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ABSTRACT OF THE DISSERTATION

Parallel Nonlinear Aeroelastic Computation for Fighter Wings in

the Transonic Region

by

Bradley Robert Larsen

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2015

Professor Oddvar O. Bendiksen, Chair

In this dissertation, a parallel three-dimensional aeroelastic simulation is applied to cur-

rent and next generation fighter aircraft wings. The computational model is a nonlinear fluid

and structural mesh coupled using the Direct Eulerian-Langrangian method. This method

attaches unique local coordinates to each node and connects the fluid mesh to the structure

in such a way that a transformation preserved to the global coordinates. This allows the

fluid and structure to be updated in the same time step and maintains spatial accuracy at

their interface. The structural mesh is modeled using modified nonlinear von Karman finite

elements and is discretized using the Galerkin finite element method. The fluid mesh also

used the Galerkin finite element method to discretize the unsteady Euler equations.

Computational results over a large range of Mach numbers and densities are presented

for two candidate fighter wing models for transonic wing tunnel testing. The FX-35 is a

trapezoidal wing based on the F-35A, and the F-Wing is a truncated delta wing similar to

the F-16. Both wings exhibit a variety of flutter behaviors including strong bending-torsion

flutter, limit-cycle oscillations, and essentially single degree-of-freedom responses.
ii
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Chapter 1

Introduction

1.1 Motivation for Research

The development of advanced modern aircraft comes with the expectation of improved per-

formance in all flight regimes. This has led to the increased use of highly flexible wing

structures that are subject to large deformations [1, 2, 3]. Unfortunately, the large dynamic

forces created by supersonic pockets and normal shocks in the transonic flight regime make

these wings susceptible to dangerous aeroelastic instabilities [4, 5, 6]. A better understand-

ing of the physics behind the problem and more accurate solutions are necessary to predict

and mitigate potential problems during the design of the aircraft [7]. While traditional wind

tunnel tests provide valuable data about transonic flows, the behavior they seek to capture

also runs the risk of destroying the model and damaging the tunnel [8]. Numerical sim-

ulations of transonic aeroelastic problems have the potential to make future designs safer,

to make testing cheaper, and to provide a better understanding of the underlying physics

behind transonic phenomena.
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The primary difficulty of numerical simulations is capturing the nuances of the behavior

of the wing without creating too heavy a burden in terms of computation. While there are

many schools of thought on what kinds of shortcuts can be taken in the interest of saving

time, it has been shown that a nonlinear structural implementation and a direct, element-

level coupling scheme between structure and fluid are necessary to obtain an accurate solution

[9, 10, 11].

The purpose of this research is twofold. First, the methods discussed in this paper, from

the work of Hwang and Seber [12, 13], are put to further test on current and next-generation

fighter wing planforms for high-altitude flows. These results will form the basis for wind

tunnel model tuned to exhibit rich flutter behavior. Second, improvements will be made to

the overall function of the computational program to deliver results faster.

1.2 Literature Review

1.2.1 Transonic Aeroelastic Computation

The history of transonic computation is largely that simplifications of the model yield un-

acceptable errors when compared to real-world results. To some extent, this is true of every

computational model. Improvements are always done incrementally through the addition of

complexity, but the path to success with the transonic flow regime is an especially long one.

The two largest barriers to advancement have been the proper integration of the structural

problem with the fluid one and, of course, computational power.

The first forays into transonic computational fluid dynamics were made by a number
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of different researchers in the 1970s using potential flow models. They began with a two-

dimensional steady flow based on transonic small disturbance theory [14], followed by a three-

dimensional steady flow [15], and finally two-dimensional [16] and three-dimensional [17]

unsteady flows. These models were extended to include dynamic structural motion through

a normal modes method [18, 19, 20], and so yielded the first flutter analyses. However, the

limitations of potential flow theory with regards to shock formation and the small disturbance

assumption meant that results from these programs could never meet the full demands of

modern aircraft design.

In the mid 1980s, increases in computational power allowed researchers to begin using the

Euler and Navier-Stokes equations in transonic computation. In 1985, Venkatakrishnan and

Jameson [21] made a two-dimensional unsteady Euler flow with a moving airfoil. They were

followed by an aeroelastic two-dimensional Euler solver by Bendiksen and Kousen [22, 23],

which employed a tangent flow boundary condition at the airfoil surface. At the same

time, Wu [24, 25] developed similar flutter programs using the two-dimensional compressible

unsteady Navier-Stokes equations. Finally, Guruswamy extended the Euler [26] and Navier-

Stokes [27, 28, 29] equations to unsteady three-dimensional flutter analysis of plate finite

element wings. Other notable works include three-dimensional Euler [30, 31] and Navier-

Stokes [32] applications to highly swept wings, which used a moving fluid mesh algorithm

[33] based on a spring-connected analogy.

All aeroelastic programs have to contend with how to combine computational fluid dy-

namics with finite element structural mechanics. The traditional method of coupling the

interface between the fluid and the structure is to treat them as two separate problems with

a shared boundary. On the fluid side, the position and velocity of the interface is needed to
3



enforce boundary conditions, while on the structural side the flow conditions at the interface

are needed to solve the surface pressure for the global forces. Both domains require infor-

mation from the boundary, but the boundary itself is not strictly known. This means some

amount of estimation is needed at each time step, either in surface pressure or the boundary

location, and errors will inevitably result.

An alternative formulation of fluid-structure coupling was presented by Bendiksen [9],

and eventually implemented as the Direct Eulerian-Lagrangian method [34]. This method

attaches a local (Lagrangian) coordinate system to the fluid nodes that form the wing sur-

face, which is the fluid-structure interface, and attaches that surface directly to the wing

structure using area coordinates. This allows the interface to move with the wing structure

directly, so that the position and velocity of each element forming the wing surface interface

is known at all times. Additionally, since the transformations between the local and global

coordinates are known, the local (Lagrangian) fluid forces can be compiled into the force

balance equations in the global (Eulerian) coordinate system. The remaining fluid nodes in

the interior are allowed to move in accordance with wing surface interface. This allows the

model to be treated as a continuum, and assumptions with regard to the wing boundary

are not required. The quantitative difference when compared to the traditional approach is

that the work done by the fluid on the wing and the total wing energy (strain plus kinetic)

are equal for the Direct Eulerian-Lagrangian method, whereas classical methods showed a

difference in energy and work over time.
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1.2.2 Transonic Flutter Phenomena

The Direct-Eulerian Lagrangian method has proven useful at capturing a number of transonic

flutter phenomena observed during wind-tunnel testing. This includes neutrally stable and

weakly unstable limit-cycle oscillation (LCO) type flutter, dynamic-pressure independent

chimneys of LCO flutter near sonic conditions, strongly stabilizing Mach number freeze

effects close to the speed of sound, and essentially single degree of freedom (ESDOF) flutter

responses.

LCO flutter in the transonic region has been shown to be an inherently nonlinear problem

[23, 35, 36, 37, 38, 39], but it is also sensitive to the treatment of the wing surface boundary.

Nonlinear von Karman plate models overestimate the stiffness of the wing and achieve only

mixed success at LCO prediction [37, 39]. To capture the full range of LCO behavior present

in the transonic region, the wing boundary must be modeled without approximation as in

the Direct Eulerian-Lagrangian formulation [9].

The most interesting phenomenon is the transonic dip or LCO chimney in highly flexible

wings as observed in the cranked delta wing by NASA [8] and the arrow wing by JAXA

[40]. The chimney is characterized by a narrow vertical band of Mach numbers where LCO

flutter instabilities persist down to, and presumably below, the possible dynamic pressure

of the wind tunnel. Chimneys also coincide with the Mach number freeze region, which

corresponds to the arrival of the normal shock at the trailing-edge of the wing. Just before the

Mach freeze, unsteady aerodynamic forces rapidly reverse amplitude and phase, triggering

LCOs characterized by the wing’s natural modes. At a slightly higher Mach number, the

predominant instabilities are snuffed out, but weakly unstable LCOs persist as a chimney
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[41].

The Direct Eularian-Lagrangian Method was recently used by Mellquist [42] to reproduce

LCO chimney behavior for a cranked wing similar to the one used in the JAXA study [40].

The study also found evidence of the Mach freeze phenomenon, which stabilizes the flutter

response near Mach one, as well as single degree-of-freedom LCOs in the supersonic region.

1.3 Problem Statement and Research Objectives

Computational solutions are the undeniable future of research and design in every major field

of study. However, without validation by wind tunnel results, a computational model has

no merit or function. Even then, it is not good enough just to reproduce a known outcome,

the model must be able to predict what will happen beforehand. An opportunity to do just

that has presented itself. The Direct Eulerian-Lagrangian Method will be used to predict

a fighter aircraft wing model to undergo wind tunnel testing for flutter behavior. It’s not

that fighter wings haven’t undergone transonic wind tunnel tests, it’s just that the results

are classified.

The objective of this research is to improve the functionality of the code, design a fighter

aircraft wing planform that will exhibit rich flutter behavior under specified tunnel condi-

tions, and predict the flutter results of that particular model. The computational results

obtained here have a direct impact on the model that will be built in the future. Current

objectives will be accomplished by the following:

1. Improve the functionality of the code by decreasing computational runtime through

parallelization.
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2. Adjust structural parameters of the wing planform to optimize the number of inter-

esting flutter cases that can be reproduced within the constraints of the wind tunnel

operating limits.

3. Identify as closely as possible the transition points between observable types of flutter

within the wind tunnel test matrix.

1.4 Dissertation Outline

Immediately following this introduction, Chapter 2 discusses the formulation of the fluid

model and the fluid mesh generation. Chapter 3 details the nonlinear structural model

and Chapter 4 explains the coupling approach between the fluid and structure using the

Direct Eulerian-Lagrangian method. Chapter 5 contains the methods used to parallelize

the computational domain, along with performance benchmarks and the verification of the

result against the serial method. Computational flutter results are given in Chapter 6, which

compare and contrast the various flutter behaviors that are typical of the FX-35 and F-Wing

planforms. Conclusions and ideas for future research are presented in Chapter 7.
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Chapter 2

Fluid Model

2.1 Introduction

This chapter deals with the fluid dynamic theory and computational methods used to handle

the flow field of the model. The fluid domain is comprised of an unstructured tetrahedral

mesh and a nonlinear implementation of the Euler equations. Since the model is aeroelastic,

it helps if the fluid mesh is allowed to move with the structural mesh. For this reason, a

mixed Lagrangian-Eulerian formulation is used. The fluid flow and the fluid mesh are both

in motion relative to the fixed frame and relative to each other, which is reflected in the

formulation of the governing equations and the boundary conditions. This fluid model is

based on the model developed by Bendiksen et al. [10, 11, 34, 43, 44, 12, 13, 45, 46]

The interface between the structural mesh and the fluid mesh at the wing surface bound-

ary is coupled using the Direct Eulerian-Lagrangian method. The details of the coupling

will be covered in Chapter 4. Briefly, the formulation allows the motion of the structure

and the fluid at the wing surface boundary to be solved together in an element-by-element
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manner. The solution does not require normal or assumed modes for the structure and both

meshes are integrated in the same time step. The main steps of this approach are illustrated

in Figure 2.1.

Figure 2.1: The Direct Eulerian-Lagrangian compuational approach to fluid-structure interaction.

2.2 Governing Equations and Discretization

The fluid domain is governed by the integral form of the conservation laws,

𝜕

𝜕𝑡

∫︁
Ω

W𝑑𝑉 +
∫︁

𝜕Ω
F · n𝑑𝑆 = 0 (2.1)
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where Ω is the control volume of a fluid cell, 𝜕Ω is the control volume boundary moving

with velocity U, n = 𝑛𝑖ê𝑖 is the outward unit normal, ê𝑖 are unit vectors, and

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌

𝜌𝑢1

𝜌𝑢2

𝜌𝑢3

𝜌𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.2)

F = F𝑗𝑒𝑗, F𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌(𝑢𝑗 − 𝑈𝑗)
𝜌𝑢1(𝑢𝑗 − 𝑈𝑗) − 𝜎1𝑗

𝜌𝑢2(𝑢𝑗 − 𝑈𝑗) − 𝜎2𝑗

𝜌𝑢3(𝑢𝑗 − 𝑈𝑗) − 𝜎3𝑗

𝜌𝑒(𝑢𝑗 − 𝑈𝑗) − 𝜎𝑖𝑗𝑢𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.3)

W is the vector of conserved fluid quantities (mass, momentum, and energy), where 𝜌 is

the fluid density, u is the fluid velocity vector, and 𝑒 is the total energy per unit mass. F is the

flux vector of conserved fluid quantities, where 𝜎𝑖𝑗 is the Cartesian stress tensor, 𝑢𝑗 and 𝑈𝑗 are

the Cartesian components of u and U, and body forces are neglected. Equation 2.1 represents

conservation of mass, conservation of momentum in three dimensions, and conservation of

energy.

Viscosity is ignored and the stress tensor can be simplified as a function of pressure.

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 (2.4)

Pressure can be eliminated by rewriting the perfect gas equation in terms total energy

per unit mass.

𝑝 = 𝜌(𝛾 − 1)(𝑒 − 1
2𝑢𝑖𝑢𝑖) (2.5)
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The discretization of the Equation 2.1 is achieved through a Galerkin finite element

method. The governing equations are multiplied by an admissible test function and then

integrated. In the case of the tetrahedral fluid elements, shape functions can be formed from

the combination of four volume coordinates.

W(𝑥1, 𝑥2, 𝑥3, 𝑡) =
∑︁

𝑗

W𝑗𝜑𝑗(𝑥1, 𝑥2, 𝑥3, 𝑡) (2.6)

Here, W𝑗 are nodal values of W and 𝜑𝑗 are linear shape functions that depend on both

time and space. Substituting Equation 2.6 into the Galerkin form of Equation 2.1 yields,

𝜕

𝜕𝑡

∫︁
Ω

W𝜑𝑖𝑑𝑉 +
∫︁

Ω
𝜑𝑖∇ · F𝑑𝑉 (2.7)

The final discretized form of the equation is created by numerically evaluating integrals

through Gaussian integration and adding a dissipation function.

𝑑

𝑑𝑡

∑︁
𝑗

m𝑖𝑗W𝑖𝑗 + Q𝑖 − D𝑖 = 0 (2.8)

Here, 𝑖 represents a single node and 𝑗 is the summation over only those nodes adjacent to

𝑖. Additionally, m𝑖𝑗 is the consistent mass matrix, Q𝑖 is the flux vector, and D𝑖 are dissipative

fluxes of the Jameson-Mavriplis type [47, 48], here used in a modified form [12, 49].
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2.3 Five-Stage Runge-Kutta Scheme

A five-stage Runge-Kutta scheme is used to integrate Equation 2.8. The scheme is shown in

Equation 2.9.

W(0) = W[𝑛]

W(1) = [M]−1
(︁
M(0)W(0) − 𝛼1Δ𝑡

[︁
Q

(︁
W(0)

)︁
− D

(︁
W(0)

)︁]︁)︁
W(2) = [M]−1

(︁
M(0)W(0) − 𝛼2Δ𝑡

[︁
Q

(︁
W(1)

)︁
− D

(︁
W(1)

)︁]︁)︁
W(3) = [M]−1

(︁
M(0)W(0) − 𝛼3Δ𝑡

[︁
Q

(︁
W(2)

)︁
− D

(︁
W(1)

)︁]︁)︁
W(4) = [M]−1

(︁
M(0)W(0) − 𝛼4Δ𝑡

[︁
Q

(︁
W(3)

)︁
− D

(︁
W(1)

)︁]︁)︁
W(5) = [M]−1

(︁
M(0)W(0) − 𝛼5Δ𝑡

[︁
Q

(︁
W(4)

)︁
− D

(︁
W(1)

)︁]︁)︁
W[𝑛+1] = W(5)

(2.9)

where 𝛼𝑖 for 𝑖 = 1, 2, 3, 4, 5 are 1
4 , 1

6 , 3
8 , 1

2 , 1 respectively and Δ𝑡 is the time step. Superscripts

in parentheses refer to the Runge-Kutta stage, and superscripts in brackets refer to the global

time-marching step number. Dissipative terms are only evaluated in the first two stages to

save computational time.

The time step, Δ𝑡⋆
𝑖 , is calculated as the local minimum time for a wave to propagate

between a chosen node, 𝑖, to adjacent nodes, 𝑘 = 1, 2, . . . , 𝑛, where 𝑛 is the number of

adjacent nodes.

Δ𝑡⋆
𝑖 = 𝑚𝑖𝑛 (Δ𝑡𝑖𝑘) , ∀ 𝑘 adjacent to node 𝑖 (2.10a)

Δ𝑡𝑖𝑘 = Δx · Δx⃒⃒⃒(︁
𝑢̄ − 𝑈̄

)︁
· Δx

⃒⃒⃒
+ 𝑎̄ |Δx|

(2.10b)

Δx = (𝑥𝑘 − 𝑥𝑖) ê𝑥 + (𝑦𝑘 − 𝑦𝑖) ê𝑦 + (𝑧𝑘 − 𝑧𝑖) ê𝑧 (2.10c)
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Where 𝑢̂, 𝑈̂ , and 𝑎̂ are the mean flow velocity, mesh velocity, and speed of sound between

nodes 𝑖 and 𝑘. The entire domain must proceed at the same global time step, Δ𝑡⋆, calculated

from Equation 2.10a. The explicit Runge-Kutta method described here must be bounded

by the Courant-Friederich-Lewy (CFL) number, 𝜆, in order to be numerically stable.

Δ𝑡⋆ = 𝑚𝑖𝑛 (Δ𝑡⋆
𝑖 ) , ∀ nodes 𝑖 (2.11a)

Δ𝑡 ≤ 𝜆Δ𝑡⋆ (2.11b)

2.4 Boundary Conditions

The fluid model encounters four distinct boundaries: The upstream far-field, the downstream

far-field, fixed tunnel walls, and the moving wing surface. Each necessitates the addition of

an appropriate boundary condition.

On the fixed tunnel walls the mesh velocity is zero and the corresponding boundary

condition is given by

u · n = 0 (2.12)

where u is the fluid velocity vector and n is the normal vector of the wall surface.

At the wing surface the fluid mesh and structural mesh move together. The resulting

boundary condition is

(u − U) · n = 0 (2.13)

where U is the fluid mesh velocity vector.

At the far-field boundaries, non-reflective boundary conditions are chosen to minimize

the reflection of outgoing disturbances [47]. Assuming the flow is locally one-dimensional,
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the incoming Riemann invariant, 𝑅∞, can be found using the free stream flow conditions,

and the outgoing Riemann invariant, 𝑅𝑖, can be calculated by extrapolation from the interior

domain.

𝑅∞ = u∞ · n − 2𝑎∞

𝛾 − 1 (2.14a)

𝑅𝑖 = u𝑖 · n − 2𝑎𝑖

𝛾 − 1 (2.14b)

The mesh velocity at the far-field boundary is naturally zero, so the normal velocity of

the flow and the speed of sound can be calculated as

u · n = 1
2(𝑅𝑖 + 𝑅∞) (2.15a)

𝑎 = 𝛾 − 1
4 (𝑅𝑖 + 𝑅∞) (2.15b)

Conditions for the tangential velocity and entropy must be provided in order to form a

complete definition of the flow at either far-field boundary. For an inflow boundary, tangential

flow and entropy are set to their free stream values. At an outflow boundary, they are

extrapolated from the interior.

2.5 Mesh Generation

A separate program written by Hwang [12] is responsible for generating the initial fluid

mesh. Since the three-dimensional model is aeroelastic and both the structure and fluid

increments are solved together in each time step, the fluid mesh must be able to move with

the structure under any realistic simulated result. To achieve this, an unstructured mesh

is created using the ’Advancing Front Method’, in which a unique configuration of nodes is
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procedurally generated and tested for suitability.

The tetrahedrons formed by the nodes may experience undesirably large deformations

during the course of the simulation, so it is important that their initial shapes are relatively

regular. The mesh faces are also assigned positive and negative facing directions that easily

allow for unique identification of cells, as well as consistent calculation of signed cell volumes.

The latter is an especially important check against nodes punching through an opposing face

and creating a negative cell volume.

The finished mesh is rigidly attached to the far field boundaries and the wing surface,

with the former having constant spatial coordinates and the latter moving with the wing

structural nodes. The remaining interior nodes are allowed to change position and velocity

and are modeled as a spring-connected web. New interior node locations are computed using

an iterative spring-equilibrium method with forward-substitution [12].
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Chapter 3

Nonlinear Structural Model

3.1 Introduction

This chapter contains information about the nonlinear structural finite element model. The

chosen theories for element components and numerical solution methods are intended to cap-

ture as accurately as possible the characteristics of physical test wings without being overly

cumbersome in terms of required computational power. The nonlinear model presented here

was developed by Seber [13].

3.2 Structural Model

The purpose of this model is to predict the behavior of physical models in wind-tunnel

conditions. As such, each structural component is designed to mimic some aspect of the

behavior of its real world counterpart. A typical physical model is first created using a thin

flexible aluminum plate, which dominates the structural response during testing. Covering
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this plate is a lightweight balsa wood shell that captures the shape of the airfoil and creates

realistic aerodynamic conditions.

Accordingly, the computational model is comprised of a plane of structural nodes and

a "wing surface layer" of fluid mesh nodes, which represent the metal plate and the airfoil

shell respectively. The structural mesh is responsible for recreating the kinematic response

seen in a physical test wing. The aerodynamic forces are modeled by rigidly attaching the

innermost layer of the fluid mesh to the structure in the shape of the airfoil. The details of

the coupling mechanics at the fluid-structure interface will be discussed in Chapter 4.

3.3 Direct Eulerian-Lagrangian Formulation

This program uses the Direct Eulerian-Lagrangian Formulation to handle the motion of

the structural mesh and the wing surface nodes. The time marching integration of the

dynamics is done element-by-element, with solutions to the mesh motion being found directly

at the element level. The ’Eulerian-Lagrangian’ naming of the formulation is due to the

methods used to keep track of the individual positions of the triangular structural elements.

Each element has a spatial position and orientation in two coordinate systems as shown in

Figure 3.1.
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Figure 3.1: The Eulerian-Lagrangian Formualtion.

The first is a global Eulerian coordinate system (denoted by 𝑥, 𝑦, and 𝑧 axes) that is com-

mon to every element in the model. The second is a locally attached Lagrangian coordinate

system (denoted by 𝑥′, 𝑦′, and 𝑧′ axes) with a known cosine rotation transformation to the

global Eulerian coordinate system. Each element has its own unique Lagrangian coordinates

that move with that element as it deforms.

The specific definition of the local Lagrangian coordinate system is based on the identities

of the nodes forming the triangular element. The three nodes comprising a given element

are numbered one through three when the mesh is initially generated, and that numbering

is reflected in the figures and equations shown here. First, a 𝑧′ unit vector is defined normal
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to the element plane by taking a cross product of vectors between element nodes.

ê𝑧′ = R21 × R31

|R21 × R31|
(3.1)

Where R21 and R31 are vectors in the 𝑥′-𝑦′ plane. These vectors are expressed in the global

coordinate system as

R21 = (𝑥2 − 𝑥1)ê𝑥 + (𝑦2 − 𝑦1)ê𝑦 + (𝑧2 − 𝑧1)ê𝑧 (3.2a)

R31 = (𝑥3 − 𝑥1)ê𝑥 + (𝑦3 − 𝑦1)ê𝑦 + (𝑧3 − 𝑧1)ê𝑧 (3.2b)

The 𝑥′ and 𝑦′ axes can be given any orientation in the plane of the element so long as the

formulation is consistent. The 𝑥′ axis is chosen to rest along the vector connecting nodes 1

and 2 and the corresponding unit vector is given by

ê𝑥′ = R21

|R21|
(3.3)

With the 𝑥′ and 𝑧′ axes defined, the 𝑦′ axis unit vector is calculated from the cross

product of the other two.

ê𝑦′ = ê𝑧′ × ê𝑥′ (3.4)

Any vector expressed in global coordinates can be rewritten in local coordinates (and

vice versa) by means of a cosine rotation matrix.

q𝐿 = [𝑒] q𝐺 (3.5a)

[𝑒] =

⎡⎢⎢⎢⎢⎢⎣
(𝑒𝑥′)1 (𝑒𝑥′)2 (𝑒𝑥′)3

(𝑒𝑦′)1 (𝑒𝑦′)2 (𝑒𝑦′)3

(𝑒𝑧′)1 (𝑒𝑧′)2 (𝑒𝑧′)3

⎤⎥⎥⎥⎥⎥⎦ (3.5b)

Where q𝐿 and q𝐺 are vectors expressed in local and global coordinates respectively, and

[𝑒] is a direction cosine matrix taken from the components of the local unit vectors when

expressed in global coordinates.
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3.4 Typical Element Formulation

The individual elements in the structural model are a combination of three distinct compo-

nents, as shown in Figure 3.2.

Figure 3.2: Various components of a typical structural element.

3.4.1 Out-of-Plane: Discrete Shear Triangle

The Discrete Shear Triangle (DST) is a Mindlin-Reissner plate finite element designed to

model motion occurring transverse to the plane of the wing. Figure 3.3 shows the degrees of

freedom associated with this element, which are out-of-plane displacement and out-of-plane

rotation about the x and y axes.
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Figure 3.3: Nodal degrees of freedom for the DST.

The DST element contributes nine degrees of freedom to the overall formulation.

q′
𝑤

𝑇 =
{︁

𝑤′
1 𝛽𝑥′

1
𝛽𝑦′

1
𝑤′

2 𝛽𝑥′
2

𝛽𝑦′
2

𝑤′
3 𝛽𝑥′

3
𝛽𝑦′

3

}︁
(3.6)

When described in Lagrangian coordinates the out-of-plane displacements are equal to

zero, since the element itself defines the local x-y plane.

q′
𝑤

𝑇 =
{︁

0 𝛽𝑥′
1

𝛽𝑦′
1

0 𝛽𝑥′
2

𝛽𝑦′
2

0 𝛽𝑥′
3

𝛽𝑦′
3

}︁
(3.7)

The use of the Eulerian-Lagrangian formulation means that local deformations are not

affected by rigid body motion. The inclusion of rigid body motion leads to an overestimation

of structural stiffness [50]. Figure 3.4 contrasts the Von Karman and Eulerian-Lagrangian

formulation; where in the former rigid body motion contributes to elastic deformation and

in the latter it does not.
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Figure 3.4: In-plane deformation in Lagrangian coordiantes.
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Figure 3.5: Local out-of-plane deformations.

Figure 3.5 shows the local out-of-plane rotational deformations, which can be calculated

using a finite rotation relation.

n𝑡𝑛+1

𝑑 = 𝑐𝑜𝑠(Δ𝜑)n𝑡𝑛

𝑑 + (1 − 𝑐𝑜𝑠(Δ𝜑))(n · n𝑡𝑛

𝑑 )n + 𝑠𝑖𝑛(Δ𝜑)(n × n𝑡𝑛

𝑑 ) (3.8a)

Δ𝜑 =
√︁

(Δ𝛽𝑥)2 + (Δ𝛽𝑦)2 + (Δ𝛽𝑧)2 (3.8b)

n = (−Δ𝛽𝑦i + Δ𝛽𝑥j + Δ𝛽𝑧k) (3.8c)

where Δ𝜑 is the magnitude of the rotation, n is the normalized rotation vector, and n𝑡𝑛

𝑑 and

n𝑡𝑛+1
𝑑 are the deformed unit vectors at times 𝑡𝑛 and 𝑡𝑛+1 expressed in the global coordinate

system. The local rotational deformations can be calculated from the local deformed unit
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vector
(︁
n𝑡𝑛

𝑑

)︁𝐿
as shown in Equations 3.9a and 3.9b.

𝛽𝑥′ =
(︁
n𝑡𝑛

𝑑

)︁𝐿

𝑥

𝑐𝑜𝑠−1
(︂(︁

n𝑡𝑛

𝑑

)︁𝐿

𝑧

)︂
√︂(︁

(n𝑡𝑛

𝑑 )𝐿
𝑥

)︁2
+

(︁
(n𝑡𝑛

𝑑 )𝐿
𝑦

)︁2
(3.9a)

𝛽𝑦′ =
(︁
n𝑡𝑛

𝑑

)︁𝐿

𝑦

𝑐𝑜𝑠−1
(︂(︁

n𝑡𝑛

𝑑

)︁𝐿

𝑧

)︂
√︂(︁

(n𝑡𝑛

𝑑 )𝐿
𝑥

)︁2
+

(︁
(n𝑡𝑛

𝑑 )𝐿
𝑦

)︁2
(3.9b)

3.4.2 In-Plane: Constant Strain Triangle

The Constant Strain Triangle is designed to capture motion that occurs inside the plane

of the structural elements. As shown in Figure 3.6, this would include both displacements

and rotation (drilling) in the local x-y plane, however, inclusion of the drilling degrees of

freedom usually leads to numerical instabilities. For this reason, drilling is ignored is this

formulation.

Figure 3.6: Nodal degrees of freedom for the CST.

The CST element contributes only six degrees of freedom to the typical structural element
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after drilling is ignored.

q′
𝑤

𝑇 =
{︁

𝑢′
1 𝑣′

1 𝑢′
2 𝑣′

2 𝑢′
3 𝑣′

3

}︁
(3.10)

When expressed in the local Lagrangian coordinate, the local degrees of freedom are

reduced even further.

q′
𝑤

𝑇 =
{︁

0 0 𝑢′
2 0 𝑢′

3 𝑣′
3

}︁
(3.11)

This is due to the special selection of the orientation of the local coordinates, as demonstrated

in Figure 3.7.

Figure 3.7: In-plane deformation in Lagrangian coordiantes.

3.4.3 In-Plane and Out-of-Plane Coupling

The nonlinear structural model is based on the Von Karman plate theory with Green-

Lagrange strains to provide nonlinear in-plane and out-of-plane coupling. Higher order

terms in Green-Lagrange strains are dropped under the assumption that in-plane strains

are small relative to out-of-plane strains. In the case of large deformations, the kinematic

assumptions used to derive the governing equations are no longer valid and the Von Karman
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formulation must be replaced with the Direct Eulerian-Lagrangian formulation. This allows

the retention of kinematic assumptions guaranteed by the Von Karman plate theory so long

as the wing behaves elastically.

3.4.4 Structural Element Equations

Each element component discussed in the previous section contributes to the overall formu-

lation of the structural kinematics. The total strain energy for a structural element (𝑈 𝑒
𝑡𝑜𝑡𝑎𝑙) is

the combination of strain energies from membrane stretching of the CST (𝑈𝑚), out-of-plane

bending (𝑈𝑏) and shear (𝑈𝑠) from the DST, nonlinear coupling of in-plane and out-of-plane

motion (𝑈𝑛𝑐𝑚), and the nonlinear coupling effect of slope due to large deformations (𝑈𝑛𝑐𝑠).

𝑈 𝑒
𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑚 + 𝑈𝑏 + 𝑈𝑠 + 𝑈𝑛𝑐𝑚 + 𝑈𝑛𝑐𝑠 (3.12)

The equations for each contribution to the strain energy are given by

𝑈𝑚 = 1
2ℎ

∫︁
𝐴

{𝜖𝑎}𝑇 [𝐶𝑛] {𝜖𝑎} 𝑑𝐴 (3.13a)

𝑈𝑏 = ℎ3
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∫︁
𝐴

{𝜅}𝑇 [𝐶𝑛] {𝜅} 𝑑𝐴 (3.13b)

𝑈𝑛𝑐𝑚 = ℎ
∫︁

𝐴
{𝜖𝑎}𝑇 [𝐶𝑛] {𝜖𝑛} 𝑑𝐴 (3.13c)

𝑈𝑛𝑐𝑠 = 1
2ℎ

∫︁
𝐴

{𝜖𝑛}𝑇 [𝐶𝑛] {𝜖𝑎} 𝑑𝐴 (3.13d)

𝑈𝑠 = 1
2ℎ

∫︁
𝐴

{𝛾}𝑇 [𝐶𝑠] {𝛾} 𝑑𝐴 (3.13e)

Where 𝑈𝑚, 𝑈𝑏, and 𝑈𝑠 are quadratic-order, 𝑈𝑛𝑐𝑚 is cubic-order, and 𝑈𝑛𝑐𝑠 is quartic-order.

The constitutive matrices [𝐶𝑛] and [𝐶𝑠] are given in Equation Group 3.14. Here, 𝑘 is the

shear correction factor, which is 5
6 for rectangular cross sections, and 𝐺 is the shear modulus.
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[𝐶𝑛] = 𝐸

1 − 𝜈2

⎡⎢⎢⎣
1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤⎥⎥⎦ (3.14a)

[𝐶𝑠] = 𝑘𝐺

⎡⎣ 1 0
0 1

⎤⎦ (3.14b)

The strain components are given by

{𝜖𝑎} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑢′

𝜕𝑥′

𝜕𝑣′

𝜕𝑦′

𝜕𝑣′

𝜕𝑥′ + 𝜕𝑢′

𝜕𝑦′

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.15a)

{𝜖𝑛} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2𝛽2

𝑥′

1
2𝛽2

𝑦′

𝛽𝑥′𝛽𝑦′

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.15b)

{𝛾} =

⎧⎪⎨⎪⎩
𝜕𝑤′

𝜕𝑥′ + 𝛽𝑥′

𝜕𝑤′

𝜕𝑦′ + 𝛽𝑦′

⎫⎪⎬⎪⎭ (3.15c)

{𝜅} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝛽𝑥′
𝜕𝑥′

𝜕𝛽𝑦′

𝜕𝑦′

𝜕𝛽𝑥′
𝜕𝑦′ + 𝜕𝛽𝑦′

𝜕𝑥′

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.15d)

The principle of stationary potential energy is used with the total strain energy calculated

in Equation 3.12 to form the element stiffness matrices. There are two stiffness matrices

associated with each finite element, the tangent stiffness matrix [𝐾𝑡] and the secant stiffness

matrix [𝐾𝑠]. The typical partition of an element tangent or secant stiffness matrix is down

in Figure 3.8.
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Figure 3.8: Typical partition of an element tangent or secant stiffness matrix.

The tangent stiffness matrices are used in the calculation of the incremental deformations

of the global system. The secant stiffness matrices are used to form the element elastic

forces in local coordinates, which are then transformed to global coordinates to form the

global elastic force vector. For details of the derivation of these matrices, see Seber [13] and

Rajasekaran and Murray [51].
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Chapter 4

Fluid-Structure Coupling

4.1 Introduction

As mentioned previously, an inner layer of the fluid mesh functions as the airfoil surface for

aerodynamic calculations and is attached rigidly to the structural mesh. These surface-aero

nodes move directly with the structural mesh using the local Lagrangian coordinate system

as if they were part of the structure itself. The locations of these nodes relative to structure

are known in advance and never change, meaning that their Eulerian coordinates can be

found via pre-constructed transformations without any additional computation. The benefit

of this method is that the code does not have to search for the locations of the fluid surface

nodes relative to the structure prior to calculations.
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4.2 Fluid-Structure Boundary Model

During mesh initialization, the fluid mesh nodes that form the wing surface are given a

z-axis offset based on the wing thickness and airfoil shape. The initial positions of these

surface nodes in the x-y plane are calculated and saved in area coordinates for the structural

element they belong to. As an element deforms, points inside that element deform in the

same fashion, however, the area coordinates of those points remain constant. This means that

area coordinates for wing surface nodes only need to be calculated once. Figure 4.1 shows a

spatial representation of the relationship between a structural element and an aerodynamic

fluid node.
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Figure 4.1: An aerodynamic fluid node attached to a structural element using area coordinates.

In addition to the wing surface nodes, each structural element has thirteen Gaussian

quadrature points used to solve the aerodynamic forces acting on that element. The locations

of these quadrature points on the element surface are saved in area coordinates, which do

not change. To solve the new aerodynamic load at the next time step, all that is needed

is the updated pressure values at each quadrature point. Updated data values must be

obtained through the flow conditions at the fluid nodes that comprise the wing surface.

These nodes form their own shell of triangular elements offset from the structural mesh.

When viewed from ’above’ each Gaussian quadrature point in a structural triangle also

belongs to a fluid triangle above it. Since the fluid is attached to the structure in the
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same manner as the Gaussian quadrature points, each point always belongs to the same

fluid triangle and structural triangle even after deformation. Moreover, the location of each

Gaussian quadrature point inside its fluid triangle can be found in yet another set of area

coordinates (shown if Figure 4.2), which never changes. For the purpose of calculating

aerodynamic forces, the pressure field inside the fluid triangle is assumed to be linear, and

the data value at any Gaussian quadrature points contained therein can be solved through

interpolation. Figure 4.3 shows the surface pressure as a follower force being projected onto

a structural element.

Figure 4.2: A Gaussian quadrature point attached to an aerodynamic fluid element using area

coordinates.
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Figure 4.3: Surface pressure being interpolated at a Gaussian quadrature point from the nodes of

an aerodynamic fluid element.

4.3 Dynamic Aeroelastic Solution Procedure

A five-stage explicit Runge-Kutta scheme is used to solve the differential equation,

[𝑀 ] {𝑞𝑡} + [𝐾] {𝑞𝑡} = {𝐹} (4.1)

Here, [𝑀 ] and [𝐾] are the structural system global mass and stiffness matrices, {𝑞𝑡} is the
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global displacement vector, {𝐹} is the global external force vector, and overdots represent

derivatives with respect to time. All terms vary with time except for the mass matrix [𝑀 ],

which only needs to calculated once at the beginning of the simulation. The external forces

are limited to aerodynamic forces only.

The second term in Equation 4.1 represents the global elastic force vector, {𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐}.

Moving this term to the right hand side yields the equation

[𝑀 ] {𝑞𝑡} = {𝐹} − {𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐} (4.2)

The solution procedure for Equation 4.2 is given by the following steps (as outlined by

Seber [13]):

1. Invert the global mass matrix.

2. Calculate the time step.

3. Update the structural conditions (or set them from an initial condition).

4. Calculate the right hand side using the global aerodynamic load vector and global

element elastic force vectors.

5. Solve Equation 4.2 for the accelerations.

6. Integrate the accelerations to calculate the new velocities and displacements.

7. Update the deformed nodal vectors.

8. Calculate the new wing surface fluid node locations.

9. Calculate the new interior fluid node locations.
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10. For stage one or stage two of the Runge-Kutta scheme, calculate the adaptive dissipa-

tion vector for the fluid.

11. Solve the current stage of the Runge-Kutta equation.

12. Update the vector of conserved flow quantities.

Each Runge-Kutta stage repeats this procedure starting with updating the structural

variables. Each new time step repeats th procedure from calculating the new time step.
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Chapter 5

Changes to the Aeroelastic Code

5.1 Introduction

The code development goal for this project was to take the functioning serial nonlinear

flutter solver developed by Seber [13] and time-optimize how it can be used to compute

a large volume of results. Importantly, this was to be accomplished without altering the

algorithm and while maintaining, as close as possible, the exact same solution. There are

two main issues with the original program that make it difficult to implement on a large

scale. First, the amount of data we intend to collect requires the use of UCLA’s Hoffman2

computing cluster. However, the code requires linking to commercially licensed libraries that

are not available on Hoffman2. Second, results for most test conditions can be obtained in a

matter of days or weeks, but no quantity of processors can speed up the months of continuous

computation it can take to converge to the steady state solution at some key data points.

The first issue has been resolved by converting to open-source libraries for any external

subroutine calls. It is a relatively simple change, but necessary to make it possible to
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execute the aeroelastic code of the Hoffman2 cluster, allowing dozens of programs to operate

simultaneously and removing the need to skip data points in the test-matrix in the interest

of time. The second issue has been tackled by creating a parallel version of the source code

that can reduce the wall-clock time required to converge to a steady state solution.

5.2 Changes for use on the Hofmman2 Cluster

The Hofmman2 cluster is UCLA’s remote-access network of computing nodes that are made

available for academic research purposes. There are over 1200 nodes and 13,000 cores, making

it an invaluable resource for a project like this one. For Fortran 77 specifically, the cluster

uses an Intel compiler and maintains a library of commercially licensed and open source

subroutines.

The only substantive change necessary to make the source code compatible with the

Hoffman2 cluster was to swap out the set of subroutines used for solving and manipulating

linear systems of equations. The original program uses IMSL libraries, which the cluster

does not have a license for. They were replaced by BLAS and LAPACK libraries, which

are open source. The subroutines from these libraries are used to solve the linear system of

equations created from the global mass and stiffness matrices and the global force vector.

Additionally, they are used to find natural modes and frequencies from the free vibration

eigensolution of those matrices.

The remaining alterations to the source code are line-by-line bug fixes, often resulting

from the compiler-specific handling of ambiguities and syntax errors created by the program-

mer. Uninitialized variables, mismatched data types, wrong intrinsic function calls, and the
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ordering of statements in a subroutine header are a few examples what are technically errors

under the rules of Fortran 77, but may not be returned as errors by the compiler. It is pos-

sible to select specific compiling options that are less strict about the programmer following

the rules, in which case the compiler will attempt to fix those mistakes based on the context.

It was deemed better to have these errors returned at compile-time; taking the opportunity

to clean up the syntax and ensure the executable code performs as intended.

5.3 Parallelization

The parallelization of this program uses Message Passing Interface (MPI) for Fortran 77 and

is based on the work done by Guang-Yaw Hwang [12]. He created the original serial linear

flutter solver as well as a stand-alone parallel version nearly twenty years ago. However,

complications with the hardware utilized for parallel computation led to the decision to

abandon further development of parallelized code. There have been twenty years of changes

made to the serial program that prevent a simple copy/paste of the parallel subroutines.

However, the program is modular in nature, meaning the majority of changes have not

impacted the order of operations when the code is executed. This means the algorithm of

the original parallel implementation is still valid, but is basically non-functioning on the

line-by-line level when directly transplanted. The following subsections provide conceptual

details about how the parallel algorithm functions, as well as how the serial code has to be

changed to accommodate the parallel structure.
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5.3.1 Division of Work

A relatively simple approach is taken in dividing the workspace between processors. The

computational domain is made up of roughly 62,000 nodes, which need to be split up into as

many sub-domains as there are processors. The global domain is divided by taking vertical

slices perpendicular to the plane of the wing, and assigning the resulting sub-domains to

the individual processors. Since the concentration of fluid nodes is nearly constant in the

span-wise direction, the distribution of nodes ends up relatively even in each sub-domain.

Additionally, since the computational sub-domains share at most two interfaces (on either

side of the vertical slice), the potential number of ghost nodes (placeholder values needed for

calculations where node connections have been broken) remains reasonably low. The goal in

this regard is to minimize the number of nodes exposed on the surface of the slices. Since

the majority of fluid nodes are located in a tightly packed three-dimensional sheath around

the wing surface, acceptably few nodes are revealed when using a transverse slice.

5.3.2 Sub-Domain Algorithm

The functional implementation of this division requires some method of redefining the global

array of nodes as unique local arrays for each processor. Most calculations in the code are

performed by looping over all the nodes in the domain, and ideally, replacing one configura-

tion of nodes with another doesn’t cause any problems. Fortunately, the solution algorithm

is designed to work for various wing shapes and size, its function does not have a strict de-

pendence on the total number or configuration of nodes and boundary nodes. It only needs

to know how nodes are labeled in order to correctly incorporate them into the appropriate
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calculations. Because of this, it is possible on each processor to swap the node array from

the global spatial domain to the local spatial domain just by re-enumerating the correct

subset of nodes. It makes no difference whether the problem being solved is a full wing in

a box or a just a slice of that wing, so long as the spatial domain is rebuilt correctly in the

appropriate arrays.

The only problem created by slicing up the domain is that a new type of boundary

is created wherever node connections have been severed. Any calculations which require

data from adjacent nodes cannot be performed at these boundaries, because the adjacent

nodes no longer exist. To solve this problem, each processor must reconstitute these missing

connections in the form of ghost nodes, a single layer of fake data points which store necessary

data values from the real data points in neighboring processor sub-domains. Once the data

from a ghost node has been used for inter-node calculations, it is considered spent and must

be updated before it can be used again. Usually this is done via message passing, retrieving

the new data value from the corresponding real node in the neighboring processor’s sub-

domain. Alternatively, additional ghost node layers can be added to delay the need for

interprocessor communication. Each extra layer means that one additional calculation can

be performed without altering the solution of the program in that sub-domain. Basically,

this method is just ghost nodes for the ghost nodes, which can be counterproductive to

the original purpose of dividing the domain to reduce its size. Whether to use additional

ghost nodes or additional message passing is usually determined by what provides the best

performance. The "right" answer is dependent on a number of factors, including the program

algorithm and the physical hardware configuration.

The only other consideration would be the execution of order-dependent algorithms,
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where a different enumeration of the same domain yields a new result. In this case, paral-

lelization necessarily changes the exact solution, and the only workaround is to temporarily

return to the original global scheme to perform the order-dependent calculation. The next

best thing in this situation is to validate that the convergence of the big picture solution is

not affected by the discrepancy created in that moment.

5.3.3 Sub-domain Implementation

As part of the program initialization, each processor performs a block of subroutines that

separate the program into two distinct parts: global (pre-parallel) and local (post-parallel).

Before this block is executed, all processors initialize the global arrays necessary for the

full problem solution, including all nodes, lines, faces, cells, and boundaries. Then, in the

parallel subroutine block, the full domain is replaced with the sub-domain belonging to the

executing processor. Data points outside the local domain are stripped from the nodal array.

Array indices for the remaining nodes are then renumbered within their processor, and a

mapping between the local and global domains is preserved. This is the point at which

each processor seeks out its respective ghost nodes. These nodes are appended to the sub-

domain node arrays, but are given a special boundary identifier that excludes them from

certain calculations (namely anything that would attempt to search for a further layer of

ghost nodes that does not exist). The lines, faces, cells, and boundaries are also re-evaluated

within the local scheme. When each processor dumps back into the main algorithm, it is

now applying the same solution process to a differently shaped domain. The only thing left

to account for is to find every inter-node calculation in the program, and ensure that ghost
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node data values are up-to-date as needed.

5.3.4 Optimization

There are two factors which affect efficiency in parallel computation: duplication of calcu-

lations and interprocessor communication. Any nontrivial parallelization requires the use

of ghost nodes and message passing. Each time a ghost node is used in a calculation the

inter-node computation is mirrored in the neighboring processor, meaning some time is being

wasted on repeated work. Also, each time a ghost node has to be updated through message

passing, the involved processors may have to wait to continue calculations. This particular

program uses a five-stage Runge-Kutta algorithm with multiple instances of inter-node calcu-

lation inside each stage. That means, at the bare minimum, ghost nodes have to be updated

once for each stage and possibly multiple additional times within a given stage depending on

the configuration. The result is that this program has substantial parallel overhead for each

time step, and there will be a noticeable loss of efficiency so long as the integrity of the serial

algorithm is maintained. The goal of optimizing this process is to find the combination of

ghost nodes and interprocessor communication that yields the best results for the hardware

being used.

The parallel implementation that was used as the framework for this program was de-

signed to minimize interprocessor communication. It was determined that four layers of ghost

nodes were needed to meet that criteria. Ghost nodes increase sub-domain node counts by

approximately 2000 nodes per layer per exposed boundary (2000 for the first and last pro-

cessor, and 4000 for anything in between). In the case of four processors and 62455 nodes,
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the largest sub-domain will contain approximately 30,000 nodes. Already, parallel execution

in this configuration is expected to suffer a fifty percent loss of efficiency. The alternative,

reducing ghost nodes and increasing message passing, would seem like it must necessarily

provide a more efficient solution. However, this may not be the case depending on the com-

munication medium. Some parallel hardware configurations are physically separated and

rely on network or high-speed cable connections to exchange information between proces-

sors. These setups necessarily introduce additional delays and wait times that do not bode

well for complicated algorithms. Increasing the number of instances of message passing is

only an effective solution for shared-memory nodes where a single multi-core processor han-

dles the entire parallel program and all cores are able to access the same memory modules

directly.

Today’s hardware configurations are often two-, four-, six-, or even eight-core processors

that fit the shared-memory format described above. For this reason, optimization of the par-

allel algorithm has been done with shared-memory as the assumed hardware configuration.

The new parallel implementation uses a single layer of ghost nodes along with consider-

ably more instances of message passing. Reducing the number of layers of ghost nodes is

very nearly trivial, with the primary requirements being commenting out a large block of

code and changing the appropriate variable to tag the first ghost node layer as the outer-

most. However, one layer is particularly difficult to debug, because it requires finding every

instance of inter-node computation and following the result line-by-line to determine if and

when it needs to be updated. Every instance of unnecessary message passing means a loss

in efficiency.
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5.4 Verification of Parallel Computational Accuracy

This program uses the Fortran 77 standard with Message Passing Interface (MPI) for parallel

computation. MPI allows processors to communicate data values stored in memory without

loss of precision. This leads to identical execution when compared to a serial implementation,

except in cases where the order of execution affects the solution. In this program, one such

order-dependent algorithm exists in the interior fluid-mesh node-movement subroutine.

The spring-equilibrium analogy used to update the locations of fluid mesh nodes pro-

gresses very slowly when done through simple iteration. Since the impetus for all fluid mesh

motion is the fluid-structure boundary, only the first layer of adjacent nodes can "feel" this

motion after one iteration. This assumes that new node positions are solved from adjacent

node data only, and that they are stored in a temporary array until all indices have been cal-

culated for the current loop. To speed up the flow of information into the mesh, this program

uses a forward-substitution method in which new node location data overwrites old array

values immediately. This means it is possible for the mesh boundary movement to propagate

through the entire fluid mesh in a single loop of the equilibrium algorithm. Unfortunately,

the exact solution from this method depends on the order of calculation, and dividing the

domain for parallel processing guarantees that the exact solution will be different. However,

if this difference does not affect the convergence of the overall program solution, then it can

be neglected.

Three configurations of parallelization were tested against the original serial solution to

find the best combination of speed and accuracy. The first uses four layers of ghost nodes that
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only needs to be updated once at the end of each Runge-Kutta stage. This is the updated

parallel structure that Hwang developed [12] and has the drawback of creating a rather large

computational domain. The second configuration contains a single layer of ghost nodes that

has to be updated between any two uses of adjacent node data. This method results in

a smaller domain per processor, but requires significantly more message passing compared

to the four-layer version. The third configuration is identical to the second, except that it

returns each processor to the global domain when solving the interior fluid mesh motion.

This last method is expected to inhibit performance, and is primarily a comparison tool to

determine if parallelizing the order-dependent fluid mesh movement algorithm is adversely

affecting the accuracy of the solution.
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Figure 5.1: Verification of parallel computational results versus original serial output.

Figure 5.1 shows the wing tip trailing-edge displacement solution for the FX-35 wing

at Mach 0.98, 0.007 plate thickness, zero angle of attack, and 0.499 kg/m3 density using

the serial method and all three parallel configurations. This particular example was chosen

because of the complicated modal participation apparent in the solution, which all three

programs capture extremely well. Since there is no discernible difference in accuracy between

parallel configurations, the fastest one was chosen for production.
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5.5 Benchmarking and Parallel Configuration Selec-

tion

Creating a reliable benchmark for any program can be tricky, since the performance of an

executable changes with different hardware setups and can also vary between runs on the

same hardware. With that in mind, benchmarking was done in as close to a controlled

environment as possible, and using the hardware on the Hoffman2 cluster, since that is

where all production runs are executed.

The Hoffman2 cluster allows users to request interactive control of a computational node

for a limited period of time. During that time, that node may be used to compile and execute

any programs stored on the remote servers in real-time. Users can make specific requests for

the amount of memory, number of cores, and duration of access to the node. Additionally,

the request can be limited to a shared-memory node, which restricts the session to a single

multi-core processor that also meets the aforementioned criteria. If there are no matching

nodes available, then the user is simply given an error message. When access is granted to

a node, there is no guarantee that it is the same hardware accessed in a previous session.

With this in mind, multiple benchmarking sessions were executed on shared-memory

multi-core processors (between six and eight cores depending on availability); averaging the

results from three to five identical runs for each program configuration using one through

eight cores. Results varied between runs and between hardware configurations, but the

overall pattern of performance across cases was consistent.
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Figure 5.2: Benchmarking results for the original and optimized parallel configurations. A range

of results from three separate hardware tests are shown, demonstrating the varying performance of

both hardware and software.

Figure 5.2 shows the benchmarking results for the two major parallel configuration mile-

stones created through this research. Each line represents the averaged results from one

hardware setup, with three setups presented in the figure. The results vary noticeably for

both parallel configuration. However, the difference in performance between the programs

is consistently in the favor of the hardware-optimized version, which is not unexpected. The

original four-ghost-node-layer program performed adequately, with roughly 50% efficiency

when using four cores. The optimized single-ghost-node-layer version showed an appreciable

increase in performance with around 70% efficiency for four cores. Both parallel implementa-
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tions do rather poorly with anything more than four cores, due in part to the large overhead

inherent in the algorithm. However, that is not to say that performance could not be further

improved.
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Chapter 6

Results: TDT Wing Models

6.1 Introduction

The computational results presented in this chapter are part of a preparatory process to

select a wing model for wind tunnel testing. This project is part of the design process for

that model, but does not include the production or testing of the model, which will take place

at some point in the future. The wind tunnel, sometimes referenced here as the Transonic

Dynamics Tunnel or TDT, and it’s operating parameters have already been determined in

advance, along with the decision to select some variety of fighter wing. What remains is

to choose the specific wing model and to show that it exhibits worthwhile flutter behaviors

inside the operable range of the wind tunnel. This chapter presents two viable candidates

for wind tunnel testing based on aeroelastic phenomena observed in the computed data.
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6.2 Candidate Wings: FX-35 and the F-Wing

The two wing designs chosen for numerical computation are the FX-35 and the F-Wing

shown in Figure 6.1. Detailed parameters for both wings are given in Table 6.1. The FX-

35 is an approximation of the planform for the F-35A, the newest generation of military

fighter, which is a trapezoidal wing with a moderately-swept leading edge and a slightly

forward-swept trailing edge. The F-Wing is based on the F-16 style fighter aircraft, with a

moderately-swept leading edge and trailing edge sweep.

Figure 6.1: The FX-35 (left) and F-Wing (right) planforms.

Model b/2 A Λ𝐿𝐸 Λ𝑇 𝐸 𝜆 Airfoil

FX-35 0.832𝑐𝑟 2.67 35° -11.7° 0.245 NACA 64A003

F-Wing 1.2𝑐𝑟 3.457 27° 0° 0.3866 NACA 64A003

Table 6.1: Wing planform parameters for the FX-35 and F-Wing.
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Normally, computational results for these two wings are done near atmospheric condi-

tions. However, the TDT operational range is for considerably lower dynamic pressure. As a

result, both wing models have been modified to have a reduced thickness, which should shift

their flutter responses into the desired test scope. Comparisons of the natural frequencies

between the atmospheric and TDT wing models are shown in Tables 6.2 and 6.3. Mode

shape contour plots can be seen in Figures 6.2 and 6.3.
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Model t 1B 1T 2B 2T

FX-35 (atm) 0.007 12.068 44.071 59.864 112.439

FX-35 (TDT) 0.004 6.896 25.185 34.214 64.253

Table 6.2: The first four natural frequencies (Hz) of the FX-35 for the standard atmospheric and

modified TDT models (t = plate thickness).

Figure 6.2: The first four natural modes of the FX-35 wing planform.
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Model t 1B 1T 2B 2T

F-Wing (atm) 0.012 8.939 38.361 48.264 100.657

F-Wing (TDT) 0.008 5.960 25.575 32.185 67.110

Table 6.3: The first four natural frequencies (Hz) of the F-Wing for the standard atmospheric and

modified TDT models (t = plate thickness).

Figure 6.3: The first two natural modes of the F-Wing planform.

Figures 6.4 and 6.5 characterize the various stability responses of the FX-35 and the

F-Wing under the TDT operating parameters. All calculations were performed at zero angle

of attack and parameters represent free stream values. It is important to note that almost

all responses contain transonic Mach distributions on the upper and lower wing surface that

often terminate in a normal shock. The green and orange/red regions in these figures show

the stability boundary for traditional flutter behavior, where the first bending mode is either

decaying to a near zero amplitude or growing to the point of structural failure. Orange

indicates the response is in transition from mostly first-bending to strong bending-torsion,
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which are the red dots. Additional behaviors are explained below.
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Figure 6.4: Stability responses for the FX-35 wing at TDT conditions with zero angle of attack

and 0.004 plate thickness.
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Figure 6.5: Stability responses for the F-Wing at TDT conditions with zero angle of attack and

0.008 plate thickness.

The cyan region indicates the transition to the chimney, a rather peculiar area wherein

the second bending mode invariably remains neutrally stable even after all other modes have

been completely damped out. This behavior begins very suddenly once a Mach number

threshold has been crossed, and continues down to near-zero air density; creating a chimney-

like shape in the corresponding figure. The amplitudes of wing tip pitch and plunge are

nearly independent of changes to dynamic pressure, at least until the value is high enough

for general flutter instabilities to re-emerge. This is also the first occurrence of true limit-

cycle behavior, where various initial conditions converge to the same steady state amplitude.

The far right of the figure contains results for the transition into supersonic Mach num-
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bers, which share characteristics of the chimney at low dynamic pressure and exhibit unstable

flutter at high dynamic pressure. However, right at the beginning around Mach 1.00, the

response is overall much more chaotic in nature, and often lacks the aesthetically pleasing

qualities of subsonic data points. Seemingly random bursts in amplitude and mode participa-

tion make it difficult to make any specific correlations between it and the other regions. The

FX-35 contains a large range of limit-cycle steady states with multi-mode responses between

Mach 1.01 and Mach 1.05. The F-Wing, by contrast, starts from essentially single degree of

freedom first-bending limit-cycles at low density, then transitions to bending-torsion flutter

as density increases.

The figures show that both candidate wing models exhibit the desired range of aeroelastic

responses within the parameters of the TDT tunnel. A great number of individual data points

and thousands of extra hours of computation were used to depict with as much detail as

possible exactly what the model predicts for the regions discussed above. However, that is

not to say that even greater detail does not remain hidden beyond the reaches of what time

allowed for. The following section takes a closer look at the results from individual test points

representative of known types of flutter response. The focus remains on the demonstration

that these behaviors exist within the model; attempts to explain the causes behind those

behaviors are left to a minimum.

The entire test matrix can be divided into three distinct regions based on the changing

characteristics of the response with respect to Mach number. First is the subsonic stabil-

ity boundary, which is the dividing line for growth or decay of the initial response. This

region contains very few neutrally stable responses and limited multi-mode influence. The

second region is the chimney, which still exhibits stability boundary behavior with respect
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to the initial condition, but introduces a steady state second-bending response present at

all densities. However, the strength of this response is relatively low and is easily drowned

out by first-bending at higher densities. The last region is the supersonic response after the

Mach number freeze, a strong damping effect that occurs around Mach one. This region

is characterized by neutrally stable or weakly unstable responses with possible multi-mode

interaction.

6.3 Subsonic Stability Boundary

Each individual test point is a unique combination of Mach number and density, but they

all begin with a similar initial condition, which is a small kick to the first bending mode.

How this mode grows or decays is the first indication of the expected flutter response at that

test point. Instability in the first bending mode almost always corresponds to strong flutter,

while the stability of this mode generally indicates stable or neutrally stable behavior. With

this in mind, the first bending mode can be used to narrow the pool of data points chosen for

extended computation. Transient behavior in the wing response may look different depending

on the initial condition, but for most test points the steady state solution is unaffected. The

initial condition used here is intended to identify the strong flutter boundary first, and steady

state solutions second.

For each Mach number in the range indicated in Figure 6.6, a standard set of densities

are chosen at regular intervals in order to map the general stability behavior of the initial

condition. Increasing and decreasing density is typically destabilizing and stabilizing respec-

tively, and very low densities tend to slow down the rate of change for all aspects of the
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response. An iterative approach is used to select additional densities for new test points in

an effort to hone in on the neutrally stable condition. This inevitably creates a large number

of results with the same terminal response, but with varying rates of growth or decay. The

relative strength of the response is still important information that can be used both for

analysis and for predicting safe operational ranges in a wind tunnel.

Figure 6.6: Indication of the Subsonic Stability Boundary free stream Mach number range.
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6.3.1 FX-35: Subsonic Stability
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Figure 6.7: FX-35: Typical subsonic unstable flutter response at the wing tip (Mach 0.93, Density

0.1 kg/m3).

In the subsonic region before the chimney, flutter behavior follows a predictable pattern. As

Mach number increases, the neutrally stable density value decreases. Above this boundary,

the response is progressively more unstable and vice versa below the boundary. Figure 6.7

shows a typical unstable flutter response with a moderate rate of growth for the FX-35

wing at Mach 0.93 and a density of 0.1 kg/m3. Even at a tip plunge of 0.25 root chords,

the response is not overly alarming for this particular version of the FX-35 model, which

is thinner and more flexible that usual. Still, the terminal result of this test point is most

likely structural failure. Figure 6.8 shows the entire series of flutter responses for Mach 0.93

corresponding to the densities shown in Figure 6.4. These test points fall into one of three

categories: Strong bending-torsion flutter, neutrally stable flutter, or a stable response.
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Figure 6.8: The full range of FX-35 wing tip flutter responses from stable (top left) to unstable

(bottom right) at Mach 0.93.
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Strong bending-torsion flutter refers to fast growing responses with mode coupling be-

tween first-bending and first-torsion that result in the structural failure of the model within

a relatively short period of time. Any density value that is sufficiently higher than the flutter

boundary value will result in strong bending-torsion flutter. Figures 6.9 and 6.10 show what

happens to the wing tip plunge and pitch respectively when the density is increased to 0.2

kg/m3. The rate of growth in wing kinetic energy is substantially higher than at lower den-

sities, manifesting in large amplitude oscillations in both pitch and plunge. If this case were

run in a wind tunnel and resulted in the same response, it would almost certainly end in the

loss of the model. Figure 6.11 shows two phase plots for wing tip plunge versus velocity and

pitch, which can be useful for finding patterns in what seem like chaotic responses. In this

case, there’s nothing special to see; just an highly unstable response.

In many cases, it is difficult to notice the participation of the first-torsion mode, first be-

cause it contains relatively low kinetic energy compared to bending, and second because both

first-bending and second-bending result in considerable wing tip pitch as a normal charac-

teristic of their mode shapes. Figure 6.10 contains two combined responses corresponding to

the two modes present. The low-frequency, high-amplitude oscillation is directly caused by

the first-bending mode and is accordingly out of phase with the plunge response in Figure??.

The high-frequency, low-amplitude oscillation is caused by the first-torsion mode, which man-

ifests in the plunge response as a slight irregularity in the sinusoidal motion. Figure 6.12

shows the distribution of kinetic energy between the participating modes; with first-torsion

barely making an appearance as first-bending dominates. The fact is, torsion modes tend to

get overwhelmed by bending modes in the majority of cases in every form of output besides

pitch plots.
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Irregularities at the tail end of these plots are the result of the diminishing ability of the

program to function as nodes are stretched and contorted beyond their intended limit.
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Figure 6.9: FX-35: Strong bending-torsion flutter plunge response, demonstrating rapid amplitude

growth at increased density (Mach 0.93, Density 0.2 kg/m3).
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Figure 6.10: FX-35: Strong bending-torsion flutter pitch response, demonstrating rapid amplitude

growth at increased density (Mach 0.93, Density 0.2 kg/m3).
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Figure 6.11: FX-35: Phase plots corresponding to strong bending-torsion flutter (Mach 0.93,

Density 0.2 kg/m3).
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Figure 6.12: FX-35: Kinetic energy distribution between natural modes for strong bending-torsion

flutter (Mach 0.93, Density 0.2 kg/m3).

Figures 6.13 through 6.16 show plunge and pitch plots for the flutter response on either

side of stability boundary at densities of 0.079 kg/m3 and 0.08 kg/m3, respectively. The

margin here is extremely narrow, with very slow decay observed below the boundary and

very slow growth above it. It is possible for the stability boundary to exist over a range of

densities that all exhibit a response with a neutrally stable amplitude. That is not the case

here, as neither response shows any sign of tapering off at some asymptotic limit, meaning

they are simply stable and unstable motion. It is evident from small irregularities in the

pitch that these are still coupled responses between the first-bending and first-torsion modes.

Because the rate of growth is so small, this gives the opportunity to observe various

patterns in the motion with a bit more precision. Figures 6.17 and 6.18 show the stable
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case phase plots for the wing tip plunge versus velocity and pitch for the entire time domain

and for a small subset of cycles. The wavering motion in the phase plots is due to the

presence of both first-bending and first-torsion, but the regularity of the pattern suggests

the torsion mode is not driving any part of the motion. The kinetic energy distribution,

seen in Figure 6.19 confirm that the first-torsion mode is participating weakly. Erratic phase

responses can be used as a gauge for the relative strength of involved modes; multi-mode

responses can cause complicated wandering in the phase patterns, as will be seen later in

this chapter.

66



-0.15

-0.075

 0

 0.075

 0.15

 0  50  100  150  200  250
 0

 0.01

 0.02

 0.03

 0.04

D
is

pl
ac

em
en

t (
ro

ot
 c

ho
rd

s)

W
in

g 
E

ne
rg

y

Nondimensional time

Wing Tip TE
Wing Kinetic Energy

Figure 6.13: FX-35: Weakly stable plunge response just below the flutter boundary (Mach 0.93,

density 0.079 kg/m3).
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Figure 6.14: FX-35: Weakly stable pitch response just below the flutter boundary, small hiccups

in the response indicate first-torsion participation (Mach 0.93, density 0.079 kg/m3).
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Figure 6.15: FX-35: Weakly unstable plunge response just above the flutter boundary (Mach 0.93,

density 0.08 kg/m3).
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Figure 6.16: FX-35: Weakly unstable pitch response just above the flutter boundary, small vari-

ations in the response indicate first-torsion participation here as well (Mach 0.93, density 0.08

kg/m3).
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Figure 6.17: FX-35: Phase plots corresponding to a weakly stable response just below the flutter

boundary; showing the slight wavering caused by first-torsion participation (Mach 0.93, density

0.079 kg/m3).

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-0.1 -0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08  0.1

W
in

g 
tip

 T
E

 v
el

oc
ity

Wing tip TE displacement

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-0.1 -0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08  0.1

W
in

g 
Ti

p 
P

itc
h 

(d
eg

re
es

)

Wing Tip Midchord Displacement (root chords)

Figure 6.18: FX-35: Phase plots from a smaller subset of cycles showing the lack of variation

within the pattern between cycles at similar amplitudes. The weakness of this coupling effect is

most likely due to the relative strength of the modes involved (Mach 0.93, density 0.079 kg/m3).
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Figure 6.19: FX-35: Distribution of kinetic energy by mode. Even at a neutrally stable condition,

the first-torsion mode participates in the flutter response (Mach 0.93, density 0.079 kg/m3).

Figures 6.20 through 6.22 show the general stable response for densities sufficiently below

the flutter boundary. The steady state for most test points in this region is a decay to near-

zero amplitude. If any non-zero steady state solutions do exist, they would be difficult to

find due to the large number of test points and the slow speed at which steady state solutions

emerge (often taking weeks of computation time to manifest). However, these would most

likely be low amplitude flutter oscillations that are of academic interest and would not pose

any real danger to either a wind tunnel model or a real aircraft. The distinguishing feature

of the stable response is the muting of additional modes besides first-bending. It is clear

from the displacement versus velocity phase plot that the wing tip motion transitions to a

clean sinusoidal response with a steady rate of decay and no mode coupling.
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Figure 6.20: FX-35: Stable plunge response below the flutter boundary (Mach 0.93, density 0.05

kg/m3).
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Figure 6.21: FX-35: Stable pitch response below the flutter boundary (Mach 0.93, density 0.05

kg/m3).
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Figure 6.22: FX-35: Phase plots corresponding to a stable response; the first-torsion mode drops

out over time, as evidenced by the tarnsition to a clean sinusoidal decay of the first-bending mode

(Mach 0.93, density 0.05 kg/m3).

6.3.2 F-Wing: Subsonic Stability

The flutter stability boundary for the F-Wing is very similar to that of the FX-35. The first

bending mode is still dominant, the neutrally stable density value decreases towards zero as

Mach number approaches one, and high densities result in extremely volatile responses. For

the purpose of comparison, three conditions will be shown here to demonstrate the behavior

of the F-Wing above, along, and below the stability boundary.

Figures 6.23 through 6.26 show a strong, unstable flutter response at Mach 0.93 and a

density of 0.2 kg/m3. Apart from the rapid growth in the amplitude of the response, the

F-Wing, like the FX-35, encounters first-torsion coupling, manifesting as a proclivity toward

reduced pitch amplitude near the peak of the plunge response. This creates a small dip in
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the pitch plots, as well as a hooking or looping motion at the end of the phase plot. At

especially large amplitudes, the solution begins to break down as the mesh distorts beyond

the ability of the program to accommodate.
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Figure 6.23: F-Wing: Strong bending-torsion flutter plunge response, demonstrating rapid ampli-

tude growth at increased density (Mach 0.93, density 0.2 kg/m3).
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Figure 6.24: F-Wing: Strong bending-torsion flutter pitch response, showing first-torsion coupling

with the dominant first-bending mode (Mach 0.93, density 0.2 kg/m3).
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Figure 6.25: F-Wing: Phase plots corresponding to strong bending-torsion flutter (Mach 0.93,

density 0.2 kg/m3).
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Figure 6.26: F-Wing: Distribution of kinetic energy by mode (Mach 0.93, density 0.2 kg/m3).

Figures 6.27 through 6.30 show a neutrally stable response on the flutter boundary at

Mach 0.93 and a density of 0.13 kg/m3. The response of the F-Wing is noticeably smoother

than the FX-35. This is due to the absence of first-torsion from the stability boundary;

it grows in participation with increasing density. By contrast, the FX-35 only shows pure

first-bending behavior for stable responses, where the displacement versus velocity phase

plots become more circular.

Figures 6.31 through 6.34 show a stable response below the flutter boundary at Mach

0.93 and a density of 0.05 kg/m3. There’s not much to say here apart from the aesthetically

pleasing quality of the graphs. The response appears to be a decay of a pure first-bending

mode.
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Figure 6.27: F-Wing: Neutrally stable flutter plunge response (Mach 0.93, density 0.13 kg/m3).
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Figure 6.28: F-Wing: Neutrally stable flutter pitch response (Mach 0.93, density 0.13 kg/m3).
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Figure 6.29: F-Wing: Phase plots corresponding a neutrally stable response; the smooth response

shows little to no evidence of mode coupling (Mach 0.93, density 0.13 kg/m3).

 0

 0.2

 0.4

 0.6

 0.8

 1

 140  142  144  146  148  150

Fr
ac

tio
n 

of
 K

in
et

ic
 E

ne
rg

y

Nondimensional time

1B
1T
2B
2T

Figure 6.30: F-Wing: distribution of kinetic energy by mode, the response is almost purely first-

bending (Mach 0.93, density 0.13 kg/m3).
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Figure 6.31: F-Wing: Stable plunge response (Mach 0.93, density 0.05 kg/m3).
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Figure 6.32: F-Wing: Stable pitch response (Mach 0.93, density 0.05 kg/m3).
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Figure 6.33: F-Wing: Phase plots corresponding to a stable response (Mach 0.93, density 0.05

kg/m3).
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Figure 6.34: F-Wing: Distribution of kinetic energy by mode (Mach 0.93, density 0.05 kg/m3).
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Identifying the stability boundary and strength of unstable responses is a fairly quick

and simple exercise. Generally, all unstable flutter responses result in crashing the code

(synonymous with breaking the model in a wind tunnel); it’s only a matter of how long it

takes the response the grow. Stable conditions either asymptotically approach zero or begin

to show signs of transitioning to a different type of response through a change in modal

participation. Transitions can take weeks or months of continuous computation to emerge;

one can never be certain that some unknown solution isn’t hiding between data points or

farther along in time. The majority of long term computation was invested in low density

test points between Mach 0.95 and Mach 1.00, in a region designated as the "chimney", where

a known mode transition is expected to occur.

6.4 Chimney Transition

The transition from the initial condition to clear chimney behavior can take a long time to

manifest, but it has a certain "you’ll know it when you see it" quality. Any subsonic test point

at low density is characterized by the slow decay of the first-bending mode initial condition,

which continues down to a near negligible amplitude. What’s leftover in the steady state is

not noise, but instead is a clearly defined second-bending response. What determines the

boundary of the chimney region is whether or not the second-bending steady state suddenly

grows to a neutrally stable finite amplitude. The new amplitude is generally much smaller

than it would be in a neutrally stable first-bending response, but it is still larger than mere

noise. Notably, the steady state solution also follows limit-cycle behavior, making it the

first response that can properly be called a limit-cycle oscillation (LCO). The LCO response
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appears suddenly once the Mach number threshold is crossed and continues down to near-

zero density, creating a chimney shape in the stability graph. The range of Mach numbers

for the chimney transition is shown in Figure 6.35.

Figure 6.35: Indication of the Chimney Transition free stream Mach number range.

6.4.1 FX-35: Chimney

Figures 6.36 through 6.39 show long term stable responses for wing tip plunge and pitch

from a first-bending initial condition on either side of the chimney transition Mach number.

Outside the chimney, at Mach 0.95, both plunge and pitch asymptotically approach zero.

Inside the chimney, at Mach 0.96, the response eventually transitions to a small, finite

amplitude for both plunge and pitch. Figure 6.40 shows a series of plunge and pitch chimney
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transitions for Mach 0.96 through Mach 0.99. Higher Mach numbers transition more quickly,

but the final amplitudes are similar across all test points. The steady state for every chimney

transition is an LCO dominated by the second-bending mode.
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Figure 6.36: FX-35: Steady state plunge asymptotically approaching zero (Mach 0.95, density

0.03 kg/m3).
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Figure 6.37: FX-35: Steady state pitch asymptotically approaching zero (Mach 0.95, density 0.03

kg/m3).
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Figure 6.38: FX-35: Steady state plunge transitioning to a neutrally stable second-bending mode

(Mach 0.96, density 0.04 kg/m3).
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Figure 6.39: FX-35: Steady state pitch transitioning to a neutrally stable second-bending mode

(Mach 0.96, density 0.04 kg/m3).
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Figure 6.40: FX-35: Plunge (left) and pitch (right) chimney region LCO transitions for Mach 0.96

through Mach 0.99 at low density (0.05 kg/m3 or lower).
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Details of the LCO responses can be obtained from their corresponding phase plots. Fig-

ure 6.41 shows the entire lifespan phase plots for wing tip plunge versus velocity and pitch

at Mach 0.96 just after the chimney boundary. The plots are rather muddled because of

duration of the response contained within them, but they both contain some characteristic

features of the chimney transition than can only be shown from start to finish. First, in dis-

placement versus velocity, there is a criss-crossing striation pattern visible as the first-bending

mode decays and the second-bending mode grows. Secondly, in the midchord displacement

versus pitch plot, it is clearly visible that there is a change in the phase between the wing

tip plunge and pitch from the initial condition to the steady state. The relative amplitudes

are much smaller, but the result is clear. The cause of this phase reversal is the natural

pitching cause by the different bending mode shapes. Plunge and pitch are out of phase

at the wing tip for first-bending and in phase for second-bending, making this an excellent

early indicator of chimney mode transition.
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Figure 6.41: FX-35: Lifetime phase plots for a first-bending to second-bending chimney trnasition

(Mach 0.96, density 0.04 kg/m3).

The general transient phase plot characteristics are shared by all the chimney transitions

presented here, but only specific aspects are unique to the chimney region. Similar char-

acteristics are observable at the Mach 0.95 condition, which does not also experience the

resurgence of amplitude seen at the chimney test points. Figure 6.42 clearly shows the criss-

crossing striations and the phase reversal associated with the second-bending mode (looking

at a subset of oscillation cycles), but the final amplitudes are insignificantly small. It seems

to be something in between noise and a clean second-bending response.

When looking in closer detail at the chimney test points, using a subset of oscillations

from the steady state response, there is a clearly defined pattern of motion as shown in

the phase and kinetic energy distribution plots in Figures 6.43 through 6.48. Notably, the

cleanest second-bending response is directly after the chimney boundary, with some other
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mode showing increased influence as Mach number increases. The kinetic energy distribution

clearly shows a dip in second-bending with nothing else to take its place, but that is because

only the first four modes are normally plotted. In Figure 6.48 the modes are increased to

eight, and they can clearly be seen weakly participating. It is very rare for these modes to

make any meaningful appearance; even second-torsion barely deserves to be on the list.
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Figure 6.42: FX-35: Lifetime (left) and steady state (right) phase plots showing similar chimney

characteristics prior to the chimney region (Mach 0.95, density 0.03 kg/m3).
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Figure 6.43: FX-35: Steady state chimney response phase plots over a subset of oscillations showing

a well defined pattern of second-bending motion (Mach 0.96, density 0.04 kg/m3).
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Figure 6.44: FX-35: Distribution of kinetic energy by mode in the chimney, showing dominant

second-bending motion (Mach 0.96, density 0.04 kg/m3).
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Figure 6.45: FX-35: Steady state chimney response phase plots over a subset of oscillations showing

the beginnings of multi-mode influence (Mach 0.97, density 0.04 kg/m3).
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Figure 6.46: FX-35: Distribution of kinetic energy by mode in the chimney, showing dominant

second-bending motion (Mach 0.97, density 0.04 kg/m3).
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Figure 6.47: FX-35: Steady state chimney response phase plots over a subset of oscillations showing

the influence of other modes on the second-bending pattern (Mach 0.98, density 0.02 kg/m3).
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Figure 6.48: FX-35: Distribution of kinetic energy by mode in the chimney, showing dominant

second-bending motion and unexpected participation from additional modes beyond the first four

(Mach 0.98, density 0.02 kg/m3).
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6.4.2 F-Wing: Chimney

Figures 6.49 through 6.52 show the long term wing tip responses on either side of the chimney

boundary for the F-Wing. Before the boundary, at Mach 0.94, both plunge and pitch

asymptotically approach zero. After the boundary, at Mach 0.95, the response eventually

begins the transition to non-zero finite amplitudes for plunge and pitch. Figure 6.53 shows

plunge and pitch chimney transitions for Mach 0.95 through Mach 0.98. Similar to the FX-

35, higher Mach numbers result in faster transitions, however, the steady state response at

all Mach numbers involves both second-bending and first-torsion, resulting in much higher

pitching amplitudes relative to plunge.
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Figure 6.49: F-Wing: Steady state plunge asymptotically approaching zero prior to the chimney

boundary (Mach 0.94, density 0.05 kg/m3).
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Figure 6.50: F-Wing: Steady state pitch asymptotically approaching zero prior to the chimney

boundary (Mach 0.94, density 0.05 kg/m3).
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Figure 6.51: F-Wing: Steady state plunge transitioning to a neutrally stable coupled first-torsion

and second-bending response after the chimney boundary (Mach 0.94, density 0.05 kg/m3).
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Figure 6.52: F-Wing: Steady state pitch transitioning to a neutrally stable coupled first-torsion

and second-bending response after the chimney boundary (Mach 0.94, density 0.05 kg/m3).
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Figure 6.53: F-Wing: Plunge (left) and pitch (right) chimney transitions for Mach 0.95 through

Mach 0.98.
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As usual, the phase plots can be used to help categorize an additional level of detail

to compare and contrast the various chimney responses. Figures 6.54 and 6.55 show the

entire life-span phase plots for wing tip plunge versus velocity and pitch at Mach 0.94 and

Mach 0.95 on either side of the chimney boundary. Because of the increased pitch amplitude

inside the chimney for the F-Wing, the pitch-plunge phase reversal when transitioning from

first-bending to second-bending creates a stark contrast between the Mach 0.94 and Mach

0.95 phase plots.
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Figure 6.54: F-Wing: Complete lifetime phase plots prior to the chimney transition (Mach 0.94,

density 0.05 kg/m3).
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Figure 6.55: F-Wing: Complete lifetime phase plots just after the chimney transition, showing the

phase reversal between wing tip pitch and plunge associated with the switch from first-bending to

second-bending (Mach 0.95, density 0.05 kg/m3).

Comparing points from within the chimney, there is a startling difference between the

specific patterns that emerge with increasing Mach number. Figures 6.56 through 6.63 show

wing tip phase plots and kinetic energy distribution by mode for Mach 0.95 through Mach

0.98, focusing on smaller subsets of oscillations near the steady state response. Immediately

after the chimney boundary, at Mach 0.95, the response is almost a pure second-bending

mode. The phase pattern is a relatively smooth sinusoidal loop and the kinetic energy shows

only the slightest involvement of first-torsion. At Mach 0.96, first-torsion establishes itself

more firmly as a constant presence in the kinetic energy distribution. The pitch phase begins

to wander back and forth, and the sinusoidal pattern becomes deformed. At Mach 0.97, first-

bending occasionally joins in, and the phase plots show wild looping patterns that cover a

broad area. Eventually, at Mach 0.98, the response becomes too chaotic for any patterns to
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be discernible. The active modes shift around at sharp angles and the phase plots look like

scribbles. There is still a defined area in which the scribbling happens, but the individual

patterns of each cycle have been lost.
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Figure 6.56: F-Wing: Steady state chimney response phase plots over a subset of oscillations

showing the well defined pattern of motion (Mach 0.95, density 0.05 kg/m3).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1102  1102.5  1103  1103.5  1104

Fr
ac

tio
n 

of
 K

in
et

ic
 E

ne
rg

y

Nondimensional time

1B
1T
2B
2T

Figure 6.57: F-Wing: Distribution of kinetic energy by mode in the chimney, showing dominant

second-bending motion (Mach 0.95, density 0.05 kg/m3).
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Figure 6.58: F-Wing: Steady state chimney response phase plots for the F-Wing over a subset of

oscillations showing a transition to wandering phase behavior (Mach 0.96, density 0.05 kg/m3).
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Figure 6.59: F-Wing: Distribution of kinetic energy by mode in the chimney, showing an increase

in first-torsion (Mach 0.96, density 0.05 kg/m3).
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Figure 6.60: F-Wing: Steady state chimney response phase plots for the F-Wing over a subset of

oscillations showing a complex pattern that sweeps out a slightly different space with each cycle

(Mach 0.97, density 0.04 kg/m3).
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Figure 6.61: F-Wing: Distribution of kinetic energy by mode in the chimney, showing the addition

of first-bending for a three mode response (Mach 0.97, density 0.04 kg/m3).
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Figure 6.62: F-Wing: Steady state chimney response phase plots for the F-Wing over a subset of

oscillations revealing erratic behavior due the cacophony of mode interactions (Mach 0.98, density

0.02 kg/m3).
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Figure 6.63: F-Wing: Distribution of kinetic energy by mode in the chimney, showing how estab-

lished patterns begin to break down on approach to Mach one (Mach 0.98, density 0.02 kg/m3).

102



6.5 Mach Number Freeze

The constant amplitude steady state responses seen at low densities at the beginning of

the chimney region are a precursor to the Mach number freeze, a phenomenon that weakens

flutter responses around and after Mach 1. Before the Mach number freeze, increasing density

continues to produce strong flutter dominated by the first bending mode. However, at the

same density just on the other side of the freeze boundary, the result is a neutrally stable or

weakly unstable response. The test range for these behaviors is shown in Figure 6.64.

Figure 6.64: Indication of the Mach Freeze region free stream Mach number range.
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6.5.1 FX-35: Mach Freeze

Figure 6.65 shows a series of plunge and pitch responses for increasing Mach number at a

density of 0.2 kg/m3. Normally, this is a strong flutter condition as seen in the first row at

Mach 0.97. Starting at Mach 0.98, the strength of the response shows signs of being muted,

and by Mach 0.99 appears to be a neutrally stable condition. At Mach 1.00, shown in the

last row, the result is a low energy, multi-mode response; a stark contrast to the explosive,

bending-torsion flutter from just before the freeze.
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Figure 6.65: FX-35: Plunge (left) and pitch (right) responses for Mach 0.97 through Mach 1.00

(density 0.2 kg/m3) showing the quenching effect of the Mach number freeze starting around Mach

0.99.
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An interesting characteristic of the responses in the freeze region is that, instead of

exhibiting patterns of stable or unstable behavior, they follow patterns of mode participation.

All of the responses maintain the wing kinetic energy supplied by the initial condition, but

each morphs over time into a different solution; redistributing that energy between various

natural modes.

Figures 6.66 and 6.75 show an enlarged view of the Mach 1.00 plunge and pitch plots

from the series above. The semblance of a pattern can be seen in both plots, but at the same

time they appear volatile. The phase plots over a handful of cycles, seen in Figure 6.68, show

a very complicated but somewhat reliable pattern being carved out repeatedly. The variety

of modes participating to create this behavior is shown in Figure 6.69. Neutrally stable

responses with clean phase patterns are usually dominated by either the first- or second-

bending modes. In this case, the first-bending, first-torsion, and second-bending modes are

all present and fluctuate in strength over time.
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Figure 6.66: FX-35: Neutrally stable plunge response just after the Mach freeze (Mach 1.00,

density 0.2 kg/m3).
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Figure 6.67: FX-35: Neutrally stable pitch response just after the Mach freeze (Mach 1.00, density

0.2 kg/m3).
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Figure 6.68: FX-35: Mach freeze phase plots showing the complex patterns resulting from a

multi-mode response (Mach 1.00, density 0.2 kg/m3).
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Figure 6.69: FX-35: Distribtion of kinetic energy across natural modes, highlighting the interplay

of modes responsible for complex responses seen after the Mach freeze (Mach 1.00, density 0.2

kg/m3).
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Cutting the density to 0.1 kg/m3, Figures 6.70 and 6.71 show a slightly more subdued

response in the plunge and pitch. The transition from the initial condition appears to be

occurring more slowly, and the form of the final solution is less apparent than it was at 0.2

kg/m3. The kinetic energy, however, shows that the response is not growing or decaying,

only changing. Even though the wing tip motion looks more controlled in this case, the phase

plots for this test point, seen in Figure 6.72, don’t show any discernible pattern. Looking at

the modal participation, Figure 6.73 shows a back and forth between the first-bending and

second-bending. It is somewhat unintuitive that what appears to be a simpler interaction

between fewer modes results in the loss of a clean pattern.
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Figure 6.70: FX-35: A more subdued neutrally stable plunge response just after the Mach freeze

(Mach 1.00, density 0.1 kg/m3).
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Figure 6.71: FX-35: A more subdued neutrally stable pitch response just after the Mach freeze

(Mach 1.00, density 0.1 kg/m3).
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Figure 6.72: FX-35: Mach freeze phase plots showing the smearing effect of the first-bending and

second-bending mode interaction (Mach 1.00, density 0.1 kg/m3).
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Figure 6.73: FX-35 distribtion of kinetic energy across natural modes, revealing a tug of war

between first-bending and second-bending (Mach 1.00, density 0.1 kg/m3).

Reducing the density again to 0.05 kg/m3, Figures 6.74 and 6.75 show a similar transition

to what was seen at 0.1 kg/m3, only occurring at a slower rate. The phase and mode plots,

Figures 6.76 and 6.77 seem to confirm this observation. The overall pattern, moving from

high to low density, is similar in all of the test points from Mach 1.00 to Mach 1.05. The

second-bending mode has a constant presence and will compete with first-bending to create

chaotic behavior; only seeming to yield a specific pattern if first-torsion is involved.
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Figure 6.74: FX-35: Neutrally stable plunge response just after the Mach freeze, which is slowed

down by the decreased density (Mach 1.00, density 0.05 kg/m3).
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Figure 6.75: FX-35: Neutrally stable pitch response just after the Mach freeze, which is slowed

down by the decreased density (Mach 1.00, density 0.05 kg/m3).
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Figure 6.76: FX-35: Mach freeze phase plots showing the smearing effect of the first-bending and

second-bending mode interaction (Mach 1.00, density 0.05 kg/m3).
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Figure 6.77: FX-35: Distribtion of kinetic energy across natural modes; neither of the modes

present appear to be taking control of the response (Mach 1.00, density 0.05 kg/m3).
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The supersonic Mach freeze region has another observable pattern with respect to chang-

ing Mach number. The participation of the second-bending mode peaks at Mach 1.01, then

falls off as Mach number increases. This appears to have a stabilizing effect on mode cou-

pling, allowing the first-bending mode to exist essentially by itself. Figures 6.78 through 6.85

show how the highly complex multi-mode response from Mach 1.00 density 0.2 kg/m3 loses

its second-bending participation as Mach number increases. The patterns evident in the

phase plots lose their intricacy as the coupling effects diminish, leaving responses similar to

those seen in the subsonic region below Mach 0.96 where the first-bending mode dominates.

The most telling evidence for this transition is in the plunge versus pitch phase plot,

which has a full 90 degree rotation when comparing a pure first-bending response to a pure

second-bending response. When both modes are present, the effect is to make the pattern

wider as the modes compete to drag the plot towards opposite corners. Especially at lower

densities, the behavior gets closer and closer to an essentially single degree of freedom first-

bending response, as shown in Figures 6.86 through 6.89.
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Figure 6.78: FX-35: Neutrally stable plunge response in the Mach freeze region; modes besides

first-bending begin to drop off as Mach number increaes (Mach 1.03, density 0.2 kg/m3).
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Figure 6.79: FX-35: Neutrally stable pitch response in the Mach freeze region; modes besides

first-bending begin to drop off as Mach number increaes (Mach 1.03, density 0.2 kg/m3).
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Figure 6.80: FX-35: Mach freeze region phase plots showing the decreasing participation of second-

bending (Mach 1.03, density 0.2 kg/m3).
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Figure 6.81: FX-35: Distribtion of kinetic energy across natural modes over time (Mach 1.03,

density 0.2 kg/m3).
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Figure 6.82: FX-35: Neutrally stable plunge response in the Mach freeze region (Mach 1.05,

density 0.2 kg/m3).

-8

-4

 0

 4

 8

 0  20  40  60  80  100  120  140  160
 0

 0.04

 0.08

 0.12

 0.16

P
itc

h 
(d

eg
re

es
)

E
ne

rg
y

Nondimensional time

Wing Tip Pitch
Wing Kinetic Energy

Figure 6.83: FX-35: Neutrally stable pitch response in the Mach freeze region (Mach 1.05, density

0.2 kg/m3).
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Figure 6.84: FX-35: Mach freeze region phase plots showing a return to pure first-bending patterns

at higher Mach number (Mach 1.05, density 0.2 kg/m3).
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Figure 6.85: FX-35: Distribtion of kinetic energy across natural modes over time (Mach 1.05,

density 0.2 kg/m3).
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Figure 6.86: FX-35: Neutrally stable plunge response in the Mach freeze region (Mach 1.04,

density 0.05 kg/m3).

-8

-4

 0

 4

 8

 0  20  40  60  80  100  120  140  160  180  200
 0

 0.04

 0.08

 0.12

 0.16

P
itc

h 
(d

eg
re

es
)

E
ne

rg
y

Nondimensional time

Wing Tip Pitch
Wing Kinetic Energy

Figure 6.87: FX-35: Neutrally stable pitch response in the Mach freeze region (Mach 1.04, density

0.05 kg/m3).
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Figure 6.88: FX-35: Mach freeze region phase plots showing a return to pure first-bending patterns

at higher Mach number (Mach 1.04, density 0.05 kg/m3).
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Figure 6.89: FX-35: Distribtion of kinetic energy across natural modes over time (Mach 1.04,

density 0.05 kg/m3).
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6.5.2 F-Wing: Mach Freeze

The Mach freeze for the F-Wing is not so blatantly obvious as it was for the FX-35. The

same general effect is present, which is that the strength of the flutter response is tempered

considerably for a small increase in Mach number when passing Mach 1.00. The difference

is that the FX-35 switched very suddenly from explosive first-bending flutter to a neutrally

stable response with moderate amplitude, and the F-Wing doesn’t. Instead, many test points

maintain first-bending flutter with a drop in rate of growth or have slow growing multi-mode

responses. Lower density test points still become neutrally stable, but higher densities do

not experience the powerful quenching. It’s possible that the same result exists at higher

densities for the FX-35, and that the F-Wing pattern occurs over a more compact range.

Figure 6.90 shows a high density series of wing tip plunge and pitch plots from Mach

0.98 to Mach 1.01. The drop in rate of growth between Mach 0.99 and Mach 1.00 is still

significant, but the response picks up again right away at Mach 1.01. Overall, the F-Wing

shows considerably less proclivity towards neutrally stable responses in this region when

compared to the FX-35. Because higher densities are so far outside the TDT test range,

they were not considered, and as a result there are simply not enough test points to make

a determination about what sort of cap may exist on the reach of the Mach freeze effect

based on this data alone. Suffice it to say, the effect is still present here, but with more

underwhelming results.
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Figure 6.90: F-Wing: Plunge (left) and pitch (right) responses for Mach 0.98 through Mach 1.01

(density 0.2 kg/m3) showing the tempering effect of the Mach number freeze starting around Mach

1.00.

122



The supersonic F-Wing response is divided very sharply between Mach 1.00 and the rest

of the region. In the series shown above, the Mach freeze causes the response to transition

from bending-torsion flutter at Mach 0.98 to bending-bending at Mach 1.00, which then

immediately transitions back to bending-torsion at Mach 1.01. Overall, Mach 1.00 sees

heavy participation of the second-bending mode, which then disappears almost entirely for

the remainder of the supersonic test points.

The Mach 1.00 test points show no significant involvement of torsion modes and no multi-

mode LCO responses. Even at very low density the response is weakly unstable, as seen in

Figure 6.91. Looking at the kinetic energy distribution in Figure 6.92, the first-bending

mode is dominant, but hints of other modes can be seen. As density increases, so does

second-bending participation, until eventually both modes are present in nearly equal force.

Figures 6.93 through 6.96 show the response created from heavy competition between the

first two bending modes.
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Figure 6.91: F-Wing: Weakly unstable plunge response in the Mach freeze region (Mach 1.00,

density 0.02 kg/m3).
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Figure 6.92: F-Wing: Distribtion of kinetic energy across natural modes over time (Mach 1.00,

density 0.02 kg/m3).
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Figure 6.93: F-Wing: Unstable plunge response in the Mach freeze region (Mach 1.00, density

0.15 kg/m3).
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Figure 6.94: F-Wing: Unstable pitch response in the Mach freeze region (Mach 1.00, density 0.15

kg/m3).
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Figure 6.95: F-Wing: Mach freeze region phase plots showing erratic patterns as first-bending and

second-bending interact (Mach 1.00, density 0.15 kg/m3).
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Figure 6.96: F-Wing: Distribtion of kinetic energy across natural modes over time (Mach 1.00,

density 0.15 kg/m3).
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From Mach 1.01 to Mach 1.05 the character of the response becomes surprisingly sim-

ple. At low densities the first-bending mode exists almost entirely by itself and is neutrally

stable. It is quite rare to see a condition so completely void of mode competition. Fig-

ures 6.97 through 6.100 show an example of an Essentially Single Degree of Freedom response.

The phase plots are exceptionally smooth, and multi-mode presence is so low that the kinetic

energy response hardly even dips at peak displacement, where first-bending is nearly sta-

tionary. With increasing density, the response becomes weakly unstable and sees very slight

competition from second-bending. At high density, seen in Figures 6.101 through 6.104,

the response transitions to the bending-torsion flutter that characterized unstable subsonic

conditions.
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Figure 6.97: F-Wing: Neutrally stable plunge response in the Mach freeze region (Mach 1.03,

density 0.05 kg/m3).
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Figure 6.98: F-Wing: Neutrally stable pitch response in the Mach freeze region (Mach 1.03, density

0.05 kg/m3).
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Figure 6.99: F-Wing: Mach freeze region phase plots showing essentially single degree-of-freedom

first-bending patterns at higher Mach number (Mach 1.03, density 0.05 kg/m3).
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Figure 6.100: F-Wing: Distribtion of kinetic energy across natural modes over time (Mach 1.03,

density 0.05 kg/m3).
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Figure 6.101: F-Wing: Unstable plunge response in the Mach freeze region (Mach 1.02, density

0.2 kg/m3).
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Figure 6.102: F-Wing: Unstable pitch response in the Mach freeze region (Mach 1.02, density 0.2

kg/m3).
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Figure 6.103: F-Wing: Mach freeze region phase plots showing a transition to bending-torsion

flutter (Mach 1.02, density 0.2 kg/m3).
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Figure 6.104: F-Wing: Distribtion of kinetic energy across natural modes over time (Mach 1.02,

density 0.2 kg/m3).
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Chapter 7

Conclusions

7.1 Introduction

A parallel implementation of the Direct Eulerian-Lagrangian Method was successfully de-

veloped and optimized for use on multi-core shared-memory computational nodes. The

program was used to develop two fighter wing models that are both excellent candidates

for transonic wind tunnel testing. Results show a range of known flutter phenomena that

have been previously identified in wind tunnel tests and numerical simulations for cranked

aircraft wings.

7.2 Conclusions

The main conclusions of this study are as follows:

1. Parallelization was shown to be a worthwhile investment for reducing the time taken

to obtain results using the Direct Eulerian-Lagrangian Method without changes to the

132



algorithm and without loss of accuracy.

2. The Direct Eulerian-Lagrangian Method was applied to fighter wings on a large volume

of test points, providing a greater level detail about the boundaries and nuances of

flutter behavior transitions than was known previously.

3. The FX-35 and F-Wing fighter wing models were shown to exhibit complex flutter

behaviors within the operating parameters of the Transonic Dynamics Tunnel; either

would provide valuable physical test data that is not currently available for use in

validation of computational methods.

4. For both wings, a clear subsonic flutter stability boundary was observed with respect

to density. Above this boundary, increased density results in a transition from weakly

unstable first-bending flutter to fast-growing strong bending-torsion flutter.

5. Both the FX-35 and F-Wing experience a deep chimney of neutrally stable second-

bending responses starting around Mach 0.95 that continue down to near-zero density.

As Mach number increases towards 1.00, the first-bending and first-torsion modes show

increased participation in these responses.

6. Around Mach 1.00, the flutter response of both wings is tempered considerably, often

resulting in neutrally stable LCOs at previously unstable conditions. This is thought

to be the result of the normal shocks reaching the trailing edge of the wing surface.

7. The FX-35 was shown to exhibit a variety of LCO behaviors, including ESDOF and

multi-mode responses, over a wide range of Mach numbers and densities in the su-

personic region. Of particular interest are 1B-1T-2B responses where all three modes
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compete for dominance without establishing a clear hierarchy.

8. The F-Wing was shown to exhibit a short range of coupled first and second-bending

responses directly after Mach 1.00, followed by ESDOF first-bending LCOs at low

density for Mach 1.01 through Mach 1.05. These conditions transitioned to strong

bending-torsion flutter at higher densities.
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