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ABSTRACT 

UCRL-10128 

If we define a dense plasma to be one in which the effective mean free 
path of one pa~ticle component is small in comparison with the probe dimen­
sions, then Langmuir's theory is not applicable in such a plasma. The pres­
ence of the probe causes marked changes of density and potential distributions 
in the probe environment. We have calculated these effects for insulated 
probes of various geometries. An exact solution is given for a concentric 
cylindrical probe. For more general geometries,. an appropriate approx:­
imation procedure, the "composition method, 11 was developed .from variational 
principles. The effect of probe disturbances on the measurements can be 
accounted for in terms of an-"effective probe position" and a "potential cor­
rection. 11 Introduction of the probe also causes changes in the eigenvalue 
and in the electron temperature. The results allow one to unfold experimental 
data to-find the true plasma qualities. Consideration of the inertia:-limited 
region shows that "Bohm 1 s criterion" is not suitable to judge either the sta­
bility or stationarity of the sheath. We find that a stationary inertia-limited 
region can exist only under certain restricted circumstances. 
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G. Ecker, t K. S. Masterson, t and J. J. McClure t 

·Lawrence Radiation Laboratory 
Universtiy of California 
Berkeley, California 

March 21, 1962 

I. . INTRODUCTION 

It is one of the tasks of plasma physics to determine particle densities, 
temperatures, and other data, experimentally. There are very few reliable 

··methods for -investigating these qualities. One of them is the probe technique. 

The theory. of probes has been developed by Langmuir arid .collaborat­
ors. l, 2 • 3 -Refinemel\ts of this theory have been made by Bohm, Burhop, 
and Massey, 4 Boyd, 5 and most recently, Bernstein and Rabinowitz, 6 and 
Han. 7 

These theories restrict themselves explicitly or implicitly to:low­
density plasmas. Here "low-density plasma" means that the effective mean 
free path-in a magnetic field the gyro radius -of all particle components. is 
large compared with the probe dimensions. Nevertheless, these theories 
have been applied to dense plasmas and to plasmas in strong magnetic fields . 

. In such plasmas, Langmuir's theory is subject to severe changes. In 
the following we try to demonstrate, and to account for, these changes which 
have already been touched upon in some earlier considerations by Davydov 
and Zmanovskaja, 8 and Boyd. 9. 

II. BASIC CONCEPTS .AND ASSUMPTIONS 

In accordance with the foregoing, we use the term "dense plasma" in 
this pap©r for a system in which the effective mean free path A. (in a mag­
netic field, the gyro radius r g) of at least one charged-particle component 
is of the same magnitude as, or smaller than, the characteristic probe di­
mension i. . p 

This work was done under the auspices of the U .. S .. Atomic Energy 
, Commission. 

t Now at the Institute of Theoretical Physics, University of Bonn, Germany. 

t Now at the Physics Department, University of California, San Diego, at 
La Jolla. 
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The subject of this investigation is an· insulated probe with a small 
sensing element in an appropriate position. We particularly stre:Ss::tha;t:;th:e 
term probe here means the whole probe body, including the probe 'support. 

The presence of the probe in the plasma causes disturbances of the 
particle density, temperature, and potential distributions in the probe en­
vironment, due to the incidence of charged and neutral particles onthe probe 
surface. To account for these disturbances the foilowing terms are appro­
priate: 

(a) The region of influence is that part of the plasma 
volume in which a notable change of data due to the 
presence of the probe can be observed. 

(b) The diffusion-disturbed region is that part of the 
region of influence in which the transport equations 
with the scalar pressure tensor approximation hold 
and the condition of proportionality is met. 

(c) The inertia-limited region is that part of the region 
of influence in the immediate neighborhood of the 
probe where the concept of free fall is applicable. 

(d) The transition region is the zone between the diffu­
sion-disturbed and the inertia-limited regions where 
neither diffusion nor free fall is a good approxima­
tion. 

(e) The space-charge region is that region where the 
concept of quasineutrality and the concept of pro­
portionality fail. 

(f) The sheath is a collective term which we conven­
iently use to indicate the whole part of the region 
of influence not belonging to the diffusion-disturbed 
region. 

It should be noted that these regions may overlap. Moreover, these general 
definitions may not always agree with the conventionally used terms .. For 
example space-charge region and sheath are not necessarily identical. 

The following discussion concentrates on the investigation of the "dif­
fusion-disturbed region" and the "inertia-limited region." 

The disturbances produced by the probe depend on. the qualities of the 
plasma and the geometry of the probe. 

We consider a steady- state three-component system of neutrals, elec­
trons and singly charged ions. Volume recombination is negligible, recom-

' bination taking place only at the walls and at the probe sul'!face. The particle 
;·production is proportional to the electron density only. The electron and ion 
temperatures (T , T~) are assumed to be constant within the diffusion·-dis­
turbed region and the plasma volume. We do not consider1 an ·external magnetic 
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field .. An extension of the methods presented here, including external mag­
netic fields, is given elsewhere. 10 

III. DIFFUSION -DISTURBED REGION 

A. Basic Equations 

According to the definition of this region, we describe density n and 
average velocity v by the transport equations for mass and momentum with 
the scalar approximation of the pressure tensor. With the assumptions of 
constant temperature already made, we can omit the energy balance. 

The stationarity condition for mass. and momentum conservation of 
the electrons and ions then reads -\J• r = Vn ( 1) 

± 

and - -r± = ± IJ.±n±E - D \ln ± -± 
(2) 

-where r is the particle current density, n the particle density, v the 
n.et rate of ionization, D and fJ. the diffusion and mobility coefficients, and 
E the electric field. The sub~ript ± refers to positive ions and electrons 
respectively. Elimination of E from Eqs (1) and (2) by making use of the 
assumption of proportionality 

results 1n 

with 

\ln 
+ 

\ln 

---
n+ n 

\l [ D s \ln_J + vn 

'·D. = 
s 

· D +fl.·_.+ D _fl.+ 

ft_ +fl.+ 

= 0 

If the condition of quasineutrality is met, then 'D is identical with the 
s 

ambipolar diffusion coefficient Dam· 

(3) 

( 4} 

(5) 

Occasionally we will find it useful to remember that Eq. (4) may be 
written in the form 

- -2 
v/D (6) \1 • Ut (u) + = 0 ' s 

with - ' \1 n (7) u = n 

The electric potential distribution within the diffusion-disturbed region for 
our probe with an insulat~d surface follows. readily from Eq. (2) and the 
requirement of congruence, 
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We have 
D - Ds 

Vz- vl =--1-.l.--

or, in the quasineutr9-l case, 
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n ) in~ t 

D -D+ (n_ 2 ) 
V 2 - V 1 = 1-.l._ + 1-.l.+ . in\~ . 
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B .. Boundary Conditions 
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(8} 

( 9) 

( 1 0) 

To define the density distribution from Eq. (4} or (6), one frequently 
postulates the boundary condition 

no ::::: 0 ( 11) 

at the wall of the container (index 0). This ~s too simple an approximation 
for our application. 

The physical concept gove'rning the boundary condition is the current 
continuity at the edge of the diffu:§ion-disturbed region. 11 To have stationary 
conditions, the diffusion, current to this edge must be equal to the current 
entering the sheath. Provided conditions in the sheath are such that no parti­
cles entering the sheath return to the plasma, we have to equate the ion­
saturation current of the plasma to the diffusion current from the diffusion­
disturbed region. If particles do return to the plasma, then a reduced effec­
tive-saturation current has to be used. In general we have, therefore, 

where the suqscript s means evaluation at the sheath 
the component of the gradient normal to that surface. 
tainty coefficient! dis:cussed-below. 

Equ9-tion ( 12) may be writtep- in the form 

(!J._L) =('VJ..n/n) =-a./A.+ s . s s 

{12} 

surface and 'V J. is 
The ci. u is an unc e r-

(13} 

where for a quasineutral plasma with T _::::: T +·and·-Ds ::::: 2D+ the factor a is 
given by 

. i ;. 
. O.i= a. . 3,8 ( 14) 

Of course, all the di#iculties oHheboundaryproblem are now included in 
a.. This coefficient is_ influenced by a large number of parameters- -the 
·probe geometry, sheath conditions, particle return, impressed magnetic 
field, secondary emission,,--and others. The overall problem of .a. is much 
too complicated to be treated in general terms. · Its value must be determined 
for each specific case. Particularly important is the influence of .. a. when 
the probe dimensions decrease below the effective mean free path·. Then 
ritany particles enter the sheath, orbit around the probe, and return to the plasma. 



.-

\ 

-5- UCRL-10128 

Under these circumstances,, a. goes to zero and we approach _the conditions 
of Langmuir's theory. 

If 'A,+s is much smaller than the characteristic length of the plasma 
volume, L, then with Y'j_ n of the order of n /L we have the simplified bound­
ary condition 

'A,+ 
::::: n __ s_::::o-, 

L a. 
(15) 

provided that a. does not go to zero. Therefore, at the probe surface the 
simplified condition ( 11) can be used only for 'A,+s << Land 'A,+s << i.~ . 

C. Solutions of the Continuity Equation 

The problem formulated in.Eqs. (4) and (6) and (13) and (15) represents 
the well-kriown mathematical eigenvalue problem of an elliptical differential 
equation. The boundary condition ( 15) is of the 11 second kind" (Dirichlet type), 
and the boundary condition ( 13) is of the socalled 11 third kind11 (mixed type}. 

As has been shown by variational methods, a complete sytem of . 
eigensolutions of this problem exists for all cases of prctctical interest. 12 

Moreover there is always one solution that is positive definite throughout 
the whole plasma volume. 13 This condition is essential, because the density 
n, ·cannot assume negative values. 

However, finding the exact eigensolutions for most geometries is 
very difficult. There is the possibility of a machine solution by a difference 
method. Examples for this procedure are known for diffusion problems. 14 
But this method has the disadvantages of being quite elaborate and of giving 
a result only for a specific geometry. Simple solutions do exist for those 
simple geometries of high symmetry in which the problem has separable 
solutions. The general procedure for these is well known. 

We shall now first examine the exact solution for a cylindrical geom­
etry in which a probe is supported parallel to the plasma in the axis of the 
column. The sensing elements are located at the surface of the probe on a 
common diameter of the probe and the plasma. For more general geometries 
we shall develop an approximation procedure called the "composition method.'' 
This procedure satisfies the condition of a simple solution, but still gives 
results of sufficient- accuracy to be of practical interest. 

1. Exact Solution for a Cylindrical Probe in the Center 

The exact solution for two concentric cylinders of radii rp and R 
respectively may be represented in the form 

no n 0 {J0 (kr) + cN0 (kr)} 

where k = (v;bs) 1/ 2 , r is the probe radius, 
and c are arbitrary corfstants, and J 

0 
and N

0 

(16) 

R the cylinder radius, nc 
are the Bessel and Neumann 
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functions of zero order .. Applying the boundary condition ( 13) at the sheath 
edge of the probe, we- find 

a -
A. -

~J;Z{J 
1 
[(~J l/Z(rpH)] + cN

1 
[(;.) 

Jo[(~J/z (rp + k)] + c N0 [(~s r (r + A.)] p 

assuming that the extension of the sheath, J. , 1s defined by the inertia--
limited region; s 

. At the outer wall, condition (is) is a sufficient approximation, and we 
have 

( 18) 

. Equatio:tt:s (17) and ( 18) are sufficient to dete;rmine both c and the eigenvalue 
(v/D )1/2. , 

s 

Table I lists the results for these parameters for various a. between 
z.ero and unity, using the valiles . rp = 1. 5 = A. = Q.02 R. _Note that even for the 
Langmuir probe-without surface recombination (a.= 0),_ the ionization rate v 
still must be greater than when the probe is not present, because the probe 
still occupies a finite volume in the cy li:q.de'r . 

. As an illustration of the effect qf the probe on the plasma, the density 
distributions for various values of a. are given in Fig. 1. Several important 
features are immediately apparent from .. this figure . 

.. , .1' 

(a) The density distribution in the vicinity of the 
probe is significantly modified for a. f 0, and 
even. for a. = 0, if the probe is of appreciable 
dimensions (this latte.r effect is, however, too 
small to be.Jsho"Yn in the figure for the probe 
dimension chosen). 

' ~ ' 

(b) The density distribution· in t'he vicinity of the 
outer walls is changed very little. 

(c) The eigenvalues (v/Ds) 1/ 2 may. increase by as 
. much as 20o/o over that of the unperturbed 
plasma. 

The potco:ntial drop in front of the probe within the -diffusion-disturbed 
region can be c~lculated from formula ( 1 0). According to this calculation, in 
a dense plasma (a. /: 0), such a probe should yield particle density and plasma 
potential measurements .which differ appreciably from those predicted by the­
·Langmuir theory.·; . The· deviations. of the density· measurements may be taken 
lfrom Fig. 1. · 
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Table I. Results (v/D ) 
1
/
2 

and c,. for valu'es of a. between zero and unity, 
. determined from'Eq. ( 17) and (18). 

a. (v;b )1/2 .c 
·s 

1 2.91 0.569 
R 

-·0.5 
2.84 

0.478 
R 

0.25 
··.2. 75 
.-R 0.365 

0.1 
2':61 

0.216 ---r 
0.05 2.53 0.131 

R 

0.02 
2.4 7 

0.064 
R 

0.01 
2.44 

0.037 ;;R .. 
.• --

0 
2.41 

0.007 ---r 

The potential disturbance is best described by the introduction of two 
approp:date quantities. One is the effective probe -position,. or effective probe 
length, This is defined by the point in the plasma at which the density distri­
buFon'essentially reverts.to that of the unperturbed distribution. The other 
is the potential correction, defined-as the potential drop between the effective 

-probe position and the edge of the sheath-as determined from Eq. ( 10). 

:2 .• _ AJ?pr.oximate Procedure for More General Geometries 

(Composition Method) 

To solve·Eq. (4) subject,.ctbthe boundary conditions of (13) or (15) for 
more general geometries is a very difficult problem. 

Perturbation methods are available if one considers the introduction 
of the probe as a perturbation of the boundary shape. For -homogeneous 
Neumann or Dirichlet boundary conditions one can obtain expressions. for the 
eigensolutions and eigenvalues in ter-ms of a series :involving_ the unperturbed 
eigenfunctions and eigenvalues. 15 This procedure has the advantage of being, 
in principle, very general. However, for a general boundary perturbation, 
convergence difficulties prevent an explicit expansion. This is particularly, 
true in the neighborhood of the probe surface, which is precisely our region 
of interest. Consequently, this procedure is riot suitable. 
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0 

\_ 

R 

MU-26421 

Fig. 1. Density distributions for a coaxial cylindrical probe of 
radius rp and sheath thickness is for various values of the 
boundary parameter a.. 
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In the attempt to d~velop ari appropriate procedure it seems advisable 
to recall our intentions. First, it'-' is meaningless to seek a solution of E qs. (4) 
and ( 13) with an accuracy higher than that already limited by the other assump­
~ions of our model. Secondly, we need a mathematiCal approach that is simple 
enough so that it can be handled easily by the experimental investigator, and 
at the same time accurate enougl1so that the corrections are of value. _A very 
difficult mathematical procedure, which indeed would be of great interest in 
principle, would not serve this latter purpose. 

We therefore aim-as in the case of the exact solution for the concentric 
cylindrical probe-to describe our corrections in terms of an "effective probe 
position" and a "potential correction.''· This is possible if we know the extent 
of the ''region of influence," and the density distribution within the diffusion­
disturbed region. 

The effective probe position and the potential correction can be approx­
imately determined by the following "Composition Method. 11 

For the "Composition Method" we first define a trial solution. We 
subdivide the whole plasma volume into two regions (I, II) by an appropriate_ 
interface (see Fig. 2), each region containing one part of the boundary 
(Br, Brr). We choose the subdivision so that in each region we can find an 
exact solution.of the Helmholtz equation (4) satisfying condition ( 13) or ( 15) 
for the part of the boundary belonging to this region. The same eigenvalue 
underlies both regions. _As can be seen from Eq. (7), the two solutions each 
contain an arbitrary factoT. For physical reasons we require 

i n- dO" = I a 

where the index (u) indicates the dividing interface. 

( 19) 

So far, the composition of the trial solution is completely arbitrary. 
Equations (6) arid ( 13) show that we can expect a good fit of this trial solution 
in· regions where one or the other boundary part (Br, Bn) is dominating. But 
serious deviations occur where Br and Bu are of equal importance; the 
value of the trial solution, therefore, depends on the position and shape of 
the interface, and we consequently need a criterion for choosing these quan­
tities. 

Such a criterion may be derived from the variational principle for 
eigenvalue problems. For a mixed boundary condition, 

\l.L n+En=O, (2 0) 

this principle requires, in the case of the Helmholtz equation, 

{ 

J(\ln)
2
dv + J E n

2 
du } J 

6 J 2. " 6 [ k
2 

" o 
n dV 

(2 1) 
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MU-26422 

Fig. 2. Illustration of the subdivision used in the "composition 
method." 
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where all trial solutions should satisfy the boundary condition (20). For these 
trial solutions there exists an absolute minimum of [k2] =· [(vj''Ds)]. The 
trial solution producing this _minimum value is the exact solution. 

We will now introduce our composition:.:.trial solution into Eq. (21), 
applying 

( V' n)
2 = V' · ( n V' n)--- n V' 2-n , -- (22) 

arrl tfie Gaussicththeorem. The pa·ttiaLsolutions...:sati:S~ythe Helmholtz equation 
with the same eigenvalue ko~ and condition (20) .. Thus we arrive at 

(2 3) 

or 

oz oN 
z--N=O. {24} 

Our va,riation consists_J>f a deformation of the shape of the interface 
from u to ct-' described by ds. Consequently we have, with E'q. (19), 

(25) 

The second term in Eq. (24) " _is srrialL_ of higher order, and in application:· 
to our composition method the variation principle therefore requires 

fu (nl V'ni - nrr"lnn) d; = 0; (26) 

or, with the definition -of the mean value, 

V' n = 
fu n-V'n d·d 

J.u ndu 
(2 7) 

the principle may be written 

~ -Y'n1 - nil V'nii = 0 
(28) 

That means the best approximation is achieved if 

V'nl - V'nii 
-=--

rr 'II """"IT]: 
(2 9) 

is fulfilled. Or more conveniently, remembering Eq. ( 19), 

V'nii 
(30) 
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With this criterion we are able tq select compositions which give a good fit to 
tll.e physical situation. 

In our problem we have some simplifying facts. The app::-opriate 
composition is prescribed. ·It consists of a part solution belonging 'to the 

·~ probe enviroment and another part solution belonging to the· rest of the plasma 
volume. For the second part we use the unperturbed eigensolutions of the 
problem without the probe. The first part, in the enviroment of the probe, 
depends on the special probe geometry. In general, the probe volume will be 
small in comp.arison with·~he:plasma volume. It is ~hen _sufficient io use the 
unperturbed e1genvalue (w1thout probe) as an approx1mahon .for· k

0 
. 

'\. 

The position of the interface governed by Eq. (30) defines the extent 
. of the ''region of influence" and thus the "effective probe position." With the 
density distribution within the region of influence, one can easily evaluate 
the potential drop within the diffusion-disturbed region,with, Eq. ( 10). 

A rigorous evaluation of the criterion (30) is still a difficult problem, 
but it is not required. Within the frarile of our accuracy, one can find simple 
procedures.: to determine the position of the interface .. Either we choose the 
interface in a position where 'Vni;[ni is large, but approximately of the same 
direction and magnitude as Y'nn /nri (Form A), or we choose -if such a region 
exists -the interface in the position where the two gradients both become 
small (Form B). 

3. Results of the Composition Method for the Displaced Cylindrical Probe 

and the Radial Prolate Probe 

For ~he displaced cylindrical probe we have used the familiar unper-
turbed soluhon .1 

( 3 1) 

for the region outside the probe zone of influence .. In the vicinity of the probe 
. we used combination (16). We have applied criterion (30) in the formB, and 
in particular we have limited our calculations to the distribution along the 
common diameter of cylinder and' probe. 

In Fig. 3 we show the distributions vs the probe position for a constant 
parameter value a.. The exact solution for the coaxial probe is indicated 
together with the approximate solution, which allows an estimate of the error 
of our approximation .. As expected, the error of the approximation appears 
to b~ greatest near the interface of the composition. The magnitude of error 
decreases as we approach the probe .. As the densities enter !::. V only log­
arithmically, the potential correction is accurate within the general limita­
tions of the model. 

In Fig. 4 we show the effective probe position as a fuili:tion of the true 
probe position for various values of a. .. The corresponding potential drop is 
given in Fig. 5. Note that both effects are asymmetric. Figure 6 demon­
strates for an assumed true potential the potentials that would be measured by 
such a cylindrical probe. 
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0 Is 2tp 

MU-26423 

Fig. 3. Density distributions calculated by the "composition 
method" for a cylindrical probe of radius rp and sheath 
thickness i. s at various positions in a cylindrical discharge 
with a Bessel distribution. The boundary parameter a. 1s 
chosen to be 0.5. The exact solution is indicated for the 
coaxial probe. 
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2Rr--------------------------

15 =rp= 0.02R 

0 ... 2R 

MU-26424 

Fig. 4. The effective probe position i.e is plotted vs the true 
probe position .R.p for various values of the boundary parameter a.. 



-15- UCRL-10128 

MU-26425 

Fig. 5. The potential correction t::. V is plotted vs the true probe 
position .fp for various values of the parameter a. and conditions 
corresponding to those in· Fig. 4. 
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~ 
KT 

a=O 4 
a.-0 

3 

2 

R 10 

MU-26426 

Fig. 6. For a true potential true p),· this figure gives the distorted 
results that should be expected from potential measurements with 
a probe corresponding to those of Figs. 4 and 5. 
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For the prolate probe we again used the unperturbed distribution (31). 
Prolate spheroidal wave functions were applied in obtaining solutions within 
the region of influence of the probe (trigonometric functions could be used in 
this region as an order -of-magpitude estimate). The spheroidal solutions 
are 

n=n 0 

with 

c:::: J. 
p 

(32) 

(33) 

where s and n are prolate elliptical coordinates, d/2 is the length J.p of 
the probe. So 1 (1) is the spheroidal angle function of the first kind, and 
Ro10), (Z) are the spheroidal r.adial functions of the first and second kind. 
These functions are discussed and tabulated for a small range of the argument 

· by Flammer. 16 .. An extension has been given elsewhere. 10 

We performed the evaluation for the prolate probe using procedure 
(A) for the boundary condition ( 15) at the probe surface. 

Figure 7 shows the effect of probes of various radii on the density 
distribution along the diameter coinciding with the probe axis. Figure 8 
gives the same distribution for various depths of probe penetration, and 
Figs. 9 and 10 show the effective probe length as a function of the actual probe 

·length, and the potential correction vs the effective probe length. Here the 
asymmetry is even more striking. 
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Fig. 7. Density distributions for prolate probes of various radii 
penetrating radially into a cylindrical discharge with a Bessel 
distribution. 
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Fig. 8. Density distribution for prolate probes of various depths 
of probe penetration. Here probe radius rp = 0.02 R. Boundary 
condition ( 15) was used. 
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Fig. 9. Effective probe length vs true probe length for a prolate 
probe in a cylindrical Bessel distribution, where probe radius 

. rp = 0.02 R sheath thickness .£s = 0.01 R. 
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Fig. 10. Potential drop for a prolate probe under conditions 
corresponding to those in Fig. 9. The unit is KT _/e. 
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IV.~ THE INERTIA-LIMITED REGION 

Since the extension of the inertia-limited region,is small compared 
with the· probe dimensions, it is sufficient to consider an infinite insulated 
plat;-e wall bout;-din~ an it;-fini.te plc;,~ma8 This problem has already· been the 
subJect of ear her 1nvest1gatlons. ' 1 : ' 19 . · 

The extension of the space-charge region maybe either larger or 
smaller than that of the inertia-limited zone. The aon and electron densities 
at the edge of the free-fall zone are taken to be n+ , n° -respectively. We 
describe the electron density at a point inside the free-fall region by the 
Boltzmann relation. This is correct provided that the isotropic current dent'-· 
sity of the electrons in the plasma is much larger than the current density · 
going to the wall. 

. . The ions enter the free-fall zone with initial velocity v + 0 Their 
motion in the free,..fall region is inertia-limite.d. 

Under these assumptions the description of the inertia-limited region 
is simple and given by the time-dependent equations 

and 

2 2 
0 V /a X ::: 41Te (n - n ) + -

n = n_
0 

exp l-eV;kTJ 

) a ( n + V +)/a X = -a n+/a t 

av+/at+v+av+/ax = (e/M) av/ax 

where V is the negative of the electrostatic potential. 

(34) 

(35) 

(36) 

(3 7) 

Inthe stationary situation, all time derivatives in(34) through (37) 
are identically zero and all p'artial space derivatives may be replaced by 
total derivatives. This system of equations yields the well-known equation 
of the "inertia-limited sheath, 11 

.2 /c 2 /. -1/2 d 11 ds = ( 1 + 2T);y) - o exp l-11] 

where we have used 

eV 
T)=­

kT 
X 2 

s = T ; 1 D 
D 

This eq'lJ,_ation may be integrated at once and yields 

where we used 

= 0 

(38) 

kT 
( 3 9) 

(40) 

(41) 



.. 
'• 

-23- UCRL-10128 

From this result, Bohm 17 concluded his well-known 11 sheath stability 
criterion'' assuming 6 = 1 and E 0 = 0. Because of the positive definite char­
acter of the left-hand side, it follows from an expansion of the right-hand 
side in powers of TJ that 

y 3' 1 . ( 42) 

Han 19 has pointed out the unreliability of this criterion, since E 0 was not 
taken into account. 

· In the following we investigate whether Bohm's criterion is necessary 
and sufficient. To see whether it is necessary, we omit the assumptions 
6 = 1 and E 0 = 0. We introduce a critical value 6c which is chosen so that 
the right-hand side of Eq .. (40) at its minimum value is equal to zero. This 
condition may be written in the form. 

6 
c 

. '!{ 
where T] is the root of equation 

(43) 

(44) 

The result of this calculation is demonstrated ·in Fig. 11. In addition, 
Fig. 11 shows a curve designated nsp. This curve separates the region with 
negative space charge from that with positive space charge only. This re­
lation is easily obtained by finding the value of TJ for which the right-hand 

. side of the space-charge equation (38) has a minimum, and by adjusting 6 
so that at this minimum the space charge is equal to zero. 

The results pr~sented in Fig. 11 may be summarized as follows. 
According to "Bohm' s stability criterion" there should be no stationary 
solution within the whole range of this figure. We find, however, by ac­
COUnting for the variations of 0 and E 0' that stationary SOlutions exist 
for y < l. For a given value of E 0 all combinations of y . and 6 to the 
right and below the curve, with the index E 0• give stationary solutions. 
If the chosen combination of y and 6 lies between the curve and the nsp 
curve, we must expect a partial negative space charge. If a chosen com­
bination of y and 6 lies to the right of and below the nsp curve, then we 
have positive space charge only. 

The distinction of partial negative space charge contributionsd;s 
essential; ·:since it has been argued that such configurations should be e.x­
cluded 18 , 20 . 

Bohm's criterion is not necessary because there•a:r;e stationary 
solutions: witihout negative space charge in the area to the.· .. right and 
below the curve nsp. 

A justifiable question is whether the values of E 0 and 6 in our cal­
culations correspond to physical reality. There can be no doubt that at the 
edge of the inertia-limited region the statements Of 1 and E 0 i 0 are correct; 
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Fig. 11. This figure demonstrates how the validity of Bohm1 s 
criterion is affected by an initial field (E 0 ) and a density ratio 
l5 at the edge of the inertia-limited region. The symbols and 
meaning of the curves are explained in the text. 
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The point is only how large these deviations are. This can be estimated by·· 
the results from the calculation of the diffusion-disturbed region. 

For example, if we look at the ·solution of the cylindrical positive 
column at a distance A. from the walls, and assume that the equations of 
ambipolar diffusion apply up to this point, we easily obtain 

1. 
_ D ( 1 2A. ) 1/2 . eo--x.- +--r , . (45) 

where we have taken 1. D <A. << R. By use of the relation (45 ), Eq. (40) was 
integrated-with the aid of an analogue computer. The results for the potential 
distribution for y = 0.6 and various values of E 0 are shown in Fig. 12. This 
figure shows quite clearly the effects discus sed in connection with Fig. 11. 

Now that we have seen that the criterion y ~ 1 is not necessary, we 
wish to investigate whether it is sufficient to ensure a stationary solution. 
The argument that it is not sufficient can be given in general terms. Inte­
gratingEq. (40), we get a value Vw for the wall potential. This value 
depends on the parameters occurring in Eq. (40), which in turn depend on 
the plasma parameters n+ 0 , T _,.Eo at the edge of the inertia-limited region. 
We then get the wa~l potential as a function of these plasma parameters in the 
general form 

v w 
(46) 

Now we have assumed an insulated wall, and consequently the net 
electric current to the wall in the stationary state must be zero. Expressing 
the wall current in terms of the plasma data n+ 0 , T _,.Eo, and using the 
equation for the description of the inertia-limited region, we get another 
function that sr-ys 

J (n+ 
0

,· T _, E 0 . Vw) = 0 (47) 

shou:ld hold. _The eliminatiop of Vw between Eqs. (46) and (47) then yields 
the condition 

0 
G ( n+ , T _, . Eo) = 0 (48) 

There is no reason, in general, why a plasma should fulfill this relation at 
the edges of either the diffusion-disturbed region or the inertia-limited 
region. G:onsequ.ently,. our only conclusion can be that certain bounded plasmas 

t cannot have a stationary sheath at an insulated wall. This statement is true 
even if Bohm's criterion.is fulfilled. Consequently, Bohrn's criterion is not 
sufficient. 

One might ask why this consequence does not arise in Bohm 1 s discus­
sion. It is because Bohm considers the space -charge region and not, as 1n 
our case, the inertia-limited region. For his space-charge region the ex­
tension. -is a . parameter that he can dispose of. In our calculation, the 
extension of the inertia-limited region is a predetermined quantity. 
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Fig. 12. Potential distribution within the inertia-limited region 
calculated for various initial-field values E 0 is related to 6 
by the solution of the diffusion-disturbed region. Solutions with 
E 0 < 0.126 are periodic, and consequently do not correspond to 
stationary states. 
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A remark on the commonly used term "stability'' is here appropriate. 
The foregoing description shows t:h'at the criterion that the right-hand side of 
(40) be positive does not state the sheath to be stable, but only that there is 
a stationary solution for the $heath. So it is actually not a ''stability criterion'' 
but a 11 stationarity criterion. 11 

Whether the stationary state. is stable is still an open question requiring 
consideration of the time dependenc.e..: of small perturbations of this stationary 
state. 
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