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ABSTRACT

Changes in crop species diversity can affect agroecosystem function. However, most crop
diversity studies insufficiently account for the influence of scale on spatial crop diversity, and its
relation to temporal diversity has not been explored. Moreover, crop diversity might be limited
by environmental constraints and market demand for specific crops, which needs to be
considered when assessing opportunities for diversification. This dissertation developed and
applied new approaches to gaining a quantitative understanding of diversity patterns and
processes, allowing for improved comparison between regions and countries. It includes an
analysis of the scale dependency of crop species diversity and its relation with temporal diversity
using high-resolution crop-specific land-cover data for the conterminous US. It also shows the
magnitude of environmental and demand-side constraints to crop diversity globally. For that
purpose, a theoretical framework of hierarchical levels of crop species diversity is presented, in

which potential, attainable, and current diversity levels are compared to compute diversity gaps.

We found that spatial diversity monotonically increases with the size of the observational unit,
and the strongest association between spatial and temporal diversity is observed when measured
in areas comparable to farm sizes. In larger areas, the association weakens because of the
increasing diversity among farms. At the national level, the diversity among farms is usually
higher than the diversity within them, which needs to be considered when inferring diversity

effects with national-level data.



Environmental limits to crop diversity are higher in temperate and continental areas than in
tropical and coastal regions. Crop diversity is also constrained by a high demand for a few crop
species, which results in an attainable diversity that is much lower than the potential.
Nevertheless, there are large gaps between current and attainable diversity levels in most
croplands. These gaps are particularly large in the Americas, where croplands are dominated by a
few major annual crops (maize, soybean, wheat) mostly grown on fields with a very low
temporal diversity. In contrast, diversity gaps are relatively small in Europe and East Asia.
Changes in food demand favoring minor crops could positively impact spatial and temporal crop
species diversity by increasing the attainable diversity. But given current consumption patterns,
the most effective strategy to increase crop diversity in areas with high diversity gaps might be to
expand the area of a major crop adapted to that specific environment, but that is not widely

planted.

Securing adequate soil fertility is also critical for diversification, especially in the tropics, where
low soil pH is one of the main limiting factors of potential crop diversity, and soil acidity
remains a key management challenge for smallholder farmers. Liming can boost the productivity
of acid soils, but the lime rate required to achieve this is unknown for many tropical regions
where food production increases are urgently needed. Therefore, lime requirement models based
on readily available soil data could be very useful in these places. However, the great variety of
lime requirement models available in the literature introduces much uncertainty. We evaluated
current lime requirement models for acid tropical soils and introduced a new model based on
acidity saturation using data from four soil incubation studies and 31 soil types. Foundational

models based on acidity or base saturation are reasonably accurate (r > 0.9), but later attempts to



improve these models were unsuccessful. The new model, in contrast, has more precision than
all earlier models across a wide range of acid tropical soils from different regions. Moreover,
lime requirement estimates largely depend on the target soil chemical property of the model. For
instance, many more African soils would require liming based on base saturation models than
acidity saturation models, regardless of the accuracy. The new acidity saturation model can
effectively estimate the lime rate required to address aluminum toxicity. This model could be
incorporated into more comprehensive models once lime rates needed for other acidity problems

are well established.
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INTRODUCTION

There is a growing interest in better understanding factors affecting agroecosystem functions and
services. One key property of agroecosystems that has received much attention in recent years is
the diversity of crop species. National crop species diversity has been associated with the
stability of food production (Renard and Tilman, 2019) and used as a proxy for pollination
services (Aizen et al., 2019) partly because local crop diversity enhances associated biodiversity
(Sirami et al., 2019). However, it is unclear how national crop diversity is related to local-scale
diversity, and assuming that inferences made at one scale are maintained at other scales can be
misleading. Crop species diversity also has a temporal dimension of great importance resulting
from farmers’ crop rotations. These crop rotations can reduce pressure from pathogens, pests,
and weeds (Curl, 1963; Liebman et al., 2016) and improve soil quality (Tiemann et al., 2015)
and yield stability (Gaudin et al., 2015). Yet, the temporal dimension of crop diversity is
frequently ignored in most diversity assessments, mainly because it is hard to measure (Aguilar
et al., 2015), and it is not clear how diversity in space and time relates. Therefore, a better
understanding and treatment of the scale dependency of spatial crop species diversity and its
relation with temporal diversity is needed to develop comprehensive theories of crop diversity

effects on agroecosystem function.

The scope and potential for crop diversity increases are also uncertain. Most calls for more
diverse farming systems do not consider regional differences that might limit farmers’
diversification opportunities or demand-side constraints (Jones et al., 2021; Kremen and Miles,

2012; Renard and Tilman, 2021). Moreover, most studies on crop species diversity used
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variation in diversity to explain other phenomena but there has been less progress in
understanding factors that shape crop diversity (Roesch-McNally et al., 2018; Socolar et al.,
2021). Thus, to gain a quantitative understanding of diversity patterns and processes and improve
comparisons between regions and countries, environmental and crop demand constraints to crop

diversity must be identified.

The first two chapters of this dissertation deal with some fundamental aspects of crop species
diversity. The first chapter (Aramburu Merlos and Hijmans, 2020) explores how crop diversity
can be measured, depending on the dimension (spatial or temporal) and scale considered and
how these relate, using data for the conterminous United States. The second chapter (Aramburu
Merlos and Hijmans, 2022) examines which factors define and limit crop diversity. It outlines a
framework for quantifying potential and attainable levels of crop species diversity, which is then

applied at the global level.

Crop species diversity in the USA increased during the first half of the 20th century, but it has
gradually declined over the past 50 years in most of the country (Aguilar et al., 2015; Hijmans et
al., 2016). This specialization, together with increasing use of inputs, allowed substantial yield
gains, but it was also associated with important negative environmental impacts (Crossley et al.,
2021; Foley et al., 2005). Consequently, there is an interest in developing more diverse and
sustainable cropping systems (Kremen and Merenlender, 2018; Pretty, 2018). Most studies on
diversified cropping systems consider crop rotation diversification a key management practice to
be developed and (re)implemented (Davis et al., 2012; Gaudin et al., 2015; Olmstead and

Brummer, 2008; Spiegal et al., 2018). However, there have been no comprehensive efforts to
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analyze crop rotation diversity (or temporal diversity) across the US, probably because it needs
to be observed at a very high spatial resolution (field level). The first chapter analyzes temporal
and spatial crop species diversity patterns in the conterminous US and how they relate. It shows
that crop rotation diversity is tightly associated with local diversity at a spatial resolution close to
typical US farm size. It also shows that this diversity is lower for rotations that include major

crops.

The observable patterns in the spatial distribution of crop species and their subsequent diversity
are realizations of underlying processes that need to be elucidated (Mercer et al., 2019;
O’Sullivan and Unwin, 2003). While drivers of current crop genetic diversity patterns have been
studied (Thomas et al., 2012; Van Etten and Hijmans, 2010), there is very little knowledge on
processes shaping the diversity of crop species. However, some concepts from macroecology and
biogeography might be applicable (Metzger et al., 2013; Rosenzweig, 1995). For instance, one of
the most established patterns in Ecology, latitudinal biodiversity gradients (Hawkins, 2001), can
also be expected to regulate crop species diversity. But crop diversity depends on both natural
and human-mediated processes. Thus, while some tropical regions might be suitable for many
crop species (high potential diversity), current diversity patterns are also affected by individual
and structural factors shaping farming decisions and resulting in different specialization levels
(Esquivel et al., 2021). The second chapter sets a theoretical framework of hierarchical levels of
crop diversity that considers crop-specific environmental requirements and the demand for
agricultural products. This framework is then used to analyze the environmental drivers of
potential and attainable crop diversity and quantify diversity gaps. The results show that potential

and attainable crop diversity are lower in temperate and continental areas than in tropical and
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coastal regions. Although current diversity follows these patterns to some extent, other processes

also affect it, resulting in high spatial variability in diversity gaps.

The third chapter of this dissertation is on a different topic. It contributes to a project to better
understand the opportunities for improved management of acid soils in Africa. One of the initial
steps of the project is developing a spatially-explicit analysis of the costs and benefits of liming
in Africa. This analysis is founded on models for lime requirement estimation. However, the
literature on lime requirement estimation methods is sparse and inconsistent, particularly for acid

tropical soils. Thus, the third chapter focused on a comparison of lime requirement models.

Acid tropical soils can have several problems affecting crop growth, such as aluminum and
manganese toxicity and calcium and magnesium deficiencies (Kamprath, 1980). These issues
can be addressed by applying liming materials (Coleman et al., 1959). The amount of
agricultural lime required is often estimated with locally calibrated soil tests (Shoemaker et al.,
1961). Both soil testing and liming might be relatively cheap and easy to access for intensive
commercial farmers, but that is not the case for most smallholder farmers in tropical developing
countries (Crawford et al., 2008). Lime application is relatively expensive in many tropical
regions, and the experimental evidence on lime response is also limited. Furthermore, soil tests

that work elsewhere cannot be assumed to work for these places and must be re-calibrated.

Therefore, general models to estimate lime requirements from generally available soil data could
be useful as a starting point in developing locally optimal liming recommendations and for

strategic research on future lime use. The third chapter compares and evaluates different models
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for lime requirement estimation that can be used in acid tropical soils with readily available soil
data and introduces an outperforming model developed based on past experiences and clear
principles. It shows that there are important differences in model accuracy and prediction values
and that liming estimates largely depend on the target soil chemical property of the model.
Therefore, the most important soil acidity problems affecting crop yields must be identified to
formulate liming recommendations in acid tropical soils. However, models for other acidity

problems than aluminum toxicity still need to be developed.
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CHAPTER 1

The scale dependency of spatial crop species diversity and its relation to temporal diversity

Proceedings of the National Academy of Sciences, 117(42), 26176-26182.
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Increasing crop species diversity can enhance agricultural sustain-
ability, but the scale dependency of the processes that shape diversity
and of the effects of diversity on agroecosystems is insufficiently
understood. We used 30 m spatial resolution crop classification
data for the conterminous United States to analyze spatial and
temporal crop species diversity and their relationship. We found
that the US average temporal (crop rotation) diversity is 2.1 effective
number of species and that a crop’s average temporal diversity is
lowest for common crops. Spatial diversity monotonically increases
with the size of the unit of observation, and it is most strongly
associated with temporal diversity when measured for areas of
100 to 400 ha, which is the typical US farm size. The association
between diversity in space and time weakens as data are aggre-
gated over larger areas because of the increasing diversity among
farms, but at intermediate aggregation levels (counties) it is possible
to estimate temporal diversity and farm-scale spatial diversity from
aggregated spatial crop diversity data if the effect of beta diver-
sity is considered. For larger areas, the diversity among farms is
usually much greater than the diversity within them, and this
needs to be considered when analyzing large-area crop diversity
data. US agriculture is dominated by a few major annual crops
(maize, soybean, wheat) that are mostly grown on fields with a
very low temporal diversity. To increase crop species diversity,
currently minor crops would have to increase in area at the ex-
pense of these major crops.

agrobiodiversity | temporal diversity | crop rotation | spatial scale

ariation in crop species diversity has been used to explain
differences in the stability of food production (1), pesticide
use (2), agroecosystem resilience (3), and natural biodiversity in
agroecosystems (4-6). Recent analyses of aggregated data for large
regions, such as counties and states in the United States, have
shown both losses and gains in crop species diversity, depending on
the location, the time period, and the level of spatial aggregation
(7-11). Tt is not clear, however, how knowledge of changes over
such large areas is related to agroecosystem function because our
understanding of the effects of diversity on agroecosystems
comes from studies on the scale of fields and landscapes (12-14).
A more general understanding of the scale dependency of crop
diversity patterns is therefore needed, as this could support the
use of spatially aggregated data to study the effect of diversity in
agriculture (15, 16). This is challenging conceptually (17) and
practically because of the need for crop distribution data at a
sufficiently high spatial resolution. There is also an important
(short-term) temporal dimension of diversity that needs to be con-
sidered and can only be directly observed at a high spatial resolution:
Many fields are planted in a seasonal sequence of multiple crops.
These crop rotations can reduce pressure from pathogens, pest, and
weeds (18-20) and improve soil quality (21), and it has been argued
that these benefits are similar to those ascribed to spatial diversity in
natural ecosystems (22), just as a rapid crop varietal turnover in time
can compensate for genetic uniformity (13).
In this paper we use 30 m spatial resolution crop distribution
data for the conterminous United States between 2008 and 2017

www.pnas.org/cgi/doi/10.1073/pnas.2011702117

to show how crop species diversity changes with spatial scale. We
also demonstrate that temporal diversity and farm-level spatial
diversity can be estimated from aggregated spatial diversity data if
the effect of spatial scale on diversity is taken into consideration.

Results
Temporal Crop Diversity. Average temporal crop species diversity
(Dr; the effective number of species) in the United States is 2.1.
About 9% of the cropland has a single crop, 60% has two or
fewer crops, and 86% has three or fewer crops in rotation
(Fig. 14). Dt is relatively high in large parts of North and South
Dakota, along the Southern seaboard (from New Jersey to
Georgia), in parts of the West Coast states and Idaho, and in
northeast Michigan (Fig. 2 and 57 Appendix, Table S1). Regions
dominated by perennial crops, such as Florida and parts of
California and Louisiana, have a Dt of 1, as expected. When not
considering perennial crops (Fig. 2B), most areas in the West
Coast states and Idaho have a high temporal diversity. Areas
with monocropping of annual crops (Dt = 1 in Fig. 2B) are
predominant in Oklahoma (wheat), northern Texas (cotton),
Montana (wheat), eastern Washington (wheat), and northern
California (rice). Wheat has the largest monocrop area (2.9 Mha,
33% of all monocropped area), while 66% of the maize area (23
Mha) and 64% of the soybean area (20 Mha) have a temporal
diversity of 2 (51 Appendix, Table S2).

The larger the area planted with a crop is, the lower the temporal
diversity of the areas it is grown in is (Fig. 3). For annual crops that
cover at least 0.01% of the cropland area there is a strong log-linear

Significance

There is considerable debate about the effect of changes in and
the need to increase biodiversity in agriculture. The spatial
scale dependency of crop diversity has not been formally
addressed, and this complicates understanding and synthesis.
Crop species diversity also has a temporal diversity component
of fundamental importance that has been ignored in diversity
assessments. To fill this gap, we develop a framework for un-
derstanding the scale dependency of spatial crop species di-
versity and its relation to temporal diversity using 30 m spatial
resolution crop species distribution data for the United States.
We show that aggregated diversity data can be downscaled to
estimate spatial and temporal diversity at the farm scale. We
use the results to discuss diversification strategies.

Author contributions: F.AM. and R.J.H. designed research; F.A.M. performed research;
F.A.M. analyzed data; and F.A.M. and R.J.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. C.K.K. is a guest editor invited by the
Editorial Board.

Published under the PNAS license.
"To whom correspondence may be addressed. Email: faramburumerlos@ucdavis.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2011702117/-/DCSupplemental.
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Temporal (A, D<) and spatial (B, Dy) crop species diversity (effective number of crop species) in the conterminous United States for 2008 to 2017.

Temporal diversity was computed at 30 m spatial resolution, and spatial diversity was computed at five different observational unit sizes. A also shows the

temporal species richness (the number of different species, not accounting for

decline of temporal diversity with crop area. For crops with less
than 0.01% of the area, there is no clear effect of area planted, and
Dz is about 3.7. The downward slope is expected because a crop
that covers 100% of an area can only have Dt = 1, and an area with
two crops that each cover 50% can only have Dt < 2. But the

Fig. 2. Temporal crop species diversity (Dt) in the conterminous United
States (2008 to 2017) measured as the effective number of crops species in
rotation considering (A) all crop species and (B) only annual crops. Dt was
computed at a 30 m resolution and then aggregated to a 3.96 km resolution
for display purposes. Aggregated cells with less than 10% of cropland were
not considered. In B, 30 m cells classified as perennial crops in four or more years
were removed from the calculation of average Dr for the aggregated cells.
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their relative abundance).

empirical data are far below this theoretical maximum. The fields
with the highest temporal diversity (Dt > 4) are mostly planted
with crops grown for fresh consumption such as eggplants,
lettuce, and carrots.

Spatial Crop Diversity. Spatial crop species diversity (Dy) strongly
increases with the size of the observational unit (Figs. 1, 4, and
5). When measured on areas of 44 ha, only 25% of US cropland
has a Dy > 2 (that is, two equally abundant crops or more), and
2.5% of the cropland has a Dy > 3 (Figs. 1 and 44). In contrast,
80% of the cropland has a Dy > 2 when the observational unit is
1,568 ha, and this increases to 90% for units of 25,091 ha (Figs. 1
and 4D). Spatial diversity patterns are highly apparent at this
level of aggregation, showing large tracts of low spatial crop
species diversity in Florida, southern Louisiana, northern Texas,
Oklahoma, and parts of Montana and Washington (Fig. 4D). Dy
is also low in isolated croplands in western regions where alfalfa
is grown in areas dominated by rangelands (SI Appendix, Fig.
S1). Most of the Corn Belt (and Nebraska) has Dy ~ 2. Kansas
and the Mississippi Portal (the southern half of the Mississippi
basin) have Dy ~ 3, while the regions with the highest Dy (> 4)
are found along the coasts and borders with Canada and Mexico.

Country-wide average Dy monotonically increases as diversity
is computed over larger areas (Fig. 54). Dy increases exponen-
tially as it moves away from fields (with generally only one crop
at a time) to multiple fields and captures more of the farm-level
diversity. When the observational units reach about 400 ha, the
increase in Dy slows down as neighboring farms are generally
similar to each other. Dy then increases exponentially again at
very large areas (>1 Mha), reaching 5.4 at 411 Mha (Fig. 54) and
8.1 at the national level.

The average regional-to-local diversity ratio, D (always com-
puted with 392 ha subunits to have a constant definition of “local”).
remains low and close to 1 (that is, no difference in diversity) as the
regional area increases in size, until the regions considered are as
about as big as a state, at which point it increases exponentially (S7
Appendix, Fig. S2). This again shows that crops grown on different
farms tend to be similar at the county to state level but not across
larger areas. At observational units of intermediate size, such as
25,091 ha, crop species diversity is most strongly associated with
farm-level diversity, represented here by Da (local diversity) with
392 ha subunits. For instance, if the United States is divided in
square regions of 0.4 Mha (that is, comparable to the size of a
county), only a few regions have D} > 2, including parts of California,
western South and North Dakota, eastern Montana, and Washington
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Fig. 3. Mean temporal crop species diversity (D, effective number of crop
species) by crop as a function of their area planted (percentage of cropland)
for annual crops in the conterminous United States. The means are for all
30 m spatial resolution cells in which a crop occurred between 2008 and
2017. The horizontal axis has a logarithmic scale. The red dashed line is a
fitted log-linear regression line: Dt = min(3.699 ; 1.769 — 0.499 log(area)),
where area is the area planted as a proportion of total cropland. The blue
dot-dashed line is a fitted log-linear regression line forced through (1, 100):
Dt =min(3.698 ; 1-0.794 log(area)). The gray dotted line represents the
theoretical maximum for a situation in which all crops are in equal area and
grown everywhere with the same frequency, Dt = 1/area.

(SI Appendix, Fig. S3). But Da is still greater than D} in most of
these regions.

Association between Spatial and Temporal Crop Species Diversity.
The relation between spatial and temporal crop species diversity
depends on the size of the observational unit of analysis, and it is
strongest between 100 and 400 ha (Fig. 5B), which is about the
size of a typical US farm (23). If spatial diversity is measured on
smaller areas (<100 ha), Dt tends to be greater than Dy, while
the opposite occurs at larger areas (>400 ha) (Fig. 54). Consider
the extreme cases: If the spatial diversity were measured at a
point (an infinitesimal small area), Dy would always be 1 because
only one crop could be present, but Dt would change from place

to place depending on the crop rotation of each site, so no as-
sociation would exist. At the other extreme, national Dy is 8.1,
almost four times the national average Dt of 2.1.

The smallest root-mean-square deviation (RMSD) between
Dt with Dy is that measured on areas of 174 ha, although it
barely changes in the range of 100 to 400 ha (Fig. 5B). The
lowest lack of correlation (and greatest correlation) between Dt
and Dy is at an area of 1,568 ha, probably because averaging
larger areas reduces noise stemming from variation in field sizes,
cropland fraction per observational unit, noise in the data, and
other factors. At higher levels of aggregation, however, the lack
of correlation rapidly escalates beyond 1 because of the in-
creasingly strong influence of DB on Dy (SI Appendix, Fig. S2).
At the county level, Dy is always greater than or equal to average
county D, and the difference between these two measures is
associated with the number of crop species assemblages (crop-
ping systems with different species composition) in each county,
measured by D (Fig. 64). Strong agreement between spatial and
temporal diversity at the county level is achieved when Df is
removed from Dy by applying the equality in Eq. 3, ensuring that
Da (that is, 174 ha subunit diversity averages, a proxy for farm-
level diversity) is properly considered (Fig. 6B).

Discussion
We have analyzed the variation in temporal and spatial crop
species diversity in the United States and have shown how these
are related. Spatial diversity is most strongly associated with
temporal diversity at the farm level. For county to state-sized re-
gions, the total spatial diversity is mainly determined by farm-level
diversity, and the diversity among farms at this level of aggregation
is low. At the national level, in contrast, the variation among farms
and regions is much greater than within them. Understanding the
effect of scale on diversity is important because both the processes
shaping diversity and the effects of diversity on ecosystem func-
tioning vary with scale. Our analytical approach could be applied
to research on other levels of agricultural biodiversity, such as genetic
diversity within species (16) and contexts (6, 24), which would also
benefit from more formal conceptual frameworks for the analysis of
spatial scale.

Our analysis of the scale dependency in crop species diversity
allows for improved comparison between regions and countries.

Fig. 4. Spatial crop species diversity (effective number of crop species) in the conterminous United States (2008 to 2017) at four observational unit sizes: (A)
44 ha, (B) 174 ha, (C) 1,568 ha, and (D) 25,091 ha (15.84 km resolution). For comparison, all maps are displayed at a 15.84 km resolution, and smaller units’
results were aggregated by computing their weighted average value using Eq. 2. In D, the diversity is the total diversity of each 15.84 km grid cell (Dy),
whereas on the other maps, each grid cell shows the mean effective number of crop species for subunits at the corresponding spatial scale (Da). Only cells with

more than 5% of crop area are included.
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Fig. 5. Scale dependency of spatial crop species diversity and its association with temporal diversity. (A) Average crop species diversity (effective number of
crop species) in space (Dy) and time (Dr) for the conterminous United States (2008 to 2017) at different observational unit sizes. (8) Summary statistics for the
difference between Dy and Dr as a function of the size of the observational unit. Here, RMSD is the root-mean-squared deviation and 1 - r is the lack of
positive correlation, where r is Pearson's correlation coefficient. In both plots the horizontal axis has a logarithmic scale.

Departures from the relationship between crop diversity and
spatial aggregation level that we described should reflect dif-
ferences in temporal diversity and/or farm (and field) sizes.
Regions with smaller farms and fields would present a first in-
flection point at smaller areas, while those with more diverse
rotations would have it at higher diversity values. Similarly, the
second exponential growth phase depends on how different the
farms are from each other as larger areas are considered. Data
for countries with greater diversity among cropping systems than
the United States, perhaps because of greater environmental
diversity, would show a steeper increase and reach a higher level.
Variation in the relationship between crop dominance and
temporal diversity, notably the location of the inflection point
and the slope, should also allow for a more quantitative under-
standing of crop diversity patterns.

Temporal diversity (crop rotation) has been studied in the
context of the multiple agronomic benefits it provides (25-29),
but farm-level temporal diversity assessments are rare. Our study
formally analyzes temporal crop diversity patterns over a large
area. It is important to distinguish “temporal diversity” from
“changes in spatial diversity over time” (30), which has been used
in prior work (6-8). True temporal diversity is a key system
property of croplands. There is also temporal diversity in natural
ecosystems, which may merit more formal evaluation. For example,
the temporal diversity concept might be useful for understanding
the role of biodiversity in ecosystems with short-term (fire-driven)
succession (31) or variation in species distributions and abundance
driven by cycles in ocean temperature (32), masting (33), and
annual migration.

Monitoring changes over time in temporal diversity in agri-
culture is important (34-37), but it requires time series of high
spatial resolution crop distribution data that generally do not
exist. While the increasing availability of remote sensing—derived
cropland classification data will enable future study of temporal
crop diversity, we need methods to assess historical changes in
temporal crop diversity. Our results suggest that we can do so by
using the tight association of temporal and spatial crop diversity
for areas close to the median farm size. In the United States, that
is between 100 and 400 ha. We have shown that with observa-
tional units of that size, temporal crop diversity can be predicted
from a single year of high spatial resolution data. If temporal
diversity needs to be predicted from more aggregated data, the
effective number of cropping system types (Df) must be con-
sidered in order to avoid overestimation. This method should be
reliable at intermediate levels of aggregation (such as counties in
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the United States), but it should be used with great caution with
more aggregated data since the lack of correlation between spatial
and temporal diversities increases exponentially as data are aggre-
gated over larger areas. Future work could investigate this further
using, for example, environmental dissimilarity to predict cropping
system variability within large regions.

A compelling case has been made for increasing the diversity
of cropping systems (1, 5, 6, 38—41), and our analysis can help us
to understand some important aspects that need to be considered.
Minor annual crops tend to be grown in more diverse rotations
than major crops. However, minor crops cover, by definition, only
a small area. In addition, minor crops are often restricted to
specific regions, in part because of favorable environmental
conditions and in part because of regional specialization lead-
ing to the presence of superior infrastructure for processing and
distribution (42). In contrast, major crops are sometimes the
only profitable option. For instance, wheat might be the only cost-
effective crop in the United States in cold or dry environments
(43). Moreover, changes in relative crop prices that favor major
crops, such as those caused by an increasing bioethanol demand,
have been shown to negatively affect diversity (12). A better un-
derstanding of the drivers of crop spatial distribution, crop price
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Fig. 6. County-level average temporal crop species diversity (D1) in the
conterminous United States as a function of two spatial diversity measure-
ments. (A) County-level spatial diversity (Dy) and (B) subunit average (174 ha)
crop species diversity (Do) for each county. The color of each point indicates
the region-to-local diversity ratio (Dp) for each county based on 174 ha
subunits. The same color ramp was used for both plots and is shown in B. For
both plots, the dashed line represents the identity function (Dt = Dy). The
root-mean-squared deviation (RMSD), mean bias, difference between stan-
dard deviations (Agp), and Pearson's correlation coefficient (r) for the
agreement between Dt and the corresponding spatial diversity type are
shown on each plot. Only counties with more than 5% of crop area
are included.
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effects, and why certain crops present greater temporal diversity
than others should inform opportunities for and constraints on the
development of more diverse cropping systems.

National-level diversity in the United States is quite low. De-
spite its large size and wide range of environmental conditions,
the United States is in the 29th percentile when comparing
country-level crop diversity globally (11). We found that farm-scale
diversity is also low in most of the country, in large part because
of the great predominance of three major crops. Wheat, maize,
and soybean crops cover most of the US cropland, and despite
the hundreds of other crops that are grown in the United States,
it is not possible to create much more diverse cropping systems
unless the area planted with these three dominant commodities
decreases drastically. This would require major changes in the
food system that would be rather costly in the short term (44).
Our analysis suggests that an important approach to increasing
farm-scale crop diversity is to provide financial incentives and
improved technology for the production of smaller crops such
that it becomes more attractive to bring them into rotation with
maize, soybean, and/or wheat. This is what the United States
looked like in the 1950s when there was a much larger “middle
class” of crops, including barley, oats, and sorghum (8). It could
also be relevant to consider how to get more variability among
neighboring farms, as we showed that this tends to be very low.
An increased emphasis on consumption of locally produced fresh
food (45) could perhaps play a modest role. Reintegration of crop
production and livestock production, that is, with local sourcing of
feed, could diversify farms and greatly reduce environmental
pollution stemming from concentrated livestock production as
well (39, 46). Cover crops constitute another diversification strategy
that has gained popularity in recent years, particularly in areas with
poor soils and long growing seasons (47). These crops planted to
protect the soil and/or avoid leaching of nutrients may provide
larger ecosystem services than adding another crop planted for
its harvestable product (48).

Acknowledging the scale dependency of spatial diversity and
the role of diversity in time is critical for the analysis of diver-
sification strategies and their effects. While both human health
and the environment would benefit from more diverse diets and
food production (49-51), we must assess how to deploy current
crops in space and time. Many authors advocate for high diver-
sity at the field level (38, 52-54), but field-level diversification
benefits are context dependent. For instance, intercrops (in-field
mixtures of annual crops) are most commonly used in N-deprived
systems of developing countries (55), where legume—cereal mixes
provide a clear advantage over the monocrop alternatives (56),
or when they provide temporal complementarity (57), resem-
bling a crop rotation. However, intercrops are rarely compared
against their temporal diversification alternative (22). Temporal
diversity allows for greater field-level diversity without running
into the practical management problems of intercrops. Furthermore,
temporal diversity might be better for the control of soilborne
pests and disease (58) and for other ecosystem services as well (27,
59). Diverse crop rotations also foster farm-level spatial diversity,
as farmers tend to cultivate all crop rotation components every
year, but how this shapes the landscape and its effects on eco-
system services depends on field and farm sizes. For instance,
natural biodiversity associated with agriculture increases when the
landscape is composed of small fields (<6 ha) and a diverse mo-
saic of crops (5). This composite of small and diverse fields implies
high spatial diversity even when measured on units of 44 ha. In
most of the United States, however, diversity is very low at this
level because of the combination of large fields (60, 61) and low
temporal diversity. Even the most diverse regions of the United
States present a relatively low diversity when considering obser-
vational units of 392 ha or smaller.

Beyond farms and landscapes, national-level crop diversity has
been associated with food production stability (1). While there
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can be benefits to high crop diversity at the national level, this is
different from having high crop diversity at the farm and landscape
levels. We showed that the diversity among cropping systems (Df)
can be a far greater determinant of national-level diversity than the
diversity within them (Da) because Dp increases exponentially at
higher aggregation levels. Df§ might also have a stronger stability
effect on national food production than Da because yields of
different cropping systems and regions are usually less correlated
among each other than yields within the same cropping system
(62). Therefore, identifying the role of Da and D on the diversity—
stability relation is necessary in order to better understand the relation
between crop diversity and food production stability at the farm level.
Downscaling spatial diversity to farm level by removing the effect
of D would allow for using average farm-level diversity, which is
likely a more relevant measure when investigating the relation
between crop diversity and other agroecosystem properties.

Materials and Methods

Data Source and Preparation. We used the Cropland Data Layers (CDLs) annual
crop-specific land cover classifications for the conterminous United States
(63, 64). Each CDL has a spatial resolution of 30 m and classifies each raster
cell as cropland or not and each cropland cell as 1 of 106 crop classes, which
can either be a single crop or a double crop (e.g., winter wheat/soybean). We
used the 10 years of CDLs (from 2008 to 2017) that were available at the
beginning of this project. Early CDL years have been reprocessed and rere-
leased, bringing them to a similar level of accuracy as later years (Cohen’s
kappa coefficient ~ 0.83), which constitutes a significant improvement for our
multiyear analyses. The typical crop field in the United States ranges between
16 and 65 ha (61), much larger than the CDL spatial resolution (0.09 ha), and
the CDL data have been used to study changes in crop rotations (34-37),
suggesting that the CDLs provide high enough spatial and temporal resolution
to assess temporal diversity. CDL-derived spatial diversity estimates at the
county level and those obtained based on the US Department of Agriculture
Census of Agriculture showed strong agreement between both datasets
(root-mean-square error (RMSE) = 3% of Shannon entropy index average, 5/
Appendix, Fig. 54).

We aggregated CDL classes by species. For example, corn, sweet corn,
popcorn, and ornamental corn were grouped as maize (S/ Appendix, Table
$3). Each double-crop type remained as a different category, and both
species within the double crop were fully considered for the calculation of
spatial and temporal crop diversity. Only land that was classified as cropland
for more than 5 years was considered. That threshold was chosen for two
reasons: 1) to avoid the influence of areas cropped only for a few years on
temporal diversity estimations and 2) as a data-cleaning process since most
land that is only occasionally classified as cropland is probably never used for
that purpose.

Spatial and Temporal Diversity. We follow the definition and partition of
diversity proposed by Jost (65) and reviewed by Tuomisto (66). A true diversity
(D) quantifies the effective number of types of entities, which in this case
refers to crop species. The effective number of crop species in space (Dy) or
time (D7) is the number of equally abundant virtual crop species that has the
same entropy as the actual crop species given their mean relative abundance.
D is calculated as an exponent of the Shannon entropy index (H) (65, 66):

5
D= exp( ->(piIn p;)) = exp(H), [11

i=1

where p; is the proportion of cropland area covered with crop species i and §
is the number of crop species.

We computed Dy for square grid cells of different spatial resolutions
covering the conterminous United States. A grid cell represents an observa-
tional unit, which can have different sizes according to the spatial resolution.
The median crop field size in the United States considering the fraction of
cropland area is 35 ha (61), and the median farm size is 445 ha (23). We used a
series of spatial resolutions that were aggregates of the original 30 m grid cells,
selecting six resolutions at field to farm scales (from 0.33 to 1.98 km in steps of
0.33 km) and an additional 10 resolutions by increasing the cell sizes expo-
nentially by multiplying 0.99 km with 2* (in which x can take any integer value
between 2 and 11), that is, a sequence of resolutions of 0.33, 0.66, 0.99, 1.32,
1.65, 1.98, 3.96, 7.92, 15.8, 31.7, 63.4, 127, 253, 507, 1,014, and 2,028 km, which
yields observational units of 11, 44, 98, 174, 272, 392, 1,568, 6,273, 25,091, 0.1 x
10° 0.4 x 10° 1.6 x 10° 6.4 x 10° 26 x 10° 103 x 10° and 411 x 10° ha.
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When an observational unit is divided into smaller subunits, its total
(“regional”) spatial diversity, Dy, can be partitioned into its « and § com-
ponents (67), with Da referring to the local diversity and Dp referring to the
regional-to-local diversity ratio. Both components depend on the definition
of “local,” which might be set by the aggregation level of the input data
(e.g., farm, county, or state data) or might be arbitrarily selected if higher-
resolution data are available. Here, for all observational units with an area
greater than or equal to 1,568 ha, their total diversity (Dy) was partitioned
into D (local diversity) and Dp (regional-to-local diversity ratio) by applying
Egs. 2 and 3 and using all grids with smaller cells whose borders perfectly fit
within the observational units (in other words, the division between reso-
lutions is without remainder). For example, the 15.84 km resolution grid was
partitioned using the 0.33, 0.66, 0.99, 1.32, 1.98, and 3.96 km cells as sub-
units, and different « and p diversities estimations were obtained for all
those subunit sizes:

N

Da= exp[ = E(W/ g(pu In Pi;))]' 2]

=

Dp = Dy/Da. E)]

In Eq. 2, N is the number of subunits in a given area, and w; is the weight of
subunit j, estimated as the number of cropland pixels within the subunit
divided by the total number of cropland pixels in that area. Da is thus the
weighted mean effective number of crop species of the subunits, while Dp
expresses how many times as diverse the observational unit is compared
with the average diversity of its subunits (66).

Temporal crop species diversity (Dt) was calculated with 10 years of data
(2008 to 2017) with Eq. 1 at a 30 m spatial resolution and then aggregated to
the same resolutions used for Dy by applying Eq. 4 in order to maintain an
equivalent relation between spatial and temporal diversity:

7In D
Dty = exp(@). 18]

In Eq. 4, nis the number of 30 m cropland grid cells for a cell at resolution r.
In other words, instead of averaging temporal diversity values at 30 m res-
olution, Dt (at the resolution r) is computed as the exponent of the average
of the Shannon index for temporal crop diversity. Accordingly, 10 year
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averages of Dy, Da, and Dp were computed as the exponent of the weighted
average of the Shannon index of each year in order to ensure the equality in
Eq. 3 at all levels of aggregation. Back transforming diversities to the
Shannon index when averaging and aggregating to other resolutions is
necessary because entropies have better mathematical properties than di-
versities (which also happens with coefficients of variation compared to
standard deviations), and it would be wrong to simply average diversity
values (65).

Postprocessing and Analysis. Diversity estimates based on very low crop area
have greater uncertainty and, on average, lower diversity values. For that
reason, observational units with a crop area lower than certain thresholds
were removed from analysis. These thresholds ranged from 11 t0 0.5% (lower
percentages for larger observational unit sizes) and were defined, for each
resolution, as the crop area in which the last segment of a two-piece linear
spline of Dy as a function of crop area (%) no longer yields a significant
positive slope (P > 0.01; S/ Appendix, Fig. S5).

Then, Dy, Dt, Do, and Dp within the conterminous United States were
mapped, and correlations among different levels and types of crop species
diversities were assessed in order to examine the association between
the spatial and temporal dimensions of crop species diversity. We measured
the level of (dis)agreement between Dy and Dt at different aggregation

n
levels with the root-mean-square deviation (RMSD = _ [1 3" (Dy, — Dv;)) and
1

its components: bias (Bias = Dy — D), the difference between population
standard deviations (Asp = SDp, — SDp:), and the lack of positive cor-
relation (1—r, where r is Pearson’s correlation coefficient). Note that
RMSD? = Bias? + Asp? + (2 X SDp, X SDp. X (1 —r)) (68). We evaluated how
county-level spatial diversity relates to county average Dt. We compared the
agreement between county Dt averages and 1) county Dy and 2) county Da
based on 174 ha subunits.

All data analysis was done with R (69), and the scripts used for this study
are available at https:/github.com/AramburuMerlos/cropdiv_usa.

Data Availability. All study data are included in the article and S/ Appendix.
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percentage of the total cropland (3.96 km spatial resolution).
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Fig. S2. Average crop species diversity in space (Dy) for the conterminous United States for
observational units equal or larger than 1568 ha. Dy was divided in its Da and D3 components based on
392 ha subunits. The horizontal axis has a logarithmic scale. National level diversity values (Area = 8.08 x
108 ha) are also shown.
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Fig. S3. Alpha (Da) and beta (D) crop species diversities of the conterminous United States calculated
based on 392 ha subunits (i.e. local scale) for two observational unit sizes: 25091 and 401449 ha
(regional scale). Da represents the weighted average crop species diversity of the subunits and DB the
regional to local diversity ratio.
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Fig. S4. County-level crop species Shannon Entropy index (H) for the conterminous United States
computed with data from the 2012 USDA Census of Agriculture (USDA Census) against county-level H
derived from the 2012 Crop Data Layer (CDL). Only counties with more than 20% of crop area were
considered for the calculations, comprising 1085 entropy estimations for each data set. The red dashed
line shows the identity function, the blue solid line shows the fitted linear regression, and the blue dashed
lines indicate the confidence interval for the prediction of a new observation of Hco..
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Fig. S5. Threshold selection for removal of cells with a low proportion of cropland. Each plot represents a
different spatial resolution. For each resolution, gamma diversity (Dy) is plotted as a function of cell crop
area (%). Several two-piece linear splines were fitted changing the location of their unique knot, adding
one percent at each iteration until the second spline no longer yielded a significant positive slope. The
knot position for the last spline was used as the crop area threshold. The solid blue line is the last spline
with no significant positive slope in the second piece (P-value > 0.01). The vertical green line indicates
the last spline-knot position and the value used as threshold for the given resolution (e.g. 0.99 km: 10%;
31.68 km: 5%; 126.72 km: 2%). The dashed lines in red to light blue are the preceding splines with
significant positive slopes (P-value < 0.01). Note that for resolutions lower than 507 km (areas >
25.7Mha) no threshold was used as there was no significant association between Dy and crop area.
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Table S1. Percentage of cropland area under mono- or perennial crops (D1 = 1) and other summary
statistics of temporal crop species diversity (Dr) for each state in the conterminous US.

State Dt=1 (%) 1% quartile Median Mean 3" quartile
Alabama 3 2 2.6 2.7 3.4
Arizona 14 1.5 2.4 2.6 3.4
Arkansas 7 1.8 2 2.2 2.6
California 22 1.4 2.3 2.5 3.4
Colorado 18 1.5 2 2 2.6
Connecticut 66 1 1 1.3 1.5
Delaware 1 2.3 2.8 2.8 3.2
Florida 55 1 1 1.5 1.9
Georgia 7 1.9 2.6 2.7 3.4
Idaho 12 1.6 2.3 2.4 3
lllinois 3 1.8 2 2 2
Indiana 2 2 2 2 2
lowa 4 1.9 2 1.9 2
Kansas 6 1.9 2.1 2.3 2.8
Kentucky 3 2 2 2.3 2.9
Louisiana 14 1.5 2 2 2.6
Maine 27 1 2.6 2.6 3.6
Maryland 1 2.4 2.8 2.7 3
Massachusetts 30 1 15 1.7 2
Michigan 5 2 2.5 2.5 3
Minnesota 3 2 2 2.3 2.6
Mississippi 8 1.6 2 2.2 2.6
Missouri 4 1.9 2 2.1 2.5
Montana 27 1 1.7 1.9 2.5
Nebraska 6 1.8 2 2 2
Nevada 53 1 1 14 1.6
New Hampshire 72 1 1 1.2 1.4
New Jersey 6 1.8 2.4 2.6 3.1
New Mexico 21 1.4 1.9 2.1 2.6
New York 12 1.7 2 2.3 2.7
North Carolina 2 2.3 2.8 2.8 3.3
North Dakota 2 2 2.7 2.9 3.6
Ohio 2 2 2 2.2 2.6
Oklahoma 36 1 15 1.7 2
Oregon 27 1 1.9 2.2 2.9
Pennsylvania 12 1.6 2 2.1 2.6
Rhode Island 34 1 1.5 1.6 2
South Carolina 2 2.4 2.9 2.9 3.5
South Dakota 2 2 2.5 2.5 2.9
Tennessee 6 1.8 2.4 2.4 2.9
Texas 20 1.4 1.9 2 2.5
Utah 36 1 15 1.7 2
Vermont 66 1 1 1.3 1.5
Virginia 5 2 2.6 2.5 3
Washington 25 1.4 1.9 2.2 2.8
West Virginia 18 1.5 2 2 2.6
Wisconsin 5 1.8 2 2.3 2.7
Wyoming 28 1 1.8 2 2.6

23



Table S2. Frequency distribution (%) of temporal crop species diversity (D1) for annual crops and their
corresponding crop area (ha). For area, M indicates millions and k thousands.

Dt range
Crop =1 (1,2] (2,3] (3,4] (4,5] (5,6] (6,11] Area
Maize 5 66 22 6 1 0 0 34.8M
Soybean 2 64 26 7 1 0 0 31.2M
Wheat 16 31 36 13 3 0 0 18.2M
Cotton 15 42 28 12 3 0 0 4.4M
Sorghum 2 42 39 15 2 0 0 2.6M
Rice 21 55 19 5 1 0 0 1M
Barley 3 28 32 24 11 3 1 936k
Durum Wheat 2 21 37 25 11 3 1 687k
Dry Bean 0 11 34 36 16 3 1 644k
Sunflower 0 10 36 36 14 3 1 563k
Canola 0 19 35 29 14 3 1 530k
Oat 3 19 35 29 11 3 1 499k
Peanut 1 29 36 23 10 2 0 485k
Sugarbeet 0 5 38 40 14 2 0 444k
Pea 0 18 36 27 14 4 1 402k
Potato 1 17 35 29 14 3 1 383k
Lentil 0 21 44 25 8 2 0 188k
Millet 0 26 41 23 8 2 0 184k
Rye 6 39 27 18 8 2 0 167k
Tomato 0 8 26 33 22 8 3 110k
Flaxseed 0 27 34 23 7 2 91k
Triticale 0 23 33 26 12 4 1 72k
Safflower 0 23 32 26 13 4 2 52k
Onion 2 7 19 33 25 11 4 51k
Tobacco 0 6 28 37 21 7 1 33k
Sweet Potato 0 9 26 34 22 8 2 30k
Lettuce 0 2 16 34 30 13 5 25k
Squash 0 8 38 27 16 7 3 16k
Carrot 0 4 19 29 28 13 6 14k
Watermelon 0 6 24 34 21 10 5 14k
Cantaloupe 0 5 21 31 26 11 5 14k
Cabbage 0 4 25 35 24 9 4 13k
Cucumber 0 3 20 36 28 10 3 13k
Mustard 0 15 33 31 15 5 1 13k
Garlic 0 7 14 30 29 13 6 6.4k
Pepper 0 10 20 26 24 13 7 6.4k
Greens 0 5 19 31 26 13 6 5.7k
Mint 0 8 22 30 24 11 5 5.3k
Buckwheat 0 11 27 27 22 9 4 a4k
Radish 0 12 25 28 20 9 5 3.1k
Vetch 0 12 28 26 19 10 5 1.6k
Camelina 0 20 34 31 11 3 1 1.3k
Turnip 0 7 21 27 25 13 7 634
Celery 0 9 23 27 22 13 6 407
Gourd 0 6 36 33 14 4 7 114
Chick Pea 0 7 41 50 1 1 1 90
Eggplant 0 5 17 23 23 18 14 84
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Table S3 Crop Data Layer (CDL) crop classes and their corresponding scientific names and common
names as used in this paper. CDL classes with the same common name were aggregated. For example,
corn, sweet corn and pop-corn were aggregated as maize.

CDL class Common name  Scientific Name CDL class Common name  Scientific Name
Corn Maize Zea mays Switchgrass Switchgrass Panicum virgatum
Cotton Cotton Gossypium hirsutum Cherries Cherry Prunus avium
Rice Rice Oryza sativa Peaches Peach/Nectarine  Prunus persica
Sorghum Sorghum Sorghum bicolor Apples Apple Malus pumila
Soybeans Soybean Glycine max Grapes Grape Vitis vinifera
Sunflower Sunflower Helianthus annus Christmas Trees Christmas Tree Picea spp.

Peanut Peanut Arachis hypogaea Citrus Citrus Citrus spp
Tobacco Tobacco Nicotiana tabacum Pecans Pecan Carya illinoinensis
Sweet Corn Maize Zea mays Almonds Almond Prunus dulcis

Pop or Orn Corn ~ Maize Zea mays Walnuts Walnut Juglans regia
Mint Mint Mentha spp Pears Pear Pyrus spp.

Barley Barley Hordeum vulgare Pistachios Pistachio Pistacia vera
Durum Wheat Durum Wheat Triticum durum Triticale Triticale Triticosecale
Spring Wheat Wheat Triticum aestivum Carrots Carrot Daucus carota
Winter Wheat Wheat Triticum aestivum Asparagus Asparagus Asparagus officinalis
Rye Rye Secale cereale Garlics Garlic Allium sativum
Oats Oat Avena sativa Cantaloupe Cantaloupe Cucumis melo
Millet Millet Pennisetum glaucum Prunes Prune Prunus spp.
Speltz Wheat Triticum aestivum Olives Olive Olea europaea
Canola Canola Brassica napus Oranges Orange Citrus sinensis
Flaxseed Flaxseed Linum usitatissimum Honeydew Melons  Cantaloupe Cucumis melo
Safflower Safflower Carthamus tinctorius Broccolis Cabbage Brassica oleracea
Rape Seeds Canola Brassica napus Peppers Pepper Capsicum annum
Mustards Mustard Brassica spp Pomegranates Pomegranate Punica granatum
Alfalfa Alfalfa Medicago sativa Nectarines Peach/Nectarine  Prunus persica
Camelina Camelina Camelina sativa Plums Plum Prunus spp.
Buckwheat Buckwheat Fagopyrum esculentum Strawberries Strawberry Fragaria x ananassa
Sugarbeet Sugarbeet Beta vulgaris Squash Squash Cucurbita spp.
Dry Beans Dry Bean Phaseolus spp. Apricots Apricot Prunus armeniaca
Potatoes Potato Solanum tuberosum Vetch Vetch Vicia villosa
Sugarcane Sugarcane Saccharum officinarum Lettuce Lettuce Lactuca sativa
Sweet Potatoes ~ Sweet Potato Ipomoea batatas Pumpkins Squash Cucurbita spp.
Watermelons Watermelon Citrullus lanatus Blueberries Blueberry Vaccinium spp
Onions Onion Allium cepa Cabbages Cabbage Brassica oleracea
Cucumbers Cucumber Cucumis sativus Cauliflower Cabbage Brassica oleracea
Chick Peas Chick Pea Cicer arietinum Celery Celery Apium graveolens
Lentils Lentil Lens culinaris Radish Radish Raphanus sativus
Peas Pea Pisum sativum Turnips Turnip Brassica rapa
Tomatoes Tomato Lycopersicon esculentum Eggplant Eggplant Solanum melongena
Caneberries Caneberry Phyllocoptes gracilis Gourd Gourd Cucurbita spp.
Hops Hop Humulus lupulus Cranberries Cranberry Vaccinium spp

25



CHAPTER 2

Potential, attainable, and current levels of global crop diversity

Environmental Research Letters, 17(4) 044071.
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Abstract

High levels of crop species diversity are considered beneficial. However, increasing diversity might
be difficult because of environmental constraints and the reliance on a few major crops for most
food supply. Here we introduce a theoretical framework of hierarchical levels of crop diversity, in
which the environmental requirements of crops limit potential diversity, and the demand for
agricultural products further constrain attainable crop diversity. We estimated global potential,
attainable, and current crop diversity for grid cells of 86 km®”. To do so, we first estimated cropland
suitability values for each of 171 crops, with spatial distribution models to get estimations of
relative suitability and with a crop model to estimate absolute suitability. We then used a crop
allocation algorithm to distribute the required crop area to suitable cropland. We show that the
attainable crop diversity is lower in temperate and continental areas than in tropical and coastal
regions. The diversity gap (the difference between attainable and current crop diversity) is
particularly large in most of the Americas and relatively small in parts of Europe and East Asia. By
filling these diversity gaps, crop diversity could double on 84% of the world’s agricultural land
without changing the aggregate amount of global food produced. It follows that while there are
important regional differences in attainable diversity, specialization of farms and regions is the
main reason for low levels of local crop diversity across the globe, rather than our high reliance on

a few crops.

1. Introduction

High crop species diversity is considered import-
ant for agriculture sustainability (Jones et al 2021)
because of its positive association with food pro-
duction stability and resilience (Gaudin et al 2015,
Renard and Tilman 2019). However, it is unclear how
much diversity would be enough or desirable and
how this varies between locations. Not all crops can
grow everywhere, and what may be considered low
diversity in one region could be beyond what is eco-
logically possible in another region. Moreover, only
a few crops provide the vast majority of our food
supply, which a priori imposes a severe demand-side
constraint on diversification (Cassman and Grassini
2020, Renard and Tilman 2021). Even though it could
be desirable to reduce the importance of the most

© 2022 The Author(s). Published by IOP Publishing Ltd
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dominant crops (Tilman and Clark 2014), vast areas
would still be needed to produce staple crops such
as wheat, rice, and cassava, but not for many other
crops thatare only useful in relatively small quantities.
Thus, to understand current diversity patterns and
assess opportunities for diversification, it is essential
to consider both ecological constraints (which crops
can be grown in a location) and economic constraints
(how much demand is there for these crops).

To allow for such analysis, we need a framework
to determine what levels of crop species diversity
are possible to compare these with the actual situ-
ation. Here we provide and apply such a frame-
work inspired by concepts from production ecology
and the work on crop yield gaps (van Ittersum et al
2013). We first define different theoretical levels of
crop diversity (maximal, potential, and attainable)
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and then calculate their present values (circa 2010)
for 86 km? grid cells for the entire world. The theor-
etical levels of diversity depend on estimates of crop-
specific cropland suitability that we computed in two
ways: using spatial distribution models (SDMs) (rel-
ative suitability) and rule-based crop models (abso-
lute suitability). We then used a crop allocation
algorithm to predict potential and attainable crop dis-
tributions and calculate the corresponding diversity
level. Finally, we contrasted these levels to current
patterns of diversity and computed diversity gaps.

2. Theoretical levels of crop diversity

Crop diversity (D) has been defined as the effective
number of different crop species planted in a given
area (Jost 2006). The term effective refers to the num-
ber of equally abundant virtual species that has the
same entropy as the actual species when considering
their relative abundance.

To better interpret patterns in current crop
diversity (cD), we define three new theoretical con-
cepts: maximum, potential, and attainable crop
diversity (figure 1). Maximum diversity (mD) res-
ults from planting all crops that can be grown in
an area in equal proportion. It has very limited rel-
evance, and while we include it in our framework,
we do not discuss it further. Potential diversity (pD)
is reached when the area planted with each crop is
a function of crop-specific cropland suitability (the
proportion of land planted to the best-adapted crops
is largest). Attainable diversity (aD) is obtained if
all crops are planted to maximize D while consider-
ing crop-specific cropland suitability, as well as the
demand for different crops and the interspecific com-
petition for land. The main difference between aD
and pD is that aD is constrained to meet crop-specific
total demand (for any purpose, including food, feed,
fiber, and industrial use). We define crop-specific
‘demand’ as equal to each crop’s total current pro-
duction (supply). Thus, aD can be reached without
changing total consumption and crop diversity at the
global level (or, more generally, in the entire study
region in question, which could be a country). There-
fore, by definition, at the global (study region) level,
aD equals ¢D, but this is not true at lower levels of
aggregation (areas within the study region). pD is dir-
ectly proportional to the number of crops considered,
as it assumes that any crop can take an equal amount
ofland. In contrast, aD) is less sensitive to the omission
of rare crops.

Lastly, we define the diversity gap (Dg) as the
difference between the aD and ¢D, expressed as a
percentage of aD, We refer to all factors reducing
crop diversity from its attainable to its current level
with the broad term specialization, which includes
many factors not directly controlled by farmers,
such as access to market, technology, and know-how
(figure 1).
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3. Methods

3.1. Data

We used crop distribution data from two sources:
‘SPAM’ (IFPRI 2019) and ‘Monfreda’ (Monfreda
et al 2008). These data sets include gridded, at a
5 arc-minutes spatial resolution, crop-specific phys-
ical (SPAM) and harvested (SPAM and Monfreda)
areas (the same physical area may be harvested more
than once per year) that were generated by downscal-
ing regional (national and subnational) crop statist-
ics over the available cropland area. SPAM includes
data for 42 crop categories (33 individual crops and
nine crop groups), while Monfreda provides data
for 175 crops. We merged both data sets priorit-
izing SPAM crop physical area to end with a total
of 171 crops. See section 5.3.1 (available online at
stacks.iop.org/ERL/17/044071/mmedia) in the sup-
plementary material for further details on these data
sets, how they were merged, and an assessment of
their quality.

Cropland suitability predictors were derived from
Soil Grids (soil pH, Hengl et al 2017), AQUASTAT
(irrigation availability, FAO 2016), and WorldClim
(climatic and bioclimatic variables, Fick and Hijmans
2017). All variables were aggregated to 5 min spatial
resolution (about 9 x 9 km at the Equator) to match
the crop data, and crop suitability and allocation were
computed at that spatial resolution.

3.2. Crop suitability

We applied two modeling approaches to estimate
crop-specific cropland suitability. We used a SDM
approach to compute ‘relative’ suitability and a rule-
based model to compute ‘absolute’ suitability.

SDMs are commonly used to predict relative
environmental suitability by assessing the similar-
ity between the conditions at a site of interest and
the conditions at locations of known occurrence or
abundance (Elith and Leathwick 2009). We refer to
this approach as ‘relative’ suitability because of the
(implicit) effect of competition on species distribu-
tions: any crop observed abundance is a function
of the suitability of a site for that crop, but also
for other crops. Here, we predicted the suitability
of all cropland for each crop using the crop dis-
tribution data as the response variable, bioclimatic,
soil pH, and irrigation variables as predictors, and
three algorithms: Maxent, Random Forest regres-
sion, and Boosted Regression Trees. See section 5.3.2
in the supplementary material for details on SDMs
methods.

We used the ECOCROP model (Hijmans and
Graham 2006, Hijmans 2021) to predict ‘absolute
suitability, which indicates where a species can be
grown without major environmental constraints.
ECOCROP is a rule-based model that estimates abso-
lute environmental suitability for each species or sub-
species from a combination of dynamic (monthly)
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Figure 1. Crop diversity levels as determined by defining, limiting, and reducing factors. The defining factor for maximum
diversity (mD) is the number of crops that can be grown to harvest. Potential diversity (pD) is limited by the unevenness in the
environmental requirements of crops (better-adapted crops are more abundant, reducing diversity). Attainable diversity (aD) is
further constrained by the unevenness in demand for different crops (crop supply should match demand). Current diversity (cD)
is further reduced due to specialization. This figure and framework were inspired by concepts from the production ecology and
yield gaps literature (van Ittersum and Rabbinge 1997, van Ittersum et al 2013).

and static predictors, including monthly average and
minimum temperature, monthly precipitation, and
soil pH. For all variables, default parameters indic-
ate the extreme minimum and maximum value bey-
ond which the crop cannot grow (suitability is zero)
and a minimum and maximum optimal value within
which suitability is one. Between extreme and optimal
values, suitability is determined with linear interpol-
ation between zero and one. See section $.3.3 in the
supplementary material for ECOCROP model calib-
ration and usage details.

3.3. Crop allocation

We developed a cross-entropy-based spatial alloca-
tion algorithm to compute potential and attainable
crop distributions, using each crop’s relative or abso-
lute cropland suitability as priors. It is described in
detail in section S.3.4 in the supplementary mater-
ial. Similar algorithms have been used to downscale
regional crop area data to generate current and his-
torical global crop distribution maps (You et al 2014,
Jackson et al 2019). Potential diversity only considers
adaptation and does not consider demand; thus, areas
allocated to each crop are proportional to the crop-
specific cropland suitability. In contrast, for attain-
able diversity, the total global demand for each crop is
considered, and we used our allocation algorithm to
distribute required areas for each crop to their most
suitable cropland.
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3.4. Diversity and diversity gap calculation

We quantified crop diversity (D) as the effective num-
ber of crop categories, which is the inverse of the
weighted average of their proportional abundances
and indicates the number of equally-abundant virtual
crops with the same entropy as the actual crops (Jost
2006, Tuomisto 2010). We computed these averages as
the exponent of the Shannon entropy, using nominal
weights (each crop affects the mean based on their rel-
ative proportion) to avoid over or underrepresenting
rare crops (equation (1)).

n

'D=exp | =Y (pjlnp;) (1)

=

where p; is the proportion of crop area occupied by
crop j and n is the total number of crops.

We also computed diversity with the inverse of
the Simpson index (>D), which gives more weight to
the most dominant species. The differences between
these two approaches are described in section S.4.2 in
the supplementary material.

Because  of  diversity  scale-dependency
(Aramburu Merlos and Hijmans 2020), we trans-
formed the current and allocated crop areas to ras-
ter with equal-area grid-cells, using the Equal Earth
map projection (Savri¢ et al 2019). We chose a
9.26 x 9.26 km spatial resolution (ca 86 km?) to
match the largest grid cells of the original (longitude/
latitude) raster data (i.e. at the Equator). We then
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computed crop diversity for each 86 km? grid cell
(local diversity) and at the country level (total
national diversity).

Moreover, the local-diversity-average (Da) (Jost
2007, Tuomisto 2010) was computed for each coun-
try and diversity level with (equation (2)), in which
m is the number of cells in a given country, and w;
is the weight of cell j, computed as the cropland area
in cell j divided by the total cropland of that coun-
try. Note that this is the local (86 km? cell) aver-
age national diversity and different from the total
national diversity, D+, used in most global crop spe-
cies diversity analyses (Renard and Tilman 2019,
Aguiar et al 2020).

m

n
Do =exp | — Z W Z (piiInpy) @
= i=1
Diversity gaps (Dg) were computed as the differ-
ence between aD, averaged across the two methods
used to compute aD, and ¢D, relative to aD and mul-
tiplied by 100 to express Dy as a percentage.

pg (1) = L)

% 100. (3)
3.5. Software

All the analysis was done in R (R Core Team
2020), including data preparation, modeling, alloc-
ation algorithm, data analysis, and mapping, with
the packages listed in section $.3.5 in the supple-
mentary material. The code is available on GitHub
(https://github.com/aramburumerlos/globcropdiv).

4. Results

4.1. Current diversity

There are large extents with high levels of cur-
rent ¢D in East Asia (China, the Korean penin-
sula, and Japan), Sub Saharan Africa except for the
driest regions, and the Mediterranean, especially Por-
tugal, Italy, and western Turkey. ¢D is also high
in other parts of Europe (such as the Netherland
and Belarus), parts of India, New Zealand’s North
Island, Peru and Central Chile in South America,
the Caribbean islands, and the west coast of the
United States (figure 2 and supplementary figure
S1). In contrast, ¢D is very low in most other parts
of the Americas: Argentina, Uruguay, and Brazil
(dominated by soybean), Mexico (maize), and the
central United States (maize and soybean in the
east, wheat in the west); central Asia: Afghanistan
and Kazakhstan (wheat); and in parts of Southeast
Asia: Thailand and Cambodia (rice), and Malay-
sia (oil palm) (figures 2 and 3(a)). These regions
have one or two major crops covering more than
50% of the cropland area (supplementary figures 52
and S3).
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¢D is highest (around 20 effective crops) around
the Equator and the Tropic of Cancer (Northern
tropic, 23° N), from where it linearly decreases when
going northwards (figures 2 and 4), dropping to four
at around 64° N. In contrast, south of the Equator,
crop diversity decreases rapidly with latitude and
reaches eight around the Tropic of Capricorn (23° §).
It then remains stable until 40° S, and there is not
much cropland further south (supplementary figure
S4). The difference in cD between the southern and
northern hemispheres (figure 4) is strongly associ-
ated with the lower amount of cropland in the south-
ern hemisphere, most of which is low diversity crop-
land in South America. In contrast, in the northern
hemisphere, there is more high diversity cropland in
Europe and East Asia than low diversity cropland in
North America (supplementary figures S4 and S5).

The countries with the most extreme (high or
low) local diversity average (cDa) are small coun-
tries with little cropland area (e.g. Grenada and
Western Sahara, supplementary table S1), perhaps
because crop diversity sample variance is higher at
small sampling units (Aramburu Merlos and Hijmans
2020). When only considering countries with at least
0.1 Mha of cropland, Israel stands out for its high
cDa of 19.5. Lebanon, Italy, Taiwan, Portugal, Cuba,
and Republic of Congo, also have high cDa values
(12-14.5). About half of these countries (88 out of
151) has a eDa between 4 and 8, while only 6 have a
cDa lower than 3, including two countries with much
cropland (>10 Mha), Kazakhstan and the USA. These
values are considerably lower than the current total
country-level diversity (cD~). For instance, less than
5% of these countries have a cDa greater than 12, but
40% have a cDvy greater than 12 effective crops (sup-
plementary table S1).

4.2, Potential and attainable diversity

The values for pD strongly depend on the suitabil-
ity estimation method used (figures 4, 5 and supple-
mentary figure $6). In contrast, the aD values derived
from the two suitability methods are remarkably sim-
ilar and considerably lower than pD (figures 4, 6 and
supplementary figures S8 and $9). The differences in
pD and aD due to the suitability estimation methods
are described and discussed in supplementary section
S.4.1.

Irrespective of the method used, aD is higher in
the tropics than temperate regions, and outside the
tropics, higher in coastal than continental regions.
aD is highest in Sub Saharan Africa, southern India,
some regions of Southeast Asia, eastern Brazil, north-
ern South America, and the Caribbean. In subtrop-
ical and temperate areas, al? is high in East Asia,
New Zealand’s North Island, Chile, the US south-
east and west coast, and parts of the Mediterranean
region (e.g. Portugal and Italy). aD is very low
in Kazakhstan, Mongolia, Russia, the Baltic States,
Scandinavia, Canada, and the northern US (figure 6
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Figure 2. Global patterns of current local crop species diversity (cD) for 86 km? cells. White areas have less than 0.5% of cropland

coverage.
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Figure 3. Most abundant (a) and most underutilized (b) crops for 86 km? grid cells. The most underutilized crop has the highest
difference between attainable and actual crop area, where the attainable area is obtained after allocating current crop total areas to
the most suitable cropland for each crop that is available considering the needs for all other crops. Miscellaneous crops include
fiber crops, tree nuts, fruits, sugar crops, stimulants, vegetables and melons, and other crops. White areas have less than 0.5% of

cropland coverage. The same color code was used in (a), (b).
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Figure 4. Crop species diversity levels by latitude. Each point represents the total crop species diversity in a band of 1° of latitude
for different diversity levels: (a) current diversity (cD), relative-suitability-derived attainable diversity (rs-aD), and
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excluded. The horizontal dashed lines represent the tropics. The solid-colored lines are local regression lines.
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Figure 5. Global patterns of two estimates of potential crop species diversity: (a) the absolute-suitability-derived potential
diversity (as-pD) and (b) the relative-suitability-derived potential diversity (rs-pD), for 86 km? cells. White areas have less than
0.5% of cropland coverage.
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Figure 6. Global patterns of two estimates of attainable crop species diversity: (a) the absolute-suitability-derived attainable
diversity (as-aD) and (b) the relative-suitability-derived attainable diversity (rs-aD), for 86 km? cells. White areas have less than

0.5% of cropland coverage.

and supplementary table S1). The annual average
temperature strongly affects aD: it increases linearly
from —10 °C until it reaches a plateau at about
20 °Cto 25 °C and slightly decreases at higher tem-
peratures (supplementary figure S10).

4.3. Global diversity gaps
Nearly 84% of the world’s cropland has a Dy that is
>50%j thus, it has less than half of the crop diversity
that it would have if crops were planted to maxim-
ize diversity while considering their suitability and
current food demand (figure 7). The Dy is especially
high in the Americas (82% on average) except for the
Andean region, the Caribbean Islands, the US west
coast, and Canada. Africa (72%), Asia (71%), and
Oceania (76%) also have large Dg values but with
much spatial variability. The Dy is relatively small in
Europe (56%), especially in the Mediterranean, East-
ern Europe, and the Netherlands.

Cropland with a low ¢D tends to have a high Dy
(supplementary figure S12). For instance, about 40%
of the world’s cropland has a ¢D lower than 5. Of this
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low ¢D cropland, 80% have a Dy > 75%, while less
than one percent have a Dy < 50%. In contrast, virtu-
ally all the 10% most diverse cropland (cD > 12) has
a Dy < 60%, and 80% of it has a Dy < 50%.

At the national level, Israel stands out for its low
local-average D of 14%. Lebanon (30%) and only ten
other countries with more than 0.1 Mha of cropland
have an average Dy below 50%, while about half have
an average D, higher than 70% (supplementary table
S1). However, at the country level, diversity gaps are
significantly smaller when considering total diversity
(D7) instead of local diversity averages (Do) (paired
t-test, P < 0.01), illustrating the scale-dependency of
diversity.

One strategy to reduce diversity gaps can be
to increase the area of the ‘most under-utilized’
crops, that is, crops showing the highest differences
between their attainable and actual crop proportion
(figure 3(b) and supplementary figure S13). These
crops are primarily major crops because the attain-
able area (proportion) in a grid cell tends to be greater
for these crops than crops with little demand. For
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Figure 7. Global crop species diversity gaps. The D is the difference between the attainable diversity (average results from the two
methods used) and current diversity, relative to the attainable diversity, for 86 km? cells. White areas have less than 0.5% of

cropland coverage.

instance, the most abundant crop worldwide, wheat,
is also one of the most under-utilized, particularly
in the US Corn Belt, northeast China, and parts of
Europe and Argentina.

5. Discussion

5.1. Specialization and diversification

We assessed global crop diversity gaps considering
both ecological and demand constraints to attain-
able levels of crop diversity. Even when considering
the world’s heavy reliance on a few major crops for
food supply (Cassman and Grassini 2020, Renard and
Tilman 2021), our results show vast opportunities
for crop diversification: crop species diversity could
be doubled on five-sixths of the world’s croplands if
we only consider environmental constraints and total
demand for crops.

There are various reasons why local specializa-
tion currently reduces crop diversity this much. While
there can be economic benefits to some level of diver-
sification at the farm level, such as risk reduction
(Gaudin et al 2015), pest and weed pressure mitig-
ation (Davis et al 2012), and soil fertility improve-
ment (Tiemann et al 2015), these benefits are context-
specific and may not be large enough to justify
the increase in costs and complexity of managing
additional crops (Roesch-McNally et al 2018). For
example, the benefits of diversification may strongly
depend on which crops are added to a cropping sys-
tem, and further research could investigate oppor-
tunities for ‘functional diversification’ If increasing
farm-level crop diversity is too challenging, it may
be possible to increase regional diversity by having
different farms specializing in different crops. The
effect of this diversification strategy would depend on
how farm sizes and configuration shape the landscape
(Sirami et al 2019), and while this might in some
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cases reduce transportation costs by decreasing the
distance between production and consumption, there
could also be a reduced benefit of economies of scale
(for example, producing tomatoes near tomato pro-
cessing plants) and other losses of efficiency associ-
ated with regional specialization. At the national level,
the opportunity for diversification may be reduced
due to policies to assure that a large part of the staple
food is produced internally, as imports may be con-
sidered less reliable unless there is sufficient land
available for new crops (Arsenault et al 2015).

When considering opportunities for increasing
crop diversity, an important question is which crops
should be grown more. For example, while some
regions could increase the area with specialty crops,
such increases might reduce crop diversity elsewhere
if there is no increased demand for those crops.
In contrast, given current crop-specific supplies and
demands, the most effective strategy to increase crop
diversity in a large area might be to reduce the pro-
portion of the most dominant crops and plant more
of the most under-utilized crop, which is often a suit-
able major crop not widely planted in that area. Fur-
thermore, a drastic change in global demand, perhaps
through changing diets, could affect attainable and
actual diversity, but it is hard to imagine a diet not
dominated by starch-producing crops such as wheat,
maize, rice, and cassava.

While we focused on crop species diversity, other
diversification strategies, such as rotations with cover
crops, grassland-cropland integration, and agro-
forestry, should also be considered when seeking bet-
ter ecosystem services provision through diversifica-
tion, particularly in regions where the attainable crop
diversity is low (Garrity et al 2010, Lemaire etal 2015).
The best choice will depend on the magnitude of the
constraints to diversity and the targeted services to be
improved.
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5.2. Constraints on crop diversity
Most studies on crop diversity do not consider the
environmental constraints that might limit farmers’
opportunities for diversification (Kremen and Miles
2012, Renard and Tilman 2019), and very little atten-
tion has been given to drivers of crop species diversity
(Roesch-McNally et al 2018, Goslee 2020). Our ana-
lysis of environmental effects on attainable diversity
can shed light on some important questions related
to crop diversity (Wood 1998), especially the extent
to which crop diversity can be increased (Cassman
and Grassini 2020). Crop species diversity tends to
be greater in tropical than in temperate areas and
in coastal than in continental regions, and there is a
clear limit to increasing crop diversity in cold envir-
onments. Therefore, it is not sensible to expect or
call for similar levels of diversity across very different
regions, and it cannot be assumed that all countries
have the same diversity potential (Jones et al 2021),
just as is the case with crop yield potential.
Furthermore, there is high spatial variability in
current crop diversity that environmental models of
attainable diversity cannot explain. This high spa-
tial heterogeneity in diversity and diversity gaps
could be related to factors affecting farmers’ cropping
decisions, such as spatial variation in market access,
prices, risk, and policies. Understanding how these
factors lead to specialization or limit diversification
using spatially explicit models is needed to determine
to which extent closing the diversity gap is economic-
ally feasible and identify policies that strongly affect
diversity, particularly for regions with the highest
diversity gaps (Socolar et al 2021), Moreover, while
increasing diversity may be beneficial in some cases,
closing diversity gaps might not always be necessary,
such as in regions with high diversity and extremely
high potential. Nevertheless, the diversity gap concept
is helpful as it allows us to better contrast and com-
pare crop diversity in different regions and investigate
what shapes these patterns.

5.3. Diversity gaps

Diversity gaps are smaller in Europe and other areas
dominated by relatively small family farms that tend
to have higher crop diversity (Ricciardi et al 2021).
This farm size-crop diversity inverse relationship
might be associated with a higher proportion of
minor crops in smaller farms (e.g. pulses, roots,
tubers, and fruits) (Ricciardi et al 2018). Minor crops
tend to be planted in more diverse cropping systems
and are less likely to take most of the cropland of a
region (Aramburu Merlos and Hijmans 2020). This
association between minor crops and crop diversity
might also explain the small diversity gaps in regions
specializing in horticultural crops, such as the US west
coast and the Netherlands. In Europe, relatively low
D, may be further supported by agricultural policies
that promote diverse landscapes (Stoate et al 2009).
Gaps are also relatively small in countries that rely less
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on international markets (Cuba, North Korea) and
in places that face high transportation costs (Carib-
bean islands, desert oases), where most of the produc-
tion is for local consumption. In contrast, diversity
gaps are very high in the sparsely populated plains
with a relatively recent agricultural expansion in the
Americas (Graesser et al 2018). Farms in these regions
have larger fields and focus on major crops for export
in low diversity cropping systems (Aramburu Merlos
and Hijmans 2020).

5.4. Assessing potential and attainable diversity
Diversity gaps can only be calculated after defining
appropriate theoretical levels of diversity. Although
our approach could be refined, it seems clear that
attainable diversity (aD) is a much more robust
and meaningful diversity benchmark than poten-
tial diversity (pD). aD not only accounts for total
demand, making it insensitive to the omission of
rare crops, but also it is less sensitive to changes
in the suitability estimation method. pD estimates
depend on how crop-specific suitability indices relate
to each other between crops, whereas aD estimates
only depend on the relative score of the cropland
within each crop. However, there might be cases in
which it is interesting to assess the potential diversity
of a region. In such a case, the suitability estima-
tion method should be carefully selected. Any suit-
ability estimation method that depends on observed
data is constrained by the current diversity level of the
area of study and data availability for minor crops.
Some examples include those methods that rely on
crop distribution data (i.e. SDMs) and those that
use observed diversity data to fit quantile regressions
(Goslee 2020). Quantile regression methods are not-
ably inadequate for potential diversity estimations
because farmers generally do not aim at reaching the
highest levels of diversity possible. Crop models are
more suited for estimating potential diversity because
current diversity levels do not affect them.

5.5. Local versus country-level diversity

Crop diversity in space depends on the area of
the unit at which diversity estimations are made
(Aramburu Merlos and Hijmans 2020). Much ana-
lysis of crop diversity and effects relies on national
statistics (Khoury et al 2014, Mahaut et al 2021), in
which the country-total diversity (D7) is computed.
However, most interest in diversification is related to
expected effects at farm or landscape levels (Sirami
et al 2019). Here we provide estimations of diversity
and diversity gaps at a 9.26 x 9.26 km resolution
(8575 ha), which allows us to compute local-average
diversity (Dcv) for each country, which is consistently
lower than D and results in larger gaps. Do estimates
are more appropriate for studying crop diversity’s
effects on agroecosystem services and processes, such
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as pollination (Aizen et al 2019), associated biod-
iversity (Sirami et al 2019), and biological pests con-
trol (Tscharntke ef al 2005). In addition, spatial crop
diversity at this resolution is highly correlated with
crop rotation diversity because different fields are
in different stages of their crop rotation (Aramburu
Merlos and Hijmans 2020). While there can be bene-
fits of diversity at the national level (Renard and
Tilman 2019), the national to local-average diversity
ratio (i.e. D3), an indicator of regional heterogeneity,
should also be considered when assessing diversity
effects on the stability of food production (Mahaut
etal 2021).

6. Conclusions

In this paper, we have contributed to a better under-
standing of spatial patterns of global crop diversity
and opportunities for diversification. By defining the-
oretical levels of crop diversity, we created a way
to compute diversity gaps, the difference between
attainable diversity and actual diversity. The (relat-
ive) diversity gap is more informative than just the
actual diversity because it accounts for environmental
variation and limits set by demand. We have shown
that even within the limits of the very skewed cur-
rent levels of production for different crops, crop
diversity could increase enormously. However, given
the economic benefits of specialization, it remains an
important question what the value of diversification
could be in different regions and cropping systems,
and, where more diversity is desirable, what incent-
ives could be provided to achieve this.
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S.1. Supplementary Figures

S.1.1. Figures Sl to S5 (current crop distributions and diversity)
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Figure S1. Global patterns of current local crop species diversity (current °D) computed as the inverse of
the Simpson index for 86 km? cells. White areas have less than 0.5% of cropland coverage.
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Figure S2. Most abundant crop (a) and the cropland proportion covered by the most abundant crop (b)
for 86 km? cells. Miscellaneous crops include fiber crops, tree nuts, fruits, sugar crops, stimulants,
vegetables and melons, and other crops. White areas have less than 0.5% of cropland coverage.
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Figure S3. Second most abundant crop (a) and the cropland proportion covered by the two most
abundant crops (b) for 86 km? cells. Miscellaneous crops include fiber crops, tree nuts, fruits,
sugar crops, stimulants, vegetables and melons, and other crops. White areas have less than 0.5%

of cropland coverage.
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Figure S4. (a) Global distribution of current cropland area (ha) (9.26x9.26 km resolution). (b) Cropland
area (Mha) as a function of latitude; each point represents the total cropland area (Mha) in a band
of 1° of latitude, and the solid dark green line is a local regression line.
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Figure S5. Crop species diversity by latitude for two regions: west from meridian -30° (the Americas
and part of Polynesia) and east from meridian -30° (Africa, Eurasia, rest of Oceania). Each point
represents the total current crop species diversity in a band of 1° of longitude for each region.
Values for latitudinal bands with less than 50,000 ha of cropland were excluded. The horizontal
dashed lines represent the Tropics. The solid-colored lines are local regression lines for the two
regions (purple: west, light green: east).
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S.1.2. Figures S6 and S7(potential crop diversity)
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Figure S6. Global patterns of potential crop species diversity computed as the inverse of the Simpson
index for two potential diversity estimation methods: (a) the absolute-suitability-derived potential
diversity (as-pD) and (b) the relative-suitability-derived potential diversity (rs-pD), for 86 km?
cells. White areas have less than 0.5% of cropland coverage.
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Figure S7. Differences in potential diversity estimates between methods (ApD) as a function of cell total
absolute suitability. ApD is equal to pD derived from relative suitability indices minus pD derived
from absolute suitability indices. Each point represents a 9.26x9.26 km grid cell. A random sample
of 10,000 cells (12% of all raster cells) was used for this plot. The red line is a local regression
line.
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S.1.3. Figures S8 to S10 (attainable crop diversity)
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Figure S8. Global patterns of attainable crop species diversity computed as the inverse of the Simpson
index for two attainable diversity estimation methods: (a) the absolute-suitability-derived
attainable diversity (as-pD) and (b) the relative-suitability-derived attainable diversity (rs-pD), for
86 km? cells. White areas have less than 0.5% of cropland coverage.
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Figure S9. Relation between crop species diversity values as derived from two types of suitability
indices (relative and absolute) for two diversity levels (attainable and potential). (a) Absolute-
suitability-derived potential diversity (as-pD) versus relative-suitability-derived potential diversity
(rs-pD). (b) Absolute-suitability-derived attainable diversity (as-aD) versus relative-suitability-
derived attainable diversity (rs-aD). The color gradient indicates the cropland area (Mha) under
each D estimation combination. The red line represents the identity function. The area-weighted
root mean squared error (WRMSE) and Pearson’s correlation coefficient are shown for each
comparison.
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Figure S10. Attainable crop species diversity (aD) as a function of the annual average temperature (°C)
for two estimates of aD (a) the absolute-suitability-derived attainable diversity and (b) the relative-
suitability-derived attainable diversity. aD was computed at all 5-arc minute cells (about 9x9 km at
the Equator) with at least 0.5% of cropland. The color gradient indicates each Dg- cD
combination’s cropland area (Mha). The red lines are local regression lines.
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S.1.4. Figure S11 to S13 (diversity gaps)
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Figure S11. Global crop species diversity gaps when diversity is computed as the inverse of the Simpson
index. The diversity gap (Dg) is the difference between the attainable diversity (average results
from the two methods used) and current diversity, relative to the attainable diversity, for 86 km2
cells. White areas have less than 0.5% of cropland coverage.
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Figure S12. Crop species diversity gaps (Dg, %) as a function of current crop species diversity (cD) for
5-arc minute cells (about 9x9 km at the Equator). The color gradient indicates each Dg- ¢cD
combination’s cropland area (Mha). The red lines are quantile regression lines (dotted: 0.01 and
0.99 quantiles, dashed: first and third quartiles, solid: median). The marginal lines on the top and
right axes show the ¢D and Dg area-based quantile distribution in one-tenth increments (i.e., 0.1,
0.2,0.3... 0.9).
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Figure S13. (a) & (¢) Most under-utilized crop, with the highest difference between attainable and actual crop proportion; and (b) &
(d) proportion gap (difference between attainable and actual proportions). Attainable crop proportion refers to proportions
obtained after allocating current crop total areas in their most suitable cropland. (a) & (b) show results derived from absolute
suitability and (c) & (d) from relative suitability. Miscellaneous crops include fiber crops, tree nuts, fruits, sugar crops,
stimulants, vegetables and melons, and other crops. White areas have less than 0.5% of cropland coverage.
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S.1.5. Figure S14 (data quality index)

Figure S14. Data quality index (DQI) of two crop areas derived from Monfreda ez al (2008): (a)
apple DQI and (b) mango DQI. White countries or regions are those from which no apple
(a) or mango (b) crop area was reported.
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S.2. Supplementary Tables

Table S1. Country local diversity average (De) and total diversity (Dy) for current (¢D) and
attainable (aD) crop species diversity levels and their corresponding diversity gap (Dg, %).
Local diversity average refers to the weighted average of all 86km? cropland cells inside a
country. aD is the average attainable diversity estimated with two methods. Dg is the
difference between aD and ¢D, expressed as a percentage of aD. For cropland area, M
refers to millions and k to thousands of ha.

Da Dy Cropland
Country Continent
cD aD | Dg(%) | cD aD | Dg(%) (ha)
India Asia 6.3 242 74 232 29.1 20 164.4 M
China Asia 8.6 21.6 60 247 | 26.0 5 1421 M
United States N. America 29 16.9 83 6.5 19.5 66 96.6 M
Brazil S. America 33 23.6 86 9.9 279 65 65.0 M
Russia Europe 5.4 11.6 54 7.7 12.9 40 522M
Nigeria Africa 9.1 24.4 63 18.9 30.4 38 37.1 M
Indonesia Asia 6.8 21.9 69 16.6 | 24.7 33 30.6 M
Argentina S. America 32 21.7 85 6.0 235 74 286 M
Canada N. America 42 12.2 65 7.3 13.2 44 257 M
Ukraine Europe 8.4 15.8 46 9.7 16.9 42 243 M
Australia Oceania 42 17.1 75 5.9 20.4 71 238 M
Pakistan Asia 42 17.2 75 8.9 20.4 56 20,6 M
Thailand Asia 43 24.7 83 8.3 273 70 18.7M
Turkey Asia 8.0 18.2 56 11.8 | 227 48 182 M
Kazakhstan Asia 2.5 7.1 65 3.2 8.4 62 17.9M
Myanmar Asia 5.5 242 77 114 | 285 60 16.6 M
France Europe 6.2 20.1 69 9.1 21.1 57 14.0 M
Mexico N. America 33 23.1 86 124 | 292 58 13.9M
Iran Asia 5.6 17.2 68 102 | 229 56 13.1 M
Spain Europe 9.5 19.3 51 15.5 21.1 27 125M
Ethiopia Africa 8.1 27.2 70 19.5 31.3 38 11.2M
Tanzania Africa 7.0 26.4 74 21.5 30.0 28 I11.1M
Philippines Asia 6.0 245 76 12.1 273 56 10.5M
Bangladesh Asia 32 24.6 87 5.5 263 79 10.5M
Poland Europe 7.6 18.6 59 9.1 19.7 54 104 M
Sudan Africa 2.6 20.2 87 4.6 26.1 82 98 M
Germany Europe 6.1 17.1 64 7.7 17.9 57 9.1 M
Vietnam Asia 59 26.6 78 12.9 29.3 56 89M
13
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Da Dy Cropland
Country Continent
cD aD | Dg(%) | ¢D aD | Dg(%) (ha)
Niger Africa 39 17.7 78 43 224 81 89M
Caote d'Ivoire Africa 10.8 | 288 63 149 | 313 53 7.6 M
Romania Europe 7.6 18.0 58 8.9 18.8 53 7.5M
Morocco Africa 43 18.5 77 8.7 21.9 60 73M
Mozambique Africa 73 25.7 72 13.0 | 283 54 6.7M
Ghana Africa 5.8 27.9 79 13.7 | 312 36 6.6 M
DRC Africa 8.5 26.3 68 147 | 292 50 63 M
Burkina Faso Africa 5.7 222 74 7.8 237 67 62 M
Malaysia Asia 2.5 19.4 87 4.0 20.7 81 6.0 M
Italy Europe 127 | 22.1 43 23.0 | 237 3 58M
Cameroon Africa 9.5 253 62 23.8 32.7 27 5.8M
Mali Africa 5.4 20.7 74 8.0 23.7 66 5.7M
South Africa Africa 4.4 21.0 79 9.0 234 62 53M
Egypt Africa 9.2 20.8 56 209 | 239 13 50 M
Kenya Africa 5.8 27.4 79 13.9 | 3335 59 5.0 M
Paraguay S. America 4.1 24.6 83 5.7 25.5 78 49M
Uganda Africa 79 30.4 74 18.7 | 325 42 46M
Syria Asia 6.6 16.5 60 9.5 19.9 52 46M
Nepal Asia 72 23.6 70 10.5 26.1 60 44 M
United Kingdom Europe 5.5 18.3 70 6.4 19.2 67 43 M
Algeria Africa 5.4 16.7 68 9.2 19.2 52 42M
Angola Africa 5.4 24.6 78 9.2 27.7 67 40M
Hungary Europe 83 17.7 53 9.5 18.3 48 3I9M
Chad Africa 6.3 20.3 69 9.6 24.3 60 38M
Malawi Africa 6.9 243 72 1.0 | 259 58 38M
Colombia S. America 5.0 26.1 81 174 | 32.1 46 3.7TM
Guinea Africa 8.8 19.8 56 12,6 | 235 47 3.6M
Belarus Europe 10.4 17.2 40 11.6 17.8 35 3.6 M
Uzbekistan Asia 5.3 19.4 73 6.4 21.3 70 3.6 M
Tunisia Africa 7.2 18.1 60 119 | 214 44 35M
Cambodia Asia 2.9 23.6 88 4.2 253 83 34 M
South Sudan Africa 4.5 26.7 83 6.5 29.5 78 32M
Afghanistan Asia 3.7 13.9 73 5.3 215 75 3.1 M
Peru S. America 7.2 26.0 72 24.8 35.1 29 3I1M
Bulgaria Europe 6.7 18.2 63 7.6 19.3 61 3.0M
14
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Da Dy Cropland
Country Continent
cD aD | Dg(%) | ¢D aD | Dg(%) (ha)
Madagascar Africa 55 24.1 77 12.5 29.8 58 3.0M
Zimbabwe Africa 48 22.0 78 7.5 23.1 67 3.0M
Serbia Europe 7.4 18.4 60 9.7 18.9 49 29M
Bolivia S. America 6.8 26.3 74 16.0 33.0 51 29M
Senegal Africa 42 19.0 78 6.0 221 73 28M
Iraq Asia 6.6 15.1 56 8.0 20.2 60 2.8M
Greece Europe 9.2 21.5 57 14.7 227 35 2.6 M
Japan Asia 7.3 215 66 134 | 25.1 46 26 M
North Korea Asia 11.9 21.6 45 14.5 224 35 25M
Ecuador S. America 7.4 255 71 18.4 31.9 42 24M
Zambia Africa 4.4 21.9 80 8.0 232 66 22M
Czech Republic Europe 6.6 17.6 62 7.5 17.9 58 22M
Guatemala N. America 5.7 243 77 12.4 29.1 57 2.1M
Sri Lanka Asia 5.0 26.7 81 8.9 31.0 71 20M
Venezuela S. America 4.4 273 84 153 30.0 49 20M
Benin Africa 59 27.7 79 12.0 29.7 59 20M
Uruguay S. America 42 233 82 6.1 239 74 1.8 M
Cuba N. America 124 | 299 59 16.2 30.7 47 1.7M
Togo Africa 8.0 28.1 71 11.2 305 63 1.7M
Denmark Europe 4.5 16.0 72 5.2 16.6 69 1.6 M
Moldova Europe 7.7 17.5 56 10.4 18.0 42 1.6 M
Turkmenistan Asia 32 17.0 81 49 19.5 75 1.6 M
Sierra Leone Africa 8.2 18.0 54 9.8 19.1 49 1.5M
Taiwan Asia 13.0 | 274 52 21.6 30.9 30 1.5M
Laos Asia 44 21.8 80 6.6 23.7 72 1.5 M
Lithuania Europe 6.2 13.8 55 7.2 13.9 49 14M
Haiti N. America 9.9 30.2 67 15.7 324 51 1.4 M
Azerbaijan Asia 4.6 21.1 78 7.9 227 65 1.4 M
South Korea Asia 11.3 23.8 52 18.1 24.6 26 1.3 M
Burundi Africa 7.5 29.7 75 12.3 30.9 60 1.3 M
Portugal Europe 13.5 25.7 48 204 | 27.2 25 1.2M
Chile S. America 9.7 23.0 58 220 | 26.2 16 1.2M
Rwanda Africa 5.4 29.7 82 14.1 31.8 56 1.2M
Finland Europe 4.9 13.5 64 5.8 14.5 60 1.2M
Sweden Europe 59 14.4 59 7.4 17.0 57 1.2M
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Da Dy Cropland
Country Continent
cD aD | Dg(%) | ¢D aD | Dg(%) (ha)
Austria Europe 9.4 18.4 49 124 19.1 35 1.2M
Yemen Asia 6.2 235 74 11.6 28.8 60 1.1 M
Slovakia Europe 8.1 17.6 54 9.3 18.3 49 1.1 M
Honduras N. America 55 28.6 81 8.8 31.1 72 1.1 M
Nicaragua N. America 53 273 81 8.4 314 73 1.0M
Papua New Guinea Oceania 52 22.4 77 13.3 255 48 975k
Central African Republic | Africa 11.8 27.6 57 16.4 304 46 945 k
Dominican Republic N. America 8.5 29.6 71 16.8 | 333 49 899 k
Kyrgyzstan Asia 6.4 16.9 62 10.1 18.6 45 892 k
Tajikistan Asia 72 19.9 64 9.4 244 62 829k
Croatia Europe 8.4 18.4 54 10.3 19.2 46 824 k
Libya Africa 9.9 19.5 49 164 | 25.7 36 804 k
El Salvador N. America 6.0 234 74 7.6 243 69 732k
Somalia Africa 3.9 21.6 82 5.8 27.9 79 701 k
Latvia Europe 6.1 13.5 55 6.3 13.7 54 698 k
Saudi Arabia Asia 8.5 16.2 47 17.3 21.6 20 634 k
Eritrea Africa 59 243 76 8.7 30.0 71 626 k
Bosnia and Herzegovina Europe 9.9 17.6 44 12.3 18.1 32 606 k
Liberia Africa 9.6 20.5 53 11.6 225 49 591k
Belgium Europe 7.8 18.5 58 11.2 19.3 42 588k
Netherlands Europe 10.1 20.2 50 14.5 21.0 31 553 k
Costa Rica N. America 5.5 233 76 179 | 263 32 486 k
Estonia Europe 5.8 13.3 56 6.1 13.5 55 411k
Gambia Africa 5.6 19.5 71 6.6 20.0 67 399k
Guinea-Bissau Africa 53 17.5 70 11.5 18.6 38 399k
Namibia Africa 3.6 21.5 83 5.6 222 75 38lk
Georgia Asia 7.4 213 65 146 | 245 40 371k
Mauritania Africa 5.0 15.1 67 8.5 223 62 366 k
Macedonia Europe 10.7 18.3 42 20.2 19.3 -5 336k
Congo Africa 124 | 259 52 15.8 28.0 44 336 k
Norway Europe 4.8 14.9 68 7.6 16.3 53 321k
Ireland Europe 37 18.7 80 4.1 19.8 79 310k
Panama N. America 7.1 234 70 1.7 | 25.6 54 307 k
Israel Asia 19.5 22.8 14 26.3 24.1 -9 304 k
Mongolia Asia 1.5 10.0 85 22 11.4 81 303k
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Da Dy Cropland

Country Continent

cD aD | Dg(%) | ¢D aD | Dg(%) (ha)
Albania Europe 9.7 232 58 132 | 243 45 287k
Armenia Asia 7.2 15.6 54 10.1 17.1 41 269 k
New Zealand Oceania 10.1 234 57 264 | 273 3 262k
Gabon Africa 11.5 24.5 53 134 | 278 52 240k
Switzerland Europe 8.4 18.1 54 11.2 18.4 39 240 k
Lebanon Asia 14.1 20.3 31 234 | 21.7 -8 223k
Guyana S. America 4.5 229 80 5.8 24.0 76 222k
Lesotho Africa 3.1 20.2 84 44 20.7 79 208 k
East Timor Asia 5.9 29.0 80 9.1 30.6 70 194 k
Botswana Africa 34 23.1 85 6.7 244 73 190 k
Jordan Asia 8.1 18.4 56 18.0 220 18 184 k
Kosovo Europe 5.6 18.9 71 6.1 19.2 68 164 k
Eswatini Africa 4.1 25.6 84 7.1 27.0 74 160 k
Jamaica N. America 11.9 | 316 62 14.8 34.0 56 149 k
United Arab Emirates Asia 9.4 19.4 52 12.7 222 43 144 k
Slovenia Europe B 19.1 52 10.8 19.9 46 142 k
Bhutan Asia 6.4 23.8 73 184 | 290 37 139k
Fiji Oceania 4.5 25.0 82 7.6 25.8 71 120 k
Equatorial Guinea Africa 8.1 234 65 10.2 | 25.1 59 93k
Vanuatu Oceania 2.7 22.9 88 3.6 233 84 85k
Belize N. America 9.8 30.1 68 11.0 30.9 64 78k
Solomon Islands Oceania 59 20.8 72 7.5 21.3 65 78k
Suriname S. America 2.0 23.2 91 2.5 24.0 90 62k
Oman Asia 11.1 223 50 17.8 249 28 55k
Mauritius Africa 22 30.0 93 2.5 30.3 92 53k
Montenegro Europe 12.1 20.9 42 188 | 226 17 46 k
Cyprus Asia 11.4 19.5 42 153 20.1 24 45k
Cabo Verde Africa 7.0 30.0 77 7.2 34.0 79 41 k
Puerto Rico N. America 5.8 294 80 8.5 32.0 73 39k
Luxembourg Europe 6.2 17.3 64 6.8 17.6 61 35k
Sao Tome and Principe Africa 52 28.1 81 5.7 294 81 29k
Trinidad and Tobago S. America 18.1 279 35 243 28.7 15 28k
Brunei Asia 5.0 17.4 71 79 17.8 56 26 k
Dominica N. America 18.7 30.0 38 22.1 30.2 27 20k
Northern Cyprus Asia 9.8 19.7 50 12.3 20.2 39 20k
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Da Dy Cropland

Country Continent

cD aD | Dg(%) | ¢D aD | Dg(%) (ha)
Guadeloupe N. America 8.9 30.6 71 12.6 30.9 59 18k
Kuwait Asia 19.3 13.3 -45 28.1 214 -31 14 k
Martinique N. America 7.2 29.7 76 83 30.2 72 12k
New Caledonia Oceania 17.0 30.9 45 21.1 323 35 12k
Djibouti Africa 5.9 222 73 9.8 27.7 65 10k
Malta Europe 234 | 229 -2 23.5 23.0 -2 10k
French Guiana S. America 8.4 20.6 59 10.8 21.2 49 10k
Aland Europe 9.3 18.1 48 10.2 19.2 47 8k
Bahamas N. America 16.2 32.1 50 16.8 323 48 Tk
Grenada N. America 26.8 304 12 27.1 30.5 11 6k
Guam Asia 1.9 252 93 1.9 253 93 6k
Barbados N. America 6.2 29.9 79 6.3 30.0 79 6k
Qatar Asia 204 | 219 7 219 | 252 13 5k
Saint Lucia N. America 124 | 28.0 56 129 | 28.0 54 5k
Saint Vincent N. America 16.5 27.8 41 16.8 27.8 40 4k
Singapore Asia 3.0 21.4 86 4.0 214 81 4k
French Polynesia Oceania 2.6 29.1 91 2.6 30.4 91 4k
Western Sahara Africa 1.0 18.2 94 1.1 38.1 97 3k
Niue Oceania 5.4 26.9 80 5.4 26.9 80 3k
Micronesia Oceania 22 12.6 82 2.2 12.9 83 2k
Palestine Asia 239 | 227 -5 249 | 237 -5 2k
Bahrain Asia 224 26.5 15 25.4 26.6 4 2k
Akrotiri and Dhekelia Asia 11.0 19.4 43 13.1 19.7 34 2k
Tonga Oceania 17.9 26.5 33 17.9 28.1 36 2k
Antigua and Barbuda N. America 143 | 32.6 56 153 | 328 53 1k
Wallis and Futuna Oceania 4.6 222 79 4.6 222 79 1k
Ieeland Europe 1.2 13.4 91 1.3 14.8 91 607
Kiribati Oceania 2.0 27.7 93 2.0 27.7 93 545
Saint Kitts and Nevis N. America 16.0 | 322 50 16.1 323 50 521
Liechtenstein Europe 10.5 28.4 63 10.5 28.4 63 169
Seychelles Africa 2.6 25.9 90 2.6 27.9 91 149
Andorra Europe 154 16.3 6 20.6 17.0 =21 66
Cayman Islands N. America 1.8 294 94 1.8 294 94 29
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Table S2. Crops included in crop diversity calculations, their source, and corresponding names
reported by Monfreda, SPAM, and FAOSTAT. The groups were used for supplementary

figures S2, S3, & S13.

Crop Source Monfreda SPAM FAO Group
wheat SPAM wheat wheat wheat Wheat
maize SPAM maize maize maize Maize
rice SPAM rice rice rice Rice
barley SPAM barley barley barley Other Cereals
pearl millet SPAM millet pearl millet millet Other Cereals
small millet SPAM millet small millet millet Other Cereals
popcorn Monfreda popcorn other cereals Popcorn Other Cereals
rye Monfreda rye other cereals Rye Other Cereals
oats Monfreda oats other cereals Oats Other Cereals
buckwheat Monfreda buckwheat other cereals Buckwheat Other Cereals
canaryseed Monfreda canaryseed other cereals Canary seed Other Cereals
cerealnes Monfreda cerealnes other cereals cerealnes, nes Other Cereals
sorghum SPAM sorghum sorghum sorghum Other Cereals
soybean SPAM soybean soybean soybean Soybean
coconut SPAM coconut coconut coconut Other Oil Crops
groundnut SPAM groundnut groundnut groundnut, with Other Oil Crops
shell
oilpalm SPAM oilpalm oilpalm palmoil Other Oil Crops
rapeseed SPAM rapeseed rapeseed rapeseed Other Oil Crops
sesame SPAM sesame sesameseed sesame seed Other Oil Crops
sunflower SPAM sunflower sunflower sunflower seed Other Oil Crops
olive Monfreda olive other oil crops Olives Other Oil Crops
karite Monfreda karite other oil crops Karite Nuts Other Oil Crops
(Sheanuts)
castor Monfreda castor other oil crops Castor oil seed Other Oil Crops
tung Monfreda tung other oil crops Tung Nuts Other Oil Crops
safflower Monfreda safflower other oil crops Safflower seed Other Oil Crops
mustard Monfreda mustard other oil crops Mustard seed Other Oil Crops
poppy Monfreda poppy other oil crops Poppy seed Other Oil Crops
melonseed Monfreda melonseed other oil crops Melonseed Other Oil Crops
kapokseed Monfreda kapokseed other oil crops Kapokseed in Other Oil Crops
Shell
linseed Monfreda linseed other oil crops Linseed Other Oil Crops
hempseed Monfreda hempseed other oil crops Hempseed Other Oil Crops
oilseednes Monfreda oilseednes other oil crops Oilseeds, Nes Other Oil Crops
bean SPAM bean bean beans, dry Pulses
chickpea SPAM chickpea chickpea chickpea Pulses
cowpea SPAM cowpea cowpea cowpea Pulses
lentil SPAM lentil lentil lentils Pulses
pigeonpea SPAM pigeonpea pigeonpea pigeon pea Pulses
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broadbean

pea
bambara
vetch
lupin
pulsenes

yautia
taro
rootnes

cassava
potato
sweetpotato
yam

flax

hemp
kapokfiber
jute
jutelikefiber
ramie

sisal

agave
abaca

coir
fibrenes
cotton
orange
tangetc

lemonlime
grapefruitetc

citrusnes
apple

pear
quince
apricot
sourcherry

cherry
peachetc

plum

Monfreda

Monfreda
Monfreda
Monfreda
Monfreda
Monfreda

Monfreda
Monfreda
Monfreda

SPAM
SPAM
SPAM
SPAM
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda

Monfreda
Monfreda
SPAM

Monfreda
Monfreda

Monfreda
Monfreda

Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda

Monfreda

broadbean

pea
bambara
vetch
lupin
pulsenes

yautia
taro
rootnes

cassava
potato
sweetpotato
yam

flax

hemp
kapokfiber
jute
Jjutelikefiber
ramie

sisal

agave
abaca

coir
fibrenes
cotton
orange
tangetc

lemonlime
grapefruitetc

citrusnes
apple

pear
quince
apricot
sourcherry
cherry
peachetc

plum

other pulses

other pulses
other pulses
other pulses
other pulses
other pulses

other roots
other roots
other roots

cassava

potato

sweet potato
yams

other fibre crops
other fibre crops
other fibre crops
other fibre crops
other fibre crops
other fibre crops
other fibre crops
other fibre crops
other fibre crops

other fibre crops
other fibre crops
cotton
temperate fruit
temperate fruit

temperate fruit
temperate fruit

temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit

temperate fruit
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Broad beans, horse
beans, dry

Peas, dry
Bambara beans
Vetches

Lupins

pulsenes, nes
Pulses

Yautia (cocoyam)
Taro (cocoyam)
Roots and Tubers,
nes

cassava

potato

sweet potato

yam

Flax fibre and tow
Hemp Tow Waste
Kapok Fibre

Jute

Other Bastfibres
Ramie

Sisal

Agave Fibres Nes
Manila Fibre
(Abaca)

Coir

Fibre Crops Nes
seed cotton
Oranges
Tangerines,
mandarins, clem.
Lemons and limes
Grapefruit (inc.
pomelos)

Citrus fruit, nes
Apples

Pears

Quinces

Apricots

Sour cherries
Cherries

Peaches and
nectarines

Plums and sloes

Pulses

Pulses
Pulses
Pulses
Pulses
Pulses

Roots & Tubers
Roots & Tubers
Roots & Tubers

Roots & Tubers
Roots & Tubers
Roots & Tubers
Roots & Tubers
Fiber Crops
Fiber Crops
Fiber Crops
Fiber Crops
Fiber Crops
Fiber Crops
Fiber Crops
Fiber Crops
Fiber Crops

Fiber Crops
Fiber Crops
Fiber Crops
Fruits
Fruits

Fruits
Fruits

Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits

Fruits
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stonefruitnes
strawberry
rasberry
gooseberry
currant
blueberry
cranberry
berrynes
grape

kiwi
fruitnes

fig

mango

avocado
pineapple
date
persimmon
cashewapple
papaya
tropicalnes

banana
plantain
brazil

cashew

chestnut
almond

walnut

pistachio
hazelnut

nutnes
maizefor
sorghumfor
ryefor
grassnes
clover
alfalfa
legumenes

Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda

Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda

SPAM
SPAM
Monfreda

Monfreda

Monfreda
Monfreda

Monfreda

Monfreda
Monfreda

Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda

stonefruitnes
strawberry
rasberry
gooseberry
currant
blueberry
cranberry
berrynes
grape

kiwi
fruitnes

fig

mango

avocado
pineapple
date
persimmon
cashewapple
papaya
tropicalnes

banana
plantain
brazil

cashew

chestnut
almond

walnut

pistachio
hazelnut

nutnes
maizefor
sorghumfor
ryefor
grassnes
clover
alfalfa
legumenes

temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
temperate fruit
tropical fruit

tropical fruit

tropical fruit
tropical fruit
tropical fruit
tropical fruit
tropical fruit
tropical fruit
tropical fruit

banana
plantain
rest of crops

rest of crops

rest of crops
rest of crops

rest of crops

rest of crops
rest of crops

rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
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Stone fruit, nes
Strawberries
Raspberries
Gooseberries
Currants
Blueberries
Cranberries
Berries Nes
Grapes

Kiwi fruit
Fresh Nes Fruit
Figs

Mangoes,
mangosteens,
guavas
Avocados
Pineapples
Dates
Persimmons
Cashewapple
Papayas
tropicalnes,
tropical fresh nes
Fruit

banana
plantain

Brazil nuts, with
shell

Cashew nuts, with
shell

Chestnuts

Almonds, with
shell

Walnuts, with
shell
Pistachios
Hazelnuts, with
shell

Nuts, nes
maizefor
sorghumfor
ryefor
grassnes
clover

alfalfa
legumenes

Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits

Fruits
Fruits
Fruits
Fruits
Fruits
Fruits
Fruits

Fruits
Fruits
Treenuts

Fruits

Fruits
Fruits

Fruits

Fruits
Fruits

Fruits

Forage Crops
Forage Crops
Forage Crops
Forage Crops
Forage Crops
Forage Crops
Forage Crops
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cabbagefor
turnipfor
beetfor
carrotfor
swedefor
mixedgrass
kolanut
areca

hop

pepper
pimento

vanilla
cinnamon

clove
nutmeg

aniseetc

ginger
spicenes
peppermint
pyrethrum
rubber

gums

quinoa

fonio

mate

arabica coffee
cocoa
robusta coffee
tea

tobacco
sugarbeet
sugarcane
sugarnes
watermelon
melonetc

cabbage

artichoke
asparagus

Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda

Monfreda
Monfreda

Monfreda
Monfreda

Monfreda

Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
Monfreda
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
Monfreda
Monfreda
Monfreda

Monfreda

Monfreda
Monfreda

cabbagefor
turnipfor
beetfor
carrotfor
swedefor
mixedgrass
kolanut
areca

hop

pepper
pimento

vanilla
cinnamon

clove
nutmeg

aniseetc

ginger
spicenes
peppermint
pyrethrum
rubber
gums
quinoa
fonio

mate
coffee
cocoa
coffee

tea

tobacco
sugarbeet
sugarcane
sugarnes
watermelon
melonete

cabbage

artichoke
asparagus

rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops

rest of crops
rest of crops

rest of crops
rest of crops

rest of crops

rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
rest of crops
other cereals
other cereals
rest of crops
arabica coffee
cocoa

robusta coffee
tea

tobacco
sugarbeet
sugarcane
rest of crops
tropical fruit
tropical fruit

vegetables

vegetables
vegetables
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cabbagefor
turnipfor
beetfor
carrotfor
swedefor
mixedgrass
Kolanuts
Arecanuts
Hops
Pepper (Piper spp.)
Chillies and
peppers, dry
Vanilla
Cinnamon

(canella)
Cloves

Nutmeg, mace and
cardamoms
Anise, badian,
fennel, corian
Ginger

Spices, nes
Peppermint
Pyrethrum,Dried
Natural rubber
Gums Natural
Quinoa

Fonio

mate

coffee

cocoa

coffee

tea

tobacco leaves
sugarbeet

sugar cane
Sugar crops, nes
Watermelons
Other melons
(inc.cantaloupes)
Cabbages and
other brassicas
Artichokes
Asparagus

Forage Crops
Forage Crops
Forage Crops
Forage Crops
Forage Crops
Forage Crops
Other Crops
Other Crops
Other Crops
Other Crops
Other Crops

Other Crops
Other Crops

Other Crops
Other Crops

Other Crops

Other Crops
Other Crops
Other Crops
Other Crops
Other Crops
Other Crops
Other Crops
Stimulants
Stimulants
Stimulants
Stimulants
Stimulants
Stimulants
Stimulants
Sugar Crops
Sugar Crops
Sugar Crops
Veg. & Melons
Veg. & Melons

Veg. & Melons
Veg. & Melons

Veg. & Melons
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lettuce Monfreda lettuce vegetables Lettuce and Veg. & Melons
chicory

spinach Monfreda spinach vegetables Spinach Veg. & Melons

tomato Monfreda tomato vegetables Tomatoes Veg. & Melons

cauliflower Monfreda cauliflower vegetables Cauliflowers and Veg. & Melons
broccoli

pumpkinetc Monfreda pumpkinetc vegetables Pumpkins, squash ~ Veg. & Melons
and gourds

cucumberetc Monfreda cucumberete vegetables Cucumbers and Veg. & Melons
gherkins

eggplant Monfreda eggplant vegetables Eggplants Veg. & Melons
(aubergines)

chilleete Monfreda chilleetc vegetables Chillies and Veg. & Melons
peppers, green

greenonion Monfreda greenonion vegetables Onions (inc. Veg. & Melons
shallots), green

onion Monfreda onion vegetables Onions, dry Veg. & Melons

garlic Monfreda garlic vegetables Garlic Veg. & Melons

greenbean Monfreda greenbean vegetables Beans, green Veg. & Melons

greenpea Monfreda greenpea vegetables Peas, green Veg. & Melons

greenbroadbean Monfreda greenbroadbean vegetables Leguminous Veg. & Melons
vegetables, nes

stringbean Monfreda stringbean vegetables String beans Veg. & Melons

carrot Monfreda carrot vegetables Carrots and turnips  Veg. & Melons

okra Monfreda okra vegetables Okra Veg. & Melons

greencorn Monfreda greencorn vegetables Maize, green Veg. & Melons

chicory Monfreda chicory vegetables Chicory roots Veg. & Melons

carob Monfreda carob vegetables Carobs Veg. & Melons

vegetablenes Monfreda vegetablenes vegetables Vegetables fresh Veg. & Melons
nes
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S.3. Supplementary Methods

S.3.1. Current crop distribution data

We merged two current global gridded crop distribution data sets: “SPAM” (IFPRI 2019) and
“Monfreda” (Monfreda et a/ 2008). SPAM has data for 42 crop categories circa the year 2010,
nine of which are groups of crops (such as tropical fruit, other cereal, remaining crops), while
Monfreda provides data for 175 crops circa the year 2000. First, we disaggregated the nine
SPAM crop groups by identifying the Monfreda’s crops corresponding to each group and
transforming the Monfreda’s crop harvested areas so that the sum of all crop areas within one
group matched the physical area reported in SPAM for that group and raster cell (supplementary
table S2). Then, we merged the crop physical area data of the 33 (individual) crops from SPAM

with the 138 area-transformed Monfreda crops for a total of 171 crops.

These two data sets were obtained by downscaling “regional” statistics over some remote
sensing-derived gridded cropland map. Both used a combination of FAO’s national statistics and
other sub-national statistics from a myriad of sources as input data and corrected the sub-national
statistics to match FAO national reports before downscaling from region to grid. However, the
SPAM data set can be considered more accurate because it is based on more detailed sub-
national data and considers spatial variation in biophysical conditions. In contrast, Monfreda et
al (2008) uniformly allocated the area of each crop in a region across the cropland in that region.
When there is high environmental heterogeneity within the cropland of a region, it is unlikely
that all the included environmental space is equally suitable for any species. Thus, we computed
a DQI for crops derived from Monfreda data that is inversely proportional to the spatial variation
in precipitation and temperature within the region’s cropland (first or second level national sub-
division) from which the original data was obtained. For each crop and region, the DQI was
computed as 1 — max(CV,qin, CVgpp)/4, where CViain is the spatial standard deviation in annual
precipitation (mm) of the cropland in the region over the average annual precipitation of the
same cropland area plus 100mm, and CVgpp is the spatial coefficient of variation of growing
degree days (C, base 0). Grid cells in which more than 50% of the cropland is equipped with

irrigation were omitted when calculating regional CVrin (figure S14).
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S.3.2. Development of spatial distribution models for relative crop suitability estimation

S.3.2.1. Response variable.

Spatial distribution models (SDMs) predict the relative suitability of a crop species from crop

distribution data. Random Forest and Boosted Regression Trees use relative crop abundance data

as the response variable. Maxent, in contrast, requires a binary (presence-background) response

variable, so we derived presence data from the crop abundance data. For that purpose, we

compared five sampling methods for obtaining presence (occurrence) data from gridded

abundance data that differed in the probability weight of sampled cells. For each method, the

probability weights were computed as follows:
(i) Equal weight for all cells where the crop is present.
(1 ifarea;;>0
Wij = {0 if area;; =0
(ii) Weight equal to the relative crop abundance of each cell.

_area;;

Wiy Xjarea;;

(iii) Weight is proportional to each cell’s crop relative abundance but with a penalty based

on a data quality index (DQI, section S1) for the given cell and crop.
_ area; j

n x DQI
j=1 area;;

Wij

(iv) Weight equal to the absolute crop abundance of each cell.

Wij = area,-,-

(v) Weight is proportional to each cell’s crop absolute abundance but with a penalty based

on a data quality index (DQI, section S1) for the given crop.

w;j = area;; X DQI

Where wy; is the weight of cell 7 for crop j, area;; is the area of crop i in cell j, and # is the total

number of crops. So, then, the probability of cell i being sample as a crop j occurrence (Py) is:

W-‘
P:. = U/ i
Y L2 wij

Where m is the number of cells.
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From the five methods considered to derive presence data, methods 2 (for SPAM-derived crops)
and 3 (for Monfreda derived crops) were consistently the best methods determined by the
regional cross-validation approach (see below). Thus, we used these methods to derive the

presence-background data used in the Maxent models.

After model prediction, we used the clog-log transformation (Guillera-Arroita et al. 2014,
Phillips et al. 2017) to transform Maxent predictions to presence probability (i.c., relative

abundance) to evaluate Maxent prediction accuracy against relative abundance data.

5.3.2.2. Predictors

We considered the 19 WorldClim bioclimatic variables plus some additional bioclimatic
variables of agronomic importance as climatic predictors of crop relative suitability. These
additional bioclimatic variables were growing degree days (GDD), aridity indices (annual
average and values for the warmest, coldest, wettest, and driest quarter), and potential
evapotranspiration seasonality (Metzger ef al. 2013). All bioclimatic variables were evaluated
through correlation and principal component analyses to discard highly correlated variables. We
retained 17 bioclimatic variables for modeling and used them with soil pH and irrigation

availability as SDMs’ predictors.

§.3.2.3. Model selection, tuning, and averaging

We aimed to select models that capture the generalities of the relations between the environment
and the species rather than the algorithm that best reproduces the observed abundance patterns
(and, for our purposes, overfits the data). Model selection by k-fold cross-validation can lead to
overfitting when there is high spatial autocorrelation, as in this case (Hiymans 2012). Thus, to
maximize the models’ ability to extrapolate to a different geographical region, we divided the
world into six regions and tested the prediction accuracy in a region left out in model training,

repeating the process for each of the six regions. The six regions were (i) South America, (ii)
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North America + the Caribbean, (iii) Sub-Saharan Africa, (iv) northern Africa + Europe +
western Asia, (v) Southeast Asia + Oceania, and (vi) central and eastern Asia. We tuned and
tested the algorithms on the six most evenly distributed crops across regions: bean, cotton,

maize, mango, tobacco, and wheat.

After selecting the tuning parameters that returned the best extrapolation results for each of the
three algorithms across the six crops and regions, we ran these models for each of the 171 crops
to estimate the worldwide crop-specific cropland relative suitability. Finally, we integrated all
model results into one global cropland relative suitability estimation per crop by computing the
weighted average of the three algorithms using the root mean squared error improvement over

the null model (training data average) as weight.

S.3.3. ECOCROP model calibration and running

We calibrated the ECOCROP model parameters for all crops to reduce possible errors in the
database and the omission error; that is, the model should predict that an environment is suitable
if a crop 1s widely grown in it. However, we did not want to reduce commission errors because a
crop not planted in an environment does not mean that it cannot be grown there. Thus, we did not
narrow the default parameters but, instead, relaxed the environmental limits until at least 95% of
the observed crop area of a given crop was included within the predicted environmental range of
the species. Similarly, we relaxed the minimum and maximum optimum values of each
parameter to ensure that at least 50% of the crop area was included within the limits of optimum
environmental conditions. First, we calibrated each static predictor (e.g., soil pH and annual
precipitation), one at a time. Second, we calibrated all dynamic predictors (e.g., killing and
average temperatures) at once following a “greedy” approach, that is, by relaxing all
environmental limits and detecting the parameter that allowed for a greater increase in crop area
coverage. This process was repeated until 95% of the actual crop area was included within a

species’ environmental limits.
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We then ran Ecocrop for all the species and subspecies included in each of the 171 crop
categories for both rainfed (i.e., water-limited) and irrigated (no water limitation) conditions.
Next, we computed the maximum suitability value of any (sub-) species within one crop
category for each raster cell and water condition. Finally, we calculated rainfed and irrigated
suitability weighted average with irrigation availability per cell as weight, assuming that all crops

can have equal access to the available irrigation.

§.3.4. Crop allocation algorithm and crop potential and attainable distribution

One of the foundations of our diversity gap framework is the crop allocation algorithm that we
used to estimate attainable diversity (aD). This algorithm distributes each crop’s total area in the

available cropland with crop suitability indices as priors.
S.3.4.1. Algorithm description

First, to better represent the expected relative abundance of each crop per cell, crop-specific

cropland suitability indices are normalized such that they sum to one in each grid cell.

n
j=1

Where NS is the normalized suitability for cropj in cell i; Sj is the (relative or absolute)
suitability value, and # is the total number of crops. Normalizing absolute suitability indices over
cells 1s necessary because the expected proportion of crop j in cell i depends on its relative rather
than its absolute suitability. For example, a given area might be very suitable for a crop, but the
expected proportion planted with the crop could be small if the area is also highly suitable for
many other crops. By contrast, it is expected that a crop occupies all cropland (proportion = 1)
when it is the only feasible option (only crop with absolute suitability > 0), even if its absolute

suitability is low.

For the estimation of pD, allocated areas are equal to the normalized suitability indices times

total cell cropland for the corresponding crops and cells because it assumes that crops are grown
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based on their adaptation only and not on their demand. In contrast, each crop’s current global
area was used to estimate aD. When cropland suitability is the same for two crops, a major crop
(high total demand) is expected to be more abundant than a minor crop. Crops with narrow
environmental ranges might be more abundant, too, because they might have very few other
areas to which they can be allocated. Therefore, to allocate crop areas for estimating aD, a crop
relative abundance factor (R4F) is computed for each crop as the ratio between their required

(world total) and the available (niche) area.

m m n
RAF; = Z AU/Z(NSU X ZAU') (Eq. 2)
i=1 i=1 j=1

Where 4;; is the actual area of crop j in cell i and m is the total number of cells. Note that the last

summation (Z}‘zl A;;) represents the total cropland of cell i.

Next, crops are allocated proportionally to NS, RAF, and the available cropland.

uis (Eq.3)

Ay o NSy x RAF x ) Ay

j=1
Where AA4j; is the allocated area of crop j in cell i. Other possible associations between cropland
suitability and crop-allocated areas are discussed below. Note that the above equation is not an
equality because ¥ ;(NS; * RAFj « XL, Ay;) # X; A and (NS = RAF; « YL, Ay) #
% A;j. In other words, the sum of the right side of Eq. 3 for cell 7 across all crops does not equal
the total cropland of cell 7, and adding this product across all cells for crop j does not equal the
total area of crop j. Thus, the allocation is done by, first, over or under-allocating crop areas
using the right side of Eq. 3 and proportionally removing any extra cropland per cell and total
crop area per crop. Then, the remaining crop areas are iteratively allocated to the remaining
cropland until convergence. Each iteration starts with the crops with greater area to be allocated,
prioritizing the most suitable cropland for each crop, but only using a fraction of the remaining
cropland at a time until all the cropland is covered. Sometimes there is no convergence because
there is no remaining suitable cropland for a given crop where it can be allocated. In that case,
the algorithm frees suitable area for that under-allocated crop by removing other crops from its

suitable cropland and starts a new for-loop. After this step, all crop areas are fully allocated, and
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all cropland is covered, but this is not necessarily the result that best honors the priors (cropland

suitability).

Therefore, in the final step, the algorithm reallocates crops to minimize the cross-entropy (CE)

between allocated areas and crop-specific cropland suitability indices.
min CE(AA;;,S;j) = Z Z AA;; * In(A4;;) — Z z A4y +In(s;) (B9

Crops are reallocated by considering all crop pairs and identifying cells where allocated crop
areas are higher than expected for one crop and lower for the other. The expected allocated area
ratio for a pair of crops is their suitability ratio times their RAF ratio. Note that it is not simply
the ratio of their suitability indices because, at equal suitability indices, major crops are expected
to occupy a higher proportion of the available cropland. Then, the pair of crops are reallocated,
switching crop areas between cells until the expected ratio is met. The algorithm repeats the
reallocation process considering all possible pairs of crops until the cross-entropy is not reduced

in more than 0.01% of the initial cross-entropy with any further crop reallocation.
§.3.4.2. Crop distribution assumptions and considerations

We assumed that cropland suitability and crop area are directly proportional. Thus, for example,
in a given piece of cropland that is twice as suitable for crop A as for crop B, the expected crop
area ratio is (for potential diversity, pD) — or would tend to be (for aD) — 2:1. However, other
assumptions are possible and would lead to different results. For instance, one could allocate the
most suitable crop to each piece of cropland (independently of market demand) or allocate crops
to their most suitable cropland until the demand for each crop is fulfilled. In these scenarios, both
local aD and pD equal one everywhere at the scale to which crops are allocated (but not at higher
levels of spatial aggregation). Thus, the suitability of the croplands where the crops are grown is
maximized (max cropland suitability score) at the expense of local crop diversity. In contrast, a
very flat response of relative crop areas to differences in cropland suitability would make pD
approach the maximum diversity (mD) at the expense of land productivity. Assuming that
suitability and area are directly proportional takes into account this trade-off and is a reasonable

intermediate point that would tend to maximize both D and the cropland suitability score.
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Nevertheless, it would be interesting to test other functions and their effect on pD, aD, and

average cropland suitability score.

Moreover, we defined demand at the global level, but it could also be constrained at the national
and regional levels. In addition, we assumed that crop-specific current demands could be
fulfilled if crops are distributed to their most suitable cropland without changing their current
global area. In other words, planting crops based on their attainable rather than in their current
distribution does not reduce the total production of any crop as long as the total area of each crop
is unchanged. Yet, this assumption cannot be tested because yield data are only available for

regions where the crops are currently planted.

§.3.5. R packages used in the analysis

We used the following R packages: raster (Hijmans 2021b) and terra (Hijmans 2021c) for spatial
data analysis, data.table (Dowle and Srinivasan 2020) for data manipulation and allocation
algorithm, ranger (Wright and Ziegler 2017), maxnet (Phillips 2017), and xgboost (Chen et al
2021) for relative suitability modeling, and Recocrop (Hijmans 2021a) for absolute suitability

modeling.
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S.4. Supplementary Results

S.4.1. Differences in potential and attainable diversity between suitability estimation methods

Potential diversity (pD) estimates are very sensitive to the suitability estimation method. The
highest relative-suitability-derived potential diversity (rs-pD) values are observed in temperate
regions, particularly the Mediterranean and coastal regions. In contrast, pD derived from
absolute suitability (as-pD) tends to be higher in tropical regions with high rainfall or access to
irrigation and no soil acidity problems (figure 4 & 5 and supplementary figure S6). as-pD spans
from 1 (the lowest possible value) to 169 (very close to the 171 crops considered, which is the
highest possible value) while rs-pD values range from 50 to 125. The maximum rs-pD value is
lower than the maximum as-pD value because, at equal absolute suitability, minor crops (small
total crop area) tend to have lower relative suitability values than major crops. Thus, in places
that are highly suitable for most crops in absolute terms (i.e., they have a high sum of absolute
suitability values), relative suitability is considerably lower for minor crops than for major crops,
resulting in a lower pD (supplementary figure S7). Moreover, as-pD reaches very low diversity
values because the crop model used for absolute suitability defines clear environmental limits to
each species, particularly for very cold or dry environments that are unsuitable for most crops in

absolute terms (figure 5 and supplementary figure S7).

Attainable diversity (aD) estimates, in contrast, are more stable upon changes in the suitability
estimation method (figure 6 and supplementary figure S8 & S9). However, some notable
differences exist between the two estimates of aD. First, the absolute-suitability-derived
attainable diversity (as-aD) has more extreme low values, particularly in areas that are very dry,
cold, or have acidic soils. In contrast, aD values derived from relative suitability indices (rs-aD)
are never lower than 7 (supplementary figure S10). Second, rs-aD tends to be lower in very
productive croplands currently dominated by a few major crops, such as the US Midwest, north
India, and the Pampas of South America, which might be a result of relative suitability indices’
dependency on observed crop distributions. Third, the crop model (absolute suitability) better

accounts for sharp environmental gradients (e.g., in the Sahel and the Andes), whereas the SDM
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might be affected by the low resolution of some of the crop distribution data, hiding strong

environmental gradients (figure 6 and supplementary figure S8).

S.4.2. Crop diversity as the inverse of the Simpson index (°D)

We calculated crop diversity by computing their #7ue diversity because a true diversity has the
doubling property (e.g., a diversity of 4 is twice as diverse as a diversity of 2, which in turn is
twice as diverse as a diversity of 1), which is a sine qua non to compute diversity gaps. However,
true diversity values can be calculated in different ways, depending on the weight given to the
proportional abundances in the computation of their mean. Thus, we first computed diversity
using nominal weights, in which each crop affects the mean based on their relative proportion,
and diversity equals the exponent of the Shannon entropy ('D = exp(H’). Then, we repeat our
analysis by giving more weight to more abundant crops, such that the weight of a crop equals the

squared of its proportion and diversity equals the inverse of the Simpson index (Eq. 5).

2D i 1/ ;
S} el

When all crops are in equal proportion (complete evenness), ' D equals D, but 2D tends to be
lower than 'D as the unevenness in crop proportions increases because of the greater weight

given to the most dominant crops.

Current diversity (¢D) and attainable diversity (aD) values are consistently lower when
computing diversity as the inverse of the Simpson index (2D, supplementary figures S1 & S8)
than when using the exponent of the Shannon entropy ('D, figures 2 & 6). This is because
current and attainable crop proportions are highly uneven in most croplands due to our heavy
reliance on a few major crops for global food supply while many crop species are planted and
consumed in relatively small quantities. In contrast, potential diversity (pD) values are pretty
similar for 'D (figure 5) and 2D (figure S6), as potential diversity is not constraint by current

crop-specific demand and, thus, potential crop proportions are more even.

Noteworthy, spatial patterns for all diversity levels and gaps are very similar, and the

environmental gradients are even sharper when computing 2D. However, diversity gaps tend to
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be lower with 2D (supplementary figure S11) than 'D (figure 7) and the difference is higher in
Europe (?Dg = 36% vs. 'Dg = 56%) and lower in Africa, Asia, Oceania (*Dg =~ 60% vs. 'Dg =
70%), and the Americas (*Dg = 72% vs. ' Dg = 82%). Because of these lower diversity gaps, the
extent to which crop diversity could double without changing the aggregate amount of global
food produced is relatively lower when using 2D, though still pervasive (67% of the world’s
cropland with D vs. 84% with 'D).
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CHAPTER 3

Estimating lime requirements for tropical soils: model comparison and development
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Abstract

Acid soils can become highly productive when treated with agricultural lime, but optimal lime
rates are unknown in many tropical regions. Lime requirement models can be used to estimate
lime rates in these regions. Here, we provide a comprehensive review of models for lime
requirement estimation in acid tropical soils and introduce a new model based on a target acidity
saturation (a proxy for aluminum toxicity). These models were tested on their ability to predict
the lime rate needed to reach the target change in soil chemical properties with data from four
soil incubation studies covering 31 soil types. We show that two foundational models, one
targeting acidity saturation, and the other targeting base saturation, performed accurately (r >
0.9) in predicting lime requirements. However, later attempts to modify and improve the acidity
saturation model were unsuccessful. In contrast, a new acidity saturation model proposed here
was the most accurate in predicting lime requirements. This new model and the foundational
base saturation model were used to estimate lime requirements in 303 African soil profiles.
Important differences in the estimated lime rates were found, depending on the target soil
chemical property of the model. Therefore, a necessary step for formulating liming
recommendations is identifying the most important soil acidity problem affecting crop yield.
While the model introduced here can be useful for strategic research on potential lime use, more
information on other acidity problems than aluminum toxicity is needed to develop a fully

comprehensive assessment of potential liming benefits.
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1. Introduction

Low soil pH is associated with a high concentration of toxic elements in the soil solution, such as
aluminum and manganese, and with low availability of phosphorus, calcium, and other plant
nutrients (Kamprath, 1984). Soil acidity problems can be addressed with liming, the application
of calcium or magnesium-rich materials that react as a base (Coleman et al., 1959). Liming has
been practiced for centuries (Johnson, 2010), and its use is still expanding, particularly in
tropical areas with acid soils. For example, it played a key role in the recent expansion of

agriculture in the Brazilian Cerrado region (Goedert, 1983; Yamada, 2005).

The amount of lime required to adjust soil acidity depends on the soil, the target crop(s), and the
liming material used. In temperate regions, lime requirements are commonly estimated with
locally calibrated quick tests using buffer solutions (Goulding, 2016; Metzger et al., 2020; Rossel
and McBratney, 2001; Sims, 1996). These tests can be developed by comparing the buffer’s
response to the soil with the soil response to lime in field or incubation studies or by slow
titrations. Both the soil testing and the lime application may be a relatively small expense in
intensively managed commercial farms, partly because lime is cheap and partly because the use
of lime, when needed, increases the use efficiency of other inputs (de Wit, 1992). Moreover,
applying a bit more lime than needed means its benefits will last longer (Li et al., 2009). Thus,
blanket applications that err on the higher side are not very risky (oveliming problems exist, but
only at extremely high doses), so there is no need for a highly accurate determination of the

amount of lime to apply.
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This situation is different for smallholder farmers in sub-Saharan Africa (Crawford et al., 2008)
and other tropical regions (Sanchez and Salinas, 1981). Lime may be relatively expensive, and
its benefit may be relatively small if fertilizer use is low. Under these circumstances, it would be
helpful to have accurate estimates of lime requirements. However, empirical (experimental)
evidence from these tropical regions is limited, and laboratory-based soil testing is often
inaccessible. Furthermore, methods that depend on direct measurements of soil acidity in each
field with buffer solutions cannot be assumed to work elsewhere and would have to be re-

developed.

Models to estimate lime requirements from generally available soil data are needed for strategic
research of potential lime use across tropical regions. They can be particularly useful for sub-
Saharan Africa, where the impact of soil acidity on crop productivity and nutrient-use efficiency
is poorly understood (Crawford et al., 2008). Lime requirement models could serve as a starting
point to develop locally optimal liming recommendations for farmers and development
practitioners and provide strategic information to national governments and the private sector on
potential market sizes for lime for a region of interest. The latter is now possible thanks to the
availability of high-resolution spatial products for most soil properties across the continent

(Hengl et al., 2017; Miller et al., 2021).

Here we provide a comprehensive review of general lime requirement models for tropical acid
soils that can be used with readily available soil data. We first introduce key concepts related to
estimating lime requirements that have been a source of confusion and inconsistency. We then
describe and discuss published lime requirement models for tropical soils and introduce a new
model to estimate lime requirements. Finally, we show substantial differences in the estimated

lime requirement for acid tropical soils when using these models and discuss their implications.
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2. Key concepts and definitions

Soils can be naturally acidic or become acidic because of agricultural practices such as the use of
acidifying fertilizer and the removal of elements with harvested products. In the tropics, many
soils in humid (and some subhumid) areas are inherently acidic because intense weathering
processes have resulted in the displacement and leaching of basic (i.e., non-acidic) exchangeable
cations (Ca?*, Mg?*, K*, and Na*) and the accumulation of exchangeable acidity (AI** and H").
The main problem with soil acidity in the tropics is not the low pH as such, but rather the
associated aluminum (Al) toxicity that constrains crop growth (Sanchez, 2019). The purpose of
liming should be, therefore, to remove Al toxicity, considering the sensitivity of the target crops,
together with other possible constraints such as Ca and Mg deficiencies (Kamprath, 1984;
Sanchez, 2019), but not to increase pH for its own sake (Fageria and Baligar, 2008; Harter,

2007).

2.1. Target soil chemical properties

2.1.1. Exchangeable acidity or aluminum?

Acidity saturation is the fraction of the effective cation exchange capacity (ECEC) of the soil
occupied by exchangeable acid cations (AI** and H*, extracted with a neutral unbuffered salt

such as 1IN KCI). In tropical soils, nearly all exchangeable acidity comprises exchangeable AI**
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(except in histosols) and, thus, Al saturation approximates acidity saturation (Deressa et al.,
2020; Farina and Channon, 1991, Salinas, 1978). For that reason, acidity saturation is often used
as a proxy for Al toxicity (Evans and Kamprath, 1970; Farina and Channon, 1991; Kamprath,
1980; Salinas, 1978; Smyth and Cravo, 1992). Many lime requirement models estimate the lime
rate required to lower the acidity saturation to a target level that does not affect crop yield

(Cochrane et al., 1980; Osmond et al., 2002; Yost et al., 1988).

The terms exchangeable acidity and exchangeable AI** have been used interchangeably in
tropical soil literature, with the term exchangeable AI** more commonly used in older literature
(Sanchez, 2019). Indeed, several authors of the lime requirement models reviewed here
measured acidity saturation but referred to it as Al saturation (Cochrane et al., 1980; Kamprath,
1970). Consequently, some models were originally formulated for exchangeable AI** (and Al

saturation) but derived from exchangeable acidity measurements.

2.1.2. Exchangeable calcium and magnesium

Some highly weathered acid soils can have very low ECEC and, thus, low exchangeable Ca?*
and Mg?* but low acidity saturation, resulting in Ca and Mg deficiencies without Al toxicity
problems (Kamprath, 1984). Therefore, some lime requirement models based on acidity
saturation also estimate the lime rate needed to cover such deficiencies (Sanchez, 2019; Teixeira
et al., 2020b; van Raij, 1996). Such mineral deficiencies can also be addressed with compost or
inorganic fertilizers such as calcium nitrate, which might be more convenient in soils with no Al

toxicity problems.

79



2.1.3. Base saturation

An alternative approach to alleviating soil acidity problems aims to raise the “base saturation” to
a certain level rather than focusing on acidity saturation (Quaggio, 1983; van Raij, 1996). Base
saturation (V) is the sum of all exchangeable bases (Ca*, Mg?*, K*, and Na*) divided by the
Cation Exchange Capacity at pH 7 (CEC~). CECy is different from ECEC, especially in acid
soils, where CEC7 > ECEC. For ECEC, exchangeable acid cations (AI** and H*) are extracted
with a neutral unbuffered salt. In contrast, a pH 7 buffer solution is used for CEC7, which
extracts both exchangeable and non-exchangeable acidity (for example, from hydroxy-Al
organic matter complexes), comprising the potential acidity. The magnitude of the potential
acidity of the soil depends on the type and amount of clay and organic matter. Although there is
some inverse parallelism between acidity saturation and base saturation, these terms are not

complementary because they have different denominators (ECEC and CECy, respectively).

Contrary to Al toxicity and acidity saturation, there is no direct association between base
saturation and crop yields. Instead, a minimum base saturation threshold is defined such that,
above it, no soil acidity problems are detected (Fageria and Baligar, 2008). Therefore,
recommended target base saturation levels must be defined locally for each crop type (van Raij,

1996).

2.1.4. pH in water
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Most lime requirement methods used in temperate regions target soil pH (as measured in water),
estimating with locally-calibrated models the lime rate required to raise the soil pH to a specific
level (6 to 6.5 for most crops and soils) (Goulding, 2016; Sims, 1996). In acid tropical soils,
maximum yields can be obtained with a pH as low as 5, depending on other soil chemical
properties (Abrufia et al., 1969; Bell, 1996; Pearson et al., 1977), and raising the pH to higher
values can result in a loss of soil structure and other problems (Harter, 2007). Therefore, a target
pH level is seldomly used, and when used, it must be defined locally (Fageria and Baligar, 2008;

Teixeira et al., 2020a).

There is a negative exponential relationship between exchangeable acidity and soil pH
(Supplementary Figure 1). Very high exchangeable acidity values are only found in soils with a
low pH, but not all soils with a low pH have high exchangeable acidity. Exchangeable acidity
approaches 0 at a pH above 5.5, and there is virtually no exchangeable acidity at a pH above 6
(Farina and Channon, 1991; Lollato et al., 2013; Sanchez, 2019). Therefore, a target pH between

5.5 and 6 should be high enough to address Al toxicity problems.
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Supplementary Figure 1. Soil pH measured in water as a function of the exchangeable acidity
extracted with 1 M KCI unbuffered salt. Data extracted from the Africa Soil Profile Database
(Leenaars et al., 2014) for the 0 — 20 cm soil layer. The red line is a negative exponential
regression line Exchangeable acidity (cmol kgy:,) = 765 e~ 1-34PH

2.1.5. Phosphorus availability

Acid tropical soils have very low plant-available phosphorus because of the high P fixation
capacity of Fe and Al oxides often present in weathered tropical soils. Liming has the associated
benefit of increasing P availability, which might result in significant yield responses, particularly
when P fertilization is low (Salinas, 1978). However, liming can only provide short-term relief to
P deficiencies in soils with low P reserves (Smithson and Giller, 2002). Therefore, phosphorus
availability is not considered a direct target of liming, and lime requirement models do not
consider it. However, the increase in P availability can be an important reason for observing a
yield response to lime.
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2.2 Lime rate units

Lime rates (LR) are commonly expressed in charges per soil mass (e.g., meq per 100g of soil or
cmolc per kg of soil, which are equivalent) or in the equivalent mass of pure calcium carbonate
lime per unit area (CaCOs3 tons per ha). To transform lime rates between charges per soil mass
and calcium carbonate mass per ha, soil bulk density (sbd) and liming depth (ld) are needed.
Lime rates in t ha* and cmol. kg™ are the same when shd = 1g cm™ and Id = 20 cm. Thus, LR
can be converted from charges per soil mass to calcium carbonate mass per area with Eq. 1,

where shd is expressed in g cm=and Id in cm.

LR (tcaco, ha™t) = LR(cmol, kgygy) X shd X 1d /20 (Eq. 1)
Many lime requirement models reviewed here provide lime rates in cmolc kg*. Therefore, when
using these models to estimate lime rates in tons of liming material per hectare, these must be
transformed by considering the soil bulk density, lime incorporation depth, and the calcium
carbonate equivalents (CCE) of the liming material to be applied. In addition, a few other models
(Osmond et al., 2002; Yost et al., 1988) assume certain incorporation depth and soil bulk density
and provide lime rates in t ha™. However, these lime rates should be adjusted to account for

potential differences between the assumed Id and sbd and the actual Id and sbd.

3. Materials and methods
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We searched for general use lime requirement models that only require measured soil properties
often available in soil databases. The terms “acid*” AND “soil*” AND (“lim* requirement” OR
“lim* recommendation” OR “lim* rate”) were used in the Web of Science and Google Scholar
databases to screen and retrieve relevant literature and references therein. Methods that required
additional soil tests to measure the “buffer capacity” of the soil (e.g., Shoemaker et al., 1961) and
methods developed for use in specific regions in temperate climates (e.g., Heckman et al., 2002,
and Rossel and McBratney, 2001) were not considered and excluded from further analysis. The
search yielded seven models that can, in principle, be applied to a wide range of tropical soils.
The selected models include five acidity saturation models, one base saturation model, and one
pH model. These seven lime requirement models were reviewed and used to derive a new model
based on acidity saturation. The tested models were implemented in an R package called “limer”
(Aramburu Merlos, 2022) to facilitate the evaluation, comparison, and use of these models
against empirical data. The R package, data, and scripts used for analysis in this paper are

available on GitHub (https://github.com/gaiafrica/limer).

The lime recommendation models were evaluated using data from four soil incubation studies
that measured the effect of liming on exchangeable acidity and ECEC or acidity saturation
(Ananthacumaraswamy and Baker, 1991; Cochrane et al., 1980; Kamprath, 1970; Teixeira et al.,
2020a). Studies only measuring the effect of liming on pH were not considered. Soil incubation
studies are experiments in which soil samples are mixed with different lime treatments and
incubated under controlled conditions (~ 30 °C and soil moisture at field capacity) for about a

month to ensure that all lime reacts with the soil. The liming effect is assessed by measuring
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chemical soil properties before and after each treatment. The data from Kamprath (1970),
Cochrane et al. (1980), and Ananthacumaraswamy and Baker (1991) were readily available, but
Teixeira et al. (2020a) soil data were not. The Teixeira et al. (2020a) data was reconstructed in
two steps: (i) the initial soil properties were back solved from lime requirement formulas and
lime rates, and (ii) the final soil properties were estimated using the regression formulas provided
in the supplementary information (R?>~ 0.9). Table 1 describes the main features of these four

data sets.

Table 1. Description of the lime incubation studies data used to assess the lime requirement
models. Data were extracted from Kamprath (1970) (Kamp.), Cochrane et al. (1980) (Coch.),
Ananthacumaraswamy and Baker (1991) (Anan.), and Teixeira et al. (2020a) (Teix). The range
of values (minimum — maximum) is presented for lime rates (LR) and chemical soil properties.
ECEC: effective cation exchange capacity; AS (%): acidity or aluminum saturation
(exchangeable acidity divided by ECEC). CECy-: cation exchange capacity at pH 7. OM: organic
matter. “-” indicates that this was not measured, while “m-" means it was measured but not
available for each treatment (in which case we report the range of values reported in the original
paper). Soil properties measured at the end of the experiments are in square brackets.

Kamp. Coch. Anan. Teix.
Year of study 1970 1980 1991 2020
Number of soil types 4 2 3 22
LR treatments per soil 5 5 4or5 8
Soils region North Carolina, Colombia Sri Lanka Minas Ggrais,
USA and Kenya Brazil
LR (cmol. kg™) 0.5-84 04-4 1-215 0.2-23.9
45-47 - - 41-53
pH
[4.9 - 6] [5.1-7.3]
53 -82 68 — 86 49 - 81 9-96
AS (%) [2 -52] [27 - 79] [0-30] [0-18]
11-78 34-44 6.3-9.1 05-3
ECEC (emolekg™) | 115 104 [7-225]  [0.7—-113]
CEC;7(cmol; kg™ - - 12-21 1.7 -14
Clay content (%) 10-17 37-71 - 5-88 (m-)
OM (%) 2-7 - - 0.4-8
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We used all models to predict the lime rate required to reach the observed soil responses, which
were then compared with the actual amount used in the experiment. The response variables
evaluated varied by the model’s target soil chemical property. For instance, the actual lime rate
was compared with the predicted lime rate needed to reach the observed acidity saturation for

models that use a target acidity saturation. The (dis)agreement between observed (y) and

predicted (y) values was expressed with the root mean squared error (RMSE = /%Z’f(y - 9)?)

and its components: bias (Bias = y — 9 ), the difference between population standard deviations
(Asp = SD,, — SDy), and Pearson’s correlation coefficient (r) (Kobayashi and Salam, 2000). All
the available data were used to test each model, including the originally used to calibrate the
model (when possible) and other independent datasets. Six-fold cross-validation was used when
only the same data used to develop a model was available for testing it. Model coefficients were
recalibrated on five folds and tested on the remaining fold, repeating the process for each fold

(James et al., 2013).

Lastly, we compared lime rates required for different target soil chemical properties and acidity
levels using soil data from the Africa Soil Profile Database (Leenaars et al., 2014). Soil samples
tested for at least exchangeable acidity, ECEC, and CECy, in which exchangeable acidity was
extracted with 1 M KCI, and CEC7 measured in 1 M NH4OAc buffered at pH 7 were selected for
analysis. Lime requirements were estimated with the models described below for a lime

incorporation depth of 20 cm.

4. Acidity saturation models
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This section describes five published lime requirement estimation models based on acidity
saturation (Kamprath, Cochrane, ACID4, NUMASS, and MG5) that were evaluated against data
from four soil incubation studies (Ananthacumaraswamy and Baker, 1991; Cochrane et al., 1980;

Kamprath, 1970; Teixeira et al., 2020a).

4.1. Kamprath

In a soil incubation study, Kamprath (1970) tested soil responses to different lime rates in four
very acidic soils (pH < 5, acidity saturation > 50 %). This study illustrated that acidity saturation
does not decrease linearly with the amount of lime applied. When lime application rates are
lower than the initial exchangeable acidity, acidity saturation is sharply reduced. However, for
lime rates much greater than the initial exchangeable acidity, the fraction of lime charges that
neutralizes exchangeable acidity is much lower because it reacts with other forms of Al (e.g.,
organic-Al complex). Consequently, acidity saturation decay can be modeled as a decreasing

exponential relation with the lime rate that approaches zero at high lime rates (Figure 1).
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Figure 1. Acidity saturation after liming (ASt, %) as a function of the lime rate (LR, cmol kg™t)
divided by the initial exchangeable acidity of the soil (exch. acidi, cmolc kg*) for soils with an
initial acidity saturation > 30%. Data were extracted from Kamprath (1970) (Kamp.), Cochrane
et al. (1980) (Coch.), Ananthacumaraswamy and Baker (1991) (Anan.), and Teixeira et al.
(2020a) (Teix). The solid line is a negative exponential regression line AS; (%) =

95.7 e~ 14 LR/ exchacid; gnd the dot-dash line is a 95% negative exponential quantile regression
line fitted with all the observations. Soil samples with LR > 4 x exch. acidi had ASf values
ranging from 0 to 3.1%, with quartiles equal to 0, 0.2%, and 0.4% (these extreme values are not
shown).

Kamprath (1970) concluded that a lime rate (cmolc kg?) of 1.5 times the initial exchangeable
acidity (cmolc kg) was enough to reduce the acidity saturation to 15% (or less), which was
considered to be a threshold below which most crops are not affected by acidity (Figure 1). For
sensitive crops needing less than 15% of acidity saturation, such as beans (Abrufia et al., 1969;
Fageria et al., 2011; Kamprath, 1980), the required lime rate suggested was twice the
exchangeable acidity. Thus, Kamprath’s (1970) lime requirement model can be written as

follows:
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LR(cmol, kgt = If X exch.acid; (cmol, kgzk;) (Eq.2)
Where exch. acidi is the initial exchangeable acidity of the soil, and If is the lime factor, which
equals 1.5 for most staple crops (e.g., cereals) and 2 for beans and other sensitive crops,

including many vegetable and fruit crops (Alvarez and Ribeiro, 1999).

This simple model worked well for almost all the experimental data available from the four
studies (Figure 1). Out of 21 very acidic soils (acidity saturation, AS, between 30% and 97%)
that received a lime rate of exactly 1.5 of the initial exchangeable acidity, only one ended with an
acidity saturation greater than 15%, but it was very close to that value (18%). Furthermore, all
soil samples with a lime rate of at least twice the initial exchangeable acidity had a final acidity
saturation of 6% or less. Hence, when liming to reduce the acidity saturation to a level that does
not affect crop yield, liming is only needed when the acidity saturation is above 15% (or 5% for
sensitive crops). In such cases, lime rates of 1.5 times (or two times for sensitive crops) the initial

exchangeable acidity would suffice for most tropical crops.

Modifications of the Kamprath (1970) model were used in different regions of Brazil (Lopes et
al., 1991) and Ethiopia (Alemu et al., 2022). For instance, in Minas Gerais, Brazil, a If of 2 was
recommended for most soil types, except for sandy soils (If = 1) and clay soils (If = 3; Lopes et
al., 1991). This distinction might have accounted for differences in soil bulk density, as the
modified formulas gave lime requirements in tons per hectare. Furthermore, all modifications
added a second term that accounted for possible Ca and Mg deficiencies, also used in Minas

Gerais (MG5, Section 0).
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4.2. Cochrane

Cochrane et al. (1980) introduced the concept of target acidity saturation (TAS) to estimate lime
rates (originally called required percentage Al saturation, see Section 2.1.1). Considering the
great genetic variability in acidity saturation tolerance among and within crops (Kamprath, 1980;
Lollato et al., 2019), Cochrane et al. (1980) developed a model that allowed estimating the lime

rate needed to reduce the acidity saturation to a crop’s (or variety) specific target.

To derive their formula, Cochrane et al. (1980) started with a hypothetical situation where all
lime reacts with the exchangeable acidity; thus, the ECEC itself does not change (the decrease in
exchangeable acidity equals the increase in exchangeable bases). In this scenario, the required

lime rate to reach a given acidity saturation would be LR = exch.acid; — exch.acidy =

exch.acid; — (TAS/loo) X ECEC. The target acidity saturation (TAS, %) is divided by 100 to

change it to a fraction, and the subscript i indicates the initial and f the final values. The unit of

LR, exch. acid, and ECEC is cmolc kg™.

The original formula uses the sum of exchangeable acidity (H* and AI**), Ca®*, and Mg?* instead
of ECEC because these were the cations measured by Kamprath (1970). The concentration of
other bases, such as K* and Na*, was considered negligible, as these are normally very low in

acid soils. Thus, the sum of exchangeable acidity, Ca?*, and Mg?* was considered equivalent to
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the ECEC. We present the formula using ECEC, noting that ECEC might not always include all
cations but should always include at least exchangeable AI**, Ca?*, and Mg?*, as these are the
most abundant cations in acid soils. If data on exchangeable K* and Na* are available, they might
be included depending on which exchangeable cations were considered for the derivation of the

crop TAS.

Since not all the applied lime is expected to react with the exchangeable acidity, the formula is
multiplied by a lime factor (If) that equals 1.5 or 2 depending on the relation between initial
exchangeable acidity, TAS, and ECEC. The authors defined the following rule: “factor 1.5 is
replaced by 2 when the estimated liming requirement using the factor 1.5 is greater than the

chemical lime equivalent of the exchangeable Al (acidity). ” Thus:

LR(cmol, kgssy) = If x |exch.acid; — (TAS/100) X ECEC;]

lf 1.5,if 1.5 X [exch.acid; — (TAS/100) X ECEC;| < exch.acid;  (Eq.3)
| 2,if 1.5x [exch.acid; — (TAS/IOO) X ECEC;] > exch.acid;

15, if TAS =5/,

Which can be simplified as If = .
P 2, if TAS< ASL/3

Where AS; is the initial acidity saturation. In other words, when the target acidity saturation is less
than one-third of the initial saturation, the lime factor is 2; otherwise, it is 1.5. For example, for
soils with an initial acidity saturation of 60%, If = 1.5 when TAS > 20% and If = 2 when TAS <

20%.
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Notably, when TAS = 0%, the Cochrane et al. (1980) model equals the Kamprath (1970) model for
sensitive crops, and the required lime rate is twice the initial exchangeable acidy. For that reason,
Cochrane et al. (1980) suggested that their formula should not be evaluated for lime rates greater
than twice the initial exchangeable acidity. Such lime rates result in about 5% acidity saturation or
less (Figure 1). Therefore, we recommend restricting the use of the Cochrane et al. (1980) model
(and any other acidity saturation model) to a TAS > 5%. Accordingly, we only evaluated models
based on TAS for cases in which liming led to a final AS > 5%, as lower AS values should not be
the target of these models (Figure 2). A model with a target pH of 6 might be more appropriate for

extremely sensitive crops requiring an acidity saturation of < 5%.

We found several instances in the literature where the rule of changing the lime factor at low
TAS in (Eq. 3 was misused or ignored. First, Cochrane et al. (1980) themselves inconsistently
applied this rule when testing the performance of their model, perhaps to improve the accuracy
of their model (Figure 2). Second, no description or modification of the model included their rule
(Alvarez and Ribeiro, 1999; Osmond et al., 2002; Yost et al., 1988). For instance, Sanchez
(2019) and Fageria and Baligar (2008) described the formula with a unique If = 1.8, which results
from multiplying the original If of 1.5 by 1.2 to express the LR in tons per hectare by assuming a
soil bulk density (shd) of 1.2 g cm™ and a lime incorporation depth (Id) of 20 cm (Eq. 1). Despite
these inconsistencies, the model of Cochrane et al. (1980) has very good accuracy (RMSE = 0.61,
r = 0.97), even when tested with the independent data from Ananthacumaraswamy and Baker
(1991) and Teixeira et al. (2020a) (RMSE = 0.63, r = 0.97), and represented a breakthrough in

lime requirement models. All models based on TAS derive from it.
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Figure 2. Observed and predicted lime rates (LR, cmolc kg™?) to reach the exchangeable acidity
saturation obtained with the observed lime rates for five lime requirement estimation models based
on a target acidity saturation (TAS). Observed data were extracted from Kamprath (1970) (red),
Cochrane et al. (1980) (blue), Ananthacumaraswamy and Baker (1991) (green), and Teixeira et al.
(2020) (purple). Samples with a final acidity saturation of < 5% were excluded. In the Cochrane
et al. (1980) model, thick points are values computed with Eg. 3 that are different from the values
reported in Cochrane et al. (1980), and asterisks are values reported by Cochrane et al. (1980) that
did not follow their own model (incorrect If). In the Minas Gerais 5™ approximation model (MG5),
filled circles were predicted using the complete formula, and empty circles by only considering its
first term (acidity saturation requirements). Teixeira et al. (2020a) and Ananthacumaraswamy and
Baker (1991) data are not included in MG5 due to the lack of the original soil texture data. The
gray dashed line is the identity function (Predicted LR = Observed LR). RMSE is the root mean
square error, Asp the difference in standard deviation, and r the Pearson’s correlation coefficient
between observed and predicted LR. Accuracy statistics with the superscript ©¥ were obtained with
6-fold cross-validation.

4.3. ACID4
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Yost et al. (1988) developed the ACID4 expert system to make lime requirement predictions in
the humid tropics. They used the Cochrane et al. (1980) formula with a fixed lime factor (If) and a
unit conversion from cmolc kg™ to t ha. Based on preliminary data from Sitiung, Indonesia, Yost
et al. (1988) estimated that 0.53 cmol. of exchangeable acidity are neutralized per cmolc of CaCOs
and computed the If as the inverse of that fraction (1/0.53 = 1.9). Their model yielded a slightly

lower accuracy (RMSE = 0.7, r = 0.97, Figure 2) than Cochrane et al. (1980) model.

To convert the results from cmolc kg to tons of CaCOs per ha, Yost et al. (1988) changed the If to
1.4, assuming sbd = 1 g cm=and Id = 15 cm (Eq. 1). Several authors have used such arbitrary shd
and a fixed Id to estimate the lime requirement in tons per hectare (Osmond et al., 2002; Sanchez,
2019; Yost et al., 1988). However, this practice should be avoided because it greatly affects the
results. For example, a soil with sbd = 1.2 g cm™ requires 20% more lime than one with the same

chemical properties and sbd = 1 g cm3, while an Id = 15 cm needs 25% less lime than Id = 20 cm.

4.4. NuMaSS

The Integrated Soil Nutrient Management Decision Support System (NuMaSS) was developed to
provide fertilizer (N and P) and liming recommendations for acid soils with nutrient problems
(Osmond et al., 2002; Walker et al., 2009). In NuMasSS, soil N, P, and acidity constraints are
computed individually. Then, the final management recommendation is computed considering
the costs and benefits of different nutrient management strategies. The acidity module considers
Al toxicity and deficiencies of Ca and Mg, although the main focus was on Al toxicity. Al

toxicity is computed based on crop critical acidity saturation, exchangeable acidity, and ECEC.
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Default crop critical acidity saturation values for many crops and varieties were included. The

lime rate was calculated with another modified Cochrane et al. (1980) formula (Eq. 4).

max(19 — TAS, 0)
100

TAS
LR(t ha™) = If X (exch. acid — 100 X ECEC) + [10 X ECEC x

25, if ECEC/ ) <45 (Eq. 4)

lf =
.« ECEC
1.3, if /Clay > 4.5

Where clay is the clay content in the soil.

This model uses different lime factors depending on the soil’s clay activity (effective cation
exchange capacity of the soil’s clay fraction). According to its authors, soils with low clay
activity (ECEC/clay < 4.5) require almost twice the lime rate of soils with high clay activity per
unit of exchangeable acidity to be neutralized. In addition, they considered that reducing the
acidity saturation below 19% requires an additional amount of lime equivalent to 10% of the
ECEC per percentage point. The NuMaSS model predicts lime rates in tons per hectare by

assuming Id = 15 cm and sbd = 1 g cm,

To test the NuMaSS model with the soil incubation studies data, the predicted LR was
transformed from t ha to cmolc kg with Eq. 1. Moreover, to take advantage of all the data
while being conservative in the lime requirement prediction, high clay activity (lowest If and

lower LR) was assumed when clay data were unavailable (Table 1, Figure 2).
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The NuMasSS formula adds much complexity to the formula of Cochrane et al. (1980). It
considers that the acidity saturation response to increasing lime rates is not linear and that the
response depends on a soil’s clay activity. However, our analysis shows that NuMaSS
consistently overpredicted the lime rates required to reach a certain acidity saturation (Figure 2),
particularly for low TAS (< 10%), indicating that the second term of the formula for TAS < 19%
should be revised or omitted. Unfortunately, the software is no longer available, and the data

used to derive the formula are unavailable, so the model cannot be further scrutinized.

4.5. Minas Gerais 5" approximation

This Minas Gerais 5" approximation (MG5) model developed for the state of Minas Gerais,
Brazil (Alvarez and Ribeiro, 1999) also has two terms, one of them deriving from the model of
Cochrane et al. (1980). It considers the lime rate needed to lower the acidity saturation of the soil
to a target level as well as possible Ca and Mg deficiencies for the crop. The formula can be

written as follows:

TAS
LR(t ha™) = If % [exch. acid; — (—) X ECECL-] + max(X — (exch.Ca + Mg),0)
If = 0.0302 + 0.06532 %clay — 0.000257 %clay?
Where X is the sum of the minimum quantity of exchangeable Ca and Mg required by the crop
(estimated as 2 cmolc kg™ for most cereals and legumes and 3 cmolc kg™ for most fruits and
vegetables, Alvarez and Ribeiro, 1999). Note that the second term of the formula becomes zero

when the initial exchangeable Ca?* and Mg?* meet crop demands, while the first term is equal to
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the model of Cochrane et al. (1980) but with a different lime factor that depends on soil texture.

The If can take any value between 0 and 4, with higher values in clay soils.

The Kamprath (1970) and Cochrane et al. (1980) soil incubation studies data show very little

support for such a drastic change in If (Figure 2). Furthermore, the addition of the second term in

(Eq. 5) has no theoretical justification, as the Ca®* from the CaCOs used to neutralize
exchangeable acidity stays in the cation exchange complex and becomes available for the crop
(Sanchez, 2019). Therefore, it would be more appropriate to adjust for possible Ca and Mg
deficiencies when the sum of the initial exchangeable Ca?* and Mg?* and the Ca supplied by the

lime (to neutralize the exchangeable acidity) does not meet crop demand.

5. A new model to estimate lime requirements

Defining a target acidity saturation and estimating lime rates as a function of that target is a
useful concept. There has been a proliferation of TAS models, presumably because of perceived
shortcomings in the Cochrane et al. (1980) model (e.g., fixed If of 1.5 or 2). However, while
more complicated, the derived models did not appear to improve the prediction quality. Below
we introduce a new lime requirement model based on TAS obtained from a formal mathematical
derivation of the concept of acidity saturation. Our goal is to provide a model based on strong

empirical relations that can be easily updated as more data become available.
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First, let us decompose the numerator and denominator of final acidity saturation (ASf(%) =

—ex:;;gidf x 100%) into their initial values and degree of change (Eq. 6).
f

AS- (%) = exch.acid; — Aexch. acid % 100%
7 (%) = —ECEC, ¥ AECEC 0 (Eq. 6)

Aexch. acid is the exchangeable acidity equivalents neutralized by liming, and AECEC is the
change in the effective cation exchange capacity, which equals the difference between the
increase in exchangeable bases (Aexch. bases) minus the neutralized exchangeable acidity
(Aexch. acid). AECEC would be 0 if there were a perfect substitution between basic (Ca?* and
Mg %) and acid (AI** and H*) cations in the cation exchange complex, but it is usually positive

because normally Aexch. bases > Aexch. acid. Thus:

AS. (06 = exch.acid; — Aexch.acid « 100%
7 (%) = ECEC; + Aexch. bases — Aexch. acid 0 (Eq.7)

Considering that our goal is to equalize the final acidity saturation to the target acidity saturation
(ASt = TAS), ASt can be replaced with TAS in Eq. 7(Eq. 6). Then, TAS becomes a function of the
initial soil properties (ECEC; and exch. acidi), the increase in exchangeable bases (Aexch. bases),
and the exchangeable acidity equivalents neutralized (Aexch. acid). Therefore, to estimate the
required LR to reach a given TAS, we need to find the association of Aexch. acid and Aexch.
bases with LR so that the two former variables can be replaced for some function of LR in Eq. 7.
For soils with ASt > 5%, these two associations can be modeled with a linear regression without
intercept (Figure 3), despite slight differences between studies. In Figure 3B, most Teixeira et al.
(2020a) observations are above the regression line, and most Kamprath (1970) observations are

below.
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Figure 3. (A) Exchangeable acidity neutralized (Aexch. acid, cmolc kg™) and (B) exchangeable
bases increase (Aexch. bases, cmolc kg™?) as a function of the lime rate (LR, cmolc kg™?), for soil
samples with a final acidity saturation > 5%. The red lines are regression lines forced through the
origin (equations shown in the plot). To avoid the high leverage of soil samples with the highest
LR, LR and As were transformed with the square root before linear regression fitting, and then
the coefficients estimates were back-transformed. The coefficient of determination was
computed as the square of Pearson’s correlation coefficient between observed and linear-
regression-predicted values. Data extracted from Kamprath (1970) (Kamp.), Cochrane et al.
(1980) (Coch.), Ananthacumaraswamy and Baker (1991) (Anan.), and Teixeira et al. (2020)
(Teix.).

Based on this assumption, we have:

Adexch.acid = a X LR (Eq. 8)
Aexch.bases = b X LR (Eq. 9)
We replace the deltas in (Eq. 7) with (Eg. 8 and (Eg. 9 to obtain:
TAS(%) = exch.acid; —a X LR < 100
® T ECEC,+bx LR —a X LR (Eq. 10)

And we solve for LR to get
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exch.acid; — TAS/100 X ECEC;

-1\ —
LR(emole kg™) = —— 1457100 x (b — ) (Eq. 11)

Based on the soil incubation studies data and the regression lines shown in Figure 3, the
parameter estimates for a and b were 0.60 and 0.92, respectively. These parameters were
estimated using the square root of the values to reduce the leverage of very high LR values and
then back-transformed. Note that a, which is the cmolc of exchangeable acidity neutralized per
cmolc of CaCOs, is similar to the value reported by Yost et al. (1988), which was 0.53. These
values can be updated or calibrated for a particular region. Moreover, if new evidence refutes the
assumption of a linear association between LR and the change in exchangeable bases and acidity,
all formulas from Eq. 7 onwards would need to be updated. Still, the steps to take would remain

the same.

Notably, the numerator in (Eq. 11 is the same subtraction term found in the model of Cochrane
et al. (1980) and all other models derived from it. Hence, if (Eq. 11 is rewritten by splitting the
numerator and denominator, the inverse of the denominator can be interpreted as a new lime
factor (If), which is an inverse function of TAS (Eg. 12). Although the If derived in Eq. 12 is very
different conceptually from the If introduced by Cochrane et al. (1980; Eq. 3), its possible values
are similar to those used by previous models. Given our a and b parameter estimates, the value of

the If would be between 1.5 and 1.6 for most crops.

LR(cmol.kg™) = If x [exch. acid; — (TAS/loo) X ECEC{] (Eq. 12)

1 _ 1
a+ TAS/100 x (b — a) = 6+ Tas/100 x (0.92 — 0.6)

lf
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In addition to the 6-fold cross-validation (accuracy statistics in Figure 2), the model in Eq. 12
was cross-validated by fitting parameters a and b with three of the four datasets and testing the
lime rate predictions with the remaining dataset, repeating the process for each dataset. This
“dataset-based” cross-validation resulted in even higher accuracy statistics (RMSE =0.32, r =
0.98). Therefore, the new model has improved accuracy and general validity because its

extrapolation to different tropical regions did not result in a precision loss.

6. Base saturation model

A “base saturation” model originally proposed by Quaggio (1983) is widely used in Sdo Paulo
state, Brazil (Sanchez, 2019; van Raij, 1996). Base saturation (V) is the sum of exchangeable

bases over CECy, expressed as a percentage (see section 0). The model’s formula is

LR (cmol, kg,t,) = CEC, x (V, —V;)/100 (Eq. 13)
V¢ is the target, and Vi is the initial base saturation. Like TAS, V: is crop-specific and expresses a
crop’s sensitivity to soil acidity. In S&o Paulo, Brazil, V: is 50% for most cereals and legumes,
including maize, wheat, rice, sorghum, soybeans, and beans, while it is between 60% to 80% for

most fruits and vegetables (Alvarez and Ribeiro, 1999; Sanchez, 2019).

101



Since CECzy is, in principle, not affected by liming (contrary to ECEC), CECy can be distributed
to Viand Vi in (Eq. 13) and canceled out. Thus, the lime requirement estimated by this model is

equal to the difference between the target and the initial sum of exchangeable bases:

LR (cmol, kg,,) = exch.bases, — exch. bases; = Aexch. bases (Eq. 14)
The base saturation model implicitly assumes that all Ca?* (and Mg?*) equivalents from the lime
become part of the exchangeable complex (Quaggio, 1983). Figure 3B shows the association
between observed LR and Aexch. bases for soil samples with AS¢> 5%. Figure 4 expands that
association to all soil samples with LR equal to or lower than the initial potential acidity (pot.
acidi = CEC7 — exch. bases). It excludes soil samples with LR > pot. acid; because the increase in
exchangeable bases cannot be greater than what the cation exchange complex can take. When LR
< 50% pot. acidi, there is almost a one-to-one association between the lime rate and the increase
in exchangeable bases (Aexch. bases = LR x 0.95(+0.05) V LR < 0.5 x pot. acidi, Figure 4),
supporting the base saturation model assumption. However, as the lime rate approaches the
potential acidity, that association becomes weaker (Aexch. bases = LR x 0.8(x0.03) v 0.5 x pot
acidi < LR < pot acidi, Figure 4). Thus, this model yields a final base saturation close to the
target when Vi < 50%, but it does not perform well at higher base saturation targets.
Consequently, in the future, a liming correction factor (If) that depends on V:could be considered
for the model. For example, the If could be 1.05 when V¢ < 50% (i.e., 1/0.95), and then slightly

increase as V¢ approaches 100%, with a maximum V; of 1.25 (i.e., 1/0.8).
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Figure 4. Difference in exchangeable bases before and after liming (Aexch. bases = exch. bases; -
exch. basest, cmolc kg™) as a function of the observed lime rate (LR, cmolc kg?). Aexch. bases
equals the predicted lime rate by the base saturation model. The color of the points represents the
ratio between LR (cmol. kg™t) and the potential acidity of the soil (pot. acid = CEC7 — exch.
basesi). The gray dashed line is the identity function (Aexch. bases = LR). The solid lines are
regression lines forced through the origin. The blue line is for soil samples with LR < 50% pot.
acid (Aexch. bases = LR x 0.95(x0.05)). The green line is for LR > 50% pot. acid (Aexch. bases
= LR x 0.8(0.03)). Data extracted from Kamprath (1970), Teixeira et al. (2020), and
Ananthacumaraswamy and Baker (1991). Soil samples with lime rates higher than the potential
acidity were omitted.

7. Target pH model

Teixeira et al. (2020b) developed a lime requirement model that targets raising the soil pH to a
level considered optimal for crop production. The model is based on four nonlinear models that
relate the difference between the initial pH and two target pHs (5.8 and 6) with either organic
matter content (OM, g kg™) or potential acidity (Eq. 15). It also considers that the lime rate must
be greater than the Ca and Mg requirement of the crop (X) and lower than the potential acidity of
the soil (pot. acidi). Thus, the estimated lime requirement results from a series of rules such that

it selects the lowest LR from the four nonlinear models that is higher than X and lower than pot.
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acidi. When no model returns a lime rate higher than X, the estimated LR is X. If the selected LR
(either from the models or X) is greater than the initial potential acidity of the soil, the estimated
LR equals pot. acid;. This model always recommends liming because the Ca and Mg available in
the soil are not considered available to the crop, and it thus assumes that all Ca and Mg must be

provided by liming. Therefore, the minimum lime rate is X (Ca and Mg crop requirements),

except when X is higher than pot. acid, in which case LR = pot. acid.

LRs goy = 0.0699 x [(5.8 — pH)OM]9255
LRs gps = 0.375 X [(5.8 — pH)pot. acid]**1?7 (Eq. 15)
LReom = 0.1059 X [(6 — pH)OM]0-872° '
LR¢p,s = 0.4558 X [(6 — pH)pot. acid]2162
The model parameters were calibrated with the same soil incubation study data from Teixeira et
al. (2020a). However, data from five soils were excluded from the calibration because the
authors considered that they deviated too much from the nonlinear regression models compared
to the data from other soils. We tested the model with 6-fold cross-validation using data from
Teixeira et al. (2020a), including the five excluded soils (Figure 5). The target pH model has

much lower accuracy than all other models above. Furthermore, as the model selects the

minimum LR from the nonlinear models instead of the average, it often underpredicts LR.

The Teixeira et al. (2020b) model is the most recent of a large list of regression models based on
a target pH developed for acid soils in Brazil (see, for example, Combatt Caballero et al., 2019).
These models use linear or nonlinear regressions and predictors such as ApH, organic matter,

potential acidity, and base saturation to predict lime rates for a particular region. However, when

tested with an independent dataset, these models have low accuracy (Teixeira et al., 2020a),
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which might be related to the many factors affecting soil pH. Most likely, no simple model can
predict soil pH responses to liming for different soil types with regular soil testing data. Future
incorporations of additional soil properties measuring the soil acid-base buffering capacity to

routine soil tests could help develop better predictive liming-soil pH models (Yang et al., 2020).
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Figure 5. Predicted lime rate (LR) to reach a pH of 5.8 by Teixeira et al. (2020b) as a function of
the observed LR that resulted in such a pH. The gray dashed line is the identity function (Aexch.
bases = LR). The 6-fold cross-validation accuracy statistics shown are the root mean square error
(RMSE), bias, the difference in standard deviation (ASD), and Pearson’s correlation coefficient

().

8. Case study

We used two models with different target soil chemical properties (acidity saturation and base
saturation) to compute lime requirements for 303 African soils with pH between 3.5 and 6.5
(Supplementary Figure 2) and two representative crops with different acidity tolerance. A target

acidity saturation (TAS) of 15% and a target base saturation (V¢) of 50% were defined for the
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more tolerant crop (i.e., common critical values for cereals, such as maize and wheat), and a TAS
of 5% and a V; of 70% were defined for the more sensitive crop (i.e., common critical values for
many vegetables, such as tomato, onion, and cabbage; Alvarez and Ribeiro, 1999). The best
available model was used for each target soil chemical property. No pH model was included
because these models are location-specific and have low accuracy when extrapolated to other
regions. The new model presented here (Eq. 12) was used to predict lime requirements for the
two acidity saturation targets and Quaggio’s (1983) model to predict lime requirements for the
two base saturation targets (Eq. 14). Lime rates were computed in cmolc kg™ because only 27%

of these soil profiles had soil bulk density data available.

Supplementary Figure 2. Location of the 303 soil samples used for the case study. Data extracted
from the Africa Soil Profile Database (Leenaars et al., 2014). The color of the points indicates
the pH of the soil measured in water for a 0 — 20 cm depth.
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The most striking difference between the new model presented here (Eq. 12) and Quaggio’s
(1983) model is that the latter predicts liming for many soils in which the former predicts none
(Figure 6). For instance, for a tolerant crop, 18.5% of the soils do not require liming according to
the two models, while 31% require liming for the base saturation model but not for the acidity
saturation model. The latter fraction goes down to 25% for a more sensitive crop. In contrast,
only 1.7% of the soils require liming based on acidity saturation but not according to the base
saturation. Moreover, the base saturation model predicts lime rates as high as 12 cmol. kg™ for
soils with a pH higher than 6, while virtually no soil with such a pH requires liming based on
acidity saturation (Supplementary Figure 3). Furthermore, 87% of the soils that do not require
liming based on acidity saturation but do for base saturation have an exchangeable Ca* > 1
cmolc kg, enough to meet most cereal crop demands. Thus, neither Al toxicity nor calcium

deficiencies justify liming application in these soils.

Lime rates of soils requiring liming for the two models are weakly correlated (r = 0.43) but
comparable in magnitude (mean difference = 0.47 cmolc kgt). The acidity saturation model
predicts higher lime rates in soils with very low pH for the more tolerant crop but similar values
for the more sensitive crop. Conversely, the base saturation model predicts higher lime rates for

most soils with a pH above 5, particularly for the more sensitive crop.
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Figure 6. Predicted lime rates (LR, cmolc kg™) for 303 African soils with pH between 3.5 and
6.5, two target soil chemical properties: a target base saturation (V:, x-axis) and a target acidity
saturation (TAS, y-axis), and two representative crops: (A) a cereal (TAS = 15% and V: = 50%)
and (B) a vegetable (TAS = 5% and Vi = 70%). The red dashed line is the identity function
(LR(TAS) = LR(V1)). The values inside the plot indicate the fraction of soils in a specific scatter
plot position: the origin (0;0), the x-axis (x;0), between the x-axis and the identity function (x>y,
lower triangle), between the identity function and the y-axis (x<y, upper triangle), and the y-axis
(0;y). Lime rates based on TAS were predicted with the acidity saturation model presented in Eq.
12, and LR based on V: with Quaggio (1983).
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Supplementary Figure 3. Predicted lime rates (LR, cmolc kg?) as a function of soil pH (measured
in water) for 303 African soils with pH between 3.5 and 6.5 and two target soil chemical
properties: a target acidity saturation (TAS) of 15% and a target base saturation (Vi) of 50%.
Lime rates for TAS = 15% were predicted with the acidity saturation model presented in Eq. 12,
and LR for Vi = 50% with Quaggio (1983).

9. Discussion

9.1. Model comparison

We have shown important differences in lime rates and prediction accuracy depending on the
target soil property and model (Figures 2, 4, and 5). When the target is to ameliorate the Al
toxicity of the soil by neutralizing its acidity saturation to a certain level, both Kamprath (1970)
and Cochrane et al. (1980) models provided reasonable accuracy (Figures 1 and 2). Nevertheless,
the new model formulated in Eq. 12 offers improved accuracy and the advantage of being

sustained by a formal mathematical derivation that can be expanded (Figures 2 and 3). Similarly,
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the base saturation model also has great prediction accuracy, particularly for target base
saturation levels of around 50% (Figure 4). In contrast, no model based on a target pH can
deliver accurate results without additional soil tests, and they need to be developed locally

(Figure 5).

The model presented here is the only model based on a target acidity saturation (TAS) with
greater accuracy than the original Cochrane et al. (1980) model (Figure 2). The authors of the
ACID4, NuMaSS, and MG5 models claimed that they modified the Cochrane et al. (1980) model
to improve the accuracy for their target region. However, there are no available data supporting
those statements. The decreased accuracy that we found may partly be because we did not have
access to these data. However, we believe that these more complex models suffer from
overfitting to the datasets used to build them. In other words, they may perform better in
particular regions, but this has come at the expense of general validity. Conversely, the new
model is more robust than previous models because it is based on mathematical foundations and
strong empirical relations. These relations are consistent through a wide range of soils from

different regions (Figure 3).

However, we observed a small incubation study effect in the relations shown in Figure 3, which
might be a consequence of the soil region (parental material) or, more likely, because of the
incubation study per se (differences in the liming material or soil incubation method).
Experimental results have an error component, including systematic errors that are consistent

within one experiment but differ between experiments, introducing statistical bias. This bias can
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be reduced with standardized procedures. However, lime incubation studies are not fully
standardized, and they differ in the incubation time and temperature, liming materials, and water
additions, among other variables. For instance, we excluded data from an incubation study that
used tap water rather than distilled water to keep the soil samples moist during the incubation
(Deressa et al., 2020) because control treatments had significantly more exchangeable Ca®* and
less exchangeable acidity than the initial conditions. A more thorough standardization of
experimental procedures for measuring liming effects would help the development of general

models for lime requirement estimation.

A novel feature of the model formulated in Eq. 12 is that the lime factor (If) is a continuous
function of TAS. The Cochrane et al. (1980) model modifies the If depending on TAS and the
initial acidity saturation, using a discontinuous rule with two fixed If (Eq. 3). However, the
proposed rule does not always improve accuracy, not even in their data, as shown by the points
with incorrect If (Figure 2). In the MG5 and NuMaSS methods, the If depends on clay content or
activity. Our review does not show evidence for a need to adjust the If as a function of clay,
despite the wide range of clay content and soils included in the four soil incubation studies used
here. Adjusting the If and lime rates by clay content might be a work-around to account for
differences in soil bulk density when the method returns lime rates in tons per hectare without
directly including the soil bulk density in the formulas. Nevertheless, clay type and content could
be considered in future corrections of the TAS method, particularly if there are high deviations in

the association between lime rate and Aexch. acid and Aexch. bases.
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It seems counterintuitive that, while both the acidity saturation and base saturation models are
highly accurate on their target, the lime requirement they predict can be so sharply different
(Figure 6). These differences highlight the importance of identifying the soil chemical property
most associated with the crop yield response to liming. Tropical soils can have several acidity
problems affecting crop growth (Kamprath, 1984; Sanchez, 2019). It might be that reaching a
given level for some property, such as a base saturation of 70% or a pH of 6, guarantees that all
soil acidity problems are solved without leading to overliming problems. However, this approach
can also result in lime requirement estimates that are much too high (Farina and Channon, 1991,
Smyth and Cravo, 1992), which might be particularly problematic when lime is expensive, and
its manipulation cumbersome. The alternative is to target the most limiting factor for crop yield,
which is frequently Al toxicity in acid tropical soils (Sanchez, 2019). However, this approach
can underpredict lime requirements when Al toxicity is the only target but not the acidity
problem most limiting crop yields. A comprehensive approach would predict the lime rate
needed to tackle every potential acidity problem while considering other management
alternatives. However, crop responses to other acidity problems, such as calcium and magnesium
deficiencies, are unclear, and their liming requirements have not been defined. Thus, more
research on crop responses to lime in soils with these specific acidity problems is needed to

develop a lime requirement method that tackles them all.

9.2.Model applications
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Lime requirement models can be useful for strategic research on potential lime use in tropical
regions where liming is still a rare practice and the experimental evidence is scarce (Crawford et
al., 2008). These models estimate the lime rate needed to reach a target soil condition based on
readily available standard soil data (Hengl et al., 2017; Miller et al., 2021). Such information
could be used together with the crop response to that soil condition to estimate the effect of
liming on crop yield. For instance, there is ample evidence of the association between acidity
saturation and crop yields (Abrufia et al., 1969; Farina and Channon, 1991; Lollato et al., 2019;
Smyth and Cravo, 1992). Therefore, the expected yield response to lime can be predicted by
estimating what fraction of the maximum yield is observed at the current acidity saturation level
while assuming that the final yield after liming is the inverse of that fraction. If data on lime and
grain prices is available, such functions can be used to get a first approximation of the potential
profitability of liming. Such analysis can help identify regions where liming investments might

be more successful, pinpointing national governments and private sector efforts.

However, this does not mean that the readily available soil data used by the models reviewed
here has sufficient quality for farm-level recommendations (Vanlauwe et al., 2019). Therefore,
farm-level lime requirements would be more accurate when based on soil properties
measurements or additional local soil-quality indicators, such as soil color, soil texture, or
presence of specific plant species (Mairura et al., 2007). The soil properties used by the lime
requirement models reviewed here are wet-lab measurements, which are costly and may be
inaccessible for farmers in the tropics. Therefore, farmers in the tropics could benefit from cost-

effective, quick tests for lime requirement prediction, but these need to be developed locally.
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10. Conclusions

Liming can boost the productivity of acid soils, but the lime rate required to achieve this is
unknown for many tropical regions where food production increases are urgently needed. While
lime requirement models could be very useful in these places, the variety of models available in
the literature introduces much uncertainty. We showed important differences in the results
obtained from these models, particularly depending on their target soil chemical property. For
instance, many more African soils require liming based on base saturation rather than acidity
saturation. The new acidity saturation model introduced here has more precision than all earlier
models across a wide range of acid tropical soils from different regions and can effectively
estimate the lime rate required to address aluminum toxicity. This model could be incorporated
into more comprehensive models once lime rates needed for other acidity problems are well

established.
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SUMMARY

This dissertation analyzed patterns and processes in crop species diversity in the US and the
world. It also introduced a new lime requirement model for acid tropical soils, which was
evaluated and compared with previous models. Spatial and temporal diversity patterns, their
relation, and how the spatial scale conditions them were investigated for the US. Current spatial
diversity patterns were also assessed globally and compared with attainable diversity to compute
diversity gaps. Attainable diversity was defined as the diversity obtained when all crops are
planted to maximize diversity while considering crop-specific environmental suitability and
demand (i.e., environmental and demand-side constraints). Attainable diversity patterns reflect
environmental processes shaping diversity, while diversity gap patterns result from specialization
processes. The new lime requirement model was built on strong empirical relations and a formal
mathematical derivation of acidity saturation. Lime requirement models were evaluated using
data from incubation studies of soils from different countries, and their estimates were compared

using a large dataset of African soils.

S.1. Pattern and Process in Crop Species Diversity

The average temporal diversity in the United States is 2.1 effective crop species, and 6 out of 10
hectares of cropland have two or fewer crops in rotation. In addition, temporal diversity is lower
in croplands planted with major crops, which results in a negative correlation between the total

area planted with a crop and the temporal diversity of the cropland where it is grown. Therefore,

a possible approach to increasing temporal (and, thus, farm-scale) diversity in the US and
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elsewhere is to incentivize the production of and demand for “middle class” crops while
lowering the incentives for wheat, maize, soybean, and rice. Another approach that does not
require changes in consumption patterns would be to increase the area of the most under-utilized
crop, that is, crops with the highest difference between the attainable and actual crop proportion.
Such a crop is usually a major crop adapted to but not widely planted in a region. For instance, in

most US Corn Belt, that crop is wheat.

Crop species diversity in space strongly increases with the size of the area in which it is
measured. For instance, 75% of US croplands have less than two effective crop species when
diversity is measured in units of 44 ha, but a diversity greater than 2 when measured at 1,500 ha.
This spatial crop diversity scale dependency can be described with a double sigmoid curve. At
the lower end, spatial diversity increases exponentially as the size of the observational unit
increases from a point (an infinitesimally small area) to beyond single fields (with usually one
crop) and captures the farm-level diversity. When the size of the observational unit reaches
typical farm sizes, the increase in diversity slows down as neighboring farms are usually similar
to each other. Then, spatial diversity increases exponentially in very large areas because of
regional cropping system differences. Thus, the shape of this relation can inform different
features of the study area, such as farm size and diversity (first exponential growth) and
regionalization level (second exponential growth). This regional differentiation can also be
observed in the difference between the diversity gap of total national diversity and local diversity
averages. Diversity gaps are usually greater for the average local diversity than for the total
national diversity because different farms and regions might specialize in particular cropping

systems. Countries might take advantage of that specialization while ensuring that the demand
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for agricultural products is covered as much as possible with the production from different

regions.

Spatial diversity is most strongly associated with temporal diversity at the farm level, as farmers
typically plant all components of their crop rotation in different fields. At intermediate
aggregation levels (e.g., county level), the total spatial diversity is always greater than the farm-
level diversity, yet, farm-level diversity is its biggest component. Thus, it is possible to estimate
the farm-level (and, hence, temporal) diversity from county-level spatial diversity if the regional-
to-local diversity ratio is considered. At higher levels of aggregation (e.g., countries), the lack of
correlation between the temporal and spatial diversity increases exponentially because the

diversity among farms is normally much greater than the diversity within them.

The largest tracts of high crop species diversity are found in East Asia, humid and sub-humid
regions of sub-Saharan Africa, and the Mediterranean. In the US, crop diversity is higher in
North Dakota, the West Coast, and the Southern Seaboard. Crop diversity is very low in most of
the non-mountainous regions of the Americas (where croplands are dominated by maize and
soybean) and central Asia (wheat), as well as in parts of Southeast Asia (rice and oil palm).
Moreover, crop diversity patterns partially follow general latitudinal biodiversity gradients. Crop
diversity is the highest around the Equator and the Tropic of Cancer, from where it linearly
decreases when going northwards. However, southern hemisphere patterns are somehow
different. South of the Equator, crop diversity decreases rapidly with latitude between the
Equator and the Tropic of Capricorn, which might be a consequence of the southern

hemisphere’s lower amount of cropland, most of which is in South America.
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Attainable diversity is also higher in the tropics than in temperate regions. Outside the tropics, it
is higher in coastal than continental regions. The lowest attainable diversity values are observed
in Kazakhstan, Mongolia, Russia, the Baltic States, Scandinavia, Canada, and the northern US.
Temperature strongly affects the attainable diversity: it increases linearly with the annual average

temperature until it plateaus at 20 to 25 °C, and it slightly decreases at a higher temperature.

Nearly five-sixths of the world’s croplands have a diversity gap of 50% or more. In other words,
they have less than half of the crop diversity they would have if crops were planted to maximize
suitability and diversity while considering the current demand for crops. Diversity gaps are
particularly high in most plain regions of the Americas, intermediate in Africa, Asia, and
Oceania, but with great spatial variability, and relatively small in Europe, especially in the
Mediterranean, Eastern Europe, and the Netherlands. Cropland with low diversity tends to have
large diversity gaps. Therefore, regions with low diversity values are seldomly the result of large

environmental constraints, except maybe for some regions in Eastern Europe and Central Asia.

S.2. Lime Requirement Models

The lime rate required to reduce soil acidity problems in the tropics and the accuracy with which
it is predicted largely depends on the target soil chemical property. When the target is to
neutralize the aluminum toxicity of the soil, the foundational acidity saturation models provided
reasonable accuracy. Nevertheless, the new acidity saturation model introduced in this

dissertation provides improved accuracy over many acid soils from different countries and the
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benefit of being founded on a formal mathematical derivation that can be expanded. In contrast,
previous attempts to improve these models showed less accuracy, maybe because they were
developed to perform better in a particular region at the expense of general validity. The lime
rate required to raise the base saturation level of the soil can also be accurately estimated with
the available models. However, no general model can accurately predict the lime required to
raise the soil pH to a target, probably because of the many factors affecting soil pH.
Consequently, lime requirement models based on soil pH are usually developed locally and

involve testing the acid-base buffer capacity of the soil with buffer solutions.

The great differences in the estimated lime rates between target soil chemical properties
highlight the importance of identifying the acidity problems affecting crop yields. Some targets,
such as base saturation and pH, are not directly associated with crop yields. They are used to
ensure that no acidity problems affect the crop when these are raised above a certain threshold,
but lower values do not necessarily imply lower yields. Such a strategy could be effective where
lime is cheap, but not for most smallholder farmers in the tropics. In contrast, acidity saturation
is tightly associated with aluminum toxicity and crop yields. Therefore, overprediction is less
likely for models based on acidity saturation, but these models do not estimate the required lime
rate to deal with other soil acidity problems. Acidity saturation models could hence be improved
by integrating them with lime requirement models for other acidity problems, but such models

are not well established yet.
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