
Correlation Functions. J. Statistical Physics, 60, 823-837. 

Newport, E. L., & Aslin, R. N. (2004). Learning at a 
distance I. Statistical learning of non-adjacent 
dependencies. Cognitive Psychology, 48, 127-162. 

Peña, M., Bonatti, L. L., Nespor, M., & Mehler, J. (2002). 
Signal-driven computations in speech processing. Science, 
298(5593), 604-607. 

Rasilo, H., Räsänen, O., & Laine, U. (In preparation). An 
approach to language acquisition of a virtual child: 
learning based on feedback and imitation by caregiver. 

Räsänen, O. (2011). A computational model of word 
segmentation from continuous speech using transitional 
probabilities of atomic acoustic events. Cognition, 120, 
149–176. 

Räsänen, O., & Laine, U. (2012). A method for noise-robust 
context-aware pattern discovery and recognition from 
categorical sequences. Pattern Recognition, 45, 606-616. 

Saffran, J., Aslin, R., & Newport, E. (1996). Statistical 
Learning by 8-Month-Old Infants. Science, 274, 1926-
1928.

892




