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Abstract

Analyses and Applications of Visual SLAM for UAS

by

Gordon H. Keller

The ubiquity of Unoccupied Aerial Systems/Vehicles (UAS/V) in society has

spurred many different functional purposes for them. In many of these applications,

including visual sensing is advantageous for precise control and situational awareness.

Visual “Simultaneous Localization and Mapping”, or Visual SLAM, has come to the fore

as an effective approach for proprioception in UAS. In this thesis, two explorations on

the relationship between Visual SLAM and UAS are offered: (1) an in-depth analysis

of the performance of the algorithm when flown in a sparse feature space onboard a

multicopter platform, and (2) the design and simulation of an application example of

Visual SLAM in a terrain-following modality of flight. Through these contributions, the

viability and reliability of Visual SLAM is validated for practical use on small aerial

vehicles.
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Chapter 1

Introduction

1.1 Motivation

The motivation behind this thesis is to better understand the effectiveness

of ORB-SLAM2 onboard a UAS system. The requirements of UAS functionality in

various capacities necessitate visual sensing. The ORB-SLAM family of algorithms

has shown great promise in a multitude of applications, including use aboard UAS.

However, in order to be sure that it can pass muster in UAS applications, studies should

be undertaken to better understand how the motions of multicopter systems have an

impact on the localization effectiveness and overall robustness. With the completion of

such studies, applying the technology towards tangible applications is possible.

1.2 Contributions

The two primary contributions of this work are:

1



• A thorough investigation into the effects of multicopter motion on the effectiveness

of the monocular ORB-SLAM2 algorithm in a feature-sparse indoor environment.

• A novel “Vision-assisted Terrain Following” algorithm and simulation which in-

corporates the use of stereo ORB-SLAM2 in a feature-rich outdoor environment.

1.3 Background

1.3.1 Advent of UAS

Unoccupied Aerial Systems (UAS), also known as Unoccupied Aerial Vehicles

(UAV), have radically changed the ways in which we interact with the world. Brought

about by the advancement of aeronautical control knowledge, the miniaturization of

electronics, and improvements to battery technologies, UAS have enabled new modes

of operation throughout many different disciplines. From defense to civilian use, for

recreation and work alike, UAS have fundamentally reshaped how people utilize aircraft

remotely to have fun and to get work done.

UAS are very commonly found used in research disciplines as they allow for

expansive operations, efficiency with personnel use, and a wide variety of vehicle classes

for different sized payloads or operational requirements. Archeological efforts employ

them [11] [2], as do forestry efforts [68] [53], agricultural research [27] [69], marine studies

[20] [6], and many more disciplines. The third chapter of this work will focus on their

use in the geosciences.
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1.3.2 Vision Aboard UAS

To enable the next generation of UAS, incorporating the ability to know how

they are situated and how to traverse the airspace via direct environment sensing is

paramount, and seamless integration into arbitrary environments (urban, suburban,

rural, etc.) is only possible with several layers of assured localization accuracy and

situational awareness (on top of complementary control algorithms). Use of digital

cameras or other electo-optical devices enables a vision component to be employed and

can constitute one such sensor component. Modern use of cameras and computer vision

aboard small UASs is common – for instance, many commercial systems utilize optical

flow for position hold and velocity estimation. Complete environment awareness via

computer vision techniques is not yet fully realized however, meriting more research in

the area. It is necessary to abstract away from algorithm-specific means of measurement

for analysis to this end.

1.3.3 Visual SLAM

Visual Simultaneous Localization and Mapping, or Visual SLAM, is the prob-

lem of creating a map of the environment, usually as a point cloud representation, and

calculating the ownship’s (or observer’s) pose at the same time [67].

There are so-called “indirect” and “direct” methods of conducting Visual

SLAM [15]. Direct methods involve measuring the change in the pixel values directly

when calculating the map and pose information. Indirect methods leverage some method

of abstracting away from the image itself and instead focusing on some aspect of the

3



image, or features. Many indirect methods will use what are known as “keypoints”,

or points/regions of an image which have some distinguishing characteristic which will

make them easier to track between frames. This could be the points defining either end

of a line, or the “cornerness” of an area.

The problem of Simultaneous Localization and Mapping (SLAM) is a well-

researched topic. Observer reprojection onto sparse point-clouds aggregated by sensors

(e.g. LiDAR) are the primary means of addressing such a problem, and since its original

incarnation more approaches have come to the forefront. Visual SLAM, replacing cam-

eras for said sensors and performing computer vision processes to achieve the same task,

is viewed as a sensing method that can radically reduce the costs associated with this

problem while improving salient information. For the past decade, new Visual SLAM al-

gorithms have come to the forefront, many of which build on each others’ improvements.

Non-filtering Visual SLAM algorithms are a subclass within this area of development

that are best suited for most applications [65] - of these, several algorithms have sig-

nified milestone improvements to the state-of-the-art [38] [19] [28] [17]. ORB-SLAM

[50] is one such method (or class of methods in the case of ORB-SLAM2 [51]). In their

approach, Oriented FAST and Rotated BRIEF (ORB) features [58] are used to identify

keypoints with descriptors to build and reference a sparse point cloud representation of

the 3D structure of the environment. As with most other indirect SLAM methods, this

works via Bundle Adjustment (BA): an optimisation problem wherein the reprojection

error is minimised between the features detected and point cloud, and it continually

improves the accuracy and efficiency in several ways including culling keyframes and

4



keypoints and performing loop closure where necessary.

1.4 Thesis Outline

This thesis explores the use of Visual SLAM, specifically ORB-SLAM2, on-

board a multicopter platform in simulation and on a physical aircraft. The next chapter

of this work is solely focused on the reliability of performing localization with monoc-

ular ORB-SLAM2 in a feature-sparse indoor area wherein localization error is assessed

in relation to several parameters and state elements. The following chapter then of-

fers an application example of how Visual SLAM can enable advanced flight modes via

the implementation of a “Vision-assisted Terrain Following” mode of operation with

accompanying analysis. The thesis is concluded with final thoughts and future work

suggestions which can springboard from this work into a variety of projects.

5



Chapter 2

Visual SLAM aboard UAS: Localization

and Mapping Analyses

2.1 Problem Statement

ORB-SLAM is attractive for UAS localization for several key reasons: (i) flex-

ibility of camera type, (ii) computational efficiency, (iii) robustness to rotation, and (iv)

ability to recover from localization loss. However, as sensors for aircraft require failure

assurance of approx 10e-9 and the reliability of ORB-SLAM, nor most any other Visual

SLAM approach, is of this caliber, additional investigation into quantifying expected

success is pertinent to gauging appropriate peripheral sensing compensation and redun-

dancy. The datasets used to validate ORB-SLAM exclude any multirotor-aggregated

image sequences which are inherently different from handheld, car, and robot sequences

within TUM and KITTI [50]. Implementation as a localization method for multirotors

6



merits extending validation via UAS implementation. We seek to investigate how well-

suited ORB-SLAM is in its current form for UAS-borne sensing. In our work, we analyze

the recorded egomotion of various flights with adjustments to ORB-SLAM and autopi-

lot parameters. By mainly focusing on the long-term flight localization accuracy within

a constrained space and analyzing the scenarios where poor ORB-SLAM performance

manifests - the conditions under which BA converges to unreasonable reprojection error

minimums without altogether failure - we emulate a likely environment for ORB-SLAM

to have its limits tested in application. The corresponding recovery periods, if recovery

occurs, is taken into account as well.

2.2 Background

2.2.1 ORB-SLAM

2.2.1.1 Overview of the algorithm

One very successful attempt at solving the Visual SLAM problem is an algo-

rithm known as ORB-SLAM [50], based on local and global bundle adjustment of feature

points. This approach uses ORB, or “Orientation Robust BRIEF”, feature points, and

with successful initialization will begin to draw out the three-dimensionality of the en-

vironment. This algorithm incorporates an aspect of “self-culling”, meaning that as the

map grows and there are more keyframes, or saliently-identified vantage points which

comprise the nodes of a graph, the system begins to remove the less effective map points

from the point cloud to keep the amount of memory use within reason. For the research

7



Figure 2.1: ORB-SLAM2 algorithm’s high-level block diagram for Stereo and RGB-D

operation from [51]

efforts of this thesis, we use the second variant “ORB-SLAM2” which introduced stereo

and RGB-D operation in addition to the pre-existing monocular mode [51]. The pipeline

for computation of this variant is shown in Figure 2.1.

ORB-SLAM works first by detecting the ORB features in the image frame.

Camera calibration, for example, using Kalibr, is done before running the algorithm

in order to establish both the intrinsic and extrinsic transforms for the image to the

mounted camera coordinate system and to determine distortion parameters to rectify

the image. In the case of monocular slam, initialization is successful upon moderate

motion of the system wherein a satisfactory number of points can be detected and the

parallax gauged to begin the mapping process. For stereo, the detected map points are

matched between the left and right camera of the system via their relative pose to each

other (also easily detected when conducting automated calibration in Kalibr). This gives

8



ORB-SLAM information on the three-dimensionality of the feature points with respect

to the observer which, if it is within a distance reasonable for a given baseline length

(i.e., the distance between the stereo cameras), helps inform the depth information. A

process minimizing the feature point reprojection error, or the agreement between the

existing map points and those projected onto the scene from the current vantage point,

is undergone which refines the existing map points with the new observations through

a process called “bundle adjustment”.

Note that Chapter 2 of this thesis applies monocular ORB-SLAM2, and Chap-

ter 3 utilizes stereo ORB-SLAM2.

The map, composed of the 3D-projected feature points generated within ORB-

SLAM, is gradually culled and refined as the algorithm runs. When looped trajectories

are detected, a process of loop closure optimizes the existing map and trajectory to

resolve any discrepancies between the ends of the loop. Keyframes (key vantage points

which are saved with the progression of the algorithm and linked together via a graph

of transforms) are referenced as the system gets closer to them. This scheme aids in

the computational efficiency of the algorithm as opposed to re-projecting from scratch

every time. In other words, having vantage points as reference makes the point cloud

projection process more predictable and easier to arrive at a solution in real-time.

Visual SLAM was selected as an approach to sensing the ownship pose and

the map of the environment because of the high fidelity of the algorithm selected and

the ease of backing out map sections for use in influencing the height of the aircraft.

9



2.2.1.2 ORB features

Because this work involves the loss and acquisition of features as they are

related to ORB-SLAM2 positioning error, it is necessary to give a short overview of

how ORB itself works. ORB may be understood in its two primary functions: feature

detection and matching.

2.2.1.3 Feature Detection

ORB utilizes an adaptation on FAST (Features from Accelerated and Seg-

mented Tests) [58]. Regularly, FAST identifies corners reliably and quickly using a

combination of image subsection pixel intensity thresholding and machine learning. As

identified in the literature, the feature detection repeatability falloff from higher noise

content in an image is more drastic with FAST than some other feature detection algo-

rithms [41][63] though having better overall performance in general [57]. This is relevant

to the problem at hand as motion blur may affect algorithmic performance in a similar

way.

2.2.1.4 Feature Matching

ORB’s adaptation of BRIEF improves upon rotation sensitivity by adding a

”steering” component to the descriptor and adding a learning stage to minimize cor-

related tests. The tests here are binary pixel intensity tests using a smoothed image
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patch p for the following equation.

τ(p; x, y) :=


1 : p(x) < p(y)

0 : p(x) ≥ p(y)′

The descriptor is then a vector of the form:

fn(p) :=
∑

1≤i≤n
2i−1τ(p; xi, yi)

2.3 Analytical Aims

This work aims to characterize ORB-SLAM performance in a sparsely-featured

environment. As such, the Root Mean Squared (RMS) error for the position estimate

generated by ORB-SLAM is calculated based on an external motion tracking ground

truth system (details outlined in Section 2.4.4. There is also an emphasis on the dis-

crepancies between different mapping instances, and comparisons are drawn between

different performance levels when calling upon these keyframes and point clouds for

reference. There are experiments included which test both a manually flown system in

addition to autonomous flight trajectories to provide variety in dynamics imposed on

the system. Finally, there is an effort to look for certain vantage points within a map

to see if viewing from certain positions tend to have higher error propensities.
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2.4 Methods

2.4.1 Pre-experiment work

2.4.1.1 Pre-mapping process

The experiments in this chapter were conducted in a “localization-only” ca-

pacity, meaning that the mapping happens prior to localization testing. Pre-mapping

occurs by manually moving the UAS throughout the space to be flown facing nomi-

nally in the forward direction. The entire field of view is depicted in Figure 2.2. Being

an unaugmented version of monocular ORB-SLAM2 with no additional sensing incor-

porated, initialization requires a satisfactory number of ORB feature matches in the

space to be tracked throughout movement for a starting set of map points (i.e. the

first keyframe references). Once accomplished, ORB-SLAM2 continues to aggregate

new map points and keyframes while culling the superfluous map points and keyframes.

The map is saved when a desired quality is achieved. This map will then have a some-

what arbitrary orientation and scale which we must reconcile with our ground truth.

The coordinate system in ORB-SLAM2 is measured in relation to the motion capture

coordinate system. The motion capture has a manually set origin and orientation within

the room which we align ORB-SLAM2 to by applying a scaling/rotating and translating

operation to prior to experiments. With the two coordinate systems aligned and scaled,

we may conduct the flights.
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2.4.2 Experimental overview

2.4.2.1 Manual flights

The primary focus in experimentation is localization error and where it appears

most prominently with changes to ORB properties. Three point maps of changing size

(measured in map points) were created before each set of measured runs. For each

of these three, four values of ORB feature counts are tested by tracking localization

values from ORB SLAM2 and our ground truth (NaturalPoint OptiTrack). The flights

conducted are manually flown, semirandom patterns tending towards forward-facing

circular traversal of the space between 0.5m and 2.0m in height lasting approximately

one minute. In addition to the UAS pose, map point matches (i.e. features successfully

reprojected) are recorded throughout each flight.

2.4.2.2 Autonomous flights

Autonomous flights conducted in this work entail issuing a stream of setpoints

to the aircraft while in PX4’s “Offboard” mode. The flight patterns are loaded as CSV

files to a ROS node which parses the flights and commands the aircraft to traverse the

points using time elapsed and the waypoint hit status as the means of transitioning to

the next point. Three patterns of flight were executed, generally described as: (1) side-

to-side, (2) forward-and-back, and (3) square. The resulting flight patterns themselves

can be seen in Figure 2.11.
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Figure 2.2: Forward-facing FoV imaged when running ORB-SLAM2.

2.4.3 Environment and platform

The environment for experimentation is a contained space approximately 10m

x 10m x 8m. The observable end of the room (the “front” from the perspective of

the aircraft constrained to this heading) is populated with assorted boxes and other

feature-bearing objects (e.g. a low railing, a fire-extinguisher case, etc.). These elements

comprise a semi-structured environment for Visual SLAM to be conducted in reference

to.

The environment flown in is a relatively feature-sparse indoor flying arena

space. All experiments are conducted such that the multicopter system faces directly

forward as it flies. A panoramic picture of the scenery which the drone observes is

shown in Figure 2.2. Stacks of cardboard boxes are included in the space to give a bit

more variation in feature presence than would otherwise be the case with the built in

elements of the wall and floor of the room.

Our aerial system is depicted in Figure 2.3. The aircraft used in experimenta-

tion was a hexacopter controlled via mRo Pixhawk, an open-source autopilot hardware
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Figure 2.3: UAS used for ORB SLAM2 experiments. The payload includes an Intel

NUC, mRo Pixhawk, Monocular Arducam, and various peripheral components.

system [46], running PX4 [45]. On-board vision processing is achieved with the use of

an Intel NUC7CJYH companion computer running Ubuntu 16.04. The companion com-

puter communicates with the autopilot module over a CP2102 USB-to-UART bridge.

An Arducam AR0134 1.2MP monochromatic camera is mounted on the front of the

aircraft by a 3D printed vibration- damping fixture and transfers image data via USB

to the companion computer, which is seen in Figure 2.4.
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Figure 2.4: Drone front camera mounting scheme.
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2.4.3.1 ROS integration

The ROS interface is used to simplify component integration and because of

its interoperability with MAVLink (MAVROS), OptiTrack (rpnclient), and peripheral

sensors.

2.4.4 Ground truth acquisition

Ground truth was captured with a motion capture system. OptiTrack Prime

17W 1.7MP cameras surrounding the flight space work with Motive software to track

infrared markers mounted on the aircraft. The markers comprise the rigid-body repre-

sentation within Motive. The position of the centroid (with respect to the rigid body’s

convex hull) and attitude relative to the initialized orientation comprise the ground

truth pose.

Preconstructed maps are created using manually piloted, forward-oriented

flights were used for ORB feature number experiment flights. In this way, a static map

structure was used for multiple flights and allowed for performance assessment amongst

them. Due to the initialization phase of ORB-SLAM deciding the origin position and

orientation based on first successful reprojection, agreement between the coordinate

systems for it and OptiTrack must be reconciled. Aligning the coordinate systems for

the experimental and ground truth data is achieved in two ways.

For experiments where exact accuracy is less pertinent and the qualitative re-

lation between these data is the focus, a retroactive linear best fit is performed on the

experimental data. This process consists of discrete rotation, scaling, and translation
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optimization between the vehicle location point distributions for ORB-SLAM and Op-

tiTrack. Doing so preserves the high frequency noise and large error present in the

experimental data while approximating the alignment for better assessment. These

stages are based on [3].

The second method for grid alignment approximation of the two coordinate

systems is performed after map creation and prior to experiments. Ten to 15 manually

measured positions are recorded along with their respective ORB-SLAM output poses.

As in the previous method, transforms between each system basis is done by capturing

the scaling, rotation, translation, or combination matrices therein; however, in this

instance, the matrices for the transform are computed via pseudo-inverse from the

recorded measurements. Doing so minimizes residual discrepancy and approximates the

error more exactly allowing for precise quantitative relationships to be formed between

localization error and contributing factors from aircraft movement and ORB-SLAM

performance.

2.4.5 Feature number variation

Being that evaluation of the ORB-SLAM algorithm’s performance when run

on a UAS is at the fore of this work, the key parameters for the algorithm must be

considered. A primary parameter known as the “Feature Number” dictates what the

maximum amount of features per frame may be detected when running the algorithm.

This parameter affects the performance in that higher feature numbers allow for a more

rich understanding of the environment, yet it can be of lower computational efficiency
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and lead to insignificant or weakly-associated features to be entered into consideration

for the 3D point cloud.

The parameter is altered using a YAML file which is loaded upon the algo-

rithm’s initialization. This parameter was never changed in the midst of a flight, only

between flights conducted.

2.5 Results

2.5.1 ORB-SLAM outputs

The ORB-SLAM2 monocular variant was run in localization-only mode aboard

our aircraft. An example of the view of the feature point detection and correspondence

matching is seen in Figure 2.5. Green dots within the image represent the feature points

which are being tracked between images, and the dots which have boxes around them

correspond to the features which have been successfully mapped onto the reference point

cloud, or “map”. An example of the map is depicted in Figure 2.6. Points which are

red correspond to the boxed feature points mentioned in 2.5.

2.5.2 Manual flight ORB-SLAM performances

The trajectories believed to have been traversed by ORB-SLAM2 (blue) and

the comparison with the ground truth (orange) are seen in Figures 2.7, 2.8, and 2.9. A

breakdown of the performance statistics is offered in Table 2.1, where the flights which

were considered to be complete localization failures in a post-experiment evaluation are
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Figure 2.5: Image view rendered with salient features identified and matched to point

map via the ORB-SLAM2 output.
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Figure 2.6: Visualization of Map 3 point cloud.

highlighted red. An accompanying bar plot presents these results graphically in Figure

2.10.

Flights with sparse high tracking failures that the system recovered from rea-

sonably have noteworthy maximum errors and slightly higher than average standard

deviations, but otherwise have unremarkable tracking metrics. Nominal errors for mis-

alignment between OptiTrack (ground truth) rigid body centroid and camera-centric

SLAM must be factored into the analysis as well; the average RMS error across all

flights not considered instances of tracking failure is 0.1068 m, approximately 1/5th of

the diameter of the aircraft.
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Figure 2.7: Map 1 Flights; Number of ORB features extracted per image (N) changes.

(a) N = 1000, (b) N = 1200, (c) N = 1500, (d) N = 2000, (e) N = 2500, (f) N = 3000.

Blue is ORB SLAM2 reported position, Orange is Ground Truth. Axis units are in

meters.
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Figure 2.8: Map 3 Flights; Number of ORB features extracted per image (N) changes.

(a) N = 1000, (b) N = 1200, (c) N = 1500, (d) N = 2000, (e) N = 2500, (f) N = 3000.

Blue is ORB SLAM2 reported position, Orange is Ground Truth. Axis units are in

meters.
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Figure 2.9: Map 3 Flights; Number of ORB features extracted per image (N) changes.

(a) N = 1000, (b) N = 1200, (c) N = 1500, (d) N = 2000, (e) N = 2500, (f) N = 3000.

Blue is ORB SLAM2 reported position, Orange is Ground Truth. Axis units are in

meters.
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Figure 2.10: Mean RMS Errors for ORB-SLAM position tracking grouped by ORB

Feature Number.
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2.5.3 Autonomous flight testing

Figure 2.11 gives a comprehensive view of the localization effort from ORB-

SLAM2 and the ground truth data for comparison for all of the autonomous flights.

This includes all front-to-back, side-to-side, and square flights. An example of the

square flight statistics for RMS error can be found in Figure 2.12. The same analytical

technique was applied to all autonomous flights and aggregated into the evaluation

schemes of Figures 2.13 and 2.14.

Figure 2.13 is a means by which to evaluate how the ORB feature count in

any given frame cross-referenced with the velocity of the system may correspond to

positioning error. Note that at rest or at nominal lateral traversal velocity, we see

less positioning error at low feature point counts than in the middle. This manifests

due to the fact that the most dynamic moments of the flight from the viewpoint of

image blurring and rotational disturbances occur in the transitions to and from each

waypoint – when steadily resting at a waypoint or with a nominally consistent velocity,

the system suffers less error. This is further explored in Figure 2.14, where we consider

the combination of instantaneous lateral acceleration and velocity as they are associated

with positioning errors. Again, lower acceleration values, independent of velocity, tend

to have lower positioning errors than moments of high acceleration values.

2.5.4 Area characterization

A consideration made in this work was the suitability of the flight space itself.

In particular, it was of interest whether there were certain locations that, when flown to,
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Figure 2.11: All autonomous flights conducted for these experiments.
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Figure 2.12: Square flight with error evaluation. Note that there is weak, if not no,

apparent linear correspondence of the number of feature points detected to the error

calculated.
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Figure 2.13: Match count versus RMS velocity versus RMS position error. Data is an

aggregate of all autonomous flights.
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Figure 2.14: RMS velocity versus RMS acceleration versus RMS position error. Data

is an aggregate of all autonomous flights.
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Figure 2.15: Area characterization effort to assess whether or not there is a correspon-

dence between certain regions of the flight space and positioning error susceptibility.

tended to be more or less prone to positioning error. The rationale here is that, should

there be a certain keyframe or region of perspective where the bundle adjustment and

reprojection effort are less effective, calculating the mean and standard deviation of the

errors reported in laterally-spread cells should be evident when plotted. Said plots are

depicted in Figures 2.15 and 2.16.

All axes and values on these plots are in units of meters.
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Figure 2.16: Standard deviations from the area characterization study, associating lat-

eral location in the flight space with positioning errors.
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Figure 2.17: Progression of the number of features detected for three separate flights.

Note that the feature numbers are consistently less than one thousand per frame.

2.6 Discussion

Overall, the results of varying the maximum number of feature points were

not conclusive with respect to how they influenced the effectiveness of the algorithm.

This is seen in that high positioning errors seem relatively sporadic regardless of the

maximum number of feature points imposed in the algorithm’s pre-configuration. Were

this experiment to be conducted again, there would be a lower maximum number of

feature points imposed. As seen in Figure 2.17, the number of feature points actively

detected in three separate run instances does not reach numbers which would contest

this parameter (i.e., the maximum number of features detected at any point in time is

much less than the maximum feature parameter, so there is no clipping). As such, to

further test the theory that a lower maximum set for the feature point count will effect

the frequency of significant positioning errors, maximum feature numbers on the order

of low to high hundreds of features would be varied in lieu of low thousands.

The primary takeaway from this work was regarding the higher dynamic mo-

ments of the aircraft moving corresponding to reprojection issues and higher positioning
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error. As seen in the previous figures relating the velocity and acceleration to the feature

loss, it is apparent that the moments of change between stationary and cruising and

visa versa are those in which higher positioning errors occur. This is consistent with

the notion that ORB-SLAM, or any Visual SLAM, especially those without an inertial

component, will struggle in moments which are primarily rotational and which impart

feature blur in the images observed by the drone.
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Map ORB # Err Mean Std Dev Err Max Err Med

1

1000 0.1105 0.0520 0.2393 0.1112

1200 0.0774 0.0431 0.2282 0.0704

1500 2.5525 4.0560 17.4018 0.7784

2000 0.0775 0.0455 0.2223 0.0721

2500 0.0853 0.0504 0.5854 0.0790

3000 3.0684 1.1718 4.7867 3.6008

2

1000 0.1365 0.5971 12.0714 0.1060

1200 0.0936 0.0302 0.2226 0.0947

1500 0.1031 0.0487 0.3000 0.1057

2000 0.1402 0.2410 4.0011 0.1293

2500 0.0986 0.0419 0.2837 0.0952

3000 0.0741 0.0348 0.2879 0.0684

3

1000 0.1254 0.0505 0.2579 0.1263

1200 0.1093 0.0466 0.2861 0.1104

1500 0.1215 0.0455 0.3244 0.1244

2000 0.1227 0.0551 0.6263 0.1201

2500 0.1319 0.0564 0.2927 0.1224

3000 0.1012 0.0460 0.2689 0.0940

Table 2.1: Localization metrics for experiments. Each column represents the map ID,

ORB feature number, XY-RMS average error, XY-RMS error standard deviation, XY-

RMS error maximum, and XY-RMS error median. Rows colored red indicate flights

classified as failures w.r.t. tracking.
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Chapter 3

Design and Implementation of a

Vision-Assisted Terrain Following Flight

Mode

3.1 Motivation

3.1.1 UAS use in the geosciences

Two applications within the geosciences that benefit from UAS are associated

with mapping and monitoring efforts [24] [18] [33] [34]. The specific survey methods

towards these goals, including hyperspectral [32] [31] [26], thermal [16] [70], magnetic

[31] [73], gas [36] [76] [40], and other analyses, provide insights as studies pertaining to

resource (water, energy, mineral) and hazard investigations (volcano, earthquake).

The United States Geological Survey, for example, conduct missions of the
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aforementioned types. Most of the missions conducted occur anywhere from just above

ground level to approximately 400 ft. above ground level. Many of these missions occur

on the lower side in altitude which permits higher resolution imaging of features of

interest. This low flight regime enables gas sampling near the surface before it diffuses

too much into the atmosphere, or maintains the magnetometer close to shallow crustal

magnetic sources, enabling detailed mapping of their associated magnetic fields. Rovers,

or Unoccupied Ground Vehicles (UGV), may be deployed in some cases towards these

or similar initiatives, but sometimes the terrain is too treacherous/varying for UGV or

the interaction between the rover and the ground is undesirable in performing the data

collection [4]. For missions involving very low terrain-clearance operations, “terrain

following” functionality is necessary.

Terrain following, a mode of UAS operation wherein the aircraft keeps a uni-

form distance above ground level, changing with the terrain, is a very useful means

of conducting surveys, especially when staying close to the ground is important. The

ability to contend with changing, undulating ground is useful for the mission types

mentioned above.

3.1.2 Terrain Following Methods

There are a handful of approaches which allow a UAS to track the terrain as

it flies.
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3.1.2.1 Using DEM

One of these approaches involves using a Depth Elevation Map, or DEM,

otherwise known as a Digital Surface Model, or DSM, as height data to affect the

altitude of the aircraft [60] [47]. This involves downloading or otherwise collecting a

DEM for an area which is to be surveyed, leveraging software which can mold the

trajectory of the UAS to the terrain via the DEM data such as the program UGCS

(which is frequently employed by geoscientific researchers flying UAS).

A problem with this approach is that, depending on when the DEM was col-

lected, the surface of the area being surveyed may have changed. Because surveys are

often conducted in very dynamic environments with rough weather patterns, what was

once a very accurate and reliable DEM may prove to not be useful at the site of interest

when there are unexpected obstacles, debris, etc. to mitigate collisions with. These

DEMs also do not account for vegetation, as well as topographic features whose spatial

extents are below the resolution of the DEM.

3.1.2.2 Using Altimeter

Another way to achieve terrain following is to use a laser- or radar-altimeter

system [37] [52] [62]. This device measures the distance between its mounting point on

the UAS and the ground by sending pulses of light and measuring the amount of time

taken for the light to return. These sensors are generally placed on the underside of

the UAS, oftentimes rigidly affixed, but sometimes mounted with the use of a gimbal.

Especially when rigidly affixed in a nadir configuration, the sensed point lags the vehicle
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due to the inherent pitching of a traditional rotorcraft system. This means that if the

system is flying quickly and encounters steep terrain, there is a possibility that the

altitude measured will be measured too late and the aircraft will then collide with the

steep surface.

3.1.3 Using LiDAR

Lastly mentioned here as a means towards terrain following is via LiDAR [10]

[25]. This sensing method is similar to laser altimeter but differs in that it sends out

many light beams, aggregating a field of points to use for consideration in traversing

the terrain. LiDAR tends to be a fairly expensive technology, and the high-performance

modules can be bulky depending on the size of the UAS you are deploying. This takes

up payload weight and power which could otherwise be occupied by the scientific sensing

equipment desired.

3.1.4 Vision-based approaches to Terrain Following

This thesis proposes that a vision component be included to aid in terrain

following, in a so-called “Vision-assisted Terrain Following” or VaTF modality. In this

method, a camera system is included onboard the UAS to “see” what lies ahead terrain-

wise. This approach gives the benefit that it can actively compute terrain height for

wider areas, as if generating a small-scale DEM on-the-fly which then can be used in lieu

of or alongside a laser altimeter to perform terrain following. Using the computer vision

approach known as “Visual SLAM”, we are able to draw out feature points representing
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the convex hull of the environment similar to LiDAR and determine how terrain features

map three-dimensionally.

Camera systems are desirable because they are often very inexpensive for the

resolution/quality needed for effective Visual SLAM computation, they are also gener-

ally very lightweight and small which saves payload space for other instruments. One

can achieve high-fidelity Visual SLAM with the equivalent of “webcams”, or very cheap

and relatively low resolution (on the order of hundreds of pixels) imaging systems.

Garratt and Chahl demonstrated the viability of a vision-based approach to

terrain following in which they employed an imaging system (both in a downward- and

forward-facing configuration) and demonstrated its effectiveness in comparison to using

a laser range finder [22]. Their approach leverages optical flow to accomplish this via

their “Iterative image interpolation algorithm”, or “I3A”, which itself is based on the

“Image Interpolation Algorithm”, or “I2A”. They deploy their helicopter-based system

in an outdoor environment and are able to fly at very low altitudes on the order of 1.5

- 2 m at relatively high forward velocity speeds from 5 to 8 m/s.

Campos et al. designed a method of visually-gauged height detection for use

with aircraft employing monocular vision systems [12]. Their work combines the use of

optical flow with feature recognition and projection in order to determine the relative

height of the terrain and influence the flight of the multicopter system. They present

work completed using a physical platform as well as in a simulated environment. Their

system factors in consideration of highly-dynamic maneuvers as it affects the perfor-

mance of the algorithm.
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Srinivasan et al. created an optical-flow based method to terrain following

wherein a reflective surface is imaged off of in order to get a wider view of the ground

below [64]. The design of the distortion of the reflective imaging surface is shaped in

order to reflect equal distances on the ground to equal distances within the image in

the direction of the forward velocity. Their system is tested and characterized optically

indoors and then further tested in an outdoor environment. An image remapping process

is conducted prior to performing the optical flow.

3.2 Background

3.2.1 Multicopter dynamics

Given that this research is centered around multicopter control, it is necessary

to give a brief overview of their kinematics and dynamics, and to describe how control

is achieved in the inner loops of this work.

Multicopter platforms are distinct from fixed-wing platforms in that they gen-

erate lift directly from the propellers instead of from a wing. The “rotors”, composed of

the motor and propeller, vary their speeds to create thrust which, when combined with

a flight controller, direct the aircraft’s rolling, pitching, and yawing moments in addition

to the overall thrust. Multicopters are inherently underactuated systems in their most

generic configurations (all propellers spinning in approximately the same plane), mean-

ing that the control of the system within its six degrees of freedom harbors coupling

between different fundamental motions. The figure above depicts how the hierarchy of
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Figure 3.1: Figure 6.1 from [54] depicting the abstraction layers for the kinematics and

dynamics for multicopter systems.
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control is abstracted to get from individual motor motions to entire system motions

(dynamics and kinematics) from [54].

For this work, we look at the pertinent physics that do not include individual

rotor outputs to avoid loss-of-generality, i.e., assuming the autopilot used reasonably

maintains control agnostic to rotor count – developing Visual SLAM enabled multirotor

systems should not be restricted to quadcopters alone, but instead any vehicle with

the same underactuated makeup. As such, we start from the vector representations

of Euler translational and rotational physics. Given the variable representations for

inertial frame position and orientation with respective velocities:

x =


x

y

z

 , ẋ =


ẋ

ẏ

ż



θ =


θ

ψ

ϕ

 , ω =


1 0 −sinθ

0 cosϕ cosθsinϕ

0 −sinϕ cosθsinϕ


Assuming that the multicopter in question is a rigid body, Equation 3.1 rep-

resents the translational mechanics.

mẍ =


0

0

−mg

+RBITB + FD (3.1)
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where m is the mass of the aircraft, x is the position of the aircraft in the in-

ertial frame, g is gravity, RBI is the rotation matrix from the body frame to the inertial

frame, TB is the thrust vector in the body frame, and FD is drag.

Focusing on rotational mechanics, we start with the assumption that the quad-

copter is somewhat inertially consistent with weight distributed evenly along each axis.

In practice, this will vary from airframe to airframe, but for the purposes of this research

is acceptable. As such, the moments of the inertia for the aircraft is described by I:

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.2)

Iω̇ + ω × (Iω) = τ (3.3)

Combined with Equation 3.2, Equation 3.3 becomes:

ω̇ =


τϕI

−1
xx

τθI
−1
yy

τψI
−1
zz

−


Iyy−Izz
Ixx

ωyωz

Izz−Ixx
Iyy

ωxωz

Ixx−Iyy
Izz

ωxωy

 (3.4)

Collecting Equations 3.1 and 3.4 into their state-space space representation,

we get Equation 3.5

44



ẋ1 = x2

ẋ2 =


0

0

−g

+
1

m
RBITB +

1

m
FD

ẋ3 =


1 0 −sinθ

0 cosϕ cosθsinϕ

0 −sinϕ cosθsinϕ



−1

x4

ẋ4 =


τϕ/Ixx

τθ/Iyy

τψ/Izz

−


Iyy−Izz
Ixx

ωyωz

Izz−Ixx
Iyy

ωxωz

Ixx−Iyy
Izz

ωxωy



(3.5)

where x1 is position, x2 is velocity, x3 is angle, and x4 is angular velocity.

Changes in the thrust vector TB rotated into the inertial frame via RBI are

coupled with changes to angular velocity. We then expect limitations on velocity in

autopilot parameters to affect the induced vehicle rotations, and this is of interest when

analyzing motion effects on ORB performance.
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3.3 Methods

3.4 System architecture

Simulation of the system is achieved via the use of a collection of ROS nodes

running in tandem as shown in the figure below. Being that this system was created

within the ROS1 framework, a “roscore” node runs centrally which serves as the hub

for the communication of the ROS nodes. The node demarcated below as “MAVROS +

Gazebo launch” is a node provided by the PX4 repository which launches a MAVROS

instance for communication with the simulated vehicle and a Gazebo simulation includ-

ing the terrain/setting population and which spawns the vehicle. The “Offboard terrain

following” node has already been described above. The “Pt cloud local height esti-

mator” node is the node responsible for listening for the ORB-SLAM2-published point

cloud and the ORB-SLAM2 estimation of the aircraft pose. This node creates the k-d

tree from the map points and executes a radius search in the proximity of the aircraft

as previously described. This node then publishes the local height estimate as well as

the subset of map points which were identified as being within the radius of the air-

craft. The “ROSBag recording” node simply listens for the topics of interest, including

the Gazebo model states, the point cloud data, and the ORB-SLAM pose estimation.

The “RViz” node generates the GUI viewing aid for the simulation data and allows for

easier monitoring/debugging of the system. Finally, the “Stereo ORB-SLAM2” node is

the node provided by the ORB-SLAM2 repository which listens for the stereo camera

images generated within the simulation.
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Figure 3.2: Diagram of the nodes/subsystems running in order to accomplish the vision-

assisted terrain following. The architecture of the simulation is primarily based on

interconnected ROS nodes.

3.4.1 Origin Placement

Conducting the terrain-following missions does not necessarily require the abil-

ity to freely define the origin of the local map. If using the local origin set by PX4,

this point is defined by the location at which takeoff occurs. Within ORB-SLAM, it is

the point wherever initialization first succeeds. In practice, being beholden to either of

these two methods is not desirable because of the limitations they place on pre-planning

and coordinate system customizability. For this reason, I implemented an optional pro-

cess wherein an ArUco marker is recognized by the aircraft’s imaging system and the

appropriate transform from the observer to the desired origin-point is factored into the

transform tree.

The OpenCV library used frequently throughout this work offers a method

for detecting ArUco markers [9]. This method of augmentation to a visually-observed

space allows for the relative pose of the observer to be calculated. The detection of
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these markers requires that the intrinsics of the imaging system are known a priori, and

the equation representing how the image space (the space defined by the upper lefthand

corner of the imaging sensor) to camera space (the projection of the image space onto

the plane at the focal point of the camera with pixels mapping onto their equivalent

points in physical space at the intersection of the focal point plane) is shown below. In

addition, the figure below shows an interpretation of this transform wherein a nadir-

facing camera “sees” the ArUco marker first with respect to the image plane, and then

the projection onto the camera plane via the intrinsics. The following figure shows a

representation of the aircraft in gazebo with a depiction of the virtual “frustom” onto

which the projection occurs.

The sequence of transforms to measure the marker origin relative to the local

home of the drone is marker to image plane to camera plane to drone frame to local

home. Note that this transform tree only needs to be calculated once as both the local

home and the ArUco origin points are static with respect to the environment. As such,

a point relative to the ArUco marker may then have its frame of reference changed by

the transform shown here, represented with a single matrix Mh
a , where ‘h’ refers to the

local home’s frame and ‘a’ refers to the ArUco frame:

pa =Mh
a ph

, where

Mh
a = T iaT

c
i T

b
c T

h
b
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Figure 3.3: The virtual frustom depicting how the image plane values are projected onto

the camera frame. Flying the IRIS UAS model within Gazebo. It is running the PX4

flight stack. The simulated frustom with an image representing what the UAS sees.

49



Eq. Process for transforming a point in the local home space to the ArUco-oriented

space.

Here, pa is the 3D point measured with respect to the ArUco marker’s coor-

dinate system, ph is the 3D point measured with respect to PX4’s local home position,

Mh
a is the matrix transform from the local home to the ArUco frame, T ia is the transform

from the ArUco frame to the image frame, T ci is the transform from the image frame to

the camera frame, T bc is the transform from the camera frame to the body frame, and

T hb is the transform from the body frame to the local home frame.

3.4.2 Feature Point Downselection

This point downselection process is implemented via a ROS node, identified

here as “Point cloud local height estimator”, which listens to the map point data pub-

lished by ORB-SLAM and from which the downselection of points as well as the relative

height is published. The looping process listens for “PointCloud” messages, a represen-

tation encoded to work with the Open Point Cloud, or “OPC”, library [59]. This

node constructs a k-d tree from this received map point data using the aforementioned

OpenCV approach. The pose of the ownship as estimated by ORB-SLAM is used to

query which map points fall within a given distance, e.g. a 3 m radius, of the aircraft.

This is accomplished by using the “radiusSearch” method of the k-d tree class.
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Figure 3.4: Illustration of the frame transforms undergone when calculating our home-

to-ArUco frame manipulation. “C” represents the camera frame, “I” represents the

image frame, “B” represents the body frame.
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Figure 3.5: Illustration of the ORB-SLAM2-generated map points being downselected

by radiusSearch using the estimated pose of the ownship. The red points shown are

those which the search has rendered as being within the given radius.
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3.4.3 Height Estimation

There is then the task of determining the relative height of the aircraft. This is

done by calculating the average height of the map points detected within the radius of

the aircraft, i.e., their encoded ‘z’ values, via the equation below. This aggregate height

estimation of the terrain relative to the origin point set within ORB-SLAM is then

subtracted from the reported height of the observer, again relative to the coordinate

system of ORB-SLAM, rendering the height-above-terrain metric that we are interested

in for terrain following purposes.

ĥr = ĥo −
j∑
i=0

pz,i

Here, hr is the relative height estimate of the UAS to the terrain, ho is the estimated

height of the UAS rendered by ORB-SLAM relative to its origin, and pz, i is the i-th

point within the downselection’s z component.

The output of this search is also then encoded with the proper formatting in

order to publish a new PointCloud message which only includes those points whose in-

dices are identified by the radiusSearch method. This is done primarily for the purposes

of visualization so that we may inspect which points are being considered by the terrain

following algorithm. Pictures of this effect are presented in the “Results” section of this

thesis.
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Figure 3.6: The outer loop PID controller for the vision-assisted terrain following algo-

rithm.

3.4.4 Outer-loop PID Control

The relative height information generated in the manner outlined in the pre-

vious section is fed back to the system in the form of an outer-loop PID controller. The

basic structure of this control loop is depicted in the block diagram below.

The setpoint for our control loop is the desired height which we want to fol-

low the terrain with. The estimated height, provided by the point cloud local height

estimator unless switched to the laser altimeter block, is subtracted from the setpoint

to generate the error term. This error term is differentiated and integrated in order

to generate the three branches necessary for PID. Each of these branches has a corre-
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sponding gain value K which allows for tuning of the PID controller. Note that there is

a switch which can toggle between the point cloud local height estimate block and the

laser altimeter block – this is a dual purpose switch in that it (a) allows for a fallback

functionality for when the ORB-SLAM2-sensed height calculation fails and (b) it is a

convenient means of having an alternate system of terrain height estimation to calculate

a baseline from.

An instance of a custom ROS node integrated with the MAVROS library func-

tions and structures necessary to drive the aircraft’s motions. This node first initializes

the connection with the core MAVROS node, confirming that the aircraft is connected,

after which it then prompts the system to arm, takeoff, and enter “Offboard” mode.

This mode of operation allows for the custom node to send setpoints to the aircraft.

The system then enters our state machine which will conduct the terrain following.

In most of our experiments using this custom driver node, we instruct the

aircraft to go to a desired region to conduct the terrain following, after which we drop

into a constant forward velocity loop which is repeatedly running our control loop to

keep our estimated separation from the terrain. Both the laser altimeter-based approach

implemented and the VaTF approach use this same scheme. The primary distinction

between the two is in which type of sensed data is used to achieve terrain following.

For VaTF, the system listens for the topic publishing the relative height in-

formation estimated in the manner discussed previously via the point cloud processing

node. The messages on this topic are fed into the PID control loop as an error calcu-

lation (i.e., the desired setpoint for our height has the estimated height based on the
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point cloud calculation subtracted from it). This error is used in the context of the

previously described PID equation. As the system flies and experiences deviations from

the desired setpoint, the system self corrects and keeps a consistent height from the

terrain as it goes.

3.5 Simulation Components

3.5.1 Gazebo

Gazebo is used as the simulation package. This simulator works well in tandem

with ROS, and PX4 has several models which can be used which are provided by the

repository. We used Gazebo 11, which works well with ROS Melodic.

3.5.2 PX4

We use the PX4 firmware as the primary firmware for the system. This is

an autopilot firmware built on the NuttX operating system. It is one of the de facto

firmwares for Pixhawks, along with Ardupilot.

3.5.2.1 Simulated Vehicle

The simulated vehicle in the Gazebo simulations is the Iris model which ships

with the PX4 firmware repository. A stereo camera instance is attached to the front

of the model in an oblique-nadir configuration. A laser altimeter is modeled using the

LiDAR SDF model with only a single beam, and it is attached to the simulated drone
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to point directly nadir.

3.5.3 ROS Integration

ROS, the “Robotic Operating System” is used as a means of interconnecting

several components of the system. A diagram of the layout of ROS nodes for our

system is shown in a section below. This framework is especially convenient because

ORB-SLAM2 has ready-made ROS nodes.

3.5.3.1 MAVROS

MAVROS is the ROS package used for interfacing with PX4. We are able to

send setpoints for our control loop by prompting the system to go into “Offboard” mode

making it able to receive directives from outside the flight controller.

We use a combination of ROS + MAVROS as a way to connect the flight

controller to our ROS system. The mode of operation that we are most interested in

when using this scheme is “Offboard” mode. This mode is activated in any fashion where

a MAVLink message can be sent to the flight controller, including via MAVROS itself

(further discussed in the “Offboard node” section). When active, the flight controller

accepts setpoints from outside of itself. As we use a “companion computer”, we may

then send setpoints from our MAVROS-linked node which are ingested by the flight

controller.
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3.5.3.2 Offboard Operation

The primary node of the system architecture is the node responsible for pro-

viding the control loop to accomplish the vision-assisted terain following. This node is

initialized as a ROS1 node wherein the subscriptions, publications, and service clients

are first set up. The node then attempts a connection with the MAVROS instance (i.e.,

the ROS node which is directly connected to the flight controller, being either simulated

or physical). Upon connection, a stream of empty setpoints are pre-loaded to buffer the

stream for when we begin running in “Offboard” mode. The node then requests that we

enter “Offboard” mode. Upon successful engagement of “Offboard” mode, the system

arms and takes off to a predetermined intermediary start point. After a short delay,

the system traverses normally to the actual start point of the terrain following mission,

at which point the VaTF algorithm runs. A flow chart is included below to depict this

whole process.

3.6 Results

3.6.1 ArUco-based Origin Placement

As mentioned previously in the thesis, the ArUco marker was used to set an

auxiliary origin point optionally when conducting the terrain following missions. Seen

below is the representation of an aruco marker in the simulated environment. Region

(a) is the view from within Gazebo of our simulation in which we see an Iris drone and

its virtual frustom positioned looking at a virtual ArUco marker which is placed on the
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Figure 3.7: Flow chart representing the execution process for the offboard control node.
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Figure 3.8: The UAS registering an ArUco marker within the simulation. This is used for

the option of assigning a freely-selected origin point to the ORB-SLAM map by placing

the marker in the desired spot when in the field. Region (a) depicts the simulator view

of the scenario. Region (b) is the view from the vantage point of the drone with the

ArUco marker identified as evidence by the small set of axes placed on the marker.

Region (c) depicts the outputs of the calculations for the coordinate transforms applied.

ground. Region (b) of the figure shows what the drone is seeing and has a small set of

axes placed on the detected ArUco marker which indicates that the relative pose of the

marker with respect to the aircraft has been successfully computed. Finally, region (c)

shows the output values of the relative pose of the marker and the drone.
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3.6.2 Vision-assisted Terrain Following

The outer-loop PID controller of the system was tuned by iterative refinement.

Seen below are some example trajectories which were flown with the described k values.

[put side-by-side examples of underdamped, critically damped, and over-damped

PID gain values with the trajectories flown]

Multiple runs of the simulation were conducted in which the system repeatedly

visited a part of the map. An aggregation of the heights and the deviations from the

height is presented. This is demonstrating the performance versus using the simulated

laser altimeter device.

3.7 Discussion

Outer-loop controller design One consideration for the performance of this

system is that we do not vary the “forward” velocity for different terrain types and

scenarios. It would benefit the research here to experiment with different speeds and

to see how it affects the flight of the drone for different k values in our control loop.

It very likely would be the case that the system would need to have different tunings

for different velocity requirements. A discussion of the potential improvements to this

controller is offered in the “Future works” section which describes how the control loop

may be replaced by Model Predictive Control, which would very likely mitigate this

discrepancy.
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Figure 3.9: Fig. Downselection of the nearby map points generated by stereo ORB-

SLAM2. Points highlighted in red fall within a 5 m radius of the multicopter system,

represented here by the floating set of axes. The images on the bottom left of the image

represent what the UAS sees with one of the two nadir-oblique facing cameras.
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Figure 3.10: Fig. UAS trajectory while in the vision-assisted terrain following mode.

The orange line depicts the z value of the aircraft, and the blue line is the height of the

terrain. The forward velocity for this case was 0.5 m/s with a tracking height of 3m.
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Figure 3.11: Fig. Another UAS trajectory while in the vision-assisted terrain following

mode. The forward velocity for this case was 2 m/s with a tracking height of 3m.
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Figure 3.12: Fig. Another UAS trajectory while in the vision-assisted terrain following

mode. The forward velocity for this case was 2 m/s with a tracking height of 1m.
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Figure 3.13: Fig. 3D-view of the previous trajectory of the aircraft conducting terrain

following.
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Figure 3.14: Fig. RViz view of the VaTF experiment execution. Region (a) shows the

feature point mapping process of ORB-SLAM on the stereo images aggregated by the

system in flight, for which region (b) shows the raw image. Region (c) shows the map

points representing the convex hull of the terrain which are produced and maintained by

ORB-SLAM, and the points colored red are those which fall within the predetermined

distance of the aircraft, in this case being 3 m.
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Figure 3.15: Fig. The simulated Iris aircraft conducting a terrain following mission in

the Gazebo map “Yosemite”.

Figure 3.16: FIg. Stitched together images of the multirotor system at different moments

in its terrain-following trajectory.
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3.7.1 Sensor mode switching

The capability to switch between the vision-based height estimate method and

the laser altimeter readings was implemented in this work to allow for an operational

fallback mode. However, when running the vision-assisted terrain following method,

it was found that the laser altimeter was being used in lieu of the vision estimate

approximately half of the time. The reason for this is that the speed of the point cloud

local height estimate node was looping at approximately half the rate of the PID control

loop. This suggests that optimization around the point cloud down-selection process

and height estimation portion of the algorithm needs to be optimized to update the

PID at its same frequency or faster.

3.7.2 Vertical clearance

One aspect of the vision-assisted terrain following methodology which could

be improved upon is to keep an absolute distance from the map points detected rather

than simply gauging height. In this configuration, the map points would each impart

a virtual force on the aircraft to try to keep it within the desired distance, similar to a

potential field-based scheme (Hwang Ahuja, 1992).
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Figure 3.17: Fig. Depiction of the mode switching which occurs with the current im-

plementation of the VaTF algorithm. The vision detection is valid 50% of the time,

and the laser altimeter is fallen back upon 50% of the time. The blue dots indicate

moments when the vision height estimate is used in the control loop, and the black dots

are the times where laser altimeter is used.

70



Chapter 4

Conclusion

In this work, we explored the use of Visual SLAM onboard multicopter plat-

forms. This was accomplished by undertaking an analysis of localization performance

for the monocular ORB-SLAM2 algorithm when flown onboard a hexacopter platform

in an indoor environment. Several different flight patterns and modes of control (i.e.,

manual and autonomous) were flown to aggregate a large dataset to conduct the anal-

yses. The outcomes of these analyses revealed the overall reliability of the algorithm,

and it informed next steps on maximum feature number experiments to conduct to

further stress-test its performance. Various analytical methods were employed to coa-

lesce findings from both manual and autonomous flights within the indoor flight space.

In particular, we observed the interrelatedness between feature number detection and

multiple state variables of the aircraft.

This was then followed by the creation of a Vision-assisted Terrain Following

mode of flight leveraging stereo ORB-SLAM2. We pursued this initiative from the
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perspective of its application in the geosciences to push the limits on existing techniques

for terrain following. The algorithm developed here was tested in the Gazebo simulation

environment, and it entailed the efficient downselection of map points generated by

ORB-SLAM2 via a k-d tree search with a local height estimation calculation to factor

in the surrounding terrain. This methodology was tested at different maintained heights

and varying speeds to get a sense of how the system works in these different situations.

Ultimately, wem created a work combining the in-depth analysis of the func-

tionality of ORB-SLAM2 aboard multicopter platforms and creating an applied example

of how the algorithm may be useful to researchers employing UAS.
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Chapter 5

Future works

One of the major developments to be made were this research continued would

be to test the effectiveness of the VaTF algorithm onboard a physical platform. Seen

below is the system which was constructed using a Pixhawk 4 as the flight controller

unit, an Intel NUC as the companion computer, a Holybro GPS module, an Arducam

camera (however, this would be doubled to do stereo ORB-SLAM), a Holybro SiK

radio telemetry module, PX4Flow optical flow module, and two 4S LiPo batteries. The

algorithm would be conducted in an area with undulating terrain to demonstrate how

well the system tracks it.

Several improvements could be made to this system to make it perform better.

The first of these changes which could be made is to use stereo visual inertial slam. The

“inertial” part of this system is the IMU data which is factored into the calculation of

the map point cloud and observer pose within SLAM. Even though the system does

incorporate IMU data within the external kalman filter of the autopilot, the ORB-
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Figure 5.1: Fig. Physical hexacopter platform constructed to evaluate the effectiveness

of the algorithm with. The system was fully developed, however experiments using the

VaTF algorithm were not exercised.
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SLAM mapping would see improvement likely leading to better performance of the

overall system.

Another aspect of the system that could be improved upon is the means of

control. We used an outer loop PID controller for the incorporation of the sensed relative

height into the multicopter outermost layer, known as offboard control. However, the

plan for the system long-term was to use a more sophisticated method of control known

as Model Predictive Control, or MDP. The implementation of this would involve creating

an iteratively updated simulation of what a string of control commands would do to the

system, and the most optimal set of commands within this time horizon is used. Only the

first input command of this sequence is executed, and the whole process is started again.

This method of control makes sense for conducting precision terrain following for a

number of reasons. First, decisions can be factored into the construction of the algorithm

in the definition of the optimization function(s) used. For example, if there were enough

reason to do so, having the system consider energy expenditure and allowing room for

deviation from the intended trajectory could mean smoothly switching between following

terrain vertically and conducting avoidance or circumnavigating regions for which the

cost of energy expenditure isn’t worth the ascent and descent. Another reason that this

approach would be useful is that it could allow for variability in some of the operational

parameters, such as speed. When the system recognizes that it is safe and advantageous

to do so, in theory, one could implement the logic in this controller to vary the velocity.

I would have liked to have included multilateration localization in this work.

This would have involved using UWB nodes to aid in the localization of the system
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so that it would be able to geotag data collected during missions very accurately. In

addition, this multilateration approach could further improve the fidelity of the control

of the system by serving as another sensor input.

Lastly, to finish designing a highly capable aircraft for geoscientific research,

we would have wanted to incorporate so-called “Payload Directed Flight” into the func-

tionality (Ippolito et al., 2009). This mode of operation uses the payload data (for

example, gas samples aggregated or magnetic signatures in studying magma at depth)

to inform where the system should be flown. This introduces a layer of autonomy to

the system which can enhance the efficiency of operations undergone while out in the

field.
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