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Abstract 

This paper investigated the nature of mental representation of 
categorical knowledge by examining the neural substrates that 
support classification and feature inferences. The results from 
one experiment suggest that frontal lobe regions were activated 
when an inference task was given, while temporal lobe regions, 
especially the fusiform gyrus, became active when a 
classification task was given. These results are consistent with 
the view that categorical knowledge is mediated by two 
separate neural structures, and further indicate that two 
interrelated functions of categories – classification and feature 
inference – are processed by distinct brain regions. 

 
Human knowledge is organized largely by categories that we 
form in everyday situations.  Many of man-made names, such 
as “terrorists,” “fundamentalists” or names of natural objects 
such as dogs and cats are all categorically arranged. Perhaps, 
because of this generic characteristic of knowledge 
representation, we are able to carry out many complex and 
abstract tasks such as communication, reasoning, and solving 
math problems relatively easily. 

How do we represent categorical knowledge in our brain? 
In this paper, we examined the neural structures that support 
the representation of categorical knowledge. We addressed 
this problem by comparing two basic functions of categories 
– classification and feature inference. Classification and 
inference are two of the most important functions of 
categories (Smith, 1994). The very reason why human 
concepts are organized categorically is said to license 
inferential predictions (Anderson, 1990; Rosch, 1978). In this 
regard, we consider that scrutinizing the underlying neural 
structures of these two functions would provide a crucial clue 
to understand the nature of mental representations of 
categorical knowledge. 

Despite the close relationship between classification and 
feature inference, much research in concept formation in the 
last 40 years has focused on the investigation of classification 
(see Murphy 2002 for review). These studies suggest that 
subjects acquire some form of “category-level knowledge” 
after extended training of classification (see Medin & 
Schaffer, 1978; Posner & Keele, 1968). That is, (1) subjects 
are able to classify new items accurately even though they 
have never seen exactly the same items during a learning 
phase; (2) their accuracy of classification transfer depends on 
the degree of feature overlap between a transfer item and 
studied items; (3) subjects generally classify non-studied 
prototypes (average instances) as accurately as studied items.  

A dominant theory of category learning explains that the 
aforementioned effects of category learning arise because 
participants in an experiment make classifications by 
measuring similarities between a new target item and old 
exemplars that were stored in memory. In this theory, the 
mental representation of category-level knowledge consists of 
the episodic memory trace of the instances that were 
experienced during learning (Medin & Schaffer, 1978; 
Nosofsky, 1986; Kruschke, 1992).  

Although this theory has received an impressive amount of 
support from a variety of studies, this view has met serious 
challenge from two sources: (A) Patients who have severe 
damage to hippocampus and the medial temporal lobe learn 
to classify new items as accurately as normal control subjects, 
while their recognition memory for training items is severely 
impaired (Knowlton & Squire, 1993; Squire & Knowlton, 
1995; but see also Nosofsky & Zaki, 1998; Palmeri & 
Flanery, 1999; for an alternative explanation); (B) The extent 
to which specific exemplar information affects category-level 
representations depends on the task and the structure of 
categories that are employed in a category learning task 
(Smith & Minda, 1998; Maddox, et al., 2003; Markman & 
Ross, 2003; Ross, 1997; Smith, Patalano, & Jonides. 1998; 
Strange et al. 2001; Yamauchi & Markman, 1998). For 
example, recent neuroimaging studies have reported 
increased activities in the vicinity of the frontal lobe during 
categorization tasks that require an application of abstract 
rules (Smith et al. 1998; Strange et al. 2001), while the 
temporal lobe is responsible for object recognition and 
classification (e.g., Haxby et al. 2001)  

These findings indicate that the mental representation of 
categorical knowledge is likely to consist of multiple neural 
substrates – one that processes similarity-based associative 
information, and the other that assesses rule-based abstract 
information (Ashby, et al., 1998; Erickson & Kruschke, 1998; 
Smith et al., 1998).   

Consistent with this suggestion, our studies have indicated 
that different types of information are used for classification 
and feature inference: Subjects often rely on the information 
about concrete instances to make classifications, while they 
use abstract rule-like information to make feature inferences 
(Yamauchi & Markman, 2000).  

On the basis of these findings, we reasoned that if 
categorical knowledge in general is represented by multiple 
neural substrates, then the category information acquired by a 
particular single learning task should generate a mental 
representation that encompasses separate brain regions; 
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furthermore, such a representation should be selectively 
accessed by a classification test and an inference test.  We 
tested this hypothesis in the following experiment.  

In our experiments, participants learned two arbitrary 
categories incrementally either in a classification task or in a 
feature inference task (Nosofsky, 1986; Medin & Schaffer, 
1978; Yamauchi & Markman, 1998). Stimuli were geometric 
figures similar to those used in the Medin and Schaffer study 
(1978) (Figure 1).  In a classification task, participants 
predicted the category membership of a stimulus on the basis 
of the information about other four features; in an inference 
task, participants predicted an unknown value of a feature on 
the basis of the information about the other three features and 
the category membership of the stimulus. After each trial, 
participants received feedback.   

Our main focus of investigation was concerned with the 
characteristics of the mental representation thus formed after 
classification learning or inference learning. Given the 
hypothesis that category representation incorporates two 
types of information – similarity-based exemplar information 
and rule-based abstract information, we hypothesized that two 
different brain regions should become primarily active in the 
same subjects.  More specifically, we predicted that, 
irrespective of the format of learning, the frontal lobe region 
that supports rule-based abstract information becomes active 
when an inference transfer task is given; in contrast other 

cortical areas such as the medial temporal lobe should 
become primarily active when a classification task is given.  

Experiment 
Participants & Materials Participants were 34 students at 
Rutgers University who participated in this experiment for 
course credit. The data from 2 participants were lost for fMRI 
analyses. In total, there were 16 participants in a classification 
learning condition and 16 participants in an inference learning 
condition.  

The stimuli were geometric figures that were differentiated 
with 4 feature dimensions of binary values – form 
(circle/triangle), color (red/green), size (large/small), and 
position (left/right). Each stimulus was bound by a 
rectangular frame drawn with a solid black line on the 
computer screen. These stimuli were equivalent to those 
employed in the Medin and Schaffer (1978) study. 

Table 1 shows the structure of the two categories. A single 
stimulus set was produced from two prototypes by changing 
one of the four feature values. For example, the prototype of 
Category A was arbitrarily determined with the values of (1, 
1, 1, 1) = (form=circle, color=red, size=large, position=left), 
and the prototype of Category B was defined with values of 
(0, 0, 0, 0) = (Form=square, color=green, size=small, 
position=right). To produce a training stimulus, A1 (1, 1, 1, 
0), the feature value of position in A0 was replaced with that 
of B0. In this manner, no single feature deterministically 
divides the two categories, and every stimulus used in 
training possessed three features consistent with the prototype 
of the corresponding category and one feature consistent with 
the prototype of the opposite category. Hereafter, the feature 
values that were consistent with the opposite prototypes were 
called “exception-features.”  
Procedure The basic procedure of the experiment consisted 
of three phases – a learning phase, a filler phase, and a 
transfer phase, which were given in sequence. The learning 
phase was further subdivided into two between-subjects 
conditions – the classification learning condition, and the 
inference learning condition. The filler phase and the transfer 
phase were identical in all participants. 
Learning Phase In the classification learning condition, 
participants were shown one of the eight training stimuli and 
were asked to indicate the category to which it belonged by 
pressing a specified response key (Figure 1a). In the inference 
learning condition, participants made inferences of one of 
four features while its category label and the remaining three 
feature values were depicted in the stimulus frame. For 
example, in Figure 1b, participants were presented with a 
stimulus frame depicting the size, color, and position of the 
item as well as its category label, and the form of the item 
was left unspecified. Participants were asked to select one of 
the two values of the unspecified feature.  For each stimulus, 
the location of the correct choice was determined randomly.  

Initially, no information about the category was given, and 
participants had to guess. Following each response, feedback 
was provided together with the entire display of a stimulus 
and its category label. The stimulus frames for feedback were 

Table 1: Category Structure 
 stimulus category form size color position

A0 A 1 1 1 1 
A1 A 1 1 1 0 
A2 A 1 1 0 1 
A3 A 1 0 1 1 
A4 A 0 1 1 1 
B0 B 0 0 0 0 
B1 B 0 0 0 1 
B2 B 0 0 1 0 
B3 B 0 1 0 0 
B4 B 1 0 0 0 

Note. A “correct” response in an inference question is defined 
as those consistent with the feature value of the 
corresponding prototype stimulus (i.e., values 1 in Set A, and 
values 0 in Set B). 
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identical in the two learning conditions. In classification 
learning, participants saw all eight exemplars except for the 
two prototypes (i.e., A0 (1, 1, 1, 1), B0 (0, 0, 0, 0)). In 
inference learning, participants answered all feature questions 
for each stimulus except for the feature questions associated 
with the two prototypes (e.g., A0 (?, 1, 1, 1, 1, 1)). This 
arrangement was made to equate the two learning conditions 
as much as possible (see Yamauchi & Markman, 1998).  

In the classification learning condition, each block 
consisted of 8 different classification questions that 
corresponded to 8 exemplar stimuli of the two categories. In 
the inference learning condition, each block had 4 different 
feature questions (form, color, size, and position) associated 
with 8 different exemplars of the two categories. In this 
manner, all 24 inference questions excluding exception-
feature values of individual stimuli were carried in three 
consecutive blocks of the inference learning condition. These 
three blocks were presented in the same order throughout the 
learning phase. Within each block, the order of presenting 
individual questions was determined randomly.  

The stimulus presentation schedule in the two learning 
conditions was as follows: (1) a fixation point appeared for 2 
seconds, (2) a stimulus (either a classification question or an 
inference question) was presented for 6 seconds, (3) a 
response frame, in which a response was solicited, appeared 
for 4 seconds, (4) a feedback frame was shown for 4 seconds. 
All participants carried out the learning phase with this 
presentation schedule.  

The learning phase consisted of a total of 96 trials (12 
blocks).  The learning phase was divided into four sessions of 
24 trials.  All participants received a short break after each 
session. 
Filler Phase Immediately at the completion of the learning 
phase, all participants were given an anatomical scanning 
(i.e., MP-RAGE) trial, in which the anatomical images of 
individual participants were registered. This phase lasted 
approximately 10 minutes. 
Transfer Phase The stimulus presentation schedule of the 
transfer phase, which was identical in all participants, was as 
follows: (1) a fixation point appeared for 2 seconds, (2) a 
stimulus (either a classification question or an inference 
question) was presented for 6 seconds, (3) a response frame 
appeared for 4 seconds. No feedback was given for the 
transfer tasks.  

Participants were first given 10 classification transfer 
questions and then 32 inference questions. The 10 
classification questions consisted of 8 classification questions 
of the 8 exemplars of the two categories and 2 prototypes. 
These 8 classification questions were “old” in the sense that 
these stimuli were presented during the learning phase. The 2 
other classification questions were “new” in the sense that 
these stimuli were never presented during the learning phase. 
The order of presenting classification transfer questions was 
determined randomly. Immediately after completing all the 
classification transfer questions, participants answered 32 
inference transfer questions. These questions encompassed all 
possible feature inferences of 8 stimuli (4 feature questions 

for 8 stimuli). The order of presenting inference transfer 
questions was determined randomly. The instructions 
specifically asked participants to make their decisions based 
on the categories learned during the learning phase.  
fMRI data acquisitions The data consisted of 32 axial slices 
(3.0mm thick, no gap) BOLD collected from a Siemens 3T 
Allegra using a gradient echo EPI (TR = 2000ms, TE = 30 
3.0mm thick axial images, field of view = 220mm, matrix 
size = 64 x 64).  We collected five BOLD data sets (four 
during the learning phase and one during the transfer phase) 
and two anatomical images were recorded twice for each 
subject before the Learning phase and during the Filler phase.  
All BOLD data collections lasted for the entire session for the 
learning phase or the entire session for the transfer phase. No 
data was acquired during 4 short breaks in the learning phase. 
Design The experiment employed an one-between-factor 
(learning condition: classification learning vs. inference 
learning) repeated measure (transfer task: classification 
transfer vs. inference transfer) design. The dependent measure 
for the behavioral analyses was the proportion of “correct 
classifications” and “correct inferences” (see Table 1 for the 
definitions of “correct” responses).  In order to account for 
meaningful differences in brain activities associated with 
classification and inference tasks, we screened out 
participants who performed less than 80% accuracy in the last 
3 blocks of the training trials.  In addition, in order to find the 
differences in brain activities associated with classification 
and inference of category, but not particular learning 
strategies, we were only concerned about within-subject 
differences in those tasks and thus analyze only BOLD data 
from the transfer session.  

Our analysis was carried out using FEAT Version 5.4, part 
of FSL (FMRIB’s Software Library). The following pre-
statistics processing was applied; motion correction using 
MCFLIRT (Jenkinson 2002); non-brain removal using BET 
(Smith 2002); spatial smoothing using a Gaussian kernel of 
FWHM 5mm; mean-based intensity normalization of all 
volumes by the same factor; highpass temporal filtering 
(Gaussian-weighted LSF straight line fitting, with 
sigma=12.5s). Low-level time-series statistical analysis for 
individual subjects was carried out using FILM with local 
autocorrelation correction (Woolrich 2001) with Gamma 
convolution (SD = 3 and mean lag = 3.0s) for the 
hemodynamic responses. Registration to high resolution and 
standard images was carried out using FLIRT (Jenkinson, 
2001 & 2002).  Higher-level analysis was carried out using 
FLAME (FMRIB’s Local Analysis of Mixed Effects) 
(Beckmann, et al. 2003; Woolrich, et al., 2004).  

Results 
Behavioral Analyses We first report the results from 
behavioral data (see Table 2), and then form the fMRI data. 
Learning Performance We first discuss participants’ learning 
performance for the last 24 trials (3 blocks) of the learning 
tasks and examine whether or not participants in the two 
learning conditions reached approximately the same level of 
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learning performance. This analysis showed that participants 
in the two learning conditions were equally accurate; t(30) = 
0.15, p= 0.88. Cohen’s d = 0.05. Overall, 10 out of the 16 
participants in the inference learning condition reached an 
accuracy level of 80% or above (M = 0.83, SD = 0.20), and 
10 out of the 16 participants in the classification learning 
condition reached an accuracy level of 80% or above (M = 
0.82, SD = 0.19). For our fMRI analyses we used the data 
taken from these 20 participants (10 participants in each 
condition) to make sure that the two groups of participants 
were equivalent in their learning performance. The accuracy 
of these selected sets of participants was statistically 
indistinguishable; Inference condition, M = 0.958, SD = 
0.071; Classification condition, M = 0.930, SD = 0.061; t(18) 
= 0.95, p = 0.36, d = 0.43.  
Transfer Performance Table 2 shows the transfer 
performance of the participants in the two learning 
conditions. Because our fMRI analyses were applied only to 
the data obtained from the 20 selected participants (see 
above), we will report behavioral results obtained from these 
participants alone. First, participants in the two conditions 
were generally able to generalize one mode of learning 
procedure to another; yet their transfer performance was 
better when their learning task and their transfer task matched 
than when these two tasks miss-matched. 

Overall, participants in the two conditions were able to 
perform the classification transfer tasks and the inference 
transfer tasks better than a chance level; t(9) > 4.28, p < 0.01 
for all four dependent measures. A 2 (learning condition) x 2 
(transfer task) ANOVA revealed that the two learning 
conditions were not different in their overall transfer 
performance, F(1, 18) = 1.07, MSE = 0.035, p = 0.31, η2 = 
0.056; most importantly, the main effect of transfer task was 
not significant; F =(1, 18) = 2.50, MSE = 0.009, p = 0.13, η2 

= 0.122, suggesting that the overall accuracy of the two 
transfer tasks was not statistically different. An interaction 
effect of the two factors was significant; F(1,18) = 18.03, 
MSE = 0.009, p < 0.01, η2 = 0.500. Given the inference 
transfer task, participants in the inference condition were 
more accurate than participants in the classification condition; 
t(18) = 3.02, p < 0.05, d = 1.13. In the classification learning 
condition, participants were significantly better in 
classification transfer than inference transfer; t(9) = 4.13m p 
< 0.05, d = 1.31.  

Taken together, these results suggest that (1) the two 
categories learned by one task (either classification or 
inference) can give rise to a representation that can handle 
both the classification transfer task and the inference transfer 

task; (2) in general, transfer performance was better when the 
learning task and the transfer task matched. 

 
fMRI Analyses Table 3 shows the areas that exhibited 
significant and differential activations for the classification or 
inference tasks.  Since the numbers of data points differ in the 
two sets of transfer data, we used different threshold values 
for those data sets.  The voxels with Z-values larger than 3.50 
and Z-values larger than 2.00 were plotted for the 
classification and inference, respectively. Figure 2 shows the 
areas that exhibited higher activations during the 
classification transfer task as compared to the activations 
observed during the inference transfer task. Most notable 
activations occurred in the fusiform gyrus, Brodmann’s area 
37 (BA37), the superior parietal gyrus (BA7); and the cuneus 
(BA18) in the occipital lobe.  In contrast, Figure 3 shows the 
areas that exhibited higher activations during the inference 
task as compared to the classification task. These areas 
include the right inferior frontal gyrus (BA47), the medial 

Table 2: Transfer Performance - Means and standard 
deviations (enclosed in parentheses) 

Training Condition Transfer Task 
 Classification Inference 

Classification 0.882 (0.153) 0.703 (0.109) 
Interference 0.827 (0.145) 0.911 (0.124) 

Average 0.854 (0.149) 0.807 (0.171) 

Table 3: List of activation areas 
Task Region of activation BA L/R Z 
CL Fusiform Gyrus 37 L&R 6.17 
CL Cuneus 18 L&R 4.33 
CL Superior Parietal 7 L&R 4.26 
INF Inferior Frontal 47 R 3.13 
INF Medial Frontal 10 L&R 2.60 
INF Cingulate & Anterior 

Cingulate 
24/31 L&R 3.40 

INF Superior Temporal 22/38 R 2.88 
 Note: CL=classification transfer task, INF=inference 
transfer task, BA=Brodmann’s area, L/R=Left/Right 
hemisphere 

 

 
Figure 2 Brain areas that have more activation in 
classification tasks than inference tasks. The areas include 
fusiform gyrus (left), cuneus (middle), and superior parietal 
gyrus (right) 

 

 
Figure 3 Brain areas that have more activation in inference 
tasks than classification tasks. The areas include, right inferior 
gyrus, right superior temporal lobe (left), medial prefrontal 
gyrus (middle), and cingulate (right). 
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frontal gyrus (BA10), the right superior temporal gyrus 
(BA38), the cingulate (BA 24, BA31) and the anterior 
cingulate (BA24).   

Interpretations - Classification Task: It is widely accepted 
that the fusiform gyrus is associated with object recognition 
(e.g. Haxby et al., 2001). This may indicate that the 
classification process was driven by some concrete 
identification mechanism related to the recognition of 
individual stimuli. The increased activity in the cuneus may 
be explained by its role in memory retrieval.  That is, in the 
classification task participants probably tried to compare a 
target stimulus (to be categorized) with previously 
encountered exemplars in order to classify the target stimulus 
correctly.  This indicates that the classification process indeed 
requires some form of memory-based process (e.g. Smith et 
al., 1998; Nosofsky, 1986).  However, it is uncertain what 
sort of memory was retrieved in this process (e.g., exemplars 
vs. prototypes).  It is, however, as discussed below, less likely 
to be a retrieval of rules. Another important function of the 
cuneus is visual and spatial attention.  A number of studies 
have shown that classification learning increases attention to 
the features that divide between categories (Goldstone, 1995). 
The observed activation in the cuneus is likely to reflect this 
attentional shift in classification.  Similarly, the superior 
parietal lobe is known to mediate selective attention.  
Although, this observation is not consistent with the results of 
a neuroimaging study by Smith et al. (1998), in which 
increased activities in the superior parietal lobe was observed 
during rule application, but not in memory based processes, 
we find our result (involvement of attention process in 
classification) to be consistent with the results of several 
recent computational modeling studies; Some computational 
models incorporating selective attention process (Nosofsky, 
1986; Kruschke, 1992) have been successful in accounting 
for many psychological phenomena, and thus it is highly 
possible that this memory-based process requires selective 
tuning of attention processes.  However, we do not have a 
clear interpretation why the classification task requires a 
“greater” amount of (spatial) selective attention than the 
inference task, given that the stimuli used in the present 
experiment were qualitatively identical. Our hypothesis is that 
classification tasks and inference tasks require or induce 
different types of attention mechanisms recruited while 
examining either stimulus features or category label. 

Interpretations - Inference Task: We found that several 
different brain areas were activated during the inference task, 
namely the right inferior frontal gyrus (BA47, a part of 
Broca’s area), medial frontal gyrus (BA10), superior temporal 
lobe (BA38), cingulate (BA24 & BA31) and anterior 
cingulate (BA24).   In particular, increased activities in the 
right inferior frontal gyrus and the medial frontal gyrus agree 
with previous neuroimaging findings on rule-applying 
categorization tasks.  For example, Smith et al. (1998) 
observed an increased activity in right dorsolateral prefrontal 
cortex (BA46), which is also part of Broca’s area. In addition, 
Strange et al. (2001) observed an involvement of the Fronto-

polar prefrontal cortex (BA10) during rule learning.  In 
general these frontal lobe areas are suggested to be important 
for executive functions.  In addition, the right inferior frontal 
gyrus is known to be related to language processing, 
including abstract grammar computation (Sahin et al., 2004), 
and the medial frontal gyrus is associated with working 
memory (e.g., buffering & retrieval)  

In addition to those “rule” areas, we observed a significant 
activity in the right superior temporal lobe, which can be 
considered as a part of Wernicke’s area, another area for 
language processing. This area has further interesting 
functions; for example, a study indicates that this area is 
involved when a difficult exploratory search through feature 
items was required (Ellison, et al 2004); and Jung-Beeman et 
al. (2004) reported that this area is involved in solving verbal 
problems insightfully (e.g., “aha!” moment) 

Finally, we observed an increased activity in the cingulate 
and anterior cingulate cortex (ACC), probably playing an 
important role as an executive attention system by relegating 
tasks to achieve efficient usage of brain areas (Posner & 
Raichle, 1994). The cingulate and ACC might have been 
involved in switching attentional targets between category 
label and visual features of stimuli during inference task. 

In sum, for the inference task, we observed several brain 
areas that are associated with language processing. This 
finding perhaps indicates that despite their visual presentation 
the stimuli were semantically processed as participants made 
feature inferences.  

General Discussion 
Discussion on fMRI results:  Our findings suggest that 
multiple neural circuits mediate the representation of 
categorical knowledge – one that supports abstract rule-like 
information and the other that records concrete exemplar 
information.  The results from the present neuroimaging 
study indicate that classification requires a process that is 
oriented to perceptual information, while feature inference 
relies on more abstract and semantically oriented processes. 
Previous research showing distinctive neural circuits involved 
in memory-based and rule-applying processes may be 
described by these two differences. 

Our findings further suggest there are more than one 
attention systems involved in categorization processes.  It is, 
however, unclear what triggered different attention processes.  
That is, it might have been the differential processes of 
category label and stimuli feature, differences in memory-
based and rule-applying processes, and/or difference in 
perceptual and semantic processes.  

This distinction between semantic and perceptual 
information reflects the verbal and nonverbal distinction 
suggested by Ashby et al. (1998). Category labels are most 
typically expressed verbally, while other features are most 
typically expressed visually. Furthermore, category labels, 
which specify category membership, correspond to an object 
as a whole, while features correspond to specific parts of an 
object. Processing an overall aspect of an object and parts of 
objects may require different neural mechanisms.  
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