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Abstract of the Dissertation

Simulation Analysis of Zero Mean Flow Edge Turbulence in

LAPD
by

Brett Cory Friedman
Doctor of Philosophy in Physics
University of California, Los Angeles, 2013
Professor Troy A. Carter, Chair

I model, simulate, and analyze the turbulence in a particular experiment on the
Large Plasma Device (LAPD) at UCLA. The experiment, conducted by Schaffner
et al. [D. Schaffner et al., Phys. Rev. Lett. 109, 135002 (2012)], nulls out the
intrinsic mean flow in LAPD by limiter biasing. The model that I use in the
simulation is an electrostatic reduced Braginskii two-fluid model that describes
the time evolution of density, electron temperature, electrostatic potential, and
parallel electron velocity fluctuations in the edge region of LAPD. The spatial
domain is annular, encompassing the radial coordinates over which a significant
equilibrium density gradient exists. My model breaks the independent variables in
the equations into time-independent equilibrium parts and time-dependent fluctu-
ating parts, and I use experimentally obtained values as input for the equilibrium

parts.

After an initial exponential growth period due to a linear drift wave instability,
the fluctuations saturate and the frequency and azimuthal wavenumber spectra
become broadband with no visible coherent peaks, at which point the fluctua-
tions become turbulent. The turbulence develops intermittent pressure and flow
filamentary structures that grow and dissipate, but look much different than the

unstable linear drift waves, primarily in the extremely long axial wavelengths
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that the filaments possess. An energy dynamics analysis that I derive reveals the
mechanism that drives these structures. The long & ~ 0 intermittent poten-
tial filaments convect equilibrium density across the equilibrium density gradient,
setting up local density filaments. These density filaments, also with kj ~ 0,
produce azimuthal density gradients, which drive radially propagating secondary
drift waves. These finite k| drift waves nonlinearly couple to one another and
reinforce the original convective filament, allowing the process to bootstrap itself.
The growth of these structures is by nonlinear instability because they require
a finite amplitude to start, and they require nonlinear terms in the equations to

sustain their growth.

The reason why kj ~ 0 structures can grow and support themselves in a
dynamical system with no & = 0 linear instability is because the linear eigenmodes
of the system are nonorthogonal. Nonorthogonal eigenmodes that individually
decay under linear dynamics can transiently inject energy into the system, allowing
for instability. The instability, however, can only occur when the fluctuations have
a finite starting amplitude, and nonlinearities are available to mix energy among

eigenmodes.

Finally, I attempt to figure out how many effective degrees of freedom con-
trol the turbulence to determine whether it is stochastic or deterministic. Using
two different methods — permutation entropy analysis by means of time delay
trajectory reconstruction and Proper Orthogonal Decomposition — I determine
that more than a few degrees of freedom, possibly even dozens or hundreds, are
all active. The turbulence, while not stochastic, is not a manifestation of low-

dimensional chaos — it is high dimensional.
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CHAPTER 1

Introduction

1.1 Motivation

Thermonuclear fusion has the potential to solve the world’s energy problems. The
fusion of a pair of light nuclei, such as deuterium and tritium, releases more energy
than the fission of a uranium nucleus and much more energy than the chemical
reactions involved in the burning of fossil fuels. Furthermore, the fusion products
— unlike those from nuclear fission and fossil fuel burning— are relatively harmless
to the environment, and fusion fuel sources are much more abundant than fossil
fuels and fissionable uranium. The limiting component of deuterium-tritium fusion
reactions is the tritium, which can be made from lithium. Yet there is enough
lithium on Earth to power the world through nuclear fusion for at least a million

years [Wesl11].

Due to its great potential, scientists have been working on controlling fusion
reactions for over half a century. The community has made much progress, but
fusion is not yet a commercially viable energy source, and there are still several
scientific and technological obstacles to overcome before it is. The main obstacle
to achieving controlled fusion reactions is the confinement of the reaction fuel for
a long enough time at sufficiently high temperatures and densities to achieve a
self-sustaining reaction. One of the best ways to contain the fuel is to maintain
it in a plasma state and restrict the motion of the plasma using magnetic fields.

Possibly the best way to do this — and certainly the most intensely studied — is by



using a tokamak. Tokamaks around the world have already achieved temperatures
and pressures necessary to produce fusion but have yet to confine the plasmas for
long enough to achieve a self-sustained fusion reaction. Seemingly, this problem
can be solved by making the tokamaks larger, although it’s still unclear if the large
tokamaks will be able to operate in a high confinement mode (H-mode), which
will probably be necessary in order to keep the tokamaks economically viable. It’s
also unclear if the material walls of the larger tokamaks will be able to survive

the large plasma fluxes.

The plasma confinement time, for a given sized tokamak, is inversely propor-
tional to the rate of cross-field transport in the tokamak, so it’s important to know
how to minimize that transport. Now, while the energy transport must be min-
imized, fusion product alpha particles (and other non-intrinsic impurities) must
be transported out of the core so particle transport must be kept sufficiently high.
The cross-field particle and energy transport is primarily driven by microturbu-
lence, which is driven by instabilities due to the presence of free energy sources.
These free energy sources are due to non-Maxwellian velocity-space features of
the distribution functions, spatial inhomogeneity of the distribution functions,
and stored electromagnetic energy. These energy sources always exist in the nor-
mal operating conditions of a tokamak. For example temperature gradients must
exist in tokamaks since the hot tokamak core cannot extend all the way to the
walls, which are kept close to room temperature. In fact, we must take great care
in order to prevent a high flux of extremely hot plasma from hitting the material
walls, which can melt them or sputter atoms into the core. Transport can actually
help in this regard by spreading out the plasma beam that crosses the last-closed-
flux-surface so that its flux per unit area hitting material limiters and divertor
targets is reduced. Altogether, turbulent transport is needed in some ways, but is
detrimental in other ways. A balance may be key, or maybe clever techniques and

engineering can be used to control the transport in the necessary ways. In either



case, it’s important to be able to predict how the turbulence and the transport

will react to changes in design or changes in operational parameters.

Predicting transport has been a long, slow research activity for some time.
One large problem is that turbulence is not completely understood even in neutral
fluids, let alone in tokamak plasmas. Nevertheless, at this point, many aspects of
turbulence and transport in the tokamak core are fairly well-understood, largely
due to the success of gyro-kinetic simulations. Turbulence in the edge, on the
other hand, is not as well-understood for several reasons. One, the edge region
contains complex magnetic field geometry, where the field lines range from open to
closed, the open ones ending on material surfaces. Two, turbulent fluctuations are
high, invalidating current forms of the gyro-kinetic equations, leaving no model
to absolutely apply to the entire edge region. Three, the edge contains a zoo
of potential instabilities that can drive the turbulence, and seemingly different

instabilities exist in different tokamaks and in different operating regimes.

Numerical simulations have helped improve understanding of physical pro-
cesses and spatial and temporal structures in all kinds of turbulent settings. How-
ever, experimental observations and analytic theory generally lead tokamak re-
search, with simulations merely trying to confirm the ideas obtained from these
more established methods. Nevertheless, simulations can produce more detailed
results than analytic theory and more spatial information than experimental obser-
vation, making them valuable. Furthermore, the hope is that simulations can lead
experiment, providing predictions before experiments are done, or at least provid-
ing enough physical insight to direct experimental efforts. In some instances, like
in the cores of tokamaks, the community has made enough progress on simulations
(specifically gyro-kinetic ITG simulations) that simulations have uncovered new
unexpected physics (such as the Dimits shift of ITG turbulence [DBB00]). But
in other instances, like in the edge of tokamaks, nonlinear turbulent simulations

don’t yet agree enough with experiment to provide good physical insight, let alone



predictive capabilities. A possible path to making progress on this problem is to
reduce the problem to a simpler one, achieve simulation validation with that, and
then slowly move up to more and more complex situations. A natural place to

start is simulation of linear plasma devices.

Magnetic plasma devices that are simpler and colder than tokamaks, like the
Large Plasma Device (LAPD) at UCLA [GPLO91], have long been used to study
basic plasma processes that are relevant to tokamaks. These machines, which
generally produce plasma turbulence, offer a more experimentally accessible envi-
ronment than a tokamak. They are also easier to understand due to their relative
simplicity, especially with regard to their magnetic field configurations, which also
reduces the number of instabilities present in them. Furthermore, they are colder
and thus more collisional than tokamaks, making fluid equations more applicable
than they are in tokamaks. It should be easier to produce a verified, validated
simulation of turbulence in a linear machine like LAPD than in a tokamak. And
any insight gained from analysis of the simulation may apply to tokamak edge
turbulence as well, or at least provide methods of analysis or ideas that may be

checked when tokamak simulations become more successful.

1.2 Dissertation Summary

This dissertation focuses on direct simulation and analysis of low frequency tur-
bulent fluctuations in LAPD. Thus, in order to introduce important concepts that
I will use, in Chapter 2, I briefly describe the modern paradigm of turbulence. I
touch on the statistical Kolmogorov theory that has dominated the history of tur-
bulence investigation, but I emphasize the newer deterministic turbulence theory
that allows for the description of turbulence by a system of deterministic, dynam-
ical, differential equations. The deterministic theory revolves around solution sets

of the nonlinear differential equations called attractors, and in particular, strange



attractors, which give turbulence its random-looking properties. These attractors
can have different phase space dimension, and when their dimension is high, the
turbulence can be too difficult to describe with the deterministic theory, so that
the statistical theory must be used. The statistical theory is based on different
scales of fluctuations or eddies and how they interact with the background and
with each other. I focus primarily on the instability interactions that drive the
turbulence using the free energy contained in the equilibrium profile gradients.
Since I find that the turbulence in LAPD is driven by a nonlinear instability with

a subcritical flavor, I review the concept of subcritical instability.

After this brief introduction to turbulence concepts, I go on to describe the
simulations that I use to reproduce the turbulence in LAPD. In Chapter 3, I re-
view the plasma fluid model that I use in the LAPD simulations. Since LAPD
has low temperature (T, < 10 eV and 7; < 1 eV) and is very long, it is highly
collisional, making it suitable for modeling with fluid equations. Thus, I use the
Braginskii two-fluid model for the equations, but I use only four of the equations,
neglecting ion temperature, sound waves, and magnetic field fluctuations. Then,
in Chapter 4, I show the equations as they appear in the simulations, and I discuss
my methods for numerically reproducing realistic LAPD turbulence. Specifically, I
separate the independent variables into time-independent (equilibrium) and time-
dependent (fluctuating) components. I then take the equilibrium density, electron
temperature, and magnetic field profiles from experimental measurements, lin-
earize the equations, and then insert back only the advective nonlinearities into
the equations. I simulate a particular LAPD experiment conducted by Schaffner
et al. [SCR12], in which they finely control the equilibrium radial electric field
by biasing an azimuthal limiter. Although they access many plasma states with
different electric field and pressure profiles, I only simulate and analyze the one
state in which the radial electric field is nearly eliminated because this allows

me to disregard the equilibrium electric field profile, simplifying the simulation



model. This plasma state, however, is different from the standard LAPD oper-
ating state — which has an intrinsic electric field. The null field state is more
turbulent in that the fluctuations are larger and they extend further into the core.
I actually do show simulation results of the non-zero radial electric field plasma
states in Appendix B, but don’t cover them in the main text. Furthermore, in the
simulations, I use ad hoc density and electron temperature sources to maintain
the equilibrium gradient drive over time, I use artificial diffusion and viscosity for
saturation, and I use a number of different idealized axial boundary conditions.
As for performing the simulations, I use the BOUT++ code, for which I provide
details in Appendix A.

In Chapter 5, I overview the results of the simulations. I begin showing linear
instability growth rate curves, move onto the space-time evolution of the turbu-
lence, and finally show and discuss statistical properties of the turbulence. The
analysis therein is simple, straight-forward, and model independent. I conclude
from it that the simulations reproduce statistical turbulent fluctuations that are
statistically similar to those of the experiment in both a qualitative and quan-
titative manner, which validates the simulation model. Figure 1.1 shows several
statistical properties of the experimental and simulated turbulence that I also show
in Chapter 5. The different curves — other than that labeled “Experiment” — cor-
respond to simulations with different axial boundary conditions. It is clear that
all but one of these simulations produces experimentally realistic turbulent fluctu-
ation statistics. The one truly mysterious result, however, can be seen in Fig. 1.1
f). That is, all of the experimentally realistic simulations have axial wavenumber
spectra that peak at & = 0. The reason why this result is so interesting is because
the only linear instability in the simulations — except for the Sheath simulation —
is the linear drift wave instability, which has positive growth rate only for finite
k). The most unstable linear modes or waves generally dominate the structure of

plasmas, but this isn’t the case in these simulations.
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Figure 1.2: Nonlinear instability diagram

To determine the origin of this unusual result, I analyze the simulations using
energy dynamics. Energy dynamics analysis use the simulation model as well as
all of the spatial and temporal information output by the simulations to reveal
dynamical processes such as energy injection into the fluctuations from the free
energy equilibrium gradients, energy transfer between different waves or modes,
energy transfer between potential and kinetic energy degrees of freedom, and en-
ergy dissipation of the fluctuations. In Chapter 6, I derive the energy dynamics
equations for my simulation model and explain which terms in the model cor-
respond to the different processes. Specifically, I show that the terms involving
advection of equilibrium variables supply energy injection, the nonlinear advec-
tive terms cause mode to mode transfer, the adiabatic response terms transfer
energy from potential to kinetic, and the collisional, diffusive, and viscous terms
supply the dissipation. Furthermore, I decompose the turbulent fluctuations in
two bases: a partial Fourier basis and a Proper Orthogonal basis, and I derive the

energy dynamics equations for each of the basis functions.



Then in Chapter 7, by inputting the simulated turbulent results into the basis-
decomposed energy dynamics equations, I uncover the primary mode-based pro-
cesses that control the turbulence including that which supports the & = 0 fluc-
tuations. In fact, the nonlinear instability cycle that supports the &k = 0 fluctua-
tions is the most dominant process controlling the turbulence. I show a diagram
of the cycle in Fig. 1.2. The process begins with the “Energy Injection” step, in
which kj = 0 convective filaments or flute-like structures advect density across
the equilibrium density gradient, forming & = 0 density fluctuations. These den-
sity fluctuations break up by axial three-wave transfer into finite &) waves. An
equivalent way to look at this step is that the azimuthal gradient that results
from the density filaments drives radially propagating drift waves that have finite
k). These finite k) drift waves — represented at the bottom of the diagram — have
access to the adiabatic response, meaning they can transfer energy between poten-
tial energy of the density fluctuations N and the kinetic energy of the potential ¢
fluctuations. The resultant drift waves then transfer some of their kinetic energy
back to the convective filaments. This process is self-sustaining and it is nec-
essarily nonlinear because it requires finite amplitude fluctuations to begin, and
the three-wave transfers from the & = 0 density fluctuations to the drift waves
and from the drift waves back to the convective cells are both purely nonlinear

processes.

Despite the nonlinear nature of the instability cycle, linear effects are still
important because the nonlinearities of the system are energetically conservative.
This means that the energy that supports the process ultimately comes from
a linear mechanism, specifically that in which the convective filaments advect
density across the equilibrium density gradient. Such a process is unintuitive
because all kj = 0 linear eigenmodes of the system are stable. This means that,
individually, each & = 0 eigenmode decays, losing energy to the equilibrium

gradient rather taking it. Yet a linear process at k| = 0 still drives energy into the
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turbulent system. The process responsible for this is a transient growth mechanism
unique to nonorthogonal stable linear eigenmodes. Because the linear system is
non-normal, the linear eigenmodes are not orthogonal to one another. In fact,
they are largely anti-parallel to each other. When this happens, even when all
of the eigenmodes decay, the system as a whole may still grow, although only
transiently. Nevertheless, this growth, when reinforced by nonlinear effects, can
sustain itself, continuing to drive energy into the system. I discuss this first in
Chapter 2, then again in Chapter 7. Interestingly, the nonlinear instability and
the linear mechanism that drives it are analogous to those which drive turbulence

in many subcritical neutral fluid flows.

While I focus only on the simulations that use periodic axial boundary con-
ditions in Chapter 7, in Chapter 8, I generalize to the non-periodic simulations.
These merit a separate discussion because without the axial periodicity, the linear

eigenmodes can have non-sinusoidal axial structures, or put another way, each
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eigenmode can have many non-zero Fourier coefficients, including the Fourier co-
efficient of kj = 0. And, since the nonlinear instability is dependent upon kj =0
effects, it can be more difficult to differentiate between linear and nonlinear in-
stability in this case. I present arguments and analysis, however, supporting the
robustness of the nonlinear instability in the simulations with non-periodic ax-
ial boundary conditions. One such analytical technique I use is determining the
fraction of turbulent energy contained in the most unstable linear eigenmode. I
preview the result in Fig. 1.3, showing this fraction R,, as a function of m num-
ber. Except for a few places, the fraction is less than 0.1, indicating the small

contribution of the linear instability in the turbulence.

Finally, in Chapter 9, I explore the deterministic, chaotic nature of the experi-

mental and simulated turbulence. From Chapters 5-8, I use analytical techniques
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based on the statistical and structural nature of turbulence. These require a lot of
information that can only be obtained from well-validated simulations. But these
don’t answer deep questions regarding the solutions of the differential equations,
like are they deterministic, and if so, what is the dimensionality of the attractor
solution? In fact, if the attractors are low dimensional, meaning the turbulence is
not stochastic, simpler analyses, highly reduced models, and non-simulation recon-
struction techniques may be used to understand the turbulence. So, in Chapter 9,
[ attempt to find the deterministic nature of the turbulence and the dimensionality
of the attractors. I do so first by exploring the temporal structure of time signals
from experimental and simulation observables. The Lorentzian pulse structure of
the time signals indicates that the turbulence is deterministic, but the range of
Lorentzian pulse widths, the non-exponentiality of the power spectra, and more
direct techniques reveal that the turbulence is high dimensional, containing many
effective degrees of freedom. I show a result of one of these techniques — the per-
mutation entropy — in Fig. 1.4, where I plot the permutation entropy against the
permutation complexity for experimental and simulation time signals along with
other representative signals. The other time signals come from two chaotic mod-
els — the Lorenz and Mackey-Glass models — and one stochastic model: fractional
Brownian motion. Due to the relative location of the experiment and simulation
in relation to the chaotic and stochastic models, it is evident that the LAPD
turbulence is chaotic, but less so than the chaotic models, which is perhaps a
manifestation of a multiple time-scale high-dimensional process. I further confirm
the high dimensionality of the process with a Proper Orthogonal Decomposition,

which shows that many degrees of freedom are active in the turbulence.
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CHAPTER 2

Turbulence and Instability

Turbulence is a ubiquitous phenomenon in fluids that has been recognized and
studied for centuries. It is often called the last unsolved problem in classical
physics because we cannot predict in detail how or why turbulence occurs or fully
predict its behavior. It is, however, extremely important to gain an understand-
ing of it in laboratory plasmas and magnetically confined fusion devices because
it causes increased particle and energy transport. This is not necessarily a good
or bad property as far fusion devices are concerned on the whole — better energy
confinement is needed in the core but not in the scrape-off-layer, while good parti-
cle confinement is needed in the scrape-off-layer but not in the core. Nevertheless,
an enhanced understanding of plasma turbulence would allow for greater control
to achieve the properties needed for fusion and would allow for greater prediction

of future machine performance.

2.1 Paradigms of Turbulence

In the past, researchers thought that turbulence was a random process that
could only be described in a statistical manner [TL72]. This is the classical
view of turbulence. This view, however, contradicted the also widely-held be-
lief that the Navier-Stokes equations can fully describe turbulent flow in neutral
fluids [McDO04]. This is contradictory because the Navier-Stokes equations are
deterministic (assuming yet unproven existence of the solutions), so they cannot

possibly describe a random flow. Apparently, some scientists in the first half of
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the 20* century didn’t regard this as a problem, while others took this as a cue to
abandon the fully equation-based approach to studying turbulence [TL72]. In any
case, statistical theory dominated. Not until the 1970’s was a modern determin-
istic theory of turbulence formulated. Nevertheless, the deterministic approach
does not mean that turbulent statistics are useless because even though the turbu-
lence is not random, it can still be stochastic. I note that random and stochastic
are often used interchangeably, but formally, stochastic refers to a variable whose
autocorrelation decays exponentially fast to zero. Thus, a deterministic system
may be stochastic, but not random. Deterministic systems are stochastic when
they are controlled by a large number of effective degrees of freedom. In stochastic
systems, statistical tools are the only effective tools [McDO04]. Even non-stochastic
systems are often described statistically, although they often have more informa-

tive descriptions as well.

In any case, certain statistical descriptions are still widely accepted in the fluid
and plasma communities. Perhaps the most important is Kolmogorov’s theory
(K41 theory) of high Reynolds number, small scale turbulence [Kol41, TL72]. It’s
based on the idea that large scale turbulent structures — generally eddies — are
driven by instability at the largest scales: the system and integral scales. These
then drive eddies of smaller scales in a cascading process. The cascade occurs
in the inertial scale range, which has a power law spectrum with index of —5/3.
When energy cascades down to the Kolmogorov scale, viscosity takes the energy
away from the eddies, thermally transferring it to the fluid. I show a typical
Kolmogorov spectrum in Fig. 2.1. The relative success of the Kolmogorov theory

in describing some fluid flows has led to its widespread use [Man04].

The modern view of turbulence is that it is deterministic [SG81, McDO04].
Most of the plasma community readily accepts this as evidenced by its use of
deterministic equation sets and simulations used to model plasma turbulence.

The first clue that deterministic equations could describe something as apparently
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Figure 2.1: Diagram of the Kolmogorov energy spectrum

random as turbulence was provided by Lorenz in 1963 [Lor63]. He showed that
a deterministic equation derived from the Navier-Stokes equations could exhibit
random-looking behavior, and that it was sensitive to small changes in initial
conditions. In 1971, Ruelle and Takens showed that the Navier-Stokes equations
are capable of producing chaotic solutions that are sensitive to initial conditions
and are associated with the mathematical concept of a strange attractor [RT71].
They also presented a sequence of transitions (bifurcations) that a flow undergoes
as the Reynolds number is increased on its way to a chaotic state: steady —
periodic — quasi-periodic — chaotic. This isn’t the only possible bifurcation
sequence; in fact, some flows like Poisueille pipe flow go straight from steady
to chaotic. In any case, it’s significant that the sequence is short and finite,
meaning that turbulence may occur at finite Reynolds number, and it can be
understood in terms of a strange attractor. Interestingly, Biskamp and Kaifen
showed that a system of three plasma drift waves undergoes a Ruelle-Takens

bifurcation sequence [BK85].
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Under the deterministic viewpoint, chaotic solutions can have different degrees
of complexity. The usual way to view turbulent solutions is in phase space (also
called state space), rather than in coordinate space. While the phase space of real
systems is infinite, the phase space orbits of solutions to dynamical differential
equations generally lie on some manifold that covers only a subset of the phase
space [Man04]. Thus, the dynamics are often effectively controlled by a finite
number of degrees of freedom. When this effective number of degrees of freedom
is small, the process is called low-dimensional chaos. When this number is greater
than 3, it is called high-dimensional chaos or hyperchaos, though technically, hy-
perchaos must involve a system with more than one positive Lyapunov exponent.
When the degrees of freedom approach infinity, the process is stochastic. A tech-
nique called time delay embedding, invented by Takens [Tak81], reconstructs the
multi-dimensional solution to a deterministic process given a single time signal.
This means that experimental data of a single observable at a single location can
reveal information about other variables at multiple locations [BP02]. This tech-
nique cannot be used for stochastic processes. It is important, then, to determine

whether turbulence is deterministic or stochastic.

2.2 Instability: Turbulent Drive

The main focus of this dissertation is on the specific process that drives turbulence
in LAPD. Turbulence is dissipative and therefore needs a source of energy to sus-
tain itself. Generally, this source comes from a gradient in a steady (equilibrium)
variable such as a flow or a pressure. Fluctuations that take energy from these
equilibrium gradients often develop certain unstable mode structures that con-
tinue to take energy indefinitely. The details of these instabilities are important
for understanding the onset of turbulence and the structure of turbulence. Both

the neutral-fluid community and the plasma community have studied instabilities
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in great depth.

2.2.1 Linear Instabilities Abound in Plasmas

Linear instabilities are those that can grow from infinitesimally small fluctuations
about an equilibrium. They can be calculated by linearizing a dynamical equa-
tion set about an equilibrium, where at least one equilibrium profile has a finite
gradient. A linear dynamical system can be written in the form

?3_:; = Mv (2.1)
where v is a vector of independent variables that describe the state of the sys-
tem and M is a matrix of coupling coefficients and differential operators. If the
equations are coupled, M is not diagonal. Assuming v has an exponential time
dependence, this equation is an eigenvalue problem, with (generally complex)
eigenvalues 7; and eigenvectors &;, which are linearly independent. If any of the
eigenvalues sit in the right half of the complex plane, their associated eigenvec-
tors will grow exponentially from infinitesimal noise. In this case, the system is
linearly unstable. Now, even though an equilibrium profile with a finite gradient
is a necessary condition for linear instability, it is not sufficient. At least one of
the eigenvalues must have a positive real part. This is why so much effort goes

into testing plasma systems for linear instability.

In general, plasma physics has so many more types of equilibrium gradients
and physical processes than neutral fluids, that there are many more linear plasma
instabilities than linear neutral fluid instabilities. Plasmas have linear instabili-
ties due to density gradients, temperature gradients, velocity gradients, current
gradients, magnetic field curvature, and non-Maxwellian velocity-space features
— to name a few [Wesll, Che06]. Linear plasma instabilities can be collisional,
collionless, electrostatic, electromagnetic, ionization-related, sheath-induced, etc.

The shear number of instabilities can be overwhelming. In physical systems, any
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number of linear instabilities can be present at the same time, combining with
each other, with some being more significant than others. Often times, it can take
great effort to identify a particular linear instability with particular properties
that is responsible for turbulence in a given situation. This can be important if
one wants to create reduced models or if one wants to be able to predict the type
of turbulence that will occur in future machines. Unfortunately, however, linear
instability is just the tip of the iceberg because turbulence is inherently nonlinear,

which opens the door for even more instabilities.

2.2.2 Supercritical Stability and Subcritical Instability

While the plasma community has focused much attention on linear stability of
various plasma systems, the neutral-fluid community has long been aware that
nonlinear stability effects are crucial to explaining observed transitions from lam-
inar to turbulent flow [Kro99]. The foundations of the theory of nonlinear hy-
drodynamic stability were laid by Landau [Lan44, LL59]. While his ideas have
required much elaboration, qualification, and application, they still contain many
ingredients of modern day theory. I outline some of those ideas, following the

treatment in Drazin and Reid [DR81].

Landau began with the linear theory of stability of a steady flow, which has a
spectrum of linearly independent eigenmodes, each with growth rate o. For some
dimensionless parameter R (such as the Reynolds number), when R < R., all
modes have o < 0. As R increases above R., one mode becomes unstable with
o > 0, where 0 ~ R — R, for |R — R.| < 1. He described the evolution of the
amplitude |A| of the most unstable or least stable mode by what is now called the

Landau equation:
d|A]?
dt

= 20|AP* — 1|A]* (2.2)

where [ is the Landau constant and the [|A|* term is the nonlinearity. Landau’s
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equation admits an analytic solution given an initial condition, making it easy to
explore. Several different qualitative scenarios arise depending on the signs and
magnitudes of ¢ and I. If [ > 0,0 > 0, as t — oo, |A| — (20/1)"/? no matter
the value of the intial condition Ay. This value of A, = (25/1)'/? is called a fixed
point attractor with a basin of attraction consisting of all values of Aj since any
initial state asymptotically evolves to it. Attractors are important objects in the
field of dissipative dynamical equations. Note that the linear problem is unstable
because |A| — oo as t — oo, but the nonlinear problem is stable in that it evolves
to a finite value as t — oo. This is called supercritical stability. If [ > 0,0 < 0,
as t — o0o,|A| — 0 for both the linear and nonlinear problem. Here, the point
|A| = 0 is the fixed point attractor. The situation is rather simple for [ > 0 and
the bifurcation diagram for this is shown in Fig. 2.2 a). The branching of the

curve of the equilibrium solutions at R = R,,|A| = 0 is called a bifurcation.

On the other hand, if [ < 0,0 > 0, both the linear and the nonlinear problem
are unstable with the nonlinear problem growing super-exponentially in time,
becoming infinite at finite time. Such a situation is unphysical, and the Landau
equation, which only has a single degree of freedom, is too simple in this case.
The more interesting case is when [ < 0,0 < 0. If Ay < A., the solution decays
to zero as t — oo. However, if Ay > A., the solution is unstable and breaks
down at finite time. This means that the system is unstable only when the initial
condition has a finite amplitude, which is in contrast to a linear instability, which
is unstable to infinitesimal initial perturbations. Finite amplitude instabilities
are called nonlinear instabilities. Fig. 2.2 b) depicts the bifurcation diagram for
the case of [ < 0. In this figure, Rq represents a Reynolds number below which
the unstable bifurcated solution doesn’t exist. This isn’t a part of the Landau

equation, but Landau suggested that this should be the case.

Furthermore, unlike in the supercritical case, the subcritical case contains re-

gions (R > Rg) where the unstable solution is not bounded by a higher region of
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Figure 2.2: Supercritical and subcritical bifurcation diagrams

stability, indicating that the solutions become infinite. In reality, this is unphysi-
cal, and the simple Landau equation isn’t sufficient to find the attractor solution.
Now the subcritical case is so interesting because it allows for instability and
turbulence when a system is linearly stable. This seems to be the case in several
different kinds of flows. Landau asserted that Poiseuille pipe flow is an example of
this [Lan44]. Poiseuille pipe flow, which is flow with a parabollic velocity profile, is
linearly stable for all R, so that R. = co. But experimentally, it is known that for
R = Rg ~ 2000, it becomes unstable to finite disturbances. Plane Couette flow
(flow with linear velocity profile between two infinite moving planes) is another
example of this. Plane Poiseuille flow, also admits subcritical instability, but it

has a finite R,, so it’s more representative of Fig. 2.2 b) [TTR93].

Since the Landau equation has only a single degree of freedom, its attractor
solutions are always fixed points. When the governing equations contain more
degrees of freedom, the attractors may have higher dimension, and bifurcations can
change the dimension of the attractor. For instance, the Hopf bifurcation is one in
which the attractor evolves from a fixed point to a one dimensional periodic limit

cycle. A second Hopf bifurcation brings about a limit torus. Other bifurcations
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can result in strange attractors, which have fractal dimension [Man04].

2.2.3 Non-normality, Transient Growth, and Subcritical Turbulence

Subcritical instability is especially unintuitive in the common case where the non-
linearities of the equation set are energetically conservative. Then, only the linear
terms in the equations can extract energy from the equilibrium gradients. It
seems reasonable that when all of the linear eigenmodes of a system are stable,
there shouldn’t be any instability. This makes subcritical instability a mysterious
phenomenon. However, several neutral-fluid researchers in the early 1990’s ex-
plained the linear mechanism behind nonlinear subcritical growth [Gus91, BF92,
RSH93, RH93, TTR93, HR94, Hen96]. The mechanism requires that the eigen-
vectors of the linear system be nonorthogonal. In other words, the linear operator
matrix (like M in Eq. 2.1) must be non-normal. Such non-normality is a neces-
sary condition for sustained subcritical turbulence in systems with conservative

nonlinearities.

Iillustrate the mechanism behind sustained subcritical turbulence with a sim-
ple diagram in Fig. 2.3, which represents a two-dimensional two-state system. I
start in Fig. 2.3 a) with two 2D linear eigenvectors that are not orthogonal to
one another, but are largely anti-parallel with a 30° angle between them. I give
them each a starting amplitude so that they form a leg and a hypotenuese of a
30-60-90 triangle. The sum of these vectors, which is the other leg, is the initial
state of the system. The squared length of this is the energy of the system. Note
that the total energy of the system is |[u+ v|* = |u|? + |[v|? + 2u - v. So since
the eigenvectors are nonorthogonal, the total energy of the system is not just the
sum of the individual energies of the eigenmodes (Jul? + |v|?), but it includes an

interaction term (2u - v) that can be positive or negative.

Now, in Fig. 2.3 b), I show the result of purely linear evolution of the system.
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Linearly, since the vectors are eigenvectors, they grow or decay exponentially at
given rates 7,,7v,. And since I am interested in the subcritical case, I give both
of the vectors negative growth rates. Furthermore, u has much smaller damping
rate than v. After a certain amount of time, under purely linear action — where
each vector decays at its characteristic decay rate — the system resides in the state
shown in Fig. 2.3 b). Note that I have changed the scales on the axes because
the triangle has become much smaller. Perhaps surprisingly, even though both
vectors u and v have decayed and have smaller magnitudes than they did in
Fig. 2.3 a), the total energy of the system (the green line) has grown! Clearly,
the reason is that the interaction energy between the two vectors has become less
negative. Moreover, if the system were to continue evolving linearly, the total
energy would eventually decay as the vectors become smaller. Therefore, the
growth of the total energy from a) to b) is called transient growth. One may
wonder where this transient energy comes from. The answer is that the energy
comes from the equilibrium gradients — the same place it comes from for unstable
linear eigenvectors. So systems in which the fluctuations are made up of only
nonorthogonal stable linear eigenvectors can transiently grow in energy before
decaying. At small times, the growth has been shown to be algebraic, meaning it
is proportional to time [Wal95]. This is in contrast to growth by unstable linear

eigenmodes, which is exponential in time.

Now the linear growth in non-normal linearly stable systems is only transient,
but the nonlinearities in the full nonlinear systems can take this transiently in-
jected energy, mix it around, and sustain the fluctuation energy or sustain the
turbulence indefinitely. In Fig. 2.3 ¢), I show how the nonlinearities, which con-
serve the total energy, can mix the energy between individual modes and the
interaction energy. The nonlinearities can essentially prop up the linear eigen-
vectors’ individual energies without injecting net energy into the system. Finally,

Fig. 2.3 d) shows linear decay of the eigenvectors, bringing the system back to
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Figure 2.3: A simple diagramatic illustration of how non-orthogonal stable modes

sustain themselves in subcritical systems

its original state with its original energy. Altogether, this is the basic mechanism
of subcritical instability or self-sustained subcritical turbulence in systems with
conservative nonlinearities. It is basically a linear mechanism, but it requires
nonlinearity to sustain or bootstrap itself. Although my simple diagram makes it
seem as though the transient growth mechanism is rather weak (amplifying the
total energy from 25 to 36), the mechanism can amplify energies by factors of

several thousand in realistic systems [Gus91, BF92].
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CHAPTER 3

The Braginskii Fluid Model and LAPD

3.1 LAPD Suitability to the Braginskii Fluid Model

At a basic level, the state of a plasma is described by seven-dimensional dis-
tribution functions f;(x,v,t) for each species j. The behavior of the plasma is
described by the system of kinetic equations (Boltzmann equations), which evolve

the distribution functions forward in time:

OFf . Of: Of
a—?jtv-ij%—;—Jj(Ejtva)-a—{j:(a—?)o- (3.1)

(%)C is the change in the distribution function due to collisions. For plasmas,
the collisions are Coulomb collisions, and the collision term takes the form of
the Fokker-Planck operator. With this operator, Eq. 3.1 is called the Fokker-
Planck equation. Now it is well known that the Fokker-Planck equation cannot be
solved numerically for problems that require time intervals too much larger than
the electron-cyclotron time due to computational time limitations. The phase
space is just too large. Therefore, reduced equations, such as gyrokinetic, drift
kinetic, or fluid equations have been derived to produce numerically tractable
equations. These equations are all derived under certain physical assumptions
such as strong guiding magnetic fields, small fluctuation levels, or slow spatial

and/or time variations such that these different equations are best applied to

different physical situations.

The equations that are arguably most suitable to describe waves and tur-

bulence in LAPD — and fastest to solve numerically — are the fluid equations,
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specifically those derived by Braginskii [Bra65]. In deriving his equations, Bragin-
skii approximates the solution as f; = f 4 f] where the zero-order piece f} is a
Maxwellian and the first-order piece fj1 is a perturbation on the zero-order distri-
bution function: |f/| < f. The equations are then derived by taking moments of
the Fokker-Planck equation to create coupled equations of the independent vari-
ables, n;, vj, and Tj. Now certain requirements must hold to justify the Braginskii
approximation, all of which have the flavor that macroscopic quantities must vary
slowly in time and space. This is generally caused by strong relaxation processes
such as collisions, which keep the distribution functions close to Maxwellians. In
general, for the Braginskii equations to be applicable, processes of interest must
occur on time intervals much greater than the collision time and quantities should

vary slowly over distances traversed by the particles between collisions.

Specifically, slow time variation requirement can be written as % < v, where
for electron drift wave turbulence, this is approximately w, < v,. Table 4.3.2,
which displays typical LAPD operating parameters, shows that w, /v, ~ 0.01. The
requirement that spatial quantities vary slowly compared to the collisional mean
free path can be written simply for the direction parallel to the magnetic field as
Aei ~ Aee < L. For LAPD, A/ L ~ 0.01. For the direction perpendicular to the
magnetic field, the same kind of relation A,,f, << L, must also hold. However,
due to the cyclotron motion of particles around the magnetic field, A, is really
the Larmor radius, unless the collisional mean free path is less than the Larmor
radius. For electrons, p, < A\¢; and p./L; ~ 107* where L, ~ 0.1 m. For the
ions, the ion cyclotron frequency is close to the ion collision frequency, meaning
that either the ion Larmor radius or the ion mean free path may be used. Using
the Larmor radius, p;/L; ~ 0.01. Therefore, the collisionality is high enough
and the machine dimensions are large enough so that the Braginskii fluid model
describing drift wave turbulence should be applicable to LAPD. Note that this

doesn’t apply to high frequency and high k| waves.

25



3.2 The Braginskii Equations

The Braginskii fluid equations are as follows: the continuity equation for species

J, electrons or ions, is [Wesl1, Bra65]

on;
The momentum balance equation is
dv; oll;,
njmj—j = —ij — jop + TL]'QJ'(E + Vj X B) + Rj. (33)
dt (99(:5

pj = n;1} is the pressure. I,z is the stress tensor, which involves the products
of viscosity coefficients and rate-of-strain tensor components. The viscosity coef-
ficients are some of the several terms that are called transport coefficients. The
transport coefficients are calculated by the Braginskii procedure in terms of n,
v, and T. R;, which involves several other transport coefficients, is the rate of
collisional momentum transfer. The momentum transfer from ions to electrons is
given by

3 eve
R, = —meneue(0.51u||e + uLe) — O.71neVHT€ _ 5” v

bxVT,  (3.4)

ce
where u = v, — v; and v, is the electron collision frequency with ions. R, includes
both the friction force and the thermal force. The thermal force, like the friction
force, is due to electron-ion collisions, but its origin is in the gradient of the
collisionality due to the temperature gradient. So, the thermal force terms are
those proportional to the gradients of temperature. R; = —R. in a fully ionized
plasma with one ion species. However, LAPD has a significant neutral density.

Collisions with neutrals are much more important for the ions [PUC10al. So
Ri = —Re — N;M;VinVi. (35)

The energy balance equation is

3 oT,

Ovja
_n . —
27 Ot

= —”Vj'VTj—PjV'Vj—V‘qj—Hjaﬁa—m

+ Q) (3.6)
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where the term involving the stress tensor describes viscous heating. The electron

heat flux (with more transport coefficients) is

3Ve
Qe = Ny (0.71u + 5 Y b x u)

ce

T, 4,661 B,
- (—3.16V||Te S VA beTe) (3.7)
Mele W, 2Wee

where the first part of this expression constitutes convection, while the second

part is conduction. The ion heat flux is

p 20} oV
g = 2 (—3.9v,|ﬂ Bl vl e beﬂ) . (3.8)
miV; We; 2Wei

The last transport coefficients are in the heating (). The ion heating due to
collisional heat exchange between ions and electrons is

Q; = 3m€ neve(T, — T) (3.9)

my;

while the electron heating is
Q.=-R-u—-Q; (3.10)

The electron heat exchange involves an ohmic heating contribution (R -u) that
is absent from the ion heating because electrons colliding with ions transfer very

little momentum to the ions.

3.3 The Vorticity Equation

The Braginskii equations in the previous section contain electric and magnetic
fields which must be self-consistently determined by the charges and currents
that are evolved by the equations. This is done with the inclusion of Maxwell’s

equations. T'wo of those equations are used to write the fields in terms of poten-

tials:
0A
E = —V(b—a (3.11)
B=V x A.
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The vector potential A is strictly a fluctuating quantity, meaning it is not used

to describe the guide field By. The next equation,
VxB=V(V-A) - VA = uj (3.12)

is used to relate the vector potential to the current, where the displacement current
is neglected as is generally done in plasmas. Due to quasi-neutrality —n, =n; =n
— it is difficult to keep track of the very small differences in the densities, so the
Poisson equation is difficult to implement numerically for the main part of the
plasma. A more useful equation that can be used instead is the conservation of
charge (or ambipolarity condition), V - j = 0. The vorticity equation is derived

from this equation.

For the current, j = en(v); — v|e) + en(vi; — vie). In LAPD, the parallel cur-
rent is carried primarily by the light electrons, while the perpendicular current is
primarily carried by the ions, which have larger Larmor radii. So the conservation

of charge equation can be simplified to
Vi(nvge) = Vi - (nvy). (3.13)

The perpendicular ion component of this equation is derived from Eq. 3.3 for the
ions. Neglecting terms that have finite ion temperature (pressure and stress ten-
sor), and solving for the ion velocity in the Lorentz force term, the perpendicular

ion velocity has three terms [PUC10a, SCO03]:
Vi, =Vg—+ Vpi + vy (314)

where the E x B velocity is vy = E x B/B? = —V ¢ x B/B?, the polarization
velocity is v = (1/wei)b X (0 + v; - V)v;, and the Pedersen velocity is v,; =

(Vin/wei)b X v;. The charge conservation equation then takes the form:

1
Vi (nvye) = ;VL “Inb x (Oy +v; - V 4+ ) vy (3.15)
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Note that the E x B velocity doesn’t contribute to the current due to the electrons
producing an equal and opposite E x B current. I now employ the approximation
v; ~ vg to Eq. 3.15. This approximation wasn’t appropriate of course for Eq. 3.14
due to the fact that vg doesn’t contribute to the current, but it is appropriate

here. Then,

1
V(nvye) = ;VL - Inb x (0 +vE -V + vy)ve] — (3.16)
m;

 eB?

VH(nv”e) = A\VAR [nb X (8t +vg-V+ Vin>VJ_¢] .

Next, defining the vorticity as w = V| - (nV 1 ¢), the vorticity equation reads,

P eB?
a_ = —Vg - VLw - VJ_VE : VJ_(TLVJ_Q&) -
n m;

Vi (nvje) — vinw. (3.17)
Finally, the term with the tensor product can be rewritten in a different form [PUC10a]:

Ow e 32
ot - Vi(nvje) — vinw.  (3.18)

1
:—VE-VLw—i—é(bXVLTL)'VLV%—

3.4 Minimizing the Equation Set for LAPD Parameters

3.4.1 The Reduced Equations

The continuity equations 3.2 for electrons and ions do not have to both be used
due to the quasi-neutrality condition n, = n; = n. So, if one focuses on the

electron continuity equation, then,
on
— = -V (nv,). 3.19
=V (nve) (319
Now, ve = V¢ + Ve, Wwhere v, = vg + Vg4 + Ve, with the diamagnetic velocity

bXxXVpe
eneB

Ve = which wasn’t included for the ions in Eq. 3.14 due to the neglect
of ion pressure. To a good approximation, the electron polarization velocity is
smaller than the E x B velocity, so that V - (nv ) = vg - Vn [PUC10a, SC03].

So, the continuity equation reads

on

pri —vg - Vn =V (ny). (3.20)
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Next, the momentum equations (Eq. 3.3), of which there are six (three for electron
velocity components and three for ion velocity components) are reduced to two
here. The first is the vorticity equation (Eq. 3.18), in which I used the perpendic-
ular momentum equations to derive it. The second is the equation for the parallel
electron momentum. I neglect the parallel ion momentum equation since vy > vy;
for LAPD. This eliminates ion sound waves from the model. The electron parallel

momentum equation is then

Ov)je
nMm, (;}l = —NMVEg - VUHe — VHpe — enE” — 0.71nVHTe — O.QV)lTrLenyev”e7 (3‘21)

where the viscous terms have been neglected. The conservation of energy equa-
tions (Eq. 3.6) are left. Since the ion temperature in LAPD is very low (7; <1

eV), the ion energy equation is neglected. The electron energy equation is [SC03]

3 0T, 3
571 ot = —§nvE -VT, — peVH’U”e -+ 0.71T6VH(m;||e) (3.22)
+V||(K||5VHT€) + 0.51menuevﬁe — 3%nVeTe,
mA

2

nTe

Mele

where x|, = 3.16

3.4.2 The Electrostatic Justification

Plasma currents create magnetic fields in plasmas. The perturbed magnetic fields
due to the perturbed currents that travel along or across the guiding magnetic field
are Alfvén waves. Drift waves that carry a magnetic component are called drift-
Alfvén waves. Often times, analytic and numerical calculations of plasma waves
and turbulence neglect the time dependent magnetic field perturbations, focusing
only on the electrostatic contribution to the waves, turbulence, and transport. In
the reduced fluid equations of the previous subsection, the magnetic perturbation
enters in two important ways. First, it enters the electric field term of Eq. 3.21

because E| = —V ¢ — —, where A is the parallel component of the vector

potential. Second, it affects the parallel gradient operator, V|| = b - V where b
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is in the direction of the total magnetic field [SC03]. In the electrostatic limit,
A — 0,50 B = =V ¢ and V|| = by - V. I take this limit in the remaining

chapters, but how justified am I to do so?

As a first step in answering this question, examine Eq. 3.21. The four inde-
pendent variables, n, ¢, v, and T,, which each have their own evolution equation,

are all present in Eq. 3.21. Taking the parallel projection of Eq. 3.12 gives
VA = —pojj| = ponevje. (3.23)

So Ay ~ poneL? v, where V3 ~ 1/L3. Then, Eq. 3.21 can be approximately

rewritten as,

dUH

e ov
nme% ~ =T, V||n+enVH¢+,u062n2L —H—1.71nV||Te—0.51menuev||e. (3.24)

ot

The electromagnetic induction term, (EM = enZ2L) is now written in terms

24
5t )
of v as EM = poe n2L2 e It can therefore be directly compared to the
other terms proportional to v”e to test for its importance. The other terms are

He

the inertial term, M = nm.—~ and the resistive term, R = 0.51m.nv.vj.. A
common way to compare these terms is to approximate the time derivative as the
ion cyclotron frequency % ~ wy and the perpendicular length scale as the ion

sound gyroradius L, ~ ps, where p; = ¢5/w. Then the ratio of the three terms

(obtained by dividing each term by eBnvj.) is:

.0l
M:EM:R:%:ﬂ:OE)Ve.

3.25

my Wee ( )
It can be seen from Table 4.3.2 that in LAPD, this ratio is 1 : 3.6 : 1.5. Thus, all
three terms are of the same order with the electromagnetic term slightly larger

than the other two. It seems then quite unjustified to use an electrostatic approx-

imation.

However, estimating % ~ W isn’t necessarily accurate. The equation set

describes drift waves and so a more proper estimate might be % ~ w,. Under this
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approximation, the ratio is 1 : 3.6 : 70, meaning that the resistive term is more
than an order of magnitude larger than the other two; however, the approximation
% ~ w is still rough and the numerical value of w, in Table 4.3.2 is somewhat of
an estimate itself. Moreover, one could also argue with the approximation of the
perpendicular length scale as the sound gyroradius. This is probably too small, in
which case the electromagnetic inductance has been underestimated. While it’s

clear that the inertial term is probably unimportant, the inductive term could be

important.

Similarly, the contribution of b ~ Ay in V| can be approximated in a similar
manner with similar inconclusive results. Without a clear separation between
the resistive and inductive terms, the best way to determine the validity of the
electrostatic approximation is by direct numerical calculation of the turbulence
with and without the electromagnetic contributions. Therefore, I simulated an
electrostatic and two electromagnetic versions of LAPD turbulence. The details
of the electrostatic code are described in Chapter 4 and in Appendix A.

The only difference between the electrostatic and the first electromagnetic sim-

ulation is the presence of the electromagnetic term en% in the parallel electron
momentum equation (Eq. 3.21). Of course the Maxwell equation (Eq. 3.12) must
also be included for the electromagnetic simulation. The second electromagnetic
simulation includes not only the electromagnetic induction term but also the A

contribution to V| in the parallel electron momentum equation.

Now, turbulence is best characterized and compared in a statistical and often
spectral manner. More details of turbulence characterization and comparison will
be discussed later, but for now, I make a few statistical comparisons between the
electrostatic and electromagnetic simulation results. Figure 3.1 shows the results
of the three simulations as well as the experiment — namely, a comparison of the
frequency spectra, the probability distribution function (pdf), and the RMS level

of the density fluctuations. The “Full Electromagnetic” curves are from the sim-
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ulation including the Aj contribution to V|, while the “Electromagnetic” curves
just include the A contribution to F|. Clearly, the fluctuations are statistically
similar in all cases and none of the simulations are inconsistent with the experi-
ment. However, the electromagnetic effects are noticeable, and as I include more
electromagnetic contributions in the simulations, the turbulent statistics more
closely resemble those of the experiment. I make no quantitative comparison

here, but rely only on a visual examination in making this conclusion.

Now, as mentioned above, I do not include any electromagnetic contributions
in the simulations used in the following chapters. It seems rather unjustified to
do so since I am clearly able to run electromagnetic simulations and they seem to
reproduce experimental turbulence with slightly better accuracy than the electro-
static ones. One justification for my abandonment of electromagnetic simulations,
however, is that electromagnetic simulations take a bit longer than electrostatic
ones due to the extra relation in Eq. 3.12 that is used to solve for A, which
requires an inversion of the Laplacian. This takes extra computation. Another
justification is that the electromagnetic equations make the energy dynamics anal-
ysis in Chapter 6 a bit more complicated. Both of these factors are mitigated,
however, if the inertial term nme% is dropped. Nevertheless, at the beginning of
this work, I strived to find the simplest possible model to describe the turbulence
in LAPD, and I determined that the electrostatic approximation was acceptable.
At that time, I didn’t have the results of Fig. 3.1. If I had the time, I would
redo all of the simulations and analysis to include electromagnetic contributions,
but drop the inertial term in Eq. 3.21. This is a clear route to take for future
work. Nevertheless, I am confident that electromagnetics would not change any
of my conclusions in this work. So for the remainder of this work, I will present
theoretical calculations, simulation results, and conclusions using the electrostatic

approximation.

33



Density Fluctuation PDF Density FFT Power (arb)

NR]MS

Figure 3.1: Statistical comparisons of turbulent electrostatic and electromagnetic

101!

10»12

0.06
0.04

0.02

10

Electrostatic
Electromagnetic
Full Electromagnetic

Experiment
L

a)

10*
f (Hz)

15 20 25

r (cm)

simulations to each other and to the experiment

34

30 35 40



CHAPTER 4

Simulation and Experiment Details

I simulate the model equations using the BOUT++ code [DUXO09], which I de-
scribe in Appendix A. There I discuss the nitty gritty aspects of the code and
the specific numerical routines that I use. In this chapter, I state and explain the
equations, boundary conditions, parameters, and profiles that I use in the LAPD
simulations through a purely physics perspective. In all of the simulations hence
forth (except for those in Appendix B), I use the same equations, parameters and
profiles. I change only the axial boundary conditions between simulations, which
I will discuss in Sec. 4.2. My goal is to simulate one particular LAPD experiment
that I describe in Sec. 4.3 and fully analyze it, so I use only a single set of profiles
and parameters. Scaling and sensitivity studies are beyond the scope of this work.
Therefore, in this chapter, I explain all details of the model that I use to simulate

and study the one particular experimental system.

4.1 The Equations

I use the Braginskii equations from Chapter 3 to model the LAPD turbulence. I
separate all variables into time-independent equilibrium parts and time-dependent
fluctuating parts so that I may use experimental time-independent profiles as in-
put. This is called a Reynold’s decomposition [McDO04]. The alternative is to solve
the full equations with no equilibrium/fluctuation separation and no experimental
profile input. The difficulty in this is the need to specify realistic sources, sinks,

and boundary conditions, which can be difficult to measure or estimate. This al-
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ternative method has been undertaken by Rogers and Ricci [RR10]. My approach
is easier to implement, and since the time-independent profiles are so important
in driving the turbulence, inputting the experimentally measured profiles helps
produce physically realistic turbulence. Because of my equilibrium/fluctuation
separation technique, I can linearize the equations, keeping only one nonlinearity
in each equation: the advective nonlinearity. While this isn’t necessary, it does
simplify the energy dynamics as formulated in Chapter 6. The justification is
practical rather than mathematical, and the partially linearized equations pro-
duce fluctuations that are quite statistically similar to experimental fluctuations,

which is shown in Chapter 5, so I feel justified in doing this.

In the equations below, all variables are dimensionless. I normalize all times
to the inverse ion cyclotron frequency w.; = %B;, velocities to the ion sound speed
Cs = \/%, lengths to the sound gyro-radius ps = ¢s/w.;, potentials to T,/e,
densities and temperatures to the density and temperature at the radial cylindrical
axis. I take quantities such as ¢, to be constant in these normalizations even
though such quantities are radially dependent because of the radial dependence
of their constitutive parts, i.e. the electron temperature. To calculate these
constants, I take the values of their constitutive parts at the radial axis. The
equations below appear the same whether or not the normalizations are constant
or functions of radius, but the transport coefficients in the code do depend on this

choice. Thus, the LAPD simulation equations are as follows:

0N = —vg - VNy — NoVvje + MNViN + Sy + {¢, N}, (4.1)
m; TeO m; i
875?}”6 = —g NO VHN — 171KVHT6 + gv||¢ — VeUle + {¢7U||e}7 (42)

Oyw = —NoV Ve — Vin@ + pViw + {9, @}, (4.3)

2 2 9
ol. = —vg V1. — 1.71§T50V||U||e + 3—%K“6V”Te

2me
M T+ up V2T, + Sp+ {6, T}, (4.4)

)

Note that the advective nonlinearities in each equation appear as the Poisson
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bracketed terms. Additionally, the only equilibrium profiles are Ny and T, which
are only functions of radius. ¢y = vjo = 0 in these equations. The linearized
vorticity is = V- (NoV 1¢). N, v, ¢, and T, are fluctuating first-order quanti-
ties. These equations contain some terms not found in the equations of Chapter 3.
First, there are the density and temperature sources Sy and Sr. I leave out mo-
mentum sources as well as the contribution of the density source to changes in
the momentum and temperature. Second, I have included diffusive (uyV? N and

purV3T,) and viscous (usV3 @) terms in Eqgs. 4.1, 4.4, and 4.3 respectively.

4.1.1 Sources

The density source is actually a source/sink. It models both the ionization of
neutral atoms as well as the recombination of ions and electrons. The sink action
in LAPD is dominated by parallel (along B) losses to materials at the machine
ends because the magnetic field prevents rapid radial loss. It’s also possible that a
layer of neutral atoms near the end of the machine opposite the cathode cools the
plasma enough so that recombination can be strong in this layer. The sink action
occurs at all radii with finite plasma density, which constitutes regions both inside
and outside of the limiter radius due to radial ion transport. If the sink action
is primarily at the end plates, the sink can be calculated by 2n,.c,/Lj, where
nse is the density at the sheath edge in front of the end plate, ¢, is the sound
speed at the sheath edge, and the factor of 2 accounts for the two plates. n,. and
cs are functions of radius such that the sink is strongest at the cylindrical axis
and decreases at larger radii. Calculation of the sink term requires knowledge of
the density and temperature at the end of the machine, which is generally not

measured experimentally.

The ionization source is strongest from the cylindrical axis out to the limiter
radius. The source term may be calculated with n.n, (ov), , where n, is the

neutral Helium density and (ov),_ is the ionization rate of Helium and is a strong
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function of temperature. Because the primary electrons that boil off the cathode
contribute significantly to the source, and the plasma temperature falls off outside
of the limiter radius, ionization is restricted primarily to inside of the limiter
radius. Ionization rates are readily available [Sta00], but the neutral density is
not, making the source difficult to calculate. However, it is clear that if one were
to sum up the source and sink and integrate axially, the region inside of the limiter

radius must be a net source, while the region outside of it must be a net sink.

When I simulate the turbulence in LAPD without the source terms, turbulence
drives radial transport such that the total flux-surface-averaged density gradient
relaxes over time as seen in Fig. 4.1 a) until the radial transport ceases. One may
notice that (Ny) ;. = (No + IN) ;, doesn’t become totally flat, but maintains a finite
gradient. This is a result of the turbulent transport ceasing. Normally, however,
when there is no turbulent transport, classical transport will further relax the gra-
dient, but because I partial linearize the equations, specifically the diffusion term
un'V2 N, I prevent classical transport of the total density. Nevertheless, the strong
profile relaxation is not physical because of the experimentally present source/sink
mechanism, and when I include such a mechanism, the classical transport of the

total density isn’t significant.

Now, rather than developing a first principles source based on the theoretical
source/sink expressions, I use ad hoc controlling sources. I estimate that (V) ,,
remains relatively constant over time, and model the source using the integral

portion of a PID controller. This means that I write an equation for the source:

0,5, = — (N), (4.5)

s "

Therefore,
t
5,0 =~ [ (N (4.6
0
I show a typical time-averaged density source in Fig. 4.1 b). After a long enough

time, the source reaches a quasi-steady state, making it somewhat physically
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Figure 4.1: Sourceless profile relaxation and an evolved ad-hoc density source

realistic. The result is that (N;(t)),, ~ Ny, but there is freedom for (N(t)) ,
to undergo some relaxation and buildup. Moreover, notice that the source in
Fig. 4.1 b) is net positive inside of the cathode radius and negative outside of it,
just as one would expect. I use the same method for the temperature source. The
temperature source ultimately comes from the hot electrons that are boiled off of
the cathode, which transfer their energy to the plasma through collisions. This
heat transfer is mostly to the electrons of the plasma. The temperature sink is
caused by collisions with ions and neutrals which line radiate and by heat loss to

the sheath and end walls.

I emphasize that the sources are not first principle sources. They are con-
structed based on the simulated radial transport. The alternative first principle’s
approach was used by Rogers and Ricci for LAPD [RR10]. They use a stationary
top-hat-like ionization source that models the physical density-producing process

in LAPD. Furthermore, they do not separate equilibrium from fluctuations or in-
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put equilibrium profiles. Their source feeds the density, which then transports
itself until it comes to a quasi-equilibrium state (a sink is also present). This
method solves for the full plasma state with very little experimental input. They
input the sources and derive the plasma state. On the other hand, I input part
of the plasma state and derive the sources. As I indicated before, my method
has the advantage of using experimentally measured profiles. This experimental
input allows me to more easily simulate turbulence that resembles that in the ex-
periment, and therefore make conclusions on the fluctuation properties. 1 do not,

however, evolve the equilibrium and gain the knowledge that comes from that.

Before I go on, I note that in the past, Pavel Popovich and I tried a number of
different approaches to the source problem. One approach was to simply remove
the flux-surface-averaged fluctuating density and temperature components at each
time step. While similar to the technique I describe above, it cuts off of the flux-
surface-averaged fluctuating components quicker because it doesn’t preserve past
history of the source. Another technique that we used was to derive a source like
that in Fig. 4.1 b) in one simulation, and then start another simulation using that
as a purely time-independent source. This supplied a slower cutoff of the flux-
surface-averaged fluctuating components than the other two methods. Results of
the evolution of the total density profile can be seen in Popovich et al. [PUC10b].
In any case, we didn’t find any significant difference in the results when using
these different source methods. While it’s the most physically realistic, the time-
independent source technique is just too slow to implement due to the need to run
two simulations, so I do not generally use it. I prefer the PID source in general,
and all simulations in this paper use it. Furthermore, I generally implement
a condition with the PID source so that it does not drive the total density or

temperature negative as I discuss in Appendix A.
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4.1.2 Artificial Diffusion and Viscosity

Artificial diffusion or hyperdiffusion terms are ubiquitous in fluid simulations.
They are generally intended to prevent high frequency or high wavenumber ringing
caused by numerical advection schemes at steep interfaces. They can, however,
cause unphysical smoothing in systems that are non-diffusive and non-viscous or
cause over-smoothing if applied haphazardly. Some numerical advection schemes
contain their own diffusion, called numerical diffusion. Other non-advective finite

difference schemes also contain numerical diffusion or dispersion.

I use artificial diffusion and viscosity for several reasons. The first is to prevent
artificial high-wavenumber oscillations due to the Arakawa advection scheme that
I use [Ara66]. Second, it smooths out the solutions, preventing the total density
and temperature from becoming negative at any point in space, which is obviously
unphysical. Third, I can use it to prevent the need to go to very fine grid spacing
at which physical diffusion and viscosity are important. Finally, I can use it to
help saturate the turbulence at levels consistent with experiment. These reasons
are all somewhat related, and I note that I performed an artificial diffusion and

viscosity sensitivity study in Ref. [FUC12].

Diffusion and viscosity are real effects that are present in the non-reduced
Braginskii equations. In Chapter 3, I made the approximation that V - (nv ) =
v - Vn, which neglected the polarization velocity part of v .. However, the “full
polarization velocity” [SC03] (from crossing Eq. 3.3 with b and neglecting the

stress tensor) is

d(b x e e
w—i—yebxvm—uebxvu—— Y

e — 1 e
Vp (1/ece) dt MeWee

V.T.|. (47)

The part of this that causes collisional diffusive terms is (v, /wee)b X v .. Since
this term contains v . itself, closure necessitates that it be approximated as v, =
Vg +Vg. Only the diamagnetic drift part is important for the collisional diffusion,

so the part of the polarization velocity that I focus on is (ve/wee)b X vge. Recall
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that I want to use this in the continuity equation, so I am interested in the term

V- (neve) = V- (Ne(Ve/Wee)b X Vge) = =V - %2V | p,. Now defining D = “efele

e2 B2 e2B2

[ have V- (nev.) = =V - (DV 1 n)+ lots of other terms. D is the classical diffusion

coefficient, which is about 0.01m?/s for LAPD parameters. One of the terms in
V - (DV_n) is DV2n, which has the same form of the artificial diffusion term
that I've added to Eq. 4.1. Of course, I have neglected many terms of the same
order as this term in Eq. 4.1, but this shows that such a classical diffusion term

is present in the Braginskii equations.

A similar treatment can be used for the energy conservation equation (Eq. 3.6),
using the same procedure as for the continuity equation but with the p.V - v, term
in Eq. 3.6. The result is p.V - v, = Dn.,V2T,+ lots of other terms. This has the

same form as the temperature diffusion term in Eq. 4.4.

The viscosity in the vorticity equation comes from the ion stress tensor term
ag%f that I neglected when deriving the vorticity equation because I neglected
everything with finite ion temperature. If I had included this, a vorticity dif-
fusion term (aka a viscosity) would have been appeared in the vorticity equa-
tion [PUCIOb] as it is in other equation sets like the well-known Hasagawa-

Wakatani equations [HW83]. The magnetized Braginskii viscosity coefficient is
ni = 2L which is about 2 x 107® kg/m - s for LAPD. Since LAPD’s ions are

2.
10wz, ;i

not necessarily magnetized due to the fact that w.,7; ~ 1, the unmagnetized ion

viscosity is i = 0.96nT;7; [Bra65] which is about 4 x 1077 kg/m - s.

For the artificial diffusion and viscosity coefficients in Eqs. 4.1-4.4, T use a
single value of 1.25 x 107% — in normalized units — which is 0.075 m?/s in real
units. I find that this value produces turbulent fluctuation levels consistent with
experimental levels. I use this as a free parameter in this sense. This value is
much larger than the real classical diffusion D, but is smaller than % =1m?/s.
Nevertheless, I neglected a number of terms in Eqs. 4.1-4.4 such that there isn’t

justification to use the real diffusion and viscosity in these equations. Artificial
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diffusion and viscosity terms, however, serve a numerical purpose.

4.2 Boundary Conditions

Boundary conditions are often difficult to determine in plasma devices. While the
properties of the boundaries are usually known, the way that the plasma interacts
with them can be complex. Plasma boundary physics is one of the main elements
of present day fusion research [Sta00]. Often times there is uncertainty in the
equations that need to be used in simulations, and once the equations are found,

they can be difficult to implement in codes.

The boundary conditions in LAPD are difficult to determine. LAPD contains
at one end, a hot emitting cathode behind a biased mesh anode. In front of
the anode are biasable azimuthal limiters with radius about equal to the cathode
radius, though the limiter radius may be changed [SCR12]. The far end contains
a floating mesh plate. The cylinder is conducting and has a radius about 20 cm
larger than the cathode radius. Rather than attempting to model all of these
complex boundaries, I use a few simple boundary conditions, leaving the more

physical modeling for future research.

4.2.1 Simple Boundaries

In all simulations, I use an annulus rather than a cylinder. Although the inner
radius of the annulus may be arbitrarily small, I take the inner radius to be 12
cm. I take the outer radius to be 39 cm. This is the radial extent of the exper-
imental probe measurements, so I don’t have experimental information beyond
these boundaries. Anyhow, the plasma fluctuations are nearly zero (when nor-
malized to values at the cylindrical axis) outside of this annular region — as seen
in Fig. 3.1 ¢). Therefore, T set the radial boundaries on all of the fluctuating

variables (N, ¢, v|.,and T,) to zero. It would be nice in the future to take data
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spanning at least a few more cm and extend the simulation domain accordingly.

But for now, the results use such an annular domain.

As for the axial boundaries, I use four different boundary conditions: periodic,
zero-value (Dirichlet), zero-derivative (Neumann), and Bohm sheath. The only
non-trivial one, Bohm sheath, is derived and described below. The others are all
trivial to implement. Using the different trivial axial boundary conditions tests

how important these boundaries are in controlling the nature of the turbulence.

4.2.2 Bohm Sheath Boundaries

Cold Bohm sheath boundary conditions are applicable when a plasma terminates
at a conducting plate. I note that this is not necessarily the case in LAPD. The
cathode/anode system is obviously much different from a simple floating or biased
conducting plate. Furthermore, the mesh wall at the far end is not a solid wall.
Moreover, it’s not clear if the plasma is even attached to the far end mesh wall
or if it becomes detached in the neutrals in front of it, where the plasma cools
and recombines before interacting with the wall. In any case, it is still instructive
to apply such an idealized boundary condition to LAPD because it is somewhat
more realistic than the simpler boundary conditions, and it creates a new linear
instability (see Sec. 5.1.2), which can be used to test the robustness of LAPD’s
nonlinear instability. Thus, here I derive a model for the Bohm sheath boundary

condition.

To start, I note that a plasma bounded by a wall can be divided into two
regions: the main plasma and the Debye sheath [Sta00]. The Debye sheath is a
small region adjacent to the wall, generally several Debye lengths long. It has a
net positive charge (n; > n.) that shields the negative charge on the wall. The
sheath does not completely shield the negative wall, however, and a small electric

field penetrates into the main plasma (the ambipolar field), which mostly serves to
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accelerate the cold ions toward the wall, and slightly retard the electrons before
entering the sheath. In the main plasma, the quasi-neutrality relation holds:

Tn; = Ne.

The well-known Bohm criterion along with other considerations restricts the
ions to move into the sheath entrance at the sound speed ¢, = \/m . I consider
here the case where there is no external biasing; in other words, the end plates are
electrically isolated and floating. The wall can be set to an arbitrary potential,
say ¢, = 0, while the potential at the sheath entrance is then the positive floating
potential ¢.r. This potential difference across the sheath reflects slow electrons
that enter the sheath. The electrons approximately maintain a cutoff Maxwellian
velocity distribution throughout the sheath, and at the wall, their velocity is
retarded by a Boltzmann factor due to the floating potential. In total, the current

to the wall is [BRT91, BCR93, XRD93]

Te

o /r ’

where the 4 indicates that the plasma flux goes into the wall, which is in different

(Lfme)' (2

Jy = £en |cs — (4.8)

directions for the different end plates. Note that there is a factor of v/2 discrepancy
between different reports on the expression used for the thermal velocity, which
should have only a minor consequence. In this expression, all values are total

(equilibrium + fluctuations).

To proceed, note that Eq. 4.8 is not only the current to the wall, but also
the current going into the sheath edge, since the sheath is too small for there to
be appreciable radial current loss or an ionization source within the sheath. All
values, in fact, are taken to be those at the sheath edge. Furthermore, since the

wall is electrically isolated, the equilibrium current at the wall vanishes. This sets

the value for the floating potential to be ¢5; = AT.o/e with A = In (ﬁ :Z)
And since Ty is a function of radius, ¢y is also a function of radius. Thus, a radial

temperature gradient produces a radial electric field, at least at the sheath edge
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and likely penetrating axially into the main plasma. I acknowledge that J need
not vanish on every field line since the end plates are conducting and charges can
move around on the plate, however, the vanishing equilibrium current is generally

a fair approximation [BCR93].

On the other hand, the fluctuating component of the current is allowed to
vary between field lines. The first order fluctuating component is obtained by

linearizing Eq. 4.8, giving the result:

e T.
J) = £eNycqo {T—i — ATeo} , (4.9)

where now, Jj,¢ and T, are fluctuating components, consistent with previous
notation. This expression for the current sets the fluctuating axial boundary
condition of the plasma and is often called the Bohm Sheath boundary condition.
This current condition holds both at the wall and at the sheath entrance. So
rather than taking the simulation domain all the way to the wall, simulations
often end at the sheath entrance and employ this analytically derived boundary
condition to the boundaries of the main plasma. Then one doesn’t have to worry
about the small spatial scales and the non-quasineutrality of the sheath. The
corresponding boundary conditions for the other fluid variables such as the density
and temperature have recently been derived by Loizu et al. [LRH12]. However, I
simply take them to have zero-gradient — as most others have done — which isn’t

wholly inconsistent with Loizu’s calculations.

Now while one may set the parallel current (or equivalently v).) at the axial
boundaries to the quantity on the right hand side of Eq. 4.9, I don’t do that. I use
Ohm’s Law (—=V ¢ = nJ)) to set the boundary condition for the gradient of ¢.
I do this for practical reasons in the coding. Therefore, the boundary condition

used in the code is (in our normalized units):

Vel

Vg ==+ (¢ — AT,). (4.10)

m;
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4.3 Profiles and Parameters

4.3.1 The LAPD Biasing Experiment

As stated above, I take all equilibrium profiles and parameters from experimental
measurements on one particular experiment. In this experiment, limiter biasing
was used to essentially null out the mean radial electric field [SCR12]. I simulate
this experiment so that I can neglect the mean potential profile in the equations

(as is done in Egs. 4.1-4.4), which simplifies the analysis.

In fact, in the experiment to which I refer, Schaffner et al. [SCR12] did not
just produce a plasma state with a null radial electric field — zero azimuthal mean
flow — but they produced many plasmas with varying mean flow and flow shear.
In order to vary the E x B flow, they inserted a biasable azimuthal limiter into
LAPD. The limiter had radius 26 cm, and could be biased with respect to the
cathode. To understand why such a setup produced varying flow and flow shear,
recall my discussion of the sheath in Sec. 4.2.2 where I described how the plasma
potential is set by the current into the boundary plates and the temperature

profile. I specifically considered the case for a floating conducting plate, in which,

¢ = AT,/e, with A = In (ﬁ 2—;), where ¢ is the potential difference between
the sheath edge and the conducting plate. Note that this relation holds not only at
the sheath edge, but also in the main plasma [Sta00]. The situation in the biasing
experiment is more complicated than this because there is not a single plate — there
is both the cathode and the limiter — and the plates are not generally floating but

are drawing currents. If a plate is drawing a current, the proportionality factor

relating ¢ and T, is different and not necessarily constant:

A(r) =1In (ﬁ\/%l_—"_l> . (4.11)

When J| is a strong function of r, the proportionality factor A(r) can be a strong

function of r such that ¢ does not have the same radial shape as T,. And since the
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Figure 4.2: Experimentally measured mean radial potential for different limiter

biases

radial derivative of ¢ is the radial electric field, which causes an azimuthal vgy g,

the boundary currents influence the E x B flow and flow shear of the plasma.

In the biasing experiment, Schaffner et al. used a power supply to maintain
a potential difference between the cathode and limiter, causing them to draw
different currents, thus changing the plasma potential profile in accord with the
above equations. I show in Fig. 4.2 the radial shape of ¢ for several different power
supply voltages used in the experiment. Note the change from the unbiased state,
in which the potential profile has a temperature profile-like shape to the highly
biased state, where the potential profile is much different. Notice also how fine of a
control over the profile that they obtained. They were able to incrementally change
the flow and flow shear around the limiter edge with fine precision. I use this to
my advantage in my simulations. Namely, I take the plasma state associated with

the 64 V curve, in which the mean radial electric field is essentially zero for reasons
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stated above. Note, then, that this is a very particular plasma state in LAPD that
is not like all others. In fact, it is extreme in that it has the shallowest density

gradient and the most turbulence of all of the biasing experiments [SCR12].

Before moving forward, allow me to discuss another way to see why the ra-
dial electric field changes when the cathode and limiter are biased. Picture the
system as a circuit. The circuit runs from the limiter through the biasing source
— maintaining a potential difference — through the cathode and finally through
the plasma itself, which fills the region between the cathode and the limiter. The
electrons in the plasma can carry the current along the magnetic field lines, but
many of the field lines that terminate on the cathode are radially separated from
the limiter field lines, so a radial current forms to complete the circuit. This ra-
dial current is primarily carried by ions. Recall from Sec. 3.3 that there are two
contributions from the ions to the cross-field current: the polarization current and

the Pederson current. The polarization current due to the ions, however, is
Jpi & enb x (0, +vg - V) vp. (4.12)

The time derivative term cannot contribute to the equilibrium current. Then, the
radial part of the equilibrium polarization current is only

en _ 0Fy
Jpir = — Fg——. 4.13
P r 00 ( )

But there is no equilibrium Ey, so J,;, = 0. It’s likely that other terms that can
contribute to the polarization current that I ordered out in Sec. 3.3 could produce
a radial polarization current, but I do not try to derive them here. Rather, I
attribute all of the equilibrium radial current to the Pederson current, which is
driven by a time-independent radial electric field. Maggs et al. argued for the
Pederson current as the main contributer as well [MCTO07]. The radial electric
field, therefore, is necessary to complete the circuit. Biasing then, through sheath
properties and plasma currents, can change the radial potential profile. This, of

course, produces mean azimuthal E x B flows that can have radial shear.
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Figure 4.3: Ion saturation current time trace in the biasing experiment

4.3.2 Null Flow Profiles

In the biasing experiment, for all of the runs in which a finite power supply voltage
is applied, the power supply is triggered several miliseconds after the start of the
plasma discharge, which I show in Fig. 4.3. In this figure, I do not have data
during the ramp-up phase of the discharge during which the density (and ion
saturation current I,,;) grows. But I do have data before the biasing is triggered
and after it is turned off, including part of the plasma after-glow phase during
which the density falls rapidly. For all of my analysis, I use only the data collected
during the time period from 1.5 ms after the biasing starts to 0.5 ms before the
biasing ends. This produces about 3 ms of data, which is about 5000 data points.

This ensures that the plasma is in a turbulent steady-state for all of my analysis.

The normalized profiles from the null flow experiment that I use in the simula-
tions are shown in Fig. 4.4, and the parameters are tabulated in Table 4.3.2. The
density profile that I use in the simulations is a polynomial fit to the experimental

equilibrium density profile. The temperature profile that I use is a tanh function
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Figure 4.4: Equilibrium density, electron temperature, and potential profiles along

with fits used in simulations

that does a very poor job of approximating the experimental electron temperature
profile. The reason why the fit is so poor is that when I ran the simulations, I
didn’t have reliable temperature profile measurements, so I was forced to estimate
what the profile might look like. Schaffner later reanalyzed his data to make the
experimental profile in Fig. 4.4 b), but I didn’t redo the simulations. Fixing this
must await future study, but as I show in the following chapters, the agreement
between experiment and simulation turbulence is already very good, so perhaps
the temperature profile is not important in reproducing the turbulence. As for the
potential, again, I use ¢y = 0, which is a good approximation for the experimental
nulled out potential profile even though it does not appear so in Fig. 4.4 ¢) due

to the compressed y-axis as compared to Fig. 4.2.

Moreover, the profiles that I use have no azimuthal or axial variation because
I don’t have the corresponding experimental measurements. So I assume that
the equilibrium profiles are only functions of radius. It’s likely, however, that
there is some axial variation in the profiles and parameters. In LAPD, v* =

L/ Aei ~ 100, which indicates that a parallel temperature gradient should exist

o1




(depending on the locations of the sources and sinks) [Sta00]. Furthermore, if the
Bohm sheath boundary condition is correct, the equilibrium potential must have
a parallel gradient in order to accelerate the ions up to the sound speed at the
sheath entrance. This ambipolar parallel electric field should exist between the
location of the sheath entrance and an ion collision length into the main plasma
— which is only about 10 c¢m, meaning that most of the plasma has no axial
variation in the potential. The parallel electric field generated by the condition of
Eq. 4.10 is not this equilibrium field. It is just the perturbed field that responds to
electron temperature perturbations. So the lack of an equilibrium parallel electric
field is not consistent with the Bohm Sheath boundary condition, but the high
collisionality confines this effect to the very ends of the plasma column in any

case.
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Species ‘He

A 1

n 2.86 x 108 m—3
T, 6 eV

T; <leV

By 01T

Ly 17 m

a 0.4 m

AD 107° m

Wei 2.4 x 10° rad/s
Wee 1.8 x 101 rad/s
Pe 5.3 x 107° m
Pi ~1x1073 m
Ps 5% 1073 m
Ve 9.4 x 10° m/s
Cs 1.1 x 10* m/s
VA 7 x 10° m/s
I&; 5x 1074

me/m; 1.4 x107*

InA 11

Ve 7.2 x 10% Hz
Aei 0.13 m

v; ~ 10% Hz

Vin 3 x 10° Hz
K 9.8 x 10?3 eV/m? s
m ~ 10" eV s/m3
Wy ~ 5 x 10* rad/s

Table 4.1: Plasma parameters used in LAPD simulations
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CHAPTER 5

The Nature of LAPD Turbulence

Simulations can supplement experiment by providing detailed spatial data that is
too difficult to obtain experimentally. This spatial data can be analyzed, revealing
new properties of the experiment. In order for simulations to provide information,
however, they must accurately represent the system which they model. Assessing
the validity of simulations generally comes in two parts: verification and valida-
tion. Verification, the evidence that the code solves the equations correctly, will
not be taken up here. I note, however, that my collaborators and I have done ver-
ification studies in the past, somewhat detailed in Popovich et al. [PUC10a]. We
compared linear BOUT (the old version of BOUT++) and BOUT++ simulations
to analytic solutions as well as to eigensystem solver solutions. On the other hand,
I will focus parts of this chapter on our validation effort. Validation is the evidence
that the simulation model accurately reproduces features of the experiment. Gen-
erally, the more features of the experiment that the model reproduces, the more
valid the model. While this chapter focuses on simple analyses to describe the
nature of the simulated turbulence, it will also make comparisons, where possible,
to experimental data in order to show that the model is relatively well validated.
First, however, I analyze the linear instabilities in the LAPD simulations, and this

affords no experimental comparison.
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5.1 LAPD Linear Instabilities

Linear instabilities are prevalent in plasma physics. They come from the lineariza-
tion around an equilibrium of the plasma equations. Physically, if a plasma is in a
time-independent steady state that is linearly unstable and a finite fluctuation of
any size occurs, the fluctuation will grow exponentially. Linear instabilities often
drive hydrodynamic and plasma turbulence. I therefore study the linear instabili-
ties of the LAPD system before moving onto the turbulence because they can offer
insight into the nature of the turbulence. The LAPD equations, parameters, and
profiles described in Chapter 4 give rise to a couple of linear instabilities. They
are both drift wave type instabilities, but they have different pressure/potential
coupling mechanisms. One type couples through the adiabatic response, while the

other couples through the sheath boundary response.

5.1.1 Drift Waves

Electron drift waves driven by an equilibrium density or pressure gradient that
use the adiabatic response are usually just called drift waves. The electron drift
wave mechanism is the following: an electron pressure fluctuation in the plasma is
linked with a potential fluctuation through the adiabatic response. The adiabatic
response is simply a parallel force balance between the pressure force and the

electrostatic force. A simplified version of Eq. 3.3 can be written:
V| pe = enV ¢ + Ry, (5.1)

where the term Ruv. represents effects such as electron inertia, resistivity, and elec-
tromagnetic induction. If R = 0, the electrons are said to be adiabatic, meaning
Vpe = enV|¢. When T, fluctuations are neglected and V| # 0, this integrates
to the Boltzmann expression:

n = nge®®/ e (5.2)
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For any R and T, fluctuations, the parallel electron dynamics couple the pressure
to the potential as long as the parallel wavelength % is finite. The perpendicular
electric field associated with the potential fluctuation has a component in the az-
imuthal direction with &, > k. This creates a radial E x B drift that advects the
pressure in the radial direction. Because of the radial pressure gradient, the fluctu-
ation propagates azimuthally as a wave at the drift speed vp, = Z—g% [Che06]
in the electron diamagnetic drift direction. If there is a small phase lag of the
potential from the density of the wave — the result of R # 0 — the equilibrium
pressure gradient will enhance the fluctuation, causing instability. Since p, = n.T,,
the pressure fluctuation may be due to either a density fluctuation, an electron
temperature fluctuation, or both. The drift wave caused by a density gradient is
commonly studied and given the name Resistive Drift Wave, but a temperature
gradient driving a temperature fluctuation wave is also possible, and may be called

a Thermal Drift Wave [MTK11]. It’s not necessary, however, to separate them,

and I will just refer to both of these as drift waves.

The LAPD equation set (Egs. 4.1-4.4) supports such drift waves, which are
unstable with the parameters and profiles used in the simulations. The growth
rate as a function of the azimuthal wavenumber m is shown in Fig. 5.1 a) for
the LAPD parameters in Table 4.3.2 and profiles in Fig. 4.4. I find the growth
rates by simulating the linearized version of Eqgs. 4.1-4.4 in BOUT++ with the
three different simple axial boundary conditions: periodic, zero-value (Dirichlet),
and zero-derivative (Neumann). The linear equations simply omit the advective
nonlinearities and the source terms, though the source terms only affect constant
flux-surface (m = 0,n = 0) modes, which are never unstable. I run the simulations
for long enough so that the fastest growing modes can dominate the dynamics.

The solid curves in Fig. 5.1 derive from the simulation results using the formula,
Vi = %E—t’"/ (2E,,) where E,, is the energy of the fastest growing linear eigenmode

with azimuthal mode number m. The energy is defined in Chapter 6. The details
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Figure 5.1: Linear drift wave growth rate spectra and axial structures of the fastest

growing eigenmodes

of obtaining ~,, are explained in that chapter, but for now, it is sufficient to state
that this procedure calculates v,, at a particular time using only the structures of
the fluctuating quantities: N, ¢, v|e,and T,. An alternative way to calculate ,, is
to use BOUT++’s Fourier filtering capabilities and run many simulations where
each one filters out a different azimuthal mode. Then, take the log of the envelope
of one or several of the fluctuating quantities and calculate the slope of the line,
which gives the growth rate for each particular simulation. This procedure uses
the time signal of the fluctuations rather than their spatial structure to calculate
the growth rate, thus providing a check on the first method. The results using
this alternative method for the periodic case are shown with the black diamonds
in Fig. 5.1 a), which agree well with the curve calculated using the alternative
energetic structure-based calculation. I do this check with all of the simulations
to ensure consistency. This second method is more time consuming, so I only

sample a few values of m. Furthermore, it’s difficult to get growth rates when
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Figure 5.2: Linear conducting wall mode growth rates and axial structures along

with those of the drift waves

Ym < 0 using this second method.

The difference in the growth rate curves with the different boundary conditions
is due to the different &) = QE—H” where n is the axial mode number. The periodic
simulation restricts n to integer values, while the Dirichlet and Neumann simula-
tions allow for any fractional n. The largest growth rate occurs for n ~ 1/2. The
Dirichlet and Neumann axial structures for the most unstable m mode, shown in
Fig. 5.1 b), reflect this. The periodic simulation, which has n = 1 structure, has
a smaller growth rate, especially at low m. Note that in Fig. 5.1 b), I omit the
axial boundaries. For example, I do not show the zero-valued boundary points for
the Dirichlet simulation. Also, I plot the axial structures at one random point in

the r — @ plane and at one time point, and I normalize them to their maximum

value.
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5.1.2 Conducting Wall Mode

I now consider the linear instability that can exist in a plasma bounded by two
conducting walls on the boundaries where the magnetic field lines terminate — the
axial boundaries. The instability is actually of the drift wave variety, but unlike the
drift waves discussed above, the pressure-potential coupling mechanism is through
the sheath boundary response rather than through the adiabatic response [BRT91,
BCR93, XRD93]. The Bohm sheath boundary conditions that were derived in
Sec. 4.2.2 can provide this coupling. As already noted, these boundary conditions
are not necessarily the correct ones for LAPD, but are somewhat idealized. Yet, it
is still instructive to apply such an idealized boundary condition to LAPD because
it creates this new linear instability, which can be used to test the robustness of

LAPD’s nonlinear instability.

The conducting wall mode (CWM) instability — as it is called — that I study
here is purely an electron temperature gradient instability, although other types
of gradients can cause it [BCR93]. In it, electron temperature fluctuations are
advected by electrostatic potential fluctuations and feed off the equilibrium elec-
tron temperature gradient as in the case of the Thermal Drift Waves. However, in
contrast to the Thermal Drift Waves, the coupling between the temperature and
potential fluctuations comes through the sheath boundary condition rather than
through the adiabatic response. Furthermore, the CWM can have (nearly) kj = 0
flute-like behavior. The coupling mechanism is as follows: an electron tempera-
ture perturbation — say a positive constant fluctuation along a small flux tube —
increases the sound speed and the electron thermal speed on the flux tube. Since
the ions must enter the Bohm sheath at the sound speed by being accelerated by
a parallel electric field, the temperature increase must coincide with an increase in
the parallel potential gradient as derived in Eq. 4.10. Additionally, the increased
electron thermal speed causes an increase in the floating potential along the flux

tube. These serve to couple the electron temperature to the potential.
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The CWM can be isolated from the drift waves by removing the adiabatic
response from the full LAPD equation set, and of course using the Bohm sheath
boundary condition of Eq. 4.10. Removal of the adiabatic response in this case
means removal of the V|p, and the 0.71V T, terms in the parallel momentum
equation (Eq. 4.2). This causes the density fluctuation N to become a passive
scalar, so Eq. 4.1 can be removed as well with no consequence. So the isolated

linear CWM equations are:

m;
8,5@”6 = m—V”gb — VevHev (5.3)
Oyo = _NOVHUHe — Vin @ + M¢Viw, (54)
2 9 2me 9
@Te = —VE - VTe() + S—MR”evHTe — EVQTQ + /LTVJ_TQ, (55)

The CWM growth rate curve is shown in Fig. 5.2 a). The CWM is most unstable
at values of m ~ 20, which is much lower than the m ~ 60 values of the drift
waves. Furthermore, the CWM maximum growth rate is about equal to the drift
wave growth rates. And from Fig. 5.2 b), the CWM axial structure is flute-like
(k) ~ 0). Finally, the growth rate curve of the full set of equations along with the
sheath boundary condition is shown in this figure as the curve labeled “sheath.”
This set of equations contains the drift wave and CWM instabilities. From both
Figs. 5.2 a) and b), it is clear that the sheath simulation is dominated by the CWM
at m < 20, which in fact is where the growth rate is maximum. At m > 40, the

drift waves dominate.

5.2 LAPD Turbulence: A Visual Examination

When I simulate the full LAPD equation set with the advective nonlinearities and
source terms, I find that the simulation develops into a turbulent state. To start
the simulation, I initialize each fluctuation quantity (IV, ¢, v, and T;) with a small
random 3D spatial structure. This evolves until a coherent structure emerges —

the fastest growing linear eigenvector — that grows exponentially in time. Once
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Figure 5.3: 3D turbulent simulation animation starting from a small random

fluctuation

the normalized fluctuations reach values on the order of 0.01 — 0.1, they saturate
and become turbulent. A 3D animation of the density fluctuation N is shown
in Fig. 5.3 (click to play). The animation consists of 1/8th of the simulated
annulus, which makes the axial component of the annulus visible. The animation
begins right before the fastest growing mode structure becomes dominant. The
fastest growing mode dominates the structure for some time, where there is a
clear coherent wave structure that simply propagates in the electron diamagnetic
drift direction. This stage is called the linear stage since the linear terms in the
equations dominate the evolution. Note that the axial structure in the linear stage
has a finite wavelength about half of the length of the animation domain. The

axial boundary conditions used here (Neumann) allow for such a structure.

Soon, the coherent eigenmode structure, which has been growing in magnitude,
saturates and transitions to a turbulent-looking state that I call the turbulent
stage. The evolution of the RMS fluctuation amplitude of the density and poten-

tial is shown in Fig. 5.4 a). The potential is separated into a flux-surface-averaged
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Figure 5.4: Volume-averaged RMS time evolution of a) different field fluctuations

and b) axial Fourier mode numbers

component ¢, and the remainder ¢ — ¢¢s. ¢, quantifies the amplitude in the
zonal flow, which appears in Fig. 5.4 a) to have a role in the initial saturation
because it becomes very large when the turbulence begins to saturate. However,
the zonal flow has a relatively small magnitude in the turbulent stage, indicating
that it is not so important here. For all the fluctuating fields, the exponential
growth period during the linear stage is followed by saturation corresponding to
the visual change from coherent to turbulent spatial structures in the animation.
Upon transition to the turbulent stage, I notice in the animation that there is also
a qualitative change in the axial mode structure. The axial structures elongate,
looking more flute-like than in the linear stage. I confirm this by taking the axial
Fourier transform of the density fluctuations and plotting the RMS values of the
different axial mode numbers in Fig. 5.4 b). The linear stage is dominated by the
n = 1 Fourier component, while the turbulent stage is dominated by the n = 0

flute mode component. I found this to be an interesting and unexpected transition
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Figure 5.5: Turbulent animations of a) density fluctuations from the simulation
and b) mean-subtracted fluctuations from a fast optical camera viewing the ex-

periment

when I first identified it. I will discuss why this is unexpected in the upcoming
chapters, and I will show in detail what causes it. But take note now that this
is an important result. This n = 0 dominance in the turbulent stage is the main

subject of the remaining chapters. The physics that causes it is quite interesting!

However, before I jump into the analysis of the n = 0 mode dominance, I
continue to look at simple and common turbulence analysis techniques to describe
the nature of the turbulence and to validate the simulations. Continuing on
with the visual examination, I show a couple of visual comparisons between the
simulation and experiment. For the first experimental visual, I use a processed fast
camera movie. The camera records the light intensity given off by the plasma. The
light is primarily due to line radiation of the helium atoms and ions. It should be

some function of plasma density, neutral density, and plasma temperature. Noting

63





that the comparison is certainly not exact, I show the experimental camera data
next to corresponding simulation data of the density N signal during the turbulent
stage. This is shown in Fig. 5.5. The animations cover the same spatial domain
and proceed for equal time intervals — about 2 ms. Both are simply fluctuation
data with the time-independent background not included — subtracted out from

the camera data.

For the second visual comparison, in Fig. 5.6 I show fluctuating time signals
for the experiment — Langmuir probe ion saturation current — and for the peri-
odic simulation — density fluctuations. Although the quantities that I compare
are not completely equivalent, as I explain in the next section, they are similar.
All simulation data is taken during the turbulent steady-state phase of the simu-
lation. Visual comparisons like these are certainly not quantitative, and at best
they reveal that both simulation and experiment appear turbulent and contain
similarly sized spatial and temporal structures. Furthermore, such comparisons
are generally only useful when one has a lot of experience looking at such data,
and even then the viewer is often biased by his previous experiences. Unbiased

comparisons can be made more easily through statistical analysis.

Although the camera data can be a valuable tool since it provides so much
simultaneous spatial data — something that is difficult to do with probes — I
do not proceed here with detailed statistical analysis of the camera data or any
quantitative comparisons between the camera and simulation. This work is left for
future studies. Rather, I henceforth focus on statistical analysis of the simulation

and experimental Langmuir probe data.

5.3 LAPD Turbulence: A Statistical Examination

Ergodic systems are often described statistically using such tools as spectra, pdfs,

and spatial and temporal correlations [TL72]. This is probably the most com-
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mon way to describe stochastic systems, but it is also common to describe chaotic
systems this way as well [SG81]. The goal is to be able to characterize the fluctu-
ations. At the very least, this provides a good way to compare simulations to the
experiment in order to validate the simulation model. In a stronger way, different
theories of turbulence make different predictions regarding statistics, making such
a characterization important for confirming or disreputing theories. In this section,
I focus mostly on simple comparisons between simulation and experiment, but I
also point out some characteristics that relate to certain theoretical predictions.
But before I proceed with statistical data comparisons to qualify and quantify the
agreement between the simulations and experiment, I must first explain how I can
extract equivalent information from the simulations and experiment. In general,

this hinges upon experimental measurement theory.

5.3.1 Experimental Probe Data

There are many different kinds of experimental measurements, but I focus here
only on Langmuir probe measurements. The Langmuir probes in LAPD generally
provide time series data although I do have some two-probe data that provides
certain spatial information. Langmuir probes do not directly measure any of the
independent state or flux variables of the simulation (NN, ¢, v, T¢), but they can
measure quantities that are functions of these variables. The probes are biased to
a known potential — with respect to a reference like the cathode potential — and
the current they draw from the plasma is measured. As long as the probes are
biased sufficiently below the plasma potential so as to repel most electrons, they
develop sheaths around them in the same way as the conducting plates considered

in Sec. 4.2.2. The ion current to the probe is [Hut02]

1
I; ~ §eASncs (5.6)
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where A; is the sheath area, approximately equal to the probe area, and the factor
of %n is the reduction of density at the sheath edge compared to the main plasma.
The probe may be biased negatively enough so that all electrons are repelled. The
current collected is just that of Eq. 5.6, called the ion saturation current, I,,;. As
the probe voltage is swept positively from this point, more electrons are collected.

The total current to the probe then takes the form [Hut02]

1 my 12 v, /T,
5‘(%) e (5.7)

where V), (which is negative) is the potential of the probe with respect to the

I =eAmnc,

plasma potential. When I = 0, the probe potential is at the floating potential:

e(véi—:b) = %111 (%) The temperature can be obtained by sweeping the probe

potential to get 887;, which is an exponential function of V. So the logarithm of

this function produces a straight line. Then, the temperature is:

T, =e(l — Ii)/g—é. (5.8)

The sweeping process is used to obtain temperature profiles, but it’s too slow
to measure temperature fluctuations. Therefore, it’s not possible to find the exact
density and potential fluctuations, N and ¢. The probes only produce I, and V;
fluctuation data. Nevertheless, the simulations produce N, ¢, and T, fluctuations,
which can be used to calculate the I, and V; simulation values using the relations:
Jp— %eASncs and Vy = ¢+ %ln (%) So rather than manipulating probe data
to find the experimental N and ¢ fluctuations, I can use the simulation data to
calculate experimentally-accessible quantities. The derived simulation quantities
are called synthetic diagnostics. Synthetic diagnostics are model-dependent and
bind together some of the fundamental underlying data. For instance, two mea-
surements (/g and V) comprise three fundamental state variables (N, ¢, and 1),
so the synthetic diagnostics bind the temperature fluctuations to the density and
potential fluctuations. Nevertheless, synthetic diagnostics provide a way to make

apples-to-apples comparisons between simulation and experimental data.
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Figure 5.7: I, and V} statistical data using synthetic diagnostics for the simula-
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I show in Fig. 5.7, a statistical comparison between /s, and V; fluctuations
from simulation and experiment. The simulation uses the full nonlinear equation
set along with Bohm sheath axial boundary conditions. I also show simulation
statistics for NV and ¢ fluctuations so that they may be compared to the simulation
statistics of the synthetic I, and Vy, respectively. Figs. 5.7 a) and b) compare the
volume averaged (from 15 to 35 cm) frequency spectra and radial RMS amplitudes
of experimental and simulation I, fluctuations along with N fluctuations from
the simulation. Figs. 5.7 ¢) and d) compare the same statistical properties, but
this time of V; fluctuations along with ¢ fluctuations from the simulation. The /4
fluctuations from the simulation have nearly identical statistical properties as the
N fluctuations because I, is proportional to density but only weakly dependent
on temperature (square root dependence). V; fluctuations are also somewhat
similar to ¢ fluctuations, but to a lesser degree due to the large dependence of V
on T,. Furthermore, the simulation and experiment have very similar statistical

properties, which I expand upon below.

5.3.2 Statistical Density Comparisons

A comparison of statistical properties of the experimental and simulation density
fluctuations is displayed in Fig. 5.8. I actually compare the N fluctuations for the
simulations to the I,,; fluctuations of the experiment, but as seen in Fig. 5.7, I,
and N statistics are nearly identical. Fig. 5.8 contains results from five different
simulations that all use the full nonlinear LAPD equation set (Eqs. 4.1-4.4) but
differ in the axial boundary conditions as follows: 1) Periodic — uses periodic
axial boundary conditions. 2) Sheath — uses Bohm sheath boundary conditions
(Eq. 4.10). 3) n = 0 suppressed — uses axial boundary conditions, however,
the axial average (kj or n = 0) density, temperature, and potential fluctuation
components are artificially removed from the simulation. 4) Dirichlet — uses zero-

value axial boundary conditions. 5) Neumann — uses zero-first-derivative axial
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boundary conditions. I will discuss the n = 0 suppressed simulation more in
Chapter 7, but for now it is sufficient to say that this simulation does not contain
the nonlinear instability and is thus a control case by which to compare the others.

It still contains the same linear instabilities as the Periodic simulation, however.

Fig. 5.8 a) shows the frequency power spectrum of the density fluctuations. I
use a sliding Hamming window on the time series data and take the FF'T, then
take a volume average from 15 to 35 cm to get each simulation curve. I use the
same technique for the experimental density fluctuation data, except I only have
probe data at one location in the 8 — z plane. The axial location is near the center
of the machine. I plot the frequency spectrum in a log-log format to emphasize
the low-frequency comparison, which is where most of the power is located, but I
also show the spectrum in a log-linear format in Fig. 5.11, and discuss this more
later. Furthermore, since there are so many curves in each plot of Fig. 5.8, I
replot only the experimental and Periodic simulation curves in Fig. 5.9 to make

the simulation/experiment comparison easier to see.

Fig. 5.8 b) shows the probability distribution function (PDF) of the density
fluctuations, while I provide the first four PDF moments in Table 5.3.2, which
characterize the shape of the PDFs, and most importantly their non-Gaussianity.
I make the distribution functions out of points at all radii. Fig. 5.8 ¢) displays the
RMS amplitude of the density fluctuations as a function of radius, while Fig. 5.8 d)
shows the radial k, power spectrum of the simulations. I don’t have experimental
radial spectra data, which requires multiple probes at different radii. Fig. 5.8
e) is the volume-averaged azimuthal my power spectra. Two probes separated
azimuthally are used to obtain the experimental spectra. Finally Fig. 5.8 f) is
the axial k) spectra. Again, I don’t have experimental axial spectra due to the
difficulty of aligning two probes along a field line a significant distance from each

other, which is required because of the long axial wavelengths of the modes.

Fig. 5.8 and Table 5.3.2 contain a lot of information about the simulations and
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Dataset Mean STD Skewness Kurtosis
N 02 = N? S = N3/o? K = N%/o*

Periodic —3.2x1078 8.4 x 1073 —0.17 3.9

Sheath 1.0 x 107* 9.5 x 1073 0.14 3.9

n = 0 —4.7x107% | 9.6 x 10~* 0.17 4.5
suppressed

Dirichlet 6.2 x 1074 3.4x1073 0.18 5.2
Neumann 2.2 x107° 3.5 x 1073 0.045 5.8
Experiment —2.4x107¢ 8.2 x 1073 0.18 3.5

Table 5.1: PDF moments of the density fluctuations

experiment. The first obvious result is that the n = 0 suppressed simulation is
statistically much different than all of the other simulations and the experiment.
The density fluctuations of this simulation are a factor of 2-3 lower than those of
the other simulations and the experiment. Furthermore, this simulation has peaks
in the frequency, my, and kj spectra that are unique. The frequency and my peaks
are inconsistent with the experiment. Its spatial spectra peak at my ~ 30 and
kjps ~ 0.002 — n = 1, which is somewhat consistent with the linear growth
rate spectra of Fig. 5.1, although the my peak location is somewhat less than
the maximum linear growth rate value of my, which is around 60 when the axial
boundaries are periodic. This differs significantly from all of the other simulations
and the experiment which have peaks at my < 10 (if they peak at all). And again,
as was clear from Fig. 5.4 b), all of the other simulations are strongly dominated
by n = 0 axial mode numbers, which is a result of the nonlinear instability as I

will explain in the upcoming chapters.

Moreover, all of the simulations other than the n = 0 suppressed simulation
have qualitatively and semi-quantitatively similar statistical properties, which are

also consistent with the statistical properties of the experiment. For instance,
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they all possess broadband frequency and wavenumber spectra of the same gen-
eral shape, they all have similarly shaped radial fluctuation amplitudes, and the
fluctuations all have kurtosis greater than 3, meaning that their PDF's have tail off
slower than does a Gaussian distribution. I note that on a quantitative level, the
Dirichlet and Neumann simulations have fluctuation levels about 1.5 times less
than the Periodic and Sheath simulations. I don’t fully understand the reason
for this, but note that the axial wavenumber spectra in Fig. 5.8 f) are shallower
for the Dirichlet and Neumann simulations. This certainly affects the energy
injection and energy dissipation, as will be seen in the following chapters. Nev-
ertheless, even though their fluctuation levels are too low, I don’t claim that the
Dirichlet and Neumann simulations are less consistent with the experiment than
the Periodic and Sheath simulations. The reason is that I have a free parameter,
namely the artificial diffusion coefficient, which affects the overall fluctuation level
without significantly affecting the shapes of the spectra. I tuned this parameter
to be 1.25 x 1073 (see Chapter 4) to match the fluctuation level of the Periodic
simulation with experiment. Had I tuned this parameter with the Dirichlet or
Neumann simulations in mind, the Periodic and Sheath simulations would have
fluctuation levels that seem too large. So, in fact, all four of these simulations
are qualitatively consistent with the experiment, and they are also quantitatively
consistent when I correctly tune the free parameter, though this is a weaker state-
ment of consistency. Moreover, I don’t provide any error analysis to quantify the
agreement between simulation and experiment, but rather just use an eye test.
The fact that several different statistical properties of several fields (see Fig. 5.7)
agree between simulation and experiment provides the evidence for my claim that

the simulation model is relatively well validated.

Before moving forward, I note that the volume averaging procedure used to
obtain many of the plots in Fig. 5.8 can obscure some important physics, namely,

the physics that controls the shape of the power and wavenumber spectra. There-
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Figure 5.10: Radially dependent power spectra comparison for the experiment

and simulation

fore, in Figs. 5.10 and 5.11, I show non-volume-averaged power spectra for the
experiment and Periodic simulation. Furthermore, I don’t use any window func-
tions to obtain the plots because window functions distort temporal structures
that can affect the spectra. Fig. 5.10 provides contour plots of the frequency
spectra as a function of radius to include information at all radii. The spectra
for both the simulation and experiment have no strong coherent features, mean-
ing that the turublence is broadband everywhere. Since it is difficult to see the
shapes of the spectra from contour plots, I show line plots of the spectra at a
few radii in Fig. 5.11. First, notice how similar the spectra are at each radius,
which is quite validating evidence for the simulation model. Second, notice that
the spectra are neither exponential nor power law in shape for either the experi-
ment or simulation at any radii. One may be able to fit multiple exponentials or
power laws to the spectra, but theories rarely predict spectra with more than two

fitting regions. This doesn’t bode well for statistical Kolmogorov-type theories,
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nor does it conform to theories based on low-dimensional chaos, which I discuss

in Chapter 9.

Another statistical property that is of utmost importance is the radially convec-
tive flux — both particle and heat flux — which ultimately dominates the transport
in turbulent magnetic confinement devices. I show the particle flux, I' = (Nwv,),
and energy flux, Q = (NT,v,), in Fig. 5.12, where V, is the radial E x B veloc-
ity due to the fluctuating potential. Although this transport is convective, many
write the flux in terms of diffusion coefficients based on Fick’s Law: I' = —DV N,
and @ = —NoxVT,. For the largest fluxes in Fig. 5.12 — those corresponding to
the Sheath simulation — the maximum diffusion coefficients are D,,q, &~ 5 m?/s
and Xmaez ~ 7 % 10% s71. For comparison, the Bohm diffusion coefficient for these
simulations is Dgopm ~ 3 m? /s. So the transport in the simulations other than

the n = 0 suppressed simulation is consistent with the Bohm value.

Another statistical measurement that may be compared between simulation
and experiment is the spatial and temporal correlation. Experimentally, the spa-
tial correlation can be found by fixing one probe at a certain location and moving
another probe around and measuring the correlation between the two I, signals.
The second probe scans the r— 6 plane at an axial location close to the first probe.
The results of the simulated spatial correlation compared to the experimental cor-
relation are presented in Fig. 5.13. For the simulation, I show only the result from
the Periodic simulation. The darkest red point, which has a correlation value
of 1 represents the location of the stationary probe. The black line marks the
1/e contour, where the distance from the stationary probe to this contour is the
correlation length. The simulation correlation length — which is about 1 cm — is
about half of that of the experimental correlation length. Furthermore, neither
the experimental nor simulated fluctuations have completely isotropic correlation
structure. The slight divergences from isotropy are not that similar, though. Nev-

ertheless, neither have coherent-mode-like correlation structures or any long range
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correlation at all.

The experimental temporal autocorrelation is obtained with a single stationary
probe. I show the autocorrelation results of the experiment and a simulation in
Fig. 5.14. Both have autocorrelations that recede exponentially (confirmed by
a semilog plot), but the simulation has a smaller slope and also contains longer
correlation structure than the experiment. This is not surprising given the visually

longer lived structures in the simulation (seen in Fig. 5.5).
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CHAPTER 6
Energy Dynamics Formalism

In the last section of the previous chapter, I analyzed the experimental and sim-
ulated turbulence using simple and common statistical methods. Never did I
assume any kind of model for the turbulence, nor did I take full advantage of
the wealth of spatial information provided by the simulations. In the next few
chapters, I do use the simulated physics model along with the turbulent spatial
structures to analyze the nature of the turbulence from an energy dynamics per-
spective. The energy dynamics provide direct information about energy injection
into the turbulence from the equilibrium gradients, energy transfer among differ-
ent fields and between different normal modes, and turbulent energy dissipation.
This information reveals the mysterious mechanism that drives the n = 0 fluctua-
tions so strongly in the simulations (see Fig. 5.8 f)). The mechanism is a nonlinear
instability. I will provide evidence for this in the next chapter, but in this chapter,

I derive the dynamical energy equations and explain what they mean.

6.1 Total Energy and Dynamics

First, I consider the total, volume-averaged energy and energy dynamics. The

total volume-averaged energy of the fluctuations (in normalized units) is:

1

B [ 7 (4 S smop) + Mo (2ot + (7202) [ v (6

where Py = NyT, is the equilibrium pressure. The %PO(N /Ny)? term is the poten-

tial energy due to density fluctuations, 2Py(T./T.)? is the electron temperature
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fluctuation potential energy, NO ey ”e is the parallel electron kinetic energy, and
%NO(V 19)?* is the E x B perpend1cular kinetic energy. The energy contained in
the electric field is smaller than the perpendicular kinetic energy by a factor of

(va/c)? and is therefore neglected.

I obtain the dynamical energy evolution 0F /0t using Egs. 4.1- 4.4 in the

%SN , and integrate it

following way: first, I take Eq. 4.1, multiply both sides by

over the volume. The result is:

TeO
No

0FEN

T
= { —T.yNvg - VInNy — T,oNV e — iy <2 (VL N)? +
ot Ny

NSN> (6.2)

where Exy = 3 (Py(N/Ny)?) with () shorthand for the volume integral [, dV.
Next, I multiply Eq. 4.2 by Ng—’U”e, Eq. 4.3 by —¢, and Eq. 4.4 by 3 3 NOT and

volume integrate, giving:

ok, e
8t = <_TeOU||eVN — 1-7]-NOUHeV||Te + N()UHEV”qb - %NOVBU|26> 7(63)
OE.
8_t¢ = (NodVvje — vinNo(V 18)* — p1ppViw) (6.4)
oE 3
8_tT = <—§N0T6VE -VInT,y — 1.71N0T6V||U||e - H|6/Teo<v|lTe)2>
— Y T, T.S 6.5
< my; Teoy ¢ 2ILLT Te(] (VJ_ ) 2T€0 T> ( )

where B, = 5 (NoZeut, ), By = § (No(V16)%), and By = 3 (Fo(T../T)?).

Note that there are a few simplifications made in these equations. One simplifi-

cation is that the term <,uN e NV2 N > is written approximately as — </LN N 0(V N)? >
in Eq. 6.2. The fact that % ~ 1 makes this approximation acceptable. In fact,

0
I don’t use this approximation when calculating such quantities from the sim-
ulations, but I write it here as it illuminates the fact that this energy term

is negative. I use the same approximation with the — <2uTT0(V 1T)? > and
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— <K||6/T60(VHT€)2> terms, although the latter contains the fraction . /7%, which

is not necessarily close to being constant.

Moreover, notice that none of the advective nonlinear terms are present in
these energy dynamics equations. The reason is that (f{g, f}) = 0, which holds
as long as f and g have periodic boundary conditions, or if any boundaries are
not periodic, then the boundaries must satisfy f = 0 and Vg - dS = 0. Now only
Eq. 6.4 actually has this (f{g, f}) form for its nonlinearity because all of the other
energy equations contain equilibrium profile quantities in the volume average (e.g.

<T#601N {6, N }> in Eq. 6.2). Nevertheless, the equilibrium profile quantities come

as %0 ~ 1 for Eq. 6.2 and T]FV—O ~ 1 for Eq. 6.5, while there is a factor of the
0 e0

electron to ion mass ratio multiplied by the nonlinearity in Eq. 6.3. This means

that all of the nonlinearities approximately vanish in the energy equations. I have

confirmed this by direct calculation of these terms. This is why I do not include

the nonlinearities in Eqgs. 6.2- 6.5.

I note that I could have used a different expression for the energy in order to
absolutely conserve the nonlinearities. For instance, I could have set En = % (N?),
neglecting the factor TTS In fact, I did this in one paper [FCU12]. However, even
though such an expression has the nice property of conserving the nonlinearities,
it does not conserve the adiabatic response (I show below how the energy I use
does conserve the adiabatic response). Energy is a useful concept because of its
conservation properties, but unfortunately, in this case, I have to choose which
property to conserve. I choose here to use the physical energy — Eq. 6.1 — that
conserves the adiabatic response for a few reasons (I also used the physical energy
in another paper [FCU13]). First, the adiabatic-conserving energy is the same
thing as the physical energy — meaning, it is the energy one would write down
without knowledge of the equations. Second, the physical energy generally con-
serves the nonlinearities more than the nonlinearity-conserving energy conserves

the adiabatic response. I have tested this using my simulations. And third, when
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the adiabatic response is not conserved, the energy dynamics appear to deposit

energy directly into the v, fluctuations, which is not standard.

Now, one may wonder why the physical energy doesn’t absolutely conserve
the advective nonlinearities when many other papers use a physical energy that
does. For one, those other papers generally use local rather than global mod-
els. Additionally, I have partially linearized the simulation equations, eliminating
certain conservation properties. Still though, this partial linearization makes the
energy dynamics analysis simpler, and therefore more useful, although some may

disagree.

Now Eqgs. 6.2- 6.5 are still not incredibly revealing because they contain nearly
as many terms as the original simulated equations. However, I can break each of

these equations down in the following way:

oF;
a—tj = Qj + Cj + Dj. (6.6)

The subscript j represents the individual field: (N,v,¢,T). Q); represents energy
injection from an equilibrium gradient. For example, )y represents the energy
injected into Ey (the density fluctuation potential energy) taken from the free

energy of the equilibrium density gradient (V,Np). These terms are:

Qn = (—T.oNvg-VInN), (6.7)
@, = 0, (6.8)
Qs = 0, (6.9)
Qr = <—§NOTGVE-VlnTeo>. (6.10)

Only the density and temperature fluctuations receive energy from the equilib-
rium density and temperature gradients, respectively. They do so by radial E x B
advection, moving fluid or heat across the gradient where it can enhance or dimin-
ish the density and temperature fluctuations. I call the ); terms energy injection
terms, but they can in fact dissipate fluctuation energy if the phase between the

density (or temperature) and potential are stabilizing.
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Next, the C} terms, which constitute the adiabatic response, represent field

transfer channels. They are:

CN = <—T60NV||U||6> 5 (6.11)
Cy, = (=T VN — L.71Ngv| V| T. + Nove V| 9) (6.12)
C¢ = <N0¢V||v||e> 5 (6.13)
Cr = (=L7TINGT.V|vje) . (6.14)
Notice that Cy +Cy+Cr = —C,, if the axial boundaries are periodic or zero value.

Alternatively, > ; Cj = 0. This is what I mean by conservation of the adiabatic re-
sponse. No energy is gained or lost in total from these terms when taken together.
Energy does, however, transfer between the different fields: N, T¢, ¢ <+ vj.. All
energy transfers through the parallel electron velocity. The density, temperature,
and potential fluctuations all feed or draw energy from the parallel electron veloc-
ity. This means that the density and potential fluctuations, for instance, cannot
transfer energy between each other directly. There are two minor points regard-
ing the affect of the boundary conditions on the adiabatic response. First, the
Neumann and sheath simulations don’t exactly conserve the adiabatic response
because of non-vanishing contributions from the boundaries. Second, the sheath
boundary conditions allow energy transfer between the temperature and potential
fluctuations that is completely independent of the adiabatic response. In fact, this
is what allows for the CWM (see Sec. 5.1.2). The sheath energy transfer mech-
anism isn’t represented by the C; expressions. I don’t account for that transfer

mechanism in these energy dynamics equations. I leave it to future work.

Finally, the D; terms represent dissipative energy loss from the fluctuations.

They are:

€ Te
Dy = <—MN C(VLN)? + ONSN>, (6.15)

D, = <——N0Vev2e>, (6.16)



Dy = (~vinNo(V19)* = peoViw), (6.17)
N
br = <_”"8/T60<VTe>2—3$e OVeT2>

i TeO ©
3 N, , 3N,
—= T, ——T.57 ). 6.18
+ < 2l/JTT60<VL ) +2Te() T> ( )

Most of these terms have forms that illustrate that their negative definiteness.
However, the source terms do not have a clear sign and the (—uz¢V3 @) vis-
cous term in Eq. 6.17 doesn’t have a clear sign either. Recall, though, that the
sources essentially remove the flux-surface averaged component of the density and
temperature fluctuations, indicating that they remove the energy associated with
these fluctuation components. Taking Sy ~ — (N) ts from Eqgs. 4.5 and 4.6, then

the source contribution to Dy is — <h (N >fcs>, which is negative. The viscous

No
term in Eq. 6.17 is less obviously negative, however, letting V;, — —k? makes
the viscous term approximately — (usNok| ¢?). So it’s reasonable to conclude
that all contributions in the D, expressions are absolutely negative. My direct

calculations have confirmed this.

6.2 Spectral Energy Dynamics

While the total energy dynamics can reveal some important information such
as the amount of energy entering the density fluctuations vs. the temperature
fluctuations, the direction of energy flow through the adiabatic response, and
how much energy is dissipated by the various mechanisms, the total dynamics
cannot show the mechanism of the nonlinear instability. In fact, the total energy
dynamics are rather useless in revealing any nonlinear physics. Spectral or mode-
decomposed energy dynamics, on the other hand, provide much more information

regarding mode-specific processes like cascades and complex nonlinear processes.

When deriving mode-decomposed energy dynamics, one first has to choose

a set of basis functions (modes) on which to decompose the fluctuations. This
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is important because a good choice of basis functions can immediately reveal
important dynamical information, while a poor choice can lead to a lot of wasted
time and a muddled picture. Generally, basis functions are time-independent
spatial structures that are linearly independent and span the whole computational
space ). For example, a particular set of basis functions ;(7) can linearly sum

to represent any 3D function on €:
= ahi(P). (6.19)

In dynamical systems, the system is represented by a time-dependent 3D function,
causing the amplitudes a; to vary with time:

FEE) = ai(t)i(). (6.20)

i

Fourier modes or linear eigenvectors are common examples of basis functions.
However, Fourier modes are not always a useful or a natural basis, and linear
eigenmodes can be unwieldy when they are nonorthogonal to each other, which
is the case for my dynamical system. In the next section, I discuss an alterna-
tive basis, namely that obtained by Proper Orthogonal Decomposition, but for
now, I describe a basis upon which I base most of my results. That basis is a
partial Fourier basis, which I have found useful in analyzing the simulations and

uncovering interesting physics.

What I mean by partial Fourier basis is that I decompose the azimuthal and
axial directions in Fourier series, leaving the radial direction undecomposed. For

example, I decompose the density in the following way:

N(r,0,z,1) an (r, t)e mo+h=2), (6.21)

Here, k, = 2“" , where n is the axial mode number and m is the azimuthal mode
number, and the k symbol is short for (m,n). The sum over k is in fact a double

sum over m and n. Furthermore, positive and negative m and n are included in
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the sums to ensure reality of IV since n_j = n. Similar decompositions are used
for vy, ¢, and T.. Note that the radial part of the basis function ng(r,t) isn’t
really a basis function in the general sense. First, it is time-dependent. Second,
it doesn’t span the radial domain. In fact, at a particular time, it only describes
one very particular 1D (complex) function. Nevertheless, by not using a radial
decomposition, I greatly reduce the number of modes of the problem, allowing me

to focus on certain processes of interest.

Now, to derive the spectral energy equations, I first substitute the basis decom-
positions — Eq. 6.21 and those corresponding to the other fields — into Eqs. 4.1- 4.4.

Using the density evolution equation as an example, I get:

ony,
ot

ez (mO+k- z)

k
m , 1 m? 4
> l—T&NaQﬁg — ik Novg + pun (9 ng + — g — —5mg) ! mothe2)
k
1 : / ; /
+- Z(zmn,;@rgb,;, — z’m’&rn,;qﬁ,;,)e’(m*m J0+ilkath)z + SN. (6.22)
r
Kk
Note the double sum for the nonlinearity. Continuing on with just the density
equation for now, I proceed to get the energy equation by multiplying through

S1.17
—ikl 2z

0 —im/'0
by % L onz,e

Teo 8’nk|
Ny Ot

1
2
e . T, 1 2
< 0 Zma N0¢kn~ — ZszeOUEn}Z + —OuN(afn,; + —0png — En,g)nﬁ>
r r
_l’_

and integrating over space. The result is (with primes per-

muted):

No
T . ! a * . / a *
L vt - )

T
+ <F35Nn2~5%70> : (6.23)

where the brackets now represent the reality operator and the radial integral

Re { i ?"dr} because I have performed the azimuthal and axial integrations and
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taken the real part of the equation. Breaking this up into specific parts:

OF . . L
g( ) _ = Qn(k) + Cn(k) + Dy(k) + ;TN(k,k') (6.24)
with

Ey(k) = %<T > (6.25)
Qn(k) = < Z;n JT\%}@ Nogn > (6.26)
On(k) = (—ik.Tovgns) (6.27)

— o m2 i TeO *5
Dy(k) = < (O2ng + 8 g — F”E)n;; + FOSNHE E,o> (6.28)

Tn(k,K) = < (im'ng 0, ¢7 gy —i(m — m’)arng,¢g_g,n2)> (6.29)

r Ny
The new piece not in the total energy dynamics in Sec. 6.1 — TN(E, K ) — comes
from the advective nonlinearity. It couples different Fourier modes, meaning it
transfers energy between different k waves. It is not conserved for individual k
modes, but is conserved on the aggregate: » TN(E, K ) ~ 0. Notice also that
Qn(k) can be finite for n = 0, but Cx(k) is zero for n = 0. Thus, flute modes
may take energy from the equilibrium density gradient, but they cannot access
the adiabatic response. This eliminates linear drift wave flute modes, but does not
preclude nonlinear drift wave flute modes that transfer their energy to non-flute

structures in order to access the adiabatic response.

For completeness, I write the rest of the spectral energy dynamics pieces here.

The perpendicular kinetic energy dynamics pieces are:

- P 2
Ey(k) = B} <N0 ;k + N0%|¢E‘2> (6.30)
Qu(k) = 0 (6.31)
Colk) = (ik:Novgoy) (6.32)
. 1 2 .
Do) = (ol + 10, — Tpmg)o; — vaBod))  (633)
. 1
Ty(k k) = < - (im' @70, ¢ POr i(m_m/)arwﬁf¢k’£/¢2)> (6.34)
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and for the electron temperature potential energy:

Brf) = §(7oll) (6.35)

4 Te(]

- 3 Ny im .

Qr(k) = < 2T° 8Teo¢kt> (6.36)
e0

Cr(k) = (—1.71ik. Nyvgts) (6.37)

7 Klle 21, 12 3Me No 2
D — 3

bB) = (-Gl - Wnﬁmw
3 N m2 . 3N
+ < 2T:)’“‘T(32t + 875 S+ Osts 5k0> (6.38)

- 3 Ny ,. .. .
TT(/{Z, ]{?,) = <§T?} (Zm/tg,argbg_k‘,tlg — z(m — m/)artlg,qb,;_g,t’g)> (639)

and for the parallel kinetic energy:

1me

E,(k) = S ( Nolvg[?) (6.40)
Q.(k) = 0 (6.41)
Co(k) = (—ik.Nongvs + ik, Nopgvi — 1.71ik. Tootzvt) (6.42)
Dy(k) = <—ye%No\v,;\2> (6.43)

- N
T,(k, k) = <%TO (imvg, 0y vz — i(m — m/) Do dp_p v )> (6.44)

6.3 Proper Orthogonal Decomposition

6.3.1 Decomposition

As I alluded to above, there are many choices by which one can mode-decompose
a turbulent system. Full Fourier decompositions and linear eigenmode decom-
positions are common. I choose not to use a radial Fourier decomposition for a
couple of reasons. First, the radial Fourier modes are poor representatives of the
turbulent structures. That is, too many radial Fourier modes have large coeffi-
cients upon decomposition, which makes simple modeling difficult. Second, the

equilibrium profiles have radial dependence, and some of the differential operators
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contain factors of the radius r. This means that the integration over the volume
which eliminates the Fourier exponentials — like the step between Eq. 6.22 and
Eq. 6.23 — does not work for the radial coordinate. This is more of an aesthetic

consideration than a mathematical one; nevertheless, I prefer to avoid it.

The linear eigenmode decomposition is an attractive one because the dynam-
ical energy expressions can be written elegantly (see Sec. 8.4), and it seems that
the fastest growing linear eigenmodes should make up most of the turbulent am-
plitude. However, there is the practical difficulty in doing an eigenmode decom-
position in that one has to somehow find all of the linear eigenvectors, which
cannot be done with an initial value code like BOUT++. One must write or
use an eigensystem code to do this. On a more fundamental level, however, dy-
namical systems with non-normal linear operators — gradient-driven systems —
have nonorthogonal linear eigenvectors. Using a nonorthogonal basis decomposi-
tion can be too unwieldy for a decomposition analysis because the total energy
contains contributions from each individual eigenmode plus contributions from
cross terms. I showed a simple example of this in Sec. 2.2.3. The fact that the
cross terms can have negative energies is undesirable and unmanageable. Using
left and right eigenvectors to introduce some kind of orthogonality condition can
partly simplify matters, but energies and the dynamical terms still contain cross
terms, leaving still overly complicated results [KT10]. I, in fact, began this line of
research using an eigenmode decomposition, but I eventually gave up that path
because the results were too complicated and the interesting physics didn’t depend

on that particular decomposition.

Hatch et al. dealt with the nonorthogonal eigenvector problem using two dis-
tinct methods [HTJ11]. The first was to use a Gram-Schmidt orthogonalization
procedure, retaining the most unstable linear eigenmode and orthogonalizing the
others from this. The resulting orthogonal modes other than the most unstable

linear eigenmode, however, are not linear eigenmodes after the procedure. They
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more or less form an arbitrary orthogonal basis, leaving this method with limited
applicability. The second method they used was Proper Orthogonal Decomposi-
tion (POD, aka Principle Component Analysis) to create orthogonal modes that
best captured the dominant turbulent structures. The POD has properties that
make it the most desirable decomposition for my dynamical system — other than

the one in the previous section.

POD is a procedure for extracting an orthogonal basis from an ensemble of
space-time signals. Its power lies in its generality, its linearity, and its creation of
an “optimal” basis. A nice review of the properties of POD is given by Berkooz
et al. [BHL93]. A less descriptive and less rigorous description of POD is given in
Futatani et al. [FBC09], and I will follow their treatment to show how to construct
the POD and to present some of its properties. Simply, the POD is a singular
value decomposition (SVD) of the data given by

Npop

A(Fisty) = Y oqug(F)w,(ty) (6.45)

where A(7,t) is the data. In my case, four independent variables (N, ¢, v, T¢)
comprise the data. These must be appended together to get the full matrix A.
Furthermore, Npop = min[4 X N, x Ny x N,,N;]. In other words, Npop is the
lesser of 4 times the number of total grid points — the degrees of freedom — and
the number of time points. For me, Npop = N; because I choose to retain more
spatial data than time data. Linear eigenmodes and full Fourier modes, on the
other hand, always number 4 x N, x Ny x N,. This means that the spatial POD
functions, u,(7), do not span the computational domain — any arbitrary function
on the computational domain cannot be represented by a linear combination of
the u, POD functions. They do, however, span a subspace of the domain and
every data signal that is used to derive the u, POD functions can be represented

by a linear combination of them.

Before I continue, I note a couple of practical considerations. First, I find it
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useful at times to first Fourier decompose the data in the azimuthal and axial
dimensions before performing the POD. In that case, the data for each Fourier
pair k = (m,n) is only a function of the radial coordinate r and time: Ag(r,t).
The spatial POD functions u, are then 1D (complex) functions of radius. Second,
if I do not Fourier decompose the data, I must make A a 2D matrix in order to
take the SVD computationally. To do this, I simply unravel or collapse all of the
spatial dimensions into a 1D vector. Then a single column of A is the unraveled
spatial data at one particular instant in time, and the time varies from column to
column. Furthermore, the non-Fourier spatial and temporal POD functions u, and
w, are real, not complex. Third, whether or not I use a Fourier decomposition, A
must be a 2D matrix and v, must be a 1D vector, so performing the POD requires

appending the four fields (N, ¢, v, 1) into a single vector.

Continuing on, the spatial POD wu, modes and the temporal POD w, modes

satisfy the following orthonormality conditions:
Z uq (73w (73) = Z wq(t)wi (t5) = dq. (6.46)
( J

The positive real numbers o, are the singular values, and they are sorted in
descending order, i.e., 1 > g9 > 03---. Then for 1 < h < Npgp, I can define a

rank-h truncation of the dataset A™ as
h
h .
Az(j) = quuq(ri>wq(tj)- (6.47)
q=1

What makes the POD more optimal than any other decomposition is that this
truncation approximation is better than any other rank-A approximations with

other bases. Formally,

|A — A™||* = min {||A — B||*} , for rank(B) = h. (6.48)
where [|A|l = />0, [|A;[|* is the Ly norm. In general, [|A[* = Zflvzpr o is

2 : : th
the energy of the data and o represents the energy contained in the ¢"* POD
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Figure 6.1: Comparison of the radial spatial structure of the fastest growing eigen-

mode and dominant POD mode along with the total turbulent fluctuation RMS

mode. In this sense, the POD is a decomposition of the data in terms of energy
content. In other words, the modes with the highest o, comprise most of the
energy of the data. If the o,’s descend rapidly, as they often do, the truncated
data reconstitution of Eq. 6.47 represents the original data quite well. This is

obviously useful in energetics analyses.

To show an example of how the POD modes represent the turbulent data
better than the linear eigenmodes, I perform a POD on the Periodic simulation
with 300 time signals, giving 300 POD modes. Then, in Fig. 6.1 a), I compare
the real part of the radial structure of the fastest growing linear eigenmode to the
dominant POD mode — that with the highest o,. For both, I take only the density
component of the modes. The eigenmode has mode numbers n = 1, m ~ 60,
while the POD mode has much more complicated axial and azimuthal dependence

because I don’t do an (m,n) Fourier decomposition before performing the POD.
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Figure 6.2: Frequency power spectrum for the temporal part of the POD modes

Because of the complex nature of the linear eigenmode and the non-trivial axial
and azimuthal POD mode structures, it isn’t that instructive to compare the real
part of the linear eigenmode to the POD mode at a single point in the # — z plane.
Therefore, in Fig. 6.1 b), I take the RMS of the linear eigenmode and the RMS
of the POD mode, averaging over # and z. I further compare these to the RMS
of the turbulent density fluctuations. Clearly, the dominant POD mode captures
the turbulent fluctuations better than the linear eigenmode. This, along with the
orthogonality of the POD modes, makes them better to use in certain situations

than the linear eigenmodes.

Another interesting POD mode result is shown in Fig. 6.2, in which I plot
the frequency spectrum of all of the temporal POD w, modes. Surprisingly, each
POD mode has a single frequency associated with it — although there is some
spread, especially for the higher modes. This means that the POD is somewhat
equivalent to a frequency decomposition in this case. This is not a typical property

of the POD. In fact, I have not seen this in any other POD study. Perhaps this is a
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consequence of the monotonic (non-peaked) frequency spectrum of the simulation.
Nevertheless, this result requires further study that I leave to future work. It will

not be applicable, in any case, to the POD energy dynamics.

6.3.2 POD Energy Dynamics

In order to construct the energy dynamics of the POD modes, I must first alter
the data a bit because energy of the system in Eq. 6.1 is not simply given by
|A||* if A is made up of the variables (N, @, v|, T.) from which I constructed
the POD above. The reason is that the energy contains equilibrium constants
as well as the perpendicular gradient of ¢ rather than ¢ itself; the energy is not
simply F # ||A]]? = <N2 + 6% + v, +Te2>. To fix this, I instead reconstruct
A from the variables (mN, VNoV, 0,/ NoVo, \/ﬁoz—:v“e, 3Ny /2T T).
This variable weighting provides the equality, £ = %HAH2 I then perform the
POD with this A. The spatial POD modes u, can be unweighted, broken apart,
and unraveled to get back functions such as n,(r) which is the density part of the
uy, POD mode. Let me give a name to this unweighted vector: x, = (ng, ¢4, vg, t,)-
The original data is still decomposed in terms of this vector,

Npop

(N, ¢, vje, Te) = Z 0qq(F)we(t) (6.49)

and equivalently
Npop

N = Z g (F)w(t) (6.50)

q=1
but there is no orthogonality relation of these n, or even the full z, vectors, i.e.,
an )y (75) # Og, qu (73)x] (75) # Oq1- (6.51)

Note that I construct the data that goes into the POD with 5 variables rather than
4 due to the need for both —FE, = V,¢ and —Fy = V¢ in the energy expression

and the requirement that A be a scalar. This is straight-forward enough to do,
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but a potential complication arises when I unweight the u, POD modes to recover
¢4(7). Seemingly, the unweighting recovers a ¢,., and a ¢y, that can be different,
but in sum, Z?;PIOD OyPrqWq = Zé\g’fD 0400.4w, = ¢ must hold. Fortunately, how-
ever, the POD ensures that ¢, , = ¢p, because each of the POD modes preserves

any mathematical property of the original data such as the zero-curl nature of the

electric field. I have confirmed this directly.

With this change of definition of A and the corresponding definitions for the
POD modes, I can now construct the POD energy dynamics. Like in the previous
sections, I start with Eqs. 4.1- 4.4. This time, I decompose the fields in terms
of the POD modes. For example, I substitute N(7,t) = Z;V:P{)D o,ny(7)w, into

N in the equations, and the same for the other independent variables (¢, v, T¢).

Eq. 4.1 then becomes

Npop Npop
ow, 10¢,0N, . v, ,
; TqMa~5 — ; TqWq {_; 20 or NOE +unVing| + Sy
1 ¢, 0n;  On, 0P
+ ; ZO'qO'lwqwl (a—:a—el - 8_7:18_91> . (652)
q,l

Next, I multiply this equation through by 7. /Noapn;‘,w; and the other equations
by their corresponding energy prefactors and POD’s. The LHS of the density

equation is

Npob
TeO % *8w
- Foaqapnqnpwpa—tq (653)

-

In Sec. 6.2, volume integrating this term at this point isolated Ex(k). Volume
integration of Eq. 6.53 will not produce the density energy of POD mode p: En(p).
The reason is that n, and n; are not orthogonal under volume integration as I
pointed out in Eq. 6.51. They are not even orthogonal under volume integration
with the appropriate energy prefactor. The reason is that n, is only part of the
total POD mode, which contains ¢4, v, and ¢, as well. The orthogonality relation
only holds when the energy of all of these are summed and the prefactors are

added. That is, the orthogonality relation for the POD modes is a total energy
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OEN (p)
ot

orthogonality. As a consequence, there is no meaning to an equation for
There is only meaning to an equation for the evolution of the energy of an entire

POD mode: aEtB;;(p). So, adding the four equations together and integrating over

the volume results in a LHS of

ow 10 (o2lw,*)  JE(p)
2, % P _ = pl—p —
o T2 ot ot (6.54)

The RHS, on the other hand, does not simplify much at all upon summing the
equations together and performing volume integration — other than the fact that
the adiabatic response terms cancel each other due to the equation summation.

Take the —vg - VN term as an example. As it stands, the term appears as

Npop
| e, ON,
— E - nt—2_—_— | dV. )
/V<q1 7Achapwqunp 50 37’) V. (6.55)

While such a term may be calculated as is, it is unfortunate that the sum over all
of the POD modes remains. However, recall that the temporal w, POD modes are
orthogonal to each other upon time integration (Eq. 6.46). So if I time integrate

the energy evolution equation, this term becomes

To 5 .06, N,
A(N%%%896r dv, (6.56)

which is only a function of a single POD mode! This step is one of the reasons why

the POD is preferable to other decompositions like the left /right linear eigenmode
decomposition. One may notice, however, that time integration trivializes the LHS
ag—l(tm, which becomes approximately zero in the steady-state regime. Necessarily,
the RHS must be zero as well. However, the goal is to understand the mode
dynamics in the steady-state regime, and simply separating linear and nonlinear
terms on the RHS, like what I did in Eq. 6.24 can give information regarding
which POD modes inject energy into the system, which ones dissipate energy, and

which modes transfer to which other modes. Specifically,

OE(p)

atﬁZMm+Xﬁ@@D=0 (6.57)
t a.l
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with the L(p)/o?2 being the volume integral of

T, 10¢, ON,
On; (__ﬂ_o + :quinp)

NO r 00 Or
3N0 ].apr aTeo 2 2/4)”6 2 2me
| ———= Vit —Vit, — — 1t
* 2Teop<r80 or T HTVL T RN Vil T e
* me
— &y (16 V2 pp + Vinpp) — Veﬁj\f0|vp|2 (6.58)

where positive values of L(p) indicate energy injection into the POD p-mode from
the equilibrium gradients, while negative values indicate dissipation of energy.
L(p) of course, is the linear nonconservative part of the energy dynamics. The
conservative nonlinear transfer term, unfortunately, cannot be simplified with the
orthogonality relations due to the appearance of triple time products ( ft wqwywydt)
and spatial products without the right form for orthogonality. I do not write it out
explicitly here, but I note that T'(p, ¢, ) represents the energy transfer from POD
modes ¢ and [ to POD mode p. To reiterate, Eq. 6.58 determines which POD
modes inject energy into the fluctuation system, which ones dissipate energy, and

how much they do so.

98



CHAPTER 7

Nonlinear Instability for the Periodic Simulation

In this chapter, I use the energy dynamics machinery developed in the last chapter
to show where in wavenumber space and to which fields energy is deposited,
how it’s transferred, and where it’s dissipated. 1 show that the linear instability
plasma paradigm doesn’t hold for the LAPD simulations, but rather, a complex
nonlinear instability process dominates the energy dynamics. Furthermore, in this
chapter, I consider only the simulations with periodic boundary conditions — the
Periodic simulation and the n = 0 suppressed simulation. I analyze the remaining

simulations (Dirichlet, Neumann, and Sheath) in the next chapter.

7.1 Emnergy Dynamics Applied to LAPD Turbulence

7.1.1 The Energy Spectra

Although I have already discussed the relative importance of the n = 0 fluctuation
flute structures and shown evidence for this in Figs. 5.3, 5.4, and 5.8, I now use
the energy expressions in Eqgs. 6.25, 6.30, 6.35, and 6.40 to take a detailed look at
the energy wavenumber spectra. The spectra for the four fields in (m,n) space are
presented in Fig. 7.1. As expected from Figs. 5.3, 5.4, and 5.8, most of the density
energy En (k) is located at n = 0 (and 1 < m < 10). This wavenumber location
is much different from that of the fastest growing linear eigenmode, which is at

- -

n = 1,m = 60). Additionally, Er(k) and E,(k) have similar-looking spectra as
( y o g

En(k), though the actual magnitudes of the energy are quite different for the three
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Figure 7.1: Energy k-Spectra of the different fields for the Periodic simulation

100



-,

fields. Finally, E,(k) has a remarkably different energy spectrum than the other
fields. Most of the energy is contained at n > 1 and m ~ 30, which is somewhat

similar to the linear eigenmode growth rate spectrum, though m is lower.

Although these results seem contradictory to the notion that the most unstable
linear eigenmode should pump energy into the turbulent system and thus dominate
the energy, one might attribute the spectral results to a strong inverse cascade. In
fact, in Ref. [UPC11], my collaborators and I posited and tested this hypothesis.
Our specific hypothesis was that the most unstable linear eigenmode pumped
energy into the system at its characteristic wavenumber and then proceeded to
cascade energy forward and backward into other waves. The inverse cascade into
n = 0 and low m would be particularly strong to account for all of the energy in the
n = 0, low m Fourier components. Our test of this inverse cascade revolved around
the use of a particular bicoherence three wave interaction, namely that between
three density fluctuation Fourier modes of (n,m) = (1,25), (—1,—24) and (0,1) —
not exactly local in m space as in a typical cascade picture. Note that in that study,
we used a different set of profiles and smaller magnetic field for the simulation
than the one I use here, so the dominant azimuthal mode numbers in that study
were smaller than those in this dissertation. In any case, in Ref. [UPC11], we
found a strong bicoherence amplitude for this three-wave interaction and assumed
that this meant that the waves with (n,m) = (1,25) and (—1,—24) coupled to
transfer their energy to waves with (0,1). This fit within the standard linear
instability paradigm because linear eigenmodes with (n,m) ~ (£1, £25) were the
most unstable for that system. Unfortunately, bicoherence is only a vague proxy
for three-wave energy interaction, and it doesn’t indicate a direction of energy
transfer. As I later worked on energy dynamics calculations, I discovered, to my
surprise, that we had the direction of energy transfer backwards! Our assumption
regarding the direction of energy transfer was wrong. The paradigmatic plasma

turbulence view led us astray.
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7.1.2 Energy Dynamics Details

The full energy dynamics analysis using the machinery of Chapter 6 removes any
ambiguity regarding the locations and magnitudes of energy injection into the
fluctuations and direction of energy transfer between different Fourier modes. In
fact, the full dynamics contains so much information that it can be difficult to
digest it all. T therefore try to focus on the most important parts, especially those
that are crucial to the nonlinear instability. First, in Fig. 7.2, I show values for
some of the @);,C;, and D; terms in the energy dynamics equations for n = 0, £1
and 0 < m < 100, neglecting all dynamics with |n| > 2, which have relatively
small values and are mostly insignificant. The dynamics curves are all averaged
over a time period during the turbulent stage of the simulation where the dynamics
processes have all reached a quasi-steady state. The label n = +1 represents the
addition of terms with n = 1 and n = —1. Fig. 7.2 a) displays the density
potential energy injection (Qy) and the adiabatic response transfer (Cy). I don’t
show the dissipation (Dy) in this figure, which is why the curves don’t seem to
add up to zero as they would if all dynamics were shown. Nevertheless, this
figure immediately reveals that the majority of the energy is injected straight
into the n = 0 fluctuations from the equilibrium density gradient rather than
into the n = +1 fluctuations! Looking at Eq. 6.26 again, and I reiterate, QN(E)
does not depend on n, so it is perfectly acceptable to inject energy straight into
n = 0 fluctuations. However, CN(l;) is dependent upon n (Eq. 6.27), so energy
can only travel through the adiabatic response path in finite n structures. This
is why the unstable linear eigenmodes have finite n — because eigenmodes with
n = 0 cannot access the adiabatic response and thus have no field coupling.
But with nonlinearities involved, there is nothing to prevent energy extraction at
n = 0. Likewise, Fig. 7.2 b) reveals the same kind of story for the temperature
potential energy, although the magnitudes are quite low compared to the density

ones, indicating that the temperature fluctuations are relatively insignificant as a
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player in the total energy dynamics.

Fig. 7.2 ¢) shows the perpendicular kinetic energy dynamics. Recall Q, = 0,
so there is no direct energy injection; rather, energy enters ¢ fluctuations via
the adiabatic response (Cy). Even though no energy enters ¢ at n = 0, flute-
like dissipation Dg(n = 0) is significant, foreshadowing the three-wave energy
transfer into n = 0 ¢ fluctuations. Additionally, although T don’t show |n| >
2 dynamics, they are somewhat important for Cy and D,, accounting for the
obviously unbalanced dynamics in this figure. Lastly, Fig. 7.2 d) reveals the
parallel kinetic energy dynamics, which simply includes the adiabatic transfer (C,)
and electron-ion frictional dissipation (D,). Recall that Cy + Cy+ Cp = —C, for
each k. In other words, looking at the C; terms altogether, one can see that energy
is drawn from the density and potential fluctuations into the v, fluctuations and
then moves onto the electrostatic potential ¢ fluctuations. That is only clear when

looking at all of the C taken together.

Fig. 7.2 only shows the dynamical pieces due to the linear terms of Egs. 4.1-
4.4, and they therefore don’t show the nonlinear transfer between different k. The
advective nonlinearities provide this transfer (the T](IZ, k') terms), and they are
essentially conservative, meaning they provide no net injection or dissipation with
respect to the fluctuations. Now the TJ(E, /;’) terms are each four dimensional,
making them difficult to show. I choose to sum over some of the dimensions to
show some of their aggregate properties. In Fig. 7.3 a), I sum over k" and n leaving
them as only functions of m. Also note that I have divided Ty (K, %) by 10 and
multiplied Tv(lz, K ) by 10 so that all of the T can be shown on one plot. Notice
where T and 17 are positive and where they are negative. Negative values at
a particular m indicate that the fluctuations with azimuthal wavenumber m are
giving up net energy, while positive values correspond to fluctuations that are
taking up net energy at that m. Ty and Tr transfer, on the aggregate, energy

in the range 5 < m < 30 to energy at all other values of m. This is not at all

104



—1x107°

—2x107°

3 x107°

—3x107°

—6x107°

Figure 7.3: Periodic simulation conservative three-wave transfer dynamics

surprising because ) and @Qr are largest for 5 < m < 30. This means that
energy is injected from the equilibrium gradients at 5 < m < 30 and then three-
wave transferred into other azimuthal wave numbers in both forward and inverse
cascades (mostly forward). Actually the summation I use hides the information
regarding the locality of wavenumber transfer, so it’s indeterminate from this
figure whether the transfer process is by cascading or non-local transfer. On
the other hand, Ty and T, have the opposite character of T and 77, meaning
that the transfer dynamics are the other way around. This is typical in similar
systems, such as Hasegawa-Wakatani systems [HW83, CBS95| in which the density
potential energy exhibits a forward cascade, while the perpendicular kinetic energy
exhibits an inverse cascade. It was also obvious that this had to happen given the

azimuthal asymmetry between Cy and D, (see Fig. 7.2 ¢)).

More importantly, however, Fig. 7.3 b) shows the axial wavenumber transfers.

Again Ty and T’y are similar. Both show energy transfer from n = 0 ton # 0. This
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is truly important! It is the most direct evidence for the nonlinear instability. Our
paradigmatic hypothesis in Ref. [UPC11] posited the opposite transfer direction.
The most unstable linear eigenmodes have n = 1 and all eigenmodes with n =0
are stable, yet Fig. 7.3 b) shows that the dominant energy transfer is from n =0
ton # 0, at least for N and 7,. Again, T}, and T, have the opposite character
of Ty and T, as really they must, since ¢ and v gain their energy through the

adiabatic response.

It’s still difficult to see the energy flow paths from Figs. 7.2 and 7.3 alone.
So I have put the results in a flow diagram — Fig. 7.4. In order to do this, I've
summed all quantities over m and n (including |n| > 2), except that I have left
n = 0 components out of the sums and shown them separately. For instance,
Qn(0) represents the density fluctuation energy injection at n = 0, while @ n(10)
represents the density fluctuation energy injection for all n # 0 summed together.
Furthermore, the symbol N(0) represents ) = Enx(m,n = 0), N(l0) represents

-

> mnzo En(K), etc. Note that every term is summed over m.

The diagram starts at the top with the equilibrium density and temperature
profile gradients in the orange boxes. They ultimately supply free energy for the
fluctuations. Pointing out of them, the yellow @);’s extract that energy, channeling
it to the density and temperature fluctuations. The @);’s are normalized so that
they sum to 100 so that each one represents a percentage of energy brought into
the system. Clearly, the n = 0 components dominate the energy injection from
the equilibrium gradients, and the density injection is much stronger than the
temperature injection. The blue Ty and T7 three-wave transfers both go in the
direction of n = 0 to n # 0. Dissipation (the magenta arrows) acts on every
fluctuation component and ultimately removes all of the injected energy from the
system during the steady-state turbulent phase. Next, the red C'y and Cr transfer
channels transfer energy from N and T, to vy, only at n # 0, which is the start

of the adiabatic response. Actually, C'r = 0 because the parallel heat conduction
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is so dissipative. Completing the adiabatic response, Cy transfers energy from v

to ¢ at n # 0. Finally, T}, shows axial transfer into n = 0 ¢ components.

7.1.3 Nonlinear Instability

Fig. 7.4 provides a look at the way energy flows through the system. The non-
linear instability mechanism can be extracted from a subset of the steps in the
flow diagram. I provide a reduced diagram in Fig. 7.5 to isolate the essential
interactions of the nonlinear instability mechanism. Notice that I focus only on
the density fluctuation side — as opposed to the temperature fluctuation side —
because it’s clear from the numbers in Fig. 7.4 that the density fluctuations are
a much stronger drive for the system than the temperature fluctuations. Again,
starting at the top, the n = 0 density fluctuations draw energy from the equilib-
rium density gradient by n = 0 fluctuating flow advection. Then, those density

fluctuations nonlinearly transfer energy into n # 0 density fluctuations. Next,
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Figure 7.5: Nonlinear instability diagram that contains the pertinent and domi-

nant parts of the energy dynamics

the adiabatic response acts to transfer some of that energy into n # 0 potential
fluctuations, which finally nonlinearly transfer energy into the n = 0 potential
fluctuations. Shown in this way, it’s clear that the process is self-sustaining. It’s
also the dominant process by which the fluctuations get their energy from the
equilibrium gradients, which is clear from the fact that Qy(n = 0) comprises 71%
of all of the energy injection. Also, the net direction of T (from n = 0 to n # 0)

and its large magnitude support this.

To me at least, this came as a big surprise due to my understanding of the
unstable linear eigenmode drive paradigm. Given this paradigm, it seems counter-
intuitive that energy can be injected into the fluctuations at n = 0, where only
stable linear eigenmodes reside. The reason why stable regions in wavenumber
space inject energy into the system is that the linear eigenmodes are nonorthog-
onal. Highly nonorthogonal stable eigenmodes may transiently draw energy from

an equilibrium as I discussed in Sec. 2.2. To show that this happens in the sim-
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Figure 7.6: The transient linear growth of the m = 10,n = 0 energy component

after the nonlinear simulation terms are turned off

ulation, I turn off the nonlinearities and observe the energy evolution. I show
the total energy as a function of time after turning off the nonlinearities for the
n = 0,m = 10 fluctuations in Fig. 7.6. At early time, the energy grows despite the
fact that all of the linear eigenmodes with n = 0 are stable. Furthermore, it grows
linearly (algebraically) at very early time, consistent with simple model calcula-
tions [Wal95]. At late time, the energy drops and doesn’t recover because I have
shut off the nonlinearities. As I discussed previously, the energy-conserving non-
linearities mix energy in the system, reinforcing structures which grow transiently,
leading to a self-sustaining system of stable nonorthogonal linear eigenmodes. The
key to this self-sustaining process is the ability of the linearly stable eigenmodes
to transiently draw energy from the equilibrium, which happens in these simula-
tions. This explanation does not take away the necessity of the n # 0 fluctuations,
which are essential in this particular nonlinear instability for allowing access to

the adiabatic response, another important step in the self-sustainment process.
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7.1.4 POD dynamics

The transient growth mechanism due to the linear eigenmode nonorthogonality
is quite unintuitive. It shows how difficult it is to gain intuition based on linear
eigenmodes when they are nonorthogonal and how complicated their energetics
analysis can be. This points to the need to use an orthogonal basis for mode
decompositions. As I discussed in Sec. 6.3.1, the POD basis is ideal in many
ways. Therefore, I perform a POD on the simulation following my treatment in
Sec. 6.3.1 and calculate the energy dynamics following Sec. 6.3.2. However, before
I perform the POD and the associated energy dynamics, I Fourier decompose the
data axially and azimuthally to connect the results to those above. Since the axial
dynamics proved essential in understanding the nonlinear instability, I use that
to inform my POD analysis. Each complex spatial POD mode is a function of
r,m, and n. I show an example of the radial structures of the first and fourth
POD modes for n = 0,m = 10 in Fig. 7.7 a), where the solid line is the real part
and the dashed line is the imaginary part. The lowest POD modes for a given
(m,n) — those that contain the most energy, indicated by the highest values of o,
— have relatively smooth radial structures, while the higher POD modes are more

oscillatory.

Recall Egs. 6.57 and 6.58, in which I defined the POD energy dynamics,
specifically the nonconservative linear term L(p). This term quantifies the time-
integrated change of energy of POD mode p due to the linear terms of the equa-
tions. Of course, the nonlinear terms mix the energy between the different POD
modes, so that in steady state turbulence, all of the POD modes retain a quasi-
stationary level of energy. But in the Kolmogorov sense, it is informative to know
which POD modes inject energy into the system and which dissipate energy. L(p)
gives this information. A compact way to show the nonconservative energy dynam-
ics is through the effective POD growth rate: v(p) = L(p)/ 012, (more accurately

v(m,n,p) = L(m,n,p)/ Ugmp). I show this quantity, plotted against the square
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Figure 7.7: Representative POD radial structures and growth rates

root of the energy \/m = 0, for a large number of POD modes in Fig. 7.7
b). In this figure, I plot POD modes with four different values of (m,n), which
I choose because they are particularly illustrative. First, I choose to show the
m = 10,n = 0 POD modes because this is approximately where most of the
energy is located in the turbulence (see Fig. 7.1). This manifests itself in the
relatively large values of o, for some of these modes. Furthermore, the lowest
m = 10,n = 0 POD modes — those with the highest o, — have positive growth
rates, meaning these POD modes inject energy into the turbulence. This confirms
the picture that I advocated in the previous sections, in which n = 0 structures
inject fluctuation energy into the turbulence. It also confirms that orthogonal
POD modes can provide better insight into turbulent processes than the linear
eigenmodes of the system. This isn’t surprising, given that the POD modes are
derived from the turbulence, while the linear eigenmodes have no knowledge of
nonlinear physics. Nevertheless, POD modes prove to be especially useful for

non-normal systems.
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Another set of POD modes that I plot in Fig. 7.7 b) are those with m =
60,7 = 1 because this is the approximate location of the most unstable linear
eigenmodes (see Fig. 5.1). These modes all have fairly low energy, and except
for one mode that is just above marginal stability, they all have negative growth
rates. This is also a non-normal effect, but it is opposite that which makes the
n = 0 modes unstable. Again, this result is unintuitive and quite unexpected if one
only considers linear eigenmodes. To compare to these two cases, I also show POD
modes for m = 60,7 = 0 and m = 10,n = 1. Again, some of the n = 0 modes have
positive growth rates, while all of the n = 1 modes have negative growth rates.
The linear eigenmodes have no bearing on the structure of the POD modes and
therefore no obvious effect on the stability properties of the turbulent dynamics.
The POD basis is dramatically more useful for understanding the turbulence than
the linear eigenmode basis. Nevertheless, the POD basis is more difficult to obtain
than the partial Fourier decomposition that I used in the previous sections, and
it is probably worse in illuminating some turbulent processes like the nonlinear

instability. I therefore leave it be for now.

7.2 n=0 Suppression

I previously introduced the n = 0 suppressed simulation in Sec. 5.3, where I dis-
cussed the nature of the simulation and some of its statistical properties. I claimed
before that this simulation, in which I artificially remove the n = 0 components
of the density, temperature, and potential fluctuations, eliminates the nonlinear
instability. The details of the nonlinear instability mechanism described in the
previous section should now make it obvious why removing these components
eliminates the nonlinear instability. One may also consider other ways to remove
the nonlinear instability while keeping the linear drift wave instability intact. For

example, one could remove the n = 0 component of the linear drive terms or
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remove one or more of the nonlinear advection terms, although this would affect
quite a bit more than just the nonlinear instability. In any case, my method
certainly removes the nonlinear instability mechanism while keeping the linear in-

stability intact, allowing the simulation to act more in the paradigmatic manner.

Rather than showing another diagram of the energy flow for the n = 0 sup-
pressed simulation, I construct a spectral growth rate from the spectral energy
dynamics (those of Sec. 6.2). I emphasize, that I am not using the POD here.
Thus, I define this growth rate as:

/ (2Em</§)) =3 [Qj(E) + Dj(/Z)} / (2%(/&‘)) (7.1

o OB (k)

lin

Recall that } . Cj(E) =0, so C; does not appear in this sum. I also only include

OFot(k)

5 so that the growth rate only involves the energy

the linear contribution to
injection and dissipation at each wavenumber and not the three-wave transfers
(T](E, k’)). Adding the three-wave transfers would always make this sum about
equal to zero in the turbulent quasi-steady state stage of the simulation anyway,
rendering this quantity useless. In the linear stage of the simulations, this method
reproduces the linear growth rate spectrum. I actually used this v to generate the
curves in Figs. 5.1 and 5.2, though I used other more common methods to confirm
the accuracy of that calculation. v can also be applied to the turbulent stage of
the simulation — like I did with the POD modes in the previous section — where

it describes the net energy injection into the system — or dissipation — at each k

normalized by the steady-state energy at that given k.

Fig. 7.8 shows the results of this calculation for three different cases. First,
the light blue (cyan) curves represent y(m) for n = 1 (the solid line) and n = 0
(the dashed line) for the Periodic simulation during the linear exponential growth
stage. The m = 1 curve is the same as that shown in Figs. 5.1 and 5.2. The
n = 0 curve, on the other hand, is the linear growth rate of the n = 0 linear

eigenmodes, which all have negative growth rates — since I take this after the
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transient growth has ended. The red curves map out ~ for the turbulent stage of
the Periodic simulation. The n = 0 growth rate is positive for low m, while the
n = 1 growth rate is negative for all m. This isn’t surprising given the previous
section’s evidence for n = 0 energy injection due to the nonlinear instability,
but it is certainly a nice way to show the contrast with the linear growth rate
curves. The growth rates in the turbulent stage are consistent with the slopes of
the transient growth curves like that shown in Fig. 7.6. Finally, the green curves
are the growth rates for the n = 0 suppressed simulation during the “turbulent
phase” — recall from Fig. 5.8 that the fluctuations remain rather coherent, and the
state is only weakly turbulent. These growth rates are somewhat similar to the
linear growth rates just as one might expect given the unstable linear eigenmode

paradigm.

Now, one may wonder why there is any n = 0 growth rate curve at all for the

n = 0 suppressed simulation. The reason is because I remove the n = 0 com-
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ponents after they are nonlinearly excited. I allow the nonlinearities to transfer
energy into the n = 0 components at each time step and then I save the data.
The energy, by the way, is transferred from n = 1 to n = 0 modes in this sim-
ulation — consistent with the paradigmatic picture. Then, I remove these n = 0
components before the equations are evolved again. So there are small values for
these n = 0 components that come out in the data, but are not used to evolve the
equations. This allows construction of the n = 0 growth rate curve. Furthermore,
notice that the n = 0 suppressed simulation growth rates do not exactly match
the linear growth rates. The reason for this is that the nonlinearities change the
structures and phases between the fields. Or to put it another way, they excite
slower growing or damped eigenmodes that lessen the effect of the most unstable

eigenmodes. This is consistent with the linear instability paradigm.

Finally, one might notice that manually removing all of the n = 0 fluctuation
components means that the zonal flows (n = 0, m = 0 component of ¢) are also
removed. Zonal flows are often invoked as being an important saturation mecha-
nism for turbulence by either shearing the turbulent eddies [BDT90] or by exciting
stable eigenmodes [MTK12]. They are often considered to provide the most im-
portant nonlinear interactions to plasma turbulence. So one might naively think
that their removal in the n = 0 suppressed simulation causes the removal of the
nonlinear instability. I say “naively” because the nonlinear instability mechanism
outlined in Fig. 7.5 doesn’t depend upon zonal flows. But to prove this and to
explore the real effect of the zonal flows, I have rerun the n = 0 suppressed simula-
tion without removing the zonal flows. I still remove all of the n = 0 components
of the density and temperature fluctuations and all of the n = 0,m # 0 compo-
nents of ¢, but I leave the zonal flow component intact. I show some comparisons
of the two simulations in Fig. 7.9. In Fig. 7.9 a), I show the k, spectrum of the two
simulations, revealing that the zonal flows cause radial wavenumber transfers from

low k, to medium k,. This is a simple consequence of a three-wave interaction
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Figure 7.9: Zonal flow affect on spectra and growth rate

between the dominant low k, structures and the zonal flows which have finite k,.
This interaction causes a slight saturation effect because the medium £, modes
have lower growth rates than the low %k, modes, and the overall saturation level is

depressed by about a factor of 2 when I retain the zonal flows.

Nevertheless, the zonal flows don’t cause the nonlinear instability, which is
evident from Fig. 7.9 b) where the nonlinear growth rates of the two simulations
are shown along with the linear growth rates. Recall from Fig. 7.8 how different
the growth rates look when the nonlinear instability is active. The simulation
with the zonal flows is qualitatively similar to the simulation without the zonal
flows, but as expected, the growth rates with the zonal flows are less than or equal
to the growth rates without the zonal flows. Interestingly, the zonal flows only
affect the n = 1 growth rates at very low high m, but they affect the n = 0 growth
rates mostly at medium m. Anyhow, the zonal flows don’t affect the nonlinear
instability and have a relatively weak affect on turbulent saturation compared to

other types of turbulence like ITG [DBB00, HDC03].

116



7.3 Nonlinear Instability Literary History

After I found this curious nonlinear instability, I wondered if others had previously
found this particular mechanism. After all, the equations and the geometry that
I use are not new. In fact, a look at Fig. 7.5 reveals that even simpler models
like the 3D Hasegawa-Wakatani equations [HW83] contain the proper components
to cause the nonlinear instability. And cylindrical simulations of the Hasegawa-
Wakatani equations are three decades old — although the original simulations were
2D. My search of the literature reveals that this nonlinear instability was, in fact,
identified in 1995. Actually, going even further back, in 1977-1979, Cheng et
al. [CO77, COT9] performed 3D turbulence simulations that may have actually
been driven by the nonlinear instability. In their work, they identified a dominance
of kj = 0 “convective cells [that] are non-linearly excited as a result of mode-
coupling of the drift instabilities.” It’s unclear what equation set they used and
what exactly they meant by this mode coupling, but their results seem similar to
mine, and it’s reasonable to believe that they at least identified the consequences

of the nonlinear instability.

In 1995, Biskamp and Zeiler simulated local cylindrical plasma fluid turbu-
lence in the first published use of the 3D Hasegawa-Wakatani equations [BZ95].
Using an energetics analysis, they in fact, correctly identified the nonlinear in-
stability mechanism that drove the kj = 0 structures in their simulations. So
the nonlinear instability mechanism is, in fact, not new. Furthermore, others
expanded on this original work. Drake et al. showed that elimination of the lin-
ear instability by removing the k| # 0 components of the linear drive term had
virtually no affect on the turbulence [DZB95]. Furthermore, they showed that
adding magnetic shear, which also stabilized the linear drift waves, did not stop
the turbulence from sustaining itself. Both of these showed that the nonlinear

instability could act as a subcritical instability. A few years later, Camargo iden-
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tified the nonorthogonality of the linear eigenmodes in the Hasegawa-Wakatani
equations as a possible reason for effects that were previously attributed to non-
linear physics [CTC98]. Additionally, Scott and others have explore nonlinear
drift wave turbulence in a number of different models with different physics ef-
fects such as magnetic shear and curvature and found that drift wave turbulence
with very long parallel structures tends to sustain itself despite the lack of linear

instability [Sco90, Sco92, ZBD96, ZDB97, KMN99, Sco02, Sco03, Sco05].

After visually exploring their turbulent simulations, Drake et al. proposed a
physical mechanism for the nonlinear instability. The mechanism contains three
steps: (1) a radially elongated k, = 0 convective filament — or cell — radially
transports density across the equilibrium density gradient, causing a density fluc-
tuation with an azimuthal density gradient. (2) Radially propagating drift waves
with k, # 0 grow on this density gradient. (3) The flows associated with these drift
waves reinforce the original radial flows of the convective filament. They went on
to simulate this mechanism in a reduced equation set, using a finely crafted initial
state to show the growth of the structures involved in the mechanism. It’s not
difficult to see that this mechanism is the same one that I described using Fig. 7.5,
though my description used modal energy transfer language while Drake’s uses
the language of flows and drift waves. Furthermore, they lumped together my
two middle steps into his single middle step. Nevertheless, our explanations are

equivalent.

Drake et al. cleverly used their physical insight to develop a reduced turbulent
model, consisting of only three modes: a k, = 0 radially elongated mode, a k, # 0
drift wave with finite radial and azimuthal wavenumbers, and a second k, # 0 drift
wave with higher azimuthal wavenumber with a phase such that its interaction
with the other drift wave drives the k, = 0 mode. The electrostatic potential

resulting from these modes is given by the expression
¢ = ¢ cos(my) + [¢1 cos(my) + ¢o sin(2my)] x sin(k,z)exp(ik,z). (7.2)
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The evolution of these modes can be calculated by insertion of this expression into
the evolution equations (such as Eqgs. 4.1 and 4.3). Further simplifying the result-
ing equations, they calculated that the k£, = 0 mode would grow with an algebraic
time dependence of t¥/?; they didn’t have any dissipation in the model to stop the
growth, though. Such an algebraic time dependence is consistent with the notion
of non-normal transient growth [Wal95]|. They didn’t make this connection, but in
light of my Fig. 7.6 and general properties of non-normal subcritical turbulence,

this isn’t a surprising result.

Later, Krommes, noted the similarity between Drake’s self-sustainment mech-
anism and the mechanism of turbulent self-sustainment in subcritical hydrody-
namic flows like Poiseuille pipe flow [Kro99]. The self-sustainment mechanism
in hydrodynamic flows is the following: (1) advection of mean shear by weak
streamwise rolls (vortices) which create streaks (spanwise velocity fluctuations);
(2) secondary instability of the resulting streaks; (3) nonlinear self-interaction of
the streaks that re-energizes the original streamwise rolls. The streamwise rolls
are elongated k, = 0 structures. Furthermore, the first step is a linear interac-
tion, called the ’lift-up’ mechanism, which relies on nonorthogonal eigenmodes
that grow transiently with algebraic dependence [TTR93, Wal95, Hen96]. This
self-sustainment mechanism is analogous to the Drake plasma mechanism with
the caveat that a secondary drift wave instability in the plasma case replaces the
wake-like instability in the neutral fluid case. Such a correspondence between the
two mechanisms led Krommes to suggest using mathematical techniques and con-

clusions from the neutral-fluid studies to further study the plasma mechanism.
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CHAPTER 8

Energy Dynamics for the Non-periodic

Simulations

I turn my focus in this chapter to the simulations with non-periodic axial bound-
ary conditions: the Dirichlet, Neumann, and Sheath simulations. I showed in
Sec. 5.1 that the linear properties of these simulations are rather different from
the Periodic simulation and from one another. However, the statistical turbulent
properties of the four simulations are all quite similar (Sec. 5.3). This, combined
with the observation that the turbulence in the Periodic simulation self-organizes
and drives itself by nonlinear instability, points to the conclusion that the axial
boundary conditions have little affect on the nonlinear instability or the energy
dynamics in general. Nevertheless, additional supporting evidence for this claim
can provide confirmation regarding the robustness of the nonlinear instability.
I therefore explore the energy dynamics of the non-periodic simulations in this

chapter, attempting to differentiate the nonlinear dynamics from the linear ones.

8.1 Fourier Decomposing Non-periodic Functions

To my knowledge, nobody has considered the affect of non-periodic axial boundary
conditions on this nonlinear instability in a straight magnetic field. But this is a
critical extension of the topic because in the real world, linear plasma devices don’t
have periodic boundary conditions. Additionally, the nonlinear instability seems

to crucially depend on axial wavenumber dynamics, which should be affected by
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the axial boundary conditions. It is perhaps surprising then that nobody has

taken up this line of research.

On the other hand, it may not be so surprising given that the non-periodicity
can cause interpretation issues regarding the linear vs. the nonlinear instability.
In the periodic case, the linear eigenmodes are sinusoidal with integer axial mode
numbers, and all of the unstable eigenmodes have |n| > 1. So any energy injection
into n = 0 fluctuations from the equilibrium gradients cannot come from the
unstable linear eigenmodes. In the non-periodic cases, the linear eigenmodes are
not necessarily sinusoidal (see Fig. 5.2 b)) and if they are, they certainly don’t
have integer mode numbers. Fourier decompositions of the non-periodic unstable
eigenmodes yields finite n = 0 Fourier coefficients. This can muddle interpretation
of energy injection into n = 0 fluctuations during the turbulent simulation phase.
It seems as though a linear eigenmode decomposition may fix this problem, but
as [ commented in the last chapter, nonorthogonal eigenmode decompositions are
difficult to analyze. Plus, it is difficult to calculate linear eigenmodes with two
non-Fourier dimensions. So I proceed with the spectral energy dynamics on non-
periodic simulations and show that the results are less clear-cut than those of
the Periodic simulation, but nevertheless, rather conclusive in that the nonlinear

instability still dominates.

First, however, I raise a related problem with Fourier decompositions of non-
periodic data — Gibbs phenomena. Fourier basis functions are continuous and
periodic, so Fourier decomposing discontinuous or non-periodic functions leads to
Gibbs phenomena. One of the significant results of this is the slow convergence
of Fourier reconstructions to the original signal. Mathematically, I can take a

discrete signal with the following Fourier decomposition:
Q ~ .
fle) =" fre®™*, (8.1)
k=-Q
where the fk are ordered in the sum by the size of their absolute value with fg
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Figure 8.1: Convergence of Fourier reconstructions showing the effect of non-pe-

riodicity
being the largest Fourier coefficient. The Fourier reconstruction of rank ¢ < @) is:

q
g(Q)(x) — Z fke%rzk;r

k=—q

(8.2)

Defining the L; norm difference between the original signal and the rank ¢ Fourier
reconstruction as D, = Y__|f(x) — g9 ()], one can study the convergence of D,
as a function of ¢. For continuous periodic signals, D, converges geometrically,

but it only converges algebraically for non-periodic or discontinuous signals.

As an example, I display D, for the Periodic and Sheath simulations in Fig. 8.1.
The Periodic simulation in Fig. 8.1 a) converges geometrically, while the Sheath
simulation in Fig. 8.1 b) converges algebraically. Additionally, even though the x-
axis indicates the mode with the ¢** largest amplitude by construction of Eq. 8.2,
it also corresponds to the axial mode number n for all but the last few ¢. In
other words, in both simulations, most of the energy is contained in n = 0 modes
followed by n = 1 modes and so on. So I should still be able to focus on the

n = 0 and n = +1 mode numbers in the energy dynamics data, but they will not
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contain as much of the dynamics as they do for the Periodic case.

8.2 Energy Dynamics Results

The simplest way to view the vast quantities of energy dynamics information is
through the effective growth rate defined in Eq. 7.1. So in Fig. 8.2, I show the
growth rates for all of the simulations. In Fig. 8.2 a), I plot the growth rates during
the turbulent phases of all five simulations (see Fig. 5.8 for the color code). Again,
I break up the n = 0 and n = 1 components and don’t show the n > 2 growth
rates. Notice that the Periodic, Dirichlet, Neumann, and Sheath simulations all
have quite similar growth rates, especially at n = 0. Their n = 1 growth rates
have similar m dependencies, but somewhat different magnitudes, and the n =1
growth rates are all negative except for a small region in the Dirichlet curve, which
is marginal. Contrast these with the n = 0 suppressed simulation, which recall, is
dominated by the linear instability. These growth rates certainly indicate that the
same kind of processes occur for the four similar simulations regardless of axial
boundary conditions — the nonlinear instability process. This isn’t too surprising

given the similarity of the turbulent statistics of the four simulations (Fig. 5.8).

It is also instructive to compare the nonlinear turbulent growth rates against
the linear growth rates as I did for the Periodic simulation in Fig. 7.8. T do this
for the non-periodic simulations in Figs. 8.2 b)-d). The black curves in these
figures are the linear growth rates for each respective simulation. For example,
the solid black line in Fig. 8.2 b) corresponds to the n = 0 linear growth rate of
the Dirichlet simulation. The dashed black line in this figure corresponds to the
n = 1 growth rate of the Dirichlet simulation. Note that the linear growth rates
come from the same data as that used in Fig. 5.2, but these are decomposed in

m and n, while those were simply decomposed in m.

All three of these simulations (Dirichlet, Neumann, and Sheath) have a lot of
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similarity, especially the Dirichlet and Neumann simulations. All three have n = 1
growth rate curves that differ qualitatively between the linear and the nonlinear
phase. For the most part, the n = 1 linear growth rates are always positive, while
the n = 1 nonlinear growth rates are always negative. The n = 0 linear growth
rates for the Dirichlet and Neumann simulations are similar to the n = 1 linear
growth rates because the linear eigenmode structures contain roughly equal parts
n =0 and n = 1 and the density-potential phases are set by the linear drift-wave
physics. The n = 0 and n = 1 Sheath simulation linear growth rates are quite
different because the linear eigenmodes actually undergo a qualitative change at
m ~ 40. All m < 40 Sheath linear eigenmodes have shapes like that in Fig. 5.2 b),
which are even about the axial midpoint. However, all m > 40 linear eigenmodes
have shapes that are odd about the axial midpoint. The CWM has even and odd

solution branches whose growth rates cross at m ~ 40, causing this change.

In any case, it is interesting that the n = 0 linear and nonlinear growth rates
for these three simulations are so similar for m < 50 but so dissimilar for m > 50.
Does this low m region of similarity indicate that the linear instability dominates
these simulations or is the similarity just a coincidence? To put it another way,
is there some optimal axial wavelength that the Periodic simulation can only
access by nonlinear instability, but the other simulations can access by linear
instability? The difficulty in answering this question lies in my inability to perform
a linear eigenmode decomposition energy analysis — due to their nonorthogonality.

However, I have found a way around this.

8.3 Linear vs Nonlinear Structure Correlation

To try to sort out the problem of linear versus nonlinear instability in a non-normal
linear system, I propose projecting the fastest growing linear eigenmode onto the

turbulence and calculating the projection amplitude. If a linear instability is dom-
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inant, a large portion of the fluctuation energy should reside in the fastest growing
linear eigenmode structure [HTJ11]. It is the presence of the structure, after all,
which injects energy into the fluctuation system. In the alternative case where a
nonlinear instability is dominant, the linear eigenmode should have little bearing
on the structure of the turbulence and therefore little energy should be contained
in it. The only complicating piece of this conjecture is the nonorthogonality of the
eigenmodes. Recall from Sec. 2.2.3 that the total energy of the system is made
up of the energy from each of the individual eigenmodes plus cross energies from
different eigenmodes. The cross energies may be negative. This, however, isn’t a

problem, which I now show in detail.

In my model, I fully describe the turbulent state by four independent fields,
which I can appended into a single vector of the spatio-temporal field functions:
Frurs(Tyt) = {N(71), To(7,t), Vio(r 1), ve( 1)} frurs(7,t) is the state of the
system, and this analysis can be generally extended to any dynamical system.
The state fu.s(7,t) may be decomposed in a complete basis:

Fruro(Fot) = Cim(t)thim(r, 2)e™, (8.3)
where 1, ,,(r, z) are time-independent spatial complex basis functions, which for
my system take the form: 4, ,,,(7, 2) = {Nim (7, 2), tim (7, 2), VLOim (7, 2), Vi (1, 2) }.
The ¢; ,,(t) are the complex time-dependent amplitudes. I have explicitly imposed
a Fourier bases for the ¢ dependence of the basis functions, which need not be
done in general, but it is convenient for my system and any system that possesses
a symmetry — a periodic coordinate. Now, 4 ,,,(7, 2) can be any linearly indepen-
dent set of functions. The trick in proving the projection conjecture is choosing
just the right set of basis functions. So first, I set ¥, (7, 2) to the fastest growing
linear eigenmode. Then, I set the other ;.. (r, z) to functions that are orthog-
onal to ¥y, (7, z) and also orthogonal to each other. It isn’t necessary to actually

compute these other basis functions, but if I were to compute them, I might start
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with all of the linear eigenmodes and perform a Gram-Schmidt orthogonalization
procedure, making sure to start with the fastest growing eigenmode in order to
preserve it. Hatch et al. [HTJ11] used this orthogonalization procedure explicitly.
They found that a significant fraction (~ 50%) of the energy in a turbulent state
of ITG turbulence was contained in the fastest growing linear eigenmode at each
perpendicular wavenumber. Such a result, however, doesn’t require knowledge of

the other basis functions, and thus I don’t compute them here.

Now, to compute the fraction of energy in the fastest growing eigenmode to
the total energy, I first define an inner product that is energetically meaningful

and that defines the orthonormality of the basis functions:

(Wsms Wim) = / W, - ydV = 6. (8.4)

The weighting w is such that (fium, frurs) = Eruwrs. Now from Eqs. 8.3 and 8.4,
<fturb7fturb> = Euurp = sz |Cz‘,m|2 and <fturb,m7fturb,m> = Euurom = Zl |Ci,m|2-
Then, the amount of energy contained in the fastest growing mode (for each
m) is given by the square of the projection of the mode onto the turbulence:
Eom = [{¥om, ftwb,m)|2 = |com|?. The ratio R,, = Eom/Ewurbm 18 a measure of

the fraction of turbulent energy contained in the fastest growing linear eigenmode.

Of course, Eyypm is easily calculated from the turbulent state, but Ej ,, in the
turbulent state can only be found with knowledge of the fastest growing eigenfunc-
tion. The fastest growing eigenfunction, though, can be found easily by running a
simulation from a random or turbulent state with all of the nonlinearities removed
from the model equations. After some time, the fastest growing eigenfunctions
will come to dominate the fluctuation structure. Then, a Fourier decomposition
in m space will separate the fastest growing eigenfunctions at each m, including
the real and imaginary part of the eigenfunctions — up to a time dependent com-
plex constant, which is removed by normalizing the eigenfunction. Then, one can

project the eigenfunctions onto the turbulent state with the inner product defined
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in Eq. 8.4, giving Ej .

I do this and show the ratio R, in Fig. 8.3 for the five simulations. For the
most part, the simulations other than the n = 0 suppressed one have a small
value of the ratio (R,, < 0.3) for all m. This confirms that the turbulence largely
self-organizes without regard to the linear physics in the four other simulations.
The one exception is the Dirichlet simulation for m > 50, which has R,, ~ 0.5.
This is quite the unexpected result, and I can’t explain it based on any of the
other evidence. Most of the energy in this and the other simulations, however,
is at low m (Fig. 7.1), so these larger m eigenmodes don’t make a large impact
on the overall structure of the turbulence. In fact, R,, is below 0.1 for m < 40
for the periodic, Dirichlet, and Neumann simulations, precisely the area where
n = 0 structures dominate the energy spectrum. This answers the question posed
in the previous section regarding the similarity in the n = 0,m < 40 linear and

nonlinear growth rates for the Dirichlet and Neumann simulations. The fastest
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growing linear eigenmodes do not significantly drive the turbulence in this region!

The nonlinear instability does.

On the other hand, the fastest growing eigenfunctions make up a significant
fraction of the energy in the n = 0 suppressed simulation. Where the linear drift
wave instability — and the turbulent growth rate — is the strongest (at m ~ 50)
R,, ~ 0.5. The linear physics controls the n = 0 suppressed simulation, and the
linear eigenmode structure certainly asserts itself in the turbulence, but still only
to 50%. So since this is the controlling case, I cannot conclude that the nonlinear
instability dominates unless R, < 0.5. In that regard, the Sheath simulation is
the most difficult to classify because it has significantly more linear eigenmode
dominance at low m (R, ~ 0.25) than the other nonlinear instability-dominated
simulations, but it isn’t at the 50% level. I therefore, refrain from classifying it,
saying only that the linear and nonlinear instabilities are both quite active in this
simulations. This raises the question of the importance of the CWM in LAPD,
although LAPD doesn’t have such simple boundary conditions, so I don’t take

this question further.

8.4 Nonlinear Saturation Levels

The prediction of the saturation level of turbulence is important for predicting
transport. Generally, such predictions are based off of linear properties, however,
a dominant nonlinear instability should have an effect on the level at which the
turbulence saturates. One theory — mixing length theory — based on linear drift
waves predicts that the saturation level should be about «/k% where v and k.
are the growth rate and perpendicular wavenumber of the fastest growing linear
eigenmode [Hor90|. Turbulence driven by a nonlinear instability may saturate at
some other level, which seems probable given Fig. 5.8, which shows that the n =0

suppressed simulation saturates at a lower level than the simulations driven by

129



the nonlinear instability.

Mixing length theory provides an estimate for the turbulence saturation level
where only properties of the linear eigenmodes are known. This can be useful for
finding scaling relations and allows prediction without direct numerical simulation.
Therefore, I develop a corresponding estimate based on the drift wave turbulence
driven by the nonlinear instability that I have described. Now, it is quite difficult
to predict a saturation level based on a nonlinear mechanism when nonlinear
simulation results are not available. However, as suggested in Ref. [CO79], and
as seen in Fig. 5.4 b), it appears that the turbulence begins to saturate when the
amplitude of the n = 0 fluctuations becomes equal to the n = 1 fluctuations. At
this point, the strongest nonlinear interaction term catches up to the linear terms,
bringing about the onset of saturation. However, the nonlinear instability really
doesn’t become important up until this point, which is why saturation occurs only
when values are a few times higher than this point. Therefore, this crossing point
can only be seen as a rough approximation for the saturation level, and more work

will be needed to improve upon this calculation.

In order to find the crossing point amplitude, notice from Fig. 5.4 b), that
before the components become equal, in the linear phase of the simulation, the
n = 0 components seem to have twice the growth rate of the n = 1 components.
This indicates that the n = 0 components are driven nonlinearly (parametrically).
Furthermore, both are exponentially growing in the linear phase. It is possible
then to use only linear eigenmode knowledge to compute the level at which the n =
0 and n = 1 components become equal as long as both start at small amplitudes
and experience a few e-foldings before saturating. To find the crossing point, I first
derive an expression for the time evolution of the linear eigenmode amplitudes.
According to Drazin [DR81], such an evolution for the linear eigenmode A; should
take the form:

dA;

W = SjAj + Nj(Ak) (85)
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where the complex function N; of the Aj’s represents the nonlinear action of all
the k£ modes on the jth — including the self-interaction. I now derive such an

equation for my model set, finding the explicit forms for s; and V.

8.4.1 Linear Eigenvector Amplitude Evolution

The linear eigenvectors are fixed composite objects of the independent fields
(N,v|e, ¢ and T,). Each one has a fixed complex-valued spatial structure where
the different fields have a certain amplitude and phase relationship between each
other. Each one evolves in time under the linear equation set with a fixed fre-
quency and growth rate. Eigenmode structures of global simulations have radial
and axial shapes that are not described by well-known functions like sines and
cosines or Bessel functions. So to simplify matters, I use a local model in which
each linear eigenmode can simply be identified by its wavevector k= (kr ko, k).
Then, the number of eigenvectors at each kis equal to the number of fields — 4 in

my case.

Formally, the local fully spectral version of Eqs. 4.1- 4.4 can be written as

O

5F =My &t D (ke — Kko)€ady_p (8.6)
7
where
Ni
U)ek
& = | :
P5
Tk
2 ikzmy 7y
ME = € N e e
0 Z_{ —Vinplph? 0
0 1712k, =72 —Zkk? - B gkt
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where I have used 0,Ny = —1/Ly in accordance with the local approximation,
and I have neglected the sources, which are only nonzero for k, = kg = 0 in any
case. The final term on the RHS represents nonlinear advection. Without this,
the system is linear with the form of a linear eigenvalue problem:

8pk"j
ot

= —iw,;jp,;’j =M - P ; (8.7)

where wy ; and py ; are the eigenvalues and eigenvectors of M. j is an index that
goes from 1 to 4, since there are 4 linear independent eigenvectors for each k. 1
note that the linear matrix M is not normal; therefore, the eigenvectors are not
orthogonal. This can be a problem for eigenvector decompositions. However, the

left eigenvectors are orthogonal to the right eigenvectors: lgipEJ = 0;,;, where
T _ T

Decomposing the spectral vectors & with the linear eigenvectors:

4
& =D AiPiy (8.9)
j=1

where Ay j are the time-dependent eigenmode amplitude coefficients, I substitute
this decomposition into Eq. 8.6:

0A;
Z pE,j ot 4= Z AE,jME ) pE,j + Z Ak_'gj(k?“ké) - k/‘;ke)p,;/’j%g_,;,. (810)
J J 7

K'.j

Using Eq. 8.7 to simplify the first term on the RHS, then multiplying this equation
on the left by the left eigenvector I, and using the eigenvector orthogonality
relation:

Ui oa S" Ag (koky — Kiko)bp_p (8.11)
dat kit ki K7i\hrlvg = R ) PE_fi - '
k/

This has the Drazin form of Eq. 8.5 where s; is just the complex linear eigenfre-
quency, and N; has the form indicative of a three-wave interaction. With this,
I proceed to find the amplitude at which the n = 0 eigenmodes cross with the

n = 1 eigenmodes.
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8.4.2 Mixing Length Approximation

To begin, I apply Eq. 8.11 to the fastest growing drift wave in the linear phase
of the simulation before the crossing of the n = 0 and n = 1 modes. The n =1

fastest growing eigenmode curve, which has m ~ 60, evolves as:

dd_id = —iwgAyqg (8.12)
where A, represents the fastest growing n = 1, m ~ 60 linear drift wave structure
with time-dependent amplitude — d identifies drift wave eigenmode. Note that I
have made the assumption that in the linear phase of the simulation, the linear

term dominates the nonlinear term, which is quadratic in two small quantities.

The solution of this equation is:
Ay(t) = Ag(0)e ™, (8.13)

On the other hand, the n = 0 mode has much smaller amplitude than the linear
drift wave during the linear simulation phase, meaning that the nonlinear term
can be comparable to or larger than the linear term. Specifically, the evolution

equation for the n = 0 “flute mode” is:

dA,
dt

= —iweAe + > (kyeky — K.koe) Agd,_, (8.14)
i

where I use the subscript ¢ to denote the flute mode eigenmode. Now, the flute

modes that grow the fastest under the nonlinear forcing have m ~ 0. This is

clear by noting that the largest term in the sum should have K =d and ¢ ~ 0.

Using the symbol M., for the wavevector difference k,.kgq — krqkg. and noting that

O_q= Qb;kl ~ A:lv
dA.

dt
Plugging in Eq. 8.13 into the A, in this equation, and then solving this differential

~ —iw,Ae + Mgl Agl?. (8.15)

equation for A.(t) results in:

M.q|Aq(0)]?

Al(t) = A (0)e ™t

(e*79" — ety (8.16)
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I now make a simplifying approximation that w. = 0. I essentially take the linear
eigensystem of these flute modes to have zero axial wavenumber, zero frequency
and growth rate, near-zero azimuthal wavenumber, and radial wavenumber about
twice that of the drift wave radial wavenumber. These assumptions are not arbi-
trary. I get them by looking at the spectra of the flute modes and drift waves at the
point of the simulation in which I’'m interested. Furthermore, these assumptions
make k,.kgq > krqkg., so that M.y =~ k,.kgq Then,

Au(t) = A(0) + Frckoal Aa(0) (¥ —1). (8.17)

274

At the time (t7), when the amplitudes of the drift wave and flute mode equal one
another, the initial perturbation A.(0) is much smaller than the second term on
the right hand side of Eq. 8.17 and can therefore be neglected when looking at
large times. While this doesn’t have to be true in general, it is true if the initial
perturbations are set small enough. In fact, if the initial perturbations are not set
to be small enough, the flute modes will not necessarily grow nonlinearly before
saturating — they could grow transiently due to the nonorthogonality of the linear
eigenmodes. So, setting the amplitude of A,(ts) from Eq. 8.13 to the amplitude
of A.(ty) from Eq. 8.17 and performing some algebra, the result is:

27,
|Aolt )] = |Aalty)] = 2. (8.18)
krckHd

The factor of two probably isn’t significant given the approximations that went
into this result, but the scaling of the drift wave growth rate, the drift wave
azimuthal wavenumber, and the flute mode radial wavenumber are. The result is
very similar to the mixing length result except that the wavenumbers of interest
are from both the drift waves and the convective cells rather than from just the
drift waves. Putting in LAPD values for this relation gives that the crossing level
amplitude should be about 0.05. This is consistent with the amplitude at which
the simulations begin to saturate, as can be seen in Fig. 5.4 a). Again, though, the

ultimate saturation level is somewhat larger than this, and it’s not clear if that
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ultimate saturation level can be completely predicted prior to direct simulation.

One last point I want to make involves the n > 2 curves in Fig. 5.4 b). These
curves all appear to grow at the same growth rate as the n = 1 curve during the
linear stage of the simulation. This may seem odd because the linear growth rates
of the eigenmodes with these higher axial mode numbers are much less than the
growth rate of the fastest n = 1 eigenmode. Furthermore, if these modes were
to be pumped nonlinearly (parametrically), one might expect them to grow with
twice the growth rate of the n = 1 curve like the n = 0 curve does. In fact, the
n > 2 curves are pumped nonlinearly. A look at the spectra (not shown) reveals
that all of the n > 2 modes have k, — kg spectra just like that of the n = 1 mode.
So this means that the nonlinear interaction that drives the n > 2 modes involves
the fastest growing n = 1 linear eigenmode beating against an eigenmode that
has k, ~ kg ~ 0. This second eigenmode has close to zero growth rate, meaning
that the n > 2 modes will only grow at the same rate as the fastest growing
n = 1 linear eigenmode and not at twice its growth rate. It’s difficult to guess
this a priori due to the complexity of the nonlinear transfer term, so it seems that

simulation results have to provide the evidence for this.
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CHAPTER 9

Deterministic Chaos vs. Stochastic Turbulence

In this chapter, I tackle the difficult question regarding the level of determinism of
the turbulence in LAPD. Through the previous chapters, I maintained the modern
Ruelle and Takens [RT71] viewpoint that the turbulence is governed by a set of
deterministic differential equations. That allowed me to simulate the turbulence
using a set of differential equations with non-random coefficients. However, I also
largely used statistical and structural theory to diagnose the turbulence, assuming
as most do, that the large number of degrees of freedom available to the turbulence
prevents a simpler diagnosis. In this chapter, I directly explore the assumptions
that the turbulence is deterministic and that it has many effective degrees of
freedom. I am motivated by the recent work on LAPD by Pace, Shi, Maggs, and
Morales [PSMO08a, PSM08b, SPM09, MM11, MM12b, MM12a, MM13], which I
review below. Their conjecture is that the plasma turbulence in LAPD and a
number of other devices is deterministic with a small number of effective degrees

of freedom.

9.1 Lorentzian Pulses as an Indicator of Deterministic Chaos

In this section, I apply theoretical findings from work by Pace, Shi, Maggs, and
Morales to study my own data. In their work, these authors identified exponen-
tial frequency spectra and Lorentzian pulses in the time signals of experimental
measurements, which ultimately led them to conclude that the turbulence they

were viewing was deterministic chaos. Since they based most of their analysis
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and findings on time signals of experimental data rather than spatially resolved
simulation data, I restrict myself here to looking at density and I, time sig-
nals, neglecting any simulated spatial structures. While comparing time signals
point for point is futile in chaotic systems due to sensitivity to initial conditions,
chaotic systems can produce time signals with identifiable visual characteristics.
In this regard, Pace et al. discovered that the time signals in LAPD experiments
and in the edge of some magnetic confinement devices contain Lorentzian-shaped

pulses [PSM08a, PSM08b]. A Lorentzian is simply a function of the form

ft)=A/[1+(t—to)?/7°] (9.1)

where A is the pulse amplitude, tq is its center, and 7 is the pulse width. The
absolute value of the Fourier transform of a Lorentzian is simply a decaying ex-
ponential, so the Lorentzian pulses in the time signals lead to frequency power
spectra that have exponential shape, which show up as a straight line in a log-
linear plot. In such a plot, the slope of the line is proportional to the Lorentzian
width 7. Sometimes, however, the Lorentzian pulses in the time signals have dif-
ferent widths, which cause different spectral slopes, leading to power spectra with

non-exponential shape.

To determine whether or not my time signals contain Lorentzian pulses, I first
plot the frequency spectra of the experiment, the Periodic simulation, and the
n = 0 suppressed simulation in Fig. 9.1 a). I don’t use any window functions
since they can distort any structures in the time signals, and I use only one
radial location (30 cm) rather than doing a volume average. More spectra of
this type are displayed in Fig. 5.11. Clearly, the spectra are not exponential
for either the experiment or the simulations. This doesn’t rule out Lorentzian
pulses in the time signals, however, as long as the time signals have pulses of
varying width. So next, I look directly at the time signals of the experiment and
simulations. I show representative signals for the experiment, Periodic simulation,

and n = 0 suppressed simulation in Figs. 9.1 b), ¢), and d), respectively. Notice
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Figure 9.1: Lorentzian-shaped fluctuation pulses in time signals of experimental

and simulation data
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that the experiment and Periodic simulation appear to have qualitatively similar
time signals, while the n = 0 suppressed simulation has a much different, simpler
looking signal. Furthermore, the experiment and Periodic simulation contain a
number of pulse-like features. I take a closer look at some of these pulses in
Figs. 9.1 e) (experiment) and f) (Periodic simulation), trying to find times when
the pulses are relatively isolated. In Fig. 9.1 e), I fit one of these pulses to a
Lorentzian function (the dashed cyan line), proving that this pulse, does in fact
have a Lorentzian shape. I confirm that a Lorentzian does provide a better fit than
a Gaussian, which doesn’t fit the pulse as well for as long of a time range as the
Lorentzian, though the difference is quite small. However, Gaussian pulses create
spectra that look very different from those in Fig. 9.1 a), supporting the claim that
the pulses have Lorentzian rather than Gaussian shape. Finally, in Fig. 9.1 f), I
look at a signal snippet from the Periodic simulation with two relatively isolated
pulses, and I fit a sum of two Lorentzian functions to this. The fit is excellent,
verifying that both of these pulses have Lorentzian shape, and importantly, they
have different widths — explaining the non-exponential shape of the spectra. I
don’t show a fit to the n = 0 suppressed simulation signal, but I note that it is
quite sinusoidal with seemingly two or so dominant low frequency waves, which is

clear from the highly peaked, non-broadband frequency spectra.

Maggs and Morales recently explained the origin of the Lorentzian pulses in
terms of phase space trajectories in dynamical systems theory [MM12b]. Specifi-
cally, they showed that some chaotic nonlinear systems — including the well-known
Lorenz system [Lor63] — have phase space orbits on a strange attractor that cir-
cle indefinitely around two (or more) fixed points — think of the butterfly wings
of the Lorenz attractor. The trajectory circles around one fixed point with ever
changing radius, but eventually jumps and circles around the other fixed point.
The jumps between the fixed points have trajectories that — when projected onto

one coordinate — have a Lorentzian shape. In a plasma, an E x B flow controlled
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by several modes — like drift waves — can have a Lorentzian structure. Since the
flow advects the scalar density and temperature, it imprints the Lorentzian shape
onto their time signals. Maggs and Morales conclude that since the Lorentzian
shape specifically results from deterministic strange attractor orbits, systems that

contain Lorentzian pulses are deterministic, not stochastic.

To understand this last point in terms of a real life system like a plasma that
has access to an infinite number of degrees of freedom, note that in general solu-
tions to dynamical systems can be controlled by an effective number of degrees of
freedom that is less than that available to the system. Dissipative dynamical sys-
tems have some control parameter — like the Reynolds number — associated with
them that determines their steady state behavior. At low values of the control pa-
rameter, the system often has a steady-state laminar solution called a fixed point.
As the control parameter increases, the system can undergo a series of bifurcations
in which each bifurcation increases the phase space dimension of the attractor so-
lution and the effective degrees of freedom available to the system. For example,
a limit cycle is a one-dimensional attractor with two effective degrees of freedom.
Strange attractors often have fractional dimension greater than two [Man04]. The
bifurcation from a limit cycle attractor to strange attractor then increases the di-
mension, or similarly increases the effective number of degrees of freedom available
to the system. As the bifurcation parameter increases still further, the number
of effective degrees of freedom increases, leading to high-dimensional hyperchaos.
Therefore, infinite systems like real life fluids and plasmas may be controlled by
deterministic motion. On the other hand, it may be the case that systems with
extremely high-dimensional attractors may be indistinguishable from stochastic

systems and systems with infinite dimension are stochastic.

For LAPD and similar plasma systems, the control parameters ought to be
proportional to the equilibrium gradients. For the system to display Lorentzian

chaotic dynamics, the conjecture is that the control parameter and thus the gra-

140



dient must be high enough so that the attractor is chaotic, but low enough so that
it still has a Lorentzian trajectory associated with it — assuming the Lorentzians
disappear or crowd each other out when the control parameter is too high. Fur-
thermore, such a situation may be a natural consequence of chaotic advection in
confinement-like systems because chaos causes transport which relaxes the gra-
dients and prevents them from building up. The control parameter, therefore
should not be able to grow much beyond the point where chaos ensues. In other
words, the control parameter causes the chaos, but the chaos regulates the the
control parameter, preventing the system from straying from the bifurcation point

between the limit cycle and the low dimensional strange attractor.

I note, however, that this is less likely to be the case in LAPD than in con-
finement devices like tokamaks. The reason is that LAPD sustains particle losses
through parallel transport to the ends of the machine in addition to radial trans-
port losses. That is, the radial confinement time is on the order of the parallel
confinement time in LAPD, which is different than the situation in all but the
SOLs of confinement devices. Therefore, the chaotic or turbulent advection does
not have a chance to completely relax the profiles to the point where this advection
is shut off. That means that LAPD should be able to sustain a control parameter
well above the chaotic threshold, allowing for high dimensional chaos, which may
even be stochastic. I attempt to determine whether in the next sections whether
the turbulence in the zero mean flow experiment is chaotic or stochastic and how

high the dimension of its attractor is.

9.2 Permutation entropy as an Indicator of Chaos

While Lorentzian pulses in the time signals of experimental data provided the clue
to the possible chaotic nature of the turbulence in LAPD, there are more direct

and more conclusive ways to determine how deterministic versus how stochastic
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a system is. Therefore, Maggs and Morales set out to test one of their LAPD
experiments with one of these more direct methods [MM13], namely a method
invented by Bandt and Pompe about a decade ago [BP02]. The Bandt-Pompe
method, called permutation entropy, uses a time signal of a single observable to
quantify the amount of determinism of the underlying process that creates the
time signal. The method has gained better theoretical interpretation over the
years, and various researchers have refined its implementation. Recently, Riedl
et al. [RMW13] published a review on permutation entropy that provides theory,
instructions, and most importantly, practical considerations for using the Bandt-

Pompe method.

9.2.1 Trajectory reconstruction by the method of delays

The Bandt-Pompe permutation entropy is — for dynamical systems — based on a
standard chaotic time signal analysis technique that is often called the method
of delays, first formalized by Takens [Tak81]. The method of delays attempts to
reconstruct the attractor that sits on a manifold in the phase space over which
the effective dynamics take place. I review the method following Manneville’s
treatment [Man04], but I note that there is another nice review that is more

freely available by Theiler [The90].

First, one can formally write the dynamical system X = F (X) for the state
X in the phase space X. Furthermore, there is a manifold M of dimension d.g
on which the dynamics lie, where d.g is less than the dimension of the entire
space X. The only available information is the time signal W that is measured
in an experiment. It is some unknown projection of the state X onto a single
dimension: W = W(X). For a discrete time signal, the dynamical system may be

approximated as

X1 = F(X) (9.2)
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where the subscript denotes a time index. Reconstructing the dynamics amounts
to determining an empirical relation between the Xj in their phase space and
the observables Wy, k = 0,1,... Clearly, Wy = W(Xy) is not sufficient to de-
termine X, since one coordinate is not enough to define X,. But, note that
W7 is to the projection of Xy, which evolves from X, under the map F. Thus,
the second measurement W; adds a piece of information about the coordinate
Xo through W, = W(X;) = W(F(Xy)). The third measurement, Wy further
provides information on Xy through Wy = W(F(F(Xy))). In principle, a suffi-
ciently long array of measurements of length diest, {Wo, W1,..., Wy,...—1} should
serve to specify Xg. Similarly, {W1,..., Wy, } specifies Xy, etc. Eventually, a
whole trajectory Xz, £ =0,1,... can be reconstructed from the series of vectors,

Vi = {Wis .., Wetdyn—1}, existing in Rtest,

The length ds of the reconstruction vectors can be increased until the method
produces a reliable reconstruction of the trajectory. di.s; must be large enough
so that one does not lose any useful dynamical information. This means that

different states must also have different reconstructions:

The tentative number di.; of components used to reconstruct the state vectors
is more properly regarded as the effective dimension of the space in which the
effective phase space can be embedded by means of an injective map. Thus, I
change notation from dig to d., the embedding dimension. Takens theorem states
that the Vy, achieve a reliable reconstruction provided that the d, are large enough:
de > 2d.g + 1. In chaotic systems, strange attractors often have fractal dimension,
dy, and one can replace deg by dy in this inequality. Moreover, the V;, can actually
be any series of d, measurements, namely, Vi, = Wy, Wy i, ..., Wiik, ], where
the r, can take on any values. It’s natural to take the s, as multiples of some

basic x so that Vi, = [Wy, Witr, ..., Wiy (a.—1)-], where 7 is the subsampling rate.
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In practice, the usefulness of the method of delays relies upon choosing op-
timal values for the two basic ingredients in the reconstruction: the embedding
dimension d. and the subsampling rate 7 (actually a time, not a rate). Optimal
values can reduce the effects of noise on results and can minimize required compu-
tation and required length of time signals. The generally accepted optimal choice
for the subsampling rate 7 is the time over which a signal becomes decorrelated
with itself [Man04, RMW13]. While the autocorrelation time seems like a natural
quantity to use, it doesn’t always lead to a satisfactory choice of 7. A better the-

oretical criterion, in fact, makes use of a quantity called the mutual information,

defined as

) = / " n PT(W,7W”)
L (7) W/ZV)WPT(VV,WM (—P(W,)P(W,,)) (9.4)

where W' = W, W” = Wy, P(W) is the probability distribution of the time
signal W, and P(W', W") is the joint probability distribution function of the
signals W' and W”. I,,,4(7) is a measure of the redundancy in the signal. When
7 is small, the signals W’ and W” are highly correlated and I, is large, but when
7 is large and the signals are uncorrelated, P.(W', W") is essentially P(W')P(W"),

making [,,,,; small.

In Fig. 9.2, I show an example of I,,,,(7) for two time signals. The black
curve is the mutual information of the experimental I, time signal at one radial

location. The green curve is the mutual information of the x coordinate of the

Lorenz model [Lor63]:

i=oy—z) gY=zlp—2)—y i=ay-—pB2 (9.5)

where I use the chaos-producing values o = 10, p = 28, and § = 8/3. I numerically
solve the Lorenz model with an integration time step 0.017 using a Python ODE
solver. The Lorenz model has an oscillating and decaying I,,,:(7), while the
experiment (and simulation) has a simple decaying mutual information. The

optimal value of 7 corresponds to the first local minimum of I,,,;, which for
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Figure 9.2: Mutual information of the Lorenz model, the experiment, and the

simulation as a function of subsampling rate 7

the Lorenz model is at 7 =~ 10. The experiment has no local minimum, which
can mean that there is either very large noise, the observable has been under-
sampled, or that too many degrees of freedom are involved [Man04]. All of these
can be a problem for using methods of low dimensional deterministic dynamical
systems. However, in the next section I review the permutation entropy, which can
provide an optimal 7 for the experiment. Furthermore, the permutation entropy
can provide an optimal value for the embedding dimension d,. There are other
methods for finding the optimal d., such as the method of false neighbors [Man04],

but I don’t use it because it is difficult to analyze.

9.2.2 Permutation Entropy

The permutation entropy invented by Bandt and Pompe [BP02] defines an entropy
measure for the time delay trajectory reconstructions based on their ordinal ranks.
This means that the time delay embedding vectors V;, with embedding dimension

d, = n are binned into n! bins based on the order of their elements. For instance,
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if n = 3 and one of the time delay reconstruction vectors is Vo = (10,15, 8),
then this is binned based on its rank representation of (2,3, 1). The other vectors
are binned similarly into the 3! = 6 bins because that is the number of possible
vector rank permutations. The number of vectors of a given ranked representation
divided by the total number of embedding vectors produces a series of probabilities

p; that add up to 1. The Shannon permutation entropy is then defined by

n!
P, == pjilog,(p;) (9.6)
j=1

It is also convenient to define different normalizations for the permutation entropy;,
such as h,, = P, /(n—1), which allows for entropy comparison with different n, and
H,, = P,/logy(N), which ranges from 0 < H,, < 1. More details on the procedure

for calculating the permutation entropy may be found in Riedl et al. [RMW13].

Recall that the reconstruction vectors represent points on the attractor. The
ranking procedure thus removes detailed information about the attractor. In
fact, it partitions or bins the whole phase space, erasing detailed phase space
information. Nevertheless, the ranked vector counting provides a good measure
of how often a trajectory visits one of the phase space bins, which can provide a
good proxy for the attractor’s measure — the density of points on the attractor
in a given region. In general, the permutation entropy retains broad underlying
features of attractor trajectories that can be obtained in other ways. However,

permutation entropy is generally much easier to calculate than other methods.

Since the permutation entropy relies on time delay reconstructions of phase
space trajectories, it is important to use properly reconstructed vectors in the
analysis. That means, one must use optimal values of the subsampling rate 7 and
the embedding dimension n for the permutation entropy to have any meaning.
The strong dependence of the permutation entropy on these parameters makes it
meaningless to compare the permutation entropy across different systems if the

wrong parameters are used. I illustrate this strong dependence by calculating the
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Figure 9.3: Permutation entropy as a function of subsampling rate 7 and embed-

ding dimension n for the Lorenz model

permutation entropy for the Lorenz model with varying values of 7 and n, shown
in Fig. 9.3. For the different curves, I use different embedding dimensions n. The
horizontal axis is a function of the subsampling rate 7. I divide the figure domain
into three separate regions, which I separate with the vertical dashed lines. The
first region, from 1 < 7 < 16 is the region where the permutation rises mono-
tonically with 7. This rise is due to the under-subsampling in the reconstructed
vectors, which is sometimes called the “redundancy effect” [RMW13]. The com-
ponents in the reconstructed vectors are too highly correlated, which causes the
reconstructed trajectory to visit only limit regions of phase space. The recon-
structed trajectories are poor representatives of the original trajectories when the
reconstructed vectors are under-subsampled. The region between the two dashed
lines 16 < 7 < 50 marks where the components of the reconstructed vectors be-
come less correlated. For 7 > 50 every component in the vectors is uncorrelated

with every other component, and the permutation entropy is relatively flat be-
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cause the components cannot become any more decorrelated. This is called the

“irrelevance effect.”

Riedl et al. propose using the value of 7 at the first dashed line, which in
this case is 16. Note that this is about double what I found for the optimal
value based on the mutual information analysis, but the different values produce
permutation entropies that differ by only about 15%, so they do somewhat agree.
Furthermore, other chaotic models that I have tested agree better when using
the two techniques. As for the embedding dimension, they recommend using the
value of n that produces the highest permutation entropy at the location of the
first dashed line. For the Lorenz model, this is n = 6, although n = 5 comes very
close. The embedding dimension, as required by Takens theorem [Tak81], which
I discussed above, must be d. > 2d; + 1. Since the fractal dimension dy of the
Lorenz model is known to be 2.06, it requires an embedding dimension of 6, just
what the permutation entropy analysis suggests. And an embedding dimension

of 5 would not do too poorly either.

A final point regarding the calculation of the permutation entropy deals with
the total number of time points that are needed to calculate it. The probability
distributions that go into Eq. 9.6 of course become steadier as more reconstructed
vectors are used, so the more time points the better. Actually, the number of
vectors is more important than the number of time points, and since the number
of vectors decreases with increasing 7, it is the total time used that’s important.
In general, Riedl et al. recommend using at least 5n! vectors, which puts practical
limits on the permutation entropy technique since n! grows so fast with n. In
order to reconstruct extra vectors without increasing the total time of the data,
one may consider changing the starting location of the reconstructions. For ex-
ample, reconstructing vectors with time indices [0, 10, 20, 30, 40], [1, 11,21, 31, 41],
etc., where 7 = 10, produces more reconstructed vectors than if one throws out

the vectors [1,11,21,31,41]...]9,19, 29, 39,49]. However, there is little new infor-
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Figure 9.4: Permutation entropy as a function of subsampling rate 7 and embed-

ding dimension n for the experiment and simulation

mation from vectors [1,11,21,31,41]...[9,19,29,39,49] because they are highly
correlated to vector [0, 10,20, 30,40]. So this doesn’t significantly help. The per-
mutation entropy is then quite limited to systems with small attractor dimensions.

The same is true for other techniques of low dimensional deterministic chaos.

Moving to the LAPD data, I perform the permutation entropy analysis for the
LAPD experiment and the Periodic simulation, which I show in Fig. 9.4. Like
the Lorenz model curves, these curves all increase monotonically before eventu-
ally saturating and eventually reach an irrelevance point. This alone is a good
indication that the experiment is deterministic chaos. Stochastic models don’t act
this way [RMW13]. The region between the redundancy and irrelevance effects is
difficult to identify, but that is not essential. One important new effect, however,
is the falloff of the entropy for high 7 and high n. This is a result of using too
few reconstructing vectors (fewer for the experiment), and it places a practical

limit on the analysis at n ~ 8 — not to mention the time it takes to calculate the
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entropy as n becomes this large. Moreover, the experiment and simulation have
different optimal subsampling rates: 20 and 6, respectively, but this is not mean-
ingful since the original sampling is not the same. Essentially, the experiment
and simulation have the same permutation entropy curves, further validating the
simulation. They both have higher permutation entropies than the Lorenz model:
In tapa > 1.7 compared to hy, 1oren; = 1.5. However, it is clear that the permutation
entropy at the dashed line is still rising as n increases, meaning that the optimal
embedding dimension is above 8. And I cannot increase the embedding dimension
without significantly increasing the time of the experiment and the simulation. In
fact, the total time of the experiment can be limited by the constancy of the un-
derlying dynamical system. In other words, if the equilibrium parameters change
during the experiment, the attractor solution will change, invalidating the analy-
sis. The permutation entropy, therefore, cannot be accurately calculated for the
turbulence in LAPD. The turbulence simply has too many effective degrees of

freedom, indicating that it is high dimensional.

Nevertheless, there are other measures that can differentiate between high
dimensional deterministic processes and very high dimensional stochastic ones.
One such method makes use of the structural complexity of the time signals. The
Jenson-Shannon complexity is defined by [RLMO07]

_9 Pn(z%) - %Pn(p) - %Pn(pe)
Millog, (N + 1) — 2log,(2N) + log,(N)

where P, is the Shannon permutation entropy defined in Eq. 9.6. P,(p) refers to

ci =

H,(p) (9.7)

the normal permutation entropy. P,(p.) refers to the maximum entropy, which
occurs for p; = 1/N, 5 = 1,2,...,N. H, stands for the permutation entropy
normalized by log,(/V), which takes on values in the range of 0 to 1. The com-
plexity provides an important additional piece of information that the entropy
alone does not, namely, it quantifies the degree of temporal structure correlation
in a a signal. And structural correlation indicates determinism. The way in which

complexity can be used to differentiate chaos from stochasticity is by plotting the
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permutation entropy against the permutation complexity. I do this for the exper-
imental data in Fig. 9.5. The solid black curves in each plot bound all data, and
the region between them is called the complexity-entropy (CH) plane. The curves
indicate the minimum and maximum possible complexity as a function of entropy
for a given embedding dimension. The probability distributions that define these
curves are explained by Maggs and Morales [MM13]|. The green data points in
these plots map out the high complexity, stochastic, fractional Brownian motion
curve. Rosso et al. explain fractional Browning motion and how to obtain the
time signals that lead to these different data points by varying the Hurst expo-
nent [RLMO7]. The curve more or less divides the CH plane into two regions,
where the region above consists of deterministic time signals, and the region be-
low, stochastic time signals. The red crosses represent the experimental data at
a single radial location of 30 cm. The different crosses correspond to different
subsampling rates 7, and as 7 increases, the points move left to right, which is
clear given the results of Fig. 9.4. The optimal 7 for this method is that which
gives the maximum complexity, and the optimal embedding dimension is that
which produces data with the highest complexity relative to the Brownian motion
curve. For the experiment then, 7 ~ 10 is optimal, while the d. = 6 is sufficient
because the relative complexity levels off at d. = 6. This CH plane method, then,
proves to be more useful than the entropy-only method employed above because
d, = 6 is sufficient in the CH plane method whereas it was insufficient in the

entropy-only method.

One more point to notice is that when 7 becomes high, the experimental
data points overlap the Brownian motion data points. This means that over-
subsampling causes the time signals to look stochastic. Figure 9.6 shows the effect
of proper subsampling 7 = 10 and over-subsampling 7 = 50 on an experimental
time signals and frequency spectrum. Proper subsampling maintains most of the

structure in the time signal and most of the exponential part of the frequency
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spectrum, while improper subsampling does not. The over-subsampled signal
cannot be distinguished from a stochastic signal, while the properly subsampled

one can.

Again, Rosso et al. showed that chaotic and stochastic processes occupy dif-
ferent locations in the entropy-complexity (CH) plane, which provides a simple
way to test whether data is created by a chaotic or stochastic process [RLMO07].
Stochastic models have high entropy and low complexity, so they sit in the lower
right part of the plane. Chaotic models have medium entropy and high complexity
and sit in near the maximum complexity curve, generally near the highest point.
In Fig. 9.7, I show the location in the d. = 6 CH plane of different chaotic and
stochastic models along with the experimental and simulation data. The stochas-
tic model I use again is that of fractional Brownian motion (fBm). As I said be-
fore, it is a high complexity stochastic process that can divide the plane between
stochastic and chaotic behavior. I show this explicitly with the yellow shaded re-
gion above the fBm curve. The chaotic models that I use are the aforementioned
low-dimensional Lorenz model [Lor63] as well as a paradigmatic high-dimensional
chaotic model — the Mackey-Glass model [MG77]|. The Mackey-Glass model is a

differential time-delay equation for blood production:

fl—f - % ~ba (9.8)
where 75 is the delay time. For the parameters of a = 0.2,6 = 0.1,¢ = 10, and7, =
300 that I use, the equation is known to produce high-dimensional chaos with di-
mension of about 20 [Fam82]. The greater the time delay, the greater the attractor
dimension, so the Mackey-Glass model can produce attractor solutions with low
dimension or arbitrarily high dimension. Furthermore, like the Lorenz model, the
Mackey-Glass model has an exponential frequency spectrum (see Fig. 9.8). In

Fig. 9.7, one sees that both chaotic models sit well into the chaotic region. And

although one might conclude from this that the plane may be further divided
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Figure 9.7: Location of chaotic, stochastic, and LAPD data in the entropy-com-
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Figure 9.8: Exponential frequency spectra of the Lorenz and Mackey-Glass models

based on dimensionality since the higher dimensional model sits lower in the CH
plane than the lower dimensional model, this doesn’t seem to be the case. When
I use a smaller or larger time delay in the Mackey-Glass model, the point sits in
the same place in the CH plane (not shown) despite order of magnitude change
in dimension of the attractor. Therefore, according to my albeit limited evidence,
the CH plane does not differentiate between low- and high-dimensional chaos.
However, this is still an attractive conjecture based on the idea that stochastic
processes are infinitely dimensional chaotic processes, so I leave this matter to

further study.

Finally, look at the experimental and simulation points in Fig. 9.7. I use
7 = 10 for all the experimental points and 7 = 6 for the simulation points. The
different points correspond to different radial locations, but there is no clear trend
between radius and location in the CH plane for the LAPD data. Perhaps the only
reason for the slightly different locations is my use of a single subsampling rate

rather than using a different subsampling rate for different radii. Also, there is no
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significant difference between the simulation and experiment, further validating
the simulation. Moreover, the LAPD data are located in the chaotic region of the
CH plane, but do not sit as high as the paradigmatic chaotic models. Again, I
cannot definitively conclude anything about the dimension of the LAPD attractor
from this. I can only speculate that the dimension might be quite high or that
there is some kind of more complicated process involved in LAPD that makes the
time signals less deterministic. This also may be related to the non-exponential
frequency spectra of the LAPD data. The Lorenz and Mackey-Glass models have
exponential spectra, meaning that they are controlled by a process with one time
scale, while the LAPD data have non-exponential spectra and multiple-time width
Lorentzian pulses. It may be the case then, that the lower location of the LAPD
data in the CH plane is a manifestation of a multiple-time-scale process, which is
a different type of high-dimensional chaos than that of the Mackey-Glass model.
This conjecture requires much more supporting evidence, though that is left to

future work.

9.3 The Proper Orthogonal Decomposition Entropy

The permutation entropy uses only the time signal of the data because it’s based
upon time delay attractor reconstruction. This makes it nice to use for experimen-
tal data, which is generally restricted to time series data. But in this dissertation, I
have presented forms of analysis that require the full spatial information obtained
from simulations, which have successfully enhanced understanding of underlying
turbulent processes. In the same spirit, I can use the spatio-temporal simulation
data to answer the question of low-dimensional versus high-dimensional chaos,
and even determinism versus stochasticity. First, it should be clear that I do
not need to reconstruct the attractor orbit from a single time series because the

spatio-temporal output of the simulation is the attractor orbit. Thus, the primary
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difficulty in understanding the chaotic nature of the simulation is finding the ef-
fective degrees of freedom in which the attractor is embedded among the large

number of available degrees of freedom of the simulation domain.

In my simulation model that has four differential equations for the four inde-
pendent variables, the number of degrees of freedom is 4 x N, X Ny x N, where
N; corresponds to the number of grid points that I use in each respective direc-
tion. In fact, using a finite number of grid points already reduces the number of
degrees of freedom from infinity to a finite number. Gridding assumes that the
turbulence can be described without an infinite number of degrees of freedom in
that very small structures below the grid resolution cannot exist due to diffusive
and viscous forces. I can go further by hypothesizing that there are a limited
number of “modes” that effectively determine the turbulence. In other words,
there exists some manifold in the phase space on which the attractor lies that has
dimension less than that of the entire phase space. This, after all, is the assump-
tion behind the time delay embedding that allows for a low embedding number.
With the spatio-temporal simulation data available, it must be possible to find
the relevant modes that control the turbulence and project the turbulence onto
these modes. The POD procedure, which I introduced in Sec. 6.3 is perfect for
this task. The reason is that the POD provides the optimal basis for reconstruct-
ing the turbulence from the fewest possible modes, as described by Eq. 6.48. The
POD procedure can be considered a way of rotating the phase space axes so that
the attractor lies in a hyperplane that can be described with as few coordinates

as possible.

The way to quantify the number of effective degrees of freedom of the turbu-
lence through the POD is by looking at the POD singular values o,. Recall that 02
is the time-averaged energy contained in POD mode ¢. If the top 10 POD modes,
for example, contain 90% of the energy, then the projection of the turbulence

onto the 10 mode POD reconstruction is 0.9. This follows from Eqs. 6.45-6.47.
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Figure 9.9: Fractional energy content of POD modes

To normalize the singular values to the total energy of the turbulence, I define
pg=04/E (9.9)

where ) .Pa = 1. The p;’s then form a probability distribution.

I perform a POD on the turbulent data of the Periodic simulation, using 300
time points in the quasi-steady state stage of the simulation. For the POD, I do
not use any Fourier transforms like I did in Sec. 7.1.4. Obviously, that would be
inappropriate for my aim here. I plot the p,’s in Fig. 9.9 a), showing only every
third p,. The fairly rapid exponential decay of the POD energy fractions indicates
that the turbulence can be relatively well constructed using a limited number of
modes and that the turbulence is not stochastic. In Fig. 9.9 b), I plot E;/:l Dq @S 2
function of Y. This indicates how much of the turbulent energy is reproduced by
the rank-Y POD reconstruction. From this calculation, I determine that the top
58 POD modes contain 90% of the turbulent energy. One might crudely conclude
that the turbulence is governed by something on the order of 100 effective degrees

of freedom. This, then, is high-dimensional chaos.
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An obvious practical problem with this is that every single POD mode contains
at least some energy, so that one may never obtain a definitive value for the number
of effective degrees of freedom. Taking the number of modes that contain 90%
of the energy is quite arbitrary, as is using any other percentage. It would be
convenient if the p,’s became zero at some ¢, but this is not the case, and to
further complicate matters, the o,’s saturate eventually due to numerical noise of
the POD procedure — shown by Professor Paul Terry in unpublished work. The
upshot is that it is not possible to conclude exactly how many effective degrees of
freedom there are based on the number of finite-energy POD modes. Probably, it
is better to get a sense of how deterministic or how stochastic a process and how
high the dimensionality is based on the rate of decline of the p,’s. The results in
the previous section hint at how one might use this information — that is, with
an entropy measure. In fact, Futatani et al. [FBC09] suggested the use of POD
entropy as a way to classify turbulence. Turbulence with low POD entropy is

dominated by coherent structures, while that with high entropy is stochastic.

The normalized POD entropy, defined similarly to Eq. 9.6, is

Npop

Hpop = Z Pqlogs(pg) /10gs(Nprop). (9.10)

q=1

It isn’t clear if the POD complexity has any meaning, so I will not use it. The
value that I obtain for the normalized POD entropy is Hpop = 0.67. This entropy
is about the same as what I found for the permutation entropy of the chaotic
models and the LAPD data in the previous section. For reference, Futatani et. al.
found values of 0.20 and 0.93 for decaying and gradient-driven Hasegawa-Wakatani
turbulence, respectively [FBC09]. To my knowledge, there are no standard spatio-
temporal models that have been classified well enough for me to compare against.

Better comparisons may come in future work.

One possible issue with the POD entropy is that it may depend on the total

number of POD modes used in the POD procedure, at least for the normalization
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that I use in Eq. 9.10. To prove this, I define a rank-T" POD entropy as follows:

Hpop(T) = > _ pglog,(py) /log,(T). (9.11)

g=1
The proper way to find this, would be to perform the POD with a different number
of time points, which would give a different number of POD modes. However, the
POD takes a long time to calculate, so this isn’t feasible. Rather, by looking at
Fig. 9.9 a), I reason that using more time points will simply extend the p,’s along
the exponential line. Using this logic, I create series of p,’s with different lengths
and calculate the entropy as a function of the total length of the given series. In
Fig. 9.10, I plot the POD entropy Hpop as a function of the total mode number
T used in the POD. The blue curve that I call “Constant Slope” — because I use
a constant slope (in log space) to extend the series — is this result. Additionally,
I plot the green curve in the same figure. For this curve, rather than extending
the p,’s with a constant logarithmic slope, I simply extend them to have the
same value as the last POD mode (¢ = 300). I do this under the assumption
that all POD modes beyond a certain point are simply due to noise of the POD
calculation, so that they all contain the same energy. These results indicate that
the entropy is a function of the number of modes used in the POD; however, the
entropies appear to level off at high T', suggesting that the actual entropy may
be the asymptotic value of ~ 0.5. It is possible that an entropy normalization
different from the one used in Eq. 9.10 might fix this problem, although it is also
possible that performing the POD with a different number of time points actually

does not produce different values of entropy. This matter is left to future study.

161



0.80 . T T
=== (Constant Slope
0.75 === Constant )
0.70
0.65
E
T 0.60
0.55
0.50
045} ]
L L L
500 1000 1500 2000
T

Figure 9.10: POD entropy as a function of total mode number used in the decom-

position

162



CHAPTER 10

Conclusion

In this dissertation, I model, simulate, and analyze the turbulence in a flow vary-
ing experiment on LAPD, focusing only on the plasma state in which the mean
radial electric field is minimal. The model I use in the simulations is an elec-
trostatic reduced Braginskii two-fluid model that describes the time evolution of
density, electron temperature, electrostatic potential, and parallel electron veloc-
ity fluctuations in the edge region of LAPD. The spatial domain I use is annular,
encompassing the radial coordinates over which a significant equilibrium density
gradient exists. I use a few different axial boundary conditions, such as periodic
and Bohm sheath, but they have little bearing on the nature of the turbulence. My
model breaks the independent variables in the equations into time-independent
equilibrium parts and time-dependent fluctuating parts, and I use experimentally

obtained values as input for the equilibrium parts.

The simulations start with a small random initial fluctuation, which is evolved
in time, growing at first due to a linear drift wave instability. The fluctuations
cause density and temperature transport across the equilibrium gradients, lead-
ing to relaxation of the profiles. I correct for this with ad hoc sources and sinks,
which roughly model the ionization source and recombination sink in LAPD. Af-
ter the initial exponential growth of the fluctuations due to the linear drift wave
instability, the fluctuations saturate and the frequency and azimuthal wavenum-
ber spectra become broadband with no visible coherent peaks, at which point the

fluctuations become turbulent. The turbulent fluctuations of both density and
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potential in the simulation are very similar to those in the experiment for a wide
range of statistical properties — especially when compared as synthetic diagnos-
tics. Specifically, the frequency spectra are similar at all radii, the PDFs have the
similar mean, standard deviation, skewness, and kurtosis, and the radial depen-
dence of the RMS amplitudes and the amplitudes themselves are very similar. On
the other hand, the simulation has a steeper my spectrum than the experiment
along with a smaller spatial correlation length as well as a more structured and
broader autocorrelation. These differences, however, are not large; at most, dif-
ferences are a factor of two. The qualitative and quantitative agreement between
the simulation and experiment is quite remarkable compared to all other cases in
magnetically confined plasma systems that I have seen. This level of validation
authorizes me to make strong conclusions regarding the nature of the turbulence
in the experiment based on detailed analysis of the simulations, especially conclu-

sions pertaining to the spatial structure of the turbulence.

The spatially resolved turbulence in the simulations develops intermittent pres-
sure and flow filamentary structures that grow and dissipate, but look much dif-
ferent than the unstable linear drift waves. The difference is most easily seen
in the long axial wavelengths that these structures possess. Their wavelengths
are much longer than the machine length, which is in contrast to the linear drift
waves, whose axial wavelengths are equal to or on the order of the machine length
depending on boundary conditions. An energy dynamics analysis that I derive
reveals the mechanism that drives these structures, which dominate the turbu-
lent energy. These long k| ~ 0 potential filaments convect equilibrium density
across the equilibrium density gradient, setting up local density filaments. These
density filaments, also with k| ~ 0, produce azimuthal density gradients, which
drive radially propagating secondary drift waves. These finite k| drift waves have
pressure and electrostatic components associated with them, which are coupled by

the adiabatic response. The potential component of these drift waves nonlinearly
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couple to one another and reinforce the original convective filament, allowing the
process to bootstrap itself, at least intermittently. The growth of these structures
is by nonlinear instability because they require a finite amplitude to start, and

they require nonlinear terms in the equations to sustain their growth.

The reason why k| ~ 0 structures can grow and support themselves at all
in a dynamical system with no k| = 0 linear instability is because the linear
eigenmodes of the linear dynamical system are nonorthogonal. Nonorthogonal
eigenmodes that individually decay under linear dynamics can, in fact, produce
transient energy growth, which is always responsible for subcritical instability in
conservative dynamical systems. The instability, however, can only occur when
the fluctuations are given some finite threshold amplitude, and nonlinearities are
able to mix energy between different eigenmodes. In my simulations, the lin-
ear drift wave instability kick-starts the fluctuations, but noise may provide the

impetus in real systems or in linearly stable systems.

Additionally, I analyze the experiment and simulations in regards to their de-
terministic character. In other words, I attempt to figure out how many effective
degrees of freedom control the turbulence. Using two different methods — per-
mutation entropy analysis by means of time delay trajectory reconstruction and
Proper Orthogonal Decomposition — I determine that more than a few degrees of
freedom, possibly even dozens or hundreds, are all active. The turbulence, though

is still deterministic, not stochastic, meaning it is high-dimensional chaos.

It seems that one can always understand more about a particular experiment
or phenomenon or add more physics to a model, but eventually the problem of
diminishing returns sets in. So barring any problems with my results or methods,
future efforts will best be directed toward analyzing different experiments or de-
termining how certain results change with changing parameters. I have two ideas
in mind, which based on my results, may present interesting avenues of research.

The first idea is to change some parameter — maybe plasma radius — that changes
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the chaotic nature of the experiment. Bifurcation theory rests on the idea that
a control parameter — or set of parameters — changes the nature of the attractor
solutions of the system, especially the attractor dimension. Can one see this in
experiments? If so, what are the implications for magnetic fusion? Second, ex-
periments on LAPD that vary the mean radial electric field have already been
done, and simulations based on these experiments need to be properly performed
and analyzed to help uncover some important physics. While I have made some
progress on these simulations and their analysis, which I describe in Appendix B,
I have not yet achieved a sufficient level of validation or analyzed the results in
depth. These are two paths of exploration that await future research. There is
still much to be done in LAPD experiments and simulations to uncover the nature

of plasma turbulence.
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APPENDIX A

The BOUT+4+4 Code

I use the BOUT++ [DUXO09] code to solve the model equations of Chapter 4. This
is a free open-access code available at https://github.com/bendudson/BOUT. In
this appendix, I briefly describe this code and my specific implementation of the
model equations. I cannot simply paste the entire code here and explain it line for
line because the code is on the order of 10° lines and quite complicated. Rather,
I provide an overview of the BOUT++ framework and focus on describing and
discussing details that are specific to my code implementation so that readers
should be able to understand how to reproduce the simulations that I describe in

this dissertation.

A.1 The Object-Oriented Fluid Framework

BOUT++ is an object-oriented C++ extension of BOUT. BOUT, short for Bound-
ary Turbulence, was written by X. Q. Xu and M .V. Umansky [XC98, UXD09].
BOUT, written in C, evolves a set of drift-reduced Braginskii fluid equations in
3D tokamak geometry. P. Popovich and Umansky modified BOUT to solve the
equations in cylindrical geometry for simulation of LAPD turbulence [PUC10b].
BOUT++ is much more, however, than a C++ Braginskii solver. It is a C++
framework for writing single or multi-species fluid simulations with an arbitrary
number of equations in 3D curvlinear coordinates. The framework allows input
of a grid file, which contains information regarding the magnetic field geometry,

the metric tensor, and axisymmetric equilibrium profiles and parameters if de-
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sired. Users may simulate fluids and plasmas in slabs, sheared slabs, cylinders,
or tokamaks. The input equilibria have only one restriction in that they must be

two-dimensional, having one axisymmetric coordinate.

The inner workings of the code take care of many of the difficult coding and
numerical issues associated with writing fluid simulations. For example, users
may run parallelized simulations that are spread onto multiple processors simply
by specifying a number in an input file. Furthermore, users can specify specific
implicit or explicit numerical schemes to solve the equations as well as specific
finite difference schemes to approximate spatial derivatives in the equations. None
of the numerical schemes need to be written by the user, although the framework
also provides relatively simple ways that the user can implement his own finite
difference schemes. Derivatives in the axisymmetric coordinate may be solved

spectrally, but BOUT++ is not a spectral code in general.

Moreover, the user specifies the equation set to be solved in a “physics mod-
ule.” The equation set can be the Braginskii equations, MHD equations, Navier-
Stokes equations, gyro-fluid equations, etc. Finally, BOUT++ evolves variables
from initial conditions with boundary conditions applied at every time step. It
cannot solve the eigensystem of a linear equation set. Overall, BOUT++ is easily
adaptable to solving many different hydrodynamic and plasma physics models.
More information can be obtained in the various reference manuals included in

the downloaded working tree.

I have implemented a specific LAPD turbulence model in the BOUT++ frame-
work using the equations, sources, profiles, and parameters outlined in Chapter 4.
In the next section, I explain the specific choices of numerical schemes that I use

for the time evolution and the spatial differential operators.
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A.2 Numerical Schemes

A.2.1 Spatial Finite Differences

In my BOUT++ LAPD turbulence implementation, the code solves Eqs. 4.1-
4.4 for the fields N,T,,¢,v|.. In order to do this, it must calculate the RHS
of the equations using my prescribed equilibrium profiles, transport coefficients,
and stored values of N,T,, ¢, v.. Since the RHS of the equations involve spatial
derivatives, they must be approximated before the solution can be found. The
approximations involve a number of differential operators for the different terms.
First, I explicitly write out the linear advection terms such as vg - VNy into an
azimuthal derivative of ¢ times a radial derivative of Ny. Then, I use simple first-

derivative central 4" order finite difference schemes for each of the derivatives.

For the perpendicular Laplacian operators, I use Fourier transforms, which is
the standard BOUT++ scheme for this. For the parallel Laplacian operator, I use
a second-derivative central 4 order finite difference scheme. For the parallel gra-
dient operators, I use a quasi-staggered method to prevent grid-sized oscillations
on top of the solution that are called grid modes. For the explanation of why non-
staggered numerical schemes can cause unphysical grid modes, see Appendix C in
Popovich et al. [PUC10b]. In the quasi-staggered method, I use a first derivative
first or third order one-sided finite difference scheme for the parallel gradients.
I use a right-sided scheme for the derivatives when they are applied to the flux
variables (v and 7)) and a left-sided scheme when applied to the state variables
(N, T., and ¢). BOUT++ now has the capability to use real staggered grids in
which the flux and state variables exist on different grids that are shifted by half
a grid-spacing from one another, but this capability wasn’t present when I started
the work, so I had to use the quasi-staggered method. I implemented the third-
order schemes myself in the physics module, so the one-sided third order schemes

are not part of the standard BOUT++ internal code. I generally use the third

169



order schemes, but I sometimes use the first order schemes, and the statistical

solution doesn’t significantly vary between the two different schemes.

Finally, for the nonlinear advection terms in the Poisson brackets, I gener-
ally use an Arakawa advection scheme that I have written into the physics mod-
ule, which is not part of the BOUT++ internal code. The Arakawa advection
scheme [Ara66] is useful for my purposes because it exactly conserves fluctua-
tion energies of the type I have written in Chapter 6. I have used this advection
scheme for all of the simulations that I describe in the dissertation — but not for
the simulations I describe in Appendix B. The Arakawa advection scheme can
cause overshoots or spurious fluctuations at steep gradients, which is one of the
reasons why I use artificial diffusion and viscosity in the equations. Another prob-
lem with the Arakawa advection scheme is that it is not a positivity-preserving

scheme. The advection equation:

0A
9 v VA= Al
B v 0, (A.1)

for any normal flow field v preserves the positivity of the variable A. This is easy
to see because anytime A becomes very small at a certain location not on the
boundary, it becomes a local minimum there and its gradient goes to zero. This
prevents A from decreasing any further. When dealing with finite differences,
however, the gradient of A at a local minimum may be different from zero due to
finite grid spacing effects. This can cause A to become negative at that point on
a subsequent time step. Some finite difference advection schemes take this into
account and do not allow A to become negative. Arakawa schemes do not. This
can be a problem because the total density and electron temperature are physically
positive quantities in my model. They should not become negative at any time at
any spatial location. Otherwise, the results become unphysical, invalidating the
simulation. As long as the fluctuations are not too large, the total density and
temperature remain positive when I use Arakawa advection. But I found that in

some simulations — including those described in Appendix B — the fluctuations can
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become large enough that the total density and/or temperature become negative

when I use the Arakawa scheme. In those cases, I use a first-order upwind (U1)

advection scheme. In this scheme, the component (vx%)m is approximated as:
A — A
Um,i# for Vg > O,
A1 — A
vm% for w,; <0. (A.2)

It is easily confirmed that any local minimum must grow in amplitude from this
formula because A is always advected into the local minimum. Also note that
a local maximum must shrink. Because of these properties, solutions tend to
numerically smooth out, indicative of diffusive action. To show this explicitly,

Eq. A.2 can be rewritten in an interesting way:

( 8A> A1 —Air Ax A1 — 24+ A (A.3)

e U1 DYV a 7|vm| (Az)?

The first term on the RHS is simply the expression for central second order ad-
vection, while the second term on the RHS is £%|v, ;| times the expression for the

central second order second derivative:

2
(vz%) = (vx%) — g]v“] (M> , (A.4)
or /4 0 ) o9 2 ’ 0% ) o

meaning that the one dimensional advection equation with a first order upwind
advection scheme is equivalent to the advection-diffusion equation with a second
order central advection scheme and a diffusion coefficient of %|vm| This gener-
alizes to the 3D advection equation as well. The diffusion is numerical diffusion,
and when I use Ul advection, I make sure to add this numerical diffusion to the

artificial diffusion in my energy analyses to correctly obtain the energy dissipation.

Using a Ul advection scheme helps maintain positivity of the total density
and temperature, but Eqgs. 4.1 and 4.4 are not simple advection equations or
even advection-diffusion equations. The density equation is close to an advection-

diffusion equation, but since I partially linearize it, it doesn’t preserve the concept
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of evolving the total density. And more importantly, the source term makes it a
different equation altogether. Physically, the source is an ionization source and
a recombination sink at the end plates, but in the model, it is much simpler.
It’s simply a term that corrects the equilibrium by essentially removing the flux-
surface averaged density fluctuation component (Eq. 4.5). Such a source is clearly
not positivity-preserving since it averages over an entire flux surface and has no
knowledge of the local total density. When positivity preservation becomes an
issue in the simulations, I multiply the source terms in Eqs. 4.1 and 4.4 by N,
and T,; respectively whenever the sources are negative. Therefore, when N; or T,
become small, if the sources are negative, they become weaker so that they can’t
drive N; and T.; negative. Physical sources must have this property, so it’s not

unreasonable to do this with the model sources.

A.2.2 Time Integration Technique

Perhaps the real power of BOUT++ lies in its time integration procedures. While
a few simple explicit methods such as Euler and Runge-Kutta 4" order methods
come with the BOUT++4 code, some much more sophisticated solver packages
can be compiled with the code and used with simple commands. The solver that
I use is the CVODE package that comes in the Sundials suite of codes. CVODE
is a parallel solver that can solve stiff or non-stiff ODE initial value problems of

the form [CVO]:
du

i f(t,u). (A.5)
Plasma simulations tend to be stiff due to the large range of time scales involved.
Simple explicit schemes are generally too inefficient or too inaccurate to use, and
only some implicit schemes work with stiff systems. For stiff problems, CVODE

uses the Backward Differentiation Formula (BDF). This formula approximates u
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at time n as

q
Up = Z Qp_Up_; + hnﬁOfn; (A6>

i=1
where f, = f(up,t,), hy is the time step at time n, ¢ is the order of the BDF
method, and «,,_; and [y are coefficients determined by the order of the BDF
method. Since, f, is unknown, CVODE uses a Newton formula to approximate
it as

af

Jn & o1+ %(un - unfl)- (A?)

% = J is the Jacobian. This allows Eq. A.6 to be written as
q
(]- - hnﬁOJ)un = Z Ap—iUp—; + hnﬁOfn—l - hnﬁOJun—l- (A8)
i=1

The process is actually more complicated as the Eq. A.7 approximation actu-
ally uses a Newton iteration|CVO], so that the solution can be computed more
accurately. The user supplies error tolerances and CVODE iterates the solution
until the tolerance is met. If the tolerance is not met after a certain number of
iterations, CVODE changes the order of the implicit method. If this doesn’t pro-
duce a tolerable error, CVODE reduces the time step and starts the procedure
again. These tolerance steps are not necessarily all done in this order. Again,

CVODE is an efficient, yet complicated code.
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APPENDIX B

Finite Mean Flow Simulations

In the main text, I focused on one particular LAPD experiment, which contained
little mean E x B flow and flow shear. Focusing on this null flow experiment
allowed me to model the system with a smaller number of linear terms in the
equation set than if the experiment had contained significant E x B flow. Further-
more, neglecting mean flow and flow shear eliminated linear instabilities such as
Kelvin-Helmholtz and Rotational Interchange, which are both flute-like (k; = 0).
With these present, it can be difficult to differentiate between the nonlinear in-
stability and these linear instabilities, though careful energetics analysis can do
so. Furthermore, the low flow experiments have proven to be easier to success-
fully simulate than the high flow experiments, and the null flow experiment and
simulations contain so much interesting physics that they deserve study in their

own right.

In this appendix, I review preliminary results of simulations and analysis of
finite mean flow experiments recently performed in LAPD. I choose to present this
in an appendix rather because it is preliminary, highly unpolished work. Moreover,
mean flow shear suppression is somewhat off topic and wouldn’t necessarily add
to the main points that I developed in the main text. But I cannot emphasize
enough how important well-validated, well-analyzed mean flow simulations would
be to the understanding of these experiments and the important effects that they
were designed to illuminate. Because of that, I present here my preliminary results

of some mean flow simulations so that others can build upon this work.
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B.1 Biasing Experiment Profiles

As I discussed in Sec. 4.3.1, Schaffner et al. conducted an E x B flow and flow
shear variation experiment on LAPD [SCR12]. In the main text, I simulated
only a single experimental realization — that in which the plasma had minimum
mean azimuthal flow. The study, however, really stressed the higher flow states
because they are relevant to tokamak research, specifically research into the High
Confinement Mode (H-mode) and the transition to the H-mode. Researchers
have long realized that H-mode is associated with strong toroidal rotation of the
tokamak plasma and that the shear associated with this rotation is the likely
cause of the decrease in energy transport. The particular physical mechanism
of turbulent-shear interaction that causes the flux suppression is still an area of
intense research. Although here I do not address the question of shear suppression,
future work using LAPD simulations may be able to do so. Rather, I focus here on
accurately simulating the turbulence in a few of the finite flow plasma realizations

in the experiment and partially analyzing them.

First, I show the equilibrium density, electron temperature, and potential pro-
files for the three experiments that I will simulate. The first, corresponding to the
unbiased plasma — the 0 V potential profile in Fig. 4.2 — is in Fig. B.1 a). Further-
more, in Fig. B.1 b), I plot the azimuthal vg,p profile and its radial derivative,
the shear. Both are normalized by the same potential as ¢g. I do the same for
two other cases: a medium flow case — corresponding to the 100 V bias in Fig. 4.2

— and a high flow case — corresponding to the 150 V bias.

As documented in Schaffner et al. [SCR12, SCR13] and is clear from Fig. B.1,
the mean flow inside of the 26 cm limiter radius points in the ion diamagnetic direc-
tion for the unbiased case, but then nulls out and changes direction. Furthermore,
the radial flow shear also changes with changing bias, with the shear rate -, rang-

ing from zero to about five times the autocorrelation time 7. Schaffner’s analysis
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Figure B.1: Fitted equilibrium profiles for different biases

176



showed that the radial particle flux and the density scale length were inversely
proportional to the flow shear regardless of the flow direction [SCR12]. The ex-
periments clearly showed that flow shear suppresses radial particle flux through
suppression of turbulent density fluctuations. The mechanism that causes this,
however, is less obvious, and they tried to answer this by comparing shear scal-
ing properties to various theoretical predictions [SCR13]. Simulations with highly

resolved spatial features may eventually help this effort.

Other interesting findings in the biasing experiment include a change in the
shape of the frequency spectra with biasing. As the flow and flow shear become
large, a coherent feature, seen as a sharp peak at the low end of the frequency
spectra, emerges. Furthermore, the spectra become more exponential at high
frequency as the flow and flow shear increase. These signal possible changes in the
nature of the turbulence. The coherent feature, for instance, indicates the presence
of a coherent mode, possibly due to a flow instability. The exponential spectra
might indicate a change in the chaotic properties of the turbulence, namely, a
decrease in the attractor dimension. This speculation can likely be sorted out with
the help of well-validated numerical simulations. Therefore, I have attempted to
simulate a few of the different biased cases and analyze the results using the tools

I used in the main text on the null flow experiment and simulations.

B.2 Simulation Model

The simulation model that I use is the same that I use in the main text (See
Chapter 3) with mostly obvious and straight forward additions to account for the
mean potential profiles in the experiments that I simulate in this appendix. I
treat the potential the same way that I treated the density and temperature in

the main text — by dividing it into a time-independent equilibrium part and a

177



time-dependent fluctuating part. With this, the model equations become:

ON = —vg-VNy — Vvgo - VN — NoVvje + ,UNViN + Sy +{o, N}, (B.1)

m; Teo
p NOVHN
m; m;
—1.711—V, T, — — B.2
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100y (0Ny 8% 000 ON
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7

I simulate three different biasing experiments — those corresponding to the
profiles that I showed in Fig. B.1. I use a potential source S in the same way
that I use density and temperature sources (see Sec. 4.1.1). However, while it is
clear that the turbulent flux will cause the total radial density and temperature
profiles — equilibrium plus flux-surface averaged fluctuating component — to relax
over time, it is not obvious what affect if any the turbulence should have on the
total potential profile. The reason is that the turbulent Reynolds Stress, which
comes from the flux-surface average of the {¢, w} term in Eq. B.3 can drive time-
dependent zonal flows and time-independent mean flows — the Reynolds Stress
is a three-wave transfer in the terminology of the energy dynamics. Generally,
however, radially non-oscillatory mean flows require an external torque due to

angular momentum conservation.

When I simulated the null flow experiment and even the unbiased experiment
without a potential source, no noticeable mean flow developed. However, when
I simulated the medium flow and high flow experiments, a mean flow did form,
presumably because my radial boundary conditions apply a significant torque to
the plasma. In any case, this means that I do have to use a potential source to

maintain the physically relevant total potential profile. In most cases it would
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probably be best to use a fixed potential source because the source that I use (see
Sec. 4.1.1) largely removes the zonal flows as well as the mean flows. I don’t think
the zonal flows are that important, as I showed in Fig. 7.9, but they might be in

the higher flow cases.

Additionally, I use periodic axial boundary conditions for these simulations
because the boundary conditions didn’t seem to have much affect on the turbu-
lence in the null flow simulations. As for the artificial diffusion and viscosity levels
— which I use as a free parameter to match the level of turbulence between the
simulations and experiment — I use values of 1.2 x 1073, 2x 1073, and 0 for the un-
biased, medium flow, and high flow simulations respectively. Also, as I discussed
in Appendix A, I use a first order upwind advection scheme for the advective

nonlinearities in these equations, which introduces a lot of numerical diffusion.

B.3 New Linear Instabilities

The addition of an equilibrium potential profile introduces two new linear insta-
bilities into the picture. First, the Kelvin-Helmholtz (KH) instability, which is a
fluid instability — as opposed to a plasma-specific instability — is caused by the
radial gradient in the azimuthal Eq x B velocity. Second is the rotational inter-
change instability (RIC), which is caused by the bulk rotation of the plasma in

the presence of the magnetic field.

The KH instability is a convective vorticity instability, meaning it can be

described by the simple equation
Ow
ot

The instability occurs when there is a shear in the velocity gradient. Diagrams

=—-v-Vw. (B.5)

of the mechanism can be found in Manneville p. 227 [Man04], Drazin and Reid
p.15 [DR81], and in other hydrodynamic instability books. Their treatments all

follow Batchelor’s [Bat67]. I summarize the mechanism as follows. Imagine a
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boundary layer separating two flows that have equal speeds but velocities going
in different directions. Since the vorticity is just the curl of the velocity, this
boundary layer is a vortex sheet. Now a sinusoidal vorticity perturbation on this
sheet causes a sinusoidal ripple in the elevation of the sheet. This ripple brings
parts of the sheet into regions where the background flow is positive and other
parts of the sheet into regions where the flow is negative. The vorticity on the
sheet is then advected by this background flow in such a way that it reinforces the
initial sinusoidal vorticity perturbation, thus causing instability. This instability
is 2D and requires only a velocity gradient. In the LAPD plasma, the mean flow
is in the azimuthal direction and its gradient is in the radial direction. Since
the instability is 2D, it need not have a finite wavelength in the axial direction,
potentially making it a flute mode. In Eq. B.3, the terms that cause the KH

instability are —vg - Vg and —vgg - Vw.

The RIC instability is analogous to the more commonly known interchange
instability in magnetic confinement devices like tokamaks. That interchange in-
stability is a result of a curved magnetic field that causes particles to feel a cen-
trifugal force as they travel along the field. The RIC instability in LAPD is not
caused by magnetic field curvature (there is none), but by the centrifugal force
on particles as they are rotated around the cylinder by the azimuthal mean flow.
The force on the particles is F = muv}/r t. Forces on particles in magnetic fields
cause drifts:

_1FxB

’Ud—& B2

(B.6)

Since the centrifugal force due to rotation is independent of charge, the electron
and ion fluids drift in different azimuthal directions. If there is a density pertur-
bation, this drift will cause a spatial charge separation, which causes azimuthal
electric fields and thus, radial E x B velocities. These radial velocities advect fluid
of different density into this charge-separated region in such a way to enhance the

original density perturbation. In this instability, unlike the drift wave instability,
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simulation

the density and potential perturbations are 90° out of phase, meaning that the
instability grows but does not propagate — if the electrons are adiabatic. In other
words, this instability does not require the adiabatic response, and it is 2D, so it
can have infinite axial wavelength. And unlike in the KH instability, the density

is not a passive scalar in the RIC instability. The new term in Eq. B.3 that is

1060 (9Ng 06 _ 960 ON
r Or or Orof or2 90 )

responsible for the RIC instability is —

I show the growth rates as a function of m number for the high flow simulation
in Fig. B.2 a). The Full Model curve is the linear growth rate for the full equation
set. The growth rates are much higher than for the null flow case due primarily
to the steep density and temperature gradients. For the Kelvin-Helmholtz and
Interchange curves, I have simulated only subsets of the equations. For both, I
have removed the adiabatic response terms, which eliminate the drift wave drive.
And for the KH simulation, I disregarded the RIC term and vice versa for the
IC simulation. From these results, it appears that the linear drift wave is most

dominant with the KH instability also having significant positive growth rate.
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The RIC instability is only marginally unstable. I note that the RIC and KH
growth rate curves may be inaccurate, and that I need to confirm them with an
independent calculation. I also note that the growth rates might be very sensitive

to the profiles, especially the potential profile, which I also must check.

In in Fig. B.2 b), I show the axial structure of the potential for the linear
simulations that I used to calculate the growth rate. The Full Model curve has
the shape of a single n = 1 Fourier component, indicative of the linear drift wave
that dominates the linear dynamics in this simulation. The KH and RIC axial
structures have large n = 0 and n = 2 Fourier components, and no significant
n = 1 Fourier component. The n = 2 component is quite surprising and warrants

further investigation.

B.4 Statistical Comparisons to Experiment

In Fig. B.3, I compare a few statistical quantities of the density fluctuations
— I for the experiment — between the flow experiments and the simulations
corresponding to the profiles in Fig. B.1. The top row of plots — a), b), and c)
— are based on the unbiased experiment and simulation, the middle row — d),
e), and f) — derive from the medium flow experiment and simulation, while the
bottom row — g), h), and i) — come from the high flow experiment and simulation.
The first column plots — a), d), and g) — show the frequency power spectrum,
the middle column shows the probability distribution function of the fluctuations,

while the last column displays the radial RMS values of the fluctuations.

For the unbiased case, the simulation matches the experiment quite well — at
about the same level as the null flow experiment and simulation in the main text.
Moreover, the statistical quantities for the unbiased simulation and experiment
closely resemble those of the null flow experiment (see Fig. 5.8) except for the

fluctuation peak at ~ 26 c¢m in the unbiased case, which isn’t present in the null
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flow statistics. The medium and high flow simulations, on the other hand, leave
much to be desired with regards to their match against experiment. The medium
flow simulation PDF matches the experimental PDF very well, although I use my
free parameter — artificial diffusion and viscosity coefficient — to match the stan-
dard deviation of the PDF of the simulation with the experiment. The skewness
and kurtosis, however, are similar, and I do not control them. Furthermore, the
medium flow simulation and experiment both have a strong fluctuation level at
~ 26 cm, but the experiment has another peak at ~ 16 cm that the simulation
does not. Also, the simulation frequency spectra is qualitatively different than
that of the experiment. The simulation frequency spectra has a strong coherent
peak that is lacking in the experiment. I notice that this is a common feature of
the simulations when I use a high level of artificial diffusion. Presumably, then,
this feature would disappear when I lower the diffusion. However, this would cause
a mismatch in the fluctuation level. I presume that I would be better served by
lowering the diffusion and finding the cause of the then unphysically large fluctu-
ation levels. Obviously, the simulation model has some issue in this case. Perhaps
my profiles have some unphysical feature in them, or maybe the zonal flows play
a more important role in saturating this case than in the unbiased case. This

requires investigation.

For the high flow simulation, the qualitative match to the experiment is ac-
tually very good, including the match of the location of a coherent feature in
the frequency spectrum at about 12 kHz. However, the level of fluctuations is
obviously too low in the simulation. Now I claimed that I use the PDF standard
deviation to set the free parameter, and in this instance, it appears that I should
lower the free parameter to better match the fluctuation level. However, I have
already lowered the free parameter to zero in this simulation, so I cannot lower
it further. I note, though, that in addition to the artificial diffusion and viscosity

that I put in these simulations, there is also numerical diffusion and viscosity from
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Figure B.4: Particle and heat flux for finite flow simulations

the finite difference schemes, particularly from the first order upwind scheme that
I use for the nonlinear advection terms in the flow simulations. Therefore, the
grid spacing that I use also acts like a tunable parameter for the diffusion and
viscosity levels. In light of this, I have tried using finer grids, but I cannot use
too fine of grids because it increases simulation time, and more importantly, the
very low level of diffusion leads to density positivity problems as I discuss in Ap-
pendix A. It appears then, that my partial linearization of the model equations,
which is responsible for the lack of strict density and temperature positivity, may
be an issue for this simulation. But for now, I note that there is at least good
qualitative agreement between this simulation and experiment. Nevertheless, due
to my inability to fully validate the simulations, all conclusions that I present are

subject to change in the future.

Next, in Fig. B.4, T display the particle flux I' = (Nwv,) and heat flux @ =
(NT.v,). One of the first things one may notice in this figure is that the high flow
simulation has much lower overall flux than the other simulations. This isn’t a

physical result because of the fluctuation level shortfall in the high flow simulation.
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Additionally, the fluxes of the finite flow simulations are all much more peaked
than they are in the null flow simulation. The peaks have radial locations similar
to where the flow profiles are peaked and where the shear profiles are at inflection
points (see Fig. B.1). For instance, the flux in the high flow simulation peaks at
20 cm. From Fig. B.1 f), at 20 cm, the flow is at its largest absolute value, while
the flow shear is about 0. Additionally, the width of the flux peak is on par with
the width of the shear inflection curve (from 17-23 cm). The same holds for the
other two simulations, but to a lesser extent. These simulations seem to capture
local shear suppression, although it’s not clear from this one figure if the flux is
suppressed by the shear or if it is merely following the peaks in the density and/or
temperature gradients. Simulations that evolve the equilibrium gradients rather

than taking them as input may be better suited to answering this question.

B.5 Energy Dynamics Results

B.5.1 The Broadband View

The addition of the mean flow terms in Eqgs. B.1-B.4 — those that contain v.g
or wy — only change the energy dynamics expressions slightly from their form

in Chapter 6. In fact, only two terms — both in Eq. B.3 — actually contribute

to the energy dynamics: —vgg - Vw and —%% (35\7{0 gfgg — 6;?;0 %—g). Mean flow
advection terms such as —vgg - VN in Eq. B.1, perhaps surprisingly, do not
contribute to the energy dynamics. This can be seen by recalling the procedure

for calculating the dynamics, which begins with multiplying Eq. B.1 by T.o/NoN

and integrating over the volume. This term becomes

T, 1 T.o [ ON2
- /V ( N;)NVEO : VN) v =— / VEo N;’ N rdfdzdr. (B.7)

Then, it is easy to see that the inner integral is zero due to the natural 6 periodicity

of N. The same holds for the mean flow advection terms in Eqs. B.2 and B.4. The
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fluctuations are Doppler shifted by the mean flow, and even though the Doppler
shift is a function of radius, the shift does not feed or dissipate the fluctuations
as a whole. This also holds true for each individual (m,n) mode. These terms
can, however, change the radial structures of the fluctuations, and this could be
captured in different decompositions that do use radially decomposed modes, but

I don’t focus on any of those here.

The linear mean flow advection of the vorticity (—vge - V) actually does
provide a non-zero contribution to the energy dynamics because I obtain the per-
pendicular kinetic energy by multiplying Eq. B.3 by —¢ rather than by w. In
fact, this leads the —vg - Vg term in Eq. B.3 to give zero energy contribution

instead, for the same reason as the term in Eq. B.7. Consequentially, only the

1060 (9Ng %6 _ 60 ON
r or ar Orod or?2 00

—VEgo - Vw and — ) terms in Eq. B.3 contribute to the en-
ergy dynamics that I formulated in Sec. 6.2. I identify the first of these terms as
the contribution from the linear KH mechanism, and the second as the contribu-
tion from the linear RIC mechanism. These are energy injection terms that take

energy from the mean flow and deposit it into the perpendicular kinetic energy

fluctuations (¢ fluctuation energy).

It should not be surprising that the addition of the mean flow does not change
the nonlinear instability picture that I developed in Chapter 7, especially for the
unbiased and medium flow cases. I do not show results from these two simulations
here. Rather, I focus only on the high flow simulation energy dynamics since they
are the most interesting, and the others can simply be seen as intermediate cases
of the null and high flow cases. First, I show the (m,n) energy spectra for the
high flow case in Fig. B.5, which can be compared to the null flow energy spectra
in Fig. 7.1. Overall, the spectra of the two simulations are somewhat similar, but
differences are visible. The first clear difference is that the high flow simulation
has a local energy peak at |m| = 1,|n| = 2 in all four fields, which is not present

in the null flow case. Second, Eyx has more relative energy at [n| = 1 for the
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Figure B.5: Energy spectra for the high flow simulation
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high flow simulation, and this energy is peaked at about |m| = 40. The same is
not true for Ey, where the null flow case seemingly has more relative energy at
In| = 1, but the high flow case does have a local energy peak at |n| = 0, |m| = 40.

Clearly, the high flow case has more spectral features than the null flow case.

To compactly describe some of the energy dynamics, I show the linear and
nonlinear (turbulent) growth rates (explained in Sec. 7.2) in Fig. B.6. The red
curves represent the nonlinear growth rates, while the cyan curves represent the
linear growth rates. Note that I previously showed the linear growth rates of the
different linear instabilities in Fig. B.2. Here, I am not breaking up the curves
in terms of linear instabilities, but rather in terms of n number. The n = 1
curve, however, pretty closely corresponds to the Full Model curve in Fig. B.2 a),
but they are different because here, I have added a precise amount of artificial
diffusion and viscosity in order to better compare to the nonlinear growth rate

curves, which have numerical diffusion and viscosity due to the finite difference
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advection scheme. That is the reason for the sharper falloff at high m for the n = 1
curve in Fig. B.6 compared to the Full Model curve in Fig. B.2 a). Likewise, the
n = 0 curve here corresponds to the KH curve in Fig. B.2 a), except here there is
artificial viscosity. Now like for the null flow case, for which I showed the linear and
nonlinear growth rates in Fig. 7.8, the high flow simulation nonlinear growth rates
are much different from the high flow linear growth rates. This is a result of the
same nonlinear instability mechanism that controlled the null flow case. Fig. B.6,
by itself, doesn’t prove that the nonlinear instability mechanism is active because
it is possible that the KH or RIC instabilities could be responsible for the positive
n = 0 growth rate. But a deeper look at the energy dynamics reveals that this
isn’t the case, and that the nonlinear instability mechanism still dominates. On
the other hand, the high flow case does have a positive nonlinear growth rate for
n = 1, which is just as strong as the n = 0 growth rate. Presumably, the linear
drift wave instability is so strong for this high flow case — which has a high localized
density gradient — that it can compete with the nonlinear instability mechanism.
Overall, despite the high mean flow, the KH and RIC instabilities are not wholly

significant, though they cannot be ruled out as factors for the coherent mode.

B.5.2 The Coherent Mode

In Sec. B.1, I mentioned that Schaffner et al. [SCR12| identified a coherent mode
that grows within the broadband turbulence when the mean flow becomes large
due to high biasing. In fact, I reproduce in the simulation a signature of the
coherent mode, namely the peak at about 12 kHz in the frequency spectrum
(Fig. B.3 g)). That means that the simulation data can be used to figure out the

cause of this coherent mode.

In order to understand the coherent mode better, I first look at the frequency
spectra as a function of radius, which I show in Fig. B.7. Figure B.7 a) is the

spectrum of the density fluctuations, while Fig. B.7 b) is the spectrum of the
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Figure B.7: Radial frequency power spectra for the high flow simulation

potential fluctuations. The difference between the spectra of the two fields is
remarkable, with the potential having a coherent spectra and the density having
a broadband spectra. While the 12 kHz coherent mode shows up in both fields, it
is far more significant in the potential field. This indicates that the coherent mode
is a flow-driven mode as opposed to a drift wave, which shouldn’t be too surprising
given that the mode emerges only when the flow becomes large. Furthermore, the
coherent mode is somewhat localized at a radial position around 23 — 26 cm.
By comparing this to Fig. B.1 f), one sees that this mode peaks where the flow
shear peaks, but where the flow magnitude is small, which provides evidence that
the mode is KH-driven rather than RIC-driven. To further test this, I run two
more simulations — one removing the KH term in Eq. B.3, the other removing
the RIC term. I display the radial frequency spectra of these two simulations in
Fig. B.8. The results of these simulations are not that straight-forward. When I
remove the KH term, the coherent mode at 12 kHz disappears, and the frequency

spectrum of the potential changes significantly, somewhat validating the idea that
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the coherent mode is KH-driven. However, removal of the RIC term also has an
effect on the coherent mode. It shifts its frequency. While there is still a sharp
peak in the spectrum at about 12 kHz, there is a more significant peak at about
7 kHz, meaning that the 12 kHz peak is probably just a side-band of this. Likely,
the coherent mode is KH-driven, but the RIC term shifts the frequency of the

mode, though it’s not obvious why it would do so.

To further test the KH-driven coherent mode hypothesis, I look at the energy
dynamics of the full simulation with both the KH and RIC terms included. How-
ever, in order to try to isolate the coherent mode, I volume average over only the
annulus in the 23 — 26 cm radial domain, which should eliminate the background
that is still largely controlled by the nonlinear instability. I do not show any
specific results of the energy dynamics, but qualitatively in this domain, the KH
mechanism injects energy into the system, primarily at n = 0 and at m = 1, 2.
The RIC, on the other hand, is not active here, and the nonlinear instability is
also not strong here. The evidence, then, points to a KH-driven coherent mode

where the RIC only affects its frequency.
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