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1  | INTRODUC TION

Knowledge of animal population size and dynamics is essential 
to assess a species’ status, inform conservation strategies, and 
advance ecological understanding. Capture–recapture meth-
ods (Otis, Burnham, White, & Anderson, 1978; Pollock, Nichols, 
Brownie, & Hines, 1990) have traditionally been widely used to 
estimate these population parameters based on repeated obser-
vations of individually identifiable animals. These models produce 
unbiased estimates of population size and vital rates by correcting 
for imperfect detection. Capture–recapture models can broadly 

be divided into two classes. Models for closed populations use 
multiple sampling events over a short time frame to estimate the 
size of a static population (Otis et al., 1978). Models for open 
populations estimate vital rates such as survival and recruitment 
between sampling periods when the population under study is al-
lowed to change (Cormack, 1964; Jolly, 1965; Pollock et al., 1990; 
Seber, 1965). Developments have been made to these models to 
improve parameter estimates including the development of the 
robust design (Kendall, Nichols, & Hines, 1997; Pollock, 1982), 
which provides a flexible framework for combining open and 
closed models.
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Abstract
With continued global changes, such as climate change, biodiversity loss, and habitat fragmenta-
tion, the need for assessment of long-term population dynamics and population monitoring of 
threatened species is growing. One powerful way to estimate population size and dynamics is 
through capture–recapture methods. Spatial capture (SCR) models for open populations make 
efficient use of capture–recapture data, while being robust to design changes. Relatively few 
studies have implemented open SCR models, and to date, very few have explored potential issues 
in defining these models. We develop a series of simulation studies to examine the effects of the 
state-space definition and between-primary-period movement models on demographic parame-
ter estimation. We demonstrate the implications on a 10-year camera-trap study of tigers in India. 
The results of our simulation study show that movement biases survival estimates in open SCR 
models when little is known about between-primary-period movements of animals. The size of 
the state-space delineation can also bias the estimates of survival in certain cases.We found that 
both the state-space definition and the between-primary-period movement specification af-
fected survival estimates in the analysis of the tiger dataset (posterior mean estimates of survival 
ranged from 0.71 to 0.89). In general, we suggest that open SCR models can provide an efficient 
and flexible framework for long-term monitoring of populations; however, in many cases, realistic 
modeling of between-primary-period movements is crucial for unbiased estimates of survival and 
density.
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Another major advancement in capture–recapture modeling was 
the development of closed spatial capture–recapture models (SCR; 
Efford, 2004; Borchers & Efford, 2008; Royle, Chandler, Sollmann, 
& Gardner, 2014). Since their development about 10 years ago, SCR 
models have become increasingly popular and are widely used in con-
junction with a number of survey methods such as camera- trapping 
(Efford, Dawson, Jhala, & Qureshi, 2015; O’Connell, Nichols, & 
Karanth, 2011; Royle, Karanth, Gopalaswamy, & Kumar, 2009), non-
invasive DNA sampling (Gardner, Royle, & Wegan, 2009; Whittington 
& Sawaya, 2015), acoustic detectors (Efford, Dawson, & Borchers, 
2009), or live trapping (Gerber & Parmenter, 2015). Contrary to tra-
ditional capture–recapture models, which condense detections of 
individuals across multiple sampling devices into a binary “detected 
anywhere on the sampling grid” format, SCR models make use of the 
spatial information of individual detections. In a Bayesian implemen-
tation, this information is used to estimate the location of individual 
activity centers and to describe the probability of detecting an indi-
vidual at a given trap as a decreasing function of the distance of that 
trap to the animal’s activity center. By employing a model of animal 
movement and detection, SCR models account for variation in indi-
vidual exposure to sampling, a source of heterogeneity in detection 
probability traditional models cannot directly account for. A number 
of extensions have been developed for closed SCR models includ-
ing mark–resight models (Sollmann, Gardner, Parsons et al., 2013; 
Sollmann, Gardner, Shindle, et al., 2013; Whittington, Hebblewhite, 
& Chandler, 2018), resource selection functions (Royle, Chandler, 
Sun, & Fuller, 2013), noncircular home ranges (Sutherland, Fuller, 
& Royle, 2015), continuous time encounter probabilities (Borchers, 
Distiller, Foster, Harmsen, & Milazzo, 2014; Dorazio and Karanth 
2017), spatial variation in density (Borchers & Efford, 2008; Reich & 
Gardner, 2014; Royle et al., 2014), etc.

Despite development around the same time as closed SCR 
models, applications of SCR models for open populations (Gardner, 
Reppucci, Lucherini, & Royle, 2010) have been limited to only a 
handful of published studies (Chandler & Clark, 2014; Ergon & 
Gardner, 2014; Raabe, Gardner, & Hightower, 2014; Schaub & Royle, 
2014; Whittington & Sawaya, 2015). Estimates of survival from tra-
ditional capture–recapture models usually refer to “apparent sur-
vival” (the product of survival and the probability of remaining in 
the sampled area, Lebreton, Burnham, Clobert, & Anderson, 1992) 
because individuals leaving the sampled area permanently appear 
to the model as dead (this can be remedied if dead marked individ-
uals are recovered from areas outside the immediate sampled area, 
see Burnham, 1993). Animals leaving the immediate vicinity of the 
sampling grid temporarily and thus becoming unavailable for detec-
tion (e.g., for the duration of a primary occasion) can bias estimates 
of demographic parameters. Considerable attention has been ded-
icated to this issue of temporary emigration (Gilroy, Virzi, Boulton, 
& Lockwood, 2012; Hines, Kendall, Nichols, & Thompson, 2003; 
Kendall et al., 1997; Pradel, Hines, Lebreton, & Nichols, 1997). None 
of these approaches, however, account for the fact that the location 
of an individual relative to the sampling array affects how likely it is 
to become unavailable to sampling due to movements. Open SCR 

models hold the promise to directly address these issues by explic-
itly incorporating information on the spatial location and movement 
of individuals into the model (Royle et al., 2014).

One essential component to incorporating the movement of in-
dividuals in open SCR models is related to the “activity centers” that 
animals are assumed to have within a primary period and how those 
centers change between primary periods. In open SCR applications, 
the activity centers have been assumed to be constant over primary 
periods (Gardner et al., 2010; Whittington & Sawaya, 2015), chang-
ing randomly by primary period (Royle et al. 2014), or following a 
Gaussian random walk (Raabe et al., 2014; Schaub & Royle, 2014). 
The specification of the movement of activity centers among pri-
mary periods is one of the key mechanisms in distinguishing between 
emigration and survival. While in closed SCR models, the state space 
is set large enough such that density is invariant to its size, in open 
SCR applications, the state space also has to allow for the movement 
of activity centers between primary periods. Conceptually, however, 
the larger the state space, the more space individuals have to move 
and become unavailable to sampling. Thus, when individuals are 
not captured often in consecutive primary periods, then between- 
primary- period movements may be difficult to assess. In these cases, 
open SCR models may have confounding between movement and 
survival, and confounding may be particularly severe when activity 
centers are assumed to be independent between years.

We investigate the relationship of the movement model and 
state- space delineation on survival and density estimates in open 
SCR models through a simulation study. To the best of our knowl-
edge, simulations of open SCR models have been analyzed using 
the same state space and movement model as used in the data- 
generating process (Gardner et al., 2010; Whittington & Sawaya, 
2015) and performed well under these circumstances. However, in 
real- life applications, the exact extent of the state space is rarely 
known. In addition to this simulation study, we apply open SCR mod-
els to a 10- year camera- trapping dataset of tigers (Panthera tigris) 
from Nagarahole Reserve in southern India (Karanth, 1995, Karanth, 
Nichols, Kumar, & Hines, 2006) to demonstrate potential issues in 
analysis of real field data when information on between- year move-
ment is sparse. Based on these results, we make recommendations 
for implementing open SCR models and for areas of future research 
and development.

2  | MATERIAL S AND METHODS

2.1 | Model

To construct the model, let yi,j,t be the encounter history for indi-
vidual i, at trap j, during primary occasion t. Due to the nature of how 
the data were recorded in the case study on tigers (maximum of one 
detection per camera per trap day for an individual tiger), we used 
a Binomial observation model in the data analysis and in the simula-
tions. Thus, yi,j,t is defined such that

yi,j,t|zi,t∼Binomial
(
p (x,s) zi,t,Kj,t

)
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where, Kj,t is the number of days trap j was active in primary occasion 
t, and zi,t is a binary indicator of whether individual i is alive at time t 
(note that we do not include any occasion, k, specific effects on de-
tection in our model, and therefore, model counts yijt=

∑
k yi,j,k,t; but if 

there was any reason to suspect temporal effects on detection, this 
additional dimension could readily be introduced). We defined the 
encounter probability, p (x, s) , as

where �t is the baseline encounter probability at year t and �p is the 
parameter that defines the rate of decline in detection as a function 
of distance, d(x,s), from trap x to activity center s.

Analogous to closed population SCR models implemented in 
a Bayesian framework, we used data augmentation (Royle et al., 
2014) and estimated zi,t for unobserved and augmented (hy-
pothetical) individuals; Nt is then estimated as 

∑
i zi,t. For t≥2, 

zi,t∼Bernoulli
(
�zi,t−1+�t�i,t

)
; �i,t is an indicator of whether an indi-

vidual is available to be recruited or not. Thus, if zi,t−1=1, then the 
individual can survive with probability � and if �i,t=1, then an in-
dividual can be recruited with probability �t. This parameterization 
follows Gardner et al. (2010), where the recruitment parameters are 
interpreted as “conditional entrance probabilities,” not per- capita re-
cruitment. In this formulation of the open SCR model, the entrance 
probability is conditional on how many individuals in the augmented 
dataset are available to be recruited (i.e., have never been alive be-
fore); thus, � should always be time/primary period specific. Per- 
capita recruitment can be derived by dividing the number of recruits 
at time t, Rt, by Nt−1.

In closed population SCR models, activity centers can follow a 
homogeneous or inhomogeneous point process in the state- space 
S; in open population SCR, we have to consider if and how activ-
ity centers change between primary sampling periods. We explore 
three models describing movement of activity centers between 
primary periods: (a) Constant: Activity centers are held constant 
across years (st= s). This may be an appropriate model when deal-
ing with highly site- attached species that do not move much over 
their lifetimes. In this scenario, any shifting in activity centers will 
be “absorbed” into the parameter describing movement within 
primary periods (Royle, Fuller, & Sutherland, 2016). (b) Random/
Independent: Activity centers are drawn from a uniform distri-
bution across S each primary period (st∼Uniform(S)). This model 
assumes a complete spatial remixing of the population at each pri-
mary period (Royle et al., 2014). Whereas this is not an ecologically 
realistic representation of spatial population dynamics, the model 
is flexible by not forcing any specific relationship of movement be-
tween primary periods. Further, in exploratory analyses, we found 
this model to require less data to converge when compared to the 
Markovian movement model (see 3). As this model does not im-
pose any constraint on movement, we expect that confounding 
of movement and survival may be severe; (c) Markovian: Activity 
center locations follow a Gaussian random walk (Raabe et al., 
2014; Schaub & Royle, 2014) across primary periods. In this case, 

upon first entry into the population (fi), individual activity centers 
are uniformly distributed across the state space, si,fi ∼Uniform(S). 
At each subsequent primary period, t≥ fi, the activity centers are 
modeled according to Gaussian random walk such that

where I is the identity matrix. Here, �2
s
 is the variance of the ran-

dom walk (the variance increases as the number of primary periods 
increases), which is different from �2

p
, the scale parameter in the 

encounter probability model defined above (related to movement 
within primary occasion). Note that the random walk is truncated 
at the limits of S, which define the spatial domain of the model. 
This specification of the random walk seems like a logical choice 
when animals may be moving and shifting their activity center 
over time.

2.2 | Simulation study

To investigate the sensitivity of the open population SCR model to 
changes in the size of the state space under different movement 
specifications, we performed a simulation study using the formula-
tion of the open model described above (we describe an open SCR 
model for estimating only survival [SCR—Cormack–Jolly–Seber 
model] and provide full details of a comparable simulation study in 
Appendix S1). For all cases, we simulated T = 5 years of population 
data, maintaining an average population size N of 40 individuals in 
a 10 × 10 unit state- space S. In the center of S we placed a 7 × 7 
sampling grid with a spacing of 1 unit. Animals survived with prob-
ability �=0.75. To maintain average population size as constant, 
we created M = 150 potential individuals and calculated annual 
conditional recruitment probability �t as Nt−1 minus the number of 
survivors at t, divided by the number of potential individuals avail-
able for recruitment (i.e., individuals out of M that were never alive 
before t). The within- year scale parameter �p was 0.5; baseline de-
tection �0 was 0.5, and each year had K = 5 sampling occasions.

To explore the effects of changing the state space under differ-
ent movement models, we created a 3 × 3 factorial design. First, we 
selected three movement models: constant activity centers over 
years, independent activity centers between years, and Markovian, 
using the random walk model described in the Model section, with 
variance parameter �2

s
=0.25. We used these movement models for 

both data generation and analysis. Then, we selected three different 
buffer sizes (3σp, 4σp, and 5σp) to define the state space in the analy-
sis. We generated all datasets using a buffer of 4σp, which means we 
analyzed the data using the same state space as was used to create 
them, plus one larger and one smaller state space. We implemented 
each of these nine scenarios (all combinations of buffer sizes and 
movement models) to explore potential differences between the 
model specifications.

We generated 100 datasets for each scenario described above, 
and we present the average posterior mean estimates, the relative 
root- mean- square error, bias, and 95% Bayesian confidence inter-
val (BCI) coverage of the true value of all parameters across all 100 

p (x, s)=1−exp

(
�t exp

(
−d(x,s)

2

2σ2
p

))

si,t∼Normal
(
si, t−1,�

2
s
I

)
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datasets. We used relatively noninformative priors for all parame-
ters (see model specification in Appendix S5). We fitted all models 
in a Bayesian framework using JAGS (Plummer, 2003) through the 
rjags package (Plummer, 2016) in R 3.3.0 (R Core Team 2016). For 
each model, we ran three parallel chains with a 500 iteration burn- in 
phase and 10000- 70000 posterior samples, thinned by 2.

2.3 | Case Study: Tigers in Nagarahole reserve, India

Tiger camera- trap data used in this study come from a study imple-
mented in the central part of Nagarahole Reserve, in the state of 
Karnataka, southwestern India. The camera- trap study was initiated 
in 1991, and we analyze data from 1991 to 2000, which had pre-
viously been analyzed using nonspatial capture–recapture models 
(Karanth et al., 2006). We note that there were 10 primary periods 
over 9 years; thus, sampling was not evenly spaced each year, and 
in the model, we estimate survival as �Δt and report annual survival 
as described in Karanth et al. (2006). The number of camera- trap 
stations sampled per primary period ranged from 6 to 80. Sampling 
efforts initially covered only a 41.4 km2 area and were gradually ex-
panded to 231.8 km2. Field method details are given in Karanth and 
Nichols (1998) and Karanth et al. (2006). Nonspatial capture–recap-
ture estimates showed density varying considerably among years, 
from about 7 to over 20 individuals per 100 km2 (Karanth et al., 
2006). Annual survival was 0.77 (SE 0.051), and there was evidence 
for temporary emigration and transiency in the population. Further 
details on the case study are provided in Appendix S4. We analyzed 
the data similarly to the simulation study, using a series of buffers 
(10, 15, and 18 km, corresponding to ~4, 6.5, and 8 times �p) and the 
three different movement models.

In the model implementation, we held �p, the scale parameter of 
the encounter probability model, constant across all 10 years of the 
study for two reasons: (a) We had no reason to assume that move-
ment of individuals would be different between years, and (b) we 
fitted closed SCR models to each year and found very little variation 
in �p. For simplicity, we also held the baseline encounter rate �0 con-
stant across years. The Karanth et al. (2006) model was complex and 
included transience and temporary emigration; for further compari-
son, we fitted a simpler nonspatial model with constant survival and 
constant detection over all primary periods.

We fitted all models in a Bayesian framework using JAGS 
(Plummer, 2003) through the rjags package (Plummer, 2016) in R 

3.3.0 (R Core Team 2016). Results, reported as posterior summa-
ries, are based on three chains each with 25,000–50,000 iterations 
and a burn- in period of 2000. Convergence was assessed using the 
Gelman–Rubin statistic, R̂ (Gelman & Rubin, 1992).

3  | RESULTS

3.1 | Simulation study

Detailed results for all open SCR model simulations are provided 
in Appendix S2. Results from the simulation study where the data 
were generated and analyzed with constant activity centers across 
all five primary periods indicated that survival was not biased when 
fitted under the three different state- space sizes (Table 1). Under an 
independent activity centers model, estimates of survival showed 
low negative bias (7%) when the analysis state space was smaller 
than the data- generating one, were essentially unbiased (<2%) when 
state spaces were identical, and had low positive bias (3%) when 
the analysis state space was larger than the data- generating one. 
Coverage was below nominal (80%) only for the smaller state- space 
scenario. When data were generated using a Markovian between- 
year movement model, estimates of survival were not sensitive to 
specification of the state space (bias at or <1%, nominal coverage 
for all scenarios).

Under the constant activity centers model, density estimates 
ranged from 0.41 to 0.43 for all years and all state- space sizes 
(Table A4). The bias was low, but showed a slight pattern of increas-
ing as the state- space size increased, from 1%–3% in the smallest 
to 6%–9% in the largest state space (Table A4). Density estimates 
for the independent activity centers model exhibited low to moder-
ate positive bias (3%–12%) and below nominal coverage (75%–91%) 
when the analysis state space was smaller than the generating state 
space. Density estimates were essentially unbiased (1%–4%) and had 
(sometimes just below) nominal coverage when the state space was 
the same for data generation and analysis. Lastly, density estimates 
showed low negative bias (1%–3%) and nominal coverage when the 
analysis state space was larger than the data- generating state space 
(Table A5).

Under a Markovian between- year movement model, density 
estimates ranged from 0.40 to 0.43 for all years and all state- space 
sizes (Table A6). The bias in density estimates was similar to the 
constant activity center model with slightly lower bias in smallest 

Activity center 
model

3σ buffer 4σ buffer 5σ buffer

Mean rRSME Mean rRSME Mean rRSME

Constant 0.75 0.06 0.75 0.06 0.75 0.07

Independent 0.70 0.10 0.74 0.06 0.77 0.07

Correlated 0.74 0.06 0.75 0.06 0.75 0.06

Notes. Three different buffer sizes (columns) were used to delineate the state space (4σ is data- 
generating state space) and combined with three different models for how activity centers change 
over primary period (rows). Data- generating value of �=0.75

TABLE  1 Mean and relative root- 
mean- square error (rRSME) of the 
posterior means of survival (ϕ), based on 
100 simulated datasets for each open 
population spatial capture–recapture 
model
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state space (2%–4%) and increasing to 6- 8% in the largest state 
space. Overall for the Markovian model, the confidence interval 
coverage was nominal, except when the analysis state space was 
smaller than the data- generating state space (coverage 80%–87%; 
Table A6).

Detection parameters (�0,�p) were essentially unbiased (rel-
ative bias <1.5%) under the all three movement models and had 
nominal 95% BCI coverage, with the exception of �0, which only 
had about 90% coverage under the Markovian movement model 
(Table A6) and slightly higher (91%–94%) coverage under the con-
stant model (Table A4). In the Markovian movement model, the 
parameter �s had an average posterior mean estimate of 0.49 
across all state- space sizes and therefore had a relative bias that 
was slightly negative (−2%) [Table A6]. The recruitment parame-
ters were not directly compared as they are relative to the study 
area size and data augmentation parameter. All results are based 
on the posterior mean, which was similar to the mode as the pos-
terior distributions were generally not skewed, but we note that 
the mode may be less biased and should be considered when pos-
terior distributions are skewed.

3.2 | Case Study

Of the 75 individuals in the tiger camera- trap dataset, 42 individu-
als were only observed in one year of the study; one individual was 
known to be present for the entire duration of the study (recaptured 
in six primary periods), one for 8 years, and all others between 2 and 
6 years. Of those individuals observed in multiple years, 14 had gaps 
in their annual encounter histories, that is, were observed at t and 
t+x, where x > 1, but not at t+1. In cases with the correlated activ-
ity center model, sparse data resulted in difficulty reaching conver-
gence particularly for �2

s
, but this appeared to have little impact on 

estimates of the other parameters.
Analysis of the dataset with an open SCR model with three 

different buffer sizes (10, 15, and 18 km) and three different ac-
tivity center models (constant, independent, and Markovian) re-
sulted in posterior mean estimates of survival ranging from 0.72 
to 0.89 (Figure 1). The lowest estimates of survival were under 
the constant activity center model with the smallest buffer size 
(0.72 ± 0.04). Increasing the buffer size in the constant activ-
ity center model increased the estimated survival (0.75 ± 0.04), 
though not substantially. The same pattern was seen with the 
independent activity center model, where survival was lowest in 
the 10 km buffer (0.84 ± 0.04) and increased as the buffer size 
increased (15 km buffer: 0.88 ± 0.04; 18 km buffer: 0.89 ± 0.05). 
Survival estimates were relatively constant under the correlated 
activity center model (10 km buffer: 0.74 ± 0.05; 15 km buffer: 
0.75 ± 0.04; 18 km buffer: 0.75 ± 0.04). Density estimates for 
each of the 10 years varied over the different model specifications 
as well, ranging from 4.1 to 13.9 tigers/100 km2 with the estimates 
of density lowest for all primary periods for the independent AC 
model and highest in the first six primary periods for the constant 
AC model (Figure 2).

4  | DISCUSSION

By making efficient use of available data and explicitly incorporating 
animal movement in the estimation of survival, open SCR models 
hold promise as a framework for monitoring and assessment of wild-
life population dynamics. Their biggest appeal is perhaps the mod-
eling of temporary or permanent emigration, in the form of explicit 
models for how animal home range (or use area) location changes 
over time. As advances in survey techniques allow more studies to 
collect capture–recapture data across larger time periods, the need 
for a framework to analyze such data is also growing. The results 
of our simulation study demonstrate, however, that estimates of 
survival and density from open SCR models are sensitive to the 
definition of the state space and the model describing movement of 
individual activity centers between years.

In the simulation study, the constant activity center model gener-
ally performed well. The low positive bias in density (between 1 and 
9%) increased slightly with increasing state- space sizes (Table A4 in 
Appendix S2). Survival estimates under this model were constant 
and only slightly (1%) negatively biased (that bias increased slightly 
to - 3% for the CJS version of the model; Table A1); however, in the 
case study, we found that the posterior mean survival estimates in-
creased as the state- space size was increased when holding activity 
centers constant across primary periods. The contrasting results are 
likely due to misspecification of the activity center model in the tiger 
case study, with the data indicating that tiger activity centers did 
change over time (discussed below).

The model in which animal activity centers were independent of 
each other across years was the most sensitive to specification of 

F IGURE  1 Posterior mean estimates of tiger survival from 
Nagarahole reserve, India, based on camera- trapping data from 
1991 to 2000 using open spatial capture–recapture models with 
three different activity center models (Constant AC, Independent 
AC, and Correlated AC), and three different buffer sizes used to 
delineate the state space (10 km, 15 km, and 18 km); bars represent 
95% Bayesian credible intervals
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the state space. This was reflected in both the simulation study and 
the tiger case study. Not surprisingly, we observed the same pattern 
of bias in survival in the CJS formulation of the model (Appendix S1, 
Table A2). As S increases, it provides increasing amounts of area for 
animals to remain alive but unavailable to sampling. Contrary to the 
Markovian movement model and the constant activity center model, 
the independent model contains no component constraining animal 
movement between years; the model is therefore unable to parse 
out movement off the sampling grid from mortality and produces in-
creasingly positively biased estimates of survival as S increases (and 
negatively biased estimates as S decreases). Bias in density estimates 
was mostly minor under this model, but showed the opposite pat-
tern (positive bias in smaller S and vice versa), in both the simulation 
study (Table A5 in Appendix S2) and the tiger case study (Figure 2).

The Markovian model performed much better in simulations (in-
cluding for the CJS version of the model, Table A3) than the inde-
pendent model, even though there seemed to be consistent (albeit 
low) positive bias in estimates of density, which appeared to increase 
with increasing S (Table A6 in Appendix S2).

We only considered simple movement models in our simulation 
study, and real populations are almost inevitably more complex in 
their behavior. For example, tiger populations typically consist of res-
idents and “floaters” (individuals that do not hold a territory, Smith, 
1993); such groups can differ in their spatial behavior across years. 
Similarly, none of the models considered here adequately accounts 
for transient individuals, even though their presence could bias es-
timates of demographic parameters, particularly in the constant 
and correlated activity center models, which restrict between- year 
movement of individuals. Further, we only explored scenarios with 
uniform density across S. In heterogeneous landscapes, more com-
plex movement models taking into account variation in permeability 

(Sutherland et al., 2015) or habitat suitability (Royle et al., 2013) may 
be warranted. Considering the sensitivity of parameter estimates to 
specification of the movement model in the simpler models consid-
ered here, performance of more complex models and their data re-
quirements need to be explored with great care.

4.1 | Tiger case study

The case study dataset of tigers in Nagarahole presented here was 
previously analyzed with a nonspatial open population model by 
Karanth et al. (2006). Consistent with the simulation study, under 
the independent activity center model estimated survival increased 
as the state space increased (Figure 1). The estimated survival under 
the independent activity center model was much higher (0.84–0.89) 
than under the constant activity center (0.72–0.75) and correlated 
activity center models (0.74–0.75), as well as the nonspatial model 
(�̂�=0.77) of Karanth et al. (2006) and a simple nonspatial model with 
constant detection and survival (�̂�=0.71). When we implemented 
a constant activity center model, the survival rate increased as the 
state space increased (see Figure 1), a different pattern from the 
simulation results where survival did not change with the state- 
space size. This is likely because the constant activity center model 
does not adequately represent the underlying process of spatial 
population dynamics (we do not expect all tigers to have constant 
activity centers over 10 years). A number of tigers were captured 
only once over the course of the study; therefore, if the state space 
increases, those animals’ activity centers can be assumed to be lo-
cated further from the trap array, which decreases their detection 
probability, and that, in turn, allows them to have a higher survival 
probability. A summary of the parameter estimates for all nine sce-
narios is provided in Table A9.

Even though the Markovian activity center model probably 
does not fully reflect the true underlying spatial dynamics of the 
tiger population, which is characterized by residents, transients, 
and temporary emigrants (Karanth et al., 2006), estimates of sur-
vival probability were fairly constant under that model when size 
of S changed (Figure 1). Estimates of density showed sensitivity to 
the size of S in early years of the study, but were consistent in later 
years, when more data were available. The independent activity cen-
ter model also consistently led to lower density estimates compared 
with the two other models. For both survival and density, these 
between- model differences in estimates were more pronounced in 
the tiger data analysis than in the simulation study. Unfortunately, 
in the tiger dataset, convergence of the variance parameter of the 
Markov process was extremely slow to unattainable. This is likely 
due to a lack of consistent recaptures of individuals across subse-
quent years, and consequently, little available information on how 
much activity centers shift from year to year. The tiger dataset may 
be a somewhat extreme case study, as the area covered by traps 
varied in size considerably across years and was very small in some 
of the early years, thus reducing the number of individuals exposed 
to potential recapture. It is conceivable that incorporation of telem-
etry data (Sollmann et al., 2013) may improve the ability to model 

F IGURE  2 Estimates of tiger density (individuals/100 km2) from 
Nagarahole reserve, India, based on camera- trapping data from 
1991 to 2000 using open spatial capture–recapture models; bars 
represent 95% Bayesian credible intervals. Three different models 
for the activity centers are shown: constant activity centers in 
triangles, independent activity centers in squares, and correlated 
activity centers in circles. Results are shown for a state space based 
on a 15- km trap array buffer
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between- year movements by providing detailed information on indi-
vidual location, even if off the sampling grid.

Karanth et al. (2006) presented nonspatial model densities, 
which ranged from 7.33 to 21.73 individuals/100 km2, compared to 
4.1 to 6.83 individuals/100 km2 in the independent activity center 
model with an 18 km buffer and 7.39 to 13.9 individuals/100 km2 
in the constant activity center model with a 10 km buffer. For lack 
of knowledge of true density, we compared open model densities 
to estimate from closed population SCR models fitted to seven pri-
mary periods of the study (Appendix S4, Table A10). The indepen-
dent activity center model estimates of tiger density were all lower 
than those from closed SCR models, whereas the other two models 
yielded density estimates similar to those from closed SCR models. 
The overall higher nonspatial density estimates are likely a meth-
odological artifact. Several studies have shown that SCR models 
yield lower density estimates for wide- ranging animals because of 
their improved ability to account for movement off the sampling grid 
(O’Connell et al., 2011; Tobler & Powell, 2013). This discrepancy is 
exacerbated in early years of the study, when the small area cov-
ered with camera- traps did not capture tiger movements adequately, 
leading to underestimation of the effective sampled area and conse-
quently, overestimation of density (Karanth et al., 2006).

Annual spatial density estimates of the Nagarahole tiger popula-
tion were mostly lower but on the same order of magnitude as esti-
mates based on single- year data from a survey implemented across 
the entire reserve (including areas surveyed in earlier years) in 
2006 of ~13 individuals/100 km2 (Royle et al., 2009). Even though 
this study does not coincide temporally with and spans a larger area 
than the data analyzed here, we note it because Royle et al. (2009) 
used a habitat mask to exclude nontiger habitat from the state 
space, which reduced the area in which tigers can occur by about 
50%. One of our objectives was to discuss the impact of changing 
the state- space size in open SCR models, and using a habitat mask 
is another way to effectively resize the state space. It is possible 
that restrictive habitat masks may cause inflated density estimates; 
careful specification of habitat masks is important in SCR model-
ing, and in some cases, it may be better to include information on 
habitat suitability in the model for detection probability rather than 
exclude habitat categorically (Royle et al., 2014). Inclusion of a hab-
itat mask in an open SCR model is conceptually straightforward; 
however, careful thought about the mask and potential changes in 
habitat must consider prior to analysis and sensitivity of parameter 
estimates to the habitat mask should be conducted.

4.2 | Recommendations for using open SCR models

The present study exposed some potential challenges with the 
implementation of open SCR models, but broader exploration of 
model behavior under different situations is warranted. Based on 
this study, we conclude that if the state space is known (e.g., the 
case of an island, or suitable habitat in a clearly defined matrix), open 
SCR models perform well, across various options for modeling ani-
mal movement between years. We performed a reduced simulation 

study to investigate the effects of misspecifying the between- year 
movement model, Appendix S3, but recommend further testing of 
model misspecification.

When the data- generating state space is known and sampled ex-
haustively, the independent activity center model is a flexible move-
ment model that produces largely unbiased estimates of survival and 
density, even when the true underlying movement model is more 
complex (Markovian, or Markovian with occasional longer distance 
movements, Appendix S3). In all other situations, however, we do 
not recommend using a model with independent activity centers 
over multiple year studies, due to its sensitivity to the definition of S.

The constant activity center model performed well in simula-
tions, which is similar to the findings of Royle et al. (2016) who found 
that in terms of estimating density, the constant model was unbiased 
in closed SCR models. However, the tiger data analysis suggested 
that ignoring movement of activity centers over time may result in 
sensitivity of parameter estimates to specification of S. For most 
species, it seems unrealistic to assume no change in activity centers 
over longer time frames. A comprehensive simulation study of the 
constant model should be conducted to determine the robustness 
of this model to longer time series and different movement patterns 
between primary periods.

The Markovian random walk model also performed well in the 
simulation study. However, we found in the tiger data analysis that 
the model achieved convergence very slowly, likely because of lim-
ited between primary period movement information. Thus, if a data-
set contains insufficient information to estimate the parameters of 
the Markov process, we suggest using other available information 
(telemetry data, published information on dispersal), or the detection 
data on recaptured individuals, to construct an informative prior, or, 
if necessary, fix the Markov process variance parameter. We did not 
explore the performance of either one of these approaches in the 
present study, and in such cases, we recommend exploring sensitiv-
ity of the survival and density estimates to the specification of the 
prior/parameter.

5  | CONCLUSION

Explicitly incorporating space into capture–recapture models is gen-
erally stated as an advantage of SCR models, bearing the promise of 
more realistic representation of animal populations, and improved 
estimates of parameters describing these populations. Open SCR 
models can easily accommodate study designs that vary within and 
between primary periods, as shown in our case study analysis of 
tiger population dynamics. These advantages to SCR modeling are 
promising as the need for estimating demographic rates remains 
an essential component in ecological studies. For open SCR mod-
els, specification of the movement of individual activity centers be-
tween primary periods is an important component of model fitting. 
In all cases, we suggest careful thought be given to the movement 
of activity centers between primary periods and the limitations out-
lined in this study.
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