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ABSTRACT 

 

Changes in crop species diversity can affect agroecosystem function. However, most crop 

diversity studies insufficiently account for the influence of scale on spatial crop diversity, and its 

relation to temporal diversity has not been explored. Moreover, crop diversity might be limited 

by environmental constraints and market demand for specific crops, which needs to be 

considered when assessing opportunities for diversification. This dissertation developed and 

applied new approaches to gaining a quantitative understanding of diversity patterns and 

processes, allowing for improved comparison between regions and countries. It includes an 

analysis of the scale dependency of crop species diversity and its relation with temporal diversity 

using high-resolution crop-specific land-cover data for the conterminous US. It also shows the 

magnitude of environmental and demand-side constraints to crop diversity globally. For that 

purpose, a theoretical framework of hierarchical levels of crop species diversity is presented, in 

which potential, attainable, and current diversity levels are compared to compute diversity gaps.   

 

We found that spatial diversity monotonically increases with the size of the observational unit, 

and the strongest association between spatial and temporal diversity is observed when measured 

in areas comparable to farm sizes. In larger areas, the association weakens because of the 

increasing diversity among farms. At the national level, the diversity among farms is usually 

higher than the diversity within them, which needs to be considered when inferring diversity 

effects with national-level data.   
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Environmental limits to crop diversity are higher in temperate and continental areas than in 

tropical and coastal regions. Crop diversity is also constrained by a high demand for a few crop 

species, which results in an attainable diversity that is much lower than the potential. 

Nevertheless, there are large gaps between current and attainable diversity levels in most 

croplands. These gaps are particularly large in the Americas, where croplands are dominated by a 

few major annual crops (maize, soybean, wheat) mostly grown on fields with a very low 

temporal diversity. In contrast, diversity gaps are relatively small in Europe and East Asia. 

Changes in food demand favoring minor crops could positively impact spatial and temporal crop 

species diversity by increasing the attainable diversity. But given current consumption patterns, 

the most effective strategy to increase crop diversity in areas with high diversity gaps might be to 

expand the area of a major crop adapted to that specific environment, but that is not widely 

planted.  

 

Securing adequate soil fertility is also critical for diversification, especially in the tropics, where 

low soil pH is one of the main limiting factors of potential crop diversity, and soil acidity 

remains a key management challenge for smallholder farmers. Liming can boost the productivity 

of acid soils, but the lime rate required to achieve this is unknown for many tropical regions 

where food production increases are urgently needed. Therefore, lime requirement models based 

on readily available soil data could be very useful in these places. However, the great variety of 

lime requirement models available in the literature introduces much uncertainty. We evaluated 

current lime requirement models for acid tropical soils and introduced a new model based on 

acidity saturation using data from four soil incubation studies and 31 soil types. Foundational 

models based on acidity or base saturation are reasonably accurate (r ≥ 0.9), but later attempts to 
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improve these models were unsuccessful. The new model, in contrast, has more precision than 

all earlier models across a wide range of acid tropical soils from different regions. Moreover, 

lime requirement estimates largely depend on the target soil chemical property of the model. For 

instance, many more African soils would require liming based on base saturation models than 

acidity saturation models, regardless of the accuracy. The new acidity saturation model can 

effectively estimate the lime rate required to address aluminum toxicity. This model could be 

incorporated into more comprehensive models once lime rates needed for other acidity problems 

are well established. 



 

 

1 

 

INTRODUCTION 

 

There is a growing interest in better understanding factors affecting agroecosystem functions and 

services. One key property of agroecosystems that has received much attention in recent years is 

the diversity of crop species. National crop species diversity has been associated with the 

stability of food production (Renard and Tilman, 2019) and used as a proxy for pollination 

services (Aizen et al., 2019) partly because local crop diversity enhances associated biodiversity 

(Sirami et al., 2019). However, it is unclear how national crop diversity is related to local-scale 

diversity, and assuming that inferences made at one scale are maintained at other scales can be 

misleading. Crop species diversity also has a temporal dimension of great importance resulting 

from farmers’ crop rotations. These crop rotations can reduce pressure from pathogens, pests, 

and weeds (Curl, 1963; Liebman et al., 2016) and improve soil quality (Tiemann et al., 2015) 

and yield stability (Gaudin et al., 2015). Yet, the temporal dimension of crop diversity is 

frequently ignored in most diversity assessments, mainly because it is hard to measure (Aguilar 

et al., 2015), and it is not clear how diversity in space and time relates. Therefore, a better 

understanding and treatment of the scale dependency of spatial crop species diversity and its 

relation with temporal diversity is needed to develop comprehensive theories of crop diversity 

effects on agroecosystem function. 

 

The scope and potential for crop diversity increases are also uncertain. Most calls for more 

diverse farming systems do not consider regional differences that might limit farmers’ 

diversification opportunities or demand-side constraints (Jones et al., 2021; Kremen and Miles, 

2012; Renard and Tilman, 2021). Moreover, most studies on crop species diversity used 



 

 

2 

 

variation in diversity to explain other phenomena but there has been less progress in 

understanding factors that shape crop diversity (Roesch-McNally et al., 2018; Socolar et al., 

2021). Thus, to gain a quantitative understanding of diversity patterns and processes and improve 

comparisons between regions and countries, environmental and crop demand constraints to crop 

diversity must be identified.  

  

The first two chapters of this dissertation deal with some fundamental aspects of crop species 

diversity. The first chapter (Aramburu Merlos and Hijmans, 2020) explores how crop diversity 

can be measured, depending on the dimension (spatial or temporal) and scale considered and 

how these relate, using data for the conterminous United States. The second chapter (Aramburu 

Merlos and Hijmans, 2022) examines which factors define and limit crop diversity. It outlines a 

framework for quantifying potential and attainable levels of crop species diversity, which is then 

applied at the global level.  

 

Crop species diversity in the USA increased during the first half of the 20th century, but it has 

gradually declined over the past 50 years in most of the country (Aguilar et al., 2015; Hijmans et 

al., 2016). This specialization, together with increasing use of inputs, allowed substantial yield 

gains, but it was also associated with important negative environmental impacts (Crossley et al., 

2021; Foley et al., 2005). Consequently, there is an interest in developing more diverse and 

sustainable cropping systems (Kremen and Merenlender, 2018; Pretty, 2018). Most studies on 

diversified cropping systems consider crop rotation diversification a key management practice to 

be developed and (re)implemented (Davis et al., 2012; Gaudin et al., 2015; Olmstead and 

Brummer, 2008; Spiegal et al., 2018). However, there have been no comprehensive efforts to 
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analyze crop rotation diversity (or temporal diversity) across the US, probably because it needs 

to be observed at a very high spatial resolution (field level). The first chapter analyzes temporal 

and spatial crop species diversity patterns in the conterminous US and how they relate. It shows 

that crop rotation diversity is tightly associated with local diversity at a spatial resolution close to 

typical US farm size. It also shows that this diversity is lower for rotations that include major 

crops.  

 

The observable patterns in the spatial distribution of crop species and their subsequent diversity 

are realizations of underlying processes that need to be elucidated (Mercer et al., 2019; 

O’Sullivan and Unwin, 2003). While drivers of current crop genetic diversity patterns have been 

studied (Thomas et al., 2012; Van Etten and Hijmans, 2010), there is very little knowledge on 

processes shaping the diversity of crop species. However, some concepts from macroecology and 

biogeography might be applicable (Metzger et al., 2013; Rosenzweig, 1995). For instance, one of 

the most established patterns in Ecology, latitudinal biodiversity gradients (Hawkins, 2001), can 

also be expected to regulate crop species diversity. But crop diversity depends on both natural 

and human-mediated processes. Thus, while some tropical regions might be suitable for many 

crop species (high potential diversity), current diversity patterns are also affected by individual 

and structural factors shaping farming decisions and resulting in different specialization levels 

(Esquivel et al., 2021). The second chapter sets a theoretical framework of hierarchical levels of 

crop diversity that considers crop-specific environmental requirements and the demand for 

agricultural products. This framework is then used to analyze the environmental drivers of 

potential and attainable crop diversity and quantify diversity gaps. The results show that potential 

and attainable crop diversity are lower in temperate and continental areas than in tropical and 
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coastal regions. Although current diversity follows these patterns to some extent, other processes 

also affect it, resulting in high spatial variability in diversity gaps.  

 

The third chapter of this dissertation is on a different topic. It contributes to a project to better 

understand the opportunities for improved management of acid soils in Africa. One of the initial 

steps of the project is developing a spatially-explicit analysis of the costs and benefits of liming 

in Africa. This analysis is founded on models for lime requirement estimation. However, the 

literature on lime requirement estimation methods is sparse and inconsistent, particularly for acid 

tropical soils. Thus, the third chapter focused on a comparison of lime requirement models.   

 

Acid tropical soils can have several problems affecting crop growth, such as aluminum and 

manganese toxicity and calcium and magnesium deficiencies (Kamprath, 1980). These issues 

can be addressed by applying liming materials (Coleman et al., 1959). The amount of 

agricultural lime required is often estimated with locally calibrated soil tests (Shoemaker et al., 

1961). Both soil testing and liming might be relatively cheap and easy to access for intensive 

commercial farmers, but that is not the case for most smallholder farmers in tropical developing 

countries (Crawford et al., 2008). Lime application is relatively expensive in many tropical 

regions, and the experimental evidence on lime response is also limited. Furthermore, soil tests 

that work elsewhere cannot be assumed to work for these places and must be re-calibrated.  

 

Therefore, general models to estimate lime requirements from generally available soil data could 

be useful as a starting point in developing locally optimal liming recommendations and for 

strategic research on future lime use. The third chapter compares and evaluates different models 
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for lime requirement estimation that can be used in acid tropical soils with readily available soil 

data and introduces an outperforming model developed based on past experiences and clear 

principles. It shows that there are important differences in model accuracy and prediction values 

and that liming estimates largely depend on the target soil chemical property of the model. 

Therefore, the most important soil acidity problems affecting crop yields must be identified to 

formulate liming recommendations in acid tropical soils. However, models for other acidity 

problems than aluminum toxicity still need to be developed. 
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CHAPTER 1 

 

The scale dependency of spatial crop species diversity and its relation to temporal diversity 

Proceedings of the National Academy of Sciences, 117(42), 26176-26182. 
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Fig. S1. Crop area of the eight most abundant crop species in the United States, expressed as 
percentage of the total cropland (3.96 km spatial resolution). 
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Fig. S2. Average crop species diversity in space (Dγ) for the conterminous United States for 
observational units equal or larger than 1568 ha. Dγ was divided in its Dα and Dβ components based on 
392 ha subunits. The horizontal axis has a logarithmic scale. National level diversity values (Area = 8.08 x 
108 ha) are also shown. 
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Fig. S3. Alpha (Dα) and beta (Dβ) crop species diversities of the conterminous United States calculated 
based on 392 ha subunits (i.e. local scale) for two observational unit sizes: 25091 and 401449 ha 
(regional scale). Dα represents the weighted average crop species diversity of the subunits and Dβ the 
regional to local diversity ratio.      
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Fig. S4. County-level crop species Shannon Entropy index (H) for the conterminous United States 
computed with data from the 2012 USDA Census of Agriculture (USDA Census) against county-level H 
derived from the 2012 Crop Data Layer (CDL). Only counties with more than 20% of crop area were 
considered for the calculations, comprising 1085 entropy estimations for each data set. The red dashed 
line shows the identity function, the blue solid line shows the fitted linear regression, and the blue dashed 
lines indicate the confidence interval for the prediction of a new observation of HCDL. 
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Fig. S5. Threshold selection for removal of cells with a low proportion of cropland. Each plot represents a 
different spatial resolution. For each resolution, gamma diversity (Dγ) is plotted as a function of cell crop 
area (%). Several two-piece linear splines were fitted changing the location of their unique knot, adding 
one percent at each iteration until the second spline no longer yielded a significant positive slope. The 
knot position for the last spline was used as the crop area threshold. The solid blue line is the last spline 
with no significant positive slope in the second piece (P-value > 0.01). The vertical green line indicates 
the last spline-knot position and the value used as threshold for the given resolution (e.g. 0.99 km: 10%; 
31.68 km: 5%; 126.72 km: 2%). The dashed lines in red to light blue are the preceding splines with 
significant positive slopes (P-value < 0.01). Note that for resolutions lower than 507 km (areas > 
25.7Mha) no threshold was used as there was no significant association between Dγ and crop area. 
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Table S1. Percentage of cropland area under mono- or perennial crops (Dτ = 1) and other summary 
statistics of temporal crop species diversity (Dτ) for each state in the conterminous US. 

State Dτ = 1 (%) 1st quartile Median Mean 3rd quartile 
Alabama 3 2 2.6 2.7 3.4 

Arizona 14 1.5 2.4 2.6 3.4 

Arkansas 7 1.8 2 2.2 2.6 

California 22 1.4 2.3 2.5 3.4 

Colorado 18 1.5 2 2 2.6 

Connecticut 66 1 1 1.3 1.5 

Delaware 1 2.3 2.8 2.8 3.2 

Florida 55 1 1 1.5 1.9 

Georgia 7 1.9 2.6 2.7 3.4 

Idaho 12 1.6 2.3 2.4 3 

Illinois 3 1.8 2 2 2 

Indiana 2 2 2 2 2 

Iowa 4 1.9 2 1.9 2 

Kansas 6 1.9 2.1 2.3 2.8 

Kentucky 3 2 2 2.3 2.9 

Louisiana 14 1.5 2 2 2.6 

Maine 27 1 2.6 2.6 3.6 

Maryland 1 2.4 2.8 2.7 3 

Massachusetts 30 1 1.5 1.7 2 

Michigan 5 2 2.5 2.5 3 

Minnesota 3 2 2 2.3 2.6 

Mississippi 8 1.6 2 2.2 2.6 

Missouri 4 1.9 2 2.1 2.5 

Montana 27 1 1.7 1.9 2.5 

Nebraska 6 1.8 2 2 2 

Nevada 53 1 1 1.4 1.6 

New Hampshire 72 1 1 1.2 1.4 

New Jersey 6 1.8 2.4 2.6 3.1 

New Mexico 21 1.4 1.9 2.1 2.6 

New York 12 1.7 2 2.3 2.7 

North Carolina 2 2.3 2.8 2.8 3.3 

North Dakota 2 2 2.7 2.9 3.6 

Ohio 2 2 2 2.2 2.6 

Oklahoma 36 1 1.5 1.7 2 

Oregon 27 1 1.9 2.2 2.9 

Pennsylvania 12 1.6 2 2.1 2.6 

Rhode Island 34 1 1.5 1.6 2 

South Carolina 2 2.4 2.9 2.9 3.5 

South Dakota 2 2 2.5 2.5 2.9 

Tennessee 6 1.8 2.4 2.4 2.9 

Texas 20 1.4 1.9 2 2.5 

Utah 36 1 1.5 1.7 2 

Vermont 66 1 1 1.3 1.5 

Virginia 5 2 2.6 2.5 3 

Washington 25 1.4 1.9 2.2 2.8 

West Virginia 18 1.5 2 2 2.6 

Wisconsin 5 1.8 2 2.3 2.7 

Wyoming 28 1 1.8 2 2.6 
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Table S2. Frequency distribution (%) of temporal crop species diversity (Dτ) for annual crops and their 
corresponding crop area (ha). For area, M indicates millions and k thousands.     

 Dτ range  

Crop = 1 (1,2] (2,3] (3,4] (4,5] (5,6] (6,11] Area 

Maize 5 66 22 6 1 0 0 34.8M 

Soybean 2 64 26 7 1 0 0 31.2M 

Wheat 16 31 36 13 3 0 0 18.2M 

Cotton 15 42 28 12 3 0 0 4.4M 

Sorghum 2 42 39 15 2 0 0 2.6M 

Rice 21 55 19 5 1 0 0 1M 

Barley 3 28 32 24 11 3 1 936k 

Durum Wheat 2 21 37 25 11 3 1 687k 

Dry Bean 0 11 34 36 16 3 1 644k 

Sunflower 0 10 36 36 14 3 1 563k 

Canola 0 19 35 29 14 3 1 530k 

Oat 3 19 35 29 11 3 1 499k 

Peanut 1 29 36 23 10 2 0 485k 

Sugarbeet 0 5 38 40 14 2 0 444k 

Pea 0 18 36 27 14 4 1 402k 

Potato 1 17 35 29 14 3 1 383k 

Lentil 0 21 44 25 8 2 0 188k 

Millet 0 26 41 23 8 2 0 184k 

Rye 6 39 27 18 8 2 0 167k 

Tomato 0 8 26 33 22 8 3 110k 

Flaxseed 0 7 27 34 23 7 2 91k 

Triticale 0 23 33 26 12 4 1 72k 

Safflower 0 23 32 26 13 4 2 52k 

Onion 2 7 19 33 25 11 4 51k 

Tobacco 0 6 28 37 21 7 1 33k 

Sweet Potato 0 9 26 34 22 8 2 30k 

Lettuce 0 2 16 34 30 13 5 25k 

Squash 0 8 38 27 16 7 3 16k 

Carrot 0 4 19 29 28 13 6 14k 

Watermelon 0 6 24 34 21 10 5 14k 

Cantaloupe 0 5 21 31 26 11 5 14k 

Cabbage 0 4 25 35 24 9 4 13k 

Cucumber 0 3 20 36 28 10 3 13k 

Mustard 0 15 33 31 15 5 1 13k 

Garlic 0 7 14 30 29 13 6 6.4k 

Pepper 0 10 20 26 24 13 7 6.4k 

Greens 0 5 19 31 26 13 6 5.7k 

Mint 0 8 22 30 24 11 5 5.3k 

Buckwheat 0 11 27 27 22 9 4 4k 

Radish 0 12 25 28 20 9 5 3.1k 

Vetch 0 12 28 26 19 10 5 1.6k 

Camelina 0 20 34 31 11 3 1 1.3k 

Turnip 0 7 21 27 25 13 7 634 

Celery 0 9 23 27 22 13 6 407 

Gourd 0 6 36 33 14 4 7 114 

Chick Pea 0 7 41 50 1 1 1 90 

Eggplant 0 5 17 23 23 18 14 84 
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Table S3 Crop Data Layer (CDL) crop classes and their corresponding scientific names and common 
names as used in this paper. CDL classes with the same common name were aggregated. For example, 
corn, sweet corn and pop-corn were aggregated as maize. 

CDL class Common name Scientific Name  CDL class Common name Scientific Name 

Corn Maize Zea mays  Switchgrass Switchgrass Panicum virgatum 
Cotton Cotton Gossypium hirsutum  Cherries Cherry Prunus avium 
Rice Rice Oryza sativa  Peaches Peach/Nectarine Prunus persica 
Sorghum Sorghum Sorghum bicolor  Apples Apple Malus pumila 
Soybeans Soybean Glycine max  Grapes Grape Vitis vinifera 
Sunflower Sunflower Helianthus annus  Christmas Trees Christmas Tree Picea spp. 
Peanut Peanut Arachis hypogaea  Citrus Citrus Citrus spp 
Tobacco Tobacco Nicotiana tabacum  Pecans Pecan Carya illinoinensis 
Sweet Corn Maize Zea mays  Almonds Almond Prunus dulcis 
Pop or Orn Corn Maize Zea mays  Walnuts Walnut Juglans regia 
Mint Mint Mentha spp  Pears Pear Pyrus spp. 
Barley Barley Hordeum vulgare  Pistachios Pistachio Pistacia vera 
Durum Wheat Durum Wheat Triticum durum  Triticale Triticale Triticosecale 
Spring Wheat Wheat Triticum aestivum  Carrots Carrot Daucus carota 
Winter Wheat Wheat Triticum aestivum  Asparagus Asparagus Asparagus officinalis 
Rye Rye Secale cereale  Garlics Garlic Allium sativum 
Oats Oat Avena sativa  Cantaloupe Cantaloupe Cucumis melo 
Millet Millet Pennisetum glaucum  Prunes Prune Prunus spp. 
Speltz Wheat Triticum aestivum  Olives Olive Olea europaea 
Canola Canola Brassica napus  Oranges Orange Citrus sinensis 
Flaxseed Flaxseed Linum usitatissimum  Honeydew Melons Cantaloupe Cucumis melo 
Safflower Safflower Carthamus tinctorius  Broccolis Cabbage Brassica oleracea 
Rape Seeds Canola Brassica napus  Peppers Pepper Capsicum annum 
Mustards Mustard Brassica spp  Pomegranates Pomegranate Punica granatum 
Alfalfa Alfalfa Medicago sativa  Nectarines Peach/Nectarine Prunus persica 
Camelina Camelina Camelina sativa  Plums Plum Prunus spp. 
Buckwheat Buckwheat Fagopyrum esculentum  Strawberries Strawberry Fragaria x ananassa 
Sugarbeet Sugarbeet Beta vulgaris  Squash Squash Cucurbita spp. 
Dry Beans Dry Bean Phaseolus spp.  Apricots Apricot Prunus armeniaca 
Potatoes Potato Solanum tuberosum  Vetch Vetch Vicia villosa 
Sugarcane Sugarcane Saccharum officinarum  Lettuce Lettuce Lactuca sativa 
Sweet Potatoes Sweet Potato Ipomoea batatas  Pumpkins Squash Cucurbita spp. 
Watermelons Watermelon Citrullus lanatus  Blueberries Blueberry Vaccinium spp 
Onions Onion Allium cepa  Cabbages Cabbage Brassica oleracea 
Cucumbers Cucumber Cucumis sativus  Cauliflower Cabbage Brassica oleracea 
Chick Peas Chick Pea Cicer arietinum  Celery Celery Apium graveolens 
Lentils Lentil Lens culinaris  Radish Radish Raphanus sativus 
Peas Pea Pisum sativum  Turnips Turnip Brassica rapa 
Tomatoes Tomato Lycopersicon esculentum  Eggplant Eggplant Solanum melongena 
Caneberries Caneberry Phyllocoptes gracilis  Gourd Gourd Cucurbita spp. 
Hops Hop Humulus lupulus  Cranberries Cranberry Vaccinium spp 
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CHAPTER 2 

 

Potential, attainable, and current levels of global crop diversity 

Environmental Research Letters, 17(4) 044071. 
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CHAPTER 3 

 

Estimating lime requirements for tropical soils: model comparison and development 
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Abstract 

 

Acid soils can become highly productive when treated with agricultural lime, but optimal lime 

rates are unknown in many tropical regions. Lime requirement models can be used to estimate 

lime rates in these regions. Here, we provide a comprehensive review of models for lime 

requirement estimation in acid tropical soils and introduce a new model based on a target acidity 

saturation (a proxy for aluminum toxicity). These models were tested on their ability to predict 

the lime rate needed to reach the target change in soil chemical properties with data from four 

soil incubation studies covering 31 soil types. We show that two foundational models, one 

targeting acidity saturation, and the other targeting base saturation, performed accurately (r ≥ 

0.9) in predicting lime requirements. However, later attempts to modify and improve the acidity 

saturation model were unsuccessful. In contrast, a new acidity saturation model proposed here 

was the most accurate in predicting lime requirements. This new model and the foundational 

base saturation model were used to estimate lime requirements in 303 African soil profiles. 

Important differences in the estimated lime rates were found, depending on the target soil 

chemical property of the model. Therefore, a necessary step for formulating liming 

recommendations is identifying the most important soil acidity problem affecting crop yield. 

While the model introduced here can be useful for strategic research on potential lime use, more 

information on other acidity problems than aluminum toxicity is needed to develop a fully 

comprehensive assessment of potential liming benefits.   
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1. Introduction 

 

Low soil pH is associated with a high concentration of toxic elements in the soil solution, such as 

aluminum and manganese, and with low availability of phosphorus, calcium, and other plant 

nutrients (Kamprath, 1984). Soil acidity problems can be addressed with liming, the application 

of calcium or magnesium-rich materials that react as a base (Coleman et al., 1959). Liming has 

been practiced for centuries (Johnson, 2010), and its use is still expanding, particularly in 

tropical areas with acid soils. For example, it played a key role in the recent expansion of 

agriculture in the Brazilian Cerrado region (Goedert, 1983; Yamada, 2005).  

The amount of lime required to adjust soil acidity depends on the soil, the target crop(s), and the 

liming material used. In temperate regions, lime requirements are commonly estimated with 

locally calibrated quick tests using buffer solutions (Goulding, 2016; Metzger et al., 2020; Rossel 

and McBratney, 2001; Sims, 1996). These tests can be developed by comparing the buffer’s 

response to the soil with the soil response to lime in field or incubation studies or by slow 

titrations. Both the soil testing and the lime application may be a relatively small expense in 

intensively managed commercial farms, partly because lime is cheap and partly because the use 

of lime, when needed, increases the use efficiency of other inputs (de Wit, 1992). Moreover, 

applying a bit more lime than needed means its benefits will last longer (Li et al., 2009). Thus, 

blanket applications that err on the higher side are not very risky (oveliming problems exist, but 

only at extremely high doses), so there is no need for a highly accurate determination of the 

amount of lime to apply. 
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This situation is different for smallholder farmers in sub-Saharan Africa (Crawford et al., 2008) 

and other tropical regions (Sanchez and Salinas, 1981). Lime may be relatively expensive, and 

its benefit may be relatively small if fertilizer use is low. Under these circumstances, it would be 

helpful to have accurate estimates of lime requirements. However, empirical (experimental) 

evidence from these tropical regions is limited, and laboratory-based soil testing is often 

inaccessible. Furthermore, methods that depend on direct measurements of soil acidity in each 

field with buffer solutions cannot be assumed to work elsewhere and would have to be re-

developed.  

Models to estimate lime requirements from generally available soil data are needed for strategic 

research of potential lime use across tropical regions. They can be particularly useful for sub-

Saharan Africa, where the impact of soil acidity on crop productivity and nutrient-use efficiency 

is poorly understood (Crawford et al., 2008). Lime requirement models could serve as a starting 

point to develop locally optimal liming recommendations for farmers and development 

practitioners and provide strategic information to national governments and the private sector on 

potential market sizes for lime for a region of interest. The latter is now possible thanks to the 

availability of high-resolution spatial products for most soil properties across the continent 

(Hengl et al., 2017; Miller et al., 2021). 

Here we provide a comprehensive review of general lime requirement models for tropical acid 

soils that can be used with readily available soil data. We first introduce key concepts related to 

estimating lime requirements that have been a source of confusion and inconsistency. We then 

describe and discuss published lime requirement models for tropical soils and introduce a new 

model to estimate lime requirements. Finally, we show substantial differences in the estimated 

lime requirement for acid tropical soils when using these models and discuss their implications.  
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2. Key concepts and definitions 

 

Soils can be naturally acidic or become acidic because of agricultural practices such as the use of 

acidifying fertilizer and the removal of elements with harvested products. In the tropics, many 

soils in humid (and some subhumid) areas are inherently acidic because intense weathering 

processes have resulted in the displacement and leaching of basic (i.e., non-acidic) exchangeable 

cations (Ca2+, Mg2+, K+, and Na+) and the accumulation of exchangeable acidity (Al3+ and H+). 

The main problem with soil acidity in the tropics is not the low pH as such, but rather the 

associated aluminum (Al) toxicity that constrains crop growth (Sanchez, 2019). The purpose of 

liming should be, therefore, to remove Al toxicity, considering the sensitivity of the target crops, 

together with other possible constraints such as Ca and Mg deficiencies  (Kamprath, 1984; 

Sanchez, 2019), but not to increase pH for its own sake (Fageria and Baligar, 2008; Harter, 

2007).  

   

2.1. Target soil chemical properties 

 

2.1.1. Exchangeable acidity or aluminum? 

 

Acidity saturation is the fraction of the effective cation exchange capacity (ECEC) of the soil 

occupied by exchangeable acid cations (Al3+ and H+, extracted with a neutral unbuffered salt 

such as 1N KCl). In tropical soils, nearly all exchangeable acidity comprises exchangeable Al3+ 
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(except in histosols) and, thus, Al saturation approximates acidity saturation (Deressa et al., 

2020; Farina and Channon, 1991; Salinas, 1978). For that reason, acidity saturation is often used 

as a proxy for Al toxicity (Evans and Kamprath, 1970; Farina and Channon, 1991; Kamprath, 

1980; Salinas, 1978; Smyth and Cravo, 1992). Many lime requirement models estimate the lime 

rate required to lower the acidity saturation to a target level that does not affect crop yield 

(Cochrane et al., 1980; Osmond et al., 2002; Yost et al., 1988). 

The terms exchangeable acidity and exchangeable Al3+ have been used interchangeably in 

tropical soil literature, with the term exchangeable Al3+ more commonly used in older literature 

(Sanchez, 2019). Indeed, several authors of the lime requirement models reviewed here 

measured acidity saturation but referred to it as Al saturation (Cochrane et al., 1980; Kamprath, 

1970). Consequently, some models were originally formulated for exchangeable Al3+ (and Al 

saturation) but derived from exchangeable acidity measurements.  

 

2.1.2. Exchangeable calcium and magnesium 

 

Some highly weathered acid soils can have very low ECEC and, thus, low exchangeable Ca2+ 

and Mg2+ but low acidity saturation, resulting in Ca and Mg deficiencies without Al toxicity 

problems (Kamprath, 1984). Therefore, some lime requirement models based on acidity 

saturation also estimate the lime rate needed to cover such deficiencies (Sanchez, 2019; Teixeira 

et al., 2020b; van Raij, 1996). Such mineral deficiencies can also be addressed with compost or 

inorganic fertilizers such as calcium nitrate, which might be more convenient in soils with no Al 

toxicity problems.    
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2.1.3. Base saturation 

 

An alternative approach to alleviating soil acidity problems aims to raise the “base saturation” to 

a certain level rather than focusing on acidity saturation (Quaggio, 1983; van Raij, 1996). Base 

saturation (V) is the sum of all exchangeable bases (Ca2+, Mg2+, K+, and Na+) divided by the 

Cation Exchange Capacity at pH 7 (CEC7). CEC7 is different from ECEC, especially in acid 

soils, where CEC7 ≫ ECEC. For ECEC, exchangeable acid cations (Al3+ and H+) are extracted 

with a neutral unbuffered salt. In contrast, a pH 7 buffer solution is used for CEC7, which 

extracts both exchangeable and non-exchangeable acidity (for example, from hydroxy-Al 

organic matter complexes), comprising the potential acidity. The magnitude of the potential 

acidity of the soil depends on the type and amount of clay and organic matter. Although there is 

some inverse parallelism between acidity saturation and base saturation, these terms are not 

complementary because they have different denominators (ECEC and CEC7, respectively). 

Contrary to Al toxicity and acidity saturation, there is no direct association between base 

saturation and crop yields. Instead, a minimum base saturation threshold is defined such that, 

above it, no soil acidity problems are detected (Fageria and Baligar, 2008). Therefore, 

recommended target base saturation levels must be defined locally for each crop type (van Raij, 

1996).   

 

2.1.4. pH in water 
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Most lime requirement methods used in temperate regions target soil pH (as measured in water), 

estimating with locally-calibrated models the lime rate required to raise the soil pH to a specific 

level (6 to 6.5 for most crops and soils) (Goulding, 2016; Sims, 1996). In acid tropical soils, 

maximum yields can be obtained with a pH as low as 5, depending on other soil chemical 

properties (Abruña et al., 1969; Bell, 1996; Pearson et al., 1977), and raising the pH to higher 

values can result in a loss of soil structure and other problems (Harter, 2007). Therefore, a target 

pH level is seldomly used, and when used, it must be defined locally (Fageria and Baligar, 2008; 

Teixeira et al., 2020a).  

There is a negative exponential relationship between exchangeable acidity and soil pH 

(Supplementary Figure 1). Very high exchangeable acidity values are only found in soils with a 

low pH, but not all soils with a low pH have high exchangeable acidity. Exchangeable acidity 

approaches 0 at a pH above 5.5, and there is virtually no exchangeable acidity at a pH above 6 

(Farina and Channon, 1991; Lollato et al., 2013; Sanchez, 2019). Therefore, a target pH between 

5.5 and 6 should be high enough to address Al toxicity problems. 
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Supplementary Figure 1. Soil pH measured in water as a function of the exchangeable acidity 

extracted with 1 M KCl unbuffered salt. Data extracted from the Africa Soil Profile Database 

(Leenaars et al., 2014) for the 0 – 20 cm soil layer. The red line is a negative exponential 

regression line 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑎𝑐𝑖𝑑𝑖𝑡𝑦 (𝑐𝑚𝑜𝑙𝑐𝑘𝑔𝑠𝑜𝑖𝑙
−1 ) = 765 𝑒−1.34 𝑝𝐻   

 

2.1.5. Phosphorus availability 

 

Acid tropical soils have very low plant-available phosphorus because of the high P fixation 

capacity of Fe and Al oxides often present in weathered tropical soils. Liming has the associated 

benefit of increasing P availability, which might result in significant yield responses, particularly 

when P fertilization is low (Salinas, 1978). However, liming can only provide short-term relief to 

P deficiencies in soils with low P reserves  (Smithson and Giller, 2002). Therefore, phosphorus 

availability is not considered a direct target of liming, and lime requirement models do not 

consider it. However, the increase in P availability can be an important reason for observing a 

yield response to lime.  
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2.2.Lime rate units 

 

Lime rates (LR) are commonly expressed in charges per soil mass (e.g., meq per 100g of soil or 

cmolc per kg of soil, which are equivalent) or in the equivalent mass of pure calcium carbonate 

lime per unit area (CaCO3 tons per ha). To transform lime rates between charges per soil mass 

and calcium carbonate mass per ha, soil bulk density (sbd) and liming depth (ld) are needed. 

Lime rates in t ha-1 and cmolc kg-1 are the same when sbd = 1g cm-3 and ld = 20 cm. Thus, LR 

can be converted from charges per soil mass to calcium carbonate mass per area with Eq. 1, 

where sbd is expressed in g cm-3 and ld in cm.  

𝐿𝑅 (𝑡𝐶𝑎𝐶𝑂3
 ℎ𝑎−1) = 𝐿𝑅(𝑐𝑚𝑜𝑙𝑐 𝑘𝑔𝑠𝑜𝑖𝑙

−1 ) × 𝑠𝑏𝑑 × 𝑙𝑑 20⁄  (Eq. 1) 

Many lime requirement models reviewed here provide lime rates in cmolc kg-1. Therefore, when 

using these models to estimate lime rates in tons of liming material per hectare, these must be 

transformed by considering the soil bulk density, lime incorporation depth, and the calcium 

carbonate equivalents (CCE) of the liming material to be applied. In addition, a few other models 

(Osmond et al., 2002; Yost et al., 1988) assume certain incorporation depth and soil bulk density 

and provide lime rates in t ha-1. However, these lime rates should be adjusted to account for 

potential differences between the assumed ld and sbd and the actual ld and sbd.   

     

3. Materials and methods 
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We searched for general use lime requirement models that only require measured soil properties 

often available in soil databases. The terms “acid*” AND “soil*” AND (“lim* requirement” OR 

“lim* recommendation” OR “lim* rate”) were used in the Web of Science and Google Scholar 

databases to screen and retrieve relevant literature and references therein. Methods that required 

additional soil tests to measure the “buffer capacity” of the soil (e.g., Shoemaker et al., 1961) and 

methods developed for use in specific regions in temperate climates (e.g., Heckman et al., 2002, 

and Rossel and McBratney, 2001) were not considered and excluded from further analysis. The 

search yielded seven models that can, in principle, be applied to a wide range of tropical soils. 

The selected models include five acidity saturation models, one base saturation model, and one 

pH model. These seven lime requirement models were reviewed and used to derive a new model 

based on acidity saturation. The tested models were implemented in an R package called “limer” 

(Aramburu Merlos, 2022) to facilitate the evaluation, comparison, and use of these models 

against empirical data. The R package, data, and scripts used for analysis in this paper are 

available on GitHub (https://github.com/gaiafrica/limer).  

 

The lime recommendation models were evaluated using data from four soil incubation studies 

that measured the effect of liming on exchangeable acidity and ECEC or acidity saturation 

(Ananthacumaraswamy and Baker, 1991; Cochrane et al., 1980; Kamprath, 1970; Teixeira et al., 

2020a). Studies only measuring the effect of liming on pH were not considered. Soil incubation 

studies are experiments in which soil samples are mixed with different lime treatments and 

incubated under controlled conditions (∼ 30 °C and soil moisture at field capacity) for about a 

month to ensure that all lime reacts with the soil. The liming effect is assessed by measuring 

https://github.com/gaiafrica/limer


 

 

85 

 

chemical soil properties before and after each treatment. The data from Kamprath (1970), 

Cochrane et al. (1980), and Ananthacumaraswamy and Baker (1991) were readily available, but 

Teixeira et al. (2020a) soil data were not. The Teixeira et al. (2020a) data was reconstructed in 

two steps: (i) the initial soil properties were back solved from lime requirement formulas and 

lime rates, and (ii) the final soil properties were estimated using the regression formulas provided 

in the supplementary information (R2 ≈ 0.9). Table 1 describes the main features of these four 

data sets.  

Table 1. Description of the lime incubation studies data used to assess the lime requirement 

models. Data were extracted from Kamprath (1970) (Kamp.), Cochrane et al. (1980) (Coch.), 

Ananthacumaraswamy and Baker (1991) (Anan.), and Teixeira et al. (2020a) (Teix). The range 

of values (minimum – maximum) is presented for lime rates (LR) and chemical soil properties. 

ECEC: effective cation exchange capacity; AS (%): acidity or aluminum saturation 

(exchangeable acidity divided by ECEC). CEC7: cation exchange capacity at pH 7. OM: organic 

matter. “-” indicates that this was not measured, while “m-” means it was measured but not 

available for each treatment (in which case we report the range of values reported in the original 

paper). Soil properties measured at the end of the experiments are in square brackets. 

 Kamp. Coch. Anan. Teix. 

Year of study 1970 1980 1991 2020 

Number of soil types 4 2 3 22 

LR treatments per soil 5 5 4 or 5 8 

Soils region 
North Carolina, 

USA 

Colombia Sri Lanka 

and Kenya 

Minas Gerais, 

Brazil 

LR (cmolc kg-1) 0.5 – 8.4 0.4 – 4 1 – 21.5 0.2 – 23.9 

pH 
4.5 – 4.7  

[4.9 – 6] 

- - 4.1 – 5.3  

[5.1 – 7.3] 

AS (%) 
53 – 82 

 [2 – 52] 

68 – 86 

 [27 – 79] 

49 – 81 

 [0 – 30] 

9 – 96  

[0 – 18] 

ECEC (cmolc kg-1) 
1.1 – 7.8  

[1.2 – 10.4] 

3.4 – 4.4 6.3 – 9.1 

 [7 – 22.5] 

0.5 – 3  

[0.7 – 11.3] 

CEC7 (cmolc kg-1) - - 12 – 21 1.7 – 14 

Clay content (%) 10 – 17 37 – 71 - 5 – 88 (m-) 

OM (%) 2 – 7 - - 0.4 – 8 
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We used all models to predict the lime rate required to reach the observed soil responses, which 

were then compared with the actual amount used in the experiment. The response variables 

evaluated varied by the model’s target soil chemical property. For instance, the actual lime rate 

was compared with the predicted lime rate needed to reach the observed acidity saturation for 

models that use a target acidity saturation. The (dis)agreement between observed (y) and 

predicted (ŷ) values was expressed with the root mean squared error (𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦 −  𝑦̂)2𝑛

1 ) 

and its components: bias (𝐵𝑖𝑎𝑠 = 𝑦̅ − 𝑦̅̂ ), the difference between population standard deviations 

(Δ𝑆𝐷 = SD𝑦 − SD𝑦̂), and Pearson’s correlation coefficient (r) (Kobayashi and Salam, 2000). All 

the available data were used to test each model, including the originally used to calibrate the 

model (when possible) and other independent datasets. Six-fold cross-validation was used when 

only the same data used to develop a model was available for testing it. Model coefficients were 

recalibrated on five folds and tested on the remaining fold, repeating the process for each fold 

(James et al., 2013).  

Lastly, we compared lime rates required for different target soil chemical properties and acidity 

levels using soil data from the Africa Soil Profile Database (Leenaars et al., 2014). Soil samples 

tested for at least exchangeable acidity, ECEC, and CEC7, in which exchangeable acidity was 

extracted with 1 M KCl, and CEC7 measured in 1 M NH4OAc buffered at pH 7 were selected for 

analysis. Lime requirements were estimated with the models described below for a lime 

incorporation depth of 20 cm.   

 

4. Acidity saturation models  
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This section describes five published lime requirement estimation models based on acidity 

saturation (Kamprath, Cochrane, ACID4, NuMASS, and MG5) that were evaluated against data 

from four soil incubation studies (Ananthacumaraswamy and Baker, 1991; Cochrane et al., 1980; 

Kamprath, 1970; Teixeira et al., 2020a).  

 

4.1. Kamprath 

 

In a soil incubation study, Kamprath (1970) tested soil responses to different lime rates in four 

very acidic soils (pH < 5, acidity saturation > 50 %). This study illustrated that acidity saturation 

does not decrease linearly with the amount of lime applied. When lime application rates are 

lower than the initial exchangeable acidity, acidity saturation is sharply reduced. However, for 

lime rates much greater than the initial exchangeable acidity, the fraction of lime charges that 

neutralizes exchangeable acidity is much lower because it reacts with other forms of Al (e.g., 

organic-Al complex). Consequently, acidity saturation decay can be modeled as a decreasing 

exponential relation with the lime rate that approaches zero at high lime rates (Figure 1). 
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Figure 1.  Acidity saturation after liming (ASf, %) as a function of the lime rate (LR, cmolc kg-1) 

divided by the initial exchangeable acidity of the soil (exch. acidi, cmolc kg-1) for soils with an 

initial acidity saturation > 30%. Data were extracted from Kamprath (1970) (Kamp.), Cochrane 

et al. (1980) (Coch.), Ananthacumaraswamy and Baker (1991) (Anan.), and Teixeira et al. 

(2020a) (Teix). The solid line is a negative exponential regression line 𝐴𝑆𝑓 (%) =

95.7 𝑒−1.4 𝐿𝑅  𝑒𝑥𝑐ℎ.𝑎𝑐𝑖𝑑𝑖⁄  and the dot-dash line is a 95% negative exponential quantile regression 

line fitted with all the observations. Soil samples with LR > 4 × exch. acidi had ASf values 

ranging from 0 to 3.1%, with quartiles equal to 0, 0.2%, and 0.4% (these extreme values are not 

shown).  

 

Kamprath (1970) concluded that a lime rate (cmolc kg-1) of 1.5 times the initial exchangeable 

acidity (cmolc kg-1) was enough to reduce the acidity saturation to 15% (or less), which was 

considered to be a threshold below which most crops are not affected by acidity (Figure 1). For 

sensitive crops needing less than 15% of acidity saturation, such as beans (Abruña et al., 1969; 

Fageria et al., 2011; Kamprath, 1980), the required lime rate suggested was twice the 

exchangeable acidity. Thus, Kamprath’s (1970) lime requirement model can be written as 

follows: 
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 𝐿𝑅(𝑐𝑚𝑜𝑙𝑐 𝑘𝑔𝑠𝑜𝑖𝑙
−1 ) = 𝑙𝑓 × 𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 (𝑐𝑚𝑜𝑙𝑐 𝑘𝑔𝑠𝑜𝑖𝑙

−1 ) (Eq. 2) 

Where exch. acidi is the initial exchangeable acidity of the soil, and lf is the lime factor, which 

equals 1.5 for most staple crops (e.g., cereals) and 2 for beans and other sensitive crops, 

including many vegetable and fruit crops (Alvarez and Ribeiro, 1999). 

 

This simple model worked well for almost all the experimental data available from the four 

studies (Figure 1). Out of 21 very acidic soils (acidity saturation, AS, between 30% and 97%) 

that received a lime rate of exactly 1.5 of the initial exchangeable acidity, only one ended with an 

acidity saturation greater than 15%, but it was very close to that value (18%). Furthermore, all 

soil samples with a lime rate of at least twice the initial exchangeable acidity had a final acidity 

saturation of 6% or less. Hence, when liming to reduce the acidity saturation to a level that does 

not affect crop yield, liming is only needed when the acidity saturation is above 15% (or 5% for 

sensitive crops). In such cases, lime rates of 1.5 times (or two times for sensitive crops) the initial 

exchangeable acidity would suffice for most tropical crops.  

 

Modifications of the Kamprath (1970) model were used in different regions of Brazil (Lopes et 

al., 1991) and Ethiopia (Alemu et al., 2022). For instance, in Minas Gerais, Brazil, a lf of 2 was 

recommended for most soil types, except for sandy soils (lf = 1) and clay soils (lf = 3; Lopes et 

al., 1991). This distinction might have accounted for differences in soil bulk density, as the 

modified formulas gave lime requirements in tons per hectare. Furthermore, all modifications 

added a second term that accounted for possible Ca and Mg deficiencies, also used in Minas 

Gerais (MG5, Section 0).    
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4.2. Cochrane  

 

Cochrane et al. (1980) introduced the concept of target acidity saturation (TAS) to estimate lime 

rates (originally called required percentage Al saturation, see Section 2.1.1). Considering the 

great genetic variability in acidity saturation tolerance among and within crops (Kamprath, 1980; 

Lollato et al., 2019), Cochrane et al. (1980) developed a model that allowed estimating the lime 

rate needed to reduce the acidity saturation to a crop’s (or variety) specific target.  

 

To derive their formula, Cochrane et al. (1980) started with a hypothetical situation where all 

lime reacts with the exchangeable acidity; thus, the ECEC itself does not change (the decrease in 

exchangeable acidity equals the increase in exchangeable bases). In this scenario, the required 

lime rate to reach a given acidity saturation would be 𝐿𝑅 = 𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − 𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑓 =

𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − (𝑇𝐴𝑆
100⁄ ) × 𝐸𝐶𝐸𝐶. The target acidity saturation (TAS, %) is divided by 100 to 

change it to a fraction, and the subscript i indicates the initial and f the final values. The unit of 

LR, exch. acid, and ECEC is cmolc kg-1.  

 

The original formula uses the sum of exchangeable acidity (H+ and Al3+), Ca2+, and Mg2+ instead 

of ECEC because these were the cations measured by Kamprath (1970). The concentration of 

other bases, such as K+ and Na+, was considered negligible, as these are normally very low in 

acid soils. Thus, the sum of exchangeable acidity, Ca2+, and Mg2+ was considered equivalent to 
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the ECEC. We present the formula using ECEC, noting that ECEC might not always include all 

cations but should always include at least exchangeable Al3+, Ca2+, and Mg2+, as these are the 

most abundant cations in acid soils. If data on exchangeable K+ and Na+ are available, they might 

be included depending on which exchangeable cations were considered for the derivation of the 

crop TAS.  

 

Since not all the applied lime is expected to react with the exchangeable acidity, the formula is 

multiplied by a lime factor (lf) that equals 1.5 or 2 depending on the relation between initial 

exchangeable acidity, TAS, and ECEC. The authors defined the following rule: “factor 1.5 is 

replaced by 2 when the estimated liming requirement using the factor 1.5 is greater than the 

chemical lime equivalent of the exchangeable Al (acidity).” Thus: 

𝐿𝑅(𝑐𝑚𝑜𝑙𝑐 𝑘𝑔𝑠𝑜𝑖𝑙
−1 ) = 𝑙𝑓 ×  [𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − (𝑇𝐴𝑆

100⁄ ) × 𝐸𝐶𝐸𝐶𝑖]  

𝑙𝑓 =  {
1.5, if  1.5 ×  [𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − (𝑇𝐴𝑆

100⁄ ) × 𝐸𝐶𝐸𝐶𝑖] ≤ 𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖  

2, if   1.5 × [𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − (𝑇𝐴𝑆
100⁄ ) × 𝐸𝐶𝐸𝐶𝑖] > 𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖

 
(Eq. 3) 

Which can be simplified as 𝑙𝑓 =  {
1.5, if    𝑇𝐴𝑆 ≥

𝐴𝑆𝑖
3⁄

   2, if    𝑇𝐴𝑆 <
𝐴𝑆𝑖

3⁄
 

 

Where ASi is the initial acidity saturation. In other words, when the target acidity saturation is less 

than one-third of the initial saturation, the lime factor is 2; otherwise, it is 1.5. For example, for 

soils with an initial acidity saturation of 60%, lf = 1.5 when TAS ≥ 20% and lf = 2 when TAS < 

20%.  
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Notably, when TAS = 0%, the Cochrane et al. (1980) model equals the Kamprath (1970) model for 

sensitive crops, and the required lime rate is twice the initial exchangeable acidy. For that reason, 

Cochrane et al. (1980) suggested that their formula should not be evaluated for lime rates greater 

than twice the initial exchangeable acidity. Such lime rates result in about 5% acidity saturation or 

less (Figure 1). Therefore, we recommend restricting the use of the Cochrane et al. (1980) model 

(and any other acidity saturation model) to a TAS ≥ 5%. Accordingly, we only evaluated models 

based on TAS for cases in which liming led to a final AS ≥ 5%, as lower AS values should not be 

the target of these models (Figure 2). A model with a target pH of 6 might be more appropriate for 

extremely sensitive crops requiring an acidity saturation of < 5%. 

 

We found several instances in the literature where the rule of changing the lime factor at low 

TAS in (Eq. 3 was misused or ignored. First, Cochrane et al. (1980) themselves inconsistently 

applied this rule when testing the performance of their model, perhaps to improve the accuracy 

of their model (Figure 2). Second, no description or modification of the model included their rule 

(Alvarez and Ribeiro, 1999; Osmond et al., 2002; Yost et al., 1988). For instance, Sanchez 

(2019) and Fageria and Baligar (2008) described the formula with a unique lf = 1.8, which results 

from multiplying the original lf of 1.5 by 1.2 to express the LR in tons per hectare by assuming a 

soil bulk density (sbd) of 1.2 g cm-3 and a lime incorporation depth (ld) of 20 cm (Eq. 1). Despite 

these inconsistencies, the model of Cochrane et al. (1980) has very good accuracy (RMSE = 0.61, 

r = 0.97), even when tested with the independent data from Ananthacumaraswamy and Baker 

(1991) and Teixeira et al. (2020a) (RMSE = 0.63, r = 0.97), and represented a breakthrough in 

lime requirement models. All models based on TAS derive from it. 
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Figure 2. Observed and predicted lime rates (LR, cmolc kg-1) to reach the exchangeable acidity 

saturation obtained with the observed lime rates for five lime requirement estimation models based 

on a target acidity saturation (TAS). Observed data were extracted from Kamprath (1970) (red), 

Cochrane et al. (1980) (blue), Ananthacumaraswamy and Baker (1991) (green), and Teixeira et al. 

(2020) (purple). Samples with a final acidity saturation of < 5% were excluded. In the Cochrane 

et al. (1980) model, thick points are values computed with Eq. 3 that are different from the values 

reported in Cochrane et al. (1980), and asterisks are values reported by Cochrane et al. (1980) that 

did not follow their own model (incorrect lf). In the Minas Gerais 5th approximation model (MG5), 

filled circles were predicted using the complete formula, and empty circles by only considering its 

first term (acidity saturation requirements). Teixeira et al. (2020a) and Ananthacumaraswamy and 

Baker (1991) data are not included in MG5 due to the lack of the original soil texture data. The 

gray dashed line is the identity function (Predicted LR = Observed LR). RMSE is the root mean 

square error, ΔSD the difference in standard deviation, and r the Pearson’s correlation coefficient 

between observed and predicted LR. Accuracy statistics with the superscript CV were obtained with 

6-fold cross-validation.  

 

4.3. ACID4 
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Yost et al. (1988) developed the ACID4 expert system to make lime requirement predictions in 

the humid tropics. They used the Cochrane et al. (1980) formula with a fixed lime factor (lf) and a 

unit conversion from cmolc kg-1 to t ha-1. Based on preliminary data from Sitiung, Indonesia, Yost 

et al. (1988) estimated that 0.53 cmolc of exchangeable acidity are neutralized per cmolc of CaCO3 

and computed the lf as the inverse of that fraction  (1/0.53 = 1.9). Their model yielded a slightly 

lower accuracy (RMSE = 0.7, r = 0.97, Figure 2) than Cochrane et al. (1980) model. 

To convert the results from cmolc kg-1 to tons of CaCO3 per ha, Yost et al. (1988) changed the lf to 

1.4, assuming sbd = 1 g cm-3 and ld = 15 cm (Eq. 1). Several authors have used such arbitrary sbd 

and a fixed ld to estimate the lime requirement in tons per hectare (Osmond et al., 2002; Sanchez, 

2019; Yost et al., 1988). However, this practice should be avoided because it greatly affects the 

results. For example, a soil with sbd = 1.2 g cm-3 requires 20% more lime than one with the same 

chemical properties and sbd = 1 g cm-3, while an ld = 15 cm needs 25% less lime than ld = 20 cm.  

 

4.4. NuMaSS 

 

The Integrated Soil Nutrient Management Decision Support System (NuMaSS) was developed to 

provide fertilizer (N and P) and liming recommendations for acid soils with nutrient problems 

(Osmond et al., 2002; Walker et al., 2009). In NuMaSS, soil N, P, and acidity constraints are 

computed individually. Then, the final management recommendation is computed considering 

the costs and benefits of different nutrient management strategies. The acidity module considers 

Al toxicity and deficiencies of Ca and Mg, although the main focus was on Al toxicity. Al 

toxicity is computed based on crop critical acidity saturation, exchangeable acidity, and ECEC. 
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Default crop critical acidity saturation values for many crops and varieties were included. The 

lime rate was calculated with another modified Cochrane et al. (1980) formula (Eq. 4).  

𝐿𝑅(𝑡 ℎ𝑎−1) = 𝑙𝑓 × (𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑 −
𝑇𝐴𝑆

100
× 𝐸𝐶𝐸𝐶) + [10 × 𝐸𝐶𝐸𝐶 ×

max(19 − 𝑇𝐴𝑆, 0)

100
] 

𝑙𝑓 =  {
2.5,    if     𝐸𝐶𝐸𝐶

𝑐𝑙𝑎𝑦⁄ < 4.5

1.3,    if     𝐸𝐶𝐸𝐶
𝑐𝑙𝑎𝑦⁄ ≥ 4.5

  

(Eq. 4) 

Where clay is the clay content in the soil.  

 

This model uses different lime factors depending on the soil’s clay activity (effective cation 

exchange capacity of the soil’s clay fraction). According to its authors, soils with low clay 

activity (ECEC/clay < 4.5) require almost twice the lime rate of soils with high clay activity per 

unit of exchangeable acidity to be neutralized. In addition, they considered that reducing the 

acidity saturation below 19% requires an additional amount of lime equivalent to 10% of the 

ECEC per percentage point. The NuMaSS model predicts lime rates in tons per hectare by 

assuming ld = 15 cm and sbd = 1 g cm-3.  

 

To test the NuMaSS model with the soil incubation studies data, the predicted LR was 

transformed from t ha-1 to cmolc kg-1 with Eq. 1. Moreover, to take advantage of all the data 

while being conservative in the lime requirement prediction, high clay activity (lowest lf and 

lower LR) was assumed when clay data were unavailable (Table 1, Figure 2).  
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The NuMaSS formula adds much complexity to the formula of Cochrane et al. (1980). It 

considers that the acidity saturation response to increasing lime rates is not linear and that the 

response depends on a soil’s clay activity. However, our analysis shows that NuMaSS 

consistently overpredicted the lime rates required to reach a certain acidity saturation (Figure 2), 

particularly for low TAS (< 10%), indicating that the second term of the formula for TAS < 19% 

should be revised or omitted. Unfortunately, the software is no longer available, and the data 

used to derive the formula are unavailable, so the model cannot be further scrutinized.   

 

4.5. Minas Gerais 5th approximation  

 

This Minas Gerais 5th approximation (MG5) model developed for the state of Minas Gerais, 

Brazil (Alvarez and Ribeiro, 1999) also has two terms, one of them deriving from the model of 

Cochrane et al. (1980). It considers the lime rate needed to lower the acidity saturation of the soil 

to a target level as well as possible Ca and Mg deficiencies for the crop. The formula can be 

written as follows: 

𝐿𝑅(𝑡 ℎ𝑎−1) = 𝑙𝑓 × [𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − (
𝑇𝐴𝑆

100
) × 𝐸𝐶𝐸𝐶𝑖] + max(𝑋 − (𝑒𝑥𝑐ℎ. 𝐶𝑎 + 𝑀𝑔), 0) 

 

(Eq. 5) 

𝑙𝑓 =  0.0302 + 0.06532 %𝑐𝑙𝑎𝑦 − 0.000257 %𝑐𝑙𝑎𝑦2    

Where X is the sum of the minimum quantity of exchangeable Ca and Mg required by the crop 

(estimated as 2 cmolc kg-1 for most cereals and legumes and  3 cmolc kg-1 for most fruits and 

vegetables, Alvarez and Ribeiro, 1999). Note that the second term of the formula becomes zero 

when the initial exchangeable Ca2+ and Mg2+ meet crop demands, while the first term is equal to 
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the model of Cochrane et al. (1980) but with a different lime factor that depends on soil texture. 

The lf can take any value between 0 and 4, with higher values in clay soils.  

 

The Kamprath (1970) and Cochrane et al. (1980) soil incubation studies data show very little 

support for such a drastic change in lf (Figure 2). Furthermore, the addition of the second term in  

(Eq. 5) has no theoretical justification, as the Ca2+ from the CaCO3 used to neutralize 

exchangeable acidity stays in the cation exchange complex and becomes available for the crop 

(Sanchez, 2019). Therefore, it would be more appropriate to adjust for possible Ca and Mg 

deficiencies when the sum of the initial exchangeable Ca2+ and Mg2+ and the Ca supplied by the 

lime (to neutralize the exchangeable acidity) does not meet crop demand.  

 

 

5. A new model to estimate lime requirements 

 

Defining a target acidity saturation and estimating lime rates as a function of that target is a 

useful concept. There has been a proliferation of TAS models, presumably because of perceived 

shortcomings in the Cochrane et al. (1980) model (e.g., fixed lf of 1.5 or 2). However, while 

more complicated, the derived models did not appear to improve the prediction quality. Below 

we introduce a new lime requirement model based on TAS obtained from a formal mathematical 

derivation of the concept of acidity saturation. Our goal is to provide a model based on strong 

empirical relations that can be easily updated as more data become available.  
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First, let us decompose the numerator and denominator of final acidity saturation (𝐴𝑆𝑓(%) =

 
𝑒𝑥𝑐ℎ.𝑎𝑐𝑖𝑑𝑓

𝐸𝐶𝐸𝐶𝑓
× 100%) into their initial values and degree of change (Eq. 6).  

𝐴𝑆𝑓(%) =  
𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − Δ𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑

𝐸𝐶𝐸𝐶𝑖 + Δ𝐸𝐶𝐸𝐶 
× 100% (Eq. 6) 

Δexch. acid is the exchangeable acidity equivalents neutralized by liming, and ΔECEC is the 

change in the effective cation exchange capacity, which equals the difference between the 

increase in exchangeable bases (Δexch. bases) minus the neutralized exchangeable acidity 

(Δexch. acid). ΔECEC would be 0 if there were a perfect substitution between basic (Ca2+ and 

Mg 2+) and acid (Al3+ and H+) cations in the cation exchange complex, but it is usually positive 

because normally Δexch. bases > Δexch. acid. Thus:  

𝐴𝑆𝑓(%) =
𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − Δ𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑

𝐸𝐶𝐸𝐶𝑖 + 𝛥𝑒𝑥𝑐ℎ. 𝑏𝑎𝑠𝑒𝑠 − 𝛥𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑 
× 100% (Eq. 7) 

Considering that our goal is to equalize the final acidity saturation to the target acidity saturation 

(ASf = TAS), ASf can be replaced with TAS in Eq. 7(Eq. 6). Then, TAS becomes a function of the 

initial soil properties (ECECi and exch. acidi), the increase in exchangeable bases (Δexch. bases), 

and the exchangeable acidity equivalents neutralized (Δexch. acid). Therefore, to estimate the 

required LR to reach a given TAS, we need to find the association of Δexch. acid and Δexch. 

bases with LR so that the two former variables can be replaced for some function of LR in Eq. 7. 

For soils with ASf ≥ 5%, these two associations can be modeled with a linear regression without 

intercept (Figure 3), despite slight differences between studies. In Figure 3B, most Teixeira et al. 

(2020a) observations are above the regression line, and most Kamprath (1970) observations are 

below. 
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Figure 3. (A) Exchangeable acidity neutralized (Δexch. acid, cmolc kg-1) and (B) exchangeable 

bases increase (Δexch. bases, cmolc kg-1) as a function of the lime rate (LR, cmolc kg-1), for soil 

samples with a final acidity saturation ≥ 5%. The red lines are regression lines forced through the 

origin (equations shown in the plot). To avoid the high leverage of soil samples with the highest 

LR, LR and Δs were transformed with the square root before linear regression fitting, and then 

the coefficients estimates were back-transformed. The coefficient of determination was 

computed as the square of Pearson’s correlation coefficient between observed and linear-

regression-predicted values. Data extracted from Kamprath (1970) (Kamp.), Cochrane et al. 

(1980) (Coch.), Ananthacumaraswamy and Baker (1991) (Anan.), and Teixeira et al. (2020) 

(Teix.). 

 

Based on this assumption, we have:  

𝛥𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑 = 𝑎 × 𝐿𝑅 (Eq. 8) 

𝛥𝑒𝑥𝑐ℎ. 𝑏𝑎𝑠𝑒𝑠 = 𝑏 × 𝐿𝑅 (Eq. 9) 

We replace the deltas in (Eq. 7) with (Eq. 8 and (Eq. 9 to obtain:   

𝑇𝐴𝑆(%) =
𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − 𝑎 × 𝐿𝑅

𝐸𝐶𝐸𝐶𝑖 + 𝑏 × 𝐿𝑅 − 𝑎 × 𝐿𝑅
× 100 (Eq. 10) 

And we solve for LR to get 
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𝐿𝑅(𝑐𝑚𝑜𝑙𝑐 𝑘𝑔−1) =
𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − 𝑇𝐴𝑆 100⁄ × 𝐸𝐶𝐸𝐶𝑖

𝑎 +  𝑇𝐴𝑆 100⁄ × (𝑏 − 𝑎)
 (Eq. 11) 

Based on the soil incubation studies data and the regression lines shown in Figure 3, the 

parameter estimates for a and b were 0.60 and 0.92, respectively. These parameters were 

estimated using the square root of the values to reduce the leverage of very high LR values and 

then back-transformed.  Note that a, which is the cmolc of exchangeable acidity neutralized per 

cmolc of CaCO3, is similar to the value reported by Yost et al. (1988), which was 0.53. These 

values can be updated or calibrated for a particular region. Moreover, if new evidence refutes the 

assumption of a linear association between LR and the change in exchangeable bases and acidity, 

all formulas from Eq. 7 onwards would need to be updated. Still, the steps to take would remain 

the same.    

Notably, the numerator in (Eq. 11 is the same subtraction term found in the model of Cochrane 

et al. (1980) and all other models derived from it. Hence, if (Eq. 11 is rewritten by splitting the 

numerator and denominator, the inverse of the denominator can be interpreted as a new lime 

factor (lf), which is an inverse function of TAS (Eq. 12). Although the lf derived in Eq. 12 is very 

different conceptually from the lf introduced by Cochrane et al. (1980; Eq. 3), its possible values 

are similar to those used by previous models. Given our a and b parameter estimates, the value of 

the lf would be between 1.5 and 1.6 for most crops.  

𝐿𝑅(𝑐𝑚𝑜𝑙𝑐𝑘𝑔−1) = 𝑙𝑓 × [𝑒𝑥𝑐ℎ. 𝑎𝑐𝑖𝑑𝑖 − (𝑇𝐴𝑆
100⁄ ) × 𝐸𝐶𝐸𝐶𝑖] (Eq. 12) 

𝑙𝑓 =
1

𝑎 +  𝑇𝐴𝑆 100⁄ × (𝑏 − 𝑎)
    ;    𝑙𝑓̂ =

1

0.6 +  𝑇𝐴𝑆 100⁄ × (0.92 − 0.6)
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In addition to the 6-fold cross-validation (accuracy statistics in Figure 2), the model in Eq. 12 

was cross-validated by fitting parameters a and b with three of the four datasets and testing the 

lime rate predictions with the remaining dataset, repeating the process for each dataset. This 

“dataset-based” cross-validation resulted in even higher accuracy statistics (RMSE = 0.32, r = 

0.98). Therefore, the new model has improved accuracy and general validity because its 

extrapolation to different tropical regions did not result in a precision loss.  

 

 

6. Base saturation model 

 

A “base saturation” model originally proposed by Quaggio (1983) is widely used in São Paulo 

state, Brazil (Sanchez, 2019; van Raij, 1996). Base saturation (V) is the sum of exchangeable 

bases over CEC7, expressed as a percentage (see section 0). The model’s formula is 

 𝐿𝑅 (𝑐𝑚𝑜𝑙𝑐 𝑘𝑔𝑠𝑜𝑖𝑙
−1 ) = 𝐶𝐸𝐶7 × (𝑉𝑡 − 𝑉𝑖) 100⁄  (Eq. 13) 

Vt is the target, and Vi is the initial base saturation. Like TAS, Vt is crop-specific and expresses a 

crop’s sensitivity to soil acidity. In São Paulo, Brazil, Vt is 50% for most cereals and legumes, 

including maize, wheat, rice, sorghum, soybeans, and beans, while it is between 60% to 80% for 

most fruits and vegetables (Alvarez and Ribeiro, 1999; Sanchez, 2019).  
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Since CEC7 is, in principle, not affected by liming (contrary to ECEC), CEC7 can be distributed 

to Vt and Vi in (Eq. 13) and canceled out. Thus, the lime requirement estimated by this model is 

equal to the difference between the target and the initial sum of exchangeable bases:  

𝐿𝑅 (𝑐𝑚𝑜𝑙𝑐 𝑘𝑔𝑠𝑜𝑖𝑙
−1 ) = 𝑒𝑥𝑐ℎ. 𝑏𝑎𝑠𝑒𝑠𝑡 − 𝑒𝑥𝑐ℎ. 𝑏𝑎𝑠𝑒𝑠𝑖 = Δ𝑒𝑥𝑐ℎ. 𝑏𝑎𝑠𝑒𝑠 (Eq. 14) 

The base saturation model implicitly assumes that all Ca2+ (and Mg2+) equivalents from the lime 

become part of the exchangeable complex (Quaggio, 1983). Figure 3B shows the association 

between observed LR and Δexch. bases for soil samples with ASf ≥ 5%. Figure 4 expands that 

association to all soil samples with LR equal to or lower than the initial potential acidity (pot. 

acidi = CEC7 – exch. basesi). It excludes soil samples with LR > pot. acidi because the increase in 

exchangeable bases cannot be greater than what the cation exchange complex can take. When LR 

≤ 50% pot. acidi, there is almost a one-to-one association between the lime rate and the increase 

in exchangeable bases (Δexch. bases = LR × 0.95(±0.05) ∀ LR < 0.5 × pot. acidi, Figure 4), 

supporting the base saturation model assumption. However, as the lime rate approaches the 

potential acidity, that association becomes weaker (Δexch. bases = LR × 0.8(±0.03) ∀ 0.5 × pot 

acidi < LR < pot acidi,  Figure 4). Thus, this model yields a final base saturation close to the 

target when Vt ≤ 50%, but it does not perform well at higher base saturation targets. 

Consequently, in the future, a liming correction factor (lf) that depends on Vt could be considered 

for the model. For example, the lf could be 1.05 when Vt ≤ 50% (i.e., 1/0.95), and then slightly 

increase as Vt approaches 100%, with a maximum Vt of 1.25 (i.e., 1/0.8).  
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Figure 4. Difference in exchangeable bases before and after liming (Δexch. bases = exch. basesi - 

exch. basesf, cmolc kg-1) as a function of the observed lime rate (LR, cmolc kg-1). Δexch. bases 

equals the predicted lime rate by the base saturation model. The color of the points represents the 

ratio between LR (cmolc kg-1) and the potential acidity of the soil (pot. acid = CEC7 – exch. 

basesi). The gray dashed line is the identity function (Δexch. bases = LR). The solid lines are 

regression lines forced through the origin. The blue line is for soil samples with LR ≤ 50% pot. 

acid (Δexch. bases = LR × 0.95(±0.05)). The green line is for LR > 50% pot. acid (Δexch. bases 

= LR × 0.8(±0.03)). Data extracted from Kamprath (1970), Teixeira et al. (2020), and 

Ananthacumaraswamy and Baker (1991). Soil samples with lime rates higher than the potential 

acidity were omitted.  

 

7. Target pH model 

 

Teixeira et al. (2020b) developed a lime requirement model that targets raising the soil pH to a 

level considered optimal for crop production. The model is based on four nonlinear models that 

relate the difference between the initial pH and two target pHs (5.8 and 6) with either organic 

matter content (OM, g kg-1) or potential acidity (Eq. 15). It also considers that the lime rate must 

be greater than the Ca and Mg requirement of the crop (X) and lower than the potential acidity of 

the soil (pot. acidi). Thus, the estimated lime requirement results from a series of rules such that 

it selects the lowest LR from the four nonlinear models that is higher than X and lower than pot. 
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acidi. When no model returns a lime rate higher than X, the estimated LR is X. If the selected LR 

(either from the models or X) is greater than the initial potential acidity of the soil, the estimated 

LR equals pot. acidi. This model always recommends liming because the Ca and Mg available in 

the soil are not considered available to the crop, and it thus assumes that all Ca and Mg must be 

provided by liming. Therefore, the minimum lime rate is X (Ca and Mg crop requirements), 

except when X is higher than pot. acid, in which case LR = pot. acid.  

𝐿𝑅5.8𝑂𝑀 = 0.0699 × [(5.8 − 𝑝𝐻)𝑂𝑀]0.9255 

𝐿𝑅5.8𝑃𝐴 = 0.375 × [(5.8 − 𝑝𝐻)𝑝𝑜𝑡. 𝑎𝑐𝑖𝑑]0.9127 

𝐿𝑅6𝑂𝑀 = 0.1059 × [(6 − 𝑝𝐻)𝑂𝑀]0.8729 

𝐿𝑅6𝑃𝐴 = 0.4558 × [(6 − 𝑝𝐻)𝑝𝑜𝑡. 𝑎𝑐𝑖𝑑]0.9162 

 

 

(Eq. 15) 

The model parameters were calibrated with the same soil incubation study data from Teixeira et 

al. (2020a). However, data from five soils were excluded from the calibration because the 

authors considered that they deviated too much from the nonlinear regression models compared 

to the data from other soils. We tested the model with 6-fold cross-validation using data from 

Teixeira et al. (2020a), including the five excluded soils (Figure 5). The target pH model has 

much lower accuracy than all other models above. Furthermore, as the model selects the 

minimum LR from the nonlinear models instead of the average, it often underpredicts LR.  

 

The Teixeira et al. (2020b) model is the most recent of a large list of regression models based on 

a target pH developed for acid soils in Brazil (see, for example, Combatt Caballero et al., 2019). 

These models use linear or nonlinear regressions and predictors such as ΔpH, organic matter, 

potential acidity, and base saturation to predict lime rates for a particular region. However, when 

tested with an independent dataset, these models have low accuracy (Teixeira et al., 2020a), 



 

 

105 

 

which might be related to the many factors affecting soil pH. Most likely, no simple model can 

predict soil pH responses to liming for different soil types with regular soil testing data. Future 

incorporations of additional soil properties measuring the soil acid-base buffering capacity to 

routine soil tests could help develop better predictive liming-soil pH models (Yang et al., 2020).     

 

Figure 5. Predicted lime rate (LR) to reach a pH of 5.8 by Teixeira et al. (2020b) as a function of 

the observed LR that resulted in such a pH. The gray dashed line is the identity function (Δexch. 

bases = LR). The 6-fold cross-validation accuracy statistics shown are the root mean square error 

(RMSE), bias, the difference in standard deviation (ΔSD), and Pearson’s correlation coefficient 

(r).    

  

8. Case study 

 

We used two models with different target soil chemical properties (acidity saturation and base 

saturation) to compute lime requirements for 303 African soils with pH between 3.5 and 6.5 

(Supplementary Figure 2) and two representative crops with different acidity tolerance. A target 

acidity saturation (TAS) of 15% and a target base saturation (Vt) of 50% were defined for the 
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more tolerant crop (i.e., common critical values for cereals, such as maize and wheat), and a TAS 

of 5% and a Vt of 70% were defined for the more sensitive crop (i.e., common critical values for 

many vegetables, such as tomato, onion, and cabbage; Alvarez and Ribeiro, 1999). The best 

available model was used for each target soil chemical property. No pH model was included 

because these models are location-specific and have low accuracy when extrapolated to other 

regions.  The new model presented here (Eq. 12) was used to predict lime requirements for the 

two acidity saturation targets and Quaggio’s (1983) model to predict lime requirements for the 

two base saturation targets (Eq. 14). Lime rates were computed in cmolc kg-1 because only 27% 

of these soil profiles had soil bulk density data available.     

 

Supplementary Figure 2. Location of the 303 soil samples used for the case study. Data extracted 

from the Africa Soil Profile Database (Leenaars et al., 2014). The color of the points indicates 

the pH of the soil measured in water for a 0 – 20 cm depth.  
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The most striking difference between the new model presented here (Eq. 12) and Quaggio’s 

(1983) model is that the latter predicts liming for many soils in which the former predicts none 

(Figure 6). For instance, for a tolerant crop, 18.5% of the soils do not require liming according to 

the two models, while 31% require liming for the base saturation model but not for the acidity 

saturation model. The latter fraction goes down to 25% for a more sensitive crop. In contrast, 

only 1.7% of the soils require liming based on acidity saturation but not according to the base 

saturation. Moreover, the base saturation model predicts lime rates as high as 12 cmolc kg-1 for 

soils with a pH higher than 6, while virtually no soil with such a pH requires liming based on 

acidity saturation (Supplementary Figure 3). Furthermore, 87% of the soils that do not require 

liming based on acidity saturation but do for base saturation have an exchangeable Ca2+ > 1 

cmolc kg-1, enough to meet most cereal crop demands. Thus, neither Al toxicity nor calcium 

deficiencies justify liming application in these soils.     

 

Lime rates of soils requiring liming for the two models are weakly correlated (r = 0.43) but 

comparable in magnitude (mean difference = 0.47 cmolc kg-1). The acidity saturation model 

predicts higher lime rates in soils with very low pH for the more tolerant crop but similar values 

for the more sensitive crop. Conversely, the base saturation model predicts higher lime rates for 

most soils with a pH above 5, particularly for the more sensitive crop.    
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Figure 6. Predicted lime rates (LR, cmolc kg-1) for 303 African soils with pH between 3.5 and 

6.5, two target soil chemical properties: a target base saturation (Vt, x-axis) and a target acidity 

saturation (TAS, y-axis), and two representative crops: (A) a cereal (TAS = 15% and Vt = 50%) 

and (B) a vegetable (TAS = 5% and Vt = 70%). The red dashed line is the identity function 

(LR(TAS) = LR(Vt)). The values inside the plot indicate the fraction of soils in a specific scatter 

plot position: the origin (0;0), the x-axis (x;0), between the x-axis and the identity function (x>y, 

lower triangle), between the identity function and the y-axis (x<y, upper triangle), and the y-axis 

(0;y). Lime rates based on TAS  were predicted with the acidity saturation model presented in Eq. 

12, and LR based on Vt with Quaggio (1983).       
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Supplementary Figure 3. Predicted lime rates (LR, cmolc kg-1) as a function of soil pH (measured 

in water) for 303 African soils with pH between 3.5 and 6.5 and two target soil chemical 

properties: a target acidity saturation (TAS) of 15% and a target base saturation (Vt) of 50%. 

Lime rates for TAS  = 15% were predicted with the acidity saturation model presented in Eq. 12, 

and LR for Vt = 50% with Quaggio (1983).  

 

9. Discussion 

 

9.1. Model comparison 

  

We have shown important differences in lime rates and prediction accuracy depending on the 

target soil property and model (Figures 2, 4, and 5). When the target is to ameliorate the Al 

toxicity of the soil by neutralizing its acidity saturation to a certain level, both Kamprath (1970) 

and Cochrane et al. (1980) models provided reasonable accuracy (Figures 1 and 2). Nevertheless, 

the new model formulated in Eq. 12 offers improved accuracy and the advantage of being 

sustained by a formal mathematical derivation that can be expanded (Figures 2 and 3). Similarly, 
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the base saturation model also has great prediction accuracy, particularly for target base 

saturation levels of around 50% (Figure 4). In contrast, no model based on a target pH can 

deliver accurate results without additional soil tests, and they need to be developed locally 

(Figure 5).   

 

The model presented here is the only model based on a target acidity saturation (TAS) with 

greater accuracy than the original Cochrane et al. (1980) model (Figure 2). The authors of the 

ACID4, NuMaSS, and MG5 models claimed that they modified the Cochrane et al. (1980) model 

to improve the accuracy for their target region. However, there are no available data supporting 

those statements. The decreased accuracy that we found may partly be because we did not have 

access to these data. However, we believe that these more complex models suffer from 

overfitting to the datasets used to build them. In other words, they may perform better in 

particular regions, but this has come at the expense of general validity. Conversely, the new 

model is more robust than previous models because it is based on mathematical foundations and 

strong empirical relations. These relations are consistent through a wide range of soils from 

different regions (Figure 3).  

 

However, we observed a small incubation study effect in the relations shown in Figure 3, which 

might be a consequence of the soil region (parental material) or, more likely, because of the 

incubation study per se (differences in the liming material or soil incubation method). 

Experimental results have an error component, including systematic errors that are consistent 

within one experiment but differ between experiments, introducing statistical bias. This bias can 
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be reduced with standardized procedures. However, lime incubation studies are not fully 

standardized, and they differ in the incubation time and temperature, liming materials, and water 

additions, among other variables. For instance, we excluded data from an incubation study that 

used tap water rather than distilled water to keep the soil samples moist during the incubation 

(Deressa et al., 2020) because control treatments had significantly more exchangeable Ca2+ and 

less exchangeable acidity than the initial conditions. A more thorough standardization of 

experimental procedures for measuring liming effects would help the development of general 

models for lime requirement estimation.   

 

A novel feature of the model formulated in Eq. 12 is that the lime factor (lf) is a continuous 

function of TAS. The Cochrane et al. (1980) model modifies the lf depending on TAS and the 

initial acidity saturation, using a discontinuous rule with two fixed lf (Eq. 3). However, the 

proposed rule does not always improve accuracy, not even in their data, as shown by the points 

with incorrect lf (Figure 2). In the MG5 and NuMaSS methods, the lf depends on clay content or 

activity. Our review does not show evidence for a need to adjust the lf as a function of clay, 

despite the wide range of clay content and soils included in the four soil incubation studies used 

here. Adjusting the lf and lime rates by clay content might be a work-around to account for 

differences in soil bulk density when the method returns lime rates in tons per hectare without 

directly including the soil bulk density in the formulas. Nevertheless, clay type and content could 

be considered in future corrections of the TAS method, particularly if there are high deviations in 

the association between lime rate and Δexch. acid and Δexch. bases. 

 



 

 

112 

 

It seems counterintuitive that, while both the acidity saturation and base saturation models are 

highly accurate on their target, the lime requirement they predict can be so sharply different 

(Figure 6). These differences highlight the importance of identifying the soil chemical property 

most associated with the crop yield response to liming. Tropical soils can have several acidity 

problems affecting crop growth (Kamprath, 1984; Sanchez, 2019). It might be that reaching a 

given level for some property, such as a base saturation of 70% or a pH of 6, guarantees that all 

soil acidity problems are solved without leading to overliming problems. However, this approach 

can also result in lime requirement estimates that are much too high (Farina and Channon, 1991; 

Smyth and Cravo, 1992), which might be particularly problematic when lime is expensive, and 

its manipulation cumbersome. The alternative is to target the most limiting factor for crop yield, 

which is frequently Al toxicity in acid tropical soils (Sanchez, 2019). However, this approach 

can underpredict lime requirements when Al toxicity is the only target but not the acidity 

problem most limiting crop yields. A comprehensive approach would predict the lime rate 

needed to tackle every potential acidity problem while considering other management 

alternatives. However, crop responses to other acidity problems, such as calcium and magnesium 

deficiencies, are unclear, and their liming requirements have not been defined. Thus, more 

research on crop responses to lime in soils with these specific acidity problems is needed to 

develop a lime requirement method that tackles them all.     

 

9.2.Model applications 
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Lime requirement models can be useful for strategic research on potential lime use in tropical 

regions where liming is still a rare practice and the experimental evidence is scarce (Crawford et 

al., 2008). These models estimate the lime rate needed to reach a target soil condition based on 

readily available standard soil data (Hengl et al., 2017; Miller et al., 2021). Such information 

could be used together with the crop response to that soil condition to estimate the effect of 

liming on crop yield. For instance, there is ample evidence of the association between acidity 

saturation and crop yields (Abruña et al., 1969; Farina and Channon, 1991; Lollato et al., 2019; 

Smyth and Cravo, 1992). Therefore, the expected yield response to lime can be predicted by 

estimating what fraction of the maximum yield is observed at the current acidity saturation level 

while assuming that the final yield after liming is the inverse of that fraction. If data on lime and 

grain prices is available, such functions can be used to get a first approximation of the potential 

profitability of liming. Such analysis can help identify regions where liming investments might 

be more successful, pinpointing national governments and private sector efforts. 

 

However, this does not mean that the readily available soil data used by the models reviewed 

here has sufficient quality for farm-level recommendations (Vanlauwe et al., 2019). Therefore, 

farm-level lime requirements would be more accurate when based on soil properties 

measurements or additional local soil-quality indicators, such as soil color, soil texture, or 

presence of specific plant species (Mairura et al., 2007). The soil properties used by the lime 

requirement models reviewed here are wet-lab measurements, which are costly and may be 

inaccessible for farmers in the tropics. Therefore, farmers in the tropics could benefit from cost-

effective, quick tests for lime requirement prediction, but these need to be developed locally. 
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10. Conclusions 

 

Liming can boost the productivity of acid soils, but the lime rate required to achieve this is 

unknown for many tropical regions where food production increases are urgently needed. While 

lime requirement models could be very useful in these places, the variety of models available in 

the literature introduces much uncertainty. We showed important differences in the results 

obtained from these models, particularly depending on their target soil chemical property. For 

instance, many more African soils require liming based on base saturation rather than acidity 

saturation. The new acidity saturation model introduced here has more precision than all earlier 

models across a wide range of acid tropical soils from different regions and can effectively 

estimate the lime rate required to address aluminum toxicity. This model could be incorporated 

into more comprehensive models once lime rates needed for other acidity problems are well 

established. 
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SUMMARY 

 

This dissertation analyzed patterns and processes in crop species diversity in the US and the 

world. It also introduced a new lime requirement model for acid tropical soils, which was 

evaluated and compared with previous models. Spatial and temporal diversity patterns, their 

relation, and how the spatial scale conditions them were investigated for the US. Current spatial 

diversity patterns were also assessed globally and compared with attainable diversity to compute 

diversity gaps. Attainable diversity was defined as the diversity obtained when all crops are 

planted to maximize diversity while considering crop-specific environmental suitability and 

demand (i.e., environmental and demand-side constraints). Attainable diversity patterns reflect 

environmental processes shaping diversity, while diversity gap patterns result from specialization 

processes. The new lime requirement model was built on strong empirical relations and a formal 

mathematical derivation of acidity saturation. Lime requirement models were evaluated using 

data from incubation studies of soils from different countries, and their estimates were compared 

using a large dataset of African soils.       

 

S.1. Pattern and Process in Crop Species Diversity 

 

The average temporal diversity in the United States is 2.1 effective crop species, and 6 out of 10 

hectares of cropland have two or fewer crops in rotation. In addition, temporal diversity is lower 

in croplands planted with major crops, which results in a negative correlation between the total 

area planted with a crop and the temporal diversity of the cropland where it is grown. Therefore, 

a possible approach to increasing temporal (and, thus, farm-scale) diversity in the US and 
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elsewhere is to incentivize the production of and demand for “middle class” crops while 

lowering the incentives for wheat, maize, soybean, and rice. Another approach that does not 

require changes in consumption patterns would be to increase the area of the most under-utilized 

crop, that is, crops with the highest difference between the attainable and actual crop proportion. 

Such a crop is usually a major crop adapted to but not widely planted in a region. For instance, in 

most US Corn Belt, that crop is wheat.  

 

Crop species diversity in space strongly increases with the size of the area in which it is 

measured. For instance, 75% of US croplands have less than two effective crop species when 

diversity is measured in units of 44 ha, but a diversity greater than 2 when measured at 1,500 ha. 

This spatial crop diversity scale dependency can be described with a double sigmoid curve. At 

the lower end, spatial diversity increases exponentially as the size of the observational unit 

increases from a point (an infinitesimally small area) to beyond single fields (with usually one 

crop) and captures the farm-level diversity. When the size of the observational unit reaches 

typical farm sizes, the increase in diversity slows down as neighboring farms are usually similar 

to each other. Then, spatial diversity increases exponentially in very large areas because of 

regional cropping system differences. Thus, the shape of this relation can inform different 

features of the study area, such as farm size and diversity (first exponential growth) and 

regionalization level (second exponential growth). This regional differentiation can also be 

observed in the difference between the diversity gap of total national diversity and local diversity 

averages. Diversity gaps are usually greater for the average local diversity than for the total 

national diversity because different farms and regions might specialize in particular cropping 

systems. Countries might take advantage of that specialization while ensuring that the demand 
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for agricultural products is covered as much as possible with the production from different 

regions.    

 

Spatial diversity is most strongly associated with temporal diversity at the farm level, as farmers 

typically plant all components of their crop rotation in different fields. At intermediate 

aggregation levels (e.g., county level), the total spatial diversity is always greater than the farm-

level diversity, yet, farm-level diversity is its biggest component. Thus, it is possible to estimate 

the farm-level (and, hence, temporal) diversity from county-level spatial diversity if the regional-

to-local diversity ratio is considered. At higher levels of aggregation (e.g., countries), the lack of 

correlation between the temporal and spatial diversity increases exponentially because the 

diversity among farms is normally much greater than the diversity within them.  

 

The largest tracts of high crop species diversity are found in East Asia, humid and sub-humid 

regions of sub-Saharan Africa, and the Mediterranean. In the US, crop diversity is higher in 

North Dakota, the West Coast, and the Southern Seaboard. Crop diversity is very low in most of 

the non-mountainous regions of the Americas (where croplands are dominated by maize and 

soybean) and central Asia (wheat), as well as in parts of Southeast Asia (rice and oil palm). 

Moreover, crop diversity patterns partially follow general latitudinal biodiversity gradients. Crop 

diversity is the highest around the Equator and the Tropic of Cancer, from where it linearly 

decreases when going northwards. However, southern hemisphere patterns are somehow 

different. South of the Equator, crop diversity decreases rapidly with latitude between the 

Equator and the Tropic of Capricorn, which might be a consequence of the southern 

hemisphere’s lower amount of cropland, most of which is in South America.  
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Attainable diversity is also higher in the tropics than in temperate regions. Outside the tropics, it 

is higher in coastal than continental regions. The lowest attainable diversity values are observed 

in Kazakhstan, Mongolia, Russia, the Baltic States, Scandinavia, Canada, and the northern US. 

Temperature strongly affects the attainable diversity: it increases linearly with the annual average 

temperature until it plateaus at 20 to 25 °C, and it slightly decreases at a higher temperature.    

 

Nearly five-sixths of the world’s croplands have a diversity gap of 50% or more. In other words, 

they have less than half of the crop diversity they would have if crops were planted to maximize 

suitability and diversity while considering the current demand for crops. Diversity gaps are 

particularly high in most plain regions of the Americas, intermediate in Africa, Asia, and 

Oceania, but with great spatial variability, and relatively small in Europe, especially in the 

Mediterranean, Eastern Europe, and the Netherlands. Cropland with low diversity tends to have 

large diversity gaps. Therefore, regions with low diversity values are seldomly the result of large 

environmental constraints, except maybe for some regions in Eastern Europe and Central Asia.  

 

S.2. Lime Requirement Models 

 

The lime rate required to reduce soil acidity problems in the tropics and the accuracy with which 

it is predicted largely depends on the target soil chemical property. When the target is to 

neutralize the aluminum toxicity of the soil, the foundational acidity saturation models provided 

reasonable accuracy. Nevertheless, the new acidity saturation model introduced in this 

dissertation provides improved accuracy over many acid soils from different countries and the 
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benefit of being founded on a formal mathematical derivation that can be expanded. In contrast, 

previous attempts to improve these models showed less accuracy, maybe because they were 

developed to perform better in a particular region at the expense of general validity. The lime 

rate required to raise the base saturation level of the soil can also be accurately estimated with 

the available models. However, no general model can accurately predict the lime required to 

raise the soil pH to a target, probably because of the many factors affecting soil pH. 

Consequently, lime requirement models based on soil pH are usually developed locally and 

involve testing the acid-base buffer capacity of the soil with buffer solutions.  

 

The great differences in the estimated lime rates between target soil chemical properties 

highlight the importance of identifying the acidity problems affecting crop yields. Some targets, 

such as base saturation and pH, are not directly associated with crop yields. They are used to 

ensure that no acidity problems affect the crop when these are raised above a certain threshold, 

but lower values do not necessarily imply lower yields. Such a strategy could be effective where 

lime is cheap, but not for most smallholder farmers in the tropics. In contrast, acidity saturation 

is tightly associated with aluminum toxicity and crop yields. Therefore, overprediction is less 

likely for models based on acidity saturation, but these models do not estimate the required lime 

rate to deal with other soil acidity problems. Acidity saturation models could hence be improved 

by integrating them with lime requirement models for other acidity problems, but such models 

are not well established yet.   
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