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ABSTRACT OF THE THESIS 

 

Preliminary High-Resolution Time-Lines Through the Cenomanian-Turonian (Late 

Cretaceous) Oceanic Anoxic Event (OAE 2) 

 

by 

 

Allison Lynn Keller 

 

Master of Science, Graduate Program in Geological Sciences 

University of California, Riverside, August 2015 

Dr. Peter M. Sadler, Chairperson 

 

 

Rapid changes in Earth’s marine environment are sufficiently rare that the scope 

and consequences of these events cannot be inventoried without recourse to the 

stratigraphic record of deep pre-historic time.  Traditional stratigraphy divides geologic 

time into a succession of coarse biozones – uneven time bins, each recognized by 

distinctive index fossils and spanning several hundred thousand to even a few million 

years.  This thesis uses the CONOP software to resolve sequences of global appearance 

and disappearance events at the species level across the late Cenomanian oceanic anoxic 

event (OAE 2) at a much finer resolution than traditional biostratigraphy.  The resulting 

time-lines include information for the Aptian to Maastrichtian from 501 locations, 4,962 

taxa, and 25,112 local last occurrences.  This dataset is large enough to represent the 

global environment and to compensate for the inevitably patchy and incomplete record 

preserved at any one location.  Six geographically widespread clades – ammonites, 
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calcareous nannofossils, dinocysts, benthic forams, planktonic forams, and radiolaria – 

were analyzed; they span a range of trophic levels, composition and preferred habitat. 

Extinction pulses and intervals of falling diversity are not unique to OAE 2 or 

even uniquely severe.  Several occur throughout the Albian-Santonian interval.  The key 

is to monitor trends in diversification rate.  OAE 2 is distinguished as a boundary 

between more positive (or equal in the ammonite case) and more negative diversification 

regimes.  It may have been part of a general habitat deterioration or disturbance, but it 

would be too simplistic to describe it as a coordinated pelagic extinction event. 
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CHAPTER 1 - INTRODUCTION AND BACKGROUND 

“The exact sequence of events is still not clear, but the end 

result is almost beyond question.” - (Wignall, 1994, for the 

BGS) 

1.1 MOTIVATION  

Immediately prior to the Cenomanian/Turonian (C/T) stage boundary (ca. 93.9 

Ma; Gradstein et al., 2012), the mid-Cretaceous ocean and its biota underwent an interval 

of remarkable change that was sufficiently widely preserved to assist global correlation. 

Laminated carbonaceous mudrocks (so called “Bonarelli” black shales) record anoxic 

bottom waters in several marine basins.  This is the second Cretaceous oceanic anoxia 

event (“OAE 2” of Schlanger & Jenkyns, 1976; Jenkyns, 1980; Arthur et al., 1987).  The 

dark shales are associated with a positive carbon isotope anomaly (Scholle & Arthur, 

1980; Arthur et al., 1985; Jenkyns, 1985; Gale et al., 1993) (Figure 1.1-1), which can be 

recognized beyond the black shale environments and has become diagnostic for OAE 2.  

Changes in fossil biotas across this interval have been attributed to one of the mass 

extinctions that is recognizable in the classic stage and substage compilations of the fossil 

record of families and genera (Raup & Sepkoski, 1986; Jarvis et al., 1988; Harries & 

Kauffman, 1990; Jablonski, 1991; Kaiho & Hasegawa, 1994; Hallam & Wignall, 1997) 

(Figure 1.1-2). 
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Figure 1.1-1: An example of the OAE 2 carbon isotope excursion from Eastbourne, Sussex, where it is 

expressed in both carbonate analysis (black dots) and organic carbon analysis (open dots) modified after 

Kennedy et al. (2005) and Gale et al. (2005) to show the subdivision on the excursion into parts - on the left 

- generally recognized in the literature for correlation and timing.  On the right is a breakdown of how this 

section was entered for graphic correlation - see methods chapter.  These characteristics are seen coinciding 

with a black shale interval. 
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The evolutionary response to environmental change plays out at the species level, 

however, and the time span of OAE 2 appears to be significantly briefer than the 

resolving power of published Phanerozoic mass extinction analyses such as shown in Fig. 

1.1-2.  The duration of OAE 2 is variously estimated at 70 Ka in the Arobes section, 

Spain (Melinte-Dobrinescu et al., 2013), 90 Ka in the Global Stratotype Section and Point 

(GSSP) locality near Pueblo, Colorado (Keller & Pardo, 2004), 250 Ka in the Dover 

section, England (Lamolda et al., 1994), and even upwards of half a million years or so in 

Bahloul, Tunisia (Caron et al., 1999), Eastbourne, England (Paul et al., 1999), and 

globally from nine Atlantic and Tethys Ocean basin localities (Arthur et al., 1988).  

Global compilations have not yet approached this fine resolving power.  Although it can 

be achieved for parts of individual sections and cores, regional compilations are 

necessary to overcome the patchiness of habitats and hiatuses.  Global scope is required 

to capture extinction.  Fortunately, automated sequencing techniques now make it 

possible to sequence time-lines of thousands of species origination and extinction events 

from hundreds of localities (Sadler, 2010; Sadler et al., 2014) and approach event-to-

event resolution of hundreds of thousands to tens of thousands of years for pelagic 

faunas, even in Paleozoic rocks (e.g. Sadler et al., 2009; Cooper et al., 2013).  This thesis 

develops such a time-line across OAE 2 to serve as a basis for temporally and 

geographically highly resolved analyses of evolutionary dynamics.  Specifically, the 

thesis will examine the hypothesis that the response of species to OAE 2 is more often 

migration than extinction; i.e. that the well-known concentration of species range ends in 

OAE 2 reflects local changes in habitat and preservation more than global disappearance.  
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The thesis presents a method for inferring extirpation and examines the pattern of true 

extinction pulses. 
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Figure 1.1-2: Phanerozoic [A] family and [B] genus richness histories, show the C/T relative loss during the 

so-called “big five” mass extinctions.  1) Late Ordovician, 2) Late Devonian, 3) Late Permian, 4) Late 

Triassic, and 5) Late Cretaceous.  Abbreviations are as follows: Cm=Cambrian, O=Ordovician, S=Silurian, 

D=Devonian, C=Carboniferous, P=Permian, Tr=Triassic, J=Jurassic, K=Cretaceous, and T=Tertiary.  The y-

axis scales raw taxon totals for successive time intervals that differ between the two curves.  Richness loss is 

a balance of origination rate and extinction rate; the extinction component cannot be separated from richness 

curves alone. Modified after: http://archive.larouchepac.com/node/21941.  

http://archive.larouchepac.com/node/21941
http://archive.larouchepac.com/node/21941
http://archive.larouchepac.com/node/21941


6 

First and last occurrences of species are the vast majority of events in the time-

line.  They are limited to pelagic fossil clades that have long been preferred for 

biostratigraphic zonation.  These clades have not only a suitably wide geographic 

distribution but also the taxonomic stability that emerges from international correlation 

projects.  The selected clades are mostly planktonic or nektonic and preserved in both 

deep and shallow-water sediments.  The time-line may eventually provide a framework 

for inclusion of the more provincial, shallow-water, shelly, macro-benthos that surely 

contribute considerable numbers to the richness statistics on which classic recognition of 

Phanerozoic mass extinctions are based (Fig. 1.1-2).  However, that augmentation is far 

beyond the scope of this 2-year foundational project. 

Environmental events are also incorporated into the time-line from the outset.  

These include isotopic ratio excursions, black shale intervals, and dated ash falls.  As in 

comparable published examples (Sadler, 2012; Sadler et al., 2014), the biostratigraphic 

and other event types have been incorporated in a manner such that neither one drives the 

correlation and sequencing alone.  Before introducing the methods and data in greater 

detail, it is useful to discuss briefly the terminology of extinction, review C/T 

paleogeography, and lay out the challenges that the numerical methods must overcome.  

 

1.2 BIOLOGISTS’ TERMINOLOGY FOR EXTINCTION 

Fossil species can disappear from a measured section or core for a variety of 

geological and biological reasons.  To review how absence may be an artefact of the 

fossil record, we first need precise terms for different types of real biological 
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disappearance.  Biologists’ terminology is clear and straightforward.  It rests on the 

spatial and temporal scope of absence (Table 1.2-1).  Disappearance of a taxon can have 

three larger contexts.  It may be: 1) a local instance of global and permanent extinction; 

2) a purely local, but permanent, absence that biologists term extirpation to distinguish it 

from full extinction; or 3) local but temporary absence, distinguished here as excursion 

because the species later returns, perhaps in response to restoration of the preferred 

habitat.  By definition, therefore, extinction cannot be deduced from a single section or 

core, regardless of the time span or richness of the fossil-bearing beds.  Given globally-

distributed sections, it is also necessary that their time span be longer than the likely 

taxon durations. Otherwise, too many range ends will coincide with the local limits of 

sampling.  Extirpation or excursion may be seen at a single locality.  A species can have 

only one extinction and, technically, only one location can record the very last 

occurrence.  A species could have as many extirpations as localities and many excursions 

at every locality.  Thus, the hypothesis that extirpation and migration are more common 

responses to OAE 2 than extinction is expected to be true.  It is examined here for six 

clades that meet the requirement that they have been recovered from widespread 

localities throughout the global mid-Cretaceous ocean.  The time-line establishes the 

framework for analyzing spatial and temporal patterns of extirpation.  The analytical 

approach will be illustrated for a sample taxon, but it is beyond the scope of the thesis to 

analyze and summarize the pattern of extirpation across all 25,112 local last occurrences 

observed for the 4,962 taxa compiled.  The time-line will be analyzed in full for the 
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timing of extinction pulses and reductions in origination rate in and around the OAE 2 

interval - a test of the role of extinction. 

 

 Global Local 

Temporary (Implausible) Excursion2 

Permanent Extinction1 Extirpation1 

 
Table 1.2-1:  Biological terms for the disappearance of species. (1 Standard strict usage; 2 Adopted here). 
 

1.3 CENOMANIAN-TURONIAN PALEOGEOGRAPHY  

The mid-Cretaceous oceanic realm may be divided into four regions:  Arctic, 

Atlantic, Pacific, and Tethys.  Each region includes local records of anoxic black-shale 

environments.  The regions differ in orientation, width, and their stage in the Wilson 

Cycle (Figure 1.3-1).  The Atlantic and western Tethys were both narrow seas.  The 

Atlantic Ocean extended north-south across climate belts and was in the early stages of 

opening.  The Tethys seaway extended east-west, mostly at low latitude and was in a late 

stage of closing, especially on the western side.  In eastern Tethys, the Indian 

subcontinent was still far from Asia; no Tibetan Plateau existed.  There were no deep 

connections between the North Atlantic and Arctic Oceans, nor between the South 

Atlantic and Pacific Oceans. 

The mid-Cretaceous climate was warm.  Temperature proxies from both marine 

and terrestrial environments indicate an equator-to-pole temperature gradient smaller than 

today (Kuypers & Pancost, 2002).  High Cretaceous sea-surface temperatures are 

associated with a higher-than-modern sea level.  Sea level rose through the Cenomanian 
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period and reached a Phanerozoic maximum in the Early Turonian (Hancock & 

Kauffman, 1979; Haq et al., 1987; Hallam, 1992; Gale et al., 2000).  The continental 

lithosphere was flooded to generate epicontinental seaways and shelves of great extent, 

largely without good modern analogs.  Volcanism figures prominently in explanations for 

mid-Cretaceous climate and sea level (Larson, 1991; Kerr, 1998; Snow et al., 2005; 

Kuroda et al., 2007; Pearce et al., 2009).  Several large igneous provinces of this age have 

been identified (Coffin & Eldholm, 1994) and interpreted to have influenced sea-floor 

elevations and atmospheric CO2 levels (Arthur et al., 1985; Bice & Norris, 2002, Leckie 

et al., 2002).  Their impact would be enhanced by inefficient circulation likely in narrow 

parts of the global ocean with weak connections to cold high-latitude seas (Schlanger & 

Jenkyns, 1976). 
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1.4 ANOXIA AND CARBON ISOTOPES 

Anoxia has long been inferred from local late Cenomanian facies changes and 

OAE 2 is now defined by carbon isotope excursions which are more widely recognized 

than anoxic facies.  The association of oxygen-deprived facies and carbon isotope 

anomalies can be explained by various mechanisms that are not necessarily mutually 

exclusive.  Geochemical modelling of carbon isotope anomalies not only supports the 

evidence of widespread anoxia indirectly, but also makes the case that the interval of 

rising isotopic ratios must be sufficiently brief for precise global correlation.  Of course, 

the OAE 2 anomaly must first be distinguished from other Cretaceous isotope excursions 

by biostratigraphy. 

 

Oceanic Anoxic Event 2 

In the mid-Cretaceous there were between two and seven of these global OAE-

type events (Schlanger & Jenkyns, 1976; Arthur & Schlanger, 1979; Jenkyns, 1980; 

Arthur et al., 1987; Sliter, 1989; Arthur et al., 1990; Bralower et al., 1993, 1999; 

Erbacher et al., 1996; Erbacher & Thurow, 1997; Leckie et al., 2002).  Anoxia is 

typically found in deep ocean basin environments, as well as in outer shelf-continental 

margins, and epicontinental seaways (Ryan and Cita, 1977; Arthur and Schlanger, 1979; 

Gale et al., 2000; Bowman and Bralower, 2005).  Causes set forth to explain anoxic 

events include 1) sea-level rise with transgression in both epicontinental and marginal 

locations that effectively triggered high productivity (Schlanger & Jenkyns, 1976; 

Jenkyns, 1980; Leckie et al., 2002; Pearce et al., 2009) and 2) a warmer-than-modern 
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climate that reduced cold oxygenated bottom waters and altered the depth of the oxygen-

minimum layer (Schlanger & Jenkyns, 1976; Schlanger et al., 1987; Arthur et al., 1987; 

Jarvis et al., 1988; Kaiho & Hasegawa, 1994; Busson & Cornee, 1996; Hart, 1996; Caus 

et al., 1997). 

Anoxic bottom water conditions favor high rates of burial of marine organic 

matter that remains unoxidized and naturally rich in 12C (Arthur et al., 1987; Uličný et al., 

1997).  This is probably coupled with preferential extraction of the lighter carbon 

isotopes (12C) as a result of enhanced marine plankton productivity in the warm surface 

waters (Jenkyns, 1980; Uličný et al., 1997; Kuypers et al., 2002; Lenniger et al., 2014).  

The result is such a strong association of the C/T black shales with a positive carbon 

isotope ratio that the excursion has become diagnostic for OAE 2. 

 

The δ13C Excursion 

The OAE 2 carbon excursion peaks in the late Cenomanian.  The return to 

background values occurs after the C/T boundary.  δ13C enrichment during the positive 

excursion was initially recorded for δ13Ccarb as ~1.5-2 per mil and δ13Corg as ~3.5-4 per 

mil (Arthur et al., 1988).  This pattern has since been recorded globally (Jenkyns, 1980; 

Herbin et al., 1986; Schlanger et al., 1987; Gale et al., 1993; Uličný et al., 1997; Gale et 

al., 2000) and in both carbonates (δ13Ccarb; Scholle & Arthur, 1980; Schlanger et al., 

1987; Jarvis et al., 1988; Gale et al., 1993; Paul et al., 1999; Tsikos et al., 2004) and 

organic matter (δ13Corg;  Pratt & Threlkeld, 1984; Pratt, 1985; Arthur et al., 1988; 

Hasegawa, 1997; 2003; Hasegawa et al., 2003).  Although variations in the anomaly are 
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reported (Hilbrecht et al., 1992), the use for a global, rather than just local correlation has 

become common practice (Gale et al., 1993; Uličný et al., 1997; Keller & Pardo, 2004; 

Kennedy et al., 2005).  Biostratigraphic index fossils readily distinguish the different 

OAE events and make the case that OAE 2 is of approximately the same age 

(isochronous) everywhere.  Striking similarities in the details of the form of the OAE 2 

excursion (but not the actual isotope ratio values) make the case for more detailed 

correlation, and considerations of oceanic mixing-time support this view.  Gale et al. 

(1993) reported similar profile peaks in the isotopic anomaly from the Western Interior 

Seaway and the British Chalk.  Uličný et al. (1997) found similarities between Bohemian, 

North American, and Northern African sections. 

For automated correlation the excursion can be divided into several parts.  The 

best candidate for correlation is said to be the steepest initial rise in values, but 

chemostratigaphers also attempt to match 2-3 individual peaks that occur after the initial 

build-up (e.g. Gale et al., 1993; Hasegawa, 1997; Caron et al., 2006; Melinte-Dobrinescu 

et al., 2013).  The reported pattern of values through the anomaly typically consists of 

four main phases: build-up 1, build-up 2, plateau, and recovery (Paul et al., 1999; Gale et 

al., 2005; Caron et al., 2006; Melinte-Dobrinescu et al., 2013).  For this thesis I add 1-3 

local peaks, where expressed, so that the excursion is broken down into a maximum of 

six parts: the rise, top, fall, peak 1, peak 2, and peak 3 (Figure 1.1-1).  The parts are 

recorded as a conservative uncertainty interval that deal with more and less distinct 

patterns and differences in sampling intensity.  The uncertainty intervals may overlap.  
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One strategy in assessing uncertainty is to imagine the impact on the shape of the curve 

of an additional high or low ratio between adjacent samples. 

 

1.5 REPORTED BIOTIC RESPONSES TO OAE 2 

The C/T has been claimed to be the third largest post-Palaeozoic mass extinction 

event based on faunal turnover rates (Raup & Sepkoski, 1984; but see Gale et al., 2000).  

Only the end-Cretaceous and the Norian-Rhaetian events appear to have been more 

devastating (Raup & Sepkoski, 1984).  Counts of fossil marine taxa suggest that as many 

as 7% of families, 26% of genera and 53% of species went extinct as a consequence of 

the C/T event (Raup & Sepkoski, 1986; Sepkoski, 1989; Jablonski, 1991; Harries, 1993).  

The counts include marine macrofossils (Raup & Sepkoski, 1986; Elder, 1989; 

Kauffman, 1995; Harries & Little, 1999), especially marine benthic clades (Jarvis et al., 

1988; Hart & Leary, 1991; Kaiho et al., 1993; Kaiho & Hasegawa, 1994; Paul et al., 

1999; Lauridsen et al., 2009), but also planktonic microbiota (Paul & Mitchell, 1994; 

Hart & Leary, 1991; Lamolda et al., 1994; Paul et al., 1999; Leckie et al., 2002; Gebhardt 

et al., 2010). 

The significance and even the existence of a C/T mass extinction has, 

nevertheless, been cast into some doubt by closer analysis of individual clades.  Gale et 

al. (2000) list some of the causes for doubt.  Foraminiferal data from Banerjee & 

Boyajian (1996) reveal smaller generic extinction levels -- only a 17% loss.  Reanalysis 

of the Raup & Sepkoski (1984) data by Patterson & Smith, (1987; 1989) find that 

echinoderm and fish data at the family and genus levels lack support for a significant 



15 

extinction at the end of the Cenomanian.  Additionally, Hora & Marshall (1998) found no 

evidence for an end-Cenomanian extinction event in marine faunas from the Western 

Interior Basin, USA. 

The following paragraphs summarize the characteristics of the six clades selected 

for the time-line analysis.  Five of them are microfossils.  They include calcareous, 

siliceous and organic-walled shells and cysts.  Conflicted findings concerning their 

participation in an OAE 2 extinction event probably result from the limited geographic 

scope of many studies.  Associated faunal changes are to be expected in sections and 

cores at such dramatic changes in sedimentary facies and preservation potential as mark 

the onset of the Bonarelli black shales.  The more discriminating of the single-section 

paleo-ecologic studies have tracked local changes in relative abundances of taxa.  My 

time-line is limited to binary presence-absence information. 

 

Ammonites 

Ammonites are cephalopod animals with large chambered calcium carbonate 

shells. They are nektonic heterotrophs - the largest individual organisms and highest in 

the food chain of all clades to be included.  Elder’s (1989) study of Western Interior 

Seaway ammonites during the C/T found 74% of the species going extinct.  Pacific 

Ocean ammonite faunas are said to lose diversity in response to anoxia at the C/T 

boundary (Hirano et al., 2000), but the extent of extinction is found to be variable and 

highly dependent on location (Monnet, 2009).  Monnet also notes that the richness 
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minimum at the C/T interval may be explained by failure of origination. The time-line 

analysis will separate origination and extinction rates. 

 

Calcareous Nannofossils 

Calcareous nannofossils are tiny plates that coat unicellular eukaryotic 

phytoplankton (algae).  The plates reach only a few micrometers in length.  They are 

calcium carbonate in composition.  The host organism is an autotrophic primary producer 

in the food chain.  During OAE 2 a nannofloral turnover event is characterized by 

disappearance of high-fertility taxa and reduced assemblages (Melinto-Dobrinescu et al., 

2013).  This shift starts in the δ13C second build-up phase and continues into the plateau 

phase (Melinto-Dobrinescu et al., 2013) where it may be due to OAE 2 (Leckie et al., 

2002).  Although some researchers note losses in diversity (Jarvis et al., 1988), 

abundance (Paul et al., 1999), and high rates of turnover (Leckie et al., 2002), others find 

only minor assemblage changes and select areas of enrichment and high abundance in 

particular nannofossil species, when compared to macrofossils and foraminifera 

(Bralower, 1988, Lamolda et al., 1994). 

 

Dinoflagellates 

The dinoflagellate cyst, or dinocyst, is a tiny (up to tens of micrometers) organic-

walled part of the life cycle of protists that may be planktonic or benthic, and 

heterotrophic or autotrophic.  Reported at the end of the Cenomanian is a decline in 

dinocyst abundance (Lamolda et al., 1994; Lamolda & Mao, 1999; Pearce et al., 2009), 



17 

productivity (Pearce et al., 2009), and diversity (Jarvis et al., 1988; Lamolda & Mao, 

1999).  Species richness and numbers are said to remain low into the Turonian 

(FitzPatrick, 1995; Pearce et al., 2009). 

 

Benthic Foraminifera 

Benthic foraminifera are small (diameters typically reaching a millimeter or two), 

bottom dwelling heterotrophs.  Most have calcium carbonate tests.  The agglutinated 

foraminifera build tests of sand grains or other particles which they cement together.  

Within the C/T boundary interval, diversity, size, and abundance of benthic foraminiferal 

species have been found to decline (Paul et al., 1999; Gebhardt et al., 2010).  The drop in 

abundance correlates to the onset of the δ13C excursion plateau phase (Paul et al., 1999).  

High extinction percentages have also been found coincident with the anoxic event 

(Kaiho & Hasegawa, 1994). 

 

Planktonic Foraminifera 

The millimeter-sized tests of planktic foraminifera have long been used for 

correlation and environmental interpretation.  They are multi-chambered and of calcium 

carbonate composition.  Some local studies associate reductions in diversity (Jenkyns, 

1985; Lamolda et al., 1994; Paul et al., 1999), size (Lamolda et al., 1994; Paul et al., 

1999; Wagreich et al., 2008, Gebhardt et al., 2010), and abundance with the C/T 

boundary interval.  This persists into the Turonian (Lamolda et al., 1994; Paul et al., 

1999; Wagreich et al., 2008).  Other studies find sections with relatively high diversity 
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and abundance, which they recognized as possible refugia; one of these is the Penninic 

Ocean (Gebhardt et al., 2010). 

 

Radiolaria 

The radiolaria are tiny (a few hundreds of micrometers) siliceous tests of 

planktonic heterotrophs.  A dramatic faunal change and diversity reduction has been 

reported from the mid OAE 2 (Musavu-Moussavou et al., 2007).  Other authors report an 

extinction pulse in the lower part of the Bonarelli black shales followed by an origination 

pulse in the upper part (Erbacher et al., 1996; Erbacher & Thurow, 1997; Musavu-

Moussavou et al., 2007).  Abundances vary throughout the upper Cenomanian and into 

the lower Turonian, but undeniably decrease in the black shale interval before increasing 

again during the early Turonian (Musavu-Moussavou et al., 2007; Gebhardt et al., 2010). 

 

1.6 STRATIGRAPHIC EVIDENCE OF ABSENCE 

Stratigraphic evidence of absence is rarely unequivocal (Sadler, 2013). Failure to 

find fossils does not imply the species was extinct and difficulties are compounded by 

reliance on too few stratigraphic sections.  Local first and last occurrences of fossil 

species may be poor approximations of local immigration and emigration events and 

cannot be interpreted in isolation as origination and extinction events.  Contradiction in 

the sequence of first and last occurrence events from section to section are commonplace 

for many reasons: (1) patchy distribution of living taxa, (2) faunal migration, (3) 

diachronous extirpation, (4) incomplete preservation, (5) incomplete collecting, and (6) 
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imperfect identification.  All these factors naturally justify skepticism about hypotheses 

of extinction.  Biases in the preserved rock record may carry forward to interpretations.  

Doubts may be reduced by resorting to larger datasets, standardized sample sizes, and 

incorporation of methods to place confidence intervals on range ends (Patzkowski & 

Holland, 2012). 

My composite time-line applies Patzkowski and Holland’s recommendation for a 

large data foundation.  They also improve upon the confidence interval strategy 

(Marshall, 2010), which was designed for single sections.  Confidence intervals on the 

range end are infinitely long for a species that is found at only one horizon (Strauss and 

Sadler, 1989).  To determine whether it is a truly short-lived taxon or a rarely seen long-

ranging taxon, paleontologists naturally examine more sections; a truly short-lived taxon 

will always have a short local range and similar associated species.  Composite sections 

incorporate this strategy.  After the local ranges are mapped back into the composite, it is 

possible to make more insightful statements about local range-end uncertainties. 

Composite time-lines remedy the fundamental shortcoming of single sections and 

cores. At best, a single section records only one patch in one depositional setting at any 

preserved moment.  Not all moments are preserved, but a preserved fauna may usefully 

(for our purpose) telescope several habitats (different water depths) and mix true 

inhabitants with transported post-mortem remains.  In practice preservation and 

collection are incomplete.  Composite sections combine many places, basin-wide or 

globally.  Those that combine nearby cores and sections can fill-in the unavoidable gaps 
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in preservation and collection.  For global interpretation composite time-lines are 

essential to combine disparate latitudes, habitats, and preservation styles. 

Difficulties in building fully-resolved composite sections go back to the 

limitations of the information content of the single sections.  More is better, because 

added sections usually bring more information and thus a better resolved time-line, but 

more sections increase calculation time exponentially.  Optimal sequences can take many 

days or even a few weeks to find by hand.  Historically, multiple sections were first 

combined into correlated fence diagrams by means of discrete biostratigraphic stages and 

biozones.  Single researcher compilations (e.g. Sepkoski, 1989) and the first computer-

assisted community databases (e.g. the Paleobiology Database) tended to rely on these 

same discrete time-bins, which imposed a limit on resolving power.  Half a century ago, 

however, Shaw (1964) had already introduced the notion of building continuous time-

lines (composite sections) instead of casting paleontological data into discrete time bins.  

Shaw’s graphic correlation allows every section to contribute information even if it is too 

sparse for detailed correlation into a stratigrapher’s fence diagram.  This rehabilitation of 

all scraps of information improves the time-line but exacerbates the problem of 

calculation time.  That dilemma is solved by heuristic search algorithms and modern 

computing power. 
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CHAPTER 2 - SCOPE AND METHODS 

2.1 DATABASE SCOPE 

Information content of the clades 

To resolve the sequence of biotic and geochemical events during intervals of rapid 

global change it is crucial to combine information from as many localities as possible.  

Individual stratigraphic sections and drill cores are incomplete and parochial accounts of 

events.  Global scope is essential to demonstrate extinction and requires records from 

many regions; using several localities in each region mitigates incompleteness.  

Additionally, species-level data are desirable because this is the level at which evolution 

operates.  This thesis is based on a compilation of local records totaling 50,224 range- 

end observations for the 4,962 taxa in 501 sections. 

The amount of information compiled for each clade can be represented by the 

numbers of sections and taxa included, but measures of useful information content must 

go deeper (Table 2.1-1).  Rich sections and fossiliferous horizons are more informative 

than sparse sections and depauperate faunas.  The total number of observed range ends 

captures the richness of the data compiled.  To constrain their relative positions in a time-

line in any useful way, however, taxa must be found with known superpositional 

relationship to one another in the same section.  Two measures capture these constraints.  

One counts the number of observed pairwise coexistences of taxa.  The other counts the 

number of instances in which the first occurrence of one taxon is seen below the last 

occurrence of another, whether or not they coexist.  These two measures are evidence of 

superposition that cannot be falsified by new finds and range extensions; i.e. they are 
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immune to the problems of evidence of absence.  Both measures could be standardized 

by expressing them as a fraction of the number of possible pairs of taxa. 

This thesis builds a separate time-line for each clade.  They are calibrated to a 

common time scale using dated ash-fall tuffs and international estimates of the age of 

stage boundaries.  Ultimately, a single time-line might be built from all the data, but two 

difficulties would have to be overcome.  The first is simply the exponential increase in 

computation time.  Faster processors and parallelized code overcome this hurdle.  The 

second is the need for cross-clade sequence constraints.  Without observed pairwise 

coexistences and first-before-last constraints between taxa of different clades, the 

sequencing algorithms will tend to cluster range ends by clade to the extent possible to 

avoid implying coexistences that have not been observed.  Currently, the tally of cross-

clade coexistences is too meagre (Table 2.1-2).  Unless the level of cross-clade 

coexistence information reaches the level of within clade coexistence information a 

multi-clade time-line might artificially cluster events by clade in detail.  This happens 

because, to the extent possible the algorithms avoid implying additional coexistence.  

This shortcoming is not easily remedied, because the clades tend to be best preserved and 

most easily extracted from different facies.  There are not enough radioisotopic age 

determinations or magnetostratigraphic reversal horizons to compensate for the facies 

differences. 
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 Ammonites Coccoliths Dinocysts 
Benthic 

Forams 

Planktic 

Forams 
Radiolaria 

Sections 477 394 393 399 412 390 

Taxa 1,828 444 491 1,040 373 786 

Observed 

Range-end 

Events 

11,330 9,754 5,110 6,500 7,912 7,620 

Pairwise 

Coexistence 

Constraints 

11,367 26,272 26,999 23,929 7,921 40,869 

Pairwise First 

Before Last 

Constraints 

85,007 58,189 62,969 69,838 25,747 100,070 

 

Table 2.1-1: These are simple measures of the information content from the database.  The top two rows 

summarize geographic and taxonomic scope, the middle row is the volume of raw data entered, and the 

bottom two rows total the derived information that constrains the time-line. 

 

 

 

 

 Ammonites Coccoliths Dinocysts 
Benthic 
Forams 

Planktic 
Forams 

Radiolaria 

Ammonites XXXXX 0.007 0.005 0.002 0.005 0.0003 

Coccoliths 5,690 XXXXX 0.09 0.03 0.1 0.02 

Dinocysts 4,496 20,353 XXXXX 0.03 0.7 0 

Benthic 
Forams 

3,223 14,370 14,987 XXXXX 0.02 0.003 

Planktic 

Forams 
3,184 15,973 125,818 8,548 XXXXX 0.01 

Radiolaria 453 6,016 0 2,763 2,838 XXXXX 

 

Table 2.1-2: The tally of observed, cross-clade, coexistence constraints.  Bold font values are the raw counts 

of observed pairwise coexistences involving species from two different clades.  The italic font values express 

the raw counts as a fraction of all possible cross-clade pairs. 
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Information content of other events 

Other events incorporated into the database include: stage boundary ages, carbon 

isotopic ratio changes (carbonate and organic), marker beds (black shales, red beds), and 

heavy metal isotopes (Fe, Mn, Mo).  The stage ages aid in correlation between individual 

clade experiments.  δ13C excursions observed in both carbonate and organic material fall 

into their appropriate places on the single clade ordinal scale and later assist in 

determination of diachronism or synchronism.  The marker beds and heavy metal 

isotopes in the database were not analyzed for this thesis, but are among the geochemical 

indicators of the environment. 

 

2.2 SEQUENCING METHODS 

All information must be correlated with better resolving power than traditional 

biozones.  Neither geochemical signals nor taxon range ends may drive the correlation 

exclusively.  Instead, we use the principles of graphic correlation, introduced by Shaw 

(1964), to find sequences of events that best fit all the field data.  To overcome the huge 

volume of information we use an automated CONstrained OPtimization (CONOP) 

method. 

Literal correlation of first and last occurrences of taxa leaves unreasonable 

crossed lines or “tangles” in the fence diagram (Figure 2.2-1a).  This is direct evidence 

that many events are diachronous, but does not identify which are diachronous or by how 

much.  In effect, traditional biostratigraphic zonation resolves the tangles by removing 

events -- the fewest necessary such that no crossed lines occur.  The result is simple but 
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low in resolution.  The few remaining events are found in the same order everywhere 

(Figure 2.2-1b). This strategy must succeed if enough taxa are removed, leaving only 

those that do not coexist.  If ranges do not overlap, it is not possible to find the range-end 

events in contradictory order, even if preservation is incomplete.  Unfortunately, the 

strategy cannot possibly resolve all species range ends; many taxa do coexist (Tables 2.1-

1 and 2.1-2 are minimum estimates). 

Following Shaw’s (1964) graphic correlation method, CONOP approaches the 

problem differently.  It finds the least amount of adjustment necessary to place all 

trustworthy events in the same order everywhere.  Adjustments of local range ends are 

limited to those that stretch the observed range ends.  Shaw (1964) solved for sequencing 

and spacing of events.  Spacing was determined by rock thicknesses between events in 

the best local section.  Thus, in traditional graphic correlation the spacing problem was 

solved using a weak assumption that greater rock thickness indicated more elapsed time, 

even when the thicknesses were not measured in the same sections.  The sequencing task 

is much better constrained by stratigraphic superposition and requires fewer and simpler 

assumptions.  Edwards’ (1978) “no-space graphs” were an early variant of graphic 

correlation that isolates and solves the sequencing problem only.  CONOP follows this 

strategy; it applies additional assumptions to solve the spacing task after the optimal 

sequence has been found.  To mimic Edward’s logic, I set the CONOP run-time variables 

to measure range adjustments by the numbers of event horizons, not rock thickness. 

It is computationally simple to integrate the adjustments of taxon ranges (which 

stretch to fit), carbon isotope excursion segments (which shrink to fit), and ash bed 
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horizons (which may not move) because all adjustments are measured in the same units.  

CONOP finds the composite time-line that requires the least sum of adjustments by 

brute-force trial-and-error (Sadler, 2010).  With the smallest sum of all adjustments 

made, all the local range charts can be put into agreement with the best high-resolution 

global sequence of events where all observed coexistences are honored (Figure 2.2-1c). 
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Figure 2.2-1: Paleocene to lower Miocene correlation in Taranaki Basin, New Zealand, illustrates resolving 

power of different biostratigraphic strategies.  Literal correlation of raw range ends [A] is not reasonable.  

Traditional biostratigraphy [B] removes the fewest possible crossed lines to resolve the unreasonable 

“tangles,” which lowers resolution.  Graphic correlation and CONOP algorithms [C] adjust the lines by the 

least amount possible resulting in a higher resolution outcome.  Modified from Cooper et al., 2001. 
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In the final time-line the composite range will be drawn through all times at which 

the taxon is known anywhere (Fig. 2.2-2).  The best estimate for the position of an event 

that has been represented by uncertainty intervals will be the time interval in which it 

may be seen everywhere.  When uncertainty intervals for an isotope excursion (the six 

segments - each with their own maximum and minimum stratigraphic value) are mapped 

back into the composite time-line, some appear surprisingly long.  This is a result not so 

much of the local indistinctness as it is of a lack of accompanying fossils that indicate 

age.  Local taxon ranges are less prone to this effect because they are much more 

abundant in the data set.  Nevertheless, it remains difficult to determine the age of range 

ends that coincide with the top and bottom of a section; the limits of a section artificially 

truncate ranges and, unlike levels within the section, cannot be bracketed by fossils above 

and below. 

In addition to acceptable approximations of real taxon range ends there will be 

many range ends in the compiled data that are mere coincidences with the ends of a 

measured section or core.  Within the sampled interval, these will be mitigated by two 

factors:  1) extension of local ranges beyond a section limit is cost-free in the 

optimization process; and 2) section limits are likely to be randomly distributed within 

the sampled interval.  The bigger potential problem occurs at the limits of the sampled 

interval which, for this reason, must be extended beyond the interval to be interpreted.  

Thus the artificial range truncations are limited to “buffer zones” that are ignored during 

interpretation.  The Aptian through Maastrichtian stages were exhaustively compiled to 
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broaden this dataset and buffer the Cenomanian-Turonian interval from interference by 

artificial range ends.  
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Figure 2.2-2: Local ranges for the planktonic foraminiferan species Rotalipora cushmani (black) through the 

onset (red) of the δ13Ccarb excursion in OAE 2 on a best-fit ordinal composite time-line of 3,275 events from 

489 localities.  The onset is where the biggest impact is expected on the species being a time of rapid 

environmental change.  Events are those found in two or more localities.  Counts reveal a drop in observances 

through the composite range (blue box) but no global extinction during the onset of OAE 2. 
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2.3 ANALYTICAL METHODS 

A standard set of macroevolutionary analyses was undertaken for the output of 

each single-clade CONOP run:  incremental composite range support, taxon richness, 

rarefied richness, per-lineage -- million year (ammonites; benthic forams), one and a half 

million year (nannofossils; dinoflagellates), and two million year (planktic forams; 

radiolaria) -- origination and extinction rate, turnover rate, diversification rate, and a map 

summary of the geographic scope.  This is a preliminary sample of all the analyses and 

quality-control measures that a highly resolved time-line makes possible. 

Incremental composite range support (Fig. 2.2-2) examines the distribution of 

local ranges within the composite range.  It is a standard CONOP output.  Gaps in 

support and outliers are indicative of data quality problems that are corrected. 

Taxon richness can be calculated for every event level in the time-line.  It is the 

count of all taxa whose ranges span that level.  Richness curves may include spurious 

peaks and troughs as a result of severely uneven sampling.  To guard against this 

possibility, rarefied richness plots were generated following the standard ecologists’ 

rarefaction formulation of Hsieh & Li (1998).  Rarefaction estimates the expected 

richness for sampling that has been reduced to a uniform level.  It takes into account 

uneven abundance of taxa in the samples.  The stratigraphic data already use a temporal 

“range-through” convention that assumes each taxon is present from local first to last 

occurrence.  For a global temporal range it is possible to know that a species must have 

been present even if it was not sampled, because it is known from older and younger 

samples to exist. Because gaps in a spatial range may be commonplace, there is no 
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acceptable range-through logic for the spatial snapshot data of ecology - one of the main 

motivations for their use of rarefaction. Not surprisingly, therefore, rarefied richness 

curves for composite paleobiological time-lines are typically subdued replicas of the raw 

richness curves, showing the same peaks and troughs.  Rarefaction does serve to 

eliminate any artificial peaks that may be associated with biostratigraphers’ tendency to 

measure many short sections near stage boundaries, resulting in excessive sampling 

(Raup, 1972; Peters & Foote, 2001; Smith & McGowan, 2007).  The ammonite example 

(Figure 2.3-1) is typical.  In practice many rarefaction levels are examined as a guide to 

the relative reliability of different peaks and troughs, prior to interpretation. 

 

 
 

Figure 2.3-1: Raw taxon richness (dark grey curve) rarefied (dark blue) with 95% confidence intervals (light 

blue) through OAE 2.  Prominent peaks in the raw form are still present themselves when rarefied.  
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Richness history is the pattern that emerges from the balance of two processes: 

origination and extinction rate.  These cannot be inferred unambiguously from the 

richness trajectory but must be extracted independently from the time-line.  Although the 

time-line data are not binned, rate is an inherently binned concept.  Originations and 

extinctions are counted within the bin, corrected for bin duration and divided by the sum 

of the lengths of all ranges within the bin.  The result is a per-lineage, per-million-year 

rate.  The logic of the per-lineage standardization is that a given origination or extinction 

count is more notable if sustained by a less diverse stock.  By similar logic, mass 

extinctions are usually measured by percentage extinction rather than extinction count.  

Ideally, per-lineage rates are less than 1.0, but counts may exceed richness if there is 

anagenetic evolution within the bin; that is, if species originations and extinctions occur 

at artificial divisions of a continuum of morphologic change through time.  Without a 

cladistic phylogeny, however, I cannot separate anagenesis from cladogenesis. 

From these origination and extinction rates, turnover and diversification rates are 

derived.  Turnover is the sum of both, while diversification is the differences in 

originations and extinctions.  They are used as a different viewpoint for comparing 

origination and extinction trajectories from clade to clade.  Turnover graphs amplify 

change, but do not distinguish the type of change.  Diversification graphs will be 

relatively flat (close to zero) if origination and extinction curves remain close, regardless 

of the amplitude of their fluctuations.  Points on the richness graphs are counts of taxa 

extant at a given moment in time.  The gradient of lines connecting adjacent points are 

enrichment rate or diversification.  Points on the diversification graphs are analogous to 
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the slopes of the richness graph.  Thus, the linear segments of the diversification graph 

represent quickening (positive slope changes) and slackening (negative slope changes) of 

diversification (enrichment rate).   

The time bin sizes vary between clades, because the finest reasonable resolution is 

sought for each clade.  Bin duration is evidently too short if the content of any bin falls to 

zero or values from successive bins vary too noisily.  Spurious values near the limits of 

the data set are confined to the buffer zones and not presented.  Bin duration does not 

vary between analyses of the same clade.  Sliding bins of fixed size are offset along the 

time axis by one quarter bin width.  Thus the bins scan efficiently for maxima and 

minima, but consequentially widen the peaks and troughs.  For ease of comparison 

between clades some figures rescale the rate values as fractions of the maximum reached 

in the study interval (105 - 85 Ma). 

Among the possible further analyses are those that examine the longevity and 

paleogeography of individual species.  Although this is beyond the scope of this thesis, 

one example is presented because the same CONOP output served in the quality control 

process.  A standard preliminary screen shot of the planktic foraminiferan species 

Rotalipora cushmani reveals how extirpation can readily be mistaken for extinction if too 

few sections are examined (Figure 2.2-2).  Although the onset of OAE 2 dramatically 

reduces the number of local ranges observed for this species, the extinction of the species 

is not seen until much later in the Turonian.  This figure additionally shows that local 

taxon ranges must be diachronous while the uncertainty intervals on the isotope excursion 

permit the view that some part of it is isochronous.  On an evolutionary level this works 
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because species do not appear nor disappear everywhere at once, therefore, time is 

needed for global coverage.  Examining these local range occurrences (for extirpation) 

during OAE 2 for each species would be a straightforward but very time consuming task, 

ultimately needing the development of innovative graphics to summarize the local 

behavior of so many species and regions.  It is reserved for a later project. 
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CHAPTER 3 - RESULTS FROM SINGLE-CLADE TIME-LINES 

3.1 QUALITY CONTROL 

The incorporation of local carbon isotope data and stage boundary placements as 

uncertainty intervals enables some automated quality control prior to optimization.  

Taxon ranges can be stretched to force agreement between any sequences of events.  

Because uncertainty intervals adjust by shrinking, however, irresolvable conflicts may 

exist between locally observed placements of excursions and stage boundaries.  These are 

automatically detected prior to optimization. 

Two forms of carbon isotope data were included - carbonate carbon and organic 

carbon. The segments of the carbonate carbon curves generated no sequencing conflicts; 

they are plausible time-stratigraphic controls.  The organic carbon data generated some 

conflicts in sequencing between all pairs of parts of the local curves, except the fall, and 

between parts of the curve and the C/T stage boundary.  Evidently, the disposition of 

peaks in the local organic carbon isotope curve cannot provide precise correlation.  This 

suggests the influence of changing organic carbon composition in the δ13C record where 

peaks in organic carbon isotopes may sometimes simply reflect changing proportions in 

the mixture of organic compounds: i.e. marine and terrestrial.  For this reason clades were 

analyzed with the carbonate carbon excursion and not the organic carbon excursion. 

Age boundaries were entered into the database with their maximum and minimum 

uncertainty limits from the most recent geologic time scale, (Gradstein et al., 2012) as 

follows: Albian/Cenomanian (A/C) -- 101.3 to 99.7 Ma; Cenomanian/Turonian (C/T) -- 

94.3 to 93.5 Ma; Turonian/Coniacian (T/C) -- 90.4 to 89.2 Ma; and Coniacian/Santonian 
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(C/S) -- 87.3 to 85.3 Ma. The placement of these uncertainty intervals in the time-lines 

guided the later sixth-order (or lower) polynomial age calibration of the time-lines.  The 

resulting calibrated ages differ slightly from clade to clade and in comparison with the 

published uncertainties.  The differences reflect the unequal power of each clade to 

resolve the position of the stage boundaries and the placement of the limits of OAE 2, as 

indicated by carbon isotopes. 

 

3.2 MACROEVOLUTIONARY PATTERNS AND OAE 2 PLACEMENT 

For each clade, five preliminary macroevolutionary time series have been 

determined from the order of events in the time-lines:  taxon richness, origination rate, 

extinction rate, turnover and diversification (Figs. 3.2-1 to 3.2-5).  The compromised 

buffer zones at the ends of the time-lines are excluded.  A global map reveals the 

geographic scope of data sources for each clade. 

Stage boundaries and OAE 2 are placed independently for each clade, according 

to their placement in each time-line.  A later section, which compares trends across 

clades, uses a consensus placement.  The graphs in this section allow assessment of the 

relative time-stratigraphic constraint provided by the six clades and the reliability of the 

other events for correlation.  The first five segments of the OAE 2 excursion were in the 

late Cenomanian, the fall portion persisted into the Turonian.  The return to pre-excursion 

values did not occur until the early Turonian.  The span of OAE 2 in these diagrams is a 

combination of the true length of segments of the excursion and the resolving power of 

each clade.  The position of the rising carbon isotope ratios during the Cenomanian varies 
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from clade to clade with notably longer uncertainty intervals in the time-lines for 

dinoflagellates, benthic forams, and radiolaria. 

The general form of several curves helps estimate the extent to which species 

have been recognized primarily at branching points in an evolutionary tree (cladogenesis) 

or at relatively arbitrary thresholds in a continuum of morphologic change along a lineage 

(anagenesis).  The anagenetic mode of evolution (or taxonomic practice) produces an 

extinction for every origination and allows the number of turnover events in a time 

interval to exceed species richness.  This must be suspected where origination and 

extinction rate curves closely shadow one another and per-lineage rates of change are 

high. The ammonite clade has these characteristics. 
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Ammonites (Figure 3.2-1) 

All stage boundaries fall within the expected ranges but with narrower 

uncertainty.  The C/T boundary places at the center of its published estimate, from 93.71 

to 93.69 Ma. 

Raw Taxon Richness has two conspicuous peaks, one near the A/C boundary and 

the other at the C/T.  Richness rises irregularly through OAE 2 with fluctuations of 

increasing amplitude in the second half.  A long decline of richness starts in the Turonian. 

Origination and Extinction Rates clearly distinguish the two richness peaks.  Both 

originations and extinctions peak dramatically at the end of the Albian.  The high per-

lineage rates indicate that species changes have been recognized along lineages, not at 

branching points.  The peak may be an artefact of taxonomic practice; i.e. finer splitting 

species in studies near the stage boundary.  During OAE 2, origination rate and extinction 

rate are more independent, with origination exceeding extinction until close to the end of 

the excursion. 

Turnover and Diversification Rates differ considerably.  Turnover exaggerates the 

end-Albian pulse in species differentiation.  Diversification rates are close to zero 

because origination and extinction curves are so similar.  The differences between them 

may include a considerable random element superimposed on a gentle ~8 million year 

fluctuation. 
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Figure 3.2-1: Ammonite range results with the carbonate carbon excursion - OAE 2 clade calibrated length 

shown as a black horizontal bar near the top of figures [A]-[C].  The excursion is labeled with a rise, top, and 

fall interval (shades of grey), and the three main peaks (yellow blocks).  Single clade calibrated age in millions 

of years is on the x-axis for [A]-[C].  OAE 2 spans most of the late Cenomanian with exception of the fall in 

the early Turonian.  Figure descriptions: [A] Taxon Richness (purple); [B] Originations (green) and 

extinctions (red) per lineage through one million year sliding bins; [C] Turnover (blue) and diversification 

(orange) per lineage through one million year sliding bins with dotted line indicating where zero is on the y-

axis; [D] Global distribution of data localities used (black open circles).  Map simplified after Ron Blakey. 
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Calcareous Nannofossils (Figure 3.2-2) 

All stage boundaries, except the C/T, place within published expectations but with 

narrower uncertainty.  The C/T falls approximately 0.1 Ma later than expected at 93.46 to 

93.41 Ma. 

Raw Taxon Richness peaks near the close of the Albian, Cenomanian and 

Turonian stages.  OAE 2 marks the end of the most sustained rise in richness.  Richness 

and carbon isotope ratios both decline during the early Turonian.  After the anoxic 

interval, as indicated by the isotope excursion, richness increases abruptly. 

Origination and Extinction Rates are both rising prior to OAE 2.  Extinction 

accelerates at the onset of OAE 2; origination rate peaks later. 

Turnover and Diversification Rates have fluctuations of comparable amplitude 

suggesting that species are less commonly recognized by dividing a continuum of change 

than may have been the case for ammonite species.  
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Figure 3.2-2: Calcareous nannofossil range results with the carbonate carbon excursion. For detailed figure 

descriptions see Figure 3.1-1.  [A] Taxon Richness (purple); [B] Originations (green) and extinctions (red) 

per lineage through one and a half million year sliding bins; [C] Turnover (blue) and diversification 

(orange) per lineage through one and a half million year sliding bins; [D] Global distribution of data 

localities used (black open circles).  Map simplified after Ron Blakey.  
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Dinoflagellates (Figure 3.2-3) 

The T/C and C/S stage boundaries fall very close to expected ages:  ~0.2 Ma 

younger and ~0.1 Ma older, respectively.  All others are placed within expectation but 

with narrower spans.  The C/T uncertainty shrinks to 94.29 to 94.25 Ma.  Placement of 

OAE 2 is looser by dinoflagellate control than by other clades.  The possible span starts 

in the mid Cenomanian and the younger limit of peak 3 can hardly be separated from the 

C/T stage boundary. 

Raw Taxon Richness, which had steadily increased prior to OAE 2 declines 

sharply when carbon isotope ratios reach their peak.  The subsequent decrease in richness 

continues after the Turonian where it likely reflects a lack of data. 

Origination and Extinction Rates both rise near the onset of OAE 2.  Extinction 

rate exceeds origination immediately after the rise in OAE 2 carbon isotope ratios and 

stays ahead for the remainder of the study interval. 

Turnover and Diversification Rates have fluctuations of comparable magnitude 

and their separation reflects prominent extinction pulses at the onset of OAE 2 and in the 

Coniacian. The older peak is accompanied by a pulse of originations while the younger 

peak is not.  
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Figure 3.2-3: Dinoflagellate range results with the carbonate carbon excursion.  For detailed figure 

descriptions see Figure 3.1-1.  [A] Taxon Richness (purple); [B] Originations (green) and extinctions (red) 

per lineage through one and a half million year sliding bins; [C] Turnover (blue) and diversification (orange) 

per lineage through one and a half million year sliding bins; [D] Global distribution of data localities used 

(black open circles).  Map simplified after Ron Blakey. 
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Benthic Foraminifera (Figure 3.2-4) 

All stage boundaries place within the published expectation for their ages but with 

narrower uncertainty.  The C/T boundary places toward the younger end of the published 

uncertainty at 93.64 to 93.62 Ma.  Unlike the five other clades, the benthic foraminifera 

cannot constrain the rising segment of the OAE 2 carbon isotope excursion to a narrow 

interval. 

Raw Taxon Richness peaks twice within OAE 2.  It rose consistently prior to OAE 

2 and fell thereafter. Thus, OAE 2 coincides with the dominant feature of this curve.  

Origination and Extinction Rates both rise irregularly prior to OAE 2 and fall 

irregularly after OAE 2.  Origination dominates during the rise and extinction during the 

fall. 

Turnover and Diversification Rates appear quite different.  Turnover peaks in 

OAE 2.  Diversification fluctuates without long term trend throughout the study interval. 
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Figure 3.2-4: Benthic foraminiferal range results with the carbonate carbon excursion.  For detailed figure 

descriptions see Figure 3.1-1.  [A] Taxon Richness (purple); [B] Originations (green) and extinctions (red) 

per lineage through one million year sliding bins; [C] Turnover (blue) and diversification (orange) per 

lineage through one million year sliding bins; [D] Global distribution of data localities used (black open 

circles).  Map simplified after Ron Blakey.  



51 

Planktonic Foraminifera (Figure 3.2-5) 

The A/C, C/T, and C/S boundaries place outside the expected uncertainties by 

~0.3 Ma (older), ~0.6 Ma (younger), and ~1.0 Ma (older), respectively.  Others are within 

the expected uncertainty but with narrower spans.  The C/T places at 92.89 to 92.87 Ma.  

The age calibration regression for planktic foraminifera has an R-squared coefficient of 

0.9956625498, which is lower than all other clades except for dinoflagellates. Planktic 

foraminifera are respected index fossils but have the lowest taxon count in the database 

for this study. 

Raw Taxon Richness peaks late in OAE 2 after a long interval of rising richness 

with a subsidiary peak at the onset of OAE 2. 

Origination and Extinction Rates are markedly out of phase and fluctuate 

considerably on a time scale of several million years. 

Turnover and Diversification Rates are both smoothly dynamic and reflect the 

independence of the origination and extinction curves.  This outcome is less likely for 

anagenetic evolution than cladogenesis.  
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Figure 3.2-5: Planktonic foraminiferal range results with the carbonate carbon excursion.  For detailed figure 

descriptions see Figure 3.1-1.  [A] Taxon Richness (purple); [B] Originations (green) and extinctions (red) 

per lineage through two million year sliding bins; [C] Turnover (blue) and diversification (orange) per lineage 

through two million year sliding bins; [D] Global distribution of data localities used (black open circles).  

Map simplified after Ron Blakey. 
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Radiolaria (Figure 3.2-6) 

All stage boundaries, except the C/S which radiolarian constraints place older 

than expected, land within the published uncertainty limits and with narrower limits.  The 

C/T places approximately at the center of its published uncertainty at 93.71 to 93.70 Ma.  

The OAE 2 interval is loosely constrained; the rise, in particular, has a wide uncertainty 

which starts in the mid Cenomanian.  Like the benthic foraminifera, the radiolarian clade 

is not the best suited for correlation in this time interval. 

Raw Taxon Richness of the radiolaria resembles the pattern for benthic 

foraminifera; i.e. one general peak centered on the late Cenomanian dominates the study 

interval. 

Origination and Extinction Rates come nearly into phase in OAE 2 but are out of 

phase elsewhere. 

Turnover and Diversification Rates have broadly independent and smooth 

trajectories.  
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Figure 3.2-6: Radiolaria range results with the carbonate carbon excursion.  For detailed figure descriptions 

see Figure 3.1-1.  [A] Taxon Richness (purple); [B] Originations (green) and extinctions (red) per lineage 

through two million year sliding bins; [C] Turnover (blue) and diversification (orange) per lineage through 

two million year sliding bins; [D] Global distribution of data localities used (black open circles).  Map 

simplified after Ron Blakey. 
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CHAPTER 4 - MULTI-CLADE RESPONSE TO OAE 2 

4.1 A SHARED TIME SCALE 

In order to reveal more general pelagic responses to OAE 2, the 

macroevolutionary patterns for all six clades need to be summarized on a single time 

scale and with the same sliding bin size.  The bins must all be matched to the most 

coarsely binned clades, which were the planktonic forams and radiolaria at two million 

year sliding bins.  The macroevolutionary charts are fitted together using the carbonate 

carbon isotopic maximum and minimum stratigraphic range segments of OAE 2, because 

this is the environmental perturbation of interest.  Figure 4.2-1a rescales origination and 

extinction rate peaks for figure 4.2-1b to the time scale of the ammonite clade with seven 

calibration points met in each – two boundaries at the edges, three boundaries within the 

buffered zone, and the beginning and end of the OAE 2 interval.  The ammonite clade 

had the best controlled age calibration. 

 

4.2 TIMING AND EXTENT OF EXTINCTION RATE INCREASES 

In terms of the timing of their closest extinction rate increase relative to OAE 2, 

within one and a half million years before and after the event (Figure 4.2-1a), the clades 

fall into two groups.  These are found in figure 4.2-1b and were termed phase-1: 

extinction-rates that increased before the onset of OAE 2 - calcareous nannofossils, 

dinoflagellates, benthic forams, and planktonic forams, and phase-2: those that did not 

increase until after OAE 2 was initiated - ammonites, radiolaria, and the second pulse 

from dinoflagellates. 
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The extent and timing of OAE 2, as seen by responses of extinction-rates, vary 

between clades.  Of the clades that started to show extinction rate increases before the 

onset of OAE 2, origination peaks are found within one million years of the extinction-

rate range beginning point.  However, all other origination peaks and troughs appear 

random throughout the ranges, suggesting that each clade had a differing response to 

OAE 2. 
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Figure 4.2-1: [A] Origination and extinction rate peaks for each clade.  These have been rescaled to the 

ammonite stage boundaries in two million year sliding bins, and between zero and one for amplitude on the 

y-axis. There is no clear extinction coordination between clades. [B] Clades that started before OAE 2 (+) 

were termed phase-1, and those that started inside (*) were phase-2. Rescaled to a two million year sliding 

bin, extinction rate increases (black bar) were from lowest point in the interval to highest point and found 

greater than or equal to 0.1 amplitude difference and span greater than 1 million years.  Origination peaking 

points (green arrows) distinguished again as being significant when a greater than or equivalent to amplitude 

difference of 0.1 was reached from lowest point to highest in a span over 1 million years; origination trough 

(orange arrow) were done the same but from highest point to lowest.  Additionally, the significant peaks and 

troughs are at least a million years apart where they occur in the same clade.  The zone of interest included 

one and a half million years outside the OAE 2 interval. 
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4.3 IMPACT OF OAE 2 ON DIVERSIFICATION 

The fluctuating origination and extinction rates failed to show a common pattern 

during OAE 2, but it remains to examine the difference between these two rates – 

diversification rate.  Figure 4.3-1 uses the same two million year sliding time bin as 

figure 4.2-1.  The six time scales are reconciled at the stage boundaries and the OAE 2 

interval according to the ammonite clade ranges. 

There are two aspects of this figure to be considered: 1) intervals of positive 

diversification vs negative rate (green vs red) and 2) whether these intervals have any 

special alignment with the position of OAE 2. 

1 - All clades have overall positive (or equal in the case of the ammonites) 

diversification rates going into OAE 2.  The anoxic interval is a boundary between two 

different diversification dynamics.  Prior to OAE 2 intervals of positive diversification 

dominate. After OAE 2 intervals of negative diversification are more extensive than the 

positive. 

2 - Moving the OAE 2 band to other positions along the x-axis, cannot align it 

with any more fundamental change. 
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Figure 4.3-1:  Diversification rates through time.  All clades scaled to ammonite OAE 2 and stage boundaries.  

Dotted line at zero; regions of less extinctions than originations (green) are positive values; and dominating 

extinction rates (red) are negative values.  
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CHAPTER 5 - HIGH RESOLUTION TIME-LINES 

The CONOP time-lines reveal that for pelagic organisms a more nuanced 

interpretation of OAE 2 is required than a simple mass-extinction model.  Now that the 

computer-optimized time-lines are available, more questions can be answered than fully 

pursued during this project.  The time-lines may be examined at the level of local ranges 

rather than global composite ranges and in terms of biogeographic and ecological 

variables such as water depth, temperature, latitude, and ecology.  The local range ends 

have all been mapped into the time-line, but there are on the order of 50,000 local range-

end events compared with the ~10,000 global range-end events analyzed here for 

extinction; the local range-ends will be the foundation for the later extirpation exercise.  

The methods developed for this database could be applied to other Phanerozoic time 

intervals. 
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CHAPTER 6 - SUMMARY 

1) Traditionally binned data give lower resolution results than those achieved for this 

dataset.  Letting range-ends fall continuously across a time-line without constraining 

bins leads to finer resolution than coarse traditional biozones. 

2) Extinction and origination rates fluctuate for each clade through OAE 2 and 

extinction pulses are not coordinated across clades or with the onset of the positive 

carbon isotope excursion in carbonates. 

3) OAE 2 is the boundary between positive and negative diversification regimes for 

these six clades. 

4) The data and tools are available for the analysis of local ranges and exploration of a 

coordinated extirpation event. 
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